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NONLINEAR INSTABILITY OF A CRITICAL TRAVELING WAVE
IN THE GENERALIZED KORTEWEG–DE VRIES EQUATION∗

ANDREW COMECH† , SCIPIO CUCCAGNA‡ , AND DMITRY E. PELINOVSKY§

Abstract. We prove the instability of a “critical” solitary wave of the generalized Korteweg–
de Vries equation, the one with the speed at the border between the stability and instability regions.
The instability mechanism involved is “purely nonlinear” in the sense that the linearization at a
critical soliton does not have eigenvalues with positive real part. We prove that critical solitons
correspond generally to the saddle-node bifurcation of two branches of solitons.
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1. Introduction and main results. We consider the generalized Korteweg–
de Vries (KdV) equation in one dimension,

∂tu = ∂x
(
−∂2

xu + f(u)
)
, u = u(x, t) ∈ R, x ∈ R,(1.1)

where f ∈ C∞(R) is a real-valued function that satisfies

f(0) = f ′(0) = 0.(1.2)

Depending on the nonlinearity f , (1.1) may admit solitary wave solutions, or solitons,
of the form u(x, t) = φc(x − ct). Generically, solitons exist for speeds c from (finite
or infinite) intervals of a real line. For a particular nonlinearity f , solitons with
certain speeds are (orbitally) stable with respect to the perturbations of the initial
data, while others are linearly (and also dynamically) unstable. We will study the
stability of the critical solitons, the ones with speeds c on the border of stability and
instability regions. These solitons are no longer linearly unstable. Still, we will prove
their instability, which is the consequence of the higher algebraic multiplicity of the
zero eigenvalue of the linearized system.

When f(u) = −3u2, (1.1) turns into the classical KdV equation

∂tu + ∂3
xu + 6u∂xu = 0,(1.3)

which is well known to have solitons

uc(x, t) = φc(x− ct) =
c

2 cosh2
(√

c
2 (x− ct)

) , c > 0.
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For f(u) = −up, p > 1, we obtain the family of generalized KdV equations (also
known as gKdV-k with k = p− 1) that have the form

∂tu + ∂3
xu + ∂x(up) = 0.(1.4)

They also have solitary wave solutions. All solitary waves of the classical KdV equa-
tion and of the subcritical generalized KdV equations (1 < p < 5) are orbitally stable;
see [Ben72, Bon75, Wei87, ABH87]. Orbital stability is defined in the following sense.

Definition 1.1. The traveling wave φc(x − ct) is said to be orbitally stable if
for any ε > 0 there exists δ > 0 so that for any u0 with ‖u0 − φc‖H1 ≤ δ there is a
solution u(t) with u(0) = u0, defined for all t ≥ 0, such that

sup
t≥0

inf
s∈R

‖u(x, t) − φ(x− s)‖H1 < ε,

where H1 = H1(R) is the standard Sobolev space. Otherwise the traveling wave is
said to be unstable.

Equation (1.1) is a Hamiltonian system, with the Hamiltonian functional

E(u) =

∫
R

(
1

2
(∂xu)2 + F (u)

)
dx,(1.5)

with F (u) the antiderivative of f(u) such that F (0) = 0. There are two more invari-
ants of motion: the mass

I(u) =

∫
R

u dx(1.6)

and the momentum

N (u) =

∫
R

1

2
u2 dx.(1.7)

Assumption 1. There is an open set Σ ⊂ R+ so that for c ∈ Σ the equation
−cφc = −φ′′

c + f(φc) has a unique solution φc(x) ∈ H∞(R) such that φc(x) > 0,
φc(−x) = φc(x), lim|x|→∞ φc(x) = 0. The map c �→ φc ∈ Hs(R) is C∞ for c ∈ Σ
and for any s. Consequently, (1.1) admits traveling wave solutions

u(x, t) = φc(x− ct), c ∈ Σ.(1.8)

In Appendix A we specify conditions under which Assumption 1 is satisfied.
Let Nc and Ic denote N (φc) and I(φc), respectively. By Assumption 1, Nc and

Ic are C∞ functions of c ∈ Σ. For the general KdV equation (1.1) with smooth f(u),
Bona, Souganidis, and Strauss [BSS87] show that the traveling wave φc(x − ct) is
orbitally stable if

N ′
c =

d

dc
Nc =

d

dc
N (φc) > 0(1.9)

and unstable if instead N ′
c < 0. See Figure 1. The criterion (1.9) coincides with the

stability condition obtained in [GSS87] in the context of abstract Hamiltonian systems
with U(1) symmetry (the theory developed there does not apply to the generalized
KdV equation).
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Fig. 1. Stable and unstable regions on a possible graph of Nc vs. c. Three critical solitary
waves are denoted by stars.

Remark 1.2. Note that, as one can readily show, the amplitude of solitary waves
is monotonically increasing with their speed c, while the momentum Nc does not have
to.

Remark 1.3. For the generalized KdV equations (1.4), the soliton profiles sat-

isfy the scaling relation φc(x) = c
1

p−1φ1(c
1
2x). The values of the momentum func-

tional that correspond to solitons with different speeds c are given by N (φc) =

const c
2

p−1−
1
2 = const c

5−p
2(p−1) , so that d

dcN (φc) > 0 for p < 5, in agreement with the
stability criterion (1.9) derived in [BSS87].

In [BSS87] it is stated that critical traveling waves φc�(x), that is, c� such that
N ′

c� = 0, are unstable as a consequence of the claim that the set {c: φc is stable} is
open. This claim, however, is left unproved in [BSS87]. Moreover, this is not true
in general. (This is demonstrated by the dynamical system in R

2 described in the
polar coordinates by θ̇ = sin θ, ṙ = 0. The set of stationary states is the line y = 0;
the subset of stable stationary points, x ≤ 0, is closed.) The question of stability of
critical traveling waves has been left open. We address this question in this paper,
proving the instability under certain rather generic assumptions. This result is the
analogue of [CP03] for the generalized KdV equation (1.1).

Remark 1.4. We will not consider the L2-critical KdV equation given by (1.4)
with p = 5, when Nc = const. In this case, the solitons are not only unstable but
also exhibit a blow-up behavior. This blow-up is considered in a series of papers by
Martel and Merle [Mer01, MM01b, MM02a, MM02b].

The analysis of the instability of critical solitary waves (with no linear instability)
requires better control of the growth of a particular perturbation. We achieve this
by employing the asymptotic stability methods. Pego and Weinstein [PW94] proved
that the traveling wave solutions to (1.4) for the subcritical values p = 2, 3, 4, and also
p ∈ (2, 5)\E with E a finite and possibly empty set, are asymptotically stable in the
weighted spaces. Their approach was extended in [Miz01]. For other deep results of
stability see [MM01a, MM05]. The proofs extend, under certain spectral hypotheses,
to solitary solutions to a generalized KdV equation (1.1) with c such that N ′

c > 0.
Substituting u(x, t) = φc(x − ct) + ρ(x − ct, t) into (1.1) and discarding terms

nonlinear in ρ, we get the linearization at φc:

∂tρ = ∂x
(
−∂2

xρ + f ′(φc)ρ + cρ
)
≡ JHcρ,(1.10)

where

J = ∂x, Hc = −∂2
x + f ′(φc) + c.(1.11)
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Fig. 2. Essential spectrum of JHc, c = 1, in the exponentially weighted space L2
μ(R) for

μ = 0.1 <
√
c/3 (solid line) and μ = 0.65 >

√
c/3 (dashed line).

In (1.10), both φc(·) and ρ(·, t) are evaluated at x − ct, but we change the variable
and write x instead.

The essential spectrum of JHc in L2(R) coincides with the imaginary axis. λ = 0
is an eigenvalue (with ∂xφc being the corresponding eigenvector). To use the asymp-
totic stability methods from [PW94], we will consider the action of JHc in the expo-
nentially weighted spaces. For s ∈ R and μ ≥ 0, we define

Hs
μ(R) = {ψ ∈ Hs

loc(R): eμxψ(x) ∈ Hs(R)} , μ ≥ 0,(1.12)

where Hs(R) is the standard Sobolev space of order s. We also denote L2
μ(R) =

H0
μ(R). We define the operator Aμ

c = eμx ◦JHc ◦ e−μx, where e±μx are understood as
the operators of multiplication by the corresponding functions, so that the action of
JHc in L2

μ(R) corresponds to the action of Aμ
c in L2(R). The explicit form of Aμ

c is

Aμ
c = eμx ◦ JHc ◦ e−μx = (∂x − μ)

[
−(∂x − μ)2 + c− f ′(φc)

]
.(1.13)

The domain of Aμ
c is given by D(Aμ

c ) = H3(R). Since the operator [∂x − μ]f ′(φc)
is relatively compact with respect to A μ

c = −(∂x − μ)3 + c(∂x − μ), the essential
spectrum of Aμ

c coincides with that of A μ
c and thus is given by

σe(A
μ
c ) =

{
λ ∈ C: λ = λcont(k) = (μ− ik)3 − c(μ− ik), k ∈ R

}
.(1.14)

The essential spectrum of A μ
c is located in the left half-plane for 0 < μ <

√
c and is

simply connected for 0 < μ <
√
c/3; see Figure 2.

We need assumptions about the existence and properties of a critical wave.
Assumption 2. There exists c� ∈ Σ\∂Σ, c� > 0, such that N ′

c� = 0.
Remark 1.5. Let us give examples of the nonlinearities that lead to the existence

of critical solitary waves. Take f−(z) = −Azp + Bzq, with 2 < p < q, A > 0, B > 0,
or f+(z) = Azp − Bzq + Czr, with 2 < p < q < r, A > 0, B > 0, C > 0. In the case
of f+, we require that B be sufficiently large so that f+(z) takes negative values on
a nonempty interval I ⊂ R+. Then there will be traveling wave solutions φc(x− ct)
with c ∈ (0, c1) (also with c = 0 in the case of f+) for some c1 > 0.1 Elementary

1The value of c1 is determined from the system f(z1) + c1z1 = 0, F (z1) + c1z2
1/2 = 0, with F

the primitive of f such that F (0) = 0. See Appendix A or [BL83] for more details.
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computations show that the value of the momentum Nc goes to infinity as c ↗ c1. It
also goes to infinity as c ↘ 0 if p > 5 (also if p = 5 in the case of f+), so that there
is a global minimum of Nc at some point c� ∈ (0, c1).

Assumption 3. There exists μ0 ∈ (0,
√
c�/2) such that for 0 ≤ μ ≤ μ0 the

operator Aμ
c� has no L2-eigenvalues except λ = 0.

Remark 1.6. We require that μ ≤ √
c�/2 so that the inequality μ <

√
c/3 (needed

in the condition of Lemma 4.2) is satisfied for c from an open neighborhood of c�.
Assumption 4. At the critical value c�, the nondegeneracy condition I ′c� �= 0 is

satisfied. Here Ic = I(φc) is the value of the mass functional (1.6) on the traveling
wave φc.

Remark 1.7. If I ′c� = 0, then the eigenvalue λ = 0 of JHc� corresponds to a
Jordan block larger than 3 × 3. We will not consider this situation.

Our main result is that the critical traveling wave φc�(x) of the generalized KdV
equation (1.1) is (nonlinearly) unstable.

Theorem 1 (main theorem). Let Assumptions 1, 2, 3, and 4 be satisfied, and
assume that φc� is a critical soliton. Assume that there exists an open neighborhood
O(c�) ⊂ Σ of c� so that N ′

c is strictly negative and nonincreasing for c ∈ O(c�),
c > c� (or strictly negative and nondecreasing for c < c�, or both). Then the critical
traveling wave φc�(x) is orbitally unstable. More precisely, there exists ε > 0 such
that for any δ > 0 there exists u0 ∈ H1(R) with ‖u0 − φc�‖H1 < δ and t > 0 so that

inf
s∈R

‖u(·, t) − φc�(· − s)‖H1 = ε.(1.15)

Remark 1.8. For definiteness, we consider the case when N ′
c is strictly negative

and nonincreasing for c > c�, c ∈ O(c�). The proof for the case when N ′
c is strictly

negative and nondecreasing for c < c�, c ∈ O(c�), is the same.
Thus, we assume that there exists η1 > 0 such that

[c�, c� + η1] ⊂ Σ, N ′
c < 0 for c ∈ (c�, c� + η1] ⊂ Σ.(1.16)

Strategy of the proof and the structure of the paper. In our proof, we
develop the method of Pego and Weinstein [PW94] and derive the nonlinear bounds
relating the energy estimate and the dissipative estimate. We follow a center manifold
approach; that is, we reduce the infinite-dimensional Hamiltonian system to a finite-
dimensional system which contains the main features of the dynamics. Specifically,
we consider the spectral decomposition near the zero eigenvalue in section 2, and a
center manifold reduction is considered in section 3, this part being similar to the
approach in [CP03]. Estimates in the energy space and in the weighted space for
the error terms are in sections 4 and 5. In this part of our argument we develop the
approach of [PW94]. In section 6, we complete the proof of Theorem 1. In section 7,
we give an alternative approach to the instability of the critical traveling wave φc�(x)
by a normal form argument [Car81, IA98], under the additional hypothesis that the
critical point c� of Nc is nondegenerate:

N ′′
c� =

d2 N (φc)

dc 2

∣∣∣
c=c�

�= 0.(1.17)

The construction of traveling waves is considered in Appendix A. The details on
the Fredholm alternative for Hc are in Appendix B. An auxiliary technical result is
proved in Appendix C.
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2. Spectral decomposition in L2
μ(RRR) near λ = 0. First, we observe that for

any c ∈ Σ (see Assumption 1), the linearization operator JHc given by (1.11) satisfies
the following relations:

Hce1,c = 0, where e1,c = −∂xφc(x),(2.1)

JHce2,c = e1,c, where e2,c = ∂cφc(x).(2.2)

Let S (R) denote the Schwarz space of functions.
Definition 2.1. Let χ+ ∈ C∞(R) be such that 0 ≤ χ+ ≤ 1, χ+|(−∞,−1] = 0,

χ+|[0,∞) ≡ 1. Define S+,m(R), m ≥ 0, to be the set of functions u ∈ C∞(R) such
that χ+u ∈ S (R) and for any N ∈ Z, N ≥ 0, there exists CN > 0 such that

|u(N)(x)| ≤ CN (1 + |x|)m.

Note that for any m ≥ 0, Image(JHc|S+,m(R) ) ⊂ S+,m(R). The algebraic multi-
plicity of zero eigenvalue of the operator JHc considered in S+,m(R) depends on the
values of N ′

c and I ′c as follows.
Proposition 2.2. Fix m ≥ 0, and consider the operator JHc in S+,m(R).
(i) The eigenvalue λ = 0 is of geometric multiplicity one, with the kernel gener-

ated by e1,c.
(ii) Assume that c ∈ Σ is such that N ′

c �= 0. Then the eigenvalue λ = 0 is of
algebraic multiplicity two.

(iii) Assume that c� ∈ Σ is such that N ′
c� = 0, I ′c� �= 0. Then the eigenvalue

λ = 0 is of algebraic multiplicity three.
Proof. First of all we claim that in S+,m(R) we have dim ker JHc = 1.
The differential equation Hcψ = 0 has two linearly independent solutions. Ac-

cording to (2.1), one of them is e1,c, which is odd and exponentially decaying at
infinity. The other solution is even and exponentially growing as |x| → ∞ and hence
does not belong to S+,m(R); we denote this solution by Ξc(x).

Observe that if v ∈ ker JHc, then Hcv = K, v ∈ C∞(R). Set v = K
c + w. Then

Hcw = −K
c f

′(φc). Since 〈f ′(φc), e1,c〉 = 0, by Lemma B.1 there exists a function

w0 ∈ S+,m(R) such that Hcw0 = −K
c f

′(φc). So w = w0 + A∂xφc + BΞc, with A
and B constants. Since

v =
K

c
+ w =

K

c
+ w0 + A∂xφc + BΞc ∈ S+,m(R),

we need v(x) → 0 for x → +∞, and therefore B = 0 and K = 0. Hence, v ∈ kerHc,
proving that kerJHc = kerHc. This proves Proposition 2.2 (i).

Let us introduce the function

Θc(x) =

∫ x

+∞
∂cφc(y) dy.(2.3)

Then ∂xΘc(x) = ∂cφc(x), limx→−∞ Θc(x) = −I ′c; hence Θc ∈ S+,0(R). If v satisfies

JHcv = ∂cφc(x), lim
x→+∞

v(x) = 0,(2.4)

then v(x) is the only solution to the problem

Hcv = Θc(x), lim
x→+∞

v(x) = 0.(2.5)
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According to Lemma B.1 (see Appendix B), if 〈e1,c,Θc〉 = 〈φc, ∂cφc〉 = N ′
c �= 0,

then v(x) has exponential growth as x → −∞,

v(x) ∝ e
√
c|x|, x → −∞,(2.6)

and therefore does not belong to S+,m(R). This finishes the proof of Proposition
2.2 (ii).

Let us now assume that N ′
c� = 0 for some c� ∈ Σ. Then, again by Lemma B.1

with m = 0, there exists e3,c�(x) ∈ S+,0(R) such that

Hc�e3,c� = Θc�(x), lim
x→+∞

e3,c�(x) = 0.(2.7)

Now let us consider w ∈ C∞(R) such that

JHc�w = e3,c� , lim
x→+∞

w(x) = 0.(2.8)

Let E(x) =
∫ x

+∞ e3,c�(y) dy; the function w(x) satisfies Hc�w = E. Taking the
pairing of E with e1,c� , we get

〈e1,c� ,E〉 = −〈φc� , e3,c�〉 = 〈Hc�∂cφc� , e3,c�〉 = 〈∂cφc� ,Hc�e3,c�〉

= 〈∂xΘc� ,Θc�〉 =
Θ2

c�

2

∣∣∣∣
+∞

−∞
= − lim

x→−∞

Θ2
c�(x)

2
= −

(I ′c�)
2

2
< 0.(2.9)

(In the first equality, the boundary term does not appear because when x → ±∞
the function E(x) grows at most algebraically while φc decays exponentially.) By
Lemma B.1, since 〈e1,c� ,E〉 is nonzero, w(x) grows exponentially as x → −∞. This
proves that the algebraic multiplicity of the eigenvalue λ = 0 is exactly three.

Now we would like to consider JHc in the weighted space L2
μ(R), μ > 0. This is

equivalent to considering Aμ
c = eμx ◦JHc ◦ e−μx in L2(R). In what follows, we always

require that

0 < μ < min(μ0, μ1),(2.10)

with μ0 from Assumption 3 and μ1 from Lemma C.1.
We define

eμj,c = eμxej,c, j = 1, 2; eμ3,c� = eμxe3,c� .(2.11)

From Proposition 2.2, we obtain the following statement.
Corollary 2.3.

(i) If N ′
c �= 0, then the basis for the generalized kernel of Aμ

c in L2(R) is formed
by the generalized eigenvectors {eμ1,c, e

μ
2,c}.

(ii) At c� where N ′
c� = 0, I ′c� �= 0, the basis for the generalized kernel of Aμ

c� in
L2(R) is formed by the generalized eigenvectors {eμ1,c� , e

μ
2,c�

, eμ3,c�}.
Proof. As follows from Lemma A.1 in Appendix A,

|e1,c(x)| ≤ const e−
√
c|x|, x ∈ R.(2.12)

Applying Lemma A.2 to (2.2) (for both x ≥ 0 and x ≤ 0), we also see that

|e2,c(x)| ≤ const(1 + |x|)e−
√
c|x|, x ∈ R.(2.13)
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It follows that eμ1,c, e
μ
2,c ∈ L2(R).

If N ′
c �= 0, then by (2.6) eμxv(x) �= L2(R).

If N ′
c = 0 at c = c�, then e3,c� ∈ S+,0(R) (belongs to S for x ≥ 0 and remains

bounded for x ≤ 0). Moreover, applying Lemma A.2 to (2.7), we see that

|e3,c�(x)| ≤ const(1 + |x|)e−
√
c� x, x ≥ 0.(2.14)

It follows that eμ3,c� ∈ L2(R). As follows from Proposition 2.2, the function eμxw(x)

in (2.8) does not belong to L2(R), so the algebraic multiplicity of λ = 0 is precisely
three.

Lemma 2.4.

(i) Let c ∈ (c�, c� + η1]. Then there exists a simple positive eigenvalue λc of Aμ
c .

This eigenvalue does not depend on μ.
(ii) λc is a simple eigenvalue of the operator JHc considered in L2(R).
(iii) There exists a C∞ extension of e3,c� into an interval [c�, c� + η1],

c �→ e3,c ∈ H∞
μ (R), c ∈ [c�, c� + η1],

so that the frame

{eμj,c = eμxej,c ∈ H∞(R): j = 1, 2, 3}, c ∈ [c�, c� + η1],

depends smoothly on c (in L2), Xμ
c = span〈eμ1,c, e

μ
2,c, e

μ
3,c〉 is the invariant

subspace of Aμ
c , and Aμ

c |Xμ
c

is represented in the frame {eμj,c} by the following
matrix:

Aμ
c |Xμ

c
=

⎡
⎣ 0 1 0

0 0 1
0 0 λc

⎤
⎦ ,(2.15)

where λc equals

λc = − N ′
c

〈φc, e3,c〉
,(2.16)

with 〈φc, e3,c〉 > 0 for c ∈ [c�, c� + η1].
Proof. Due to the restriction (2.10) on μ, the essential spectrum of Aμ

c for c ≥ c�
is given by (1.14) and is located strictly to the left of the imaginary axis. By As-
sumption 3, the discrete spectrum of Aμ

c� consists of the isolated eigenvalue λ = 0,
which is of algebraic multiplicity three by Corollary 2.3. We choose a closed contour
γ ⊂ ρ(Aμ

c�) in C
1 so that the interval [0, Λ] of the real axis is strictly inside γ, where

Λ = sup
c∈Σ

sup
x∈R

|f ′′(φc(x))φ′
c(x)|.(2.17)

Remark 2.5. The value of Λ is chosen so that all point eigenvalues of the operator
JHc, c ∈ Σ, are bounded by Λ. Indeed, if ψ satisfies JHcψ = λψ with λ ∈ R, then
ψ ∈ H∞(R) and can be assumed to be real-valued. Therefore, we have

λ〈ψ,ψ〉 = 〈ψ, ∂x(−∂2
x + f ′(φc) + c)ψ〉

= −〈ψ′, f ′(φc)ψ〉 = −〈ψψ′, f ′(φc)〉 =
1

2

∫
R

ψ2∂xf
′(φc) dx,
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so that |λ| ≤ supx∈R
|f ′′(φc(x))φ′

c(x)|/2.
We notice that for c from an open neighborhood of c�, γ belongs to the resolvent

set ρ(Aμ
c ). Indeed, we have

1

Aμ
c − z

=
1

Aμ
c� − z + (Aμ

c −Aμ
c�)

=
1

(Aμ
c� − z)

1

(1 + (Aμ
c� − z)−1(Aμ

c −Aμ
c�))

.(2.18)

Since Aμ
c� − z, z ∈ γ, is invertible in L2 and is smoothing of order three, while

Aμ
c −Aμ

c� depends continuously on c as a differential operator of order 1, the operator
(Aμ

c� − z)−1(Aμ
c − Aμ

c�) is bounded by 1/2 as an operator in L2 for all z ∈ γ and for
all c sufficiently close to c�. We assume that η1 > 0 is small enough so that

γ ∈ ρ(Aμ
c ) for c ∈ [c�, c� + η1].(2.19)

Integrating (Aμ
c − z)−1 along γ, we get a projection

Pμ
c = − 1

2πi

∮
γ

dz

Aμ
c − z

, c ∈ [c�, c� + η1].(2.20)

Since rankPμ
c� = 3, we also have

rankPμ
c = 3, c ∈ [c�, c� + η1].

The three-dimensional spectral subspace RangePμ
c� corresponds to the eigenvalue

λ = 0 that has algebraic multiplicity three. According to Corollary 2.3, when N ′
c �= 0,

λ = 0 is of algebraic multiplicity two, and therefore Xμ
c ≡ RangePμ

c splits into
a two-dimensional spectral subspace of Aμ

c corresponding to λ = 0 (it is spanned by
{eμ1,c, e

μ
2,c}) and a one-dimensional subspace that corresponds to a nonzero eigenvalue.

For c ∈ [c�, c� + η1], we define

ẽμ3,c = Pμ
c e

μ
3,c�

, c ∈ [c�, c� + η1].(2.21)

Note that ẽμ3,c ∈ L2(R) since Pμ
c is continuous in L2. In the frame {eμ1,c, e

μ
2,c, ẽ

μ
3,c} we

can write

Aμ
c ẽ

μ
3,c = ace

μ
1,c + bce

μ
2,c + λcẽ

μ
3,c.(2.22)

Since the frame {eμ1,c, e
μ
2,c, ẽ

μ
3,c} and also Aμ

c ẽ
μ
3,c depend smoothly on c (as functions

from [c�, c� + η1] to L2(R); recall that f is smooth), the coefficients ac, bc, and λc are
smooth functions of c for c ∈ [c�, c� + η1]. It is also important to point out that ac,
bc, and λc do not depend on μ > 0, since if the relation (2.22) holds for certain values
of ac, bc, and λc for a particular value μ > 0, then, by the definition of Aμ

c , eμ1,c, e
μ
2,c,

and ẽμ3,c, the relation (2.22) also holds for μ′ from an open neighborhood of μ.
According to the construction of e3,c� in Proposition 2.2, ac� = λc� = 0 and

bc� = 1. We define

eμ3,c =
1

bc + acλc
(ẽμ3,c − ace

μ
2,c).

Then eμ3,c ∈ L2(R) for c ∈ [c�, c� + η1]. We compute

Aμ
c e

μ
3,c = eμ2,c + λce

μ
3,c.(2.23)
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Thus, in the frame {eμj,c: j = 1, 2, 3} the operator Aμ
c |RangePμ

c
has the desired ma-

trix form (2.15). Conjugating by means of eμx we get a corresponding frame {ej,c:
j = 1, 2, 3} in L2

μ, with e3,c satisfying

JHce3,c = e2,c + λce3,c, e3,c ∈ L2
μ(R).(2.24)

For c ∈ [c�, c� + η1] and z /∈ σ(Aμ
c ), Rμ

c (z) = (Aμ
c − z)−1 is a pseudodifferential

operator of order −3, and hence Pμ
c is smoothing of order three in the Sobolev spaces

Hs(R). The bootstrapping argument applied to the relations eμj,c = Pμ
c e

μ
j,c shows

that eμj,c ∈ H∞(R). By definition (1.12), this means that

ej,c ∈ H∞
μ (R), j = 1, 2, 3, c ∈ [c�, c� + η1].(2.25)

Using (2.24), we compute

0 = 〈Hce1,c, e3,c〉 = −〈HcJφc, e3,c〉
= 〈φc, JHce3,c〉 = 〈φc, e2,c〉 + λc〈φc, e3,c〉, c ∈ [c�, c� + η1].

We conclude that

λc = −〈φc, e2,c〉
〈φc, e3,c〉

, c ∈ [c�, c� + η1],

where 〈φc, e2,c〉 = 〈φc, ∂cφc〉 = N ′
c < 0. Note that 〈φc, e3,c〉 > 0 for c� < c ≤ c�+η1,

since 〈φc� , e3,c�〉 > 0 by (2.9) and 〈φc, e3,c〉 does not change sign for c� < c ≤ c� + η1

(this follows from the inequality |〈φc, e3,c〉| > |N ′
c |/Λ > 0; see Remark 2.5). This

finishes the proof of the lemma.

Remark 2.6. According to Assumption 3, we may assume that η1 is small enough
so that for c ∈ [c�, c� + η1] and 0 ≤ μ ≤ μ0 there is no discrete spectrum of Aμ

c except
λ = 0 and λ = λc. It follows that Pμ

c is the spectral projector that corresponds to
the discrete spectrum of Aμ

c .

Lemma 2.7. If λc > 0, then e3,c ∈ H∞(R).

Proof. By Lemma 2.4, λc > 0 is a simple eigenvalue of JHc considered in L2(R).
By (2.1), (2.2), and (2.24),

ψc = ec,1 + λcec,2 + λ2
cec,3 ∈ C∞(R)(2.26)

satisfies JHcψc = λcψc, and also limx→+∞ ψc(x) = 0. Thus, ψc coincides with an
L2 eigenvector of JHcψc that corresponds to λc. Therefore, ψc ∈ H∞(R). Since
ec,1, ec,2 ∈ H1(R) and λc �= 0, the statement of the lemma follows from the relation
(2.26).

Let us also introduce the dual basis that consists of eigenvectors of the adjoint
operator (JHc)

∗
= −HcJ = −Hc∂x which we consider in the weighted space

L2
−μ(R) =

{
ψ ∈ L2

loc(R): e−μxψ(x) ∈ L2(R)
}
, μ > 0.(2.27)

For any c ∈ Σ, the generalized kernel of (JHc)
∗ contains at least two linearly inde-

pendent vectors:

−Hc∂xg1,c = 0, −Hc∂xg2,c = g1,c,(2.28)
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where

g1,c(x) = −
∫ x

−∞
e1,c(y, c) dy = φc(x),(2.29)

g2,c(x) =

∫ x

−∞
e2,c(y, c) dy =

∫ x

−∞
∂cφc(y) dy.(2.30)

The lower limit of integration ensures that limx→−∞ g2,c(x) = 0, so that g2,c ∈
L2
−μ(R).

Proposition 2.8. Assume that c� ∈ Σ is such that N ′
c� = 0, I ′c� �= 0. The

eigenvalue λ = 0 of the operator −Hc�∂x is of algebraic multiplicity three in L2
−μ(R),

and there exists g3,c� ∈ H∞
−μ(R) such that

−Hc�∂xg3,c� = g2,c� .

Proof. The argument repeats the steps of the proof of Proposition 2.2. The
function g3,c� is given by

g3,c�(x) = −
∫ x

−∞
ẽ3,c�(y)dy,(2.31)

where ẽ3,c�(x) satisfies

Hc� ẽ3,c� =

∫ x

−∞
e2,c�(y) dy, lim

x→−∞
ẽ3,c�(x) = 0.(2.32)

Since
∫ x

−∞ e2,c�(y) dy remains bounded as x → +∞, while 〈g2,c� ,φc�〉 = 0, the func-
tion ẽ3,c�(x) remains bounded as x → +∞. This follows from Lemma B.1 of Ap-
pendix B (after the reflection x → −x). Therefore, g3,c�(x) has a linear growth as
x → +∞; g3,c� ∈ S−,1(R) (defined similarly to S+,1 in Definition 2.1).

As in Lemma 2.4, one can show that there is an extension of g3,c� into an interval
[c�, c� + η1],

c �→ g3,c ∈ H∞
−μ(R), c ∈ [c�, c� + η1],

so that, similarly to (2.24) and (2.25),

−Hc∂xg3,c = g2,c(x) + λcg3,c, g3,c ∈ H∞
−μ(R), c ∈ [c�, c� + η1].(2.33)

Using the bases {ej,c ∈ H∞
μ (R): j = 1, 2, 3}, {gj,c ∈ H∞

−μ(R): j = 1, 2, 3}, we
can write the projection operator e−μx ◦ Pμ

c ◦ eμx that corresponds to the discrete
spectrum of JHc in the form

(e−μx ◦ Pμ
c ◦ eμx)ψ =

3∑
j,k=1

T jk
c 〈gk,c,ψ〉ej,c,(2.34)

with T jk
c being the inverse of the matrix

Tc = {Tjk,c}, Tjk,c = 〈gj,c, ek,c〉, c ∈ [c�, c� + η1], 1 ≤ j, k ≤ 3.(2.35)

Let us introduce the functions

αc = 〈g1,c, e3,c〉, βc = 〈g2,c, e3,c〉, γc = 〈g3,c, e3,c〉.(2.36)
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Since ej,c ∈ L2
μ(R) and gj,c ∈ L2

−μ(R), αc, βc, and γc are continuous functions of c
for c ∈ [c�, c� + η1]. Recalling that 〈g2,c, e1,c〉 = 〈g2,c, JHce2,c〉 = −〈HcJg2,c, e2,c〉 =
〈g1,c, e2,c〉 = 〈φc, ∂cφc〉 = N ′

c , 〈g1,c, e1,c〉 = −〈φc, ∂xφc〉 = 0, we may write the
matrix T in the following form:

Tc =

⎡
⎣ 0 N ′

c αc

N ′
c

1
2 (I ′c)

2 βc

αc βc γc

⎤
⎦ .(2.37)

Note that Tc� is nondegenerate, because N ′
c� = 0 by the choice of c�, while αc� =

〈g1,c� , e3,c�〉 = 〈φc� , e3,c�〉 = 1
2 (I ′c�)

2 > 0 by (2.9).

3. Center manifold reduction. We first discuss the existence of a solution
u(t) that corresponds to perturbed initial data. We will rely on the well-posedness
results due to T. Kato.

Lemma 3.1. For any μ > 0, s ≥ 2, and u0 ∈ Hs(R) ∩ L2
2μ(R) with ‖u0‖H1 <

2‖φc�‖H1 , there exists a function

u(t) ∈ C([0,∞), Hs(R) ∩ L2
2μ(R)), u(0) = u0,(3.1)

which solves (1.1) for 0 ≤ t < t1, where t1 is finite or infinite, defined by

t1 = sup{t ≥ 0 : ‖u(t)‖H1 < 2‖φc�‖H1}.(3.2)

Proof. According to [Kat83, Theorem 10.1], equation (1.1) is globally well-posed
in Hs(R) ∩ L2

2μ(R) for any s ≥ 2, μ > 0 (for the initial data with arbitrarily large
norm) if f satisfies

lim
|z|→∞

|z|−4f ′(z) ≥ 0.(3.3)

We modify the nonlinearity f(z) for |z| > 2‖φc�‖H1 so that (3.3) is satisfied; let
us call this modified nonlinearity f̃(z). Thus, for any u0 ∈ Hs(R) ∩ L2

2μ(R) with
‖u0‖H1 < 2‖φc�‖H1 , there exists a function

u(t) ∈ C([0,∞), Hs(R) ∩ L2
2μ(R)), u(0) = u0,(3.4)

that solves the equation with the modified nonlinearity

∂tu = ∂x
(
−∂2

xu + f̃(u)
)
.(3.5)

For 0 ≤ t < t1, with t1 defined by (3.2), one has ‖u(t)‖L∞ ≤ ‖u(t)‖H1 < 2‖φc�‖H1 .
Therefore, for 0 ≤ t < t1, u(t) solves both (3.5) and (1.1) since f̃(z) = f(z) for
|z| ≤ 2‖φc�‖H1 .

We fix μ satisfying (2.10). For the initial data u0 ∈ H2(R) ∩ L2
2μ(R) with

‖u0‖H1 < 2‖φc�‖H1 there is a function u ∈ C([0,∞), H2(R) ∩ L2
2μ(R)) that solves

(1.1) for 0 ≤ t < t1, with t1 from (3.2). We will approximate the solution u(x, t) by a
traveling wave φc moving with the variable speed c = c(t). Thus, we decompose the
solution u(x, t) into the traveling wave φc(x) and the perturbation ρ(x, t) as follows:

u(x, t) = φc(t)

(
x− ξ(t) −

∫ t

0

c(t′) dt′
)

+ ρ

(
x− ξ(t) −

∫ t

0

c(t′) dt′, t

)
.(3.6)

The functions ξ(t) and c(t) are yet to be chosen.
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Using (3.6), we rewrite the generalized KdV equation (1.1) as an equation on ρ:

ρ̇− JHcρ = −ξ̇e1,c − ċe2,c + ξ̇∂xρ + JN ,(3.7)

with Hc given by (1.11) and with JN given by

JN = ∂x [f(φc + ρ) − f(φc) − ρf ′(φc)] ,(3.8)

where we changed coordinates, denoting y = x−ξ(t)−
∫ t

0
c(t′) dt′ by x. By Proposition

2.2 (iii), the eigenvalue λ = 0 of operator JHc� in L2
μ(R) has algebraic multiplicity

three. We decompose the perturbation ρ(x, t) as follows:

ρ(x, t) = ζ(t)e3,c(t)(x) + υ(x, t),(3.9)

where e3,c is constructed in Lemma 2.4. The inclusions φc ∈ H2(R)∩L2
2μ(R) ⊂ H1

μ(R)
and e3,c ∈ H1

μ(R) show that υ(·, t) ∈ H1
μ(R).

We would like to choose ξ(t), c(t) = c� + η(t), and ζ(t) so that

υ(x, t) = u

(
x + ξ(t) +

∫ t

0

(c� + η(t′)) dt′, t

)
− φc�+η(t)(x) − ζ(t)e3,c�+η(t)(x)

(3.10)

represents the part of the perturbation that corresponds to the continuous spectrum
of JHc.

Proposition 3.2. There exist η1 > 0, ζ1 > 0, and δ1 > 0 such that if η0 and ζ0
satisfy

|η0| < η1, |ζ0| < ζ1, ‖φc�+η0 + ζ0e3,c�+η0 − φc�‖H1 < ‖φc�‖H1 ,(3.11)

then there is T1 ∈ R+ ∪ {+∞} such that the following hold:
(i) There exists u ∈ C([0,∞), H2(R) ∩ L2

2μ(R)) so that

u(0) = φc�+η0
+ ζ0e3,c�+η0

(3.12)

and u(t) solves (1.1) for 0 ≤ t < T1.
(ii) There exist functions

ξ, η, ζ ∈ C([0,∞)), ξ(0) = 0, η(0) = η0, ζ(0) = ζ0,(3.13)

such that the function υ(t) defined by (3.10) satisfies

eμxυ(x, t) ∈ kerPμ
c�+η(t), 0 ≤ t < T1.(3.14)

(iii) The following inequalities hold for 0 ≤ t < T1:

‖u(t)‖H1 < 2‖φc�‖H1 , |η(t)| < η1, |ζ(t)| < ζ1, ‖υ(t)‖H1
μ
< δ1.(3.15)

(iv) If one cannot choose T1 = ∞, then at least one of the inequalities in (3.15)
turns into an equality at t = T1.

Proof. Since u0 = φc�+η0 +ζ0e3,c�+η0 ∈ H2(R)∩L2
2μ(R) and the conditions (3.11)

are satisfied, by Lemma 3.1, there is a function u(t) ∈ C([0,∞), H2(R)∩L2
2μ(R)) and

t1 ∈ R+ ∪ {+∞} such that u(t) solves (1.1) for 0 ≤ t < t1 and, if t1 < ∞, then
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‖u(t1)‖H1 = 2‖φc�‖H1 . We thus need to construct ξ(t), η(t), and ζ(t) so that υ(x, t)
defined by (3.10) satisfies the constraints

〈g1,c�+η(t),υ(t)〉 = 〈g2,c�+η(t),υ(t)〉 = 〈g3,c�+η(t),υ(t)〉 = 0.(3.16)

Let us note that v(0) = 0 by (3.10), (3.12), and (3.13). Since JHce3,c = λce3,c +e2,c,

∂t(ζe3,c) − JHc(ζe3,c) = ζ̇e3,c + η̇ζ∂ce3,c − ζ(λce3,c + e2,c).(3.17)

Therefore, (3.7) can be written as the following equation on υ(t) = ρ− ζe3,c:

υ̇ − JHcυ = −ξ̇e1,c − (η̇ − ζ) e2,c − (ζ̇ − λcζ)e3,c − η̇ζ∂ce3,c + ξ̇∂xρ + JN .(3.18)

Differentiating the constraints (3.16) and using the evolution equation (3.18), we
derive the center manifold reduction,

Tc

⎡
⎣ ξ̇

η̇ − ζ

ζ̇ − λcζ

⎤
⎦− η̇

⎡
⎣〈∂cg1,c,υ〉
〈∂cg2,c,υ〉
〈∂cg3,c,υ〉

⎤
⎦ = −η̇ζ

⎡
⎣〈g1,c, ∂ce3,c〉
〈g2,c, ∂ce3,c〉
〈g3,c, ∂ce3,c〉

⎤
⎦ + ξ̇

⎡
⎣〈g1,c, ∂xρ〉
〈g2,c, ∂xρ〉
〈g3,c, ∂xρ〉

⎤
⎦ +

⎡
⎣〈g1,c, JN〉
〈g2,c, JN〉
〈g3,c, JN〉

⎤
⎦,

(3.19)

where the matrix Tc is given by (2.35). The above can be rewritten as

S

⎡
⎣ ξ̇

η̇ − ζ

ζ̇ − λcζ

⎤
⎦ =

⎡
⎣ −ζ2〈g1,c, ∂ce3,c〉 + ζ〈∂cg1,c,υ〉 + 〈g1,c, JN〉

−ζ2〈g2,c, ∂ce3,c〉 + ζ〈∂cg2,c,υ〉 + 〈g2,c, JN〉
−ζ2〈g3,c, ∂ce3,c〉 + ζ〈∂cg3,c,υ〉 + 〈g3,c, JN〉

⎤
⎦ ,(3.20)

where c = c� + η and

S(η, ζ,υ) = Tc +

⎡
⎣−〈g1,c, ∂x(ζe3,c + υ)〉 ζ〈g1,c, ∂ce3,c〉 − 〈∂cg1,c,υ〉 0
−〈g2,c, ∂x(ζe3,c + υ)〉 ζ〈g2,c, ∂ce3,c〉 − 〈∂cg2,c,υ〉 0
−〈g3,c, ∂x(ζe3,c + υ)〉 ζ〈g3,c, ∂ce3,c〉 − 〈∂cg3,c,υ〉 0

⎤
⎦.(3.21)

Note that the matrix S(η, ζ,υ) depends continuously on (η, ζ,υ) ∈ R
2 × H1

μ(R).
Since the matrix Tc� is nonsingular (see (2.37)), the matrix S(η, ζ,υ) is invertible for
sufficiently small values of |η|, |ζ|, and ‖υ‖H1

μ
.

Thus, there exist η1 > 0, ζ1 > 0, and δ1 > 0 so that the matrix S(η, ζ,υ) is
invertible if

|η| ≤ 2η1, |ζ| ≤ 2ζ1, ‖υ‖H1
μ
≤ 2δ1.(3.22)

For such η, ζ, and υ, we can write⎡
⎣ ξ̇

η̇ − ζ

ζ̇ − λcζ

⎤
⎦ =

⎡
⎣ R1(η, ζ,υ)

R2(η, ζ,υ)
R3(η, ζ,υ)

⎤
⎦ ,(3.23)

where the right-hand side is given by⎡
⎣R1(η, ζ,υ)
R2(η, ζ,υ)
R3(η, ζ,υ)

⎤
⎦ = S(η, ζ,υ)−1

⎡
⎣−ζ2〈g1,c, ∂ce3,c〉 + ζ〈∂cg1,c,υ〉 + 〈g1,c, JN〉
−ζ2〈g2,c, ∂ce3,c〉 + ζ〈∂cg2,c,υ〉 + 〈g2,c, JN〉
−ζ2〈g3,c, ∂ce3,c〉 + ζ〈∂cg3,c,υ〉 + 〈g3,c, JN〉

⎤
⎦.(3.24)
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Assume that η0 and ζ0 are such that the conditions (3.11) are satisfied. Let �0 ∈
C∞

comp(R) be such that 0 ≤ �0(s) ≤ 1, �0(s) ≡ 1 for |s| ≤ 1, and �0(s) ≡ 0 for |s| ≥ 2.

Define a continuous matrix-valued function S̃ : R
2 ×H1

μ → GL(3) by

S̃(η, ζ,υ) = S(�η, �ζ, �υ), where � = �0(η/η1)�0(ζ/ζ1)�0(‖υ‖H1
μ
/δ1).

This function coincides with S (defined in (3.21)) for |η| < η1, |ζ| < ζ1, and ‖υ‖H1
μ
<

δ1, and has uniformly bounded inverse. The system (3.23) with the right-hand side
as in (3.24) but with S̃ instead of S, and with υ given by the ansatz (3.10), defines
differentiable functions ξ(t), η(t), and ζ(t) for all t ≥ 0. Note that υ(t) defined by
(3.10) is a continuous function of time and is valued in H1

μ(R), since so are u, φc, and
e3,c. Define t2 ∈ R+ ∪ {+∞} by

t2 = sup{t ≥ 0: |η(t)| < η1, |ζ(t)| < ζ1, ‖υ(·, t)‖H1
μ
< δ1}.(3.25)

For t ∈ (0, t2), the solution (ξ(t), η(t), ζ(t)) also solves (3.23), since the inequalities
|η(t)| < η1, |ζ(t)| < ζ1, and ‖υ(·, t)‖H1

μ
< δ1 ensure that S̃ coincides with S. Thus,

Proposition 3.2 is proved with

T1 = min(t1, t2) ∈ R+ ∪ {+∞},(3.26)

where t1, t2 are from (3.2) and (3.25).

4. Energy and dissipative estimates. We adapt the analysis from [PW94].
In this section, we formulate two lemmas that are the analogue of [PW94, Proposi-
tion 6.1]. Lemma 4.1 is based on the energy conservation and allows us to control
‖ρ‖H1 in terms of ‖υ‖H1

μ
. Lemma 4.3 bounds ‖υ‖H1

μ
in terms of ‖ρ‖H1 and is based

on dissipative estimates on the semigroup generated by Aμ
c (see Lemma 4.2).

Let η1 > 0, ζ1 > 0, and δ1 > 0 not be larger than in Proposition 3.2, and assume
that δ1 satisfies

δ1 <
min(1, c�)

4 sup|z|≤2‖φc�‖H1
|f ′′(z)| .(4.1)

Let η0 > 0 and ζ0 be such that the conditions (3.11) are satisfied. According to
Proposition 3.2, there exists T1 ∈ R+ ∪ {+∞} such that there is a solution u ∈
C((0, T1), H

2(R) ∩ L2
2μ(R)) to (1.1) with the initial data

u(0) = u0 := φc�+η0 + ζ0e3,c�+η0
,

and functions ξ(t), η(t), and ζ(t) and υ(t) (given by (3.10)), defined for 0 ≤ t < T1,
such that (3.14) and (3.15) are satisfied. For given η0 and ζ0, define the following
function of η:

Y (η) = ‖ρ0‖H1 + ‖ρ0‖1/2
H1 |η − η0|1/2 + |Nc�+η − Nc�+η0 |1/2,(4.2)

where ρ0 ≡ ζ0e3,c�+η0 .
Lemma 4.1. There exists C1 > 0 such that if at some moment 0 ≤ t < T1,

‖ρ(t)‖H1 ≤ δ1,

then

‖ρ(t)‖H1 ≤ C1

(
Y (η(t)) + |ζ(t)| + ‖υ(t)‖H1

μ

)
,(4.3)
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where Y (η) is given by (4.2).
Proof. Let us introduce the effective Hamiltonian Lc:

Lc(u) = E(u) + cN (u), L ′
c(φc) = E′(φc) + cN ′(φc) = 0, L ′′

c (φc) = Hc,
(4.4)

where E and N are the energy and momentum functionals defined in (1.5) and (1.7).
Using the Taylor series expansion for Lc at φc, we have

Lc(u(t)) = Lc(φc) +
1

2
〈ρ,Hcρ〉 +

∫
R

g(φc,ρ)ρ3 dx

= Lc(φc) +
1

2
〈ρ, (−∂2

x + c)ρ〉 +
1

2
〈ρ, f ′(φc)ρ〉 +

∫
R

g(φc,ρ)ρ3 dx,(4.5)

where

g(φc,ρ) =
1

2

∫ 1

0

(1 − s)2f ′′(φc + sρ) ds.(4.6)

For the second term in (4.5), there is the following bound from below:

1

2

∫
R

(
(∂xρ)2 + cρ2

)
dx ≥ m‖ρ‖2

H1 , m =
1

2
min(1, c�) > 0.(4.7)

The bound for the third term in the right-hand side of (4.5) follows from the inequal-
ities ∫

R

|f ′(φc)|ρ2 dx ≤ ‖e−2μxf ′(φc)‖L∞‖ρ‖2
L2

μ
≤ b

[
|ζ|‖e3,c‖L2

μ
+ ‖υ(t)‖L2

μ

]2

,(4.8)

where b = supc∈[c�,c�+η1] ‖e−2μxf ′(φc)‖L∞ < ∞ due to (2.10), the assumption (1.2)
that f ′(0) = 0, and due to Lemma A.1 from Appendix A. We bound the last term in
(4.5) by ∫

R

|g(φc,ρ)ρ3| dx ≤ ‖g(φc,ρ)‖L∞‖ρ‖3
H1 ≤ δ1‖g(φc,ρ)‖L∞‖ρ‖2

H1 .(4.9)

According to (4.1), g from (4.6) satisfies δ1‖g(φc,ρ)‖L∞ < min(1,c�)
4 = m

2 , and this
leads to ∫

R

|g(φc,ρ)ρ3| dx ≤ m

2
‖ρ‖2

H1 .(4.10)

Combining (4.5) with the bounds (4.7), (4.8), and (4.10), we obtain

m

2
‖ρ‖2

H1 ≤ |Lc(u) − Lc(φc)| +
b

2

[
|ζ|‖e3,c‖L2

μ
+ ‖υ‖H1

μ

]2

,

so that, for some C > 0,

‖ρ‖H1 ≤ C
[
|Lc(u) − Lc(φc)|1/2 + |ζ| + ‖υ‖H1

μ

]
.(4.11)

Now let us estimate |Lc(u(t)) − Lc(φc)|. Note that Lc(u(t)) = Lc(u0) since
the value of the energy functional E given by (1.5) and the value of the momentum
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functional N given by (1.7) are conserved along the trajectories of (1.1). Thus, we
can write

|Lc(u(t)) − Lc(φc)| ≤ |Lc(u0) − Lc(φc0)| + |Lc(φc) − Lc(φc0)|.(4.12)

Using the definition (4.4) of the functional Lc, we express the first term in the right-
hand side of (4.12) as

Lc(u0) − Lc(φc0) = Lc0(u0) − Lc0(φc0) + (η − η0)(N (u0) − N (φc0)).(4.13)

Since L ′
c0(φc0) = 0, there exists k > 0 such that |Lc0(u0) − Lc0(φc0)| ≤ k‖ρ0‖2

H1 ,
where ρ0 = u0 − φc0 ; this allows us to bound (4.13) by

|Lc(u0) − Lc(φc0)| ≤ const(‖ρ0‖2
H1 + |η − η0|‖ρ0‖H1).(4.14)

For the second term in the right-hand side of (4.12), we have

|Lc(φc) − Lc(φc0)| ≤ |Ec − Ec0 | + c|Nc − Nc0 |.

From the relation

d

dc
Ec = −c

d

dc
Nc

we conclude that |Ec − Ec0 | ≤ max(c, c0)|Nc − Nc0 |, since N ′
c is sign-definite for

c� < c ≤ c� + η1 by (1.16). Therefore, there is the following bound for the second
term in the right-hand side of (4.12):

|Lc(φc) − Lc(φc0)| ≤ 2 max(c, c0)|Nc − Nc0 |.(4.15)

Using the bounds (4.14) and (4.15) in (4.12), we obtain

|Lc(u(t)) − Lc(φc)| ≤ const
(
‖ρ0‖2

H1 + |η − η0|‖ρ0‖H1 + |Nc − Nc0 |
)
.

Substituting this result into (4.11), we obtain the bound (4.3).
Lemma 4.2 (see [PW94]). Let Assumption 3 be satisfied, and pick μ ∈ (0,

√
c/3).

Let Qμ
c = I − Pμ

c , where Pμ
c introduced in (2.20) is the spectral projection that cor-

responds to the discrete spectrum of Aμ
c (see Remark 2.6). Then Aμ

c is the generator
of a strongly continuous linear semigroup on Hs(R) for any real s, and there exist
constants a > 0 and b > 0 such that for all υ ∈ L2(R) and t > 0 the following estimate
is satisfied:

‖eAμ
c tQμ

cυ‖H1 ≤ at−1/2e−bt‖υ‖L2 .(4.16)

We require that η1 be small enough, so that

η1 sup
c∈[c�,c�+η1]

‖∂cQμ
c ‖H1→H1 ≤ 1

2
.(4.17)

Lemma 4.3. There exists C2 > 0 such that if

η1 + ζ1 + δ1 < C2(4.18)
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and

sup
s∈[0,t]

|η(s)| ≤ η1, sup
s∈[0,t]

|ζ(s)| ≤ ζ1, sup
s∈[0,t]

‖ρ(s)‖H1 ≤ δ1, sup
s∈[0,t]

‖υ(s)‖H1
μ
≤ δ1,

(4.19)

then

‖υ(t)‖H1
μ
≤ C2 sup

s∈[0,t]

[
ζ2(s) + |ζ(s)|‖ρ(s)‖H1

]
.(4.20)

Proof. Using the center manifold reduction (3.23), we rewrite the evolution equa-
tion (3.18) in the following form:

υ̇ − JHcυ = −
3∑

j=1

Rjej,c − ζ(ζ + R2)∂ce3,c + R1∂x(ζe3,c + υ) + JN ,(4.21)

where c = c(t) = c� + η(t), ζ = ζ(t), and the nonlinear terms Rj(t) are given by
(3.24). We set

ω(x, t) = eμxυ(x, t), eμj,c(x) = eμxej,c(x), c ∈ [c�, c� + η1], j = 1, 2, 3,

and consider Aμ
c given by (1.13). Equation (4.21) takes the following form:

ω̇ −Aμ
cω = G,(4.22)

where

G(x, t) = −
3∑

j=1

Rje
μ
j,c − ζ(ζ + R2)∂ce

μ
3,c + R1(∂x − μ)(ζeμ3,c + ω) + eμxJN .(4.23)

As follows from (4.22),

∂t(Q
μ
c�ω) = Qμ

c�ω̇ = Qμ
c� (Aμ

cω + G) = Aμ
c�Q

μ
c�ω + Qμ

c�(A
μ
c −Aμ

c�)ω + Qμ
c�G.

We may write Qμ
c�ω as follows:

Qμ
c�ω(t) =

∫ t

0

eA
μ
c�

(t−s)
G(s) ds,(4.24)

where

G(x, t) = Qμ
c�(A

μ
c −Aμ

c�)ω(x, t) + Qμ
c�G(x, t).(4.25)

Using the dissipative estimate given by (4.16), we get

‖Qμ
c�ω(t)‖H1 ≤ C

∫ t

0

(t− s)−1/2e−b(t−s)‖G(s)‖L2 ds(4.26)

≤ Ce−bt/2 sup
s∈[0,t]

ebs/2‖G(s)‖L2

∫ t

0

(t− s)−1/2e−b(t−s)/2 ds(4.27)

≤ C sup
s∈[0,t]

ebs/2‖G(s)‖L2 .(4.28)
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Since ω = Qμ
cω = Qμ

c�ω + (Qμ
c −Qμ

c�)ω, we have

‖ω‖H1 ≤ ‖Qμ
c�ω‖H1 + |η| sup

c∈[c�,c�+η1]

‖∂cQμ
c ‖H1→H1‖ω‖H1 ≤ ‖Qμ

c�ω‖H1 +
1

2
‖ω‖H1 ,

where we used (4.17). It follows that ‖ω‖H1 ≤ 2‖Qμ
c�ω‖H1 . Hence, we have

‖ω(t)‖H1 ≤ Ce−bt/2 sup
s∈[0,t]

ebs/2‖G(s)‖L2 .(4.29)

We now need the bound on ‖G‖L2 . We start with

‖G‖L2 ≤ ‖Qμ
c�(A

μ
c −Aμ

c�)ω‖L2 + ‖Qμ
c�G‖L2 .(4.30)

We estimate the first term in the right-hand side of (4.30) as follows:

‖Qμ
c�(A

μ
c −Aμ

c�)ω(t)‖L2 ≤ ‖Qμ
c�(A

μ
c −Aμ

c�)‖H1-L2‖ω(t)‖H1 ≤ C|η|‖ω(t)‖H1 .(4.31)

Since eμj,c, 1 ≤ j ≤ 3, depend continuously on c while Qμ
c�e

μ
j,c�

= 0, there are bounds
‖Qμ

c�e
μ
j,c‖H1 ≤ C|η|. This allows us to derive the following bound for the second term

in the right-hand side of (4.30):

‖Qμ
c�G‖L2 ≤ C

(
|η| sup

1≤j≤3
|Rj | + |ζ||ζ + R2| + |R1|(|ζ| + ‖ω‖H1) + ‖JN‖L2

μ

)

≤ C

(
ζ2 + (|η| + |ζ| + ‖ω‖H1) sup

1≤j≤3
|Rj | + ‖JN‖L2

μ

)
.

Using the representation (3.24) and the inclusions ∂ce3,c ∈ H∞
μ (R), gi ∈ H∞

−μ(R),
∂cgi ∈ H∞

−μ(R), we obtain the following estimates on Rj :

|Rj(η, ζ,υ)| ≤ C
(
ζ2 + |ζ|‖υ‖H1

μ
+ ‖JN‖L2

μ

)
, j = 1, 2, 3.(4.32)

Taking into account (4.32), we get

‖Qμ
c�G‖L2

μ
≤ C

(
ζ2 + (|η| + |ζ| + ‖ω‖H1)(ζ2 + |ζ|‖ω‖H1 + ‖JN‖L2

μ
) + ‖JN‖L2

μ

)
≤ C

(
ζ2 + (|η| + ‖ω‖H1)|ζ|‖ω‖H1 + ‖JN‖L2

μ

)
.(4.33)

In the last inequality, we used the uniform boundedness of |η|, |ζ|, and ‖ω‖H1 that
follows from (4.19).

Summing up (4.31) and (4.33), we obtain the following bound on ‖G‖L2
μ
:

‖G‖L2
μ
≤ C

[
ζ2 + (|η| + |ζ|)‖ω‖H1 + ‖JN‖L2

μ

]
.(4.34)

Using the integral representation for the nonlinearity (3.8),

JN = ∂x[f(φc + ρ) − f(φc) − f ′(φc)ρ] = ∂x

[
ρ2

2

∫ 1

0

(1 − s)2f ′′(φc + sρ) ds

]
,

(4.35)

we obtain the bound

‖JN‖L2
μ
≤ C‖ρ‖H1

μ
‖ρ‖H1 ≤ C

(
|ζ|‖e3,c‖H1

μ
+ ‖υ‖H1

μ

)
‖ρ‖H1 ,
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with the constant C that depends on ‖φc‖H1 and on the bounds on f ′′(z) and f ′′′(z)
for |z| ≤ ‖u‖L∞ , which is bounded by 2‖φc�‖H1 . This bound allows us to rewrite
(4.34) as

‖G‖L2
μ
≤ C

[
ζ2 + (|η| + |ζ| + ‖ρ‖H1)‖ω‖H1 + |ζ|‖ρ‖H1

]
≤ C [g0 + g1‖ω‖H1 ] ,

(4.36)

where

g0(t) = ζ2(t) + |ζ(t)|‖ρ(t)‖H1 , g1(t) = |η(t)| + |ζ(t)| + ‖ρ(t)‖H1 .(4.37)

Thus, (4.29) could be written as

2ebt/2‖ω(t)‖H1 ≤ C2 sup
s∈[0,t]

ebs/2 [g0(s) + g1(s)‖ω(s)‖H1 ](4.38)

for some C2 > 0. Since the right-hand side is monotonically increasing with t, we also
have

sup
s∈[0,t]

2ebs/2‖ω(s)‖H1 ≤ C2 sup
s∈[0,t]

ebs/2 [g0(s) + g1(s)‖ω(s)‖H1 ] .(4.39)

The function g1 from (4.37) satisfies C2 sups∈[0,t] g1(s) < 1 (this follows from the
assumptions (4.18) and (4.19)), and therefore

‖ω(t)‖H1 ≤ C2e
−bt/2 sup

s∈[0,t]

ebs/2g0(s) ≤ C2 sup
s∈[0,t]

[
ζ2(s) + |ζ(s)|‖ρ(s)‖H1

]
.

Since ω = eμxυ, the last inequality yields (4.20).

5. Nonlinear estimates. Now we close the estimates using the bounds on
‖ρ‖H1 (Lemma 4.1) and on ‖υ‖H1

μ
(Lemma 4.3) from the previous section.

We assume that η1 > 0, ζ1 > 0, and δ1 > 0 are sufficiently small: not larger
than in Proposition 3.2, satisfy the bounds (4.1), (4.17), and (4.18), and also that ζ1
satisfies

ζ1 <
1

3 max(1, C1)C2
.(5.1)

Define

C3 = 2C1, C4 = 2C2 max(1, C3),(5.2)

with C1 and C2 as in Lemmas 4.1 and 4.3. Choosing smaller values of η1 and ζ1 if
necessary, we may assume that

C3

(
ζ1 + 2η1 + (Nc�+η1

− Nc�)
1/2

)
< δ1,(5.3)

C4

(
ζ2
1 + 2η1ζ1 + ζ1(Nc�+η1 − Nc�)

1/2
)
< δ1.(5.4)

Define

ηM (t) = sup
0≤s≤t

η(s),(5.5)

ζM (t) = sup
0≤s≤t

|ζ(s)|.(5.6)
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Proposition 5.1. Assume that the initial data η0 > 0 and ζ0 are such that the
following inequalities are satisfied:

η0 ∈ (0, η1), |ζ0| < ζ1, ‖ρ0‖H1 < min(η1, δ1).(5.7)

Then for 0 ≤ t < T1 the functions ρ(t), υ(t) satisfy the bounds

‖ρ(t)‖H1 ≤ C3 [ζM (t) + Y (ηM (t))] ,(5.8)

‖υ(t)‖H1
μ
≤ C4

[
ζM (t)2 + ζM (t)Y (ηM (t))

]
,(5.9)

where C3, C4 are defined by (5.2), Y (η) = ‖ρ0‖H1 + ‖ρ0‖1/2
H1 |η − η0|1/2 + |Nc�+η −

Nc�+η0 |1/2 is introduced in (4.2), and ηM , ζM are defined in (5.5) and (5.6).
Proof. Let

S = {t ∈ [0, T1): ‖ρ(t)‖H1 < δ1}.

S is nonempty since ‖ρ(0)‖H1 < δ1 by (5.7). According to Proposition 3.2 and
representation (3.6), ‖ρ(t)‖H1 is a continuous function of t. Since the inequality
in the definition of S is sharp, S is an open subset of [0, T1). Let us assume that
T2 ∈ (0, T1) is such that

‖ρ(t)‖H1 < δ1, 0 ≤ t < T2.(5.10)

It is enough to prove that T2 ∈ S (then the connected subset of S that contains t = 0 is
both open and closed in [0, T1) and hence coincides with [0, T1)). Since ‖υ(t)‖H1

μ
< δ1

for 0 ≤ t < T1, Lemmas 4.1 and 4.3 are both applicable for t ≤ T2. The estimate
(4.3) on ‖ρ(t)‖H1 together with the estimate (4.20) on ‖υ(t)‖H1

μ
give

‖ρ(t)‖H1 ≤ C1

(
Y (η(t)) + |ζ(t)| + ‖υ(t)‖H1

μ

)
≤ C1

(
Y (t) + |ζ(t)| + C2 sup

s∈[0,t]

[
ζ2 + |ζ|‖ρ‖H1

])
.

For 0 ≤ t ≤ T2, define M(t) = sups∈[0,t] ‖ρ(s)‖H1 . We have

M(t) ≤ C1

(
sup

s∈[0,t]

(Y (η(s)) + |ζ(s)|) + C2 sup
s∈[0,t]

[
ζ2(s) + |ζ(s)|M(t)

])
.

We carry the term C1C2|ζ|M(t) to the left-hand side of the inequality, taking into
account that C1C2|ζ(t)| ≤ C1C2ζ1 ≤ 1

3 for all 0 ≤ t < T1 by (5.1). This results in the
following relation:

‖ρ(t)‖H1 ≤ M(t) ≤ 3

2
C1

(
sup

s∈[0,t]

(Y (η(s)) + |ζ(s)|) + C2 sup
s∈[0,t]

ζ2(s)

)
.

Since C2ζ
2 ≤ C2ζ1|ζ| ≤ |ζ|/3 by (5.1), we obtain

‖ρ(t)‖H1 ≤ 3

2
C1 sup

s∈[0,t]

(
Y (η(s)) +

4

3
|ζ(s)|

)
≤ C3 sup

s∈[0,t]

(Y (η(s)) + |ζ(s)|) , t ∈ [0, T2],

with C3 = 2C1. This proves (5.8) for t ∈ [0, T2]. It then follows that

‖ρ(T2)‖H1 ≤ C3 [ζ1 + Y (η1)] ≤ C3

[
ζ1 + 2η1 + (Nc�+η1 − Nc�)

1/2
]
< δ1,
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where we took into account the definition of Y (η) in (4.2), the bound ‖ρ0‖H1 < η1

from (5.7), and inequality (5.3). Hence, T2 ∈ S. It follows that S coincides with
[0, T1).

Using the bound (5.8) in (4.20) and recalling the definition of C4 in (5.2), we
derive the bound (5.9) on ‖υ(t)‖H1

μ
.

Corollary 5.2. Assume that the conditions of Proposition 5.1 are satisfied. If
η1 > 0 and ζ1 > 0 were chosen sufficiently small, then there exists a constant C5 > 0
so that for 0 ≤ t < T1 the function υ(t) satisfies the bound

‖υ(t)‖H1
μ/2

≤ C5

[
ζ2
M (t) + ζM (t)Y (ηM (t))

]
,(5.11)

where ηM , ζM are defined in (5.5), (5.6).
Proof. The bound (5.11) is proved in the same way as (5.9). We may need to take

smaller values of η1 and ζ1 so that Lemmas 4.1 and 4.3 become applicable for the new
exponential weight. Note that the exponential weight does not enter the definition
(4.2) of the function Y (η).

Lemma 5.3. Assume that the bounds (5.9) and (5.11) are satisfied for 0 ≤ t < T1.
Then there exists C6 > 0 so that the terms R2 and R3 defined in (3.24) satisfy for
0 ≤ t < T1 the bounds

|Rj(η, ζ,υ)| ≤ C6ζ
2
M , j = 2, 3.(5.12)

Proof. By (4.32),

|Rj(η, ζ,υ)| ≤ C
(
ζ2 + |ζ|‖υ‖H1

μ
+ ‖JN‖L2

μ

)
, j = 2, 3.(5.13)

According to (5.9), the second term in the right-hand side of (5.13) is bounded by
Cζ2 as long as η ∈ (0, η1) and |ζ| ≤ ζ1. We now need a bound on ‖JN‖L2

μ
. Using

the representation (4.35) for the nonlinearity, we obtain the bounds

‖JN‖L2
μ
≤ C‖ρ‖2

H1
μ/2

≤ C
(
ζ2‖e3,c‖2

H1
μ/2

+ ‖υ‖2
H1

μ/2

)
.(5.14)

The constant depends on ‖φc‖H1 and on the bounds on f ′′(z) and f ′′′(z) for |z| ≤
‖u‖L∞ , which is bounded by 2‖φc�‖H1 . As follows from (5.11),

‖υ(t)‖H1
μ/2

≤ C5(ζ1 + Y (η1))ζM (t).(5.15)

Using this bound in (5.14), we get ‖JN‖L2
μ
≤ Cζ2

M . The bound (5.12) follows.

6. Choosing the initial perturbation. In this section, we show how to choose
the initial perturbation that indeed leads to the instability and conclude the proof of
Theorem 1.

We choose η1 > 0, ζ1 > 0, and δ1 > 0 small enough so that (4.1), (4.17), (4.18)
are satisfied, and so that Lemmas 4.1 and 4.3 apply to both exponential weights μ and
μ/2. Taking η1 > 0, ζ1 > 0 smaller if necessary, we may assume that the conditions
(5.1), (5.3), and (5.4) are satisfied, and moreover that

C6ζ1 < 1/2,(6.1)

where C6 > 0 is from Lemma 5.3.
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Let

λ(η) = λc�+η, Λ(η) =

∫ η

0

λ(η′) dη′.(6.2)

Let us recall that, according to (1.16), we assume that there exists η1 > 0 so that
N ′

c < 0 and is nonincreasing for c� < c ≤ c� + η1. Thus, we assume that λ(η) > 0 for
0 < η ≤ η1 (according to (2.16), N ′

c and λc are of opposite sign).
Lemma 6.1. One can choose η1 > 0 sufficiently small so that for 0 < η ≤ η1 one

has

3C6e
2C6ηΛ(η) < λ(η).(6.3)

Proof. By (2.16), λc = −N ′
c

Bc
, where

Bc = 〈φc, e3,c〉.(6.4)

Since Bc� > 0 by (2.9), we may assume that η1 > 0 is small enough so that

Bc�/2 ≤ Bc ≤ 2Bc� , c ∈ [c�, c� + η1].(6.5)

According to Theorem 1, N ′
c < 0 and is nonincreasing for c ∈ (c�, c�+η1). Therefore,

using inequalities (6.5), we obtain

Λ(η) =

∫ c�+η

c�

λc dc =

∫ c�+η

c�

−N ′
c

Bc
dc ≤ −

2ηN ′
c�+η

Bc�

≤ 4ηλ(η), 0 ≤ η ≤ η1,

where λ(η) > 0 for 0 < η ≤ η1. We take η1 > 0 so small that 12 η1C6e
2C6η1 < 1; then

(6.3) is satisfied.
Taking η1 > 0 smaller if necessary, we may assume that Lemma C.1 is satisfied

and that

λ(η)/C6 < ζ1.(6.6)

Remark 6.2. Inequality (6.6) ensures that η(t) reaches η1 prior to ζ(t) reaching
ζ1 (see Lemma 6.4 and Figure 3).

Since Λ(η) = o(η), we may also assume that η1 > 0 is small enough so that

K1Λ(η1) ≤ κη1/2,(6.7)

where K1 = K1(η1, ζ1) is defined below in (6.26) and κ > 0 is from Lemma C.1.
Lemma 6.3. For any δ ∈ (0,min(η1, δ1)), one can choose the initial data η0 ∈

(0, η1), ζ0 ∈ (0, ζ1) so that the following estimates are satisfied:

‖ζ0e3,c�+η0‖H1 < min(η1, δ1),(6.8)

‖(φc�+η0
+ ζ0e3,c�+η0

) − φc�‖H1∩H1
μ
< δ < min(η1, δ1),(6.9)

ζ0 < Λ(η0).(6.10)

Proof. Pick η0 ∈ (0, η1) so that

‖φc�+η0 − φc�‖H1∩H1
μ
< δ/2.(6.11)
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For given η0 > 0, we take ζ0 ∈ (0, ζ1) small enough so that

ζ0‖e3,c�+η0‖H1∩H1
μ
< δ/2.(6.12)

Note that ‖e3,c�+η0‖H1 for η0 > 0 is finite by Lemma 2.7. Inequality (6.12) implies
that (6.8) is satisfied. Together with (6.11), it also guarantees that (6.9) holds. We
then require that ζ0 > 0 be small enough so that (6.10) takes place.

We rewrite the last two equations from the system (3.23):{
η̇ = ζ + R2(η, ζ,υ),

ζ̇ = λ(η)ζ + R3(η, ζ,υ).
(6.13)

Lemma 6.4. For 0 ≤ t < T1, with T1 > 0 as in Proposition 3.2,

η̇ ≥ ζ0/2, ζ̇ ≥ 0,(6.14)

ζ0 ≤ ζ(t) < 3e2C6η(t)Λ(η(t)).(6.15)

Proof. According to Proposition 3.2, the trajectory (η(t), ζ(t)) that starts at
(η0, ζ0) satisfies the inequalities η(t) < η1 and ζ(t) < ζ1 for 0 ≤ t < T1. We define the
region Ω ⊂ R+ × R+ by

Ω = {(η, ζ): ζ0 ≤ ζ ≤ λ(η)/C6, η0 ≤ η ≤ η1}.(6.16)

Define TΩ ∈ R+ ∪ {+∞} by

TΩ = sup{ t ∈ [0, T1) : (η(t), ζ(t)) ∈ Ω, ζ̇(t) ≥ 0 }.(6.17)

Let us argue that TΩ > 0. At t = 0, (η(0), ζ(0)) = (η0, ζ0) ∈ Ω. From (6.13),
we compute η̇(0) ≥ ζ0 − C6ζ

2
0 > 0, where we applied the bounds (5.12) and the

inequality C6ζ0 < 1/2 that follows from (6.1) and the choice ζ0 < ζ1. Similarly,
ζ̇(0) ≥ λ(η0)ζ0−C6ζ

2
0 > 0 due to the inequality C6ζ0 < λ(η0) that follows from (6.10)

and (6.3). Therefore, (η(t), ζ(t)) ∈ Ω and ζ̇(t) > 0 for times t > 0 from a certain open
neighborhood of t = 0, proving that TΩ > 0.

The monotonicity of ζ(t) for t < TΩ implies that ζM (t) := sups∈(0,t) |ζ(s)| = ζ(t)
for 0 ≤ t < TΩ, and (5.12) takes the form

|Rj(η, ζ,υ)| ≤ C6ζ
2, j = 2, 3, 0 ≤ t < TΩ.(6.18)

Using (6.13) and (6.18), and taking into account (6.1) and monotonicity of ζ(t) for
0 ≤ t < TΩ, we compute

η̇(t) = ζ(t) + R2 ≥ ζ(t) − C6ζ
2(t) = ζ(t)(1 − C6ζ(t)) > ζ0/2,(6.19)

which is valid for 0 ≤ t < TΩ. This allows us to consider ζ as a function of η (as long
as 0 ≤ t < TΩ). By (6.13), (6.18), and (6.1),

dζ

dη
=

λ(η)ζ + R3

ζ + R2
≤ λ(η)ζ + C6ζ

2

ζ − C6ζ2
=

λ(η) + C6ζ

1 − C6ζ
≤ 2(λ(η) + C6ζ),(6.20)

which is valid for 0 ≤ t < TΩ. Thus, dζ
dη − 2C6ζ < 2λ(η) for 0 ≤ t < TΩ. Multiplying

both sides of this relation by e−2C6η and integrating, we get Gronwall’s inequality:∫ η

η0

d

dη′

(
e−2C6η

′
ζ(η′)

)
dη′ < 2

∫ η

η0

e−2C6η
′
λ(η′) dη′ ≤ 2e−2C6η0Λ(η),(6.21)

ζ < e2C6η
(
2e−2C6η0Λ(η) + e−2C6η0ζ0

)
< 3e2C6ηΛ(η), 0 ≤ t < TΩ.(6.22)
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(η(t), ζ(t))Ω

ζ = 3e2C6ηΛ(η)

ζ = λ(η)/C6

ζ1

ζ0

η1η0

Fig. 3. The trajectory (η(t), ζ(t)) (the solid line) stays in the part of the region Ω below the
dashed line ζ = 3e2C6ηΛ(η).

See Figure 3. We used the inequality ζ0 < Λ(η0) ≤ Λ(η) that follows from (6.10) and
monotonicity of Λ(η).

Now let us argue that TΩ = T1. If TΩ = ∞, we are done; therefore we only need
to consider the case TΩ < ∞. By (6.17), the moment TΩ is characterized by

either TΩ = T1 or (η(TΩ), ζ(TΩ)) ∈ ∂Ω or η̇(TΩ) = 0,(6.23)

or any combination of these three conditions. By continuity, the bound (6.22) is also
valid at TΩ (the last inequality in (6.22) remains strict); therefore,

ζ(TΩ) < 3e2C6η(TΩ)Λ(η(TΩ)) < λ(η(TΩ))/C6.(6.24)

In the last inequality, we used Lemma 6.1. Inequality (6.24) also leads to

ζ̇ = λ(η)ζ + R3 ≥ ζ(λ(η) − C6ζ) > 0, 0 ≤ t ≤ TΩ.(6.25)

Using (6.24) and (6.25) in (6.23), we conclude that either TΩ = T1 or η(TΩ) = η1,
and hence again TΩ = T1 (by (3.15), η(t) < η1 for 0 ≤ t < T1). The bounds (6.14)
and (6.15) for 0 ≤ t < TΩ = T1 follow from (6.19) and (6.22) (note that ζ̇ ≥ 0 for
0 ≤ t < TΩ = T1 by (6.17)).

Lemma 6.5. Assume that ‖ρ0‖H1 < η1. There exists C7 > 0 so that

‖ρ(t)‖L2
μ
≤ C7Λ(η), 0 ≤ t < T1.

Proof. Using the estimate (6.15) from Lemma 6.4 and the estimate (5.9) from
Proposition 5.1 (where ηM (t) = η(t) and ζM (t) = ζ(t) due to (6.14) and positivity of
η0 and ζ0), we obtain

‖ρ(t)‖L2
μ
≤ |ζ|‖e3,c‖L2

μ
+ ‖υ‖L2

μ
≤ |ζ|

(
‖e3,c‖L2

μ
+ C4[ζ + Y (η)]

)
.

Now the statement of the lemma follows from the bound (6.15). The value of C7

could be taken equal to K1 = K1(η1, ζ1), which we define by

K1 = 3e2C6η1

(
sup

c∈[c�,c�+η1]

‖e3,c‖L2
μ

+ C4

[
ζ1 +

{
2η1 + |Nc�+η1 − Nc� |

1
2

}])
.(6.26)
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Note that the term in the braces dominates Y (η), which was defined in (4.2) (when
estimating Y (η), we used the bound ‖ρ0‖H1 < η1).

Conclusion of the proof of Theorem 1. In Theorem 1, let us take

ε = min(κη1/2, ‖φc�‖H1) > 0.(6.27)

Pick δ > 0 arbitrarily small. To comply with the requirements of Lemmas 6.3 and 6.5,
we may assume that δ is smaller than min(η1, δ1). Fix μ ∈ (0,min(μ0, μ1)), with μ0

from Assumption 3 and μ1 as in Lemma C.1. Let η0 and ζ0 satisfy all the inequalities
in Lemma 6.3; then the conditions (3.11) of Proposition 3.2 are satisfied. Let

u0 = φc�+η0 + ζ0e3,c�+η0 ,

so that u0 ∈ H2(R) ∩ L2
2μ(R) by (2.25) and ‖u0 − φc�‖H1 < δ by (6.9). Proposi-

tion 3.2 states that there exist T1 ∈ R+ ∪ {+∞} and a function u(t) ∈ C([0,∞),
H2(R)∩L2

2μ(R)), u(0) = u0, so that for 0 ≤ t < T1 the function u(t) solves (1.1) and
all the inequalities (3.15) are satisfied.

Lemma 6.6. In Proposition 3.2, one can only take T1 < ∞.
Proof. If we had T1 = +∞, then η̇ ≥ ζ0/2 for t ∈ R+ by Lemma 6.4; hence η(t)

would reach η1 in finite time, contradicting the bound η(t) < η1 for 0 ≤ t < T1 from
Proposition 3.2 (iii).

Since T1 < ∞, Proposition 3.2 (iv) states that at least one of the inequalities in
(3.15) turns into an equality at t = T1. As follows from the bound (5.9) and inequality
(5.4), ‖υ(T1)‖H1

μ
< δ1. Also, by (6.15) (where the bound from above does not have

to be strict at T1),

ζ(T1) ≤ 3e2C6η1Λ(η(T1)) ≤ 3e2C6η1Λ(η1) < λ(η)/C6 < ζ1.(6.28)

We took into account the monotonicity of Λ(η) and inequalities (6.3) and (6.6). There-
fore, either ‖u(T1)‖H1 = 2‖φc�‖H1 or η(T1) = η1 (or both). In the first case,

inf
s∈R

‖u(·, T1) − φc�(· − s)‖H1 ≥ ‖u(·, T1)‖H1 − ‖φc�‖H1 ≥ ‖φc�‖H1 ≥ ε;(6.29)

hence the instability of φc� follows. We are left to consider the case η(T1) = η1.
According to (3.6),

inf
s∈R

‖u(·, t) − φc�(· − s)‖L2 ≥ inf
s∈R

‖u(·, t) − φc�(· − s)‖L2(R,min(1,eμx) dx)

≥ inf
s∈R

‖φc(t)(·) − φc�(· − s)‖L2(R,min(1,eμx) dx) − ‖ρ(t)‖L2
μ
.(6.30)

Applying Lemmas C.1 and 6.5 to the two terms in the right-hand side of (6.30), we
see that

inf
s∈R

‖u(·, t) − φc�(· − s)‖L2 ≥ κη − C7Λ(η), 0 ≤ t < T1, κ > 0.(6.31)

Since C7Λ(η1) ≤ κη1/2 by (6.7),

inf
s∈R

‖u(·, T1) − φc�(· − s)‖L2 ≥ κη1/2 ≥ ε,(6.32)

and again the instability of φc� follows.
This completes the proof of Theorem 1.
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7. Nondegenerate case: Normal form. In this section, we prove that the
critical soliton with speed c� generally corresponds to the saddle-node bifurcation of
two branches of noncritical solitons. We assume for simplicity that c� is a nondegen-
erate critical point of Nc, in the sense that

N ′
c� = 0, N ′′

c� �= 0.(7.1)

We rewrite the last two equations from system (3.23):

[
η̇

ζ̇

]
=

[
0 1
0 λc

] [
η
ζ

]
+

[
R2(η, ζ,υ)
R3(η, ζ,υ)

]
.(7.2)

As follows from (2.9) and (2.16),

λc = λc�+η = λ′
c�η + O(η2), λ′

c� = −
2N ′′

c�

(I ′c�)
2
,(7.3)

where λ′
c� �= 0 by (7.1). System (7.2) has the nonlinear terms Rj(η, ζ,υ), j = 2, 3,

estimated in Lemma 5.3 for monotonically increasing functions η(t), |ζ(t)| on a local
existence interval 0 < t < T1. It follows from (3.24) that

R2(0, 0, 0) = R3(0, 0, 0) = 0,

so that the point (η, ζ) = (0, 0) is a critical point of (7.2) when υ = 0. This critical
point corresponds to the critical traveling wave φc�(x) itself. The following result
establishes a local equivalence between system (7.2) and the truncated system η̈ =
λ′
c�ηη̇, thus guaranteeing the instability of the critical point (η, ζ) = (0, 0).

Proposition 7.1. Assume that conditions (7.1) are satisfied. Consider the
subset of trajectories (η(t), ζ(t)) of system (7.2) that lie inside the ε-neighborhood
Dε ⊂ R

2 of the origin and satisfy the condition that both functions η(t) and |ζ(t)| are
monotonically increasing. For sufficiently small ε > 0 this subset of the trajectories is
topologically equivalent to a subset of the trajectories of the truncated normal form,

ẋ =
1

2
λ′
c�x

2 + E1,(7.4)

where E1 is constant.
Proof. Since ζ = η̇ − R2(η, ζ,υ), we can rewrite system (7.2) in the equivalent

form

d

dt

(
η̇ − 1

2
λ′
c�η

2 −R2(η, ζ,υ)

)
= R(η, ζ,υ),(7.5)

where

R(η, ζ,υ) ≡ R3(η, ζ,υ) − λcR2(η, ζ,υ)) + (λc − λ′
c�η)ζ.

It follows from Lemma 5.3 and (7.3) that there exists a constant C > 0 such that
|R| ≤ C(ζ2 + η2|ζ|). The integral form of (7.5) is

η̇ − 1

2
λ′
c�η

2 − E1 = R̃(t),(7.6)
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where

R̃(t) ≡ R2(η(t), ζ(t),υ(t)) +

∫ t

0

R(η(t′), ζ(t′),υ(t′)) dt′

and E1 is the constant of integration. Using Lemma 5.3, the bound |ζ| ≤ η̇ + C6ζ
2,

and integration by parts, we obtain that∫ t

0

ζ2 dt′ ≤ η|ζ| + C6

∫ t

0

|ζ|3 dt′ ≤ η|ζ| + C6η|ζ|2 + C2
6

∫ t

0

|ζ|4 dt′ ≤ · · · ≤ η|ζ|
1 − C6|ζ|

and ∫ t

0

η2|ζ| dt′ ≤ η3

3
+ C6

∫ t

0

η2ζ2 dt′ ≤ · · · ≤ η3

3(1 − C6|ζ|)
.

Thus, if |ζ| is sufficiently small, there exists a constant C̃ > 0 such that |R̃| ≤
C̃(ζ2 + |ζ|η+η3). The topological equivalence of (7.6) with the above estimate on |R̃|
in the disk (η, ζ) ∈ Dε to the truncated normal form (7.4) with sufficiently small E1

is proved in [Kuz98, Lemma 3.1]. By definition, two systems are said to be topologi-
cally equivalent if there exists a homeomorphism between solutions of these systems.
We note that this equivalence holds for a family of trajectories which corresponds
to monotonically increasing functions η(t), |ζ(t)| in a subset of the small disk near
(η, ζ) = (0, 0).

Corollary 7.2. The critical point (0, 0) of system (7.2) is unstable in the sense
that there exists ε > 0 such that for any δ > 0 there are (η(0), ζ(0)) ∈ Dδ and
t∗ = t∗(δ, ε) < ∞ such that (η(t∗), ζ(t∗)) /∈ Dε.

Proof. The normal form equation (7.4) shows that the critical point x = 0 is
semistable at E1 = 0, such that the trajectory with any x(0) �= 0 of the same sign
as λ′

c� escapes the local neighborhood of the point x = 0 in a local time t ∈ [0, T ].
By Proposition 7.1, local dynamics of (7.4) for x(t) is equivalent to local dynamics of
(7.2) for (η, ζ).

Remark 7.3. The truncated normal form (7.4) is rewritten for c = c� + x:

ċ =
1

2
λ′
c�(c− c�)

2 + E1.(7.7)

The normal form (7.7) corresponds to the standard saddle-node bifurcation. It was
derived and studied in [PG96] by using the asymptotic multiscale expansion method.
When E = 0, the critical point c = c� is a degenerate saddle point, which is nonlinearly
unstable. Assume for definiteness that λ′

c� > 0 (which implies that N ′′
c� < 0). Then

there are no fixed points for E1 > 0 and two fixed points for E1 < 0 in the normal
form equation (7.7). Therefore, there exist initial perturbations (with E1 > 0 and
any c0 or with E1 = 0 and c0 > c�) which are arbitrarily close to the traveling wave
with c = c�, but the norm |c − c�| exceeds some a priori fixed value at t = t∗ > 0.
Two fixed points exist for E1 < 0:

c = c±E = c� ±
√

E1

N ′′
c�

|I ′c� |,(7.8)

so that c = c+E is an unstable saddle point and c = c−E is a stable node. The two
fixed points correspond to two branches of traveling waves with Nc < Nmax, where
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Nmax = N (φc�). The left branch with c−E < c� corresponds to N ′
c−E

> 0 and the right
branch with c+E > c� corresponds to N ′

c+E
< 0. According to the stability theory for

traveling waves [PW92], the left branch is orbitally stable, while the right branch is
linearly unstable.

Appendix A. Existence of solitary waves. Let us discuss the existence of
standing waves. We assume that f is smooth. Let F denote the primitive of f such
that F (0) = 0. Thus, by (1.2),

F (0) = F ′(0) = F ′′(0) = 0.(A.1)

The wave profile φc is to satisfy the equation

u′′ − cu = f(u), c > 0.

Multiplying the above relation by u′ and integrating, and taking into account that we
need lim|x|→∞ u(x) = 0, we get

du(x)

dx
= ±

√
cu2 + 2F (u).(A.2)

There will be a strictly positive continuous solution exponentially decaying at infinity

if there exists ξc > 0 such that cu
2

2 + F (u) > 0 for 0 < u < ξc, and also

c
ξ2
c

2
+ F (ξc) = 0, cξc + f(ξc) < 0.

The last two conditions imply that the map c �→ ξc is invertible and smooth (as F is).
One immediately sees that φc ∈ C∞(R) and, due to the exponential decay at infinity,
φc ∈ H∞(R). For each c, the solution φc is unique (up to translations of the origin)
and (after a suitable translation of the origin) satisfies the following properties: it is
strictly positive, symmetric, and monotonically decreasing (strictly) away from the
origin. This result follows from the implicit representation

x = ±
∫ ξc

φc

du√
cu2 + 2F (u)

.(A.3)

See [BL83, section 6] for the exhaustive treatment of this subject.
Lemma A.1. There exist positive constants C1, C2, C

′
1, and C ′

2 such that

C1e
−√

c|x| ≤ |φc(x)| ≤ C2e
−√

c|x|, x ∈ R,(A.4)

C ′
1e

−
√
c|x| ≤ |∂xφc(x)| ≤ C ′

2e
−
√
c|x|, |x| ≥ 1.(A.5)

Proof. Since lim|x|→∞ φc(x) = 0, there exists x1 > 0 so that |F (φc(x))|
φ2

c(x) < c
4 for

|x| ≥ x1. Then, for x > x1, we get from (A.3)

x− x1 =

∫ φc(x1)

φc(x)

du√
cu2 + 2F (u)

.

It follows that ∫ φc(x1)

φc(x)

du

c1/2u
−
∫ φc(x1)

φc(x)

|F (u)|
c3/2u3

du ≤ x− x1(A.6)

≤
∫ φc(x1)

φc(x)

du

c1/2u
+

∫ φc(x1)

φc(x)

|F (u)|
c3/2u3

du.
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By (A.1), |F (u)|/u3 is bounded for u small, and we conclude from (A.6) that

lnφc(x) − C3 ≤ c1/2(x− x1) ≤ lnφc(x) + C3,(A.7)

where C3 = c−1
∫ φc(x1)

0
|F (u)|u−3 du. Inequalities (A.7) immediately prove (A.4).

Bounds (A.5) immediately follow from (A.2).
We also need the following result that gives the rate of decay of e2,c = ∂cφc and

e3,c� at infinity.

Lemma A.2. Let R ∈ C∞(R) satisfy the bound |R(x)| ≤ C1e
−√

c|x| for x ≥ 0 for
some c > 0, C1 > 0. Let u ∈ C∞(R) satisfy

u′′ − cu = R, lim
x→+∞

u(x) = 0.(A.8)

Then there exists C2 > 0 (that depends on c, C1, and u) such that

|u(x)| ≤ C2(1 + |x|)e−
√
c|x|, x ≥ 0.(A.9)

Remark A.3. C2 depends not only on c and C1 but also on u because the solution
to (A.8) is defined up to const e−

√
c x.

Proof. First, we notice that if P ∈ C∞(R), P (x) ≥ 0 for x ≥ 0, and if v ∈ C∞(R)
solves

v′′ − cv = P (x), v(0) = 0, lim
x→+∞

v(x) = 0,(A.10)

then v(x) ≤ 0 for x ≥ 0. (The existence of a point x0 > 0 where u assumes a positive
maximum contradicts the equation in (A.10).)

Now we consider the functions u− and u+ that satisfy

u′′
±(x) − cu± = ±C1e

−√
c|x|, u±(0) = u(0), lim

x→+∞
u±(x) = 0.(A.11)

Both u± can be written explicitly; they satisfy (A.9). Since v = u − u− and v =
u+ − u satisfy (A.10) with P (x) = C1e

−√
c|x| + R(x) and P (x) = C1e

−√
c|x| − R(x),

respectively, we conclude that u+(x) ≤ u(x) ≤ u−(x) for x ≥ 0, and hence u also
satisfies (A.9).

Appendix B. Fredholm alternative for Hc.
Lemma B.1 (Fredholm alternative). Let R(x) ∈ S+,m(R), m ≥ 0 (see Defini-

tion 2.1). If ∫
R

e1,c(x)R(x) dx = 0,(B.1)

then the equation

Hcu = R(B.2)

has a solution u ∈ S+,m(R). (This solution is unique if we impose the constraint
〈e1,c, u〉 = 0.) Otherwise, any solution u(x) to (B.2) such that limx→+∞ u(x) = 0
grows exponentially at −∞:

lim
x→−∞

e−
√
c|x|u(x) �= 0.
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Proof. Let us pick an even function R+ ∈ H∞(R) so that R+(x) = R(x) for
x ≥ 1. Since R+ is even and therefore orthogonal to the kernel of the operator Hc,
there is a solution u+ ∈ H∞(R) to the equation

Hcu+ = R+.(B.3)

Denote by u the solution to the ordinary differential equation

Hcu ≡ −u′′ + (f ′(φc) + c)u = R(B.4)

such that u|x=1 = u+|x=1, u
′|x=1 = u′

+|x=1. Then u ∈ C∞(R) coincides with u+ for
x ≥ 1 and thus satisfies

lim
x→+∞

u(x) = 0.(B.5)

We take the pairing of (B.4) with e1,c:∫ ∞

x

e1,c(y)Hcu(y) dy =

∫ ∞

x

e1,c(y)R(y) dy ≡ r(x), x ∈ R.(B.6)

Since

e1,cHcu = uHce1,c − e1,c∂
2
xu + u∂2

xe1,c = −∂x(e1,cu
′) + ∂x(u∂xe1,c),

where we took into account that Hce1,c = 0, we obtain from (B.6) the relation

e1,c(x)u′(x) − u(x)∂xe1,c(x) = r(x).(B.7)

The boundary term at x = +∞ does not contribute into (B.7) due to the limit (B.5).
We will use this relation to find the behavior of u(x) as x → −∞. For x ≤ −1, we
divide the relation (B.7) by e2

1,c (we can do this since e1,c(x) = −∂xφc(x) �= 0 for
x �= 0), getting

∂x

(
u(x)

e1,c(x)

)
=

r(x)

e2
1,c(x)

.(B.8)

Therefore, for x ≤ −1,

u(x) − e1,c(x)
u(−1)

e1,c(−1)
= e1,c(x)

∫ x

−1

(r(y) − r−) + r−
e2

1,c(y)
dy,(B.9)

where r− = limx→−∞ r(x).
Since R ∈ S+,m(R), |R(x)| ≤ C(1 + |x|)m, m ∈ Z, m ≥ 0. Using Lemma A.1, we

see that

|r(x) − r−| =

∣∣∣∣
∫ x

−∞
R(y)e1,c(y) dy

∣∣∣∣ ≤ const e−
√
c|x|(1 + |x|)m, x ≤ −1.(B.10)

At the same time, Lemma A.1 also shows that∫ x

−1

dy

e2
1,c(y)

≥ const e2
√
c|x|, x ≤ −1.(B.11)
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Therefore, if r− �= 0, the right-hand side of (B.9) grows exponentially as x → −∞.
The same is true for u(x), since the second term in the left-hand side of (B.9) decays
exponentially when |x| → ∞ by Lemma A.1. If instead r− = 0, Lemma A.1 and the
bound (B.10) show that the right-hand side of (B.9) is bounded by const(1 + |x|)m,
proving a similar bound for u(x). Using (B.4) to get the bounds on the derivatives
u(N), we conclude that u ∈ S+,m(R).

Appendix C. Nondegeneracy of infs∈R ‖φc(·) − φc�(· − s)‖ at c�.
Lemma C.1. If η1 > 0 is sufficiently small, there exist μ1 > 0 and κ > 0 so that

inf
s∈R

‖φc(·) − φc�(· − s)‖L2(R,min(1,eμx) dx) ≥ κ|c− c�|, c ∈ [c�, c� + η1], μ ∈ [0, μ1].

Proof. Consider the function

gμ(c, s) = ‖φc(·) − φc�(· − s)‖2
L2(R,min(1,eμx) dx).(C.1)

It is a smooth nonnegative function of c and s for c ∈ [c�, c� + η1] and s ∈ R. It also
depends smoothly on the parameter μ ≥ 0. Zero is its absolute minimum, achieved at
the point (c, s) = (c�, 0). We also note that the point (c�, 0) is nondegenerate when
μ = 0:

∂2
c g0(c, s)|(c�,0) = 2‖∂cφc|c=c�‖2

L2 > 0, ∂2
sg0(c, s)|(c�,0) = 2‖∂xφc�‖2

L2 > 0,

∂c∂sg0(c, s)|(c�,0) = −2(∂cφc|c=c� , ∂xφc�) = 0.

By continuity, the quadratic form g′′μ|(c�,0) is nondegenerate for 0 ≤ μ ≤ μ1, with
some μ1 > 0. Therefore, there exist κ > 0 and an open neighborhood Ω ⊂ R

2 of the
point (c�, 0) such that

gμ(c, s) ≥ κ2((c− c�)
2 + s2), (c, s) ∈ Ω, 0 ≤ μ ≤ μ1.(C.2)

Moreover, we claim that

Γ ≡ inf
μ∈(0,μ1)

inf
(c,s)∈[c�,c�+η1]×R)\Ω

gμ(c, s) > 0.(C.3)

To prove (C.3), we only need to note that (c�, 0) is the only point where gμ(c, s) takes
the zero value and that lim|s|→∞ gμ(c, s) ≥ infc∈[c�,c�+η1] ‖φc‖2

L2(R,min(1,eμ1x) dx) > 0.

Now, we assume that η1 > 0 is small enough so that κ2η2
1 < Γ . Then, by (C.2)

(valid for (c, s) ∈ Ω) and (C.3) (valid for (c, s) ∈ ([c�, c� + η1] × R)\Ω), we conclude
that

inf
s∈R

gμ(c, s) ≥ κ2(c− c�)
2, c ∈ [c�, c� + η1], μ ∈ [0, μ1].(C.4)

This proves the lemma.
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ON THE BLOWUP FOR THE L2-CRITICAL FOCUSING
NONLINEAR SCHRÖDINGER EQUATION IN HIGHER

DIMENSIONS BELOW THE ENERGY CLASS∗

MONICA VISAN† AND XIAOYI ZHANG‡

Abstract. We consider the focusing mass-critical nonlinear Schrödinger equation and prove
that blowup solutions to this equation with initial data in Hs(Rd), s > s0(d) and d ≥ 3, concentrate
at least the mass of the ground state at the blowup time. This extends recent work by Colliander
et al. [Math. Res. Lett., 12 (2005), pp. 357–375], Hmidi and Keraani [Remarks on the Blowup for
the L2-Critical Nonlinear Schrödinger Equations, preprint], and Tzirakis [SIAM J. Math. Anal.,
37 (2006), pp. 1923–1946] on the blowup of the two-dimensional and one-dimensional mass-critical
focusing nonlinear Schrödinger equation below the energy space to all dimensions d ≥ 3.
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1. Introduction. We consider the initial value problem for the focusing L2
x-

critical nonlinear Schrödinger equation{
iut + Δu = −|u| 4du,
u(0, x) = u0(x) ∈ Hs(Rd), s ≥ 0,

(1.1)

where u(t, x) is a complex-valued function in spacetime R × R
d, d ≥ 3.

It is well known (see, for example, [6]) that the Cauchy problem (1.1) is locally
well posed in Hs(Rd) for s ≥ 0. Moreover, the unique solution obeys conservation of
mass:

M(u(t)) :=

∫
Rd

|u(t, x)|2 dx = M(u0).

If s ≥ 1, the energy is also finite and conserved:

E(u(t)) :=

∫
Rd

(
1

2
|∇u(t, x)|2 − d

2(d + 2)
|u(t, x)|2+ 4

d

)
dx = E(u0).

This equation has a natural scaling. More precisely, the map

u(t, x) �→ uλ(t, x) := λ
d
2 u(λ2t, λx)(1.2)

maps a solution to (1.1) to another solution to (1.1). The reason why this equation
is called L2

x-critical (or mass-critical) is because the scaling (1.2) also leaves the mass
invariant.

Equation (1.1) is subcritical for s > 0. In this case, (1.1) is well posed in Hs(Rd)
and the life span of the local solution depends only on the Hs

x-norm of the initial data
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(see [6]). Denote by T ∗ > 0 the maximal forward time of existence. As a consequence
of the local well-posedness theory, we have the following blowup criterion:

either T ∗ = ∞ or T ∗ < ∞ and lim
t→T∗

‖u(t)‖Hs
x

= ∞.

The blowup behavior for solutions from H1
x initial data has received a lot of

attention. The results are closely related to the ground state Q which is the unique
positive radial solution to the elliptic equation

ΔQ−Q + |Q| 4dQ = 0.

Using the sharp Gagliardo–Nirenberg inequality (see [39]),

‖u‖
4
d+2

L
4
d

+2
x

≤ Cd‖u‖
4
d

L2
x
‖∇u‖2

L2
x

with Cd :=
d + 2

d ‖Q‖
4
d

L2
x

,(1.3)

it is not hard to see that the mass of the ground state is the minimal mass required
for the solution to develop a singularity. Indeed, in the case ‖u0‖L2

x
< ‖Q‖L2

x
, (1.3)

combined with the conservation of energy implies that the solution to (1.1) is global.
This is sharp since the pseudoconformal invariance of (1.1) allows us to build a solution
with mass equal to that of the ground state that blows up at time T ∗:

u(t, x) := |T ∗ − t|− d
2 e[i(T∗−t)−1−i|x|2(T∗−t)−1]Q

( x

T ∗ − t

)
.

Moreover, Merle [28] showed that up to the symmetries of (1.1), this is the only blowup
solution with minimal mass. Furthermore, any blowup solution must concentrate at
least the mass of the ground state at the blowup time; more precisely, as shown in
[31], there exists x(t) ∈ R

d such that

∀R > 0, lim
t→T∗

∫
|x−x(t)|≤R

|u(t, x)|2dx ≥
∫

Rd

Q2dx.(1.4)

Of course, the goal is to establish all these properties for blowup solutions from
data in L2

x rather than H1
x. Unfortunately, all the methods used in the H1

x setting
break down at the L2

x level. Moreover, as (1.1) is L2
x-critical, even the local well-

posedness theory in L2
x is substantially different from that in Hs

x for s > 0. Specifically,
the life span of the local solution depends on the profile of the initial data, rather than
on its L2

x-norm (see [6]). In particular, this leads to the following blowup criterion:

either T ∗ = ∞ or T ∗ < ∞ and ‖u‖
L

2+ 4
d

t,x ([0,T∗)×Rd)
= ∞.

From the global theory for small data (see [6]), we know that if the mass of the initial
data is sufficiently small, then there exists a unique global solution to (1.1). However,
for large (but finite) mass initial data, which is also sufficiently smooth and decaying,
the viriel identity guarantees that finite time blowup occurs; see [18, 42].

The first blowup result for general L2
x initial data belongs to Bourgain [2], who

proved the following parabolic concentration of mass at the blowup time:

lim
t↗T∗

sup
cubes I⊂R

2

side(I)<(T∗−t)
1
2

(∫
I

|u(t, x)|2 dx
) 1

2

≥ c(‖u0‖L2
x
) > 0,(1.5)
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where c(‖u0‖L2
x
) is a small constant depending on the mass of the initial data. This

result was extended to dimension d = 1 by Keraani [25], and to dimensions d ≥ 3 by
Begout and Vargas [1]. The conjecture is that rather than c(‖u0‖L2

x
) on the right-

hand side of (1.5), one should have the mass of the ground state as in (1.4); however,
this appears to be a very difficult problem.

The goal of this paper is to reproduce as much of the H1
x theory as we can at

lower regularity (but, unfortunately, well above L2
x) in dimensions three and higher.

In two dimensions, this was pursued by Colliander et al. [13]; using the I-method
(introduced by Colliander et al. [10]), they established a mass concentration property
(at the blowup time) for radial blowup solutions from initial data in Hs(R2) with

s > 1+
√

11
5 :

lim sup
t↗T∗

‖u‖
L2(|x|<(T∗−t)

s
2 γ(T∗−t))

≥ ‖Q‖L2
x
,(1.6)

where γ(r) → ∞ arbitrarily slowly as r → 0. While the right-hand side in (1.6)
is the conjectured one, we should remark that the width of concentration, that is,
(T ∗ − t)

s
2−, is larger than the expected concentration width, (T ∗ − t)

1
2−. Moreover,

the lim sup in (1.6) is not present in the H1
x theory (see (1.4)); the reason for its

appearance is basically the lack of information on the blowup rate of the Hs
x-norm.

Hmidi and Keraani [21] removed the radial assumption used in [13]. Moreover,
they showed that, up to symmetries of the equation, the ground state Q is the profile

for blowup solutions with minimal mass and initial data in Hs(R2) with s > 1+
√

11
5 .

We will make use of the key innovation of their work, namely, Lemma 2.11 below.
In one dimension, recent work by Tzirakis [36] established the analogue of (1.6)

for arbitrary initial data in Hs(R), s > 10
11 .

Our contribution is to treat (nonradial) data in Hs(Rd) for s > s0(d), where

s0(d) :=

⎧⎪⎪⎨
⎪⎪⎩

1 +
√

13

5
for d = 3,

8 − d +
√

9d2 + 64d + 64

2(d + 10)
for d ≥ 4.

(1.7)

We prove the following theorem.
Theorem 1.1. Assume d ≥ 3 and s > s0(d). Let u0 ∈ Hs(Rd) such that the

corresponding solution u to (1.1) blows up at time 0 < T ∗ < ∞. Then there exists a
function V ∈ H1

x such that ‖V ‖2 ≥ ‖Q‖2 and there exist sequences {tn, ρn, xn}n≥1 ⊂
R+ × R

∗
+ × R

d satisfying

tn ↗ T ∗ as n → ∞ and ρn � (T ∗ − tn)
s
2 ∀n ≥ 1

such that

ρ
d
2
nu(tn, ρn · +xn) ⇀ V weakly as n → ∞.

As a consequence of Theorem 1.1, we establish the following mass concentration
property for blowup solutions.

Theorem 1.2. Assume d ≥ 3 and s > s0(d). Let u0 ∈ Hs(Rd) such that the
corresponding solution u to (1.1) blows up at time 0 < T ∗ < ∞. Let α(t) > 0 be such
that

lim
t↗T∗

(T ∗ − t)
s
2

α(t)
= 0.
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Then there exists x(t) ∈ R
d such that

lim sup
t↗T∗

∫
|x−x(t)|≤α(t)

|u(x, t)|2dx ≥
∫

Rd

Q2dx.

Under the additional hypothesis that the mass of the initial data equals the mass
of the ground state, we may upgrade Theorem 1.1 to the following.

Theorem 1.3. Assume d ≥ 3 and s > s0(d). Let u0 ∈ Hs(Rd) with ‖u0‖2 =
‖Q‖2 such that the corresponding solution u to (1.1) blows up at time 0 < T ∗ < ∞.
Then there exist sequences {tn, θn, ρn, xn}n≥1 ⊂ R+ × S1 × R

∗
+ × R

d satisfying

tn ↗ T ∗ as n → ∞ and ρn � (T ∗ − tn)
s
2 ∀n ≥ 1

such that

ρ
d
2
n e

iθnu(tn, ρnx + xn) → Q strongly in H s̃−
x ,

where

s̃ :=
2d + 8s + s2d(2 − min{1, 4

d})
4d + 16s− s2(dmin{1, 4

d} + 8)
.

In a nutshell, Theorem 1.3 says that up to the symmetries for (1.1), the ground
state is the profile for blowup solutions with minimal mass and initial data in Hs

x,
s > s0(d). Alas, we only show that this is true along a sequence of times.

To prove Theorems 1.1 through 1.3, we will rely on the I-method and Lemma 2.11.
The idea behind the I-method is to smooth out the initial data in order to access the
theory available at H1

x regularity. To this end, one introduces the Fourier multiplier I,
which is the identity on low frequencies and behaves like a fractional integral operator
of order 1 − s on high frequencies. Thus, the operator I maps Hs

x to H1
x. However,

even though we do have energy conservation for (1.1), Iu is not a solution to (1.1),
and hence we expect an energy increment. The key is to prove that on intervals of
local well-posedness, the modified energy E(Iu) is an “almost conserved” quantity and
grows much slower than the modified kinetic energy ‖∇Iu‖2

L2
x
. This requires delicate

estimates on the commutator between I and the nonlinearity. In dimensions one and
two, the nonlinearity is algebraic and one can write the commutator explicitly using
the Fourier transform and control it by multilinear analysis and bilinear estimates (see
[13, 36]). However, in dimensions d ≥ 3 this method fails. Instead, we will have to
rely on more rudimentary tools such as Strichartz and fractional chain rule estimates
in order to control the commutator.

The remainder of this paper is organized as follows: In section 2, we introduce
notation and prove some lemmas that will be useful. In section 3, we revisit the Hs

x

local well-posedness theory for (1.1). Section 4 is devoted to controlling the modified
energy increment. In sections 5 through 7 we prove Theorems 1.1 through 1.3.

After this work was submitted, we were informed of an independent paper at-
tacking the same problem [14]. However, there appear to be several gaps in their
argument, for example, in estimating (4.19). While it seems possible to remedy their
errors, this would result in a larger value for s0(d) than that claimed in their paper,
which is already inferior to that given here. We contend that all overlap between this
paper and [14] can be attributed to the precursors [13] and [21].
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2. Preliminaries. We will often use the notation X � Y whenever there exists
some constant C so that X ≤ CY . Similarly, we will use X ∼ Y if X � Y � X. We
use X � Y if X ≤ cY for some small constant c. The derivative operator ∇ refers to
the space variable only. We use A± to denote A± ε for any sufficiently small ε > 0;
the implicit constant in an inequality involving this notation is permitted to depend
on ε.

We use Lr
x(Rd) to denote the Banach space of functions f : R

d → C whose norm

‖f‖r :=

(∫
Rd

|f(x)|rdx
) 1

r

is finite, with the usual modifications when r = ∞.
We use Lq

tL
r
x to denote the spacetime norm

‖u‖q,r := ‖u‖Lq
tL

r
x(R×Rd) :=

(∫
R

(∫
Rd

|u(t, x)|rdx
)q/r

dt

)1/q

,

with the usual modifications when either q or r are infinity, or when the domain R×R
d

is replaced by some smaller spacetime region. When q = r we abbreviate Lq
tL

r
x by

Lq
t,x.

We define the Fourier transform on R
d to be

f̂(ξ) :=

∫
Rd

e−2πix·ξf(x)dx.

We will make use of the fractional differentiation operators |∇|s defined by

|̂∇|sf(ξ) := |ξ|sf̂(ξ).

These define the homogeneous Sobolev norms

‖f‖Ḣs
x

:= ‖|∇|sf‖L2
x

and the more common inhomogeneous Sobolev norms

‖f‖Hs,p
x

:= ‖〈∇〉sf‖Lp
x
, where 〈∇〉 := (1 + |∇|2) 1

2 .

We will often denote Hs,2
x by Hs

x.

Let F (z) := −|z| 4d z be the function that defines the nonlinearity in (1.1). Then

Fz(z) :=
∂F

∂z
(z) = −2 + d

d
|z| 4d and Fz̄(z) :=

∂F

∂z̄
(z) = −2

d
|z| 4d z

z̄
.

We write F ′ for the vector (Fz, Fz̄) and adopt the notation

w · F ′(z) := wFz(z) + w̄Fz̄(z).

In particular, we observe the chain rule

∇F (u) = ∇u · F ′(u).

Clearly F ′(z) = O(|z| 4d ) and we have the Hölder continuity estimate

|F ′(z) − F ′(w)| � |z − w|min{1, 4d}(|z| + |w|) 4
d−min{1, 4d}(2.1)
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for all z, w ∈ C. By the fundamental theorem of calculus,

F (z + w) − F (z) =

∫ 1

0

w · F ′(z + θw)dθ

and hence

F (z + w) = F (z) + O(|w||z| 4d ) + O(|w|
4+d
d )

for all complex values z and w.
Let eitΔ be the free Schrödinger propagator. In physical space this is given by

the formula

eitΔf(x) =
1

(4πit)d/2

∫
Rd

ei|x−y|2/4tf(y)dy

for t �= 0 (using a suitable branch cut to define (4πit)d/2), while in frequency space
one can write this as

êitΔf(ξ) = e−4π2it|ξ|2 f̂(ξ).(2.2)

In particular, the propagator obeys the dispersive inequality

‖eitΔf‖L∞
x

� |t|− d
2 ‖f‖L1

x
(2.3)

for all times t �= 0.
We also recall Duhamel’s formula

u(t) = ei(t−t0)Δu(t0) − i

∫ t

t0

ei(t−s)Δ(iut + Δu)(s)ds.(2.4)

Definition 2.1. A pair of exponents (q, r) is called Schrödinger-admissible if

2

q
+

d

r
=

d

2
, 2 ≤ q, r ≤ ∞, and (q, r, d) �= (2,∞, 2).

Throughout this paper we will use the following admissible pairs:(
2,

2d

d− 2

)
and (γ, ρ) :=

(
2(d + 2)

d− 2s
,
2d(d + 2)

d2 + 4s

)
with 0 < s < 1.

Let ρ∗ := 2(d+2)
d−2s . Using Hölder and Sobolev embedding, on any spacetime slab I × R

d

we estimate

‖F (u)‖γ′,ρ′ � |I| 2sd ‖u‖γ,ρ‖u‖
4
d
γ,ρ∗ � |I| 2sd ‖〈∇〉su‖1+ 4

d
γ,ρ .(2.5)

Let I × R
d be a spacetime slab; we define the Strichartz norm

‖u‖S0(I) := sup
(q,r) admissible

‖u‖Lq
tL

r
x(I×Rd).

We define the Strichartz space S0(I) to be the closure of all test functions under the
Strichartz norm ‖ · ‖S0(I). We use N0(I) to denote the dual space of S0(I).
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We record the standard Strichartz estimates which we will invoke repeatedly
throughout this paper (see [33, 17] for (q, r) admissible with q > 2 and [24] for the
endpoint (2, 2d

d−2 )).
Lemma 2.2. Let I be a compact time interval, t0 ∈ I, s ≥ 0, and let u be a

solution to the forced Schrödinger equation

iut + Δu =

m∑
i=1

Fi

for some functions F1, . . . , Fm. Then

‖|∇|su‖S0(I) � ‖u(t0)‖Ḣs(Rd) +

m∑
i=1

‖|∇|sFi‖
L

q′
i

t L
r′
i

x (I×Rd)
(2.6)

for any admissible pairs (qi, ri), 1 ≤ i ≤ m.
We will also need some Littlewood–Paley theory. Specifically, let ϕ(ξ) be a smooth

bump supported in the ball |ξ| ≤ 2 and equaling one on the ball |ξ| ≤ 1. For each
dyadic number N ∈ 2Z we define the Littlewood–Paley operators

P̂≤Nf(ξ) := ϕ(ξ/N)f̂(ξ),

P̂>Nf(ξ) := [1 − ϕ(ξ/N)]f̂(ξ),

P̂Nf(ξ) := [ϕ(ξ/N) − ϕ(2ξ/N)]f̂(ξ).

Similarly we can define P<N , P≥N , and PM<·≤N := P≤N − P≤M whenever M and
N are dyadic numbers. We will frequently write f≤N for P≤Nf and similarly for
the other operators. We recall the following standard Bernstein- and Sobolev-type
inequalities.

Lemma 2.3. For any 1 ≤ p ≤ q ≤ ∞ and s > 0, we have

‖P≥Nf‖Lp
x

� N−s‖|∇|sP≥Nf‖Lp
x
,

‖|∇|sP≤Nf‖Lp
x

� Ns‖P≤Nf‖Lp
x
,

‖|∇|±sPNf‖Lp
x
∼ N±s‖PNf‖Lp

x
,

‖P≤Nf‖Lq
x

� N
d
p−

d
q ‖P≤Nf‖Lp

x
,

‖PNf‖Lq
x

� N
d
p−

d
q ‖PNf‖Lp

x
.

For N > 1, we define the Fourier multiplier IN (cf. [10]) by

ÎNu(ξ) := mN (ξ)û(ξ),

where mN is a smooth radial decreasing function such that

mN (ξ) =

{
1 if |ξ| ≤ N,( |ξ|
N

)s−1
if |ξ| ≥ 2N.

Thus, IN is the identity operator on frequencies |ξ| ≤ N and behaves like a fractional
integral operator of order 1 − s on higher frequencies. In particular, IN maps Hs

x to
H1

x; this allows us to access the theory available for H1
x data. We collect the basic

properties of IN into the following lemma.
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Lemma 2.4. Let 1 < p < ∞ and 0 ≤ σ ≤ s < 1. Then

‖INf‖p � ‖f‖p,(2.7)

‖|∇|σP>Nf‖p � Nσ−1‖∇INf‖p,(2.8)

‖f‖Hs
x

� ‖INf‖H1
x

� N1−s‖f‖Hs
x
.(2.9)

Proof. The estimate (2.7) is a direct consequence of the multiplier theorem.
To prove (2.8), we write

‖|∇|σP>Nf‖p = ‖P>N |∇|σ(∇IN )−1∇INf‖p.

The claim follows again from the multiplier theorem.
Now we turn to (2.9). By the definition of the operator IN and (2.8),

‖f‖Hs
x

� ‖P≤Nf‖Hs
x

+ ‖P>Nf‖2 + ‖|∇|sP>Nf‖2

� ‖P≤NINf‖H1
x

+ N−1‖∇INf‖2 + Ns−1‖∇INf‖2

� ‖INf‖H1
x
.

On the other hand, since the operator IN commutes with 〈∇〉s, we get

‖INf‖H1
x

= ‖〈∇〉1−sIN 〈∇〉sf‖2 � N1−s‖〈∇〉sf‖2 � N1−s‖f‖Hs
x
,

which proves the last inequality in (2.9). Note that a similar argument also yields

‖INf‖Ḣ1
x

� N1−s‖f‖Ḣs
x
.(2.10)

The estimate (2.8) shows that we can control the high frequencies of a function
f in the Sobolev space Hσ,p

x by the smoother function INf in a space with a loss of
derivative but a gain of negative power of N . This fact is crucial in extracting the
negative power of N when estimating the increment of the modified Hamiltonian.

In one and two dimensions, one can use multilinear analysis to understand com-
mutator expressions like F (INu) − INF (u); on the Fourier side, one can expand this
commutator into a product of Fourier transforms of u and INu and carefully measure
the frequency interactions to derive an estimate (see, for example, [13, 36]). However,
this is not possible in dimensions d ≥ 3. Instead, we will have to rely on the following
rougher (weaker, but more robust) lemma.

Lemma 2.5. Let 1 < r, r1, r2 < ∞ be such that 1
r = 1

r1
+ 1

r2
and let 0 < ν < s.

Then

‖IN (fg) − (INf)g‖r � N−(1−s+ν)‖INf‖r1‖〈∇〉1−s+νg‖r2 .(2.11)

Proof. Applying a Littlewood–Paley decomposition to f and g, we write

IN (fg) − (INf)g = IN (fg≤1) − (INf)g≤1 +
∑

1<M∈2Z

[
IN (f�MgM ) − (INf�M )gM

]
+

∑
1<M∈2Z

[
IN (f�MgM ) − (INf�M )gM

]
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= IN (f�Ng≤1)−(INf�N )g≤1 +
∑

N�M∈2Z

[
IN (f�MgM ) − (INf�M )gM

]

+
∑

1<M∈2Z

[
IN (f�MgM ) − (INf�M )gM

]
= I + II + III.(2.12)

The second equality above follows from the fact that the operator IN is the identity
operator on frequencies |ξ| ≤ N ; thus,

IN (fNg≤1) = (INfN )g≤1 and IN (f�MgM ) = (INf�M )gM ∀M � N.

We first consider II. Dropping the operator IN , by Hölder and Bernstein we
estimate

‖IN (f�MgM ) − (INf�M )gM‖r � ‖f�M‖r1‖gM‖r2

�
(
M

N

)1−s

‖INf‖r1‖gM‖r2

� M−νN−(1−s)‖INf‖r1‖|∇|1−s+νg‖r2 .

Summing over all M such that N � M ∈ 2Z, we get

II � N−(1−s+ν)‖INf‖r1‖|∇|1−s+νg‖r2 .(2.13)

We turn now towards III. Applying a Littlewood–Paley decomposition to f , we
write each term in III as

IN (f�MgM ) − (INf�M )gM =
∑

1k∈N

[
IN (f2kMgM ) − (INf2kM )gM

]
=

∑
1k∈N

N�2kM

[
IN (f2kMgM ) − (INf2kM )gM

]
.

To derive the second inequality, we used again the fact that the operator IN is the
identity on frequencies |ξ| ≤ N .

We write

[IN (f2kMgM )− (INf2kM )gM ]̂ (ξ) =

∫
ξ=ξ1+ξ2

(mN (ξ1 + ξ2)−mN (ξ1))f̂2kM (ξ1)ĝM (ξ2).

For |ξ1| ∼ 2kM , k � 1, and |ξ2| ∼ M , the fundamental theorem of calculus implies

|mN (ξ1 + ξ2) −mN (ξ1)| � 2−k

(
2kM

N

)s−1

.

By the Coifman–Meyer multilinear multiplier theorem [8, 9] and by Bernstein, we get

‖IN (f2kMgM ) − (INf2kM )gM‖r � 2−k

(
2kM

N

)s−1

‖f2kM‖r1‖gM‖r2

� 2−kM−(1−s+ν)‖INf‖r1‖|∇|1−s+νg‖r2 .
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Summing over M and k such that N � 2kM , and recalling that 0 < ν < s, we get

III � N−(1−s+ν)‖INf‖r1‖|∇|1−s+νg‖r2 .(2.14)

To estimate I, we apply the same argument as for III. We get

I = ‖IN (f�Ng≤1) − (INf�N )g≤1‖r �
∑

k∈N,2k�N

‖IN (f2kg≤1) − (INf2k)g≤1‖r

�
∑

k∈N,2k�N

2−k‖INf‖r1‖g‖r2

� N−1‖INf‖r1‖g‖r2 .(2.15)

Putting together (2.12) through (2.15), we derive (2.11).
As an application of Lemma 2.5 we have the following commutator estimate.
Lemma 2.6. Let 1 < r, r1, r2 < ∞ be such that 1

r = 1
r1

+ 1
r2

. Then for any
0 < ν < s we have

‖∇INF (u) − (IN∇u)F ′(u)‖r � N−1+s−ν‖∇INu‖r1‖〈∇〉1−s+νF ′(u)‖r2 ,(2.16)

‖∇INF (u)‖r � ‖∇INu‖r1‖F ′(u)‖r2 + N−1+s−ν‖∇INu‖r1‖〈∇〉1−s+νF ′(u)‖r2 .
(2.17)

Proof. As

∇F (u) = ∇u · F ′(u),

the estimate (2.16) follows immediately from Lemma 2.5 with f := ∇u and g := F ′(u).
The estimate (2.17) is a consequence of (2.16) and the triangle inequality.

Since we work at regularity 0 < s < 1, we will need the following fractional chain
rules to estimate our nonlinearity in Hs

x.
Lemma 2.7 (fractional chain rule for a C1 function). Suppose that F ∈ C1(C),

σ ∈ (0, 1), and 1 < r, r1, r2 < ∞ such that 1
r = 1

r1
+ 1

r2
. Then

‖|∇|σF (u)‖r � ‖F ′(u)‖r1‖|∇|σu‖r2 .

Lemma 2.8 (fractional chain rule for a Lipschitz function). Let F be a Lipschitz
function, σ ∈ (0, 1), and 1 < r < ∞. Then

‖|∇|σF (u)‖r � ‖F ′‖∞‖|∇|σu‖r.

Lemma 2.9 (fractional derivatives for fractional powers). Let F be a Hölder
continuous function of order 0 < α < 1. Then for every 0 < σ < α, 1 < r < ∞, and
σ
α < δ < 1 we have

∥∥|∇|σF (u)
∥∥
r

�
∥∥|u|α−σ

δ

∥∥
r1

∥∥|∇|δu
∥∥σ

δ
σ
δ r2

,(2.18)

provided 1
r = 1

r1
+ 1

r2
and (1 − σ

αδ )r1 > 1.
The first two results originate in [7] and [32]; for a textbook treatment see [35].

The third result can be found in Appendix A of [38]. Using the chain rule esti-
mates in these lemmas, we can upgrade the pointwise-in-time commutator estimate
in Lemma 2.6 to a spacetime estimate.
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Lemma 2.10. Let I be a compact time interval and let 1
1+min{1, 4d}

< s < 1. Then

‖(IN∇u)F ′(u) −∇INF (u)‖
L2

tL
2d

d+2
x (I×Rd)

� N−min{1, 4d}s+‖〈∇〉INu‖1+ 4
d

S0(I),(2.19)

‖〈∇〉INF (u)‖N0(I) � |I| 2sd ‖〈∇〉INu‖1+ 4
d

S0(I) + N−min{1, 4d}s+‖〈∇〉INu‖1+ 4
d

S0(I).(2.20)

Proof. Throughout the proof, all spacetime norms will be taken on the slab
I × R

d.
As by hypothesis s > 1

1+min{1, 4d}
, there exists ε0 > 0 such that for any 0 < ε < ε0

we have s > 1+ε
1+min{1, 4d}

. Let ν := min{1, 4
d}s− (1− s)− ε with 0 < ε < ε0. It is easy

to check that 0 < ν < s. Applying Lemma 2.6 with this value of ν, we get

‖(∇INu)F ′(u)−∇INF (u)‖2, 2d
d+2

� N−min{1, 4d}s+ε‖∇INu‖2, 2d
d−2

‖〈∇〉min{1, 4d}s−εF ′(u)‖∞, d2
.

The claim (2.19) will follow immediately from the estimate above, provided we show

‖〈∇〉min{1, 4d}s−εF ′(u)‖∞, d2
� ‖〈∇〉INu‖

4
d
∞,2.(2.21)

We start by observing that for any (q, r) admissible pair,

‖〈∇〉su‖q,r � ‖〈∇〉INu‖q,r.(2.22)

Indeed, decomposing u := u≤N + u>N and using Lemma 2.4 and the fact that IN is
the identity operator on frequencies |ξ| ≤ N , we get

‖u‖q,r ≤ ‖u≤N‖q,r + ‖u>N‖q,r
� ‖INu≤N‖q,r + N−1‖∇INu>N‖q,r
� ‖〈∇〉INu‖q,r.

Similarly, we estimate

‖|∇|su‖q,r ≤ ‖|∇|su≤N‖q,r + ‖|∇|su>N‖q,r
� ‖|∇|sINu≤N‖q,r + Ns−1‖∇INu‖q,r
� ‖〈∇〉INu‖q,r,

and the estimate (2.22) follows.

As F ′(u) = O(|u| 4d ), by (2.22) we get

‖F ′(u)‖∞, d2
� ‖〈∇〉INu‖

4
d
∞,2.(2.23)

We first prove (2.21) for d ≤ 4. By (2.23), we estimate

‖〈∇〉min{1, 4d}s−εF ′(u)‖∞, d2
= ‖〈∇〉s−εF ′(u)‖∞, d2

� ‖〈∇〉sF ′(u)‖∞, d2

� ‖F ′(u)‖∞, d2
+ ‖|∇|sF ′(u)‖∞, d2

� ‖〈∇〉INu‖
4
d
∞,2 + ‖|∇|sF ′(u)‖∞, d2

.
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Using Lemmas 2.7 (for d = 3) and 2.8 (for d = 4) together with (2.22), we estimate

‖|∇|sF ′(u)‖∞, d2
� ‖|∇|su‖∞,2‖u‖

4
d−1
∞,2 � ‖〈∇〉INu‖

4
d
∞,2.

Thus, (2.21) holds for d ≤ 4.
If d > 4, using Lemma 2.9 (with α := 4

d , σ := 4s
d − ε, and δ := s) and (2.22), we

get

‖|∇|min{1, 4d}s−εF ′(u)‖∞, d2
= ‖|∇| 4sd −εF ′(u)‖∞, d2

� ‖u‖
ε
s
∞,2‖|∇|su‖

4
d−

ε
s

∞,2

� ‖〈∇〉INu‖
4
d
∞,2.

From this and (2.23) we derive (2.21) in the case d > 4. The claim (2.19) follows.
We now consider (2.20). Using (2.5), (2.7), and (2.22), we obtain

‖INF (u)‖N0(I) � ‖F (u)‖γ′,ρ′ � |I| 2sd ‖〈∇〉su‖1+ 4
d

γ,ρ � |I| 2sd ‖〈∇〉INu‖1+ 4
d

γ,ρ .

Similarly, by Hölder and (2.22),

‖(IN∇u)F ′(u)‖N0(I) � ‖(IN∇u)F ′(u)‖γ′,ρ′

� |I| 2sd ‖IN∇u‖γ,ρ‖u‖
4
d
γ,ρ∗

� |I| 2sd ‖IN∇u‖γ,ρ‖〈∇〉su‖
4
d
γ,ρ

� |I| 2sd ‖〈∇〉INu‖1+ 4
d

γ,ρ .

The estimate (2.20) follows from the estimates above, from (2.19), and from the
triangle inequality.

We end this section with the following concentration-compactness lemma.
Lemma 2.11 (concentration-compactness [20]). Let {vn}n≥1 be a bounded se-

quence in H1(Rd) such that

lim sup
n→∞

‖∇vn‖2 ≤ M < ∞

and

lim sup
n→∞

‖vn‖2+ 4
d
≥ m > 0.

Then there exists {xn}n≥1 ⊂ R
d such that, up to a subsequence,

vn(· + xn) ⇀ V weakly in H1
x as n → ∞

with ‖V ‖2 ≥
√

d
d+2

m
2
d

+1

M ‖Q‖2.

3. Local Hs
x theory. In this section, we review the local Hs

x theory for (1.1) as
described in [6].

Proposition 3.1 (local well-posedness in Hs
x [6]). Let 0 < s < 1 and u0 ∈

Hs(Rd). Then (1.1) is well posed on [0, Tlwp] with

Tlwp = C0‖〈∇〉su0‖
− 2

s
2 .
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Moreover, the unique solution u enjoys the following estimate:

‖〈∇〉su‖S0([0,Tlwp]) � ‖〈∇〉su0‖2.

Here, C0 and the implicit constant depend only on dimension d and regularity s.
As a direct consequence of the Hs

x local well-posedness result, we have the follow-
ing lower bound on the blowup rate of the Hs

x-norm.
Corollary 3.2 (blowup criterion [6]). Let 0 < s < 1 and u0 ∈ Hs

x. Assume
that the unique solution u to (1.1) blows up at time 0 < T ∗ < ∞. Then there exists
a constant C depending only on d and s such that

‖u(t)‖Hs
x
≥ C(T ∗ − t)−

s
2 .

As a variation of Proposition 3.1, we have the following.
Proposition 3.3 (“modified” local well-posedness). Let

4
d+1

1+min{1, 4d}+
4
d

< s < 1
and u0 ∈ Hs

x. Let also

N � ‖u0‖
4

min{4,d}s−(4+d)(1−s)−dε

Hs
x

for any ε > 0 sufficiently small,(3.1)

T̃lwp := c0‖〈∇〉INu0‖
− 2

s
2 for a small constant c0 = c0(d, s).(3.2)

Then (1.1) is well posed on [0, T̃lwp], and moreover

‖〈∇〉INu‖S0([0,T̃lwp]) � ‖〈∇〉INu0‖2.(3.3)

Proof. As by Lemma 2.4,

‖u0‖Hs
x

� ‖〈∇〉INu0‖2,

choosing c0 sufficiently small, we get

T̃lwp ≤ Tlwp.

Thus, (1.1) is well posed in Hs
x on [0, T̃lwp]. Let u be the unique solution; by Propo-

sition 3.1 we have

‖〈∇〉su‖S0([0,T̃lwp]) � ‖u0‖Hs
x
.(3.4)

On the other hand, by Strichartz, for any t ≤ T̃lwp we estimate

‖〈∇〉INu‖S0([0,t]) � ‖〈∇〉INu0‖2 + ‖〈∇〉INF (u)‖N0([0,t]).

As by hypothesis, s >
4
d+1

1+min{1, 4d}+
4
d

> 1
1+min{1, 4d}

, by Lemma 2.10 we get

‖〈∇〉INu‖S0([0,t]) � ‖〈∇〉INu0‖2 + t
2s
d ‖〈∇〉INu‖1+ 4

d

S0([0,t])

+ N−min{1, 4d}s+ε‖〈∇〉INu‖1+ 4
d

S0([0,t])(3.5)

for any ε > 0 sufficiently small. For N satisfying (3.1), we use Lemma 2.4 and (3.4)
to estimate
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N−min{1, 4d}s+ε‖〈∇〉INu‖1+ 4
d

S0([0,t])

� N−min{1, 4d}s+εN (1+ 4
d )(1−s)‖〈∇〉su‖1+ 4

d

S0([0,t])

� ‖u0‖
4

min{4,d}s−(4+d)(1−s)−dε
×[−min{1, 4d}s+ε+(1+ 4

d )(1−s)]

Hs
x

‖u0‖
1+ 4

d

Hs
x

� ‖u0‖
− 4

d

Hs
x
‖u0‖

1+ 4
d

Hs
x

� ‖〈∇〉INu0‖2.

Here, we have used the fact that s >
4
d+1

1+min{1, 4d}+
4
d

implies that there exists ε1 > 0

sufficiently small such that for any 0 < ε < ε1 we have s >
4
d+1+ε

1+min{1, 4d}+
4
d

; thus the
power of N in the estimates above is negative for 0 < ε < ε1.

Returning to (3.5), we conclude that

‖〈∇〉INu‖S0([0,t]) � ‖〈∇〉INu0‖2 + t
2s
d ‖〈∇〉INu‖1+ 4

d

S0([0,t]).

Standard arguments yield (3.3), provided

t ≤ T̃lwp = c0(d, s)‖〈∇〉INu0‖
− 2

s
2 .

4. Modified energy increment. The main purpose of this section is to prove
that the modified energy of u, E(INu), grows much slower than the modified kinetic
energy of u, ‖∇INu‖2

2. As will be shown later, this result is crucial in establishing the
main theorems.

Before stating the result, we need to introduce more notation. We define

Λ(t) := sup
0≤τ≤t

‖u(τ)‖Hs
x

and Σ(t) := sup
0≤τ≤t

‖INu(τ)‖H1
x
.

With this notation we have the following.
Proposition 4.1 (increment of the modified energy). Let s0(d) < s < 1 and let

u0 ∈ Hs
x such that the corresponding solution u to (1.1) blows up at time 0 < T ∗ < ∞.

Let 0 < T < T ∗. Then for

N(T ) := CΛ(T )
p(s)

2(1−s) ,(4.1)

we have

|E(IN(T )u(T ))| � Λ(T )p(s).

Here, C and the implicit constant depend only on s, T ∗, and ‖u0‖Hs
x
, and p(s) is

given by

p(s) :=
2(2 + 2

s + 8
d )(1 − s)

min{1, 4
d}s− ( 2

s + 8
d )(1 − s)−

.

Note that by Lemma 2.4, Λ(T ) � Σ(T ). Thus, if the solution blows up at time
T ∗, the modified energy E(IN(T )u(T )) is at most O(Σ(T )p(s)), which is much smaller
than the modified kinetic energy, ‖∇IN(T )u(T )‖2

2 = O(Σ(T )2) for s > s0(d).
We prove Proposition 4.1 in two steps. The first step is to control the increment of

the modified energy of u on intervals of local well-posedness [0, T̃lwp]. The second step
is to divide the interval [0, T ] into finitely many subintervals of local well-posedness,
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control the increment of the modified energy of u on each of these subintervals, and
sum these bounds.

We start with the following.
Lemma 4.2 (local increment of the modified energy). Let

1+ 4
d

1+ 4
d+min{1, 4d}

< s < 1

and let u0 ∈ Hs
x. Assume that N and T̃lwp satisfy (3.1) and (3.2), respectively, that

is,

N � ‖u0‖
4

min{4,d}s−(4+d)(1−s)−
Hs

x
,

T̃lwp := c0‖〈∇〉INu0‖
− 2

s
2 for a small constant c0 = c0(d, s).

Then

sup
t∈[0,T̃lwp]

|E(INu(t))| ≤ |E(INu0)|+CN−min{1, 4d}s+(‖IN 〈∇〉u0‖
2+ 4

d
2 + ‖IN 〈∇〉u0‖

2+ 8
d

2 ).

Here, the constant C depends on s, T ∗, and ‖u0‖Hs
x
.

Proof. Note that by Proposition 3.3, (1.1) is well posed on [0, T̃lwp]. Furthermore,

the unique solution u to (1.1) on [0, T̃lwp] satisfies

‖〈∇〉INu‖S0([0,T̃lwp]) � ‖〈∇〉INu0‖2.(4.2)

Let 0 < t ≤ T̃lwp; throughout the rest of the proof, all spacetime norms will
be taken on [0, t] × R

d. By the fundamental theorem of calculus, we can write the
modified energy increment as

E(INu(t)) − E(INu0) =

∫ t

0

∂

∂s
E(INu(s)) ds

= Re

∫ t

0

∫
Rd

INut(−ΔINu + F (INu)) dx ds.

As INut = iΔINu− iINF (u), we have

Re

∫ t

0

∫
Rd

INut(−ΔINu + INF (u)) dx ds = 0.

Thus, after an integration by parts,

E(INu(t)) − E(INu0) = Re

∫ t

0

∫
Rd

INut[F (INu) − INF (u)] dx ds

= −Im

∫ t

0

∫
Rd

∇INu · ∇[F (INu) − INF (u)] dx ds(4.3)

− Im

∫ t

0

∫
Rd

INF (u) · [F (INu) − INF (u)] dx ds.(4.4)

Consider the contribution from (4.3). By the triangle inequality,

‖∇[F (INu) − INF (u)]‖2, 2d
d+2

� ‖(∇INu)[F ′(INu) − F ′(u)]‖2, 2d
d+2

+ ‖(∇INu)F ′(u) −∇INF (u)‖2, 2d
d+2

.
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By Hölder, (2.1), (2.8), and (2.22), we estimate

‖(∇INu)[F ′(INu) − F ′(u)]‖2, 2d
d+2

� ‖∇INu‖2, 2d
d−2

‖F ′(INu) − F ′(u)‖∞, d2

� ‖〈∇〉INu‖S0([0,t])

∥∥|INu− u|min{1, 4d}(|INu| + |u|) 4
d−min{1, 4d}

∥∥
∞, d2

� ‖〈∇〉INu‖S0([0,t])‖P>Nu‖min{1, 4d}
∞,2 ‖u‖

4
d−min{1, 4d}
∞,2

� N−min{1, 4d}‖〈∇〉INu‖1+ 4
d

S0([0,t]).

Combining this with (2.19), we get

‖∇[F (INu) − INF (u)]‖2, 2d
d+2

� N−min{1, 4d}s+‖〈∇〉INu‖1+ 4
d

S0([0,t]).(4.5)

Therefore

|(4.3)| � ‖∇INu‖2, 2d
d−2

‖∇[F (INu) − INF (u)]‖2, 2d
d+2

� N−min{1, 4d}s+‖〈∇〉INu‖2+ 4
d

S0([0,t]).(4.6)

We turn now toward (4.4). By (4.5) and Sobolev embedding, we estimate

|(4.4)| � ‖∇[F (INu) − INF (u)]‖2, 2d
d+2

‖|∇|−1INF (u)‖2, 2d
d−2

� N−min{1, 4d}s+‖〈∇〉INu‖1+ 4
d

S0([0,t])‖INF (u)‖2,2.(4.7)

To estimate the last factor in (4.7), we drop the operator IN and use Sobolev embed-
ding to obtain

‖INF (u)‖2,2 � ‖u‖1+ 4
d

2(d+4)
d ,

2(d+4)
d

� ‖|∇| d
d+4u‖1+ 4

d
2(d+4)

d ,
2(d+4)
d+2

.

Note that ( 2(d+4)
d , 2(d+4)

d+2 ) is a Schrödinger-admissible pair. Decompose u := u≤N +
u>N . To estimate the low frequencies, we use the fact that IN is the identity on
frequencies |ξ| ≤ N :

‖|∇| d
d+4u≤N‖ 2(d+4)

d ,
2(d+4)
d+2

� ‖〈∇〉INu‖S0([0,t]).

For the high frequencies, we use Lemma 2.4 to get

‖|∇| d
d+4u>N‖ 2(d+4)

d ,
2(d+4)
d+2

� N− 4
d+4 ‖∇INu>N‖S0([0,t]),

provided s > d
d+4 ; this condition is satisfied since by assumption,

s >
1 + 4

d

1 + 4
d + min{1, 4

d}
>

d

d + 4
.

Therefore,

‖INF (u)‖2,2 � ‖〈∇〉INu‖1+ 4
d

S0([0,t]).(4.8)
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By (4.7) and (4.8), we obtain

|(4.4)| � N−min{1, 4d}s+‖〈∇〉INu‖2+ 8
d

S0([0,t]).(4.9)

Collecting (4.2), (4.6), and (4.9), we get

|E(INu(t)) − E(INu0)| � N−min{1, 4d}s+(‖〈∇〉INu0‖
2+ 4

d
2 + ‖〈∇〉INu0‖

2+ 8
d

2 ).

This proves Lemma 4.2.
Next, we use Lemma 4.2 to prove Proposition 4.1.
Let T < T ∗ and Λ(T ) and Σ(T ) be defined as in the beginning of this section.

By Proposition 3.3, if we take{
N(T ) � Λ(T )

4
min{4,d}s−(4+d)(1−s)− ,

δ := c0Σ(T )−
2
s ,

(4.10)

then the solution u satisfies the estimate

‖〈∇〉IN(T )u‖S0([t,t+δ]) � ‖〈∇〉IN(T )u(t)‖2 � Σ(T ),

uniformly in t, provided [t, t+δ] ⊂ [0, T ]. Thus, splitting [0, T ] into O(Tδ ) subintervals
and applying Lemma 4.2 on each of these subintervals, we get

sup
t∈[0,T ]

|E(IN(T )u(t))| � |E(IN(T )u0)| +
T

δ
N(T )−min{1, 4d}s+Σ(T )2+

4
d

+
T

δ
N(T )−min{1, 4d}s+Σ(T )2+

8
d

� |E(IN(T )u0)| + N(T )−min{1, 4d}s+Σ(T )2+
4
d+ 2

s

+ N(T )−min{1, 4d}s+Σ(T )2+
8
d+ 2

s .(4.11)

Using interpolation, Sobolev embedding, and Lemma 2.4, we estimate

|E(IN(T )u0)| � ‖∇INu0‖2
2 + ‖INu0‖

2+ 4
d

2+ 4
d

� N2(1−s)‖u0‖2
Hs

x
+ ‖INu0‖

4
d
2 ‖∇INu0‖2

2

� N2(1−s)
(
‖u0‖2

Hs
x

+ ‖u0‖
2+ 4

d

Hs
x

)
� N2(1−s).(4.12)

Moreover, by Lemma 2.4, we also have

Σ(T ) � N(T )1−sΛ(T ).(4.13)

Substituting (4.12) and (4.13) into (4.11), we obtain

sup
t∈[0,T ]

|E(IN(T )u(t))| � N(T )2(1−s) + N(T )−min{1, 4d}s+(2+ 4
d+ 2

s )(1−s)+Λ(T )2+
4
d+ 2

s

+ N(T )−min{1, 4d}s+(2+ 8
d+ 2

s )(1−s)+Λ(T )2+
8
d+ 2

s .(4.14)

Optimizing (4.14), we observe that if

N(T ) ∼ Λ(T )

2+ 8
d

+ 2
s

min{1, 4
d
}s−(1−s)( 8

d
+ 2

s
)− ,(4.15)
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then N(T ) satisfies the assumption (4.10), and moreover

sup
t∈[0,T ]

|E(IN(T )u(t))| � N(T )2(1−s)

� Λ(T )

2(2+ 8
d

+ 2
s
)(1−s)

min{1, 4
d
}s−(1−s)( 8

d
+ 2

s
)− .

Let

p(s) :=
2(2 + 8

d + 2
s )(1 − s)

min{1, 4
d}s− (1 − s)( 8

d + 2
s )−

.

Then a little work shows that the condition 0 < p(s) < 2 leads to the restriction

s > s0(d).

Thus, for N(T ) defined in (4.15) and s > s0(d), we have 0 < p(s) < 2 and

sup
t∈[0,T ]

|E(IN(T )u)(t)| � Λ(T )p(s).

This proves Proposition 4.1.

5. Proof of Theorem 1.1. In this section, we use Proposition 4.1 together with
Lemma 2.11 to prove Theorem 1.1.

We choose a sequence of times {tn}n≥1, such that tn → T ∗ as n → ∞ and

‖u(tn)‖Hs
x

= Λ(tn).

As the solution u blows up at time T ∗, we must have Λ(tn) → ∞ as n → ∞.
Set

ψn(x) := ρ
d
2
n (IN(tn)u)(tn, ρnx),

where N(tn) is given by (4.1) with T := tn and the parameter ρn is given by

ρn :=
‖∇Q‖2

‖∇IN(tn)u(tn)‖2
.

By Lemma 2.4 and Corollary 3.2, we get

ρn � 1

‖u(tn)‖Hs
x

� (T ∗ − tn)
s
2 .

Basic calculations show that {ψn}n≥1 is a bounded sequence in H1
x. Indeed,

‖ψn‖2 = ‖IN(tn)u(tn)‖2 ≤ ‖u(tn)‖2 = ‖u0‖2,

‖∇ψn‖2 = ρn‖IN(tn)∇u(tn)‖2 = ‖∇Q‖2.(5.1)

By Proposition 4.1 (with T = tn), we can estimate the energy of ψn as follows:

E(ψn) = ρ2
nE(IN(tn)u(tn)) � ρ2

nΛ(tn)p(s) � ‖u(tn)‖p(s)−2
Hs

x
.

Thus, as p(s) < 2 for s > s0(d),

E(ψn) → 0 as n → ∞,
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which by the definition of the energy and (5.1) implies

‖ψn‖
2+ 4

d

2+ 4
d

→ d + 2

d
‖∇Q‖2

2 as n → ∞.(5.2)

Applying Lemma 2.11 to the sequence {ψn}n≥1 (with M := ‖∇Q‖2 and m :=

(d+2
d ‖∇Q‖2

2)
d

2d+4 ), we derive the existence of a sequence {xn}n≥1 ⊂ R
d and of a

function V ∈ H1(Rd) such that ‖V ‖2 ≥ ‖Q‖2 and, up to a subsequence,

ψn(· + xn) ⇀ V weakly in H1
x as n → ∞,

that is,

ρ
d
2
n (IN(tn)u)(tn, ρn · +xn) ⇀ V weakly in H1

x as n → ∞.(5.3)

To prove Theorem 1.1, we have to eliminate the smoothing operator IN(tn) from
(5.3). We do so at the expense of trading the weak convergence in H1

x for convergence
in the sense of distributions. Indeed, for any σ < s we have

‖ρ
d
2
n

(
u(tn) − IN(tn)u(tn)

)
(ρn · +xn)‖Ḣσ

x
= ρσn‖P≥N(tn)u(tn)‖Ḣσ

x

� ρσnN(tn)σ−s‖P≥N(tn)u(tn)‖Ḣs
x

� Λ(tn)−σΛ(tn)
(σ−s)p(s)

2(1−s) ‖P≥N(tn)u(tn)‖Hs
x

� Λ(tn)1−σ+
(σ−s)p(s)

2(1−s) .(5.4)

Plugging the explicit expression for p(s) into the above computation, we find that for

σ < s̃ :=
2d + 8s + s2d(2 − min{1, 4

d})
4d + 16s− s2(dmin{1, 4

d} + 8)
,

the exponent of Λ(tn) in (5.4) is negative. Hence,

‖ρ
d
2
n

(
u(tn) − IN(tn)u(tn)

)
(ρn · +xn)‖H s̃−

x
→ 0 as n → ∞.(5.5)

Combining (5.3) and (5.5) finishes the proof of Theorem 1.1.

6. Proof of Theorem 1.2. By Theorem 1.1, there exists a blowup profile V ∈
H1

x, with ‖V ‖2 ≥ ‖Q‖2, and there exist sequences {tn, ρn, xn}n≥1 ⊂ R+ × R
∗
+ × R

d

such that tn → T ∗,

ρn
(T ∗ − tn)

s
2

� 1 ∀n ≥ 1,(6.1)

and

ρ
d
2
nu(tn, ρn · +xn) ⇀ V weakly as n → ∞.(6.2)

From (6.2) it follows that for any R > 0 we have

lim inf
n→∞

ρdn

∫
|x|≤R

|u(tn, ρnx + xn)|2 ≥
∫
|x|≤R

|V |2dx,
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which, by a change of variables, yields

lim inf
n→∞

sup
y∈Rd

∫
|x−y|≤Rρn

|u(tn, x)|2dx ≥
∫
|x|≤R

|V |2dx.

As by hypothesis (T∗−tn)
s
2

α(tn) → 0 as n → ∞, (6.1) implies that ρn

α(tn) → 0 as n → ∞.

Therefore,

lim inf
n→∞

sup
y∈Rd

∫
|x−y|≤α(tn)

|u(tn, x)|2dx ≥
∫
|x|≤R

|V |2dx.

Letting R → ∞, we obtain

lim inf
n→∞

sup
y∈Rd

∫
|x−y|≤α(tn)

|u(tn, x)|2dx ≥ ‖V ‖2
2.

As ‖V ‖2 ≥ ‖Q‖2, this implies

lim sup
t→T∗

sup
y∈Rd

∫
|x−y|≤α(t)

|u(t, x)|2dx ≥ ‖Q‖2
2.

As for any fixed time t, the map y →
∫
|x−y|≤α(t)

|u(t, x)|2dx is continuous and goes

to zero as y → ∞, and there exists x(t) ∈ R
d such that

sup
y∈Rd

∫
|x−y|≤α(t)

|u(t, x)|2dx =

∫
|x−x(t)|≤α(t)

|u(t, x)|2dx.

This finally implies

lim sup
t→T∗

∫
|x−x(t)|≤α(t)

|u(t, x)|2dx ≥ ‖Q‖2
2,

which proves Theorem 1.2.

7. Proof of Theorem 1.3. In this section, we upgrade Theorem 1.1 to Theo-
rem 1.3 under the additional assumption ‖u0‖2 = ‖Q‖2.

With the notation used in the proof of Theorem 1.1, we have

‖ψn‖2 ≤ ‖u0‖2 = ‖Q‖2 ≤ ‖V ‖2.

On the other hand, using the semicontinuity of weak convergence,

‖V ‖2 ≤ lim inf
n→∞

‖ψn‖2 ≤ ‖Q‖2.

Therefore,

‖V ‖2 = ‖Q‖2 = lim
n→∞

‖ψn‖2.

Thus, as ψn(·+ xn) ⇀ V weakly in L2
x (up to a subsequence which we still denote by

ψn(· + xn)), we conclude that

ψn(· + xn) → V strongly in L2
x.
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Moreover, by the Gagliardo–Nirenberg inequality and the boundedness of {ψn}n≥1

in H1
x, we have

ψn(· + xn) → V in L
2+ 4

d
x .

Combining this with (5.2) and the sharp Gagliardo–Nirenberg inequality, we obtain

‖∇Q‖2 ≤ ‖∇V ‖2.

By the semicontinuity of weak convergence, we also have

‖∇V ‖2 ≤ lim inf
n→∞

‖∇ψn‖2 = ‖∇Q‖2,

and so

‖∇V ‖2 = ‖∇Q‖2 = lim
n→∞

‖∇ψn‖2.

Thus, as ψn(· + xn) ⇀ V in H1
x, we conclude that

ψn(· + xn) → V strongly in H1
x.

In particular, this implies

E(V ) = 0.

Collecting the properties of V , we find

V ∈ H1
x, ‖V ‖2 = ‖Q‖2, ‖∇V ‖2 = ‖∇Q‖2, and E(V ) = 0.

The variational characterization of the ground state [39] implies that

V (x) = eiθQ(x + x0)

for some (eiθ, x0) ∈ (S1 × R
d). Thus,

ρ
d
2
n (IN(tn)u)(tn, ρnx + xn) → eiθQ(x + x0) strongly in H1

x as n → ∞.(7.1)

Theorem 1.3 follows from (5.5) and (7.1).
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INVERSE SOURCE PROBLEMS IN TRANSPORT EQUATIONS∗
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Abstract. This paper proposes an iterative technique to reconstruct the source term in transport
equations, which account for scattering effects, from boundary measurements. In the two-dimensional
setting, the full outgoing distribution in the phase space (position and direction) needs to be mea-
sured. In three space dimensions, we show that measurements for angles that are orthogonal to a
given direction are sufficient. In both cases, the derivation is based on a perturbation of the in-
version of the two-dimensional attenuated Radon transform and requires that (the anisotropic part
of) scattering be sufficiently small. We present an explicit iterative procedure, which converges to
the source term we want to reconstruct. Applications of the inversion procedure include optical
molecular imaging, an increasingly popular medical imaging modality.

Key words. attenuated Radon transform, scattering, optical molecular imaging
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1. Introduction. Optical molecular imaging (OMI) is being increasingly stud-
ied as a powerful detection method in medical imaging. New biochemical markers
are currently being engineered to attach to specific molecules and thus be used to
detect faulty genes and other molecular processes, which precede the development
of certain diseases. This makes possible the detection of such diseases long before
phenotypical symptoms appear. In OMI, the markers are light-emitting molecules,
such as fluorophores or luminophores. Compared to other molecular imaging tech-
niques, such as single photon emission tomography (SPECT) or positron emission
tomography (PET), optical markers emit low-energy near-infrared photons that are
relatively harmless to the human body. Other advantages are their high sensitivity to
oxygen levels, metal ion concentrations, pH, and lipid composition, for instance; see
[31, 32, 40, 41] for recent references in the biomedical literature.

The inverse problem consists of reconstructing the spatial distribution of the
markers from measurements of light intensities at the boundary of the object we wish
to image. Two main types of markers are used in OMI, namely, bioluminescent and
fluorescent markers. In both cases, the propagation in human tissues of the photons
emitted by the markers can quite satisfactorily be modeled as inverse source problems
of time-harmonic and steady-state radiative transfer equations [11, 21, 42]. To simplify
the presentation, we consider only the steady-state problem here, for which relatively
few results exist in the mathematical literature.

Our main result consists in providing an explicit (and converging) iterative tech-
nique to reconstruct the source term from boundary measurements of the photon
intensity in the phase space, i.e., as a function of position and angular direction.
We consider the two-dimensional and the three-dimensional settings. In both cases,
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we have to assume that the anisotropic part of scattering is sufficiently regular and
small (in the sense that a certain operator linear in the anisotropic part of the scat-
tering term must have a norm bounded by one in appropriate spaces). In three
dimensions, we show that measurements of the photon intensity for directions orthog-
onal to an arbitrary given vector are sufficient. Both results are based on perturba-
tions of the Novikov inversion formula to invert the attenuated Radon transform (see
[3, 7, 9, 19, 14, 15, 20, 26, 29, 30] for some references on that problem), and we thus
show that the Novikov inversion formula is stable under perturbations by a scattering
operator. How small scattering has to be in terms of the absorbing and geometric
properties of the domain is somewhat characterized in Corollary 3.7.

Several imaging techniques such as SPECT and PET are based on the inversion
of the Radon transform or the attenuated Radon transform. Because optical markers
emit low-energy light, the photons scatter before they are measured. This renders
the inversion more difficult than in the higher-energy methods SPECT and PET and
necessitates the use of transport equations that account for scattering effects.

For earlier works on the inverse source problem of transport equations based
on different methods, we refer the reader to [2, 22, 33, 35, 37, 1]. A more general
geometric setting than is presented here can be found in [35] (see also [36]), where
particles may travel along the geodesics of a general Riemannian manifold. For a fixed
domain Ω the main assumption in the uniqueness and stability result in [35] imposes
a smallness condition on a, even in the absence of scattering. This constraint is not
needed here.

In this paper, we are interested only in the source reconstruction and assume that
the absorption and scattering coefficients are known; see [4, 5, 6, 12, 18, 23, 24, 38, 39]
for references on the determination of these parameters.

The iterative procedure presented here will not work in the highly scattering
regime (unless that scattering is fully isotropic), in which case the diffusion approxi-
mation should be used [4]. It should be mostly effective in situations where scattering
needs to be accounted for to obtain a desired accuracy in the reconstruction and yet
is not too strong for a method based on a perturbation of a nonscattering inversion
technique to converge. Practically, we expect this situation to arise in OMI in small
domains (on the order of 5–10 mean free paths), such as small animals, and in SPECT
and PET, where moderate scattering is accounted for.

The rest of the paper is organized as follows. Section 2 introduces the inverse
source problem in transport equations and presents our main results. The derivation
of the results is postponed to section 3 for the two-dimensional case and section 4 for
the three-dimensional extension.

2. An inverse source problem. The distribution of photons emitted by the
markers is denoted by f(x), where position x ∈ Ω ⊂ R

d. Here Ω is a bounded open
convex domain and d = 2, 3 is the space dimension. We normalize the light speed to
unity and denote by θ ∈ Sd−1 the direction of the photons. Notice that d = 3 is the
physical model, whereas d = 2 is not physical as photons are allowed to travel only in
a two-dimensional plane.

Let u(x,θ) be the density of photons at position x moving in the direction θ, and
let

Γ± ≡ Γ±(Ω) = {(x,θ) ∈ ∂Ω × Sd−1, ±θ · n(x) > 0}(1)

denote the boundary spaces. Here n(x) is the outward normal to Ω at x ∈ ∂Ω. The
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density of particles satisfies the radiation transfer (transport) equation

θ · ∇xu(x,θ) + a(x)u(x,θ) = Ku(x,θ) + f(x) in Ω × Sd−1,
u(x,θ) = 0 on Γ−,

(2)

where the measure dθ is the usual surface measure on the unit sphere normalized such
that

∫
Sd−1 dθ = 1. Photon interaction with the underlying medium is modeled by an

absorption parameter a(x) and a scattering operator

Ku(x,θ) =

∫
Sd−1

k(x,θ · θ′)u(x,θ′)dθ′,(3)

where k(x, μ) is the scattering coefficient.
Throughout this paper, the absorption a and the scattering k are nonnegative

smooth functions which satisfy the subcritical inequality

a(x) −
∫
Sd−1

k(x,θ · θ′)dθ′ ≥ 0,(4)

pointwise in x ∈ Ω. We assume that the absorption coefficient a ∈ C2(Ω) and it is of
compact support. The smoothness of the scattering coefficient k will be stated in the
theorems. The subcritical assumption (4) defines the forward operator, which maps
the source f to the distribution u and is bounded from L2(Ω) to L2(Ω×Sd−1). Since
Ω is compact, it is shown in [25] that the operator norm of the forward operator is
bounded independently of the scattering kernel k in (4).

Moreover, the outgoing photon distribution, defined as the trace of u(x,θ) on Γ+,
is well defined and belongs to L2

θ·n(Γ+), in the sense that
∫
Γ+

θ ·nu2(x,θ)dσ(x)dθ <

∞, where dσ is the surface measure on ∂Ω. For additional references on the mathe-
matical theory of the transport equation (2), see, for instance, [10, 13, 25].

We remark that for the inverse problem under consideration, the fact that a has
compact support is not an essential restriction. Indeed, we can extend a to a larger
domain Ω̃ ⊃ Ω by preserving its C2 smoothness and such that it vanishes near the
boundary. The scattering is extended by zero outside Ω. Now we can consider the
boundary value problem in the larger domain Ω̃. The operator norm of the forward
operator may increase, but its bound is still independent of the scattering coefficient
on Ω. Since scattering vanishes on Ω̃\Ω, the values of the transport solution at the
boundary of the extended domain Ω̃ on Γ±(Ω̃) can easily be related to the values of
the transport solution at the boundary of the initial domain Ω on Γ±(Ω) by a bijective
transformation.

It is convenient in the analysis to have unbounded spatial domains. We extended
f(x), k(x, μ), and a(x) by 0 on R

d\Ω. The transport equation is now recast as

θ · ∇xu(x,θ) + a(x)u(x,θ) = Ku(x,θ) + f(x) in R
d × Sd−1,

lim
t→∞

u(x − tθ,θ) = 0 on R
d × Sd−1.(5)

The restriction of the above solution on Ω × Sd−1 solves (2).
Our main results are that in dimension d = 2, knowledge of

m(s,θ) = lim
t→∞

u(tθ + sθ⊥,θ)(6)

on R × S1, with u the unique solution of (5), uniquely determines f(x) compactly
supported on the bounded domain Ω provided that the scattering kernel k(x, μ) is
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sufficiently small. Moreover, the reconstruction is explicit, in the sense that f(x) is
obtained as the limit of a converging Neumann series expansion. Note that u(tθ +
sθ⊥,θ) is independent of t for t sufficiently large.

In three dimensions, d = 3, the above result generalizes as follows. Let an arbi-
trary vector in R

3 be given, which after possible rotation of Ω we denote by ez. For
θ = (cos θ, sin θ, 0), we define θ⊥ = (− sin θ, cos θ, 0). Then knowledge of

m(z, s, θ) = lim
t→∞

u(tθ + sθ⊥ + zez,θ)(7)

for (z, s, θ) ∈ R × R × (0, 2π) uniquely determines f(x) compactly supported on the
bounded domain Ω. This result also requires that k(x, μ) be sufficiently small in
an appropriate sense and the reconstruction is explicit in the sense mentioned above.
This implies that the outgoing measurements are known only for directions orthogonal
to ez. Note that in both cases, the problem is formally determined since both the
measurements as well as the unknown source term are d-dimensional.

To state the regularity and smallness assumption of the scattering, we introduce
the following notation. When d = 2, we identify k(x,θ · θ′) = k(x, cos(θ − θ′)) =
k̃(x, θ − θ′) and define the Fourier coefficients kn(x) by

kn(x) =
1

2π

∫ 2π

0

k̃(x, θ)e−inθdθ.(8)

By k̂n(ξ), we mean its Fourier transform k̂n(ξ) =
∫

R2 e
−iξ·xkn(x)dx.

When d = 3, we use the Legendre polynomials expansion in L2[−1, 1]:

k(x, t) =

∞∑
n=0

kn(x)Pn(t).(9)

By k̂n(ξ′, z), we mean the restricted Fourier transform to the horizontal plane k̂n(ξ, z) =∫
R2 e

−ix′·ξ′
kn(x′, z)dx′. For θ = (cos θ sinφ, sin θ sinφ, cosφ) ∈ S2, 0 ≤ θ < 2π,

0 ≤ φ < π, let

Ynm(θ) = C1/2
nmeimθPm

n (cosφ)(10)

denote the spherical harmonics on the sphere S2. Here, Pm
n are the associated Legen-

dre polynomials and Cnm = (2n + 1)(n−m)!/(n + m)!; see [17] for details. We need
only to consider horizontal directions

θ ∈ S2
H = {θ ∈ S2 : θ · ez = 0}.(11)

We are ready to formulate our main results, whose proof is postponed to the following
sections. The decay uses the usual notation 〈n〉 = (1 + |n|2)1/2.

Theorem 2.1 (two-dimensional case). Let f(x) ∈ L2(R2) be a source term of
compact support in Ω and a ∈ C2

0 (Ω) an absorption coefficient of compact support.
Then there exists ε > 0 depending on the size of the support and on the smoothness
of a such that, for a scattering coefficient k with

max
n∈Z

〈n〉α‖k̂n‖2
L1(R2) < ε(12)

for some α > 1, the measurements m(s, θ) in (6) uniquely determine the source term
f(x). Moreover, the source term f(x) can be obtained as the limit of the explicit
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convergent Neumann series in (44) below; see also Remark 3.12. A more explicit
expression for ε in (12) can be found in Corollary 3.7 below.

Theorem 2.2 (three-dimensional case). Let f(x) ∈ L2(R3) be a source term of
compact support and a ∈ C2

0 (Ω) an absorption coefficient of compact support. Then
there exists an ε > 0 depending on the size of the support and on the smoothness of a
such that, for a scattering kernel k with

max
n∈N

(
〈n〉α−1 max

|m|≤n
max
θ∈S2

H

|Ynm(θ)|2
∫

R

‖k̂n(·, z)‖2
L1(R2)dz

)
≤ ε(13)

for some α > 1, the measurements m(z, s, θ) in (7) uniquely determine the source term
f(x). Moreover, the source term f(x) can be obtained as the limit of the convergent
Neumann series expansion in (66) below.

Note that each theorem requires smallness as well as (weak) smoothness on the
scattering kernel k. That k is not arbitrary is already apparent in the existence theory
for the forward problem, where we have assumed (4). The L1-norm in the Fourier
variables implies continuity of the scattering in the horizontal plane. The Sobolev-
type decay property implies smoothness in the angular variable. For instance, α > 2
in (12) already implies continuity of k in θ. The size of ε depends on the (operator)
norm of the operator NK introduced below and is not explicit. This restriction is
the price to pay to obtain a reconstruction as a perturbation of the inversion of the
attenuated Radon transform, where there is no scattering.

Let us conclude this section by noting, as was mentioned in the introduction, that
only the anisotropic part of the scattering need be small.

Corollary 2.3. The results stated in Theorems 2.1 and 2.2 are still valid when
(12) and (13), respectively, hold only for n = 0.

Proof. Indeed, let us decompose K = K0+K1, where K0u(x) = k0(x)
∫
Sd−1 u(x,θ′)

·dθ′ is the isotropic part of K, and K1 = K −K0 the anisotropic part. We define the
source term

F (x) = f(x) + K0u(x),(14)

where u(x,θ) is the solution to (5). We then verify that the following equation also
holds:

θ · ∇xu(x,θ) + a(x)u(x,θ) = K1u(x,θ) + F (x) in R
d × Sd−1,

lim
t→∞

u(x − tθ,θ) = 0 on R
d × Sd−1.(15)

We can then apply Theorem 2.1 or 2.2, depending on dimension d, based on the
smallness assumptions on K1, and conclude that F (x) can be reconstructed from the
boundary measurements. Once F (x) is known, we can solve for u in (15) and thus
calculate K0u(x). It remains to identify f(x) = F (x)−K0u(x) to conclude the proof
of the corollary.

3. Derivation in two space dimensions. This section is devoted to the deriva-
tion of the inversion procedure in two space dimensions and on the proof of Theorem
2.1. For any unit vector θ ∈ S1, we introduce the representation θ = (cos θ, sin θ) for
0 ≤ θ < 2π and identify any function f(θ) ≡ f(θ).

We define the classical beam transform S and the symmetrized beam transform
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D (independently of the spatial dimension d) as

Sa(x,θ) =

∫ 0

−∞
a(x + sθ)ds,(16)

Da(x,θ) =
1

2

(∫ 0

−∞
a(x + sθ)ds−

∫ ∞

0

a(x + sθ)ds
)
.(17)

Since a(x) ∈ C2
0 (Ω) then Da(x, θ) and (eDa)(x, θ) are well defined C2-smooth func-

tions. Notice that eDa is an integrating factor for (5) (since (θ · ∇)eDa = aeDa) and
so it is more convenient to consider the equation for

w(x, θ) = (eDau)(x, θ).(18)

Next we multiply (5) by the integrating factor eDa and integrate in the direction of
θ to see that w solves the equivalent integral equation [13, 25]

w(x, θ) = SeDaKe−Daw(x, θ) + SeDaf(x, θ).(19)

Under the subcritical assumption (4) the equation above is uniquely solvable [25]
and the operator

T := [I − SeDaKe−Da]−1SeDa(20)

is bounded from L2(Ω) to L2(R2×S1). Moreover, the operator norm can be bounded
independently of the scattering operator K provided that (4) holds; see [25] for the
details.

We have then

w(x, θ) = Tf(x, θ) = SeDaf + SeDaKe−DaTf.(21)

Let us introduce the operator L acting on functions w(x, θ) as

Lw(s, θ) = lim
t→∞

w(tθ + sθ⊥, θ).(22)

The product LS is the usual Radon transform

Rf(s, θ) = LSf(s, θ).(23)

It is convenient to work with slightly modified measurements. Let us introduce

g(s, θ) = Lw(s, θ) = lim
t→∞

(eDau)(tθ + sθ⊥, θ) = e
1
2Ra(s, θ)m(s, θ),(24)

where m(s, θ) was defined in (6). Since a is known, then so are the new “measure-
ments” g(s, θ).

Let us finally introduce the attenuated X-ray transform operator

Raf(s, θ) = LSeDaf(s, θ).(25)

Applying L to (19), we deduce that the measurements g(s, θ) are given by

g(s, θ) = Raf(s, θ) + ReDaKe−DaTf(s, θ).(26)
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An inversion for Ra was recently obtained in [29]; see also [3, 7, 9, 19, 26, 30] for
recent works on the attenuated X-ray transform. We define the inversion operator
N , acting on functions g(s, θ) defined on R × S1, by

Ng(x) =
1

4π

∫ 2π

0

θ⊥ ·∇x(R∗
−a,θHag)(x, θ)dθ,(27)

where

R∗
a,θg(x) = eDθa(x)g(x·θ⊥),

Ha = CcHCc + CsHCs, Hu(t) =
1

π

∫
R

u(s)

t− s
ds,

Ccg(s, θ) = g(s, θ) cos

(
HRa(s, θ)

2

)
, Csg(s, θ) = g(s, θ) sin

(
HRa(s, θ)

2

)
.

(28)

The integral in the Hilbert transform H, which acts in Cc and in Cs on the s variable,
has to be understood in the principal value sense. Note that Ha = H in the absence
of absorption (a ≡ 0) and that the above formula then becomes the usual inversion
of the Radon transform [27].

We thus formally apply the operator N to (26) and obtain the equation for f(x):

Ng(x) = f(x) + NReDaKe−DaTf(x).(29)

Let χ(x) be a cut-off function supported on Ω and such that χ ≡ 1 on the support
of f . The equation above is recast as

χ(x)Ng(x) = f(x) + χNReDaKe−DaTf(x) =: (I −NK)f(x),(30)

where we have introduced the operator NK = −χNReDaKe−DaT . This equation is
of Fredholm type since K has a smoothing property which makes Ke−DaT : L2(Ω) ↪→
L2(Ω×Sd−1) compact; see [25]. We do not use the compactness property in Theorems
2.1 and 2.2. Our reconstruction results are based on a smallness assumption on NK .
Note, however, that, more generally, our results show that the source term f(x) can
be reconstructed from the measured data provided that 1 is not an eigenvalue of the
compact operator NK .

The proof of Theorem 2.1 is based on the following result.
Theorem 3.1. The operator NK defined above is bounded from L2(Ω) to L2(Ω).
We study first the mapping properties of the scattering operator K. For this we

introduce the functional spaces

L2̂(R2;C0(S1)) =
{
u(x,θ) s.t. û(ξ,θ) ∈ L2(R2;C0(S1))

}
,(31)

L2̂(Ω;C0(S1)) =
{
u ∈ L2̂(R2;C0(S1)) s.t. supp u(·, θ) ⊆ Ω

}
,(32)

endowed with the norm

‖u‖2
2̂,∞ = ‖û‖2

L2(R2;C0(S1)) =

∫
R2

max
θ∈S1

|û(ξ,θ)|2dξ.

Since K is a convolution in the angular variable, it is decomposed as

Ku(x,θ) =
∞∑

n=−∞
kn(x)un(x)einθ.(33)



64 GUILLAUME BAL AND ALEXANDRU TAMASAN

Lemma 3.2. Assume that supp k(·, θ) ⊂ Ω and that maxn∈Z〈n〉α‖kn‖2
L1(R2) < C

for some α > 1. Then the operator K maps L2(R2 × S1) to L2̂(Ω;C0(S1)).

Proof. Taking the Fourier transform in the space variable in (33), we get

|K̂u(ξ,θ)|2 =

∣∣∣∣∣
∞∑
−∞

(k̂n ∗ ûn)(ξ)einθ

∣∣∣∣∣
2

≤
( ∞∑

−∞

∣∣∣k̂n ∗ ûn

∣∣∣ (ξ)
)2

≤
( ∞∑

−∞

1

〈n〉α

)( ∞∑
−∞

〈n〉α|k̂n ∗ ûn|2(ξ)
)
.

Now we take the maximum over θ ∈ S1 on both sides and integrate in ξ ∈ R
2 to get

‖Ku‖2
L2̂(R2;C0(S1))

≤
( ∞∑

−∞

1

〈n〉α

) ∞∑
−∞

〈n〉α‖k̂n ∗ ûn‖2
L2(R2)

≤
( ∞∑

−∞

1

〈n〉α

) ∞∑
−∞

〈n〉α‖k̂n‖2
L1(R2)‖ûn‖2

L2(R2)

≤
( ∞∑

−∞

1

〈n〉α

)
max
n∈N

〈n〉α‖k̂n‖2
L1(R2)

∞∑
−∞

‖ûn‖2
L2(R2)

≤ C

( ∞∑
−∞

1

〈n〉α

)
‖u‖2

L2(R2×S1).

Lemma 3.3. Let h : R
2 × S1 → R be a smooth map such that∫

R2

max
θ

|ĥ(ξ,θ)|dξ < ∞.

Then the operator Mh of multiplication by h is bounded from L2̂(Ω;C0(S1)) to itself.

Proof.

‖Mhf‖2
2̂,∞ = ‖hf‖2

2̂,∞ =

∫
R2

max
θ∈S1

|ĥf |2(ξ,θ)dξ =

∫
R2

max
θ∈S1

|ĥ ∗ξ f̂ |2(ξ, θ)dξ

≤
∥∥∥∥max

θ∈S1
|ĥ| ∗ max

θ∈S1
|f̂ |

∥∥∥∥
2

L2

≤
∥∥∥∥max

θ∈S1
|ĥ|

∥∥∥∥
2

L1

‖f‖2
2̂,∞.(34)

Recall that, when acting on maps f(x,θ), R denotes the Radon transform in
x ∈ R

2. The following smoothing property holds.

Lemma 3.4. The operator R : L2̂,∞(Ω×S1) → H1/2(R;L2(S1)) is bounded; more
precisely, ∫

S1

∫
R

∣∣∣R̂g(ρ, θ)
∣∣∣2 (1 + |ρ|)dρdθ ≤ (4π|Ω|2 + 3)‖g‖2

2̂,∞,

where |Ω| denotes the volume of Ω.

Proof. Notice first that the Fourier slice theorem R̂g(ρ, θ) = ĝ(ρθ⊥, θ) holds. On
the right-hand side the Fourier transform is taken with respect to the space variable
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only. The following inequalities hold:

∫ 2π

0

∫ ∞

0

∣∣∣R̂g(ρ, θ)
∣∣∣2 ρdρdθ =

∫ 2π

0

∫ ∞

0

∣∣∣ĝ(ρθ⊥, θ)
∣∣∣2 ρdρdθ

≤
∫ 2π

0

∫ ∞

0

max
ν∈S1

∣∣∣ĝ(ρθ⊥, ν)
∣∣∣2 ρdρdθ = ‖g‖2

2̂,∞,

∫ 2π

0

∫ 0

−∞

∣∣∣R̂g(ρ, θ)
∣∣∣2 |ρ|dρdθ =

∫ 2π

0

∫ ∞

0

∣∣∣ĝ(−ρθ⊥, θ)
∣∣∣2 ρdρdθ

≤
∫ 2π

0

∫ ∞

0

max
ν∈S1

∣∣∣ĝ(−ρθ⊥, ν)
∣∣∣2 ρdρdθ = ‖g‖2

2̂,∞.

We also have

∫ 2π

0

∫ ∞

0

|R̂g(ρ, θ)|2dρdθ ≤
∫ 2π

0

∫ 1

0

|ĝ(ρθ⊥, θ)|2dρdθ +

∫ 2π

0

∫ ∞

0

|R̂g(ρ, θ)|2ρdρdθ

and

∫ 2π

0

∫ 1

0

|ĝ(ρθ⊥, θ)|2dρdθ ≤
∫ 2π

0

∫ 1

0

max
ν∈S1

|ĝ(ρθ⊥, ν)|2dρdθ ≤ 2π max
|ξ|≤1

|ĝ(ξ, ν0)|2,

where to simplify notation we have defined

|ĝ(ξ, ν0)| = max
ν∈S1

|ĝ(ξ, ν)|.

Let {χn(x)}n≥1 be a sequence of smooth cut-off functions equal to 1 on Ω, the support
of g, and equal to 0 at x such that d(x,Ω) > n−1; and let χn(x; ξ) = eix·ξχn(x). Then
we verify that

ĝ(ξ, ν0) =

∫
R2

e−ix·ξχn(x)g(x, ν0)dx =

∫
R2

χn(x; ξ)g(x, ν0)dx =

∫
R2

χ̂n(η; ξ)ĝ(η, ν0)dη,

from which we deduce the following bound:

|ĝ(ξ, ν0)| ≤ inf
n

||χ̂n(·; ξ)||L2 ||ĝ(·, ν0)||L2 = inf
n

||χn||L2‖g‖2̂,∞ ≤ |Ω|‖g‖2̂,∞.(35)

Similarly, we have

∫ 2π

0

∫ 0

−∞
|R̂g(ρ, θ)|2dρdθ ≤ 2π|Ω|2‖g‖2

2̂,∞ +

∫ 2π

0

∫ 0

−∞
|R̂g(ρ, θ)|2|ρ|dρdθ.

This concludes the proof of the lemma.

Lemma 3.5. Let f ∈ H1/2(R;L2(S1)) and φ(x, θ) be a smooth function such that

∫
R2

max
ν∈S1

|φ̂(ξ; ν)|2(1 + |ξ|2)dξ < ∞.(36)

Then the map (x, θ) → φ(x, θ)f(x · θ⊥,θ) is in H1/2(R2;L2(S1)).
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Proof. We have the following sequence of inequalities:

∫ 2π

0

∫
R2

(1 + |ξ|2) 1
2 |φ̂f(ξ, θ)|2dξdθ

=

∫ 2π

0

∫
R2

(1 + |ξ|2) 1
2

∣∣∣∣
∫

R

φ̂(ξ · θ, t; θ)f̂(ξ · θ⊥ − t, θ)dt

∣∣∣∣
2

dξdθ

≤
∫ 2π

0

{∫
R

[∫
R2

(1 + |ξ|2) 1
2 |φ̂(ξ1, t; θ)|2|f̂(ξ2 − t; θ)|2dξ1dξ2

] 1
2

dt

}2

dθ

≤
∫ 2π

0

{∫
R

[∫
R2

(1 + |ξ1|2)
1
2 (1 + |ξ2|2)

1
2 |φ̂(ξ1, t; θ)|2|f̂(ξ2 − t; θ)|2dξ1dξ2

] 1
2

dt

}2

dθ

=

∫ 2π

0

{∫
R

(1 + t2)
1
4

[ ∫
R2

(1 + |ξ1|2)
1
2 |φ̂(ξ1, t; θ)|2

(
1 + |ξ2 + t|2

1 + |t|2

) 1
2

·|f̂(ξ2; θ)|2dξ1dξ2
] 1

2

dt

}2

dθ

≤
∫ 2π

0

{∫
R

(1 + t2)
1
4

[ ∫
R2

(1 + |ξ1|2)
1
2 |φ̂(ξ1, t; θ)|2(1 + |ξ2|2)

1
2

·|f̂(ξ2; θ)|2dξ1dξ2
] 1

2

dt

}2

dθ

=

∫ 2π

0

∫
R

(1 + |ξ2|2)
1
2 |f̂(ξ2; θ)|2dξ2

{∫
R

(1 + t2)
1
4

·
[∫

R

(1 + |ξ1|2)
1
2 |φ̂(ξ1, t; θ)|2dξ1

] 1
2

dt

}2

dθ

≤
∫ 2π

0

(∫
R

(1 + |ξ2|2)
1
2 |f̂(ξ2; θ)|2dξ2

∫
R2

(1 + t2)
1
2 (1 + |ξ1|2)

1
2 max
ν∈S1

|φ̂(ξ1, t; ν)|2dtξ1
)
dθ

≤
∫ 2π

0

∫
R

(1 + |ξ2|2)
1
2 |f̂(ξ2; θ)|2dξ2dθ

∫
R2

(1 + |ξ|2) max
ν∈S1

|φ̂(ξ; ν)|2dξ,

where we have used the Minkowsky and Cauchy inequalities. From the second line
onward, we have used the θ dependent coordinates ξ1 = ξ · θ and ξ2 = ξ · θ⊥.

Recall that χ(x) defined before (29) is a smooth cut-off function supported in Ω.
To simplify notation, let

f1(x, θ) = eDa(x, θ)trig(HRa(x · θ⊥, θ)/2),

f2(s, θ) = trig(HRa(s, θ)/2),

f3(x, θ) = χ(x)(θ⊥ · ∇x)f1(x, θ)

be smooth functions depending on the attenuation a only, where trig stands for either
sin or cos. The composition operator χNR becomes

χNRw(x) =
χ(x)

4π

∫ 2π

0

θ⊥ ·∇
(
f1(x, θ)H[f2(s, θ)R[w](s, θ)](x·θ⊥, θ)

)
dθ,
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where the above is understood as a sum over the values that the functions trig can
take in f1 and f2. We now follow ideas from [6], though we need to derive some of the
estimates in the Fourier domain to characterize the norm of the operator. Let φn(x),
n = 1, 2, . . . , be an orthonormal basis of L2(Ω) and let

χ(x)f1(x, θ) =

∞∑
n=1

αn(θ)φn(x), αn(θ) =

∫
Ω

χ(x)f1(x, θ)φn(x)dx.(37)

Proposition 3.6. The composition operator χNR maps L2̂(Ω;C0(S1)) to L2(Ω).
Moreover, we have the more explicit characterization

‖χNRw‖L2 ≤ ‖w‖2̂,∞

∫
R2

max
θ

|êDa(ξ,θ)|dξ
[ ∫

R2

max
ν∈S1

|f̂3(ξ; ν)|2(1 + |ξ|2)dξ(38)

+2

( ∞∑
n=1

max
ν∈S1

|αn(ν)|2
) 1

2 ∫ ∞

−∞
|f̂2(s, ν0)|(2 + 4π|Ω|s2)ds

]
.

Proof. Using Lemma 3.4 we obtain that Rw ∈ H1/2(R;L2(S1)). Since a ∈ C2
0 (Ω)

it is easy to check that χ(x)(θ⊥ ·∇xf1(x, θ)) satisfies the smoothness condition (36).
From Lemma 3.5 we get that the map

(x, θ) → χ(x)
(
θ⊥ ·∇xf1(x, θ)

)
H[f2(s, θ)R[w](s, θ)](x·θ⊥, θ)

is in H1/2(R2;L2(S1)).
Next we show that the operator M defined by

Mw(x) =

∫ 2π

0

χ(x)f1(x, θ)
(
θ⊥ ·∇x

)
H[f2(s, θ)R(w)(s, θ)](x·θ⊥, θ)dθ

is bounded from L2̂(Ω;C0(S1)) in L2(Ω). We have∥∥∥∥∥
∫ 2π

0

∞∑
n=1

αn(θ)φn(x)(θ⊥ · ∇)H(f2Rw(s, θ))(x · θ⊥, θ)dθ

∥∥∥∥∥
2

L2
x

=

∞∑
n=1

〈
φn;

∫ 2π

0

αn(θ)(θ⊥ · ∇)H(f2Rw(s, θ)(x · θ⊥, θ))dθ

〉2

L2
x

≤
∞∑

n=1

∥∥∥∥
∫ 2π

0

αn(θ)(θ⊥ · ∇)H(f2Rw(s, θ))(x · θ⊥, θ)dθ

∥∥∥∥
2

L2
x

≤
∞∑

n=1

∥∥∥∥Fx→ξ

{∫ 2π

0

αn(θ)(θ⊥ · ∇)H(f2Rw(s, θ))(x · θ⊥, θ)dθ

}
(ξ)

∥∥∥∥
2

L2
ξ

=

∞∑
n=1

∥∥∥αn(ξ−)f̂2Rw(−|ξ|, ξ−) + αn(ξ+)f̂2Rw(|ξ|, ξ+)
∥∥∥2

L2
ξ

≤
( ∞∑

n=1

max
ν∈S1

|αn(ν)|2
)(

‖f̂2Rw(−|ξ|, ξ−)‖2
L2

ξ
+ ‖f̂2Rw(|ξ|, ξ+)‖2

L2
ξ

)
.

In the above expressions, Fx→ξ represents the two-dimensional Fourier transform in
the x variable, while ·̂ represents the one-dimensional Fourier transform. The angles
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ξ± are defined by ξ·θ = 0. The estimate above uses the fact that, for any f ∈ H1/2(R),

Fx→ξ[θ
⊥ · ∇Hf(x · θ⊥)] = f̂(ξ · θ⊥)δ(θ · ξ

|ξ| ); see [7, pp. 413, 415] for the details. By

the Fourier slice theorem we verify that

f̂2Rw(|ξ|, ξ+) =

∫
R

f̂2(|ξ| − s, ξ+)ŵ

(
s
ξ

|ξ| , ξ+
)
ds.

Let us now define ν0 and ν1 as the values of the angles where maxν∈S1 |f̂2(ρ, ν)| and
maxν∈S1 |ŵ(ρ, ν)| are achieved, respectively. We compute{∫

R2

|f̂2Rw(|ξ|, ξ+)|2dξ
} 1

2

=

{∫ 2π

0

∫ ∞

0

|f̂2Rw(r,−θ⊥)|2rdrdθ
} 1

2

(39)

=

{∫ 2π

0

∫ ∞

0

∣∣∣∣
∫

R

f̂2(s,−θ⊥)ŵ((r − s)θ,−θ⊥)|ds
∣∣∣∣
2

rdrdθ

} 1
2

≤
{∫ 2π

0

∫ ∞

0

(∫
R

max
ν∈S1

|f̂2(s, ν)|max
ν∈S1

|ŵ((r − s)θ, ν)|ds
)2

rdrdθ

} 1
2

=

{∫ 2π

0

∫ ∞

0

(∫
R

|f̂2(s, ν0)||ŵ((r − s)θ, ν1)|ds
)2

rdrdθ

} 1
2

≤
∫

R

{∫ 2π

0

∫ ∞

0

|f̂2(s, ν0)|2|ŵ((r − s)θ, ν1)|2rdrdθ
} 1

2

ds

=

∫
R

|f̂2(s, ν0)|
{∫ 2π

0

∫ ∞

0

|ŵ((r − s)θ, ν1)|2rdrdθ
} 1

2

ds.

We evaluate the last term by splitting the integral
∫∞
0

(. . . )ds +
∫ 0

−∞(. . . )ds. To
estimate ∫ ∞

0

|f̂2(s, ν0)|
{∫ 2π

0

∫ ∞

0

|ŵ((r − s)θ, ν1)|2rdrdθ
} 1

2

ds,

we further split the inner integral into
∫ 2s

0
(. . . )drdθ +

∫∞
2s

(. . . )drdθ. We obtain that∫ 2π

0

∫ ∞

2s

|ŵ((r − s)θ, ν1)|2rdrdθ ≤ 2

∫ 2π

0

∫ ∞

2s

|ŵ((r − s)θ, ν1)|2(r − s)drdθ

= 2

∫
|ξ|≥s

|ŵ(ξ, ν1)|2dξ,

and ∫ 2π

0

∫ 2s

0

|ŵ((r − s)θ, ν1)|2rdrdθ =

∫ 2π

0

∫ s

−s

|ŵ(tθ, ν1)|2(t + s)dtdθ

= 2

∫
|ξ|≤s

|ŵ(ξ, ν1)|2dξ + 2s

∫ 2π

0

∫ s

0

|ŵ(tθ, ν1)|2dtdθ

≤ 2

∫
|ξ|≤s

|ŵ(ξ, ν1)|2dξ + 4πs2 max
|ξ|≤s

|ŵ(ξ, ν1)|2

≤ 2

∫
|ξ|≤s

|ŵ(ξ, ν1)|2dξ + 4πs2|Ω|‖ŵ(ξ, ν1)‖2
L2

ξ
.
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The last inequality uses in a crucial way the estimate (35) and the fact that w is
compactly supported. We have obtained so far that

∫ ∞

0

|f̂2(s, ν0)|
{∫ 2π

0

∫ ∞

0

|ŵ((r − s)θ, ν1)|2rdrdθ
} 1

2

ds

≤ ‖w‖2̂,∞

∫ ∞

0

|f̂2(s, ν0)(2 + 4π|Ω|s2)ds.

The other contribution is handled similarly:

∫ 0

−∞
|f̂2(s, ν0)|

{∫ 2π

0

∫ ∞

0

|ŵ((r − s)θ, ν1)|2rdrdθ
} 1

2

ds

=

∫ ∞

0

|f̂2(−s, ν0)|
{∫ 2π

0

∫ ∞

0

|ŵ((r + s)θ, ν1)|2rdrdθ
} 1

2

ds

≤
∫ ∞

0

|f̂2(−s, ν0)|
{∫ 2π

0

∫ ∞

0

|ŵ((r + s)θ, ν1)|2(r + s)drdθ

} 1
2

ds

= ‖w‖2̂,∞

∫ ∞

0

|f̂2(−s, ν0)|ds = ‖w‖2̂,∞

∫ 0

−∞
|f̂2(s, ν0)|ds.

Combined with the estimate in (39), we have obtained that

{∫
R2

|f̂2Rw|(|ξ|, ξ+)|2dξ
} 1

2

≤ ‖w‖2̂,∞

∫ ∞

−∞
|f̂2(s, ν0)|(2 + 4π|Ω|s2)ds.(40)

A similar calculation shows that

{∫
R2

|f̂2Rw(−|ξ|, ξ−)|2dξ
} 1

2

≤ ‖w‖2̂,∞

∫ ∞

−∞
|f̂2(s, ν0)|(2 + 4π|Ω|s2)ds.(41)

In summary, we have obtained the following estimate for the operator M :

‖Mw‖L2 ≤ 2‖w‖2̂,∞

( ∞∑
n=1

max
ν∈S1

|αn(ν)|2
) 1

2 ∫ ∞

−∞
|f̂2(s, ν0)|(2 + 4π|Ω|s2)ds.(42)

This concludes the proof of the proposition.

Note that N has range in L2
loc(R

2) and not necessarily in L2(R2). This is where
the assumption of the compactness of the support of the source term f(x), which is
natural in practice, comes into play. The above estimate shows the role played by the
size of the support of the source term.

The proof of Theorem 3.1 follows from the preceding lemmas and proposition. As
we have seen, T maps L2(R2) to L2(R2), and let |||T |||L2→L2 denote its operator norm.
The preceding calculations allow us to obtain the following more explicit version of
Theorem 3.1.

Corollary 3.7. Assume that K is such that maxn〈n〉α/2‖k̂n‖L1(R2) ≤ Cα for
some α > 1. Then the operator norm |||NK |||L2→L2 is bounded by the following
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expression:[∫
R2

max
ν∈S1

|f̂3(ξ; ν)|2(1 + |ξ|2)dξ(43)

+ 2

( ∞∑
n=1

max
ν∈S1

|αn(ν)|2
) 1

2 ∫ ∞

−∞
|f̂2(s, ν0)|(2 + 4π|Ω|s2)ds

]

× Cα

( ∞∑
−∞

1

〈n〉α

) 1
2 (∫

R2

max
θ

|êDa(ξ,θ)|dξ
)
‖e−Da‖L∞(R2×S1)|||T |||L2→L2 .

From [25] we know that the operator norm |‖T‖| can be bounded independently
of the scattering k. Since all the other terms in (43) are independent of k, for Cα

small enough, the operator norm of NK is bounded by a constant less than one. This
proves the first part of Theorem 2.1. Note that the constraint on the norm of NK

is only sufficient to solve (30) and by no means necessary. Reconstructions based on
(30) thus have a larger domain of validity than what we consider in Theorem 2.1. The
reconstruction procedure is based on the fact that the Neumann series

f(x) =
∞∑

n=0

Nn
KNg(x)(44)

converges in L2(Ω) to the solution f(x). This provides us with an explicit reconstruc-
tion formula to recover f(x) from the measurements

m(s, θ) = e−
1
2Ra(s, θ)g(s, θ)

and concludes the proof of Theorem 2.1. Let us conclude this section with a few
remarks.

Remark 3.8. The measurements m(s, θ) for s ∈ R and 0 ≤ θ < 2π are redundant.
Indeed in the case a ≡ 0 and k ≡ 0, the measurements satisfy m(s, θ) = m(−s, θ+π) so
that the source term can be reconstructed from knowledge of m(s, θ) on Z = R×(0, π).
When a = 0, such a redundancy still exists, although it is harder to characterize.
Under certain smallness assumptions on a(x), an explicit procedure to reconstruct
the source term from m on Z when k = 0 was proposed in [7] and implemented in [8].
That measurements on Z suffice to determine the source term was recently obtained in
[34]; see also [28] in the case of constant absorption. The explicit procedure proposed
in [7] can be extended to the case of scattering kernels so that, provided that k is
sufficiently small, the source term is uniquely determined by m(s, θ) on Z.

Remark 3.9. We could have considered more general scattering kernels of the form
k(x,θ,θ′) so long as the smoothing of the scattering kernel K imposed in Lemma
3.2 still holds. The description of this smoothing effect in terms of the scattering
coefficients is simplified for kernels of the form k(x,θ · θ′). However, this is the
only place where the specific structure of the kernel has been used (except for the
subcriticality condition (4), which should hold with k(x,θ · θ′) replaced by both
k(x,θ,θ′) and k(x,θ′,θ); see [13]).

Remark 3.10. The smoothing effect of the scattering kernel described in Lemma
3.2 is rendered necessary (at least some sort of smoothing is) by the behavior of
the Radon transform and the inversion operator N . Although NR maps functions
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in L2(Ω) to functions in L2(Ω) (since the operator NR is then identity), this is no
longer the case for functions in L2(Ω × S1) that depend nontrivially on θ. We need

to map functions from the smaller space L2̂(R2;C0(S1)), which is made possible by
the regularizing effect of K.

Remark 3.11. Under appropriate assumptions on the scattering kernel K, (29)
is indeed of Fredholm type as the operator NK can be shown to be compact. Indeed
NR is a bounded operator, whereas the operator KT (as well as Ke−DaT for smooth
absorption a(x)) can be shown to be compact under general assumptions. We refer the
reader to [25] for such results and to [16] for connected results on averaging lemmas.

Remark 3.12. The reconstruction of the source term can be obtained by the
following iterative scheme. We consider the setting of Corollary 2.3. Let g(s, θ) =
eRa/2m(s, θ) be the measurements. We initialize the algorithm as

F (0)(x) = Ng(x).(45)

Provided that F (k)(x) is known, we solve for u(k) in

θ · ∇xu
(k)(x, θ) + a(x)u(k)(x, θ) = K1u

(k)(x, θ) + F (k)(x) in R
2 × S1,

lim
t→∞

u(k)(x − tθ, θ) = 0 on R
2 × S1.(46)

We next solve for v(k)(x, θ) in

θ · ∇xv
(k)(x, θ) + a(x)v(k)(x, θ) = K1u

(k)(x, θ) in R
2 × S1,

lim
t→∞

v(k)(x − tθ, θ) = 0 on R
2 × S1.(47)

We then compute the new data

g(k)(s, θ) = eRa/2Rav
(k)(s, θ).(48)

Finally, we set the new source term

F (k+1)(x) = N(g − g(k))(x).(49)

We verify that F (k)(x) converges to F (x) = K0u(x) + f(x) in L2(Ω) as the above
algorithm is equivalent to the Neumann series expansion (44). We then solve for
u(x, θ) and reconstruct the source term f(x) = F (x) −K0u(x).

4. Derivation in three space dimensions. The derivation in the three-
dimensional case is very similar to that of the preceding section. The main obser-
vation is that the inversion of the X-ray transform can be performed “slice by slice,”
i.e., “z by z,” using outgoing information for angles perpendicular to ez only. The
inversion with scattering coefficient is again considered as a perturbation of the in-
version of the X-ray transform. Mathematically, the main novelty compared to the
two-dimensional case is that we need to control the number of photons scattered into
the directions orthogonal to ez.

Upon defining w(x,θ) = (eDau)(x,θ), we still obtain that

w(x,θ) = SeDaKe−Daw(x,θ) + SeDaf(x,θ).(50)

We define now the trace operator P onto the horizontal directions S2
H defined in (11).

More precisely, P takes functions on Ω × S2 onto a function on Ω × S2
H as follows.

For θ = (cos θ sinφ, sin θ sinφ, cosφ),

P [w(x,θ)] = w(x, (cos θ, sin θ, 0)).(51)
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For θ ∈ S2
H , we define the orthogonal vector θ⊥ = (− sin θ, cos θ, 0) and the transversal

X-ray transform

Rf(z, s, θ) = LSf(z, s, θ),(52)

where the trace operator at infinity is defined by

Lw(z, s, θ) = lim
t→∞

w(tθ + sθ⊥ + zez,θ).(53)

Finally, the transversal attenuated X-ray transform is defined by

Raf(z, s, θ) = ReDaf(z, s, θ).(54)

Note that

R = LS = LPS = LSP = RP, and PeDa = (PeDa)P,

so that the rescaled measurements are given by

g(z, s, θ) = e
1
2Ra(z, s, θ)m(z, s, θ) = Raf(z, s, θ) + ReDaPKe−DaTf(z, s, θ).(55)

Now the operator Raf(z, s, θ) can be inverted at each fixed z by using the Novikov
formula. Namely, for x = (x′, z), we define

N3g(x) = N [g(z, ·, ·)](x′),(56)

by applying the two-dimensional operator N to (s, θ) → g(s, θ, z) for each z ∈ R.
We verify that N3Ra = Id on functions of x ∈ R

3. As in the two-dimensional case,
however, N3Ra is no longer identity when applied to functions that depend on the
variable θ. Thus formally applying the operator N3 to (55), we obtain that

N3g(x) = f(x) + N3ReDaPKe−DaTf(x) = (I −NK)f(x),(57)

where now NK = −N3ReDaPKe−DaT . The results of section 3 extend as follows.
Proposition 4.1. The operator NK defined above is bounded from L2(Ω) to

L2(Ω).
Similarly to the planar case, let û(ξ′, z, θ) =

∫
R2 e

−ix′·ξ′
u(x′, z, θ)dx′ denote the

Fourier transform in the first two components of the spatial variable only. We work
with the functional space

L2̂(R2
x′ × Rz;C

0(S1)) =
{
u(x′, z, θ) s.t. û(ξ′, z, θ) ∈ L2(R2

ξ′ × Rz;C
0(S1))

}
,(58)

where L2(R2
ξ′ × Rz;C

0(S1)) is endowed with the norm

‖û‖2
L2(R2

ξ′×Rz ;C0(S1)) =

∫
R3

max
θ∈S1

|û(ξ′, z, θ)|2dξ′dz.

The proposition is based on the following lemmas.
Lemma 4.2. Consider the decomposition of k(x, ·) ∈ L2[−1, 1] in Legendre poly-

nomials

k(x, t) =

∞∑
n=0

kn(x)Pn(t),(59)



INVERSE SOURCE PROBLEMS IN TRANSPORT EQUATIONS 73

and assume that, for some α > 1,

max
n∈N

(
〈n〉α−1 max

|m|≤n
max
θ∈S2

z

|Ynm(θ)|2
∫

R

‖k̂n(·, z)‖2
L1(R2)dz

)
≤ C.(60)

Then the operator PK maps L2(R3 × S2) to L2̂(R2
x′ × Rz;C

0(S1)).
Proof. Using the summation formula Pn(θ · θ′) = 1

2n+1

∑n
m=−n Ynm(θ)Y ∗

nm(θ′)
(see [17], for instance), we get the following decomposition of the scattering operator:

Ku(x,θ) =

∫
S2

k(x,θ · θ′)u(x,θ′)dθ′ =

∞∑
n=0

n∑
m=−n

1

2n + 1
kn(x)unm(x)Ynm(θ),(61)

where

unm(x) =

∫
S2

u(x,θ′)Ynm(θ′)dθ′.(62)

The Plancherel identity for the spherical harmonics gives

‖u‖2
L2(R3×S2) =

∞∑
n=0

n∑
m=−n

‖unm‖2
L2(R3).(63)

In what follows we consider θ ∈ S2
H , i.e., only horizontal directions. To simplify the

notation, we denote

βn = max
|m|≤n

max
θ∈S2

H

|Ynm(θ)| .(64)

Taking the Fourier transform with respect to the horizontal variables in (61), we
obtain

|K̂u(ξ, z,θ)|2 =

∣∣∣∣∣
∞∑

n=0

n∑
m=−n

1

2n + 1
(k̂n ∗ξ ûnm)(ξ, z)Ynm(θ)

∣∣∣∣∣
2

≤
( ∞∑

n=0

n∑
m=−n

βn

2n + 1

∣∣∣(k̂n ∗ ûnm)(ξ, z)
∣∣∣
)2

≤
( ∞∑

n=0

n∑
m=−n

1

〈n〉α(2n + 1)

)( ∞∑
n=0

n∑
m=−n

〈n〉αβ2
n

2n + 1

∣∣∣(k̂n ∗ ûnm)(ξ, z)
∣∣∣2
)
.

We now take the maximum in θ ∈ S2
z and then integrate in ξ ∈ R

2. We deduce that

∫
R2

max
θ∈S2

z

|K̂u(ξ, z,θ)|2dξ ≤
( ∞∑

n=0

1

〈n〉α

)( ∞∑
n=0

n∑
m=−n

β2
n〈n〉α

2n + 1
‖k̂n ∗ ûnm(·, z)‖2

L2(R2)

)

≤
( ∞∑

n=0

1

〈n〉α

)( ∞∑
n=0

n∑
m=−n

β2
n〈n〉α

2n + 1
‖k̂n(·, z)‖2

L1(R2)‖ûnm(·, z)‖2
L2(R2)

)

≤
(

max
n∈N

β2
n〈n〉α

2n + 1
‖k̂n(·, z)‖2

L1(R2)

)( ∞∑
n=0

1

〈n〉α

)( ∞∑
n=0

n∑
m=−n

‖ûnm(·, z)‖2
L2(R2)

)
.
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It remains to integrate in z ∈ R to obtain that

||Ku||2
L2̂(R2

x′×Rz ;C0(S1))
≤
(

max
n∈N

β2
n〈n〉α

2n + 1

∫
R

‖k̂n(·, z)‖2
L1(R2)dz

)

·
( ∞∑

n=0

1

〈n〉α

)
||u||2L2(R3×S2).

This concludes the proof of the lemma.
Lemma 4.3. The operator N3R maps L2̂(R2

x′ × Rz;C
0(S1)) to L2(Ω).

Proof. This is a direct consequence of Lemma 3.6:

‖N3Rf‖2
L2(Ω) =

∫
R

∫
R2

|N3Rf(x′, z)|2 dx′dz =

∫
R

∫
R2

|[NRf(·, ·, z)](x′)|2 dx′dz

≤ C

∫
R

dz

{∫
R2

max
θ∈S2

z

∣∣∣f̂(ξ,θ, z)
∣∣∣2 dξ} = ‖f‖2

L2̂(R2
x′×Rz ;C0(S1))

.(65)

The rest of the proof of Theorem 2.2 is similar to that of Theorem 2.1. Provided
that scattering is sufficiently small, the Neumann series expansion

f(x) =

∞∑
n=0

Nn
KN3g(x)(66)

converges in L2(Ω) strongly to the solution f(x).
The remarks at the end of section 3 still hold in the three-dimensional setting.

The main difference between the two-dimensional and three-dimensional theories is
that the scattering operator is required to be more regularizing in three dimensions
than in two dimensions. This is so because the three-dimensional reconstruction is
based on measurements of the outgoing distribution for directions that are orthogonal
to the vertical axis ez. The influence of the geometry on the norm of NK could be
characterized in the three-dimensional setting as we have done for the two-dimensional
setting in Corollary 3.7, although we shall not do so here.
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INTERACTION OF A BULK AND A SURFACE ENERGY WITH A
GEOMETRICAL CONSTRAINT∗

ANTONIN CHAMBOLLE† AND MARGHERITA SOLCI‡

Abstract. This study is an attempt to generalize in dimension higher than two the mathematical
results in [E. Bonnetier and A. Chambolle, SIAM J. Appl. Math., 62 (2002), pp. 1093–1121]. It is the
study of a physical system whose equilibrium is the result of a competition between an elastic energy
inside a domain and a surface tension, proportional to the perimeter of the domain. The domain is
constrained to remain a subgraph. It is shown by Bonnetier and Chambolle that several phenomena
appear at various scales as a result of this competition. In this paper, we focus on establishing a sound
mathematical framework for this problem in a higher dimension. We also provide an approximation,
based on a phase-field representation of the domain.

Key words. epitaxial growth, surface tension, phase-field approximation, diffuse interface,
Γ-convergence

AMS subject classifications. 49J45, 74N20

DOI. 10.1137/060649173

1. Introduction. In this paper, we seek to extend to a higher dimension the
results of Bonnetier and Chambolle in [9]. There, the authors modelize the physical
system which consists of a thin film of atoms deposited on a substrate, made of a
different crystal. Such systems are common in the engineering of devices such as
electronic chips, which are obtained by growing epitaxial films on flat surfaces.

In such a situation, the misfit between the crystalline lattices of the substrate and
the film induces strains in the film. To release the elastic energy due to these strains,
the atoms of the free surface of the film may diffuse and a reorganization occurs in
the film. The result of this mechanism is a competition between the surface energy
of the crystal and the bulk elastic energy. The former is roughly proportional to the
free surface of the crystal and therefore favors flat configurations. The bulk energy,
on the contrary, is best released if oscillatory patterns develop. We refer to [9] and
the former study [11] for a more complete explanation of the phenomenon and for
references on “stress driven rearrangement instabilities” and epitaxial growth.

Here, we restrict our study to the mathematical model which is proposed in [9]
in dimension two. We extend to a higher dimension the relaxation result (implicitly
contained in Lemma 2.1 and Theorem 2.2 in [9]) and show the correctness of the
phase-field approximation, extending [9, Thm. 3.1]. Observe, however, that in that
paper the bulk energy is a linearized elasticity energy that involves the symmetrized
gradient of the displacement. It seems that up to now, the theory of “special bounded
deformation” functions [6, 8] is not developed well enough to make possible the gen-
eralization of our results to that case so that we only work with W 1,p-coercive bulk
energies. Alternatively, we could have decided to impose an additional (artificial) L∞

constraint to the displacements, in which case the extension to linearized elasticity
energies would have been relatively easy (see, for instance, [16]).

∗Received by the editors January 5, 2006; accepted for publication (in revised form) October 30,
2006; published electronically April 13, 2007.

http://www.siam.org/journals/sima/39-1/64917.html
†CMAP, Ecole Polytechnique, CNRS, 91128 Palaiseau, France (antonin.chambolle@

polytechnique.fr).
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x

y

z

Fig. 1. Example of an “island.”

Numerical experiments conducted by Jouve and Bonnetier [10] show that the
phase-field energy introduced in section 5, in dimension three, yields results similar
to the two-dimensional (2D) plots in [9]. See Figure 1 which shows how an island is
formed, as a result of the competition between the surface energy and the strains in
the material. Here the stretch (the lattice misfit) along the x-direction is stronger
than in the y-direction, explaining the shape of the island. (In this example, the bulk
energy is a linearized elasticity energy.)

To be precise, we consider in this paper a displacement in a material domain which
is the subgraph of an unknown nonnegative function h. Assuming h is defined on an
open Lipschitz set ω ⊂ R

N−1, the displacement u will be defined on the subgraph
Ωh := {x = (x′, xN ) ∈ ω × (0,+∞) : xN < h(x′)} of h. We will consider energies of
the form

F (u, h) =

∫
Ωh

W (∇u) dx +

∫
ω

√
1 + |∇h|2 dx′,

where u sastisfies a prescribed boundary condition on the boundary ω × {0}. In this
paper, ω will be the (N − 1)-dimensional torus and the boundary condition of u on
“∂ω” will be of periodic type, as in [9] (however, adaption to other situations will not
be difficult as long as ∂ω is Lipschitz).

The goal of our paper is to show that the relaxed functional of F can be written

F (u, h) =

∫
Ωh

W (∇u) dx + HN−1(∂∗Ωh) + 2HN−1(Σ),

where Σ, the “internal” discontinuity set of u “inside” the subgraph Ωh of h (which
is now a function of bounded variation (BV )), will be a “vertical” rectifiable set so
that Ωh ∪ Σ can be viewed as a generalized subgraph.

In an article written almost simultaneously by Braides and the authors of the
present paper [13], a similar problem is studied, without the constraint that the
domain is the subgraph of a function. Although this may seem more general, showing
that “recovery” sequences can be built, so that F is not only a lower bound but also an
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upper bound for the l.s.c. envelope of F , is considerably more difficult in our setting,
since the sequence which is found must satisfy the constraint, and therefore has to
be built in a constructive way (and not using some general existence result). This
construction follows the discretization/reinterpolation technique introduced in [15,
16]. On the other hand, the lower bound in this work is almost a straightforward
consequence of [13].

Finally, the last section in this paper deals with the phase-field approximation of
F , using the same approach as in [9].

2. Setting of the problem and statement of the result.

2.1. Functions of bounded variation. We start by recalling some definitions
and results, useful in this paper, concerning functions of bounded variation; for this
topic, we refer essentially to [7].

Let Ω be an open subset of R
N . Given u ∈ L1(Ω), its total variation is defined as

sup

{∫
Ω

u divψ dx : ψ ∈ C∞
c (Ω; RN ), |ψ(x)| ≤ 1 ∀x ∈ Ω

}
.

One may check that it is finite if and only if the distributional derivative Du of u is
a bounded Radon measure in Ω. In this case, the total variation of u is equal to the
total variation of the measure Du and is classically denoted by |Du|(Ω).

At each x ∈ Ω, one can define upper and lower values of u as follows: The upper
value is

u+x(u+(x)) = inf

{
t ∈ [−∞,+∞] : lim sup

ρ→0

|{y ∈ Ω : u(y) > t}| ∩Bρ(x)

|Bρ(x)| = 0

}
,

where Bρ(x) is the ball of radius ρ centered at x. The lower value is simply −(−u)+.
Defining the “jump set” of u as Su := {x ∈ Ω : u−(x) < u+(x)}, one can show that
if u ∈ BV (Ω), Su is a (HN−1, N − 1)-rectifiable set (in the sense of Federer [19]) so
that it admits a normal νu(x) at HN−1-a.e. x ∈ Su, and Du decomposes as

Du = ∇u(x) dx + (u+(x) − u−(x))νu(x) dHN−1 Su(x) + Dcu,

where Dcu, the “Cantor part,” is singular with respect to the Lebesgue measure and
vanishes on any set with finite (N − 1)-dimensional Hausdorff measure. The Radon–
Nikodym derivative of Du with respect to the Lebesgue measure dx, denoted by
∇u(x), is a.e. the “approximate gradient” of u at x; see [7]. Of course, if u ∈ W 1,1(Ω),
it coincides with the weak gradient.

Up to now, we have considered real-valued functions. If u : Ω → R
d is vector-

valued, Su will be the union of the jump sets of the d components of u. One shows,
then, that when two of these jump sets intersect, the corresponding normals coincide
HN−1-everywhere in the intersection up to a change of sign. The jump part of the
derivative Du is given by (u+−u−)⊗νu dHN−1 Su, where now u+ and u− are not the
“upper” and “lower” values (since there is no natural order in R

d) but the orientation
depends on the choice of the direction of the normal νu (the triple (u−, u+, νu) being
equivalent to (u+, u−,−νu)).

The space SBV (Ω) is defined as the subset of BV (Ω) of functions u such that
Dcu = 0, that is, Du is absolutely continuous with respect to dx + HN−1 Su.
Then, for p > 1, we say that a function u : Ω → R belongs to the space SBVp(Ω) if
u ∈ SBV (Ω), ∇u ∈ Lp(Ω; RN ), and HN−1(Su) < +∞.
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We say that a function u ∈ L1(Ω) is a generalized function of bounded varia-
tion (u ∈ GBV (Ω)) if uT := (−T ) ∨ u ∧ T belongs to BV (Ω) for every T ≥ 0.
If u ∈ GBV (Ω), setting Su =

⋃
T>0 SuT , a truncation argument allows to define the

traces u−(x) and u+(x) for a.e. x ∈ Su. Defining, for u ∈ GBV (Ω), the Cantor part of
the derivative as |Dcu| = supT>0 |DcuT |, we say that a function u in GBV (Ω) belongs
to GSBV (Ω) if |Dcu| = 0, and moreover u in GSBV (Ω) belongs to GSBVp(Ω) for
p > 1 if ∇u ∈ Lp(Ω; RN ) and HN−1(Su) < +∞.

The following compactness result for SBV is proven in [3, 5] (see also [7, Thm.
4.8]).

Theorem 2.1 (compactness in SBV ). Let (un)n ⊂ SBV (Ω) satisfy

sup
n

{∫
Ω

|∇un|p dx + HN−1(Sun)
}

< +∞,

with un uniformly bounded in L∞(Ω). Then, there exist a subsequence (unk
)k and

u ∈ SBVp(Ω) such that unk
→ u a.e. in Ω, ∇unk

⇀ ∇u in Lp(Ω; RN ), and

HN−1(Su) ≤ lim inf
k→∞

HN−1(Sunk
) .

If un is bounded only in L1(Ω), one shows easily by truncation that the results
still hold, with u ∈ GSBVp(Ω).

2.2. Subgraphs of finite perimeter. In this paper, to simplify, ω is the torus
(R/Z)N−1; however, the extension of our results to the case of a Lipschitz bounded
open subset of R

N−1 does not raise any difficulties. A generic point x ∈ ω×R will be
denoted by (x′, xN ), x′ = (x1, . . . , xN−1) ∈ ω, xN ∈ R. For h : ω → R+ measurable,
we consider

Ωh = {x ∈ ω × (−1,+∞) : xN < h(x′)} and

Ω+
h = {x ∈ ω × (0,+∞) : xN < h(x′)} = Ωh ∩ (ω × (0,+∞)) .

If h ∈ BV (ω; R+), the set Ωh has a finite perimeter in the sense of Caccioppoli
in ω × (−1,+∞) (that is, |DχΩh

|(ω × (−1,+∞)) ≤ |ω| + |Dh|(ω) < +∞, so that
χΩh

∈ BV (ω × (−1,+∞))). At each point ξ ∈ ω one can define the upper and lower
values h+(ξ) and h−(ξ) as in the previous section. As before, it is known that h+ = h−
a.e. in ω and the set of points where h− < h+, called the jump set of h, is denoted by
Sh. Then, if x = (x′, xN ) ∈ ω × (−1,+∞), xN < h−(x′) ⇒ x ∈ Ω1

h (the set of points
where Ωh has Lebesgue density 1), xN > h+(x′) ⇒ x ∈ Ω0

h (the set of points where
it has density 0), and ∂∗Ωh = ω × (−1,+∞) \ (Ω0

h ∪ Ω1
h), the measure-theoretical

boundary is a subset of (and HN−1-a.e. equal to)
⋃

ξ∈ω{ξ} × [h−(ξ), h+(ξ)]. It is

known that the measure-theoretical boundary is HN−1-a.e. equal to a subset ∂∗Ωh

called the “reduced boundary” of De Giorgi, which contains only points x where the
blowups (Ωh − x)/ρ converge as ρ → 0 (in L1

loc(R
N )) to a half-space of outer normal

νΩh
(x) (hence, Ωh has density exactly 1/2 at x).
Let us emphasize the fact that the boundaries ∂Ωf , ∂∗Ωh will always, in this

paper, be intended as boundaries inside ω × (−1,+∞), that is, they do not contain
ω × {−1}.

2.3. The relaxation result. Let W : Md×N → [0,+∞), with d ≥ 1, be a
continuous and quasi-convex function satisfying a p-growth condition. Let u0 ∈
W 1,p(ω × (−1, 0); Rd).
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For h ∈ C1(ω; [0,+∞)) and u ∈ W 1,p(Ω+
h ; Rd), with u = u0 in ω × {0}, we set

F (u, h) =

∫
Ω+

h

W (∇u) dx +

∫
ω

√
1 + |∇h|2 dx′;

clearly, the same definition can be given for u ∈ L1(ω × (0,+∞); Rd) such that the
restriction to Ω+

h satisfies the previous properties. Moreover, we define F (u, h) = +∞
otherwise in L1(ω × (0,+∞); Rd) ×BV (ω; [0,+∞)).

It is clear that equivalently one can write that u ∈ W 1,p(Ωh; Rd), with u = u0 in
ω × (−1, 0).

The main result of this paper is the proof of the following relaxation result for
the functional F , here written in the case d = 1 (for the general case, see the fourth
remark in section 2.4).

Theorem 2.2. The l.s.c. envelope of the functional F , with respect to the
L1(ω × (0,+∞)) × L1(ω) topology, is the functional F : L1(ω × (0,+∞)) × L1(ω) →
[0,+∞] defined as

F (u, h) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
Ω+

h

W (∇u) dx + HN−1(∂∗Ωh) + 2HN−1(S′
u ∩ Ω1

h)

if h ∈ BV (ω; [0,+∞)) and uχΩ+
h
∈ GSBV (ω × (0,+∞)),

+∞ otherwise,

where

S′
u = {(x′, xN + t) : x ∈ Su , t ≥ 0} .

Observe that, denoting Σ = S′
u ∩Ω1

h, Σ is a “vertical” rectifiable set, and we will
sometimes write Γ = ∂∗Ωh ∪ Σ, the “generalized” interface.

The proof of Theorem 2.2 will be given by showing a lower and an upper bound,
respectively, in section 3 (Proposition 3.1) and in section 4 (Proposition 4.1); the
thesis of Theorem 2.2 immediately follows from these results.

2.4. Some remarks.
1. In [13], a similar result is shown with mainly two differences, which both

follow from the constraint that the set where u is defined is a subgraph: In the lim inf
inequality, we have to keep track of the vertical parts of the boundary (S′

u) that might
not be in the jump set of u (that is, one might have (S′

u \Su)∩Ω1
h �= ∅). In the lim sup

inequality, one needs to build a recovery sequence which remains a subgraph, leading
to a much more complex proof than in [13].

2. In [9], one also considers the case where the surface tension for the substrate (of
boundary ω×{0}), σS , can be different from the surface tension σC of the crystal (of
boundary ∂Ωh ∩ (ω × (0,+∞)) if h is smooth). In this case, two different phenomena
occur, depending on the fact that σS ≤ σC or σC < σS . In the latter case, it is always
energetically convenient to cover (or “wet”) all the surface of the substrate with an
infinitesimal layer of crystal, so that the global surface tension in the relaxed energy
is σC . In case σS is less than σC , then parts of the substrate might remain uncovered
by the crystal, and the surface energy in the relaxed functional will be given by

σC(HN−1(∂∗Ωh ∩ (ω × (0,+∞))) + 2HN−1(S′
u ∩ Ω1

h))

+ σSHN−1({x′ ∈ ω : h(x′) = 0}) .

We do not prove this result here; we fear it would make the paper harder to read,
mostly because of the notation. See also Remark 4.4.
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3. Still in [9], the (2D) functional F is minimized with an additional volume
constraint (

∫
ω
h dx = 1). It is easy to show that the relaxed functional F does not

change under this constraint—see Remark 4.2 below.
4. In what follows, we will assume that d = 1, u is scalar, and hence W is convex.

In the vectorial case, one has to assume that W is a continuous, quasi-convex function
of ∇u with growth p (that is, bounded from below and above by functions of the form
a + b|∇u|p, with b > 0). Then, the lower bound (Proposition 3.1) remains the same
thanks to results of semicontinuity for quasi-convex integrands, due to Ambrosio [4] in
the SBV case (see also [7]), and to Kristensen [23] in the general case). The proof of
the upper bound (Proposition 4.1, in which W does not appear) can be written with
a scalar or vectorial u without any change. Then, its generalization to the Lagrangian
W follows from the continuity and p-growth assumptions, as in the scalar case.

5. In [9] and the problem mentioned in the introduction, it is not u but u − x1

which is 1-periodic in the first variable. Here, to simplify, everything is written with
u ∈ GSBVp(ω × (−1,+∞)); that is, u is periodic in the (N − 1) first directions (we
recall ω is the (N−1)-dimensional torus). Adapting the results to extend them to the
case where, for instance, u − α(x1, 0, . . . , 0) ∈ GSBVp(ω × (−1,+∞)), α > 0, would
not be difficult.

3. A lower bound for the relaxed envelope of F . In this section we obtain
a lower bound for the relaxed functional F by proving the following proposition.

Proposition 3.1. For every sequence (un, hn) ∈ W 1,p(Ωhn
) × C1(ω; [0,+∞)),

with un = u0 in ω × (−1, 0), such that

sup
n

F (un, hn) < +∞,

there exist h ∈ BV (ω; [0,+∞)) and u ∈ GSBV (ω × (0,+∞)) (with u = 0 out of Ωh)
such that χΩhn

un → u in L1(ω × (0,+∞)), hn → h in L1(ω),

(1)

∫
Ω+

h

|∇u(x)|p dx ≤ lim inf
n→∞

∫
Ω+

hn

|∇un(x)|p dx ,

and

(2) HN−1(∂∗Ωh) + 2HN−1(S′
u ∩ Ω1

h) ≤ lim inf
n→∞

∫
ω

√
1 + |∇hn(x′)|2 dx′ .

This proposition implies immediately the lower bound for the relaxed envelope of
F, that is, the first part of the proof of Theorem 2.2. Indeed, we obtain in the proof
that the sequence (un)n converges in fact weakly in the W 1,p-topology, and since the
function W is l.s.c. and convex, with growth p, the functional G(u) =

∫
Ω+

h
W (∇u) dx

is weakly l.s.c. in W 1,p; then, in the same hypothesis, we get the inequality

(3)

∫
Ω+

h

W (∇u(x)) dx + HN−1(∂∗Ωh) + 2HN−1(S′
u ∩ Ω1

h)

≤ lim inf
n→∞

∫
Ω+

hn

W (∇un(x)) dx +

∫
ω

√
1 + |∇hn(x′)|2 dx′ .

Let us consider a sequence (un, hn) such that

sup
n≥1

F (un, hn) < +∞ ;
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we show that, up to a subsequence, un → u in L1(ω × (0,+∞)) and hn → h in L1(ω),
with

(4) F (u, h) ≤ lim inf
n→∞

F (un, hn).

To prove the lower inequality, it is sufficient to consider sequences (un, hn) with
hn ∈ C∞(ω; [0,+∞)) and un ∈ W 1,p(Ω+

hn
), and un = u0 on ω × {0}; however, this

compactness property, as well as inequality (4), will still hold if we just assume that
hn ∈ W 1,1(ω) and un ∈ SBVp(ω × (−1,+∞)) with un = u0 in ω× (−1, 0), un(x) = 0
a.e. in {xN > hn(x′)}, and Su⊂̃∂∗Ωhn

(where A⊂̃B means HN−1(A \B) = 0).
Let us consider first the compactness and l.s.c. of the jump term, and for this we

will use a special notion of convergence for a jump set of SBVp functions.

3.1. Jump set convegence. The following notion of jump set convergence is
introduced by Dal Maso, Francfort, and Toader [18, Def. 4.1] and [17, Def. 3.1]. It is
called “σp-convergence.” A variant, which is independent on the exponent p > 1, has
been introduced more recently by Giacomini and Ponsiglione; see [21].

In what follows, we denote equality and inclusion up to a HN−1-negligible set by
the symbols =̃ and ⊂̃, respectively.

Definition 3.2. Let Ω be an open set in R
N , and let p ∈ (1,+∞). We say that a

sequence (Γn)n∈N of subsets of Ω σp-converges to Γ if and only if supn∈N
HN−1(Γn) <

+∞ and
(i) for any sequence (vn)n of functions in SBVp(Ω), with Svn

⊂̃Γn, if the subse-
quence vnk

goes to v weakly in SBVp(Ω) as k → ∞ then Sv⊂̃Γ;
(ii) there exists a function v ∈ SBVp(Ω) and sequence (vn)n of functions in

SBVp(Ω) converging to v such that Svn⊂̃Γn for each n and Sv = Γ.
The following compactness theorem is proven in [18, Thm. 4.7]
Theorem 3.3. Every sequence Γn ⊂ Ω, with HN−1(Γn) uniformly bounded, has

a σp-convergent subsequence.
The proof of this theorem is based on the following lemma (cf. [18, Lem. 4.5]).
Lemma 3.4. Let (vi)

∞
i=1 be a sequence in SBVp(Ω) ∩ L∞(Ω), and let us assume

HN−1(
⋃∞

i=1 Svi
) < +∞. Then there exist real numbers ci > 0 with

∑∞
i=1 ci < +∞

such that v :=
∑∞

i=1 civi ∈ SBVp(Ω) ∩ L∞(Ω) and Sv=̃
⋃∞

i=1 Svi
.

Let us mention the following variant of the proof of Theorem 3.3, still based on
Lemma 3.4: Given Γ ⊂ Ω, we introduce

X(Γ) =

{
v ∈ SBVp(Ω; [−1, 1]) : Sv⊂̃Γ ,

∫
Ω

|∇v|p dx ≤ 1

}
.

Then, if HN−1(Γ) < +∞, by Ambrosio’s compactness theorem, Theorem 2.1, X(Γ)
is compact in L1

loc(Ω) (which is metrizable). If (Γn)n is a sequence of jump sets with
L = supn HN−1(Γn) < +∞, then the sets X(Γn) all belong to

XL =

{
v ∈ SBVp(Ω; [−1, 1]) : HN−1(Sv) ≤ L,

∫
Ω

|∇v|p dx ≤ 1

}

which is also compact in L1
loc(Ω). Hence, a subsequence (X(Γnk

))k converges in the
Hausdorff sense (with the Hausdorff distance in L1

loc(Ω) induced by a distance in
L1

loc(Ω)) to a compact K ⊂ XL. We show that K ⊆ X(Γ) for some Γ.
Let (vi)

∞
i=1 be a dense sequence in the compact set K. We first observe that,

since K is convex, given any v, v′ in K there exists w (given by θv + (1 − θ)v′ for
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an appropriate choice of θ, see, for instance, [20]) such that Sw=̃Sv ∪ Sv′ ; hence,

HN−1(Sv ∪ Sv′) ≤ L. In particular, we deduce that HN−1(
⋃k

i=1 Svi) ≤ L for any
k ≥ 1 and, passing to the limit, that HN−1(Γ) ≤ L < +∞, where we have let
Γ =

⋃∞
i=1 Svi . Using Lemma 3.4, we deduce that there exists v ∈ K with Γ=̃Sv.

Hence Γ satisfies axiom (ii) in Definition 3.2. On the other hand, any v ∈ K is the
limit of an appropriate subsequence vi(k), k ≥ 1, with Svi(k)

⊂̃Γ, and a consequence of
Ambrosio’s compactness theorem is that Sv⊂̃Γ, so that axiom (i) in Definition 3.2 is
also satisfied. Hence Γnk

σp-converges to Γ.
We observe that an obvious consequence of Ambrosio’s theorem is that, if Γn

σp-converges to Γ,

(5) HN−1(Γ) ≤ lim inf
n→∞

HN−1(Γn) .

3.2. Proof of the lower inequality. Let Γn = ∂Ωhn
= {x ∈ ω × (−1,+∞) :

xN = hn(x′)} be the graph of the function hn. Up to a subsequence, we know by
Theorem 3.3 that Γn σp-converges to some Γ as n → ∞. Since hn is uniformly
bounded in W 1,1(ω), possibly extracting another subsequence, hn → h in L1(ω).
Equivalently, the sets Ωhn

converge to Ωh in the L1(ω × (0,+∞)) topology for the
characteristic functions.

Clearly, ∂∗Ωh ⊆ Γ; indeed, if we take in Definition 3.2 the sequence vn = χΩhn
,

we find that vn → χΩh
, whose jump set is ∂∗Ωh.

Let us decompose Γ in the three parts ∂∗Ωh, Σ = Γ ∩ Ω1
h, and Σ0 = Γ ∩ Ω0

h.
The part Σ0 is irrelevant in our study since the functions u, limits of converging
subsequences of (un), will all vanish outside of Ωh.

We show that Σ is vertical: That is, for any x = (x′, xN ) ∈ Σ, (x′, xN + t) ∈
Σ ∪ (RN \ Ω1

h) for any t ≥ 0. Indeed, let v ∈ SBVp(ω × (−1,+∞)) be such that
Sv=̃Γ, and let vn be a sequence weakly converging to v in SBVp(ω × (−1,+∞)) with
Svn

⊂̃Γn. Consider the functions x �→ vn(x′, xN − t)χΩhn
(x), with t < 1, extended

in an appropriate way in ω × (−1,−1 + t). These functions will converge to x �→
v(x′, xN − t)χΩh

(x), showing that (Sv + teN ) ∩ Ω1
h ⊂ Γ, which shows our claim. In

particular, we deduce that HN−1-a.e. in Σ, νΣ · eN = 0.
By (5), we have HN−1(∂∗Ωh) + HN−1(Σ) ≤ lim infn→∞ HN−1(Γn). We claim

that, in addition,

HN−1(∂∗Ωh) + 2HN−1(Σ) ≤ lim inf
n→∞

HN−1(Γn).

This follows from [13] and the definition of σp-convergence. Indeed, it is a consequence
of the lim inf-inequality in [13], applied to a sequence (vn)n≥1 with Svn

⊂̃Γn, weakly
converging in SBVp(ω × (−1,+∞)) to a v such that Σ⊂̃Sv.

Let us now conclude. If F (un, hn) is uniformly bounded, then by integration
along vertical segments we easily check that (un) is uniformly bounded in
Lp

loc(ω × (−1,+∞)). Then, it is a consequence of Ambrosio’s theorem, Theorem 2.1,
that there exists u ∈ GSBVp(ω × (−1,+∞)) such that un(x) → u(x) a.e., and
∇un ⇀ ∇u in Lp(ω × (−1,+∞); RN ) so that the inequality (1) holds. Clearly, u van-
ishes out of Ωh. By point (i) in Definition 3.2, which is easily generalized to GSBVp

functions (see [18, Prop. 4.6]), we have that Su⊂̃Σ ∪ ∂∗Ωh. In particular, since Σ is
vertical, S′

u ∩ Ω1
h ⊂ Σ. We deduce (2). Clearly, the inequality (4) follows from (1)

and (2).

4. An upper bound for the relaxed envelope of F . We now get the upper
bound for the relaxed envelope of the functional F by proving the following proposi-
tion.
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Proposition 4.1. For any u, h, with F (u, h) < +∞, there exist (un, hn) with
hn ∈ C1(ω; [0,+∞)), un ∈ W 1,p(Ωhn), and un = u0 in ω × (−1, 0) such that hn → h
in L1(ω), unχΩ+

hn

→ uχΩ+
h

in L1(ω × (0,+∞)),

(6) lim sup
n→∞

∫
Ω+

hn

|∇un(x)|p dx =

∫
Ω+

h

|∇u(x)|p dx,

and

(7) lim sup
n→∞

∫
ω

√
1 + |∇hn(x′)|2 dx′ ≤ HN−1(∂∗Ωh) + 2HN−1(S′

u ∩ Ω1
h).

We note that the proposition completes the proof of Theorem 2.2. Indeed,
if we find a sequence (un)n satisfying (6), we can deduce the strong convergence
∇unχΩ+

hn

→ ∇uχΩ+
h

in Lp; the continuity of W (together with (6) and the growth

condition of W ) gives the general result

(8)

lim sup
n→∞

∫
Ω+

hn

W (∇un(x)) dx +

∫
ω

√
1 + |∇hn(x′)|2 dx′

≤
∫

Ω+
h

W (∇u(x)) dx + HN−1(∂∗Ωh) + 2HN−1(S′
u ∩ Ω1

h),

which is the lim sup inequality for the functional F .
Remark 4.2. In case one adds in the definition of functional F a volume constraint

(that is, F (u, h) = +∞ if
∫
ω
h dx �= V , where V > 0 is a fixed volume), then it is easy

to show that Proposition 4.1 still holds, with the sequence (hn) satisfying the same
volume constraint as the limit h. Indeed, given the sequence (hn) provided by the
proposition (without volume constraint), one clearly has rn =

∫
ω
hn dx/

∫
ω
h dx → 1

as n → ∞, and an appropriate scaling (of the form x �→ (x′, xN/rn)) of the functions
and the domain will provide new sequences (un, hn) with

∫
ω
hn dx =

∫
ω
h dx, still

satisfying (6) and (7).
We first state the following lemma, which shows that any BV , nonnegative sub-

graph with an essentially closed boundary can be approximated from below by the
subgraph of a smooth, nonnegative function.

Lemma 4.3. Let g ∈ BV (ω; R+), and assume ∂∗Ωg is essentially closed, that is,
HN−1(∂∗Ωg \ ∂∗Ωg) = 0. Then, for any ε > 0, there exists f ∈ C∞(ω; R+) such that
0 ≤ f ≤ g a.e. in ω, ‖f − g‖L1(ω) ≤ ε and∣∣∣∣

∫
ω

√
1 + |∇f |2 dx − HN−1(∂∗Ωg)

∣∣∣∣ ≤ ε .

Proof. Consider first the distance function d(x) = dist(x, ∂∗Ωg) in ω × (−1,+∞).
By results on the Minkowski contents [7, 19], we have (because of our assumption of
essential closedness)

lim
ε→0

|{x ∈ ω × (−1,+∞) : d(x) ≤ ε}|
2ε

= HN−1(∂∗Ωg) .

From the BV -coarea formula (and since |∇d| = 1 a.e.),

|{x : d(x) ≤ ε}|
2ε

=
1

2ε

∫
{d≤ε}

|∇d(x)| dx =
1

2ε

∫ ε

0

HN−1(∂{d ≤ s}) ds .
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We deduce the convergence of the average values,

lim
ε→0

−
∫ ε

0

1

2
HN−1(∂{d ≤ s}) ds = HN−1(∂∗Ωg) ,

so that we can find a sequence (εk)k≥1 with εk ↓ 0 such that

(9) lim
k→∞

1

2
HN−1(∂{d ≤ εk}) = HN−1(∂∗Ωg)

(without loss of generality we also may assume that the boundary ∂{d ≤ εk} is
Lipschitz).

Now, the boundary of {d ≤ εk} is the disjoint union of the boundaries of {x ∈
ω × (−1,+∞) : dist(x,Ωg) ≤ εk} and {x ∈ Ωg : d(x) > εk}, and both of these sets
converge (in L1(ω × (−1,+∞))) to Ωg so that the lim inf of their perimeter is greater
or equal to HN−1(∂∗Ωg). Together with (9) it shows that these perimeters go to
HN−1(∂∗Ωg), in particular,

lim
k→∞

HN−1(∂{x ∈ Ωg : d(x) > εk}) = HN−1(∂∗Ωg) .

This set {x ∈ Ωg : d(x) > εk} is the subgraph in ω × (−1,+∞) of a function
gk ∈ BV (ω; [−εk,+∞)), with gk ≤ g − εk a.e. in ω. We consider g+

k = gk ∨ 0: We
have 0 ≤ g+

k and

HN−1(∂Ωg+
k
) ≤ HN−1(∂Ωgk)

(since ∂Ωg+
k
∩(ω×{0}) is the orthogonal projection onto ω×{0} of ∂Ωgk∩(ω×(−1, 0])).

Hence, we still have

lim
k→∞

HN−1(∂Ωg+
k
) = HN−1(∂∗Ωg) .

By convolution, we can build from g+
k a sequence of smooth functions fk that are

still nonnegative, that go to g in L1(ω), and such that

lim
k→∞

∫
ω

√
1 + |∇fk(x′)|2 dx′ = HN−1(∂∗Ωg) .

Let x′ ∈ ω. By construction of gk we have gk(y
′) ≤ g+(x′) a.e. in {y′ ∈ ω : |y′ − x′| ≤

εk} (where g+ = g a.e. is the precise representative defined in section 2.1). Since
g ≥ 0 a.e., we also have g+

k (y′) ≤ g+(x′) a.e. in {y′ ∈ ω : |y′ − x′| ≤ εk}. This shows
that if for each k the size of the support of the convolution kernel is chosen small
enough (for instance, of diameter less than εk/2), we also have fk ≤ g+. This proves
Lemma 4.3.

Proof of Proposition 4.1. Let us consider, now, u and h such that F (u, h) < +∞.
We divide this proof into two steps.

Step 1 (approximation of (most of) the graph). We show that we can approximate
a “generalized graph” (∂∗Ωh,Σ), where Σ ⊂ Ω1

h∩(ω × (0,+∞)) is vertical in the sense
that x ∈ Σ ⇒ (x′, xN + t) ∈ Σ for any t ≥ 0 as long as (x′, xN + t) ∈ Ω1

h, with the
graph of a smooth function f : ω → R+, with Ωf ⊂ Ωh \ Σ up to a small part, and
with a good approximation of the total surface energy HN−1(∂∗Ωh) + 2HN−1(Σ) (by
the surface of the smooth graph

∫
ω

√
1 + |∇f |2 dx).
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Let us first assume that Σ = ∅: We claim that for any h ∈ BV (ω; R+) and ε > 0,
there exists f ∈ C∞(ω; R+) such that

(10) ‖f − h‖L1(ω) + HN−1(∂∗Ωh ∩ Ωf ) ≤ ε

and

(11)

∣∣∣∣
∫
ω

√
1 + |∇f(x)|2 dx − HN−1(∂∗Ωh)

∣∣∣∣ ≤ ε .

We fix ε > 0. Let us consider a mollifying kernel ρ ∈ C∞
c (RN ), with support in

the unit ball, and for any η > 0 let ρη(x) = (1/η)Nρ(x/η). For n ≥ 1 we consider the
function wn = ρ1/n ∗ χΩh

: ω × R → [0, 1]. It is well known not only that wn → χΩh

strongly in L1 but also that
∫
ω×(−1,+∞)

|∇wn(x)| dx → |DχΩh
|(ω × (−1,+∞)) =

HN−1(∂∗Ωh) as n → +∞.
One has, for every x ∈ Ω1

h ∪ ∂∗Ωh ∪ Ω0
h (hence, HN−1-a.e. x ∈ ω × (−1,+∞)),

(12) lim
n→∞

wn(x) =

⎧⎪⎨
⎪⎩

1 if x ∈ Ω1
h ,

1
2 if x ∈ ∂∗Ωh ,

0 if x ∈ Ω0
h .

The same properties are true for the sequence of (l.s.c.) functions (w̃n)n≥1 defined
by

w̃n(x) =

{
wn(x) if x ∈ ω × [0,+∞) ,

1 if x ∈ ω × (−1, 0) .

Indeed, using the coarea formula, one sees that

|Dw̃n|(ω × (−1,+∞)) =

∫ 1

0

HN−1(∂{w̃n > s}) ds

≤
∫ 1

0

HN−1(∂{wn > s}) ds =

∫
ω×(0,+∞)

|∇wn(x)| dx

since HN−1(∂{wn > s} ∩ (ω × (−1, 0))) ≥ HN−1({x′ ∈ ω : wn(x′, 0) ≤ s}) =
HN−1(∂{w̃n > s}∩ (ω× (−1, 0))), the second set being the projection onto ω×{0} of
the first one. We deduce that lim supn→∞ |Dw̃n|(ω × (−1,+∞)) ≤ HN−1(∂∗Ωh), but
since w̃n → χΩh

, it yields limn→∞ |Dw̃n|(ω × (−1,+∞)) = HN−1(∂∗Ωh). Clearly,
(12) is also true for w̃ since Ω1

h ⊃ ω × (−1, 0). We drop the tilde in the sequel and
just write wn instead of w̃n.

For a.e. s ∈ (0, 1), one also checks that limn→∞ |{wn > s}�Ωh| = 0, and using
Fatou’s lemma and the coarea formula, that for a.e. s ∈ (0, 1), {wn > s} is an
open set such that lim infn→∞ HN−1(∂{wn > s}) = HN−1(∂∗Ωh). Thus, up to
a subsequence (possibly depending on s), we may assume limn→∞ HN−1(∂{wn >
s}) = HN−1(∂∗Ωh). Let us consider s∗ ∈ (2/3, 3/4) and an appropriate subsequence
such that this property is true, and let us consider the corresponding sequence of
sets {x ∈ ω × (−1,+∞) : wn(x) > s∗}. We have that HN−1(∂∗Ωh ∩ {wn > s∗}) =∫
∂∗Ωh

χ{wn>s∗}(x) dHN−1(x), and since by (12), χ{wn>s∗}(x) → 0 HN−1-a.e. in ∂∗Ωh,

we find HN−1(∂∗Ωh ∩ {wn > s∗}) → 0 as n → ∞. We fix n large such that

|{wn > s∗}�Ωh| + HN−1(∂∗Ωh ∩ {wn > s∗}) ≤ ε

2
,∣∣HN−1(∂{wn > s∗}) − HN−1(∂∗Ωh)

∣∣ ≤ ε

2
.
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It is clear that there exists g : ω → [0,+∞) a BV function such that {wn > s∗} =
{xN < g(x′)}. By Lemma 4.3 applied to g, we find a smooth function f ≤ g, f ≥ 0,
satisfying both (10) and (11).

Now, assume Σ �= ∅. First, possibly replacing h by h∧ (M − 1) = min{h,M − 1},
M > 1 large, we may assume without loss of generality that h is bounded by M−1. Let
us then define Σ′ by Σ′ =

⋃
x∈Σ{x′}×[xN ,M ] and recall that by assumption Σ′∩Ω1

h =
Σ. We may also assume without loss of generality that HN−1(Σ′∩(ω×[0,M ])) < +∞,
possibly replacing (in a preliminary step) h with hδ = (h − δ)+, δ > 0 small, and Σ
with Σδ = Σ ∩ Ωhδ

: Indeed, one will have that Σ′
δ ∩ {hδ(x

′) ≤ xN ≤ hδ(x
′) + δ} ⊆ Σ

so that HN−1(Σ′
δ ∩ (ω × [0,M ])) ≤ (M/δ)HN−1(Σ) < +∞. Now, let K ⊆ Σ′ be a

compact set such that HN−1(Σ′ \ K) ≤ ε/10. Observe that, if K ′ is defined as Σ′,
also HN−1(Σ′ \K ′) ≤ ε/10, and K ′ is compact.

Let us build the sequence of l.s.c. functions (wn)n≥1 and find a level s∗ ∈ (2/3, 3/4),
as previously. By (12), we have that χ{wn>s∗} converges to 1 in Ω1

h, while it tends
to 0 HN−1-a.e. outside. In particular, HN−1(K ′ ∩ {wn > s∗}) → HN−1(K ′ ∩ Ω1

h) as
n → ∞, and this limit satifies HN−1(Σ) − ε/10 ≤ HN−1(K ′ ∩ Ω1

h) ≤ HN−1(Σ). We
can hence choose n such that

|{wn > s∗}�Ωh| + HN−1(∂∗Ωh ∩ {wn ≥ s∗}) ≤ ε

4
,∣∣HN−1(∂{wn > s∗}) − HN−1(∂∗Ωh)

∣∣ ≤ ε

4
,

and ∣∣HN−1(K ′ ∩ {wn > s∗}) − HN−1(Σ)
∣∣ ≤ ε

8
.

Observe now that since the set K ′ is compact, its Minkowski content
|{dist(·,K ′) < s}|/(2s) converges to HN−1(K ′) as s → 0 (see [7, 19]). As in the
proof of Lemma 4.3, we deduce that there exists a sequence (sk)k≥1 such that

(13) lim
k→∞

HN−1(∂{dist(·,K ′) > sk}) = 2HN−1(K ′) .

We introduce the measures μk = HN−1 ∂{dist(·,K ′) > sk}. Up to a subsequence,
we may assume that they converge (weakly-∗) to a measure μ supported on K ′.
A consequence of the lim inf inequality in [13] is that μ(A) ≥ 2HN−1(K ′ ∩ A) for
any open set A ⊂ ω × (0,+∞). (In this simple case, it can be shown directly by
a slicing argument; see, for instance, [12, Lem. 2]). Together with (13), it shows
that μ = 2HN−1 K ′. In particular, if k is large enough and provided we have
chosen s∗ such that HN−1(K ′ ∩ ∂{wn > s∗}) = 0 (almost any choice suits, since
HN−1(K ′ ∩ (ω × {0})) = 0—otherwise HN−1(Σ′) would be infinite), we have

∣∣HN−1(∂{dist(·,K ′) > sk} ∩ {wn > s∗}) − 2HN−1(Σ)
∣∣ ≤ ε

2
,

while |{dist(·,K ′) ≤ sk}| ≤ ε/4 and HN−1(∂{wn > s∗} ∩ {dist(·,K ′) ≤ sk}) ≤ ε/8.
For such values of k, the open set {dist(·,K ′) > sk}∩{wn > s∗}∩(ω × (−1,+∞))

(with piecewise Lipschitz boundary if sk was properly chosen) is the subgraph Ωg of
a nonnegative BV function g with ‖g − h‖L1(ω) ≤ ε/2, HN−1(∂Ωg \ ∂∗Ωg) = 0,

HN−1((∂∗Ωh ∪ Σ) ∩ Ωg) ≤ ε

2
,
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and ∂Ωg = (∂{dist(·,K ′) > sk} ∩ {wn > s∗}) ∪ (∂{wn > s∗} ∩ {dist(·,K ′) > sk}), so
that

∣∣HN−1(∂Ωg) − (HN−1(∂∗Ωh) + 2HN−1(Σ))
∣∣ ≤ 3ε

4
.

Then, invoking again Lemma 4.3, we find a smooth function f ≤ g, f ≥ 0, with
‖f − h‖L1(ω) ≤ ε,

(14) HN−1((∂∗Ωh ∪ Σ) ∩ Ωf ) ≤ ε

and

(15)

∣∣∣∣
∫
ω

√
1 + |∇f(x)|2 dx − (HN−1(∂∗Ωh) + 2HN−1(Σ))

∣∣∣∣ ≤ ε .

Remark 4.4. We have, in addition,

lim
ε→0

HN−1({x′ ∈ ω : fε(x
′) = 0}) = HN−1({x′ ∈ ω : h(x′) = 0})

(fε denoting the f obtained for a particular ε > 0). Indeed, for η > 0, there exist k > 1
such that HN−1({h < 1/k}) ≤ HN−1({h = 0}) + η and K ⊂ ω with HN−1(K) ≤ η
such that fε → h uniformly in ω \ K. Then, if ε is small enough, h(x′) ≥ 1/k
and x′ �∈ K will yield fε(x

′) ≥ 1/(2k); hence, {fε = 0} ⊂ K ∪ {h < 1/k} so that
HN−1({fε = 0}) ≤ HN−1({h = 0}) + 2η. We deduce that lim supε→0 HN−1({fε =
0}) ≤ HN−1({h = 0}). On the other hand, since HN−1(∂∗Ωh ∩Ωfε) → 0, we see that
HN−1({h = 0}∩{fε > 0}) → 0 so that HN−1({h = 0}∩{fε = 0}) → HN−1({h = 0});
hence, HN−1({h = 0}) ≤ lim infε→0 HN−1({fε = 0}).

A consequence is that in case (as in [9]) the “substrate” {xN ≤ 0} has a superficial
tension σS less than the superficial tension σC of the crystal, that is, the surface energy
of (∂∗Ωh,Σ) is

σSHN−1({h = 0}) + σC(HN−1(∂∗Ωh ∩ (ω × (0,+∞))) + 2HN−1(Σ)) ,

then f can fulfill the additional requirement

∣∣∣σSHN−1({f = 0}) + σC

∫
{f>0}

√
1 + |∇f |2 dx

−
(
σSHN−1({h = 0}) + σC(HN−1(∂∗Ωh ∩ (ω × (0,+∞))) + 2HN−1(Σ))

) ∣∣∣ ≤ ε.

If on the other hand σC < σS , this is not optimal (in terms of relaxation, approxi-
mating (h,Σ) with (h + δ,Σ + δeN ), δ small, will reduce the energy).

Step 2. (approximation of both the graph and the displacement). We now show
that if u ∈ GSBVp(ω × (−1,+∞)) is given, with Su ⊆ ∂∗Ωh ∪ Σ, u = 0 out of Ωh,
and u = u0 on ω × (−1, 0) (where u0 ∈ W 1,p(ω × (−1, 0)), Σ ⊂ Ω1

h ∩ (ω × (0,+∞))
vertical), then there exists (un, hn)n≥1, with hn ∈ C∞(ω; R+), un ∈ W 1,p(Ωhn), and
un = u0 in ω × (−1, 0), such that as n → ∞, hn → h in L1(ω), and (extending both
un and ∇un with zero out of Ωhn) un → u in L1(ω × (−1,+∞)), ∇un → ∇u strongly
in Lp(ω × (−1,+∞); RN ),

lim
n→∞

∫
ω

√
1 + |∇hn(x)|2 dx = HN−1(∂∗Ωh) + 2HN−1(Σ) .
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Before entering the proof of this second step, which is very technical, let us give
a rough idea of how it goes. It follows a discretization/reinterpolation argument
introduced in [15, 16]. We first discretize the function u in ω × (−1,+∞) on a regular
square grid (of the form ηZ

N with η small). Then, we reinterpolate this discretization
into a piecewise continuous function uη. All this is done in a way that ensures that
some suitable volume energy of uη is controlled by the same energy of u and converges
in the limit η → 0. On the other hand, the jump set of this approximation uη is “close”
in some sense to the jump set of u, but a drawback of this technique is that we can
control only its total surface by C × (HN−1(∂∗Ωh) + 2HN−1(Σ)) (with C a large
constant depending on the dimension N).

To overcome this difficulty, we have to use the approximation f provided by the
previous step: Instead of doing the construction in the whole set ω × (−1,+∞), we
work in the smooth set Ωf , where f is such that the jump of u in Ωf has a surface of
order ε (and satisfies (15)). In this way, the jump set of uη in Ωf is now controlled
by Cε, and after extending uη to ω × (−1,+∞) by zero above the graph of f , we get
a couple (uη, hη) with total surface energy controlled by HN−1(∂∗Ωh) + 2HN−1(Σ) +
(C + 1)ε, as required.

Let us now enter the details. We fix ε > 0. By Step 1, there exists f ∈ C∞(ω)
with ‖f − h‖L1(ω) ≤ ε, such that both (14) and (15) hold. (In particular, (14) states
that f is “almost” below h (and Σ) in the sense that very little of ∂∗Ωh ∪ Σ lies
below f .) We denote by v the GSBVp function that is equal to u in Ωf , to 0 in
(ω × (0,+∞)) \ Ωf , and to u0 in ω × (−1, 0). Possibly choosing f closer to h, we
may assume, also, that ‖v − u‖L1(ω×(−1,+∞)) ≤ ε. Eventually, we also extend v (by
symmetry) slightly below ω × {−1} to the set ω × (−1 − δ,−1), 0 < δ < 1.

Let us define, for ξ ∈ R
N , the anisotropic potential

Wp(ξ) :=

N∑
i=1

|ξi|p .

Clearly, v ∈ GSBVp(ω × (−1 − δ,+∞)), and one has, if δ is small enough,

(16)

∫
Ωδ

f

Wp(∇v(x)) dx =

∫
ω×(−1−δ,+∞)

Wp(∇v(x)) dx

≤
∫
ω×(−1,+∞)

Wp(∇u(x)) dx + ε,

where Ωδ
f = {x ∈ ω × (−1 − δ,+∞) : xN < f(x′)}. The jump set of v satisfies

Sv ⊂ ∂Ωf ∪ ((∂∗Ωh ∪ Σ) ∩ Ωf ); its surface energy is estimated by (14) and (15).
For n ≥ 1, let η = 1/n be a discretization step. Given y ∈ (0, 1)N , we introduce

a discretization of v by setting vy,ηk = v(yη + kη), with (k1, . . . , kN−1) ∈ (Z/nZ)N−1

and kN ∈ Z ∩ [−(1 + δ)/η − yN ,+∞) (so that only points in ω × (−1 − δ,+∞) are
considered).

We also define a “discrete jump” of vy,η: We let, for i = 1, . . . , N , and y, k as
above, li,y,ηk = 0 if (∂∗Ωh ∪Σ)∩ [yη + kη, yη + (k + ei)η] = ∅ and li,y,ηk = 1 otherwise.
We have that li,y,η = χSi

η
(yη + kη), where the set Si

η is given by

Si
η = (∂∗Ωh ∪ Σ) + [−ηei, 0] .

Here (e1, . . . , eN ) is the canonical basis of R
N , and as usual the sum of two sets A,B

is A + B = {a + b : a ∈ A, b ∈ B}.
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The discrete energy of (vy,ηk , (li,y,ηk )Ni=1)k is defined by

Dy
η =

N∑
i=1

Di,y
η with Di,y

η = ηN
∑
k

(1 − li,y,ηk )
|vy,ηk+ei

− vy,ηk |
ηp

p

+ α
li,y,ηk

η
,

where the sum is taken on all k such that the segment [yη + kη, yη + (k + ei)η] lies
inside the subgraph Ωδ

f . The parameter α > 0 will be fixed later on.

Let us compute the average
∫
y∈(0,1)N

Dy
η dy. For each i, one has (using the change

of variable (y, k) �→ x = (y + k)η)

(17)

∫
(0,1)N

Di,y
η dy =

∫
Oi

η

(1 − χSi
η
)(x)

|v(x + ηei) − v(x)|
ηp

p

+ α
χSi

η
(x)

η
dx ,

where the domain of integration is

Oi
η =

{
x ∈ ω × (−1 − δ,+∞) : xN < min

0≤t≤1
f(x′ + tηei)

}
if i ≤ N − 1, and

ON
η = {x ∈ ω × (−1 − δ,+∞) : xN < f(x′) − η} .

We now use a slicing technique introduced by Gobbino [22] (based on the slicing
properties of GSBV functions [7] and applied in a similar setting in [2, 15, 16]). The
second integral in (17) is decomposed into an integral on e⊥i and an integral along the
direction ei, as follows:∫

(0,1)N
Di,y

η dy =

∫
e⊥
i

dHN−1(z)

∫
{s:z+sei∈Oi

η}
(1 − χSi

η
)(z + sei)

|v(z + (s + η)ei) − v(z + sei)|
ηp

p

+ α
χSi

η
(z + sei)

η
ds .

For HN−1-a.e. z ∈ e⊥i , from the definition of Si
η there is no jump of v between z + sei

and z + (s + η)ei (for a.e. s) when (1 − χSi
η
)(z + sei) �= 0, so that in this case

|v(z + (s + η)ei) − v(z + sei)|p =

∣∣∣∣
∫ η

0

∂v

∂xi
(z + (s + t)ei) dt

∣∣∣∣
p

≤ ηp−1

∫ η

0

∣∣∣∣ ∂v∂xi
(z + (s + t)ei)

∣∣∣∣
p

dt .

We deduce

(18)

∫
e⊥
i

dHN−1(z)

∫
{s:z+sei∈Oi

η}
(1 − χSi

η
)(z + sei)

|v(z + (s + η)ei) − v(z + sei)|
ηp

p

≤
∫

Ωδ
f

∣∣∣∣ ∂v∂xi
(x)

∣∣∣∣
p

dx .

On the other hand, for HN−1-a.e. z, we have (from the definition of Si
η)∣∣{s : z + sei ∈ Oi

η ∩ Si
η}
∣∣ ≤ ηH0

(
{s : z + sei ∈ Oi

η ∩ (∂∗Ωh ∪ Σ)}
)
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so that

(19)

∫
e⊥
i

dHN−1(z)

∫
{s:z+sei∈Oi

η}

χSi
η
(z + sei)

η
ds ≤

∫
(∂∗Ωh∪Σ)∩Ωf

|ei · ν(x)| dHN−1(x) ,

where ν is the normal to ∂∗Ωh ∪ Σ, defined HN−1-a.e. (up to a change of sign which
is not relevant here). Collecting (18) and (19), we get

∫
(0,1)N

Di,y
η dy ≤

∫
Ωδ

f

∣∣∣∣ ∂v∂xi
(x)

∣∣∣∣
p

dx + α

∫
(∂∗Ωh∪Σ)∩Ωf

|ei · ν(x)| dHN−1(x) .

By construction, we have HN−1((∂∗Ωh ∪ Σ) ∩ Ωf ) ≤ ε (see (14)); hence,

(20) Dy
η =

N∑
i=1

∫
(0,1)N

Di,y
η ≤

∫
Ωδ

f

Wp(∇v(x)) dx + α
√
Nε .

Now, for any y and η > 0 (small), we introduce the interpolate (known as “Q1”
in finite elements theory) of (vy,ηk )k:

vy,η(x) =
∑

k∈(Z/nZ)N−1×Z

vy,ηk Δ

(
x

η
− (k + y)

)
, x ∈ ω × R ,

where (as before a+ = a ∨ 0 = max{a, 0})

(21) Δ(x) =
N∏
i=1

(1 − |xi|)+ .

It is classical [2, 14] that there exists a sequence (ηl)l≥1 such that vy,η → v in
L1(ω × (−1,+∞)) as l → ∞ for a.e. y ∈ (0, 1)N . Then, possibly extracting a subse-
quence, we deduce from (20) that there exists y ∈ (0, 1)N such that both

(22) lim
l→∞

Dy
ηl

≤
∫
ω×(−1−δ,+∞)

Wp(∇v) dx + α
√
Nε

and ‖vy,ηl − v‖L1 → 0 as l → ∞. In what follows, we fix y to this value and drop the
corresponding superscript.

Consider now a cube Ck = (y+k)ηl+(0, ηl)
N such that Ck ⊂ Ωδ

f . We say that Ck

is a “regular cube” if ∂∗Ωh ∪ Σ does not cross any edge of Ck, that is, when li,ηl

k̂
= 0

for any i and k̂ ∈ k + {0, 1}N with k̂i = ki. On the other hand, if ∂∗Ωh ∪ Σ crosses
at least one of the edges of Ck, we say the cube is a “jump cube.” Notice that in the
latter case, since ∂∗Ωh ∪ Σ is a generalized subgraph, all cubes “above” Ck are also
jump cubes as long as they intersect Ωh: Precisely, every other cube C ′ = Ck′,kN+m,
m ≥ 1, with C ′ ⊂ Ωδ

f has at least one edge that crosses ∂∗Ωh ∪Σ unless C ′ ⊂ Ωf \Ω1
h

(in which case v = 0 and vηl = 0 a.e. in C ′). We denote by J the union of all jump
cubes and of all cubes in Ωδ

f that lie above a jump cube (i.e., either jump cubes or
regular cubes where v vanishes) and by R the union of all the other regular cubes
(the regular cubes that lie below ∂∗Ωh ∪ Σ) so that Cf = R ∪ J is the union of all
cubes Ck ⊂ Ωδ

f (see Figure 2).
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h

Σ R

J

f

ω x′

xN
ηl

Fig. 2. The cubes below f are grouped into two regions: a region R where the total bulk energy
of vηl is estimated by the “bulk” part of Dηl and a region J whose common boundary with R is
estimated by the “surface term,” or order ε, of Dηl .

Since each edge [(y + k)ηl, (y + k + ei)ηl] (for any i) is shared by at most 2N−1

cubes, one can decompose the energy Dηl
as a sum of contributions of the cubes in

the following way:

Dηl
≥

∑
Ck“regular”

(ηl)
N 1

2N−1

N∑
i=1

∑
k̂∈k+{0,1}N

k̂i=ki

∣∣∣vηl

k̂+ei
− vηl

k̂

∣∣∣
(ηl)p

p

+ α
(ηl

2

)N−1

× (number of “jump cubes”)

(this is a very rough estimate since only one edge of each jump cube is taken into
account even if many edges cross ∂∗Ωh ∪Σ). In particular, from (20) we find that the
number of the jump cubes is bounded by a constant times η1−N

l , so that their total
Lebesgue measure is O(ηl).

By inequality (36) in Lemma A.1, the term in the sum over regular cubes is
larger or equal to

∫
Ck

Wp(∇vηl(x)) dx; on the other hand, the term involving the jump

cubes bounds the measure of the boundary of these cubes since clearly α(ηl/2)N−1 =
αHN−1(∂Ck)/(N2N ). In particular, we have

(23) Dηl
≥

∫
R
Wp(∇vηl(x)) dx +

α

N2N
HN−1(∂J ∩ ∂R) .

Now, we will “move” Cf = R∪J upwards (in the direction xN ) in order to cover

Ωf (we will then translate vηl accordingly): Let κ = 1 +
√
N maxξ∈ω |∇f(ξ)|; this

constant is such that

Cf + κηleN ⊃ Ωf
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as soon as l is large enough (so that xN > −1 yields xN − κηl > −1 − δ + ηl which
clearly holds as soon as ηl ≤ δ/(1 + κ)).

We then define, for any l (large enough), the function fl ∈ BV (ω) by fl(x
′) =

sup{xN < f(x′) : (x′, xN − κηl) ∈ R}, and for any x ∈ ω × (−1,+∞), we also define
vl(x) by

vl(x) =

{
vηl(x′, xN − κηl) if − 1 < xN < fl(x

′),

0 otherwise.

By construction, the boundary of Ωfl (in ω × (−1,+∞)) is a piecewise smooth com-
pact set made of two parts: One part is contained in the (smooth) graph of f , ∂Ωf ,
and the rest, ∂Ωfl ∩ Ωf , is a subset of (∂J ∩ ∂R) + κηleN , which is a finite union
of facets of hypercubes. On the other hand, vl ∈ W 1,p(Ωfl), with as a consequence
of (23),

(24)

∫
Ωfl

Wp(∇vl(x)) dx +
α

N2N
HN−1(∂Ωfl ∩ Ωf ) ≤ Dηl

.

We fix α = N2N and make the observation that vl = vηl(· − κηleN ) except on a
set of measure O(ηl) (the union of the cubes of J such that ∂∗Ωh ∪Σ crosses an edge
of the cube). Therefore, vl → v as l → ∞ in L1(ω × (−1,+∞)) (and, as well, fl → f).
We can now fix l large enough so that ‖fl − f‖L1(ω) + ‖vl − v‖L1(ω×(−1,+∞)) < ε and

∫
Ωfl

Wp(∇vl(x)) dx + HN−1(∂Ωfl) ≤ Dηl
+ HN−1(∂Ωf )

≤
∫
ω×(−1,+∞)

Wp(∇u(x)) dx + HN−1(∂∗Ωh) + 2HN−1(Σ) + (3 + 2NN
√
N)ε ,

where we have used (15), (16), (22), and (24). Observe eventually that if l is large
enough, we also have (since lim inf l→∞ HN−1(∂Ωfl) ≥ HN−1(∂Ωf ) and using (15))

HN−1(∂Ωfl) ≥ HN−1(∂∗Ωh) + 2HN−1(Σ)) − 2ε .

Using now Lemma 4.3, we can find a smooth f ′ ∈ C∞(ω; RN ) with f ′ ≤ fl, close
enough to fl, in such a way that if v′ = vl in Ω′

f and 0 in (ω × (−1,+∞)) \ Ω′
f , one

has ‖f ′ − f‖L1(ω) + ‖v′ − v‖L1(ω×(−1,+∞)) < 2ε; hence, both ‖f ′ − h‖L1(ω) < 3ε and
‖v′ − u‖L1(ω×(−1,+∞)) < 3ε, and

∫
Ωf′

Wp(∇v′)) dx + HN−1(∂Ωf ′)

≤
∫
ω×(−1,+∞)

Wp(∇u(x)) dx + HN−1(∂∗Ωh) + 2HN−1(Σ) + βε,

where β = 4 + 2NN
√
N is a constant and, as well,

HN−1(∂Ωf ′) ≥ HN−1(∂∗Ωh) + 2HN−1(Σ)) − 3ε .

Performing this construction for ε = 1/n, n ≥ 1, yields the existence of two
sequences (fn)n≥1, (un)n≥1, with fn ∈ C∞(ω), un ∈ W 1,p(Ωfn), fn → h in L1(ω),
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un → u in L1(ω × (−1,+∞)),

(25) lim sup
n→∞

∫
Ωfn

Wp(∇un(x)) dx +

∫
ω

√
1 + |∇fn(x)|2 dx

≤
∫
ω×(−1,+∞)

Wp(∇u(x)) dx + HN−1(∂∗Ωh) + 2HN−1(Σ) ,

and

(26) HN−1(∂∗Ωh) + 2HN−1(Σ) ≤ lim inf
n→∞

∫
ω

√
1 + |∇fn(x)|2 dx .

The function un, extended with 0 out of Ωfn , is in GSBV (ω × (−1,+∞)), and its
gradient is ∇un in Ωfn and 0 outside. Invoking now Ambrosio’s compactness theorem
for GSBV functions, we find that ∇un ⇀ ∇u in Lp(ω × (−1,+∞); RN ), so that∫

ω×(−1,+∞)

Wp(∇u(x)) dx ≤ lim inf
n→∞

∫
ω×(−1,+∞)

Wp(∇un(x)) dx ,

which, combined with (25) and (26), yields that

lim
n→∞

∫
ω×(−1,+∞)

Wp(∇un(x)) dx =

∫
ω×(−1,+∞)

Wp(∇u(x)) dx ,(27)

lim
n→∞

∫
ω

√
1 + |∇fn(x)|2 dx = HN−1(∂∗Ωh) + 2HN−1(Σ)) .(28)

In particular, we deduce from (27) (since 1 < p < +∞) that ∇un goes strongly
to ∇u in Lp(ω × (−1,+∞); RN ). We also find that un → u0 strongly in W 1,p(ω ×
(−1, 0)). Modifying un in order to ensure that un ≡ u0 in ω × (−1, 0) is now not
difficult. A simple way is as follows: We choose a continuous extension operator from
W 1,p(ω × (−1, 0)) to W 1,p(ω × (−1,+∞)) and define, for all n, a function wn as the
extension of (un|ω×(−1,0) − u0). Clearly, wn → 0 strongly in W 1,p(ω × (−1,+∞)).
The sequence un is then modified in the following way: We replace un with un − wn

in Ωfn , letting it keep the value 0 outside. This new un satisfies the same properties
as before, but additionally, un = u0 a.e. in ω × (−1, 0). This shows the thesis.

5. An approximation result. We introduce in this section, as in [9], a phase-
field approximation of the functional F . The idea is to represent the subgraph Ωh \Σ
by a field v that will be an approximation of the characteristic function of this set,
at a scale of order ε. Then, numerically, the minimization of our new functional will
provide an approximation of (u, h) minimizing F . Our approximated functional is the
following:

(29) Fε(u, v) =

∫
ω×(0,+∞)

(ηε + v2(x))W (∇u(x)) dx

+ cV

(
ε

2

∫
ω×(0,+∞)

|∇v(x)|2 dx +
1

ε

∫
ω×(0,+∞)

V (v(x)) dx

)

if u ∈ W 1,p(ω × (0,+∞)), with u = u0 on ω × {0}, and v ∈ H1(ω × (0,+∞)), with
v = 1 on ω × {0} and ∂Nv ≤ 0 a.e. in ω × (0,+∞). Otherwise, for all other u, v ∈
L1(ω × (0,+∞)), we let Fε(u, v) = +∞. Here the potential V is a two-wells potential
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with V (t) > 0 except if t ∈ {0, 1}, V (0) = V (1) = 0, and c−1
V =

∫ 1

0

√
2V (t) dt. The

parameter ηε is any function of ε with ηε/(ε
p−1) → 0 as ε → 0. The function u0 is

assumed to be the trace of a function in W 1,p(ω×(−1, 0)), still denoted by u0, and for
technical reasons we also have to assume that it is bounded: u0 ∈ L∞(ω × (−1, 0)).
The following results generalize in arbitrary dimension Theorem 3.1 of [9]. However,
its proof also owes a lot to [13, sect. 5.2], where a similar approximation is studied.

Theorem 5.1. Let (εj)j≥1 be a decreasing sequence of positive numbers, going
to 0. Then the following hold.

(i) For any (uj , vj), if lim supj→∞ Fεj (uj , vj) < +∞, then up to a subsequence
there exist u, v such that vj → v in L1(ω × (0,+∞)) and uj(x) → u(x) a.e.
in {v = 1}, and there exists h ∈ BV (ω; R+) such that {v = 1} = Ωh and

(30) F (u, h) ≤ lim inf
j→∞

Fεj (uj , vj) .

(ii) For any h ∈ BV (ω; R+) and u ∈ GSBVp(ω × (−1,+∞)) with u = u0 in
ω× (−1, 0) and u(x) = 0 a.e. in {xN > h(x′)}, there exists (uj , vj) such that
uj → u and vj → χΩh

in L1(ω × (0,+∞)) and

(31) lim sup
j→∞

Fεj (uj , vj) ≤ F (u, h) .

This is almost a Γ-convergence result. We deduce, in particular, that if for all j,
(uj , vj) is a minimizer of Fεj , then up to a subsequence, vj → χΩh

and uj → u a.e. in

Ωh, where (u, h) minimize the relaxed functional F .
Remark 5.2. The thesis of the theorem is still valid if (as in [9, Thm. 3.1]) the

set Ωh must satisfy a volume constraint |Ωh| = V > 0 (which is imposed in the
approximation by a constraint on vj :

∫
ω×(0,+∞)

vj(x) dx = V ). The adaption of the

proofs is easy; see Remark 4.2 above.
Proof of Theorem 5.1. We first show the first point. Let (uj , vj) be as in (i).

Since Fεj (uj , vj) is finite, vj must be nondecreasing in xN . Now, if we replace vj
by ṽj(x) = 0 ∨ ((vj(x) − δjxN ) ∧ 1) and if δj is small enough, one can ensure that
Fεj (uj , vj) = Fεj (uj , ṽj) + O(1/j), and ṽj is strictly decreasing.

Assume first that vj is smooth, so that ṽj is smooth in {0 < ṽj < 1}. For any
s ∈ (0, 1), let hs

j : ω → R+ be the function such that ṽj(x
′, hs

j(x
′)) = s for any x′ ∈ ω;

then clearly, hs
j is in C1(ω), with

|∇′hs
j(x

′)| =
|∇′ṽj(x

′, hs
j(x

′))|
|∂N ṽj(x′, hs

j(x
′))| ≤ 1

δj
|∇′ṽj(x

′, hs
j(x

′))|

for any x′ ∈ ω. Now, we deduce that

∫
ω

|∇′hs
j(x

′)|2 dx′ ≤ 1

δj

∫
ω

|∇′ṽj(x
′, hs

j(x
′))|2

|∂N ṽj(x′, hs
j(x

′))| dx
′

≤ 1

δj

∫
ω

|∇′ṽj(x
′, hs

j(x
′))|2

⎛
⎝
√

1 + |∇′hs
j(x

′)|2

|∇ṽj(x′, hs
j(x

′))|

⎞
⎠ dx′

=
1

δj

∫
∂{ṽj>s}

|∇′ṽj(x)|2
|∇ṽj(x)| dHN−1(x) .
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Using the coarea formula, we find that∫ 1

0

(∫
ω

|∇′hs
j(x

′)|2 dx′
)

ds ≤ 1

δj

∫
{1>ṽj>0}

|∇′ṽj(x)|2 dx < +∞ .

By approximation, we easily deduce that this remains true when vj is just in
H1(ω × (0,+∞)): We get that for a.e. level s ∈ (0, 1), the set {ṽj > s} can be
represented as the subgraph of a function hs

j ∈ H1(ω). We may also assume that this
is true for all j ≥ 1.

Now, we notice that (using a2 + b2 ≥ 2ab and the coarea formula)

(32)
εj
2

∫
ω×(0,+∞)

|∇ṽj(x)|2 dx +
1

εj

∫
ω×(0,+∞)

V (ṽj(x)) dx

≥
∫
ω×(0,+∞)

√
2V (ṽj(x))|∇ṽj(x)| dx

≥
∫ 1

0

√
2V (s)

(∫
ω

√
1 + |∇′hs

j(x
′)|2 dx′

)

and, in particular, using Fatou’s lemma, we see that∫ 1

0

√
2V (s)

(
lim inf
j→∞

∫
ω

√
1 + |∇′hs

j(x
′)|2 dx′

)

≤ lim inf
j→∞

(
εj
2

∫
ω×(0,+∞)

|∇ṽj(x)|2 dx +
1

εj

∫
ω×(0,+∞)

V (ṽj(x)) dx

)
.

In particular, for a.e. s ∈ (0, 1), hs
j ∈ H1(ω) for all j ≥ 1, and in addition,

lim infj→∞
√

1 + |∇′hs
j |2 is finite.

By a diagonal argument, we can find a subsequence (still denoted by (εj)) and a
decreasing sequence (sn)n≥1 of real numbers in (0, 1) with limn→∞ sn = 0 and such
that, for each n,

lim
j→∞

∫
ω

√
1 + |∇′hsn

j (x′)|2 dx′ = lim inf
j→∞

∫
ω

√
1 + |∇′hsn

j (x′)|2 dx′ < +∞ .

We can also assume that, for each n, hsn
j converges in L1(ω) to some function hsn ,

and since it is then clear (since V (ṽj(x)) → 0 a.e. in ω × (0,+∞)) that ṽj(x) → 0 for
a.e. x with xN > hsn(x′) and ṽj(x) → 1 for a.e. x with xN < hsn(x′), this function is
independent on n and will be denoted simply by h.

For any n ≥ 1, let us denote by un
j the function given by uj(x) if xN < hsn

j (x′)
and by 0 otherwise; let us show that (un

j )j≥1 is compact in GSBV (ω × (−1,+∞)).

One has un
j ∈ W 1,p({x : −1 < xN < hsn

j (x′)}); hence, un
j ∈ GSBV (ω × (−1,+∞))

with Sun
j
⊆ {(x′, hsn

j (x′)) : x′ ∈ ω}. In particular,

HN−1(Sun
j
) ≤

∫
ω

√
1 + |∇′hsn

j (x′)|2 dx′

is uniformly bounded (in j). On the other hand,

Fεj (uj , ṽj) ≥ (ηεj + s2
n)

∫
ω×(0,+∞)

W (∇un
j (x)) dx

showing that ∇un
j is uniformly bounded in Lp(ω × (−1,+∞); RN ).
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Now, for any x′ ∈ ω, if we denote by ûn
j the function un

j − u0 (where u0 is

appropriately extended to a function in W 1,p(ω × (−1,+∞)) that vanishes for xN ≥
1), one sees that, for any x with xN < hsn

j (x′),

|ûn
j (x)| ≤

∫ xN

0

|∂N ûn
j (x′, s)| ds ≤ x

1−1/p
N

(∫ xN

0

|∂N ûn
j (x′, s)|p ds

)1/p

so that, for any M > 0 and a.e. x′ ∈ ω,

∫ M∧hsn
j

(x′)

0

|ûn
j (x′, s)| ds ≤ M2−1/p

21−1/p

(∫ hsn
j

(x′)

0

|∂N ûn
j (x′, s)|p ds

)1/p

.

We get

‖ûn
j ‖L1(ω×(−1,M)) ≤ C(M)‖∂N ûn

j ‖Lp(ω×(−1,+∞)).

Therefore, un
j = ûn

j +u0 is uniformly bounded in L1
loc(ω × (−1,+∞)). By Ambrosio’s

compactness theorem we deduce that there exists un ∈ GSBVp(ω × (−1,+∞)) such
that un

j (x) → un(x) a.e. in ω × (−1,+∞), up to a subsequence.
By a diagonal argument, we can extract a subsequence (still denoted by (εj)j≥1)

such that for each n ≥ 0, un
j (x) → un(x) a.e. as εj → 0. Now, by construction we

have that if n′ ≥ n, then un′

j (x) = un
j (x) a.e. in {xN < hn

j (x′)}. From this we deduce

that un′
(x) = un(x) a.e. in {xN < h(x′)}, and since moreover one checks easily that

both functions vanish a.e. in {xN > h(x′)}, one deduces that un, which is simply
denoted by u in the following, is independent on n.

We have shown the first assertion of point (i) of Theorem 5.1: Indeed, if we let
v = χΩh

, one sees that ṽj(x) → v(x) a.e., and by construction also vj(x) → v(x) a.e.
in ω × (0,+∞). Moreover, uj(x) → u(x) a.e. in {x ∈ ω × (−1,+∞) : xN < h(x)},
with u = u0 in ω× (−1, 0). The function u is in GSBVp(ω × (−1,+∞)) and vanishes
above the graph of h.

Let us now show (30). We follow a similar proof as that in [13]. We have

∫
ω×(0,+∞)

(ηεj + ṽ2
j (x))W (∇uj(x)) dx ≥

∫
ω×(0,+∞)

(
2

∫ ṽj(x)

0

s ds

)
W (∇uj(x)) dx

≥
∫ 1

0

2s

(∫
{ṽj(x)>s}

W (∇uj(x)) dx

)
ds .

This inequality, together with (32), yields

Fεj (uj , ṽj) ≥∫ 1

0

(
2s

∫
{ṽj(x)>s}

W (∇uj(x)) dx + cV
√

2V (s)

∫
ω

√
1 + |∇′hs

j(x
′)|2 dx′

)
ds .

By Fatou’s lemma, we deduce that

(33)∫ 1

0

lim inf
j→∞

(
2s

∫
{ṽj(x)>s}

W (∇uj(x)) dx + cV
√

2V (s)

∫
ω

√
1 + |∇′hs

j(x
′)|2 dx′

)
ds

≤ lim inf
j→∞

Fεj (uj , ṽj) < +∞ .
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Therefore, for a.e. s ∈ (0, 1),

lim inf
j→∞

2s

∫
{ṽj(x)>s}

W (∇uj(x)) dx + cV
√

2V (s)

∫
ω

√
1 + |∇′hs

j(x
′)|2 dx′ < +∞ .

Let us choose such an s, with additionally hs
j ∈ H1(ω) for all j ≥ 1, and let us

consider a subsequence (jk)k≥1 such that

lim
k→∞

2s

∫
{ṽjk

(x)>s}
W (∇ujk(x)) dx + cV

√
2V (s)

∫
ω

√
1 + |∇′hs

jk
(x′)|2 dx′

= lim inf
j→∞

2s

∫
{ṽj(x)>s}

W (∇uj(x)) dx + cV
√

2V (s)

∫
ω

√
1 + |∇′hs

j(x
′)|2 dx′ .

As above, let us introduce the sequence of functions us
jk

∈ GSBVp(ω × (−1,+∞))
such that us

jk
(x) = ujk(x) if xN < hs

jk
(x′) and 0 otherwise. By compactness, we

easily check that us
jk

(x) → u(x) a.e. in ω × (−1,+∞), while hs
jk

→ h in L1(ω). By
the l.s.c. property (P1), we deduce

2s

∫
Ω+

h

W (∇u) + cV
√

2V (s)(HN−1(∂∗Ωh) + 2HN−1(S′
u ∩ Ω1

h))

≤ lim
k→∞

2s

∫
{ṽjk

(x)>s}
W (∇ujk(x)) dx + cV

√
2V (s)

∫
ω

√
1 + |∇′hs

jk
(x′)|2 dx′ .

Integrating (33) on (0, 1) and recalling that by construction Fεj (uj , ṽj) = Fεj (uj , vj)+
o(1), we deduce (30).

Let us now show point (ii) of Theorem 5.1. The proof follows the same lines as
in [9], where the same inequality is shown in the 2D case, and we will only sketch it.

Let h ∈ BV (ω; R+), and let u ∈ GSBVp(ω × (−1,+∞)), with u = u0 in ω ×
(−1, 0) and u(x) = 0 a.e. in {xN > h(x′)}, with F (u, h) < +∞. By Theorem 2.2,
there exist hn in C1(ω; R+) and un ∈ W 1,p(Ωh; R), with un = u0 in ω × (−1, 0),
hn → h in L1(ω), and un → u a.e. in ω × (0,+∞), with

lim sup
n→∞

F (un, hn) = F (u, h) .

By construction (since we have assumed u0 ∈ L∞(ω × (−1, 0))), one also has that
un ∈ L∞(ω × (0,+∞)). Now, we construct sequences (un

j )j and (vnj )j with un
j → un

in L1(ω × (0,+∞)) and vnj → χΩhn
in L1(ω × (0,+∞)) such that

(34) lim sup
j→∞

Fεj (u
n
j , v

n
j ) ≤ F (un, hn).

Let us condider the sequence of functionals

Hε(v) =
ε

2

∫
ω×(0,+∞)

|∇v(x)|2 dx +
1

ε

∫
ω×(0,+∞)

V (v(x)) dx;

the celebrated Γ-convergence result of Modica and Mortola for such functionals (see
[1]) allows us to find, for each n, a sequence (vnj )j converging to the characteristic
function χΩhn

such that

lim sup
j→∞

Hεj (v
n
j ) =

∫ 1

0

√
2V (s) ds HN−1(SχΩhn

∩ ω × (0,+∞))

= c−1
V HN−1(∂Ωhn

).
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We recall that the explicit construction of the recovery sequence (vnj )j can be
obtained in the following way: One considers γj solution of the Euler’s equation of
the functional with appropriate boundary conditions, namely,⎧⎨

⎩
−γ′′

j + V ′(γj) = 0,

γj(0) = 1, γj

( 1
√
εj

)
= 0 .

This function is extended by 0 beyond 1/
√
εj . One then lets

vnj (x) = γj

(dist(x,Ω+
hn

)

εj

)
.

Then, the sequence (un
j )j is constructed by translating un and multiplying by an

appropriate cut-off function, as in [9]. We first choose cn ≥ max{1, ‖∇hn‖L∞(ω)},
and let wn

j (x) := vnj (x′, xN − cn
√

2εj). This function is 1 on the support of vnj and

vanishes shortly beyond. Then, we let un
j (x) = un(x′, xN − 2cn

√
2εj)w

n
j (x). (As in

the end of the proof of Proposition 4.1, we have to modify slightly un
j in order to

ensure un
j = u0 in ω × (−1, 0); however, this is easily done, and one checks that this

modified un
j satisfies a uniform (in j) L∞ bound.) In order to show that (34) holds,

we just need to check

(35) lim sup
j→∞

∫
ω×(0,+∞)

(ηεj + (vnj (x))2)W (∇un
j (x)) dx ≤

∫
Ω+

hn

W (∇un(x)) dx .

Since ∇un
j (x) = wn

j (x)∇un(x′, xN − 2cn
√

2εj) + un(x′, xN − 2cn
√

2εj)∇wn
j (x), this

inequality is clear as soon as we have established that

lim sup
j→∞

ηεj

∫
ω×(0,+∞)

|un(x′, xN − 2cn
√

2εj)∇wn
j (x)|p dx = 0,

and since un is bounded in L∞, we need to show

lim sup
j→∞

ηεj

∫
ω×(0,+∞)

|∇wn
j (x)|p dx = 0 .

This integral is bounded by

∫
{0<dist(x,Ω+

hn
)<

√
εj}

|γ′
j |p

(
dist(x,Ω+

hn
)/εj

)
εpj

dx

=

∫ √
εj

0

|γ′
j |p(s/εj)

εpj
HN−1({dist(·,Ω+

hn
) = s}) ds

=
1

εp−1
j

∫ 1/
√
εj

0

|γ′
j |p(s)HN−1({dist(·,Ω+

hn
) = εjs}) ds .

Now, one can show that

∫ 1/
√
εj

0

|γ′
j |p(s)HN−1({dist(·,Ω+

hn
) = εjs}) ds → HN−1(∂Ω+

hn
)

∫ 1

0

√
2V (t)

p−1
dt
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as j → ∞; hence, since we have assumed ηε/ε
p−1 → 0 as ε → 0, we deduce (35)

and (34).
Since (34) holds, a standard diagonal extraction argument allows us to find sub-

sequences (unk
jk

)k, (vnk
jk

)k satisfying point (ii) of Theorem 5.1, and this completes the
proof of the theorem.

Appendix A. A simple inequality.
Lemma A.1. Let w ∈ C1([0, 1]N ) satisfy, for any x ∈ [0, 1]N ,

w(x) =
∑

k∈{0,1}N

w(k)Δ(x− k),

where Δ is defined in (21). Then, for any p ≥ 1,

(36)

∫
(0,1)N

Wp(∇w(x)) dx ≤ 1

2N−1

N∑
i=1

∑
k∈{0,1}N

ki=0

|w(k + ei) − w(k)|p.

Proof. We show that, for each i,∫
(0,1)N

∣∣∣∣ ∂w∂xi
(x)

∣∣∣∣
p

dx ≤ 1

2N−1

∑
k∈{0,1}N

ki=0

|w(k + ei) − w(k)|p .

We will show this inequality for i = N . Let us denote, for x′ = (x1, . . . , xN−1),

ΔN−1(x
′) =

N−1∏
i=1

(1 − |xi|)+ .

Then, for any x ∈ (0, 1)N ,

w(x) =
∑

k∈{0,1}N

w(k)Δ(x− k)

=
∑

k′∈{0,1}N−1

ΔN−1(x
′ − k′)(wk′,0(1 − xN ) + wk′,1xN )

so that

∂w

∂xN
(x) =

∑
k′∈{0,1}N−1

ΔN−1(x
′ − k′)(wk′,1 − wk′,0) .

Now, at any x, we have
∑

k′∈{0,1}N−1 ΔN−1(x
′ − k′) = 1 so that this is a convex

combination of (wk′,1 − wk′,0)k′∈{0,1}N−1 . Hence, by convexity of the function | · |p,∫
(0,1)N

∣∣∣∣ ∂w∂xN
(x)

∣∣∣∣
p

dx ≤
∫

(0,1)N

∑
k′∈{0,1}N−1

ΔN−1(x
′ − k′)|wk′,1 − wk′,0|p dx .

We deduce (36) by simply observing that, for any k′ ∈ {0, 1}N−1,

∫
(0,1)N

ΔN−1(x
′ − k′) dx =

∫ 1

0

dxN ×
N−1∏
i=1

∫ 1

0

(1 − |xi − ki|)+ dxi =
1

2N−1
.
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TRAVELING WAVEFRONTS IN A DELAYED FOOD-LIMITED
POPULATION MODEL∗

CHUNHUA OU† AND JIANHONG WU‡

Abstract. In this paper we develop a new method to establish the existence of traveling
wavefronts for a food-limited population model with nonmonotone delayed nonlocal effects. Our
approach is based on a combination of perturbation methods, the Fredholm theory, and the Banach
fixed point theorem. We also develop and theoretically justify Canosa’s asymptotic method for the
wavefronts with large wave speeds. Numerical simulations are provided to show that there exists a
prominent hump when the delay is large.
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1. Introduction. There has been some success in establishing the existence of
traveling wavefronts for the reaction-diffusion equation with nonlocal delayed nonlin-
earity. When the nonlinearity is monotone, the existence of traveling wavefronts can
be obtained by extension of the methods of the super/subsolution pair [1], [7], [29],
homotopy [3], and Leray-Schauder degree [28]. Unfortunately, when the delayed non-
linearity is no longer monotone, very little has been achieved (except for the work in
[9]). While one suspects that the method developed by Wu and Zou [29] and based on
a nonstandard ordering could be applicable, the construction of a supersolution and
subsolution pair is nontrivial, and it is almost as difficult as solving the original given
equations. In this paper we develop a new approach to establish the existence of trav-
eling wavefronts in the case when the delayed nonlinearity is nonmonotone. We shall
demonstrate this approach by considering the following food-limited reaction-diffusion
equation

(1.1)
∂u

∂t
(t, x) =

∂2u

∂x2
(t, x) + u(t, x)

1 − (f ∗ u)(t, x)

1 + γ(f ∗ u)(t, x)
,

where the parameter γ > 0, and the spatiotemporal convolution f ∗ u is defined by

(1.2) f ∗ u =

∫ t

−∞

∫ ∞

−∞
f(t, s, x, y)u(s, y)dyds,

with the kernel f(t, s, x, y) satisfying the normalization condition∫ t

−∞

∫ ∞

−∞
f(t, s, x, y)dyds = 1.
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The simplest version of (1.1) without diffusion is the following ODE:

(1.3)
du

dt
= ru(t)

K − u(t)

K + γu(t)
,

where r,K, and γ are positive constants. This equation was first proposed by Smith
[25] as a mathematical model for population of Daphnia (water flea), and a derivation
of this equation is given in [23]. The equation can also be used to study the effects of
environmental toxicants on aquatic populations [16].

The delayed food-limited model

(1.4)
du

dt
= ru(t)

K − u(t− τ)

K + γu(t− τ)
, τ > 0,

has been studied recently by several authors; see [13], [17], [27], [18], and [8]. It seems
that the best result for the local stability of the positive equilibrium u = K is given in
[27]. For the first time, the global stability of the positive equilibrium was established
in [18]; see also [8] for further generalizations.

Equation (1.3) incorporating spatial dispersal was investigated by Feng and Lu
[11]. They considered both the reaction-diffusion equation without time delay

(1.5)
∂u

∂t
−Au(t, x) = r(x)u(t, x)

K(x) − u(t, x)

K(x) + γ(x)u(t, x)

and the corresponding time-delay model

(1.6)
∂u

∂t
−Au(t, x) = r(x)u(t, x)

K(x) − au(t, x) − bu(t− τ, x)

K(x) + aγ(x)u(t, x) + bγ(x)u(t− τ, x)
,

where x = (x1, x2, . . . , xn) ∈ Ω ⊆ Rn, with Ω bounded and the operator A, given by

A =
n∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
j=1

βj(x)
∂

∂xj
,

is uniformly strongly elliptic and has coefficient functions that are uniformly Hölder
continuous in Ω̄. Feng and Lu studied the above problems subject to general boundary
conditions that include both the zero-Dirichlet and zero-Neumann cases, and they
established a global convergence result for the nonzero steady state.

We are here concerned about the general case (1.1), and we first note that this
includes various types of special cases by choosing the kernel function f.

(i) If the kernel f is taken to be

f(t, s, x, y) = δ(t− s)δ(x− y),

(1.1) becomes the reaction-diffusion equation without delay

(1.7)
∂u

∂t
(t, x) =

∂2u

∂x2
(t, x) + u(t, x)

1 − u(t, x)

1 + γu(t, x)
,

which is a special case of (1.5).
(ii) If the kernel function f has a discrete time lag τ and spatial averaging, that

is,

f(t, s, x, y) =
1√

4π(t− s)
e−(x−y)2/4(t−s)δ(t− s− τ),
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then (1.1) becomes

(1.8)
∂u

∂t
=

∂2u

∂x2
+ u

1 −
∫∞
−∞

e−(x−y)2/4τ
√

4πτ
u(t− τ, y)dy

1 + γ
∫∞
−∞

e−(x−y)2/4τ√
4πτ

u(t− τ, y)dy
.

A derivation of this type of model, using probabilistic arguments, was given in [4]. In
this model, the movement of individuals to their present positions from where they
have been at previous times is accounted for by a spatial convolution with a kernel
that spreads normally with a dependence on the delay.

(iii) If f(t, s, x, y) = δ(x− y)G(t− s), where

(1.9) G(t) =
1

τ
e−t/τ or G(t) =

t

τ2
e−t/τ ,

(1.1) becomes a model of reaction diffusion equation with distributed delay:

(1.10)
∂u

∂t
=

∂2u

∂x2
+ u

1 −
∫ t

−∞ G(t− η)u(η, x)dη

1 + γ
∫ t

−∞ G(t− η)u(η, x)dη
.

The parameter τ measures time delay and is comparable to the discrete delay τ in
(1.8). The two kernel functions G in (1.9) are used frequently in the literature on
delay differential equations. The first of the two functions G is sometimes called the
“weak” generic kernel because it implies that the importance of events in the past
decreases exponentially. The second kernel (the “strong” generic case) is different
because it implies that a particular time in the past, namely, τ time units ago, is
more important than any other since this kernel achieves its unique maximum when
t = τ. This kernel can be viewed as a smoothed out version of the case G(t) = δ(t−τ),
which gives rise to the discrete delay model.

(iv) If the kernel f is taken to be

f(t, s, x, y) =
1√

4π(t− s)
e−(x−y)2/4(t−s)G(t− s),

then (1.1) is a reaction diffusion equation with both distributed delay and spatial
averaging. In the distributed delay case with G(t) = 1

τ e
−t/τ , a formal asymptotic

expansion of traveling wavefront to (1.1) when τ is small was found recently by Gourley
and Chaplain by using the so-called linear chain techniques; see [14], [15]. But the
convergence of this series or the proof of validity of this expansion has been absent.
The central idea of this trick is to recast the traveling wave equation into a higher
dimensional system of ODEs without delay. When τ is small, Fenichel’s geometrical
singular perturbation theory (see [12] or part two of [2]) is applicable. As mentioned
in [14], if G(t) = t

τ2 e
−t/τ , linear chain techniques are still applicable, but the system

of traveling wave profile equation is six-dimensional. While the trick remains to be
effective theoretically, it will be much more difficult in practice. Apparently, it is well
known that the drawback of this method is that it is applicable only for models with
the special distributed delays. One cannot extend this technique to the discrete case.
Another disadvantage of this approach is that if the unperturbed system (τ = 0) is a
higher dimensional system, the construction of a traveling wavefront is extraordinarily
difficult.

As mentioned in section 3 of [14], traveling wave solutions to (1.1) in the discrete
case are much more difficult to study than in the distributed case with specific ker-
nels, because we are no longer able to recast the wave profile equation of (1.8) into
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a nondelay equation, and thus Fenichel’s geometrical singular perturbation theory
cannot be directly used to find a heteroclinic connection in a finite dimensional man-
ifold. Generally, it is well known that in this case the search for traveling wavefronts
becomes a much more difficult task.

The purpose of this paper is to develop a completely new approach suitable for all
of the aforementioned cases for the existence of traveling wavefronts. The principal
result can be stated as follows.

Theorem 1.1. For any fixed constant c ≥ 2, there exists a real number δ =
δ(c) > 0 so that for τ ∈ [0, δ], (1.1) possesses a traveling wavefront u(t, x) = U(x− ct)
satisfying U(−∞) = 1 and U(∞) = 0.

We should remark that our approach here can be developed to study more general
equations including

∂u

∂t
(t, x) =

∂2u

∂t2
(t, x) + u(t, x)H((f ∗ u)(t, x)),

with H(·) a decreasing function; we refer to [20] for this development.
Although the main result should be of interest, we wish to emphasize the novelty

of the approach that we develop. This approach is based on a combination of the
perturbation analysis, the Fredholm operator theory, and the fixed point theorems
and is expected to find applications in other models as well. A detailed proof is given
for case (ii) and is sketched to emphasize the key differences for cases (iii) and (iv).
This approach does not work when the delay is not small. In the case where the delay
is arbitrary, we develop in section 5 Faria, Huang, and Wu’s perturbation method [9]
for traveling wavefronts with large wave speeds. We shall provide both theoretical
justifications and numerical simulations for this method.

2. The discrete-delay and spatial-averaging case. In the discrete-delay and
spatial-averaging case, i.e., the case when the delayed term involves an evaluation
of the dependence exactly time τ ago and a convolution in space to account for the
movement of individuals to their present positions from their past positions at previous
times, (1.1) becomes

(2.1)
∂u

∂t
=

∂2u

∂x2
+ u(t, x)

(
1 −

∫∞
−∞ 1/

√
4πτe−(x−y)2/(4τ)u(t− τ, y)dy

1 + γ
∫∞
−∞ 1/

√
4πτe−(x−y)2/(4τ)u(t− τ, y)dy

)
.

Our intention here is to establish the existence of traveling waves to (2.1) con-
necting the two uniform steady states u = 0 and u = 1. For this purpose, we first
show the existence of such wavefronts when the delay τ is zero.

Letting τ → 0+, we arrive at the following nondelay version of the food-limited
model:

(2.2)
∂u

∂t
=

∂2u

∂x2
+ u

1 − u

1 + γu
,

which is actually a modified version of the well-known Fisher’s equation. Obviously,
(2.2) has two uniform steady-state solutions u = 0 and u = 1. Considering the trav-
eling wavefront form by setting u(t, x) = U0(z) = U0(x − ct) in (2.2), we obtain the
following second-order ODE for U0(z):

(2.3) U ′′
0 + cU ′

0 + U0
1 − U0

1 + γU0
= 0
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or equivalently the following first-order coupled system

(2.4)

{
U ′

0 = V0,

V ′
0 = −cV0 − U0

1−U0

1+γU0
.

The existence of traveling wavefronts to (2.4) can be established by using the
standard phase-plane techniques. Here we present only the result below.

Theorem 2.1. If c ≥ 2, then in the (U0, V0) phase plane, a heteroclinic connec-
tion exists between the critical points (U0, V0) = (1, 0) and (0, 0). Furthermore, the
traveling front U0(z) is strictly monotonically decreasing.

It is easy to see that the equilibrium (1, 0) is a saddle and the origin (0, 0) is a
stable node.

To obtain an extension when τ > 0, we need the following estimate on the deriva-
tive of the wave profile U0.

Theorem 2.2. Let U0 be a traveling wavefront solution to (2.3). Then

(2.5) − 1

2
√
γ
< U ′

0(z) ≤ 0 for all z ∈ (−∞,∞).

Proof. Since U0 is strictly monotonically decreasing, it is obvious that U ′
0(z) ≤ 0.

It remains to prove that U ′
0(z) > −1/(2

√
γ). Note that (2.3) can be rewritten as

(2.6) U ′′
0 + cU ′

0 − 1

γ
U0 +

(
1 +

1

γ

)
U0

1 + γU0
= 0.

Let

λ1 =
−c−

√
c2 + 4/γ

2
< 0, λ2 =

−c +
√
c2 + 4/γ

2
> 0.

Then it follows from (2.6) that

U0(z) =
(1 + 1

γ )

λ2 − λ1

[∫ z

−∞
eλ1(z−s) U0

1 + γU0
ds +

∫ ∞

z

eλ2(z−s) U0

1 + γU0
ds

]
,

and hence using the fact that 0 < U0 < 1, we have

U ′
0(z) =

(1 + 1
γ )

λ2 − λ1

[
λ1

∫ z

−∞
eλ1(z−s) U0

1 + γU0
ds + λ2

∫ ∞

z

eλ2(z−s) U0

1 + γU0
ds

]

>
(1 + 1

γ )λ1

λ2 − λ1

∫ z

−∞
eλ1(z−s) U0

1 + γU0
ds

≥
(1 + 1

γ )λ1

λ2 − λ1
max

(
U0

1 + γU0

)∫ z

−∞
eλ1(z−s)ds

= −
(1 + 1

γ )

(1 + γ)
√
c2 + 4/γ

≥ − 1

2
√
γ
.

The proof is complete.
Now we are in a position to establish the existence of traveling wavefronts to

(2.1). We will show that the traveling fronts to (2.1) can be approximated by the
corresponding wavefronts U0(z) of (2.3) when τ is small. First, we introduce some
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notations. Let C(R,R) be the Banach space of continuous and bounded functions
from R to R equipped with the standard norm ||φ||C = sup{|φ(t)|, t ∈ R}. Let C1 =
C1(R,R) = {φ ∈ C : φ′ ∈ C}, C2 = {φ ∈ C : φ′′ ∈ C}, C0 = {φ ∈ C : limt→±∞ φ =
0}, and C1

0 = {φ ∈ C0 : φ′ ∈ C0}, where the corresponding norms are defined by

||φ||C0 = ||φ||C , ||φ||C1 = ||φ||C1
0

= ||φ||C + ||φ′||C ,

and

||φ||C2 = ||φ||C + ||φ′||C + ||φ′′||C .

Set u(t, x) = U(z) = U(x− ct) in (2.1). Then U(z) satisfies the profile equation

(2.7) −cU ′ = U ′′ + U
1 −H(U)(z)

1 + γH(U)(z)
,

where

H(U)(z) =

∫ ∞

−∞

1√
4πτ

e−y2/(4τ)U(z − y + cτ)dy.

We suppose that U can be approximated by U0 and hence assume that U = U0 +W.
Then an equation for W is given by

(2.8) −cW ′ = W ′′ + (U0 + W )
1 −H(U0 + W )(z)

1 + γH(U0 + W )(z)
− U0

1 − U0(z)

1 + γU0(z)
.

Applying Taylor’s expansions to

(U0 + W )
1 −H(U0 + W )(z)

1 + γH(U0 + W )(z)

yields

(U0 + W )
1 −H(U0 + W )(z)

1 + γH(U0 + W )(z)
= U0

1 −H(U0)

1 + γH(U0)

+W
1 −H(U0)

1 + γH(U0)
− (1 + γ)U0

(1 + γH(U0))2
H(W )

+R1(z, τ,W ),(2.9)

where R1(z, τ,W ) is the remainder (higher order terms) of this expansion, and for
the time being we write it as

R1(z, τ,W ) = (U0 + W )
1 −H(U0 + W )(z)

1 + γH(U0 + W )(z)

−U0
1 −H(U0)

1 + γH(U0)
(2.10)

−W
1 −H(U0)

1 + γH(U0)
+

(1 + γ)U0

(1 + γH(U0))2
H(W ).

Let g(x) = x 1−x
1+γx . Then we have

g′(x) =
1 − x

1 + γx
− (1 + γ)x

(1 + γx)2
.
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Therefore, by (2.9), (2.8) becomes

−cW ′ = W ′′ + g′(U0(z))W (z)

(2.11)
+ R1(z, τ,W ) + R2(z, τ) + R3(z, τ,W ),

where

R2(z, τ) = U0
1 −H(U0)

1 + γH(U0)
− g(U0),

and

R3(z, τ,W ) = W
1 −H(U0)

1 + γH(U0)
− (1 + γ)U0

(1 + γH(U0))2
H(W ) − g′(U0(z))W (z).

Next we transform (2.11) into an integral equation as follows. Recall that the
equation

W ′′ + cW ′ −W = 0

has the characteristic equation

λ2 + cλ− 1 = 0

that has two real roots

λ1 =
−c−

√
c2 + 4

2
< 0, λ2 =

−c +
√
c2 + 4

2
> 0.

Thus (2.11) is equivalent to the following integral equation:

(2.12) W =
1

λ2 − λ1

⎛
⎝

∫ z

−∞ eλ1(z−s) [(1 + g′(U0(s)))W (s) + R1 + R2 + R3] ds

+
∫∞
z

eλ2(z−s) [(1 + g′(U0(s)))W (s) + R1 + R2 + R3] ds

⎞
⎠ .

We will study the existence of a solution W ∈ C0 to (2.12). For this purpose, we
define a linear operator L : C0 → C0 by

L(W )(z) = W −
∫ z

−∞ eλ1(z−s)(1 + g′(U0(s)))W (s)ds

λ2 − λ1

−
∫∞
z

eλ2(z−s)(1 + g′(U0(s)))W (s)ds

λ2 − λ1
.

It is obvious that L(W ) ∈ C0 if W ∈ C0. In order to verify the existence of a solution
W ∈ C0 to (2.12), we need to establish some estimates for the terms in the right-hand
side of (2.12) when W ∈ C0. We have the following.

Lemma 2.3. For each δ > 0, there is a σ > 0 such that

(2.13) ||R1(z, τ, φ) −R1(z, τ, ϕ)||C0
≤ δ||φ− ϕ||C0

and∫ z

−∞
eλ1(z−s)|R1(s, τ, φ) −R1(s, τ, ϕ)|ds +

∫ ∞

z

eλ2(z−s)|R1(s, τ, φ) −R1(s, τ, ϕ)|ds

≤ δ||φ− ϕ||C0

(2.14)
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for all finite τ and all φ, ϕ ∈ B(σ), where B(σ) is the ball in C0 with radius σ and
the center at the origin.

Proof. Since R1 is the remainder of Taylor’s expansion and ||Hφ|| ≤ ||φ|| for any
φ ∈ C, we have

(2.15) ||R1(·, τ, φ)|| = O(||φ||2C0
) as ||φ||C0

→ 0,

uniformly for all finite τ. Obviously R1(·, τ, φ), (R1)φ(·, τ, φ) (the derivative of R1 with
respect to φ), and (R1)φφ(·, τ, φ) (the second derivative of R1 with respect to φ) are
continuous for φ in a neighborhood of the origin in C0, and τ ∈ [0, τ0], where τ0 is a
positive number. Therefore, (2.13) and (2.14) follow from (2.15).

Lemma 2.4. As τ → 0, we have∣∣∣∣
∫ z

−∞
eλ1(z−s)R2(s, τ)ds +

∫ ∞

z

eλ2(z−s)R2(s, τ)ds

∣∣∣∣ = O(
√
τ)

uniformly for all z ∈ (−∞,∞).
Proof. Since

R2(z, τ) = U0
1 −H(U0)

1 + γH(U0)
− g(U0)

= U0
1 −H(U0)

1 + γH(U0)
− U0

1 − U0

1 + γU0
,

we need to show only that when τ is small, the following:

(2.16)

∫ z

−∞
eλ1(z−s) |H(U0)(s) − U0(s)| ds = O(

√
τ)

and

(2.17)

∫ ∞

z

eλ1(z−s) |H(U0)(s) − U0(s)| ds = O(
√
τ)

hold. In fact, we have∫ z

−∞
eλ1(z−s) |H(U0)(s) − U0(s)| ds

=

∫ z

−∞
eλ1(z−s)

∣∣∣∣
∫ ∞

−∞

1√
4πτ

e−y2/4τU0(s− y + cτ)dy − U0(s)

∣∣∣∣ ds
=

∫ z

−∞
eλ1(z−s)

∣∣∣∣
∫ ∞

−∞

1√
4πτ

e−y2/4τ [U0(s− y + cτ) − U0(s)] dy

∣∣∣∣ ds
≤

∫ z

−∞
eλ1(z−s)

∫ ∞

−∞

1√
4πτ

e−y2/4τ (|y| + cτ)dyds||U ′
0||

= O(
√
τ).

Similarly we can show (2.17).
Lemma 2.5. There exists an M0 > 0 such that for all W ∈ C0, the following

inequality:

(2.18)

∣∣∣∣
∫ z

−∞
eλ1(z−s)R3(s, τ,W )ds +

∫ ∞

z

eλ2(z−s)R3(s, τ,W )ds

∣∣∣∣ ≤ √
τM0||W ||C0
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holds. Furthermore for any two elements φ and ϕ in C0, we have∣∣∣∣
∫ z

−∞
eλ1(z−s)(R3(s, τ, φ) −R3(s, τ, ϕ))ds +

∫ ∞

z

eλ2(z−s)(R3(s, τ, φ) −R3(s, τ, ϕ))ds

∣∣∣∣
= O(

√
τ)||φ− ϕ||C0 .

(2.19)

Proof. We rewrite R3 as

R3(z, τ,W ) = W

(
1 −H(U0)

1 + γH(U0)
− 1 − U0

1 + γU0

)

−H(W )

(
(1 + γ)U0

(1 + γH(U0))2
− (1 + γ)U0

(1 + γU0)2

)

− (1 + γ)U0

(1 + γU0)2
(H(W ) −W ) .(2.20)

Therefore, for the integrations of the first and the second lines on the right-hand side
of (2.20), we have from (2.16) the following estimates:∣∣∣∣

∫ z

−∞
eλ1(z−s)W

(
1 −H(U0)

1 + γH(U0)
− 1 − U0

1 + γU0

)
ds

∣∣∣∣ = O(
√
τ ||W ||),(2.21)

and ∣∣∣∣
∫ z

−∞
eλ1(z−s)H(W )

(
(1 + γ)U0

(1 + γH(U0))2
− (1 + γ)U0

(1 + γU0)2

)
ds

∣∣∣∣ = O(
√
τ ||W ||),(2.22)

due to the fact ||H(W )|| ≤ ||W ||. For the integration of the function in the last line
of (2.20), if W ∈ C1

0 , by exchanging the order of integration and integration by parts,
we have ∫ z

−∞
eλ1(z−s) (1 + γ)U0

(1 + γU0)2
(H(W ) −W ) ds

=

∫ z

−∞
eλ1(z−s) (1 + γ)U0

(1 + γU0)2

∫ ∞

−∞

1√
4πτ

e−y2/(4τ) (W (s− y + cτ) −W (s)) dyds

=

∫ z

−∞
eλ1(z−s) (1 + γ)U0

(1 + γU0)2

∫ ∞

−∞

1√
4πτ

e−y2/(4τ)

∫ −y+cτ

0

W ′(s + η)dηdyds

=

∫ ∞

−∞

1√
4πτ

e−y2/(4τ)

∫ −y+cτ

0

∫ z

−∞
eλ1(z−s) (1 + γ)U0

(1 + γU0)2
W ′(s + η)dsdηdy

=
(1 + γ)U0(z)

(1 + γU0(z))2

∫ ∞

−∞

1√
4πτ

e−y2/(4τ)

∫ −y+cτ

0

W (z + η)dηdy

−
∫ ∞

−∞

1√
4πτ

e−y2/(4τ)

∫ −y+cτ

0

∫ z

−∞
W (s + η)

[
eλ1(z−s) (1 + γ)U0

(1 + γU0)2

]′
dsdηdy

= O(
√
τ ||W ||).

(2.23)

To obtain the above result, we have used the fact that∫ z

−∞

∣∣∣∣ dds
[
eλ1(z−s) (1 + γ)U0(s)

(1 + γU0(s))2

]∣∣∣∣ ds
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is uniformly bounded for all z ∈ (−∞,∞). Therefore, from (2.21), (2.22), and (2.23)
it follows that there exists a constant M1 such that

(2.24)

∣∣∣∣
∫ z

−∞
eλ1(z−s)R3(s, τ,W )ds

∣∣∣∣ ≤ √
τM1||W ||C0 .

Similarly, we can prove that there exists a constant M2 so that

(2.25)

∣∣∣∣
∫ ∞

z

eλ2(z−s)R3(s, τ,W )ds

∣∣∣∣ ≤ √
τM2||W ||C0 .

Therefore, it follows from (2.24) and (2.25) that for any W ∈ C1
0 , we have∣∣∣∣

∫ z

−∞
eλ1(z−s)R3(s, τ,W )ds +

∫ ∞

z

eλ2(z−s)R3(s, τ,W )ds

∣∣∣∣ ≤ √
τM0||W ||C0 ,

with

M0 =

2∑
j=1

Mj .

Since C1
0 is dense in C0, the inequality (2.18) holds for all W ∈ C0. Thus (2.19) is

satisfied due to the fact that R3(s, τ,W ) is a linear functional of W.
We should mention that for each τ > 0 and W ∈ C0, we have R1, R2, and R3 ∈ C0

and hence∫ z

−∞
eλ1(z−s)(R1 + R2 + R3)ds +

∫ ∞

z

eλ2(z−s) [R1 + R2 + R3] ds ∈ C0.

Now we are ready to prove our main result.
Theorem 2.6. For any c ≥ 2, there exists a constant δ = δ(c) > 0 so that

for any τ ∈ [0, δ], (2.1) possesses a traveling wavefront u(t, x) = U(x− ct) satisfying
U(−∞) = 1 and U(∞) = 0.

Proof. Define an operator T : Ψ ∈ C2 → C from the homogeneous part of (2.11)
as follows:

(2.26) TΨ(z) = cΨ′(z) + Ψ′′(z) + g′(U0(z))Ψ(z).

The formal adjoint equation of TΨ = 0 is given by

(2.27) −cΦ′(z) + Φ′′(z) + g′(U0(z))Φ(z) = 0, z ∈ R.

We now divide our proof into five steps.
Step 1. We claim that if Φ ∈ C is a solution of (2.27) and Φ is C2-smooth, then

Φ = 0. Moreover, we have 
(T ) = C, where 
(T ) is the range space of T.
Indeed, when z → ∞, U0(z) → 0 and g′(U0(z)) → 1. Then (2.27) tends asymp-

totically to an equation with constant coefficients

(2.28) −cΦ′(z) + Φ′′(z) + Φ(z) = 0.

The corresponding characteristic equation of (2.28) is

(2.29) λ2 − cλ + 1 = 0.
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Both roots of (2.29) have a positive real part as c ≥ 2, and thus we can conclude that
any bounded solution to (2.28) must be the zero solution. So as z → ∞, any solution
to (2.27) other than the zero solution must grow exponentially for large z. Then the
only solution satisfying Φ(±∞) = 0 is the zero solution. By the Fredholm theory (see
Lemma 4.2 in [22]) we have that 
(T ) = C.

Step 2. Let Θ ∈ C0 be given. We conclude that if Ψ is a bounded solution of
TΨ = Θ, then we have limz→±∞ Ψ(z) = 0.

In fact when z → ∞, the equation

(2.30) cΨ′(z) + Ψ′′(z) + g′(U0(z))Ψ(z) = Θ

tends asymptotically to

(2.31) cΨ′(z) + Ψ′′(z) + Ψ(z) = 0.

Note for (2.31), the ω-limit set of every bounded solution is just the critical point
Ψ = 0. Using Theorem 1.8 from [19], we find that every bounded solution of (2.30)
also satisfies

lim
z→∞

Ψ(z) = 0.

When z → −∞, (2.30) tends asymptotically to

(2.32) cΨ′(z) + Ψ′′(z) + g′(1)Ψ(z) = 0.

Since g′(1) = −1, the characteristic equation of (2.32) has two eigenvalues: λ̄1 < 0
and λ̄2 > 0. Thus every bounded solution of (2.32) must satisfy

lim
z→−∞

Ψ(z) = 0.

Inverting the time from z to −z and using the result in [19] again, we know that any
bounded solution to (2.30) satisfies limz→−∞ Ψ(z) = 0. Hence the claim of Step 2
holds.

Step 3. For a linear operator L : C0 → C0 defined by

L(W )(z) = W − 1

λ2 − λ1

⎛
⎝

∫ z

−∞ eλ1(z−s)(1 + g′(U0(s)))W (s)ds

+
∫∞
z

eλ2(z−s)(1 + g′(U0(s)))W (s)ds

⎞
⎠ ,

we want to prove that 
(L) = C0; that is, for each Z ∈ C0, we have a W ∈ C0 so that

W − 1

λ2 − λ1

⎛
⎝

∫ z

−∞ eλ1(z−s)(1 + g′(U0(s)))W (s)ds

+
∫∞
z

eλ2(z−s)(1 + g′(U0(s))W (s))ds

⎞
⎠ = Z(z).

To see this, we assume that ξ(z) = W (z) − Z(z) and obtain an equation for ξ as
follows:

ξ(z) =
1

λ2 − λ1

⎛
⎝

∫ z

−∞ eλ1(z−s)(1 + g′(U0(s)))ξ(s)ds

+
∫∞
z

eλ2(z−s)(1 + g′(U0(s)))ξ(s)ds

⎞
⎠

+
1

λ2 − λ1

⎛
⎝

∫ z

−∞ eλ1(z−s)(1 + g′(U0(s)))Z(s)ds

+
∫∞
z

eλ2(z−s)(1 + g′(U0(s)))Z(s)ds

⎞
⎠ .
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Differentiating both sides twice yields

(2.33) −cξ′ − ξ′′(z) − g′(U0(z))ξ(z) = (1 + g′(U0(z)))Z(z).

Using the results that 
(T ) = C in Step 1 and Z ∈ C0, we obtain by Step 2 that there
exists a solution ξ(z) satisfying (2.33) and ξ(±∞) = 0. Returning to the variable W,
we have W = ξ + Z ∈ C0.

Step 4. Let N(L) be the null space of operator L. By Lemma 5.1 in [9], there is
a subspace N⊥(L) in C0 so that

C0 = N⊥(L) ⊕N(L);

see also [10]. It is clear that N⊥(L) is a Banach space. If we let S = L|N⊥(L) be

the restriction of L to N⊥(L), then S : N⊥(L) → C0 is one-to-one and onto. By the
well-known Banach inverse operator theorem, we have that S−1 : C0 → N⊥(L) is a
linear bounded operator.

Step 5. When L is restricted to N⊥(L), (2.12) can be written as

S(W )(z) =
1

λ2 − λ1

⎛
⎝

∫ z

−∞ eλ1(z−s) [R1 + R2 + R3] ds

+
∫∞
z

eλ2(z−s) [R1 + R2 + R3] ds

⎞
⎠ .

Since the norm ||S−1|| is independent of τ, it follows from Lemmas 2.3, 2.4, and
2.5 that there exist σ > 0, δ > 0, and 0 < ρ < 1 such that for all τ ∈ (0, δ] and
W,ϕ, ψ ∈ B(σ) ∩N⊥(L),

||F (z,W ) || ≤ 1

3
(||W || + σ)

and

||F (z, ϕ) − F (z, ψ)|| ≤ ρ||ϕ− ψ||,

where

F (z,W ) =
1

λ2 − λ1
S−1

⎛
⎝

∫ z

−∞ eλ1(z−s) [R1 + R2 + R3(τ, s,W )] ds

+
∫∞
z

eλ2(z−s) [R1 + R2 + R3(τ, s,W )] ds

⎞
⎠ .

It is easy to know that for any W ∈ B(σ) ∩N⊥(L), we have

||F (z,W ) || ≤ 1

3
(||W || + σ) ≤ σ.

Hence F (z, ϕ) is a uniform contractive mapping for W ∈ N⊥(L)∩B(σ). By using the
Banach contraction principle, it follows that for τ ∈ [0, δ], equation (2.12) has a unique
solution W ∈ N⊥(L). Returning to the original variable, W + U0 is a heteroclinic
connection between the two equilibria 1 and 0. This completes the proof.

3. The distributed delay case. In this section we consider (1.1) with the
kernel function

f(t, s, x, y) = G(t− s)δ(x− y),
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where

(3.1) G(t) =
1

τ
e−t/τ or G(t) =

t

τ2
e−t/τ .

We shall focus on the following equation

(3.2)
∂u

∂t
=

∂2u

∂x2
+ u

1 −
∫ t

−∞
t−η
τ2 e−(t−η)/τu(η, x)dη

1 + γ
∫ t

−∞
t−η
τ2 e−(t−η)/τu(η, x)dη

since the corresponding analysis for the weak kernel G(t) = 1
τ e

−t/τ is much easier.
Instead of using the linear chain trick which is valid only for the kernels in (3.1), we
shall use the approach in section 2 to prove rigorously that traveling fronts exist when
τ is small.

As in section 2, assume that u(t, x) = U(z), z = x− ct, where c ≥ 2. Substituting
u = U(z) into (3.2), we have a wave equation for U

−cU ′ = U ′′ + U
1 −

∫∞
0

η
τ2 e

−η/τU(z + cη)dη

1 + γ
∫∞
0

η
τ2 e−η/τU(z + cη)dη

.

Let U = U0 +W, where U0 is the traveling fronts for (2.4). Then we have an equation
for W of the form

(3.3) −cW ′ = W ′′ −W + (U0 + W )h[U0 + W ] − U0
1 − U0

1 + γU0
,

where the functional h is defined by

h[U ](z) =
1 −

∫∞
0

η
τ2 e

−η/τU(z + cη)dη

1 + γ
∫∞
0

η
τ2 e−η/τU(z + cη)dη

.

Applying Taylor’s expansion to h[U0 + W ], we have

h[U0 + W ](z) =
1 −

∫∞
0

η
τ2 e

−η/τ [U0(z + cη) + W (z + cη]dydη

1 + γ
∫∞
0

η
τ2 e−η/τ [U0(z + cη) + W (z + cη]dydη

= h[U0](z) −
(1 + γ)(

1 + γ
∫∞
0

η
τ2 e−η/τU0(z + cη)dη

)2
∫ ∞

0

η

τ2
e−η/τW (z + cη)dη + · · · .

Thus (3.3) becomes

−cW ′ = W ′′ + g′(U0(z))W (z)

(3.4) + R1(z, τ,W ) + R2(z, τ) + R3(z, τ,W ),

where

R1(z, τ,W ) = (U0 + W )h[U0 + W ](z) − U0h[U0](z)

+U0
(1 + γ)(

1 + γ
∫∞
0

η
τ2 e−η/τU0(z + cη)dη

)2
∫ ∞

0

η

τ2
e−η/τW (z + cη)dη(3.5)

−h[U0]W,

(3.6) R2(z, τ) = U0h[U0](z) − U0
1 − U0

1 + γU0
,
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and

R3(z, τ,W ) =
(1 + γ) U0

∫∞
0

η
τ2 e

−η/τW (z + cη)dη(
1 + γ

∫∞
0

η
τ2 e−η/τU0(z + cη)dη

)2
(3.7)

+h[U0]W (z) − g′(U0(z))W (z).

To obtain the existence of the traveling fronts when τ is small, we need to prove that
Lemmas 2.3, 2.4, and 2.5 hold. The proofs are quite similar to those in the discrete
case, so we shall prove only Lemma 2.5 as an illustration and leave the proofs of
Lemmas 2.3 and 2.4 to interested readers.

Proof of Lemma 2.5 in the case of distributed delay. Note that

g′(U0(z)) =
1 − U0

1 + γU0
− (1 + γ)U0

(1 + γU0)2
.

So

R3(z, τ,W ) = F̄ (U0)(z)

(∫ ∞

0

η

τ2
e−η/τW (z + cη)dη −W (z)

)

−
(

(1 + γ) U0(
1 + γ

∫∞
0

η
τ2 e−η/τU0(z + cη)dη

)2 − (1 + γ)U0

(1 + γU0)2

)
W

+

(
h[U0] −

1 − U0

1 + γU0

)
W,

where

F̄ (U0)(z) = − (1 + γ)U0(
1 + γ

∫∞
0

η
τ2 e−η/τU0(z + cη)dη

)2 .
We note that when τ is small,∫ ∞

0

η

τ2
e−η/τU0(z + cη)dη − U0(z) = O(τ)

holds uniformly for any z ∈ (−∞,∞). Therefore, we have

∫ z

−∞
eλ1(z−s)

(
(1 + γ) U0(

1 + γ
∫∞
0

η
τ2 e−η/τU0(s + cη)dη

)2 − (1 + γ)U0

(1 + γU0)2

)
W (s)ds

= O(τ ||W ||)

and ∫ z

−∞
eλ1(z−s)

(
h[U0] −

1 − U0

1 + γU0

)
W (s)ds = O(τ ||W ||).

We now prove that∫ z

−∞
eλ1(z−s)F̄ (U0)(s)

(∫ ∞

0

η

τ2
e−η/τ (W (s + cη) −W (s)) dη

)
ds = O(τ ||W ||).

Using the fact that

F̄ (U0)(s) = O(1)
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for any s ∈ (−∞,∞), we need only prove that∫ z

−∞
eλ1(z−s)

(∫ ∞

0

η

τ2
e−η/τ (W (s + cη) −W (s)) dη

)
ds = O(τ ||W ||).

Indeed, when W ∈ C1
0 , we have

W (s + cη) −W (s) =

∫ cη

0

W ′(s + v)dv.

Exchanging the order of integration and using the integration by parts, we obtain∫ z

−∞
eλ1(z−s)

(∫ ∞

0

η

τ2
e−η/τ (W (s + cη) −W (s)) dη

)
ds

=

∫ ∞

0

η

τ2
e−η/τ

(∫ cη

0

∫ z

−∞
eλ1(z−s)W ′(s + v)dsdv

)
dη

= O(τ ||W ||C0
).

Continuing the process as in section 2, we can show that Lemma 2.5 remains true,
and so does the result in Theorem 2.6 for (3.2).

Similarly, we can prove that Theorem 2.6 is true if the kernel function is re-
placed by

f(t, s, x, y) =
1

τ
e−(t−s)δ(x− y).

4. The distributed delay and spatial-averaging case. In this section, we
consider (1.1) with the distributed delay and spatial averaging. Namely, we study the
following equation:

(4.1)

∂u

∂t
=

∂2u

∂x2
+ u(t, x)

⎛
⎜⎝1 −

∫ 0

−∞
t−η
τ2 e−(t−η)/τ

∫∞
−∞

exp(−(x−y)2/(4(t−η)))√
4π(t−η)

u(η, y)dydη

1 +
∫ 0

−∞
t−η
τ2 e−(t−η)/τ

∫∞
−∞

exp(−(x−y)2/(4(t−η)))√
4π(t−η)

u(η, y)dydη

⎞
⎟⎠ .

As before, by a traveling wavefront, we mean a solution u(t, x) = U(z) = U(−ct+x),
where c > 0 is the wave speed. Thus this specific kind of solution satisfies the following
second-order ODE:

(4.2) −cU ′ = U ′′ + U
1 −H1(U)(z)

1 + γH1(U)(z)
,

where

H1(U)(z) =

∫ ∞

0

η

τ2
e−η/τ

∫ ∞

−∞

1√
4πη

e−y2/4ηU(z − y + cη)dydη.

We suppose that U can be approximated by U0 and hence assume that U = U0 +W.
Then we obtain the equation for W as follows:

(4.3) −cW ′ = W ′′ + (U0 + W )
1 −H1(U0 + W )(z)

1 + γH1(U0 + W )(z)
− U0

1 − U0(z)

1 + γU0(z)
.
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Applying Taylor’s expansions to

(U0 + W )
1 −H1(U0 + W )(z)

1 + γH1(U0 + W )(z)
,

we have

(U0 + W )
1 −H1(U0 + W )(z)

1 + γH1(U0 + W )(z)
= U0

1 −H1(U0)

1 + γH1(U0)

+W
1 −H1(U0)

1 + γH1(U0)
− (1 + γ) U0

(1 + γH1(U0))2
H1(W )

+R1(z, τ,W ),(4.4)

where R1(z, τ,W ) is the remainder (higher order terms) of this expansion, and this
can be rewritten as

R1(z, τ,W ) = (U0 + W )
1 −H1(U0 + W )(z)

1 + γH1(U0 + W )(z)

−U0
1 −H1(U0)

1 + γH1(U0)

−W
1 −H1(U0)

1 + γH1(U0)
+

(1 + γ)U0

(1 + γH1(U0))2
H1(W ).(4.5)

Recall that

g(x) = x
1 − x

1 + γx
and g′(x) =

1 − x

1 + γx
− (1 + γ)x

(1 + γx)2
.

Therefore, in view of (4.4), (4.3) becomes

−cW ′ = W ′′ + g′(U0(z))W (z)

(4.6) + R1(z, τ,W ) + R2(z, τ) + R3(z, τ,W ),

where

R2(z, τ) = U0
1 −H1(U0)

1 + γH1(U0)
− g(U0)

and

R3(z, τ,W ) = W
1 −H1(U0)

1 + γH1(U0)
− (1 + γ)U0

(1 + γH1(U0))2
H1(W ) − g′(U0(z))W (z).

As before, we transform (4.6) into the following integral equation

(4.7) W =
1

λ2 − λ1

⎛
⎝

∫ z

−∞ eλ1(z−s) [(1 + g′(U0(s)))W (s) + R1 + R2 + R3] ds

+
∫∞
z

eλ2(z−s) [(1 + g′(U0(s)))W (s) + R1 + R2 + R3] ds

⎞
⎠ .

Now the above argument can be repeated to show that Theorem 2.6 holds for (4.1).
Similarly, we can prove Theorem 2.6 for (1.1) with the kernel function

(4.8) f(t, s, x, y) =
1

τ
e−(t−s) 1√

4π(t− s)
e−(x−y)2/(4(t−s)).
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5. Traveling wavefronts with large wave speed. In section 2, we obtained
a traveling wavefront for our model by assuming that the maturation time τ is small.
In this section we utilize the idea of Canosa [6] to investigate the existence of traveling
wavefront for (2.1) without the smallness requirement of τ . Although the method is
originally a formal asymptotic analysis as the front speed approaches infinity, it is
known that for Fisher’s equation the method generates a solution that is accurate
within a few percent of the true solution, even at the minimum speed. The method
has also been applied to other reaction-diffusion equations, including coupled systems,
with a very good accuracy; see [21] and [24]. The main purpose here is to give a
theoretical justification of the method for our food-limited model by showing the fact
that when the wave speed tends to infinity, our traveling wavefront approaches a
heteroclinic solution (the leading term of Canosa’s expansions) of the original model
without diffusion. The main idea of this section is from [9], except that we use some
known results of global stability of the positive equilibrium instead of applying Smith
and Thieme’s order preserving semiflows theory [26].

Linearizing (2.7) for U far ahead of the front, where U → 0, gives

−cU ′(z) = U ′′(z) − U(z).

To ensure that we are studying ecologically realistic fronts that are positive for all
values of z, we assume, as in Fisher’s equation, that the wave speed c ≥ 2. Following
Canosa’s approach, we introduce the small parameter

ε = 1/c2 ≤ 1

4

and seek a solution of the form

U(z) = G(ζ), ζ =
√
εz.

Equation (2.7) becomes

(5.1) εG′′ + G′ + G
1 −

∫∞
−∞

1√
4πτ

e−y2/4τG(ζ −
√
εy + τ)dy

1 + γ
∫∞
−∞

1√
4πτ

e−y2/4τG(ζ −
√
εy + τ)dy

= 0.

When ε = 0, (5.1) reduces to

(5.2) G′ + G
1 −G(ζ + τ)

1 + γG(ζ + τ)
= 0.

For (5.2), we have the following result concerning the heteroclinic orbit connecting
the two equilibria G = 0 and G = 1.

Theorem 5.1. Assume τ/(1 + γ) < 3
2 . Then (5.2) has a heteroclinic orbit g0(ζ)

connecting the two equilibria G = 1 and G = 0.
Proof. When ε = 0, we set g0(ζ) = G(−ζ) to invert (5.2) into a delay differential

equation

(5.3) g′0 = g0
1 − g0(ζ − τ)

1 + γg0(ζ − τ)
.

By the result in [18] or [8], we know that the equilibrium g0 = 1 is a global attractor
as long as the initial value g0(s) = φ(s), s ∈ [−τ, 0], satisfies

φ(0) > 0 and φ(s) ≥ 0 for s ∈ [−τ, 0].
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Linearizing (5.3) around g0 = 0, we have

(5.4) g′0 = g0.

Therefore, the unstable space Eu of the trivial solution in the usual phase space
Cτ = C([−τ, 0];R) of continuous functions equipped with the sup-norm ||·|| is spanned
by χ(s) = es, s ∈ [−τ, 0]. Let Es be the subspace in Cτ so that Cτ = Es ⊕ Eu; then
there exists ε0 > 0 and a C1-map w : Eu → Es, with w(0) = 0 and Dw(0) = 0 so that
a local unstable manifold of g0 = 0 is given by εχ + w(εχ) for ε ∈ (−ε0, ε0). Choose
ε0 > 0 sufficiently small so that the operator norm ||Dw(εχ)|| < e−τ for ε ∈ (0, ε0).
Then pick up ε ∈ (0, ε0) and consider φ = εχ + w(εχ). We have

φ(s) = εes + w(εχ)(s) > εes − e−τ ε||χ|| ≥ ε(e−τ − e−τ ) ≥ 0.

So the solution from the point φ on the local unstable manifold of g0 = 0 is positive
and tends to 1 due to the global attractivity of the positive equilibrium g0 = 1.
Returning to the original variable, we have an orbit G connecting the two equilibria
G = 1 and G = 0. This completes the proof.

For (5.3), the positive equilibrium 1 is a node, and all of the conditions in Theorem
1.1 in [9] are satisfied. Thus direct application of this result gives the following.

Theorem 5.2. Assume τ/(1 + γ) < 3
2 . There is a constant c∗ > 0 such that for

any c > c∗, (5.1) has a traveling wave solution G(x− ct) connecting the two equilibria
0 and 1. When the wave speed c → ∞, the wave profile G(ξ) converges to a solution
to (5.2).

Although the result is a consequence of Theorem 1.1 in [9], for the completeness
of this paper and the convenience of readers, we outline the proof of this theorem as
follows.

For (5.1), set Ḡ(ζ) = G(−ζ). Then Ḡ satisfies the equation

εḠ′′ − Ḡ′ + Ḡ
1 −

∫∞
−∞

1√
4πτ

e−y2/4τ Ḡ(ζ +
√
εy − τ)dy

1 + γ
∫∞
−∞

1√
4πτ

e−y2/4τ Ḡ(ζ +
√
εy − τ)dy

= 0.

Now when ε is small, we use g0 to approximate the wavefront Ḡ(ζ) in (5.1). Let
Ḡ = g0 + W . Then we have an equation for W

(5.5) W ′ = εW ′′ + εg′′0 + (g0 + W )
1 − h1(g0 + W )

1 + γh1(g0 + W )
− g0

1 − g0(ζ − τ)

1 + γg0(ζ − τ)
,

where the functional h1 is given by

(5.6) h1[U ](ζ) =

∫ ∞

−∞

1√
4πτ

e−η2/4τU(ζ +
√
εη − τ)dη.

By means of Taylor’s expansion, we have

(g0 + W )
1 − h1(g0 + W )(ζ)

1 + γh1(g0 + W )(ζ)
= g0

1 − h1(g0)

1 + γh1(g0)

+W
1 − h1(g0)

1 + γh1(g0)
− (1 + γ)g0

(1 + γh1(g0))2
h1(W )(5.7)

+R1(ζ, τ,W ),
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where R1(ζ, τ,W ) is the remainder (higher order terms) of this expansion. Therefore
by (5.7), (5.5) becomes

(5.8) W ′ = εW ′′ + P 0W (z) + R1(ζ, τ,W ) + R2(ζ, τ) + R3(ζ, τ,W ),

where the linear operator P 0 : C → C is defined by

P 0W (ζ) =
1 − g0(ζ − τ)

1 + γg0(ζ − τ)
W (ζ) − g0

(1 + γ)

(1 + γg0(ζ − τ))2
W (ζ − τ) ,

R2(ζ, τ) = g0
1 − h1(g0)

1 + γh1(g0)
− g0

1 − g0(ζ − τ)

1 + γg0(ζ − τ)
+ εg′′0 ,

and

R3(ζ, τ,W ) = W
1 − h1(g0)

1 + γh1(g0)
− g0

(1 + γ)

(1 + γh1(g0))2
h1(W )

−W
1 − g0(ζ − τ)

1 + γg0(ζ − τ)
+ g0

(1 + γ)

(1 + γg0(ζ − τ))2
h1(W ).

Now we prove that there exists a W ∈ C0 satisfying (5.8) when ε is small. Equa-
tion (5.8) can be transformed into an integral equation as follows. We first write (5.8)
as

(5.9) εW ′′ −W ′ −W = −W − P 0W −R1 −R2 −R3.

Since the equation

ελ2 − λ− 1 = 0

has two real zeros λ1 and λ2, with

(5.10) λ1 =
1 −

√
1 + 4ε

2ε
< 0, λ2 =

1 +
√

1 + 4ε

2ε
> 0,

(5.9) is equivalent to the integral equation

W (ζ) =
1√

1 + 4ε

∫ ζ

−∞
eλ1(ζ−t)[W (t) + P 0W (t)]dt

+
1√

1 + 4ε

∫ ∞

ζ

eλ2(ζ−t)[W (t) + P 0W (t)]dt

+
1√

1 + 4ε

∫ ζ

−∞
eλ1(ζ−t)[R1 + R2 + R3 ]dt

+
1√

1 + 4ε

∫ ∞

ζ

eλ2(ζ−t)[R1 + R2 + R3]dt.(5.11)

It is easy to show that

lim
ε→0+

λ1 = −1, lim
ε→0+

λ2 = +∞.
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Thus we have, from (5.11), that

W (ζ) −
∫ ζ

−∞
e−(ζ−t)[W (t) + P 0W (t)]dt

=

∫ ζ

−∞

[
eλ1(ζ−t)

√
1 + 4ε

− e−(ζ−t)

]
[W (t) + P 0W (t)]dt

+
1√

1 + 4ε

∫ ∞

ζ

eλ2(ζ−t)[W (t) + P 0W (t)]dt

+
1√

1 + 4ε

∫ ζ

−∞
eλ1(ζ−t)[R1 + R2 + R3 ]dt

+
1√

1 + 4ε

∫ ∞

ζ

eλ2(ζ−t)[R1 + R2 + R3]dt.(5.12)

For the right-hand side of (5.12), in a similar manner as in section 2, we can prove
that ∫ ζ

−∞

[
eλ1(ζ−t)

√
1 + 4ε

− e−(ζ−t)

]
[W (t) + P 0W (t)]dt = O(

√
ε||W ||C0),

1√
1 + 4ε

∫ ∞

ζ

eλ2(ζ−t)[W (t) + P 0W (t)]dt = O(
√
ε||W ||C0),

1√
1 + 4ε

(∫ ζ

−∞
eλ1(ζ−t)R1 dt +

∫ ∞

ζ

eλ2(ζ−t)R1dt

)
= O(||W ||2),

1√
1 + 4ε

(∫ ζ

−∞
eλ1(ζ−t)R2 dt +

∫ ∞

ζ

eλ2(ζ−t)R2dt

)
= O(

√
ε),

and

1√
1 + 4ε

(∫ ζ

−∞
eλ1(ζ−t)R3 dt +

∫ ∞

ζ

eλ2(ζ−t)R3dt

)
= O(

√
ε||W ||C0).

Let L be the linear operator defined by the left-hand side of (5.12), namely,

[LW ](ζ) = W (ζ) −
∫ ζ

−∞
e−(ζ−t)[W (t) + P 0W (t)]dt.

It is obvious that if W ∈ C0, then LW ∈ C0. In order to use the argument in section 2
to prove our result, we need to prove that 
(L) = C0, where 
(L) is the range space
of L; that is, for each u ∈ C0, we need to show that equation LW = u or, equivalently,

W (ζ) −
∫ ζ

−∞
e−(ζ−t)[W (t) + P 0W (t)]dt = u(ζ), ζ ∈ (−∞,∞)

has a solution in C0. For this purpose, we set w = W −u. Upon substitution, we have
an equation for w :

(5.13) w′ = P 0w(ζ) + u(ζ) + P 0u(ζ).

Define an operator T :C1
0 → C0 by

[Tw](ζ) = w′(ζ) − P 0w(ζ)
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and the formal adjoint equation of Tw = 0 by

(5.14) φ′(t) = − 1 − g0(t− τ)

1 + γg0(t− τ)
φ(t) +

g0(1 + γ)

(1 + γg0(t− τ))2
φ (t + τ) , t ∈ (−∞,∞).

When t → ∞, (5.14) tends asymptotically to

φ′(t) =
1

1 + γ
φ(t + τ).

When τ/(1 + γ) < π
2 , it is easy to see that if φ is a bounded solution to (5.14), then

φ = 0. From p. 7 of Chow, Lin, and Mallet-Paret [5], we see that T is Fredholm and

(T ) = C0. Therefore, (5.13) has a solution w ∈ C0. From now on we can use the
same argument as in sections 4 and 5 in [9] to verify that (5.12) has a solution W ∈ C0.

6. Summary and simulations. In this paper we have studied the existence of
traveling wavefronts for the food-limited population model that involves nonmonotone
delayed nonlocal response. The classical phase-plane approach or super/subsolution
technique does not work for this type of model due to the lack of monotonicity.
Hence, we develop a perturbation argument based on some analytical tools such as
the contraction mapping principle and the Fredholm theory to establish the existence
of traveling wavefronts. We consider three cases with spatiotemporal averaging when
the delay is small. In the general case where the smallness condition on the delay is no
longer required, we also developed Canosa’s method to establish traveling wavefronts
with large wave speeds.

Our work shows how our perturbation analyses based on some analytical tools
are particularly useful for models with small delay or for wavefronts with large wave
speeds. We believe the smallness condition on τ and the largeness condition on the
wave speed can be removed by a certain homotopy argument, and this remains to be
a subject for future study.

We should emphasize the difficulty caused by the nonmonotonicity of the delayed
nonlocal response. In particular, we note that the traveling wavefronts obtained have
prominent humps as the following two numerical simulations show.

The first numerical simulation, reported in Figure 1, is for (2.1), carried out by
using Matlab on a spatial domain −L0 ≤ x ≤ L0 (for some L0 > 0) with homogeneous
Neumann boundary conditions at both ends. For initial data, we set a nonzero steady
state value 1 at the left side and zero elsewhere for all t ∈ [−τ, 0]. The solution
stabilizes to a wavefront when time t goes on. For τ sufficiently small, the resulting
traveling fronts appear to be strictly monotone. Increasing the value τ, we find that
the monotonicity is lost and a prominent hump is exhibited. When γ = 1 and τ = 2,
the solutions at two different times are shown in Figure 1.

The second numerical simulation is about (4.1) with the kernel given by (4.8).
Set

v(t, x) =

∫ t

−∞

1

τ
e−(t−s)

∫ ∞

−∞

1√
4π(t− s)

e−(x−y)2/(4(t−s))u(s, y)dyds.

Then it is easy to recast (1.1) into the form⎧⎨
⎩

ut = uxx + u 1−v
1+γv

vt = vxx + 1
τ (u− v).
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Fig. 1. γ = 1, τ = 2. There exists a prominent hump in the front.
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Fig. 2. γ = 1, τ = 1. There exists a prominent hump in the front.

Using the method of lines, we find again the solution to the above equations with step
initial functions and the Neumann boundary conditions stabilizes to a wavefront with
a hump. The solution pattern at three different times with γ = 1, τ = 1 are shown in
Figure 2.
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Abstract. Adapting some techniques and ideas of McCann [Duke Math. J., 80 (1995), pp. 309–
323], we extend a recent result with Fathi [Optimal Transportation on Manifolds, preprint] to yield
existence and uniqueness of a unique transport map in very general situations, without any inte-
grability assumption on the cost function. In particular this result applies for the optimal trans-
portation problem on an n-dimensional noncompact manifold M with a cost function induced by a
C2-Lagrangian, provided that the source measure vanishes on sets with σ-finite (n− 1)-dimensional
Hausdorff measure. Moreover we prove that in the case c(x, y) = d2(x, y), the transport map is
approximatively differentiable a.e. with respect to the volume measure, and we extend some results
of [D. Cordero-Erasquin, R. J. McCann, and M. Schmuckenschlager, Invent. Math., 146 (2001),
pp. 219–257] about concavity estimates and displacement convexity.

Key words. optimal transportation, existence, uniqueness, approximate differentiability, con-
cavity estimate, displacement convexity

AMS subject classifications. 28A12, 28A15, 37J50, 49J99, 49N60, 53B21

DOI. 10.1137/060665555

1. Introduction and main result. Let M be an n-dimensional manifold (Haus-
dorff and with a countable basis), N a Polish space, c : M ×N → R a cost function,
and μ and ν two probability measures on M and N , respectively.

In a recent work with Fathi [6], we proved, under general assumption on the
cost function, existence and uniqueness of optimal transport maps for the Monge–
Kantorovich problem. More precisely, the result is as follows.

Theorem 1.1. Assume that c : M × N → R is lower semicontinuous, bounded
from below, and such that∫

M×N

c(x, y) dμ(x) dν(y) < +∞.

If
(i) x �→ c(x, y) = cy(x) is locally semiconcave in x locally uniformly in y;
(ii) ∂c

∂x (x, ·) is injective on its domain of definition;
(iii) and the measure μ gives zero mass to sets with σ-finite (n − 1)-dimensional

Hausdorff measure,
then there exists a measurable map T : M → N such that any plan γ optimal for the
cost c is concentrated on the graph of T .

More precisely, there exists a sequence of Borel subsets Bn ⊂ M , with Bn ⊂ Bn+1,
μ(Bn) ↗ 1, and a sequence of locally semiconcave functions ϕn : M → R, where ϕn

is differentiable on Bn, such that, thanks to assumption (ii), the map T : M → N is
uniquely defined on Bn by

∂c

∂x
(x, T (x)) = dxϕn.(1)
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This implies both existence of an optimal transport map and uniqueness for the Monge
problem.

Now we want to generalize this existence and uniqueness result for optimal trans-
port maps without any integrability assumption on the cost function, adapting the
ideas of [8]. We observe that, without the hypothesis∫

M×N

c(x, y) dμ(x) dν(y) < +∞,

denoting with Π(μ, ν) the set of probability measures on M ×N whose marginals are
μ and ν, in general the minimization problem

C(μ, ν) := inf
γ∈Π(μ,ν)

{∫
M×N

c(x, y) dγ(x, y)

}
(2)

is ill-posed, as it may happen that C(μ, ν) = +∞. However, it is known that the
optimality of a transport plan γ is equivalent to the c-cyclical monotonicity of the
measure-theoretic support of γ whenever C(μ, ν) < +∞ (see [2], [11], [13]), and so
one may ask whether the fact that the measure-theoretic support of γ is c-cyclically
monotone implies that γ is supported on a graph. Moreover one can also ask whether
this graph is unique, that is, it does not depend on γ, which is the case when the
cost is μ⊗ ν integrable, as Theorem 1.1 tells us. In that case, uniqueness follows by
the fact that the functions ϕn are constructed using a pair of functions (ϕ,ψ) which
is optimal for the dual problem, and so they are independent of γ (see [6] for more
details). The result we now want to prove is the following.

Theorem 1.2. Assume that c : M×N → R is lower semicontinuous and bounded
from below, and let γ be a plan concentrated on a c-cyclically monotone set. If

(i) the family of maps x �→ c(x, y) = cy(x) is locally semiconcave in x locally
uniformly in y;

(ii) ∂c
∂x (x, ·) is injective on its domain of definition;

(iii) and the measure μ gives zero mass to sets with σ-finite (n − 1)-dimensional
Hausdorff measure,

then γ is concentrated on the graph of a measurable map T : M → N (existence).
Moreover, if γ̃ is another plan concentrated on a c-cyclically monotone set, then γ̃ is
concentrated on the same graph (uniqueness).

Once the above result is proven, the uniqueness of the Wasserstein geodesic be-
tween absolutely continuous measures will follow as a simple corollary (see section 3).
Finally, in subsection 3.1, we will prove that in the particular case c(x, y) = 1

2d
2(x, y),

the optimal transport map is approximatively differentiable a.e. with respect to the
volume measure, and we will obtain a concavity estimate on the Jacobian of the op-
timal transport map, which will allows us to generalize to noncompact manifolds a
displacement convexity result proven in [4].

2. Proof of Theorem 1.2.
Existence. We want to prove that γ is concentrated on a graph. First we recall

that since γ is concentrated on a c-cyclically monotone set, there exists a pair of
functions (ϕ,ψ), with ϕ μ-measurable and ψ ν-measurable, such that

ϕ(x) = inf
y∈N

ψ(y) + c(x, y) ∀x ∈ M,

which implies

ϕ(x) − ψ(y) ≤ c(x, y) ∀(x, y) ∈ M ×N.
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Moreover we have

ϕ(x) − ψ(y) = c(x, y) γ-a.e.(3)

and there exists a point x0 ∈ M such that ϕ(x0) = 0 (see [13, Theorem 5.9]). In
particular, this implies

ψ(y) ≥ −c(x0, y) > −∞ ∀y ∈ N.

So, we can argue as in [6]. More precisely, given a suitable increasing sequence of
compact sets (Kn) ⊂ N such that ν(Kn) ↗ 1 and ψ ≥ −n on Kn (it suffices to
take an increasing sequence of compact sets Kn ⊂ {ψ ≥ −n} such that ν({ψ ≥
−n} \Kn) ≤ 1

n ), we consider the locally semiconcave function

ϕn(x) := inf
y∈Kn

ψ(y) + c(x, y).(4)

Then, thanks to (3), it is possible to find an increasing sequence of Borel sets Dn ⊂
supp(μ), with μ(Dn) ↗ 1, such that ϕn is differentiable on Dn, ϕn ≡ ϕ on Dn, the
set {ϕn = ϕ} has μ-density 1 at all the points of Dn, and γ is concentrated on the
graph of the map T uniquely determined on Dn by

∂c

∂x
(x, T (x)) = dxϕn for x ∈ Dn.

Moreover one has

ϕ(x) = ψ(T (x)) + c(x, T (x)) ∀x ∈
⋃
n

Dn(5)

(see [6] for more details).
Uniqueness. As we observed before, the difference here with the case of Theorem

1.1 is that the function ϕn depends on the pair (ϕ,ψ), which in this case depends on
γ. Let (ϕ̃, ψ̃) be a pair associated to γ̃ as above, and let ϕ̃n and D̃n be such that γ̃ is
concentrated on the graph of the map T̃ determined on D̃n by

∂c

∂x
(x, T̃ (x)) = dxϕ̃n for x ∈ D̃n.

We need to prove that T = T̃ μ-a.e.
Let us define Cn := Dn ∩ D̃n. Then μ(Cn) ↗ 1. We want to prove that if x

is a μ-density point of Cn for a certain n, then T (x) = T̃ (x) (we recall that since
μ(∪nCn) = 1, the union of the μ-density points of Cn is also of full μ-measure; see,
for example, [5, Chapter 1.7]).

Let us assume by contradiction that T (x) �= T̃ (x), that is,

dxϕn �= dxϕ̃n.

Since x ∈ supp(μ), each ball around x must have positive measure under μ. Moreover,
the fact that the sets {ϕn = ϕ} and {ϕ̃n = ϕ̃} have μ-density 1 in x implies that the
set

{ϕ = ϕ̃}
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has μ-density 0 in x. In fact, as ϕn and ϕ̃n are locally semiconcave, up to adding a
C1 function they are concave in a neighborhood of x and their gradients differ at x.
So we can apply the nonsmooth version of the implicit function theorem proven in
[8], which tells us that {ϕn = ϕ̃n} is a set with finite (n − 1)-dimensional Hausdorff
measure in a neighborhood of x (see [8, Theorem 17 and Corollary 19]). So we have

lim sup
r→0

μ({ϕ = ϕ̃} ∩Br(x))

μ(Br(x))
≤ lim sup

r→0

[
μ({ϕ �= ϕn} ∩Br(x))

μ(Br(x))

+
μ({ϕn = ϕ̃n} ∩Br(x))

μ(Br(x))
+

μ({ϕ̃n �= ϕ̃} ∩Br(x))

μ(Br(x))

]
= 0.

Therefore, exchanging ϕ with ϕ̃ if necessary, we may assume that

μ({ϕ < ϕ̃} ∩Br(x)) ≥ 1

4
μ(Br(x)) for r > 0 sufficiently small.(6)

Let us define A := {ϕ < ϕ̃}, An := {ϕn < ϕ̃n}, En := A ∩ An ∩ Cn. Since the sets
{ϕn = ϕ} and {ϕ̃n = ϕ̃} have μ-density 1 in x, and x is a μ-density point of Cn, we
have

lim
r→0

μ((A \ En) ∩Br(x))

μ(Br(x))
= 0,

and so, by (6), we get

μ(En ∩Br(x)) ≥ 1

5
μ(Br(x)) for r > 0 sufficiently small.(7)

Now, arguing as in the proof of Aleksandrov’s lemma (see [8, Lemma 13]), we can
prove that

X := T̃−1(T (A)) ⊂ A

and X ∩ En lies a positive distance from x. In fact let us assume, without loss of
generality, that

ϕ(x) = ϕn(x) = ϕ̃(x) = ϕ̃n(x) = 0, dxϕn �= dxϕ̃n = 0.

To obtain the inclusion X ⊂ A, let z ∈ X and y := T̃ (z). Then y = T (m) for a
certain m ∈ A. For any w ∈ M , recalling (5), we have

ϕ(w) ≤ c(w, y) − c(m, y) + ϕ(m),

ϕ̃(m) ≤ c(m, y) − c(z, y) + ϕ̃(z).

Since ϕ(m) < ϕ̃(m) we get

ϕ(w) < c(w, T̃ (z)) − c(z, T̃ (z)) + ϕ̃(z) ∀w ∈ M.

In particular, taking w = z, we obtain z ∈ A, which proves the inclusion X ⊂ A.
Let us suppose now, by contradiction, that there exists a sequence (zk) ⊂ X ∩En

such that zk → x. Again there exists mk such that T̃ (zk) = T (mk). As dxϕ̃n = 0,
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the closure of the superdifferential of a semiconcave function implies that dzk ϕ̃n → 0.
We now observe that, arguing exactly as above with ϕn and ϕ̃n instead of ϕ and ϕ̃,
by using (4), (5), and the fact that ϕ = ϕn and ϕ̃ = ϕ̃n on Cn, one obtains

ϕn(w) < c(w, T̃ (zk)) − c(zk, T̃ (zk)) + ϕ̃n(zk) ∀w ∈ M.

Taking w sufficiently near to x, we can assume that we are in R
n×N . We now remark

that since zk ∈ En ⊂ D̃n, T̃ (zk) vary in a compact subset of N (this follows by the
construction of T̃ ). So, by hypothesis (i) on c, we can find a common modulus of
continuity ω in a neighborhood of x for the family of uniformly semiconcave functions
z �→ c(z, T̃ (zk)). Then we get

ϕn(w) <
∂c

∂x
(zk, T̃ (zk))(w − zk) + ω(|w − zk|)|w − zk| + ϕ̃n(zk)

= dzk ϕ̃n(w − zk) + ω(|w − zk|)|w − zk| + ϕ̃n(zk).

Letting k → ∞ and recalling that dzk ϕ̃n → 0 and ϕ̃n(x) = ϕn(x) = 0, we obtain

ϕn(w) − ϕn(x) ≤ ω(|w − x|)|w − x| ⇒ dxϕn = 0,

which is absurd.
Thus there exists r > 0 such that Br(x) ∩ En and X ∩ En are disjoint, and (7)

holds. Defining now Y := T (A), by (7) we obtain

ν(Y ) = μ(T−1(Y )) ≥ μ(A) = μ(En) + μ(A \ En) ≥ μ(Br(x) ∩ En)

+ μ(X ∩ En) + μ(X \ En) = μ(Br(x) ∩ En) + μ(X) ≥ 1

5
μ(Br(x)) + ν(Y ),

which is absurd.
Let us now consider the special case N = M , with M a complete manifold. As

shown in [6], this theorem applies in the following cases:
1. c : M ×M → R is defined by

c(x, y) := inf
γ(0)=x, γ(1)=y

∫ 1

0

L(γ(t), γ̇(t)) dt,

where the infimum is taken over all the continuous piecewise C1 curves, and
the Lagrangian L(x, v) ∈ C2(TM,R) is C2-strictly convex and uniform su-
perlinear in v, and verifies a uniform boundedness in the fibers.

2. c(x, y) = dp(x, y) for any p ∈ (1,+∞), where d(x, y) denotes a complete
Riemannian distance on M .

Moreover, in the cases above, the following important fact holds.
Remark 2.1. For μ-a.e. x, there exists a unique curve from x to T (x) that

minimizes the action. In fact, since ∂c
∂x (x, y) exists at y = T (x) for μ-a.e. x, the fact

that ∂c
∂x (x, ·) is injective on its domain of definition tells us that its velocity at time 0

is μ-a.e. uniquely determined (see [6]).
Let us recall the following definition; see [1, Definition 5.5.1, p. 129].
Definition 2.2 (approximate differential). We say that f : M → R

m has an
approximate differential at x ∈ M if there exists a function h : M → R

m differentiable
at x such that the set {f = h} has density 1 at x with respect to the Lebesgue measure
(this just means that the density is 1 in the charts). In this case, the approximate
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value of f at x is defined as f̃(x) = h(x), and the approximate differential of f at x
is defined as d̃xf = dxh. It is not difficult to show that this definition makes sense.
In fact, neither h(x) nor dxh depend on the choice of h, provided x is a density point
of the set {f = h} for the Lebesgue measure.

We recall that many standard properties of the differential still hold for the ap-
proximate differential, such as linearity and additivity. In particular, it is simple
to check that the property of being approximatively differentiable is stable by right
composition with smooth maps (say C1), and in this case the standard chain rule
formula for the differentials holds. Moreover we remark that it makes sense to speak
of approximate differential for maps between manifolds.

In [6], the following formula is proven: In the particular case c(x, y) = d2(x, y),
if μ is absolutely continuous with respect to the Lebesgue measure, then the optimal
transport map is given by

T (x) = expx[−∇̃xϕ],

where ∇̃xϕ denotes the approximate gradient of ϕ at x, which simply corresponds to
the element of TxM obtained from d̃xϕ using the isomorphism with T ∗

xM induced by
the Riemannian metric (the above formula generalizes the one found by McCann on
compact manifolds; see [10]).

3. The Wasserstein space W2. Let (M, g) be a smooth complete Riemannian
manifold, equipped with its geodesic distance d and its volume measure vol. We
denote with P (M) the set of probability measures on M . The space P (M) can be
endowed with the so-called Wasserstein distance W2:

W2(μ0, μ1)
2 := min

γ∈Π(μ0,μ1)

{∫
M×M

d2(x, y) dγ(x, y)

}
.

The quantity W2(μ0, μ1) will be called the Wasserstein distance of order 2 between
μ0 and μ1. It is well known that it defines a metric on P (M) (not necessarily finite),
and so one can speak about geodesic in the metric space (P (M),W2). This space
turns out, indeed, to be a length space (see, for example, [12], [13]). Now, whenever
W2(μ0, μ1) < +∞, we know that any optimal transport plan is supported on a c-
cyclical monotone set (see, for example, [2], [11], [13]). We denote with P ac(M)
the subset of P (M) that consists of the Borel probability measures on M that are
absolutely continuous with respect to vol. Thus, if μ0, μ1 ∈ P ac(M) and W2(μ0, μ1) <
+∞, we know that there exists a unique transport map between μ0 and μ1.

Proposition 3.1. P ac(M) is a geodesically convex subset of P (M). Moreover, if
μ0, μ1 ∈ P ac(M) and W2(μ0, μ1) < +∞, then there is a unique Wasserstein geodesic
{μt}t∈[0,1] joining μ0 to μ1, which is given by

μt = (Tt)�μ0 := (exp[−t∇̃ϕ])�μ0,

where T (x) = expx[−∇̃xϕ] is the unique transport map from μ0 to μ1, which is optimal
for the cost 1

2d
2(x, y) (and so also optimal for the cost d2(x, y)). Moreover,

1. Tt is the unique optimal transport map from μ0 to μt for all t ∈ [0, 1];
2. T−1

t is the unique optimal transport map from μt to μ0 for all t ∈ [0, 1] (and,
if t ∈ [0, 1), it is countably Lipschitz);

3. T ◦ T−1
t is the unique optimal transport map from μt to μ1 for all t ∈ [0, 1]

(and, if t ∈ (0, 1], it is countably Lipschitz).
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Proof. Regarding the fact that μt ∈ P ac(M) (which corresponds to saying that
P ac(M) is geodesically convex) and the countably Lipschitz regularity of the transport
maps (i.e., there exists a countable partition of M such that the map is Lipschitz on
each set), they follow from the results in [6].

Thanks to the results proved in the last section, the proof of the rest of the proposi-
tion is quite standard. In fact, a basic representation theorem (see [13, Corollary 7.20])
states that any Wasserstein geodesic curve necessarily takes the form μt = (et)#Π,
where Π is a probability measure on the set Γ of minimizing geodesics [0, 1] → M ,
and et : Γ → M is the evaluation at time t: et(γ) := γ(t). Thus the thesis follows
from Remark 2.1.

The above result tells us that also (P ac(M),W2) is a length space.

3.1. Regularity, concavity estimate, and a displacement convexity re-
sult. We now consider the cost function c(x, y) = 1

2d
2(x, y). Let μ, ν ∈ P ac(M) with

W2(μ, ν) < +∞, and let us denote with f and g their respective densities with respect
to vol. Let

T (x) = expx[−∇̃xϕ]

be the unique optimal transport map from μ to ν.

We recall that locally semiconcave functions with linear modulus admit vol-a.e. a
second order Taylor expansion (see [3], [4]). Let us recall the definition of approximate
hessian.

Definition 3.2 (approximate hessian). We say that f : M → R
m has a approxi-

mate hessian at x ∈ M if there exists a function h : M → R such that the set {f = h}
has density 1 at x with respect to the Lebesgue measure and h admits a second order
Taylor expansion at x, that is, there exists a self-adjoint operator H : TxM → TxM
such that

h(expx w) = h(x) + 〈∇xh,w〉 +
1

2
〈Hw,w〉 + o(‖w‖2

x).

In this case the approximate hessian is defined as ∇̃2
xf := H.

As in the case of the approximate differential, it is not difficult to show that this
definition makes sense.

Observing that d2(x, y) is locally semiconcave with linear modulus (see [6, Ap-
pendix]), we get that ϕn is locally semiconcave with linear modulus for each n. Thus
we can define μ-a.e. an approximate hessian for ϕ (see Definition 3.2):

∇̃2
xϕ := ∇2

xϕn for x ∈ Dn ∩ En,

where Dn was defined in the proof of Theorem 1.2, En denotes the full μ-measure set
of points where ϕn admits a second order Taylor expansion, and ∇2

xϕn denotes the
self-adjoint operator on TxM that appears in the Taylor expansion on ϕn at x. Let
us now consider, for each set Fn := Dn ∩ En, an increasing sequence of compact sets
Kn

m ⊂ Fn such that μ(Fn \ ∪mKn
m) = 0. We now define the measures μn

m := μ�Kn
m

and νnm := T�μ
n
m = (exp[−∇ϕn])�μ

n
m, and we renormalize them in order to obtain two

probability measures:

μ̂n
m :=

μn
m

μn
m(M)

∈ P ac
2 (M), ν̂nm :=

νnm
νnm(M)

=
νnm

μn
m(M)

∈ P ac
2 (M).
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We now observe that T is still optimal. In fact, if this were not the case, we would
have ∫

M×M

c(x, S(x)) dμ̂n
m(x) <

∫
M×M

c(x, T (x)) dμ̂n
m(x)

for a certain S transport map from μ̂n
m to ν̂nm. This would imply that∫

M×M

c(x, S(x)) dμn
m(x) <

∫
M×M

c(x, T (x)) dμn
m(x),

and so the transport map

S̃(x) :=

{
S(x) if x ∈ Kn

m,
T (x) if x ∈ M \Kn

m

would have a cost strictly less than the cost of T , which would contradict the opti-
mality of T .

We will now apply the results of [4] to the compactly supported measures μ̂n
m

and ν̂nm in order to get information on the transport problem from μ to ν. In what
follows we will denote by ∇xd

2
y and by ∇2

xd
2
y, respectively, the gradient and the hessian

with respect to x of d2(x, y), and by dx exp and d(expx)v the two components of the
differential of the map TM � (x, v) �→ expx[v] ∈ M (whenever they exist). By [4,
Theorem 4.2], we get the following.

Theorem 3.3 (Jacobian identity a.e.). There exists a subset E ⊂ M such that
μ(E) = 1 and, for each x ∈ E, Y (x) := d(expx)−∇̃xϕ

and H(x) := 1
2∇2

xd
2
T (x) both

exist and we have

f(x) = g(T (x)) det[Y (x)(H(x) − ∇̃2
xϕ)] �= 0.

Proof. It suffices to observe that [4, Theorem 4.2] applied to μ̂n
m and ν̂nm gives

that, for μ-a.e. x ∈ Kn
m,

f(x)

μn
m(M)

=
g(T (x))

μn
m(M)

det[Y (x)(H(x) −∇2
xϕn)] �= 0,

which implies

f(x) = g(T (x)) det[Y (x)(H(x) − ∇̃2
xϕ)] �= 0 for μ-a.e. x ∈ Kn

m.

Passing to the limit as m,n → +∞ we get the result.

We can thus define μ-a.e. the (weak) differential of the transport map at x as

dxT := Y (x)
(
H(x) − ∇̃2

xϕ
)
.

Let us prove now that, indeed, T (x) is approximately differentiable μ-a.e., and that
the above differential coincides with the approximate differential of T . In order to
prove this fact, let us first make a formal computation. Observe that since the map
x �→ expx[− 1

2∇xd
2
y] = y is constant, we have

0 = dx(expx[− 1
2∇xd

2
y]) = dx exp[− 1

2∇xd
2
y] − d(expx)− 1

2∇xd2
y

(
1
2∇2

xd
2
y

)
∀y ∈ M,
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By differentiating (in the approximate sense) the equality T (x) = exp[−∇̃xϕ] and
recalling the equality ∇̃xϕ = 1

2∇xd
2
T (x), we obtain

d̃xT = d(expx)−∇̃xϕ

(
−∇̃2

xϕ
)

+ dx exp[−∇̃xϕ]

= d(expx)−∇̃xϕ

(
−∇̃2

xϕ
)

+ d(expx)− 1
2∇xd2

T (x)

(
1
2∇2

xd
2
T (x)

)
= d(expx)−∇̃xϕ

(
H(x) − ∇̃2

xϕ
)
,

as wanted. In order to make the above proof rigorous, it suffices to observe that for
μ-a.e. x, T (x) �∈ cut(x), where cut(x) is defined as the set of points z ∈ M which
cannot be linked to x by an extendable minimizing geodesic. Indeed we recall that
the square of the distance fails to be semiconvex at the cut locus, that is, if x ∈ cut(y),
then

inf
0<‖v‖x<1

d2
y(expx[v]) − 2d2

y(x) + d2
y(expx[−v])

|v|2 = −∞

(see [4, Proposition 2.5]). Now fix x ∈ Fn. Since we know that 1
2d

2(z, T (x)) ≥
ϕn(z)−ψ(T (x)) with equality for z = x, we obtain a bound from below of the hessian
of d2

T (x) at x in terms of the hessian of ϕn at x (see the proof of [4, Proposition 4.1(a)]).
Thus, since each ϕn admits vol-a.e. a second order Taylor expansion, we obtain that,
for μ-a.e. x,

x �∈ cut(T (x)), or equivalently T (x) �∈ cut(x).

This implies that all the computations we made above in order to prove the formula for
d̃xT are correct. Indeed the exponential map (x, v) �→ expx[v] is smooth if expx[v] �∈
cut(x), the function d2

y is smooth around any x �∈ cut(y) (see [4, Paragraph 2]), and
∇̃xϕ is approximatively differentiable μ-a.e. Thus, recalling that, once we consider
the right composition of an approximatively differentiable map with a smooth map,
the standard chain rule holds (see the remarks after Definition 2.2), we have proved
the following regularity result for the transport map.

Proposition 3.4 (approximate differentiability of the transport map). The
transport map is approximatively differentiable for μ-a.e. x, and its approximate dif-
ferential is given by the formula

d̃xT = Y (x)
(
H(x) − ∇̃2

xϕ
)
,

where Y and H are defined in Theorem 3.3.
To prove our displacement convexity result, the following change of variables

formula will be useful.
Proposition 3.5 (change of variables for optimal maps). If A : [0 +∞) → R is

a Borel function such that A(0) = 0, then∫
M

A(g(y)) d vol(y) =

∫
E

A

(
f(x)

J(x)

)
J(x) d vol(x),

where J(x) := det[Y (x)(H(x)−∇̃2
xϕ)] = det[d̃xT ] (either both integrals are undefined

or both take the same value in R).
The proof follows by the Jacobian identity proved in Theorem 3.3, exactly as in

[4, Corollary 4.7].
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Let us now define for t ∈ [0, 1] the measure μt := (Tt)�μ, where

Tt(x) = expx[−t∇̃xϕ].

By the results in [6] and Proposition 3.1, we know that Tt coincides with the unique
optimal map pushing μ forward to μt, and that μt is absolutely continuous with
respect to vol for any t ∈ [0, 1].

Given x, y ∈ M , following [4], we define for t ∈ [0, 1]

Zt(x, y) := {z ∈ M | d(x, z) = td(x, y) and d(z, y) = (1 − t)d(x, y)}.

If N is now a subset of M , we set

Zt(x,N) := ∪y∈NZt(x, y).

Letting Br(y) ⊂ M denote the open ball of radius r > 0 centered at y ∈ M , for
t ∈ (0, 1] we define

vt(x, y) := lim
r→0

vol(Zt(x,Br(y)))

vol(Btr(y))
> 0

(the above limit always exists, though it will be infinite when x and y are conjugate
points; see [4]). Arguing as in the proof of Theorem 3.3, by [4, Lemma 6.1] we get
the following.

Theorem 3.6 (Jacobian inequality). Let E be the set of full μ-measure given by
Theorem 3.3. Then for each x ∈ E, Yt(x) := d(expx)−t∇̃xϕ

and Ht(x) := 1
2∇2

xd
2
Tt(x)

both exist for all t ∈ [0, 1] and the Jacobian determinant

Jt(x) := det[Yt(x)(Ht(x) − t∇̃2
xϕ)](8)

satisfies

J
1
n
t (x) ≥ (1 − t) [v1−t(T (x), x)]

1
n + t [vt(x, T (x))]

1
n J

1
n
1 (x).

We now consider as source measure μ0 = ρ0 d vol(x) ∈ P ac(M) and as target
measure μ1 = ρ1 d vol(x) ∈ P ac(M), and we assume as before that W2(μ0, μ1) < +∞.
By Proposition 3.1 we have

μt = (Tt)�[ρ0 d vol] = ρt d vol ∈ P ac
2 (M)

for a certain ρt ∈ L1(M,d vol).
We now want to consider the behavior of the functional

U(ρ) :=

∫
M

A(ρ(x)) d vol(x)

along the path t �→ ρt. In Euclidean spaces, this path is called displacement interpo-
lation and the functional U is said to be displacement convex if

[0, 1] � t �→ U(ρt) is convex for every ρ0, ρ1.

A sufficient condition for the displacement convexity of U in R
n is that A : [0,+∞) →

R ∪ {+∞} satisfy

(0,+∞) ∈ s �→ snA(s−n) is convex and nonincreasing, with A(0) = 0(9)



136 ALESSIO FIGALLI

(see [7], [9]). Typical examples include the entropy A(ρ) = ρ log ρ and the Lq-norm
A(ρ) = 1

q−1ρ
q for q ≥ n−1

n .

By all the results collected above, arguing as in the proof of [4, Theorem 6.2],
we can prove that the displacement convexity of U is still true on Ricci nonnegative
manifolds under the assumption (9).

Theorem 3.7 (displacement convexity on Ricci nonnegative manifolds). If Ric ≥
0 and A satisfies (9), then U is displacement convex.

Proof. As we remarked above, Tt is the optimal transport map from μ0 to μt. So,
by Theorem 3.3 and Proposition 3.5, we get

U(ρt) =

∫
M

A(ρt(x)) d vol(x) =

∫
Et

A

(
ρ0(x)(
J

1
n
t (x)

)n
)(

J
1
n
t (x)

)n

d vol(x),(10)

where Et is the set of full μ0-measure given by Theorem 3.3 and Jt(x) �= 0 is defined
in (8). Since Ric ≥ 0, we know that vt(x, y) ≥ 1 for every x, y ∈ M (see [4, Corollary
2.2]). Thus, for fixed x ∈ E1, Theorem 3.6 yields the concavity of the map

[0, 1] � t �→ J
1
n
t (x).

Composing this function with the convex nonincreasing function s �→ snA(s−n) we
get the convexity of the integrand in (10). The only problem we run into in trying to
conclude the displacement convexity of U is that the domain of integration appears
to depend on t. But, since by Theorem 3.3 Et is a set of full μ0-measure for any
t ∈ [0, 1], we obtain that, for fixed t, t′, s ∈ [0, 1],

U(ρ(1−s)t+st′) ≤ (1 − s)U(ρt) + sU(ρt′),

simply by computing each of the three integrals above on the full measure set Et ∩
Et′ ∩ E(1−s)t+st′ .

Acknowledgment. I wish to thank Cédric Villani for fruitful discussions on this
subject.
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ASYMPTOTIC STABILITY OF TRAVELING WAVE FRONTS IN
THE BUFFERED BISTABLE SYSTEM∗

JE-CHIANG TSAI†

Abstract. In this paper, we study a model which describes the propagation of increased cal-
cium concentration wave front in excitable systems with the diffusing species being buffered. Our
goal is to prove the global exponential stability of the unique traveling wave front. Comparing with
the unbuffered system, we conclude that multiple stationary buffers (buffers do not diffuse) cannot
prevent the existence of a global asymptotic stable traveling wave front, or cannot eliminate propa-
gated waves in the buffered bistable equation. Concerning the method of the proof, we will present
a method in which only the comparison principle and suitably constructed supersolutions (subsolu-
tions) are involved. The feature of the method is to avoid calculating the spectrum of the associated
linear operator.

Key words. calcium, reaction-diffusion equations, traveling wave front, bistable equation,
FitzHugh–Nagumo equations, asymptotic stability
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1. Introduction. Wave propagations have been observed in a wide array of
biological and chemical systems (e.g., the FitzHugh–Nagumo model and Belousov–
Zhabotinskii reaction), and have been an interesting subject of mathematical studies
for many years. Recently, waves of increased calcium concentration that travel within
cells have been studied in depth, both by experimentalists and theoreticians [13, 2,
26, 6, 33, 11]. Although their precise physiological function is not always clear, it has
been known for some time that they are important ways in which cells can transmit an
intracellular signal. Among them, the fertilization calcium (Ca2+) wave in Xenopus
laevis oocytes (eggs) has attracted much attention. This may be due to the interesting
fact that the cell divisions that initiate development of Xenopus begin only after the
fertilization calcium wave has traveled across the whole cell (see [31, 17]).

Existing experimental evidence suggests the following mechanism for calcium
waves in cells [3, 41, 2, 24, 19, 18, 16, 39, 17, 36, 14]. Binding of an agonist (e.g., a
hormone) to the receptors in the plasma membrane results in the production of IP3.
Then the IP3 diffuses rapidly into the interior of the cell, where it can bind to IP3R
(which is the IP3 receptor and acts as a calcium channel) on the membrane of the
internal calcium store ER (endoplasmic reticulum) and activate the IP3R. It turns
out that calcium can be released from ER into cytosol through the IP3R. Note that
the IP3R is regulated by both IP3 and calcium. Therefore if the released calcium
through the IP3 receptor diffuses to neighboring IP3R, then it will initiate further
calcium release from there (we assume that the concentration of the released calcium
is large enough). This is the so-called calcium-induced calcium release. Repetition of
this process can then generate an advancing wave front of high calcium concentration.
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Before stating the model for calcium waves, we make some comments on ER. First,
in addition to the calcium flux through IP3R, there are two other components of the
calcium flux across the ER membrane. More precisely, they are direct leak through
the membrane and calcium uptake by molecular pumps. Second, compared with the
calcium concentration in cytosol, the calcium concentration in ER is huge and can be
treated as a constant. Finally, we will assume that the ER is a homogeneous, contin-
uous medium, and that the dynamics of calcium in cytosol are much slower than the
gating variable for calcium inactivation of the IP3R (see [15, 39, 31]).

Now we can present the model for the calcium waves. Indeed, by taking calcium
diffusion into account [1, 15], the above discussion leads to the following equation:

∂u

∂t
= D

∂2u

∂x2
+ f(u),(1.1)

where u denotes the concentration of free cytosolic calcium, D > 0 is the diffusion
coefficient of the free cytosolic calcium, and f(u) = Jchannel + Jpump + Jleak is the
calcium fluxes through the IP3R, pumps, and the passive leak, respectively. Regarding
the form of the function f , we shall choose the well-known bistable nonlinearity. More
precisely, f is a function in C1[a0, a2] such that f(a0) = f(a1) = f(a2) = 0 for some
0 < a0 < a1 < a2 and the following condition holds:

f(u) < 0 in (a0, a1), f(u) > 0 in (a1, a2), f
′(a0) < 0, f ′(a2) < 0.

The reason for choosing such a nonlinearity is not only because it can maintain stable
self-sustained waves [17, 10], but it is also thought to be essential in the fertilization
calcium waves of Xenopus laevis oocytes (see [39, 24, 4, 9]). According to the dis-
cussion of Smith, Pearson, and Keizer [31], the state a0 represents a stable resting
state which is the basal calcium concentration in cytosol, the state a2 is a stable
resting point at high calcium concentration in cytosol, while the state a1 is unstable
and corresponds to a threshold for calcium-induced calcium release (see [31, 17]). For
simplicity, in this paper we shall only consider the typical bistable nonlinearity, i.e.,

f(u) = u(1 − u)(u− a)

for some a ∈ (0, 1). However, since we shall only concern the existence and stability
of traveling calcium waves, it will not lose any information that we want.

At first glance, the study of calcium waves is similar to the simplified version of
the well-known FitzHugh–Nagumo model, which was originally designed for studying
the action potential. However, there are still some crucial differences for the study of
calcium waves. Among them, the calcium buffers are the most important. Calcium
buffers are large proteins that act as the binding sites for calcium (see [26]). Typical
examples are calsequestrin and calbindin. The importance of studying buffers lies in
two facts. First, if we want to observe the waves in cells, we need to put the indicator
dyes (e.g., Ca2+-green dextran, BAPTA, and fura-2) into the cells. The dye is one
kind of (exogeneous) buffer. Therefore, if the buffers cannot preserve the existence of
the stable traveling calcium waves, then we may not be able to observe the traveling
calcium waves in the laboratory. Second, a large fraction of cytosolic calcium (at least
99%) is bound to calcium (endogenous) buffers. Not only do these buffers restrict the
diffusion of free calcium, they also affect the kinetics of calcium release and uptake,
and thus they would be expected to have an important effect on the properties of
calcium traveling waves (see [35, 17, 31]).
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A widely used way to model buffering is to assume that calcium reacts with buffers
according to the following reaction scheme (see Wagner and Keizer [38]):

Ca2+ + Bi

ki
+

�
ki
−

Ca2+Bi, i = 1, . . . , n,(1.2)

where Bi denotes the ith buffer in its unbound form, and Ca2+Bi denotes the ith
buffer that is bound to calcium. Let vi denote the concentration [Bi] of the ith buffer
and bi0 denote the total amount of the ith buffer. Also note that bi0 = [Bi]+ [Ca2+Bi].
We shall assume that bi0 is a constant. Then it follows from the law of mass action
and (1.2) that the rate of change of u due to buffering is given by

du

dt
=

n∑
i=1

[ki−(bi0 − vi) − ki+uvi],

where ki+ and ki− denote the forward and reverse rate constants of the ith reac-
tion (1.2), respectively. Combining this with (1.1), we obtain the following buffered
bistable system:

∂u

∂t
= D

∂2u

∂x2
+ f(u) +

n∑
i=1

[ki−(bi0 − vi) − ki+uvi],(1.3)

∂vi
∂t

= ki−(bi0 − vi) − ki+uvi, (x, t) ∈ R × (0,∞), i = 1, . . . , n,(1.4)

with the initial data

u(x, 0) = φ(x), vi(x, 0) = ψi(x), x ∈ R, i = 1, . . . , n.(1.5)

Note that we assume that buffers are stationary (buffers do not diffuse). Hence,
mathematically, we also obtain an excitable system with the diffusing species being
buffered (see [14, 17]). Thus we will not be restricted to the case for the fertilization
calcium traveling wave in Xenopus eggs only, it may be applied to other cell types.

There have been a large number of numerical studies on the biological models
including calcium buffers (see [8, 15, 23, 27]). Regarding the analytical studies, the
assumption that the buffer has fast kinetics with respect to the other reactions in
the model is always made. Under this assumption, the well-known rapid buffering
approximation (see Wagner and Keizer [38]) can be applied, and the full model can
be reduced to a single quasilinear equation, in which the effective diffusion coefficient
of calcium now depends on the calcium concentration (see [20, 21, 22, 29, 30]). Using
this reduction and assuming that there is only one buffer, Sneyd, Dale, and Duffy [34]
have proved the existence of traveling waves of the reduced system and Tsai and
Sneyd [36] have considered the uniqueness and stability of waves. Both Sneyd, Dale,
and Duffy [34] and Slepchenko, Schaff, and Choi [28] also did many interesting sim-
ulations on the relation between the wave speed and the parameters k−, k+, b0, and
D. However, these previous studies left open the question of whether or not multiple
buffers, not necessarily having fast kinetics, could eliminate wave propagation, and
the stability is also unknown. Thus, in order to get a deeper understanding of how
buffers affect the calcium traveling waves in the model (1.1), we shall not assume that
the buffers have lower affinity and fast kinetics with respect to the other reactions in
the model (1.3)–(1.4). Hence we need to consider the whole system (1.3)–(1.4) instead
of the reduced equation.
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Since we are concerned with how stationary buffers (buffers do not diffuse) affect
wave activity, we briefly review the results of traveling wave solutions for the case of
(1.3)–(1.4) without buffers, i.e., we consider the well-known bistable equation (1.1),

∂u

∂t
= D

∂2u

∂x2
+ f(u).

A nonnegative function U(ξ) ∈ C2(R) is said to be a traveling wave solution of (1.1),
if for some c ∈ R, (U, c) satisfies that u(x, t) = U(x− ct) is a solution of (1.1) and

U(+∞) = 1, U(−∞) = 0.

Note that c is the so-called wave speed associated with the profile of the traveling wave
front U . Fife and Mcleod [10] have shown that for any given a ∈ (0, 1/2), there exists
a unique c := c(a) < 0 such that there is a unique (up to a translation) traveling wave
solution U of (1.1) with wave speed c. Moreover, the profile of the front U is monotone
increasing on R. Furthermore, they have also considered the asymptotic stability for
this traveling wave front U(ξ). More precisely, let u(x, t) be the solution of (1.1) with
the initial data u(x, 0) = φ(x) satisfying φ ∈ [0, 1] on R. Then u(x, t) approaches a
translate of U uniformly in x and exponentially fast in time if lim supx→−∞ φ(x) > 0
and 1 − lim infx→+∞ φ(x) > 0 are sufficiently small.

Next we turn to the system (1.3)–(1.4). First, we set up some notation:

κi(u) := ki−b
i
0/(k

i
+u + ki−) for i = 1, . . . , n,

b0 = (b10, . . . , b
n
0 ) := (κ1(0), . . . , κn(0)),

b1 = (b11, . . . , b
n
1 ) := (κ1(a), . . . , κn(a)),

b2 = (b12, . . . , b
n
2 ) := (κ1(1), . . . , κn(1)),

v(x, t) := (v1(x, t), . . . , vn(x, t)).

We are interested in traveling wave solutions of (1.3)–(1.4) that connect the two equi-
libria (0,b0) and (1,b2). More precisely, a set of nonnegative functions (U(ξ),Π(ξ)) =
(U(ξ),Π1(ξ), . . . ,Πn(ξ)) ∈ C2(R) × C1(R) × · · · × C1(R) are said to be a trav-
eling wave solution of (1.3)–(1.4), if for some c < 0, (U(ξ),Π(ξ), c) satisfies that
(u(x, t),v(x, t)) = (U(x− ct),Π(x− ct)) is a solution of (1.3)–(1.4) and

U(+∞) = 1, Π(+∞) = b2, U(−∞) = 0, Π(−∞) = b0.(1.6)

As before, c is the so-called wave speed associated with the profile of the traveling
wave front (U ,Π). Therefore, (U(ξ), Π(ξ)) satisfies the following ordinary differential
equations:

DÜ + c U̇ + f(U) +
n∑

i=1

[
ki−(bi0 − Πi) − ki+UΠi

]
= 0,

cΠ̇i + ki−(bi0 − Πi) − ki+UΠi = 0, ξ = x− ct ∈ R, i = 1, . . . , n,(1.7)

where · denotes d/dξ. In [35], we have proved that for any given a ∈ (0, 1/2), there
exists a unique c := c(a) < 0 such that there exists a unique (up to a translation)
traveling wave solution (U ,Π) of the buffered bistable equations (1.3)–(1.4) with wave
speed c. Moreover, (U ,Π) satisfies that U̇ > 0 and Π̇i < 0, i = 1, . . . , n, on R.
Throughout the remainder of this paper, (U ,Π) will denote the unique traveling
wave solution of (1.3)–(1.4) with speed c and U(0) = 1/2.
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In [35], the stability of this traveling wave solution of (1.3)–(1.4) was established
under the following technical constraint on the initial values. Let a ∈ (0, 1/2) and
(u(x, t),v(x, t)) be the solution of (1.3)–(1.4) with the initial data (u(·, 0),v(·, 0))
satisfying the following conditions:

(1) u(·, 0), vi(·, 0) are sufficiently smooth and ux(x, 0) ≥ 0, vi,x(·, 0) ≤ 0 on R for
i = 1, . . . , n;

(2) ũt(x, 0) ≥ 0 and ṽi,t(x, 0) ≤ 0 for all x ∈ R and i = 1, . . . , n;
(3) supx∈R |u(x, 0)|+supx∈R |ux(x, 0)|+supx∈R |uxx(x, 0)|+supx∈R |uxxx(x, 0)| <

+∞;
(4) u(·, 0), vi(·, 0), i = 1, . . . , n, are in [0, 1] and [bi2, b

i
0], respectively;

(5) 1 − φ2 > 0, ψ2i − bi2 > 0, φ0 > 0 and bi0 − ψ0i > 0 are sufficiently small for
i = 1, . . . , n,

where vi,x = ∂vi/∂x, ṽi,t = ∂ṽi/∂t,

φ2 = lim
x→+∞

u(x, 0), ψ2i = lim
x→+∞

vi(x, 0), φ0 = lim
x→−∞

u(x, 0),

and ψ0i = lim
x→−∞

vi(x, 0),

and (ũ(x, t), ṽ(x, t)) = (u(x+ ct, t),v(x+ ct, t)) on R×R+. Then there exists x0 ∈ R
such that

lim
t→+∞

|u(x, t)−U(x−ct+x0)| = 0, lim
t→+∞

|vi(x, t)−Πi(x−ct+x0)| = 0, i = 1, . . . , n,

uniformly with respect to x ∈ R. Roughly speaking, this implies that a solution of
(1.3)–(1.4) which vaguely resembles a traveling front (U ,Π) at initial time will develop
into a translation of such a traveling front as t → +∞.

It is obvious that the conditions (1), (2), and (3) in our previous stability result
are technical. Moreover, the condition (5) also implies that the previous result is only
“local stability.” Therefore, the goal of this paper is to remove these conditions and
our main result is the following theorem which is global exponential stability.

Theorem 1. Let a ∈ (0, 1/2) and (u(x, t),v(x, t)) be the solution of (1.3)–(1.4)
with the initial data (u(·, 0),v(·, 0)) satisfying the following conditions:

(1) u(·, 0), vi(·, 0), are uniformly Hölder continuous in R with exponent α for
some α ∈ (0, 1) and for i = 1, . . . , n;

(2) u(·, 0), vi(·, 0), i = 1, . . . , n, are in [0, 1] and [bi2, b
i
0], respectively;

(3)

lim inf
x→+∞

u(x, 0)>a, lim sup
x→+∞

vi(x, 0)<bi1, lim sup
x→−∞

u(x, 0)<a, lim inf
x→−∞

vi(x, 0)>bi1

for i = 1, . . . , n.
Then there exists a positive constant κ which is independent of the initial data
(u(·, 0),v(·, 0)) such that

sup
x∈R

|u(x, t) − U(x− ct + ξ∗)| ≤ Ke−κt, sup
x∈R

|vi(x, t) − Πi(x− ct + ξ∗)| ≤ Ke−κt,

for i = 1, . . . , n, and for some constants ξ∗ and K which may depend on (u(·, 0),v(·, 0)).
Note that the condition (3) is weaker than the previous one.
Comparing this result with the one of the unbuffered equation (1.1), we may

conclude that physiologically, a unique asymptotic stable traveling wave front exists
as long as it exists in the absence of buffers. Hence, our results complete the picture of
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how stationary buffers affect wave activity in the bistable equation. This may suggest
that the same result is true for more complex and realistic models of calcium wave
propagation (see [17, 31, 35]).

We conclude the introduction with some comments on the method of our proof.
In general, the key step of the commonly used method for proving the asymptotic
exponential stability of a traveling wave solution is to study the spectrum of the
linear operator associated with the traveling wave solution under study, which is
sometimes bothersome (see [10, 25, 40, 37] and references therein). Here, to avoid
the spectrum analysis, we shall use a method involving only comparison principle and
suitably constructed supersolutions (subsolutions) to establish our result. In fact, we
shall extend the method of Chen [5] to prove our result, where the author studied
the existence, uniqueness, and stability of a single nonlocal equation. However, since
our problem is a system of differential equations (not a single equation), this method
cannot be carried along the whole way and much modification is needed. In fact,
for each crucial part (except the very final argument) in [5], we need to find the
counterpart for our problem.

This paper is organized as follows. In section 2, we shall state some properties of
(1.3)–(1.4) and derive the comparison principle for the subsolution and supersolution
of (1.3)–(1.4). Then in section 3, we will prove Theorem 1.

2. Preliminaries. First, for simplicity we set up some notation. For each i =
1, . . . , n, we set

F (u,v) := f(u) +
n∑

i=1

Gi(u,v),

Gi(u,v) := ki−b
i
0 − (ki+u + ki−)vi, i = 1, . . . , n.

Then we can rewrite (1.3)–(1.4) as the following system:

∂u

∂t
= L1[u,v] := D

∂2u

∂x2
+ F (u,v),(2.1)

∂vi
∂t

= L2i[u,v] := Gi(u,v), (x, t) ∈ R × R+ (R+ := (0,∞)), i = 1, . . . , n.(2.2)

Note that Gi(u,v) = 0 if and only if vi = κi(u). Furthermore, we have that

Fu(u,v) = f ′(u) −
n∑

i=1

ki+vi, Fvi
(u,v) = −(ki+u + ki−) < 0,

Gi,u(u,v) = −ki+vi ≤ 0, Gi,vi(u,v) = −(ki+u + ki−) < 0

for all u ∈ [−minj=1,...,n{1, kj−/(2k
j
+)}, 2] and vi ∈ [0,∞), i = 1, . . . , n. Finally, for

two vectors c = (c1, . . . , cn) and d = (d1, . . . , dn), the symbol c < d means ci < di for
i = 1, . . . , n, and c ≤ d means ci ≤ di for i = 1, . . . , n.

We shall investigate the asymptotic behavior as t → +∞ of the solution of (2.1)–
(2.2) with the initial data (u(·, 0),v(·, 0)). For this we briefly discuss the existence of
the global solution (u,v) of (2.1)–(2.2) with the initial data (u(·, 0),v(·, 0)) (also see
[14]). Suppose that u(·, 0) and vi(·, 0), i = 1, . . . , n, are uniformly Hölder continuous
in R with exponent α for some α ∈ (0, 1) and that 0 ≤ u(x, 0) ≤ 1 and bi2 ≤ vi(x, 0) ≤
bi0 for all x ∈ R. Then by using an iteration method of Evans and Shenk [7], a
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regularity theory of parabolic equations (cf. [12]), and an invariance region theory [32,
Theorem 14.11 on p. 203], we can prove that there is a unique solution (u,v) defined
for all t > 0 such that u ∈ C2,1(R × R+) ∩ C0(R × [0,∞)), vi ∈ C0(R × R+), and
vi,t ∈ C0(R×R+) for i = 1, . . . , n, where the set C2,1(R×R+) consists of all functions
that are once continuously differentiable in t and twice continuously differentiable in
x for all (x, t) ∈ R×R+, and the set C0(R× [0,∞)) consists of continuous functions
in R× [0,∞). Moreover, we recall from [35, Lemma 4.1] the following proposition of
invariance regions.

Proposition 1 (invariance region). Let (u,v) be a global solution of (2.1)–
(2.2) with 0 ≤ u(x, 0) ≤ 1 and b2 ≤ v(x, 0) ≤ b0 for all x ∈ R. Then we have
0 ≤ u(x, t) ≤ 1 and b2 ≤ v(x, t) ≤ b0 for all (x, t) ∈ R × R+.

Therefore, except otherwise stated, we shall assume that the initial data u(·, 0)
and vi(·, 0), i = 1, . . . , n, are uniformly Hölder continuous in R with exponent α for
some α ∈ (0, 1) and satisfy that u(·, 0) and vi(·, 0) are in [0, 1] and [bi2, b

i
0], respectively.

Since we will frequently use the notion of supersolutions (subsolutions) of (2.1)–
(2.2) and the comparison principle, we state the definition of supersolutions (subso-
lutions) as follows.

Definition 1. A set of functions (u,v) is called a subsolution of (2.1)–(2.2) in
R × R+ if u, vi ∈ C2,1(R × R+) satisfies that ut ≤ L1[u,v], vi,t ≥ L2i[u,v], that
|ut − L1[u,v]|, |vi,t − L2i[u,v]| are bounded on R × R+, and that

− min
j=1,...,n

{1, kj−/(2k
j
+)} ≤ u(x, t) ≤ 2, bi2/2 ≤ vi(x, t) ≤ 2bi0(2.3)

on R×R+ for i = 1, . . . , n. Supersolution is defined by reversing the inequalities with
(2.3) held.

The next proposition is a comparison theorem for the system (2.1)–(2.2) and
the idea of the proof is based on [35, Lemma 5.3]. We remark that Proposition 2
essentially is a comparison principle for cooperative systems. Note that (2.1)–(2.2) is
a competitive type. In general, a competition system with three or more equations
cannot be transformed into cooperative ones, but it works for (2.1)–(2.2) due to its
special structure.

Proposition 2 (comparison principle). Let (u1,v1) and (u2,v2) be a subsolution
and a supersolution of (2.1)–(2.2) on R × R+, respectively, with u1(x, 0) ≤ u2(x, 0)
and v2(x, 0) ≤ v1(x, 0) for all x ∈ R. Then we have u1(x, t) ≤ u2(x, t) and v2(x, t) ≤
v1(x, t) for all (x, t) ∈ R × R+.

Proof. Set v1 = (v11, . . . , v1n), v2 = (v21, . . . , v2n), and (ũ, ṽ) = (u1−u2,v2−v1).
Then (ũ, ṽ) satisfies

ut −Duxx = F (u1,v1) − F (u2,v2) + N1(z, t)

:=

[
f1(x, t)ũ−

n∑
i=1

f1i(x, t)ṽi

]
+ N1(z, t),(2.4)

vi,t = Gi(u2,v2) −Gi(u1,v1) + N2i(z, t)

:= [−g2i(x, t)ũ + g̃2i(x, t)ṽi] + N2i(z, t)(2.5)

for i = 1, . . . , n, together with the initial data

ũ(x, 0) = u1(x, 0) − u2(x, 0), ṽi(x, 0) = v2i(x, 0) − v1i(x, 0), i = 1, . . . , n,

where N1(z, t) and N2i(z, t) are nonpositive bounded smooth functions on R×[0,+∞),



THE BUFFERED BISTABLE SYSTEM 145

and

f1(x, t) = Fu(θ1u1 + (1 − θ1)u2, θ1v1 + (1 − θ1)v2)(x, t),
f1i(x, t) = Fvi

(θ1u1 + (1 − θ1)u2, θ1v1 + (1 − θ1)v2)(x, t),
g2i(x, t) = Gi,u(θ2iu1 + (1 − θ2i)u2, θ2iv1 + (1 − θ2i)v2)(x, t),
g̃2i(x, t) = Gi,vi(θ2iu1 + (1 − θ2i)u2, θ2iv1 + (1 − θ2i)v2)(x, t),

for some θ1 = θ1(u1,v1, u2,v2) ∈ (0, 1), θ2i = θ2i(u1,v1, u2,v2) ∈ (0, 1) and i =
1, . . . , n.

We claim that the region {ũ ≤ 0, ṽi ≤ 0, i = 1, . . . , n} is invariant under the flow
(2.4)–(2.5). Indeed, from (2.3) and the definitions of F and Gi, it follows that

f1i(x, t) < 0 and g2i(x, t) < 0 for all (x, t) ∈ R × [0,+∞) and i = 1, . . . , n.

Note that ũ(x, 0) ≤ 0 and ṽ(x, 0) ≤ 0 for all x ∈ R. Therefore, by [32, Theorem 14.11
on p. 203], we have ũ(x, t) ≤ 0 and ṽ(x, t) ≤ 0 for all (x, t) ∈ R × R+. The proof is
completed.

3. Asymptotic behavior of traveling wave fronts.

3.1. Several auxiliary lemmas. Before proving our main results, we need some
auxiliary lemmas. First, we use the traveling waves (U ,Π) to construct supersolutions
(subsolutions) of (2.1)–(2.2) whose proof can be found in [35, Lemma 3.7].

Lemma 3.1. There exist positive constants d0, μ0, and k0i, i = 1, . . . , n, which
are independent of (U ,Π, c), and a positive constant ν, which depends on (U ,Π, c),
such that, for any d ∈ (0, d0] and ξ0 ∈ R, the functions (w+,p+) and (w−,p−) defined
by

w±(x, t) := U(x− ct + ξ0 ± νd(1 − e−μ0t)) ± de−μ0t,

p±i (x, t) := Πi(x− ct + ξ0 ± νd(1 − e−μ0t)) ∓ dk0ie
−μ0t, i = 1, . . . , n,(3.1)

are a supersolution and a subsolution of (2.1)–(2.2), respectively. In what follows, we
will retain the notation: d0, μ0, ν, and k0i.

Next, we will show that under the assumption of Theorem 1, the solution (u,v) of
(2.1)–(2.2) will eventually get trapped between two translates of the traveling wave.
For this, we will construct a set of supersolution and subsolution of (2.1)–(2.2). First,
we define ζ ∈ C∞(R) as follows:

ζ(s) = 0 if s ≤ 0, ζ(s) = 1 if s ≥ 2,

0 < ζ ′(s) < 1, |ζ ′′(s)| ≤ 1 if s ∈ (0, 2).

Lemma 3.2. There exist a small positive constant d̂ ∈ (0,min{a/2, (1 − a)/2}),
and functions ε(·), σ(·), and C(·) defined on [0, d̂], such that for every d ∈ (0, d̂] and
ξ ∈ R, the functions (ŵ+(x, t), p̂+(x, t)) and (ŵ−(x, t), p̂−(x, t)) defined by

ŵ+(x, t) = ŵ+(x, t; ξ) := (1 + d) − [1 − (a− 2d)e−εt]ζ(−ε(x− ξ + Ct)),

p̂+
i (x, t) = p̂+

i (x, t; ξ) := κi(ŵ
+(x, t)) − σ, i = 1, . . . , n,

and

ŵ−(x, t) = ŵ−(x, t; ξ) := −d + [1 − (1 − a− 2d)e−εt]ζ(ε(x− ξ − Ct)),

p̂−i (x, t) = p̂−i (x, t; ξ) := κi(ŵ
−(x, t)) + σ, i = 1, . . . , n,

are a supersolution and a subsolution of (2.1)–(2.2), respectively.
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Proof. Let (and then fix) d̂ ∈ (0,min{a/2, (1 − a)/2}) be sufficiently small such

that (ŵ+, p̂+) and (ŵ−, p̂−) satisfy (2.3) on R × R+. Next, for each fixed d ∈ (0, d̂],
we will only prove that the conclusion of this lemma holds for (ŵ+, p̂+) since the case
for (ŵ−, p̂−) follows by analogous arguments. Without loss of generality, we may
assume that ξ = 0. Also by (2.3), there exist positive constants C1 and C2, which
depend only on ki+, ki−, bi0, and D, such that for all C > 0, the inequalities

|D[1 − (a− 2d)e−εt]ζ ′′(−ε(x + Ct))| ≤ C1

and

C2 ≤
n∑

i=1

(ki+ŵ
+(x, t) + ki−), −κ′

i(ŵ
+(x, t)) ≤ C1

hold for all (x, t) ∈ R × R+. Finally, we set

σ = σ(d) := min

{
d/2,−f(1 + d/2)

2C1
,
minu∈[d,a− d

2 ](−f(u))

2C1

}
.

Recalling that p̂+
i (x, t) = κi(ŵ

+(x, t)) − σ and κi(u) := ki−b
i
0/(k

i
+u + ki−), we have

ki−b
i
0 − (ki+ŵ

+(x, t) + ki−)p̂+
i (x, t)

=
[
ki−b

i
0 − (ki+ŵ

+(x, t) + ki−)κi(ŵ
+(x, t))

]
+ (ki+ŵ

+(x, t) + ki−)σ

= (ki+ŵ
+(x, t) + ki−)σ

for i = 1, . . . , n and (x, t) ∈ R × R+. Hence for each i = 1, . . . , n, and all (x, t) ∈
R × R+, we have the following inequalities:

ŵ+
t (x, t) − L1[ŵ

+, p̂+](x, t) = Cε[1 − (a− 2d)e−εt]ζ ′ − ε(a− 2d)e−εtζ

+Dε2[1 − (a− 2d)e−εt]ζ ′′

− f(ŵ+(x, t)) −
n∑

i=1

[
ki−b

i
0 − (ki+ŵ

+(x, t) + ki−)p̂+
i (x, t)

]
≥ Cε(1 − a)ζ ′ − aε− C1ε

2 − f(ŵ+(x, t))

−
n∑

i=1

(ki+ŵ
+(x, t) + ki−)σ

≥ Cε(1 − a)ζ ′ − aε− C1ε
2 − f(ŵ+(x, t)) − C1σ,

(3.2)
and

p̂+
i,t(x, t) − L2i[ŵ

+, p̂+](x, t) = κ′
i(ŵ

+(x, t))
[
Cε(1 − (a− 2d)e−εt)ζ ′ − ε(a− 2d)e−εtζ

]
−
[
ki−b

i
0 − (ki+ŵ

+(x, t) + ki−)p̂+
i (x, t)

]
≤ −CC2ε(1 − a)ζ ′ + C1aε− C2σ,(3.3)

where, for simplicity, we have denoted ζ(−ε(x−ξ+Ct)) by ζ. In order to find ε and C
satisfying that the right-hand sides of (3.2) and (3.3) are nonnegative and nonpositive,
respectively, we consider the following three cases:

(i) ζ < d/2,
(ii) ζ > 1 − d/2,
(iii) ζ ∈ [d/2, 1 − d/2].
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For case (i), we have ŵ+ > 1 + d/2, and so −f(ŵ+) > −f(1 + d/2). Choose a
sufficiently small ε satisfying that

ε ≤ min

{
d,

C2σ

C1a

}
and − aε− C1ε

2 − f(1 + d/2)

2
> 0.(3.4)

Noting that ζ ′ ≥ 0 and using (3.4) and the definition of σ, it follows that the right-
hand sides of (3.2) and (3.3) are nonnegative and nonpositive, respectively.

For case (ii), we have

d ≤ ŵ+ ≤ (1 + d) − [1 − (a− 2d)](1 − d/2) < a− d/2.

Hence if we choose ε satisfying both (3.4) and the inequality

−aε− C1ε
2 +

minu∈[d,a−d/2](−f(u))

2
> 0,

then by the definition of σ, the right-hand sides of (3.2) and (3.3) in both cases (i)
and (ii) are nonnegative and nonpositive, respectively. In the remaining proof, we fix
such ε.

Finally, for case (iii), we have a positive lower bound for ζ ′. Note that |f(ŵ+)| has
an upper bound which depends only on ki+, ki−, bi0, and D. Hence we can choose a suf-
ficiently large C = C(d, ε) to make the right-hand sides of (3.2) and (3.3) nonnegative
and nonpositive, respectively. This completes the proof.

With the use of (ŵ±, p̂±), we can obtain the long time behavior of (u(x, t),v(x, t))
for sufficiently large |x|, which implies that (u(·, t),v(·, t)) will eventually get trapped
between two translates of the traveling wave. We have the following lemma.

Lemma 3.3. Under the assumption of Theorem 1, the solution (u,v) of (2.1)–
(2.2) satisfies that

lim
t→+∞

(
lim inf
x→+∞

u(x, t)

)
= 1, lim

t→+∞

(
lim sup
x→+∞

vi(x, t)

)
= bi2,

lim
t→+∞

(
lim sup
x→−∞

u(x, t)

)
= 0, lim

t→+∞

(
lim inf
x→−∞

vi(x, t)

)
= bi0, i = 1, . . . , n.

Proof. We only prove that limt→+∞(lim infx→+∞ u(x, t)) = 1, limt→+∞
(lim supx→+∞ vi(x, t)) = bi2 for i = 1, . . . , n, since the remaining part follows in a

similar way. Let d̂ be defined in Lemma 3.2. By the assumption of Theorem 1, we
may choose d̄ ∈ (0, d̂) and M1 such that

u(x, 0) ≥ a + d̄ and vi(x, 0) ≤ κi(a) −
ki+k

i
−b

i
0

(ki+a + ki−)2
d̄ for all x ≥ M1(3.5)

and i = 1, . . . , n. Now for any fixed d ∈ (0, d̄), recall from Lemma 3.2 that (ŵ−, p̂−)
satisfies

ŵ−(x, 0) = −d if x ≤ ξ, ŵ−(x, 0) ≤ a + d for all x ∈ R, and

p̂−i (x, 0) ≥ κi(−d) if x ≤ ξ, p̂−i (x, 0) ≥ κi(a + d) for all x ∈ R

for any ξ ∈ R and i = 1, . . . , n. Set ξ = M1. Then we claim that u(x, 0) ≥ ŵ−(x, 0)
and vi(x, 0) ≤ p̂−i (x, 0) for all x ∈ R. Indeed, it follows from (3.5) that for all x ≥ M1
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and i = 1, . . . , n, u(x, 0) ≥ ŵ−(x, 0) and

vi(x, 0) ≤ κi(a) −
ki+k

i
−b

i
0

(ki+a + ki−)2
d

≤ κi(a + d)

≤ p̂−i (x, 0),

where, in the second inequality, we have used the mean-value theorem and the fact
that κ′

i(u) = −ki+k
i
−b

i
0/(k

i
+u + ki−)2. Now we turn to the case x ≤ M1. Since

u(·, t) ≥ 0 and vi(·, t) ≤ bi0, i = 1, . . . , n, it follows from the definition of (ŵ−, p̂−)
that u(x, 0) ≥ ŵ−(x, 0) and vi(x, 0) ≤ p̂−i (x, 0) for all x ≤ M1. Hence the assertion of
this claim follows.

From the definition of (ŵ−, p̂−) and the above claim, it follows that for each
i = 1, . . . , n, and d ∈ (0, d̄), we have

u(x, t) ≥ 1 − d− (1 − a− 2d)e−ε(d)t

and

vi(x, t) ≤ κi(1 − d− (1 − a− 2d)e−ε(d)t) + σ(d)

for all x ≥ M1 + C(d)t + 2/ε(d) and t > 0. Since d can be taken arbitrary small and
ε(d), σ(d) < d, the assertion of the lemma follows from taking the limit in the above
inequalities. This completes the proof.

The following technical lemma is one of the crucial tools, with which we can
extend Chen’s method [5] to the system (1.3)–(1.4), or, more generally, a system of
parabolic equations.

Lemma 3.4. There exists a positive function η(m) defined on [1,+∞) such that if
(u1,v1), (u2,v2) are the supersolution and subsolution of (2.1)–(2.2), respectively, with
u1(·, 0) ≥ u2(·, 0) and v1(·, 0) ≤ v2(·, 0) on R, then for all m ≥ 1 and i = 1, . . . , n,
the following hold:

min
x∈[−m,m]

{u1(x, 1) − u2(x, 1)} ≥ η(m)

[∫ 1

0

(u1(ξ, 0) − u2(ξ, 0))dξ

+
n∑

i=1

∫ 1

0

(v2i(ξ, 0) − v1i(ξ, 0))dξ

]
,

min
x∈[−m,m]

{v2i(x, 1) − v1i(x, 1)} ≥ η(m)

[∫ 1

0

(u1(ξ, 0) − u2(ξ, 0))dξ

+

n∑
i=1

∫ 1

0

(v2i(ξ, 0) − v1i(ξ, 0))dξ

]
.

Proof. First, we set

û := u1 − u2, v̂ = (v̂1, . . . , v̂n) := (v21 − v11, . . . , v2n − v1n),

and

r(x, t) := (u1,t(x, t) − L1[u1,v1](x, t)) − (u2,t(x, t) − L1[u2,v2](x, t)),

si(x, t) := (v2i,t(x, t) − L2i[u2,v2](x, t)) − (v1i,t(x, t) − L2i[u1,v1](x, t))

for i = 1, . . . , n. Then r(x, t), si(x, t) are nonnegative bounded continuous functions
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and the following hold:

ût = L1[u1,v1] − L1[u2,v2] + r(x, t)

= Dûxx + b̂(x, t)û +

n∑
i=1

[(ki+u2 + ki−)v̂i] + r(x, t)

:= Dûxx + b̂(x, t)û +

n∑
i=1

(ki−v̂i) + r̄(x, t),(3.6)

v̂i,t = −(ki+u2 + ki−)v̂i + (ki+ûv1i + si)(x, t),(3.7)

where

b̂(x, t) :=

∫ 1

0

df

du
(τu1(x, t) + (1 − τ)u2(x, t))dτ −

n∑
i=1

ki+v1i(x, t)

and r̄(x, t) is a nonnegative bounded continuous function. Note that û ≥ 0 and v̂ ≥ 0
on R × R+, by Proposition 2.

Now we will prove that the conclusion holds for u1−u2. Indeed, by the definitions
of supersolution and subsolution of (2.1)–(2.2), there exists a positive constant M ,
which is independent of u1, u2, and v1, such that for all (x, t) ∈ R× [0,+∞), we have

|b̂(x, t)| ≤ M.

Let ū(x, t) := eMtû(x, t) on R × [0,+∞). Then ū satisfies the following equation:

ūt = Dūxx + (M + b̂(x, t))ū + eMt
n∑

i=1

(ki−v̂i) + eMtr̄(x, t),

and so ū can be represented by

ū(x, t) =

∫
R

Γ(x, t, ξ, 0)ū(ξ, 0)dξ(3.8)

+

∫ t

0

∫
R

Γ(x, t, ξ, τ)

[
eMτ

n∑
i=1

(ki−v̂i(ξ, τ))

]
dξdτ

+

∫ t

0

∫
R

Γ(x, t, ξ, τ)
[
(M + b̂(ξ, τ))ū(ξ, τ) + eMτ r̄(ξ, τ)

]
dξdτ,

where

Γ(x, t, ξ, τ) =
exp[− (x−ξ)2

4D(t−τ) ]

2
√
πD(t− τ)

.

Solving (3.7), we obtain

v̂i(x, t) = v̂i(x, 0) exp

[
−
∫ t

0

(ki+u2(x, σ) + ki−)dσ

]
(3.9)

+

∫ t

0

exp

[
−
∫ t

σ

(ki+u2(x, τ) + ki−)dτ

]
(ki+ûv1i + si)(x, σ)dσ

≥ v̂i(x, 0) exp

[
−
∫ t

0

(ki+u2(x, σ) + ki−)dσ

]
≥ v̂i(x, 0) exp[−C̃1t],

where C̃1 is a positive constant depending only on ki+, ki−, and bi0. Note that by the

definitions of M , b̂, and r̄, the third term in (3.8) is nonnegative. Combining this



150 JE-CHIANG TSAI

with (3.8)–(3.9), there exist positive constants C1 and Ĉ1, which depend only on D,
ki+, ki−, and bi0, such that for all (x, t) ∈ R × R+, the following holds:

ū(x, t) ≥ C1√
t

∫
R

exp
[
− Ĉ1

(x− ξ)2

t

]
ū(ξ, 0)dξ

+C1

n∑
i=1

∫ t

0

∫
R

exp(−Ĉ1
(x−ξ)2

t−τ )
√
t− τ

[
exp(Mτ)v̂i(ξ, τ)

]
dξdτ

≥ C1√
t

∫
R

exp
[
− Ĉ1

(x− ξ)2

t

]
ū(ξ, 0)dξ

+C1

n∑
i=1

∫ t

0

∫
R

exp(−Ĉ1
(x−ξ)2

t−τ )
√
t− τ

[
exp((M − C̃1)τ)v̂i(ξ, 0)

]
dξdτ.

Hence for each m ≥ 1 and t > 0, we have

(3.10)

min
x∈[−m,m]

û(x, t) ≥ C1
exp[−Mt− Ĉ1(m + 1)2/t]√

t

∫ 1

0

û(ξ, 0)dξ

+C1

n∑
i=1

⎛
⎝∫ t

0

exp[−Mt− Ĉ1
(m+1)2

t−τ + (M − C̃1)τ ]
√
t− τ

dτ

⎞
⎠∫ 1

0

v̂i(ξ, 0)dξ

:= A(t)

∫ 1

0

û(ξ, 0)dξ + B(t)

n∑
i=1

∫ 1

0

v̂i(ξ, 0)dξ.

Finally, by setting

η1(m) := min{A(1), B(1)}

and using (3.10), our conclusion for u1 − u2 follows. However, we will replace η1(m)
by a smaller quantity, η(m), later.

Next, we will show that the conclusion holds for v2−v1. Indeed, by the definitions
of supersolution and subsolution of (2.1)–(2.2), there exist positive constants C2 and
Ĉ2, which depend only on ki+, ki−, and bi0, such that for each i = 1, . . . , n, the following
holds:

ki+u2 + ki− ≤ Ĉ2, ki+v1i ≥ C2 on R × [0,+∞).

Using this inequality and the fact that v̂i, si ≥ 0 on R × [0,+∞), and solving (3.7),
we obtain that for t = 1 and x ∈ [−m,m] with m ≥ 1, there holds

v̂i(x, 1) = v̂i(x, 0) exp

[
−
∫ 1

0

(ki+u2(x, σ) + ki−)dσ

]

+

∫ 1

0

exp

[
−
∫ 1

σ

(ki+u2(x, τ) + ki−)dτ

]
(ki+ûv1i + si)(x, σ)dσ

≥
∫ 1

0

exp

[
−
∫ 1

σ

(ki+u2(x, τ) + ki−)dτ

]
(ki+û(x, σ)v1i(x, σ))dσ

≥ C2

∫ 1

0

exp

[
−
∫ 1

σ

Ĉ2dτ

]
A(σ)dσ ·

∫ 1

0

û(ξ, 0)dξ

+C2

∫ 1

0

exp

[
−
∫ 1

σ

Ĉ2dτ

]
B(σ)dσ ·

n∑
i=1

∫ 1

0

v̂i(ξ, 0)dξ,
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where, in the last inequality, we have used (3.10). Finally, by setting

η(m) := min

{
η1(m), C2

∫ 1

0

exp

[
−
∫ 1

σ

Ĉ2dτ

]
A(σ)dσ,C2

∫ 1

0

exp

[
−
∫ 1

σ

Ĉ2dτ

]
B(σ)dσ

}
,

and using the above inequality and (3.10), the assertion of this lemma follows. This
completes the proof.

The following lemma is the main tool for the iteration process in the proof of
Theorem 1. We will modify the method of [5, Lemma 3.3] to prove it (see also [36]).

Lemma 3.5. Suppose that the assumptions of Theorem 1 hold. Then for each
h0 > 0, there exists a small positive constant ε∗ = ε∗(h0) ∈ (0,min{1/(2ν), d0/2}),
which is independent of (u(·, 0),v(·, 0)), such that if, for some τ ≥ 0, ξ ∈ R, d ∈
(0,min{1/ν, d0/2}], and h ∈ [0, h0], the following holds:

U(x− cτ + ξ) − d ≤ u(x, t) ≤ U(x− cτ + ξ + h) + d,(3.11)

Πi(x− cτ + ξ + h) − dk0i ≤ vi(x, t) ≤ Πi(x− cτ + ξ) + dk0i(3.12)

for all x ∈ R and i = 1, . . . , n, then for every t > τ + 1, there exist ξ̂(t), d̂(t), and

ĥ(t) satisfying

ξ̂(t) ∈ [ξ − νd, ξ + min{h, 1} + νd]

d̂(t) ≤ e−μ0(t−τ−1)[d + ε∗(h0) min{h, 1}],
ĥ(t) ≤ [h− νε∗(h0) min{h, 1}] + 2νd,

such that (3.11)–(3.12) hold with (τ, ξ, d, h) replaced by (t, ξ̂(t), d̂(t), ĥ(t)). In the re-
mainder of this paper, we will retain the notation ε∗(h0).

Proof. If necessary, by a shift of time, we may assume that τ = 0. Now by
comparing (u,v) with (w±,p±) in Lemma 3.1 (with ξ0 = ξ for (w−,p−) and ξ0 = ξ+h
for (w+,p+)), we have that for all (x, t) ∈ R × R+ and i = 1, . . . , n, there holds

(3.13)

U(x− ct+ ξ− νd(1− e−μ0t)) − de−μ0t ≤ u(x, t)

≤ U(x− ct+ ξ +h+ νd(1 − e−μ0t)) + de−μ0t,

(3.14)

Πi(x− ct+ ξ +h+ νd(1− e−μ0t))− dk0ie
−μ0t ≤ vi(x, t)

≤ Πi(x− ct+ ξ− νd(1 − e−μ0t)) + dk0ie
−μ0t.

Fix a number x0 with the property

0 ≤ x0 + ξ <
1

2
.

Since lim|s|→∞(U ′(s),Π′(s)) = (0,0), we can fix a sufficiently large constant M > h0

such that for all |s| ≥ M and i = 1, . . . , n, we have

U ′(s) ≤ 1

2ν
and − Π′

i(s) ≤
min{1, k0i}

2ν
.(3.15)

Set

h̄ = min{h, 1} and ε1 :=
(n + 1)

2
min

s∈[0,3],1≤i≤n

{
U ′(s),−Π′

i(s)
}
.
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Then by using the mean-value theorem, we have∫ 1

0

(
U(y + x0 + ξ + h̄) − U(y + x0 + ξ)

)
dy

+

n∑
i=1

∫ 1

0

(
Πi(y + x0 + ξ) − Πi(y + x0 + ξ + h̄)

)
dy ≥ 2ε1h̄,

and so, at least one of the following holds:

(i)

∫ 1

0

(
U(y + x0 + ξ + h̄) − u(y + x0, 0)

)
dy

+

n∑
i=1

∫ 1

0

(
vi(y + x0, 0) − Πi(y + x0 + ξ + h̄)

)
dy ≥ ε1h̄,

(ii)

∫ 1

0

(
u(y + x0, 0) − U(y + x0 + ξ)

)
dy

+

n∑
i=1

∫ 1

0

(
Πi(y + x0 + ξ) − vi(y + x0, 0)

)
dy ≥ ε1h̄.

In what follows, we will consider case (i) since case (ii) follows by analogous arguments.
Set ξ1 := c − νd(1 − e−μ0). Note that |ξ1| ≤ |c| + 1, since νd ≤ 1. By using (3.13)–
(3.14) and Lemma 3.4, we obtain that for η = η(2(M + |c| + 1)), every x with
x + x0 + ξ + h − ξ1 ∈ [−2(M + |c| + 1), 2(M + |c| + 1)], and each i = 1, . . . , n, there
holds

[U(x + x0 + ξ + h− ξ1) + de−μ0 ] − u(x + x0, 1)

≥ η

[∫ 1

0

(
[U(y + x0 + ξ + h̄) + d] − u(y + x0, 0)

)
dy

+
n∑

i=1

∫ 1

0

(
vi(y + x0, 0) − [Πi(y + x0 + ξ + h̄) − dk0i]

)
dy

]

≥ ηε1h̄,(3.16)

vi(x + x0, 1) − [Πi(x + x0 + ξ + h− ξ1) − dk0ie
−μ0 ]

≥ η

[∫ 1

0

(
[U(y + x0 + ξ + h̄) + d] − u(y + x0, 0)

)
dy

+
n∑

i=1

∫ 1

0

(
vi(y + x0, 0) − [Πi(y + x0 + ξ + h̄) − dk0i]

)
dy

]

≥ ηε1h̄,

where we have used the facts that U , −Πi are monotone increasing and h ≥ h̄. Define

ε∗ = ε∗(h0) := min
i=1,...,n

{d0

2
,

1

2ν
, min
|x|≤2(M+|c|+1)

ηε1
2νU ′(x)

, min
|x|≤2(M+|c|+1)

ηε1
−2νΠ′

i(x)

}
.

Let the set A1 defined by

A1 = {x ∈ R | − 2(M + |c| + 1) ≤ x + x0 + ξ − ξ1 ≤ (M + |c| + 1)}.
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Recall that h ∈ (0,M) and 2νε∗(h0) ∈ (0, 1). Therefore for all x ∈ A1 and θ ∈ (0, 1),
there holds

|x + x0 + ξ + h− ξ1| ≤ 2(M + |c| + 1),

|x + x0 + ξ + h− ξ1 − 2νθε∗(h0)h̄)| ≤ 2(M + |c| + 1).

Hence by the mean-value theorem and the choice of ε∗(h0), we can choose θi ∈ (0, 1),
i = 0, 1, . . . , n, such that for all x ∈ A1 and i = 1, . . . , n, the following holds:

U(x + x0 + ξ + h− ξ1 − 2νε∗(h0)h̄) − U(x + x0 + ξ + h− ξ1)

= U ′(x + x0 + ξ + h− ξ1 − 2θ0νε
∗(h0)h̄)(−2νε∗(h0)h̄)

≥ −ηε1h̄,

Πi(x + x0 + ξ + h− ξ1 − 2νε∗(h0)h̄) − Πi(x + x0 + ξ + h− ξ1)

= Π′
i(x + x0 + ξ + h− ξ1 − 2θiνε

∗(h0)h̄)(−2νε∗(h0)h̄)

≤ ηε1h̄.

Combining these two inequalities with (3.16), it follows that for all x ∈ A1 and
i = 1, . . . , n, we have

u(x + x0, 1) ≤ U(x + x0 + ξ + h− ξ1 − 2νε∗(h0)h̄) + de−μ0 ,(3.17)

vi(x + x0, 1) ≥ Πi(x + x0 + ξ + h− ξ1 − 2νε∗(h0)h̄) − dk0ie
−μ0 .

Next, we turn to consider the set A2 := R \ A1. By using the properties of h0 and
ε∗(h0) again, we can conclude that for all x ∈ A2 and θ ∈ (0, 1), there holds

|x + x0 + ξ + h− ξ1| ≥ M + |c| + 1,

|x + x0 + ξ + h− ξ1 − 2νθε∗(h0)h̄)| ≥ M + |c| + 1.

Therefore by using the mean-value theorem, the last inequalities, (3.15), and the
second inequality of (3.13) and the first inequality of (3.14) with t = 1, we can
conclude that there exist θi ∈ (0, 1), i = 0, 1, . . . , n, such that for all x ∈ A2 and
i = 1, . . . , n, there holds

U(x + x0 + ξ + h− ξ1 − 2νε∗(h0)h̄)

= U(x + x0 + ξ + h− ξ1)

+ U ′(x + x0 + ξ + h− ξ1 − 2θ0νε
∗(h0)h̄)(−2νε∗(h0)h̄)

≥ U(x + x0 + ξ + h− ξ1) − ε∗(h0)h̄

≥ u(x + x0, 1) − [de−μ0 + ε∗(h0)h̄],

Πi(x + x0 + ξ + h− ξ1 − 2νε∗(h0)h̄)

= Π(x + x0 + ξ + h− ξ1)

+ Π′(x + x0 + ξ + h− ξ1 − 2θiνε
∗(h0)h̄)(−2νε∗(h0)h̄)

≤ Π(x + x0 + ξ + h− ξ1) + ε∗(h0)h̄k0i

≤ v(x + x0, 1) + [de−μ0 + ε∗(h0)h̄]k0i,

which together with (3.17), implies that for all x ∈ R and i = 1, . . . , n, we have

u(x, 1) ≤ U(x + ξ + h− ξ1 − 2νε∗(h0)h̄) + [de−μ0 + ε∗(h0)h̄],

vi(x, 1) ≥ Πi(x + ξ + h− ξ1 − 2νε∗(h0)h̄) − [de−μ0 + ε∗(h0)h̄]k0i.
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Now set q := de−μ0 + ε∗(h0)h̄. Note that q is not bigger than d0 by the choice
of ε∗(h0). Also recall that ξ1 = c − νd(1 − e−μ0). Hence by comparing (u(x, 1 +
t′),v(x, 1 + t′)) with (U(ξ2) + qe−μ0t

′
,Π(ξ2)−k0qe

−μ0t
′
) (with ξ2 = x− ct′ + ξ + h−

ξ1 − 2νε∗(h0)h̄+ νq(1− e−μ0t
′
) and k0 = (k01, . . . , k0n)), we can conclude that for all

(x, t′) ∈ R × R+ and i = 1, . . . , n, there holds

u(x, 1 + t′) ≤ U(x− ct′ + ξ + h− ξ1 − 2νε∗(h0)h̄ + νq(1 − e−μ0t
′
)) + qe−μ0t

′

≤ U(x− c(1 + t′) + ξ − νd + [h− νε∗(h0)h̄ + 2νd]) + (d + ε∗(h0)h̄)e−μ0t
′

and

vi(x, 1 + t′)

≥ Πi(x− ct′ + ξ + h− ξ1 − 2νε∗(h0)h̄ + νq(1 − e−μ0t
′
)) − qk0ie

−μ0t
′

≥ Πi(x− c(1 + t′) + ξ − νd + [h− νε∗(h0)h̄ + 2νd]) − (d + ε∗(h0)h̄)k0ie
−μ0t

′
.

Set

t = 1+t′, ξ̂(t) = ξ−νd, ĥ(t) = h−νε∗(h0)h̄+2νd, and d̂(t) = (d+ε∗(h0)h̄)e−μ0(t−1).

It then follows that for all (x, t) ∈ R × R+ with t > 1 and i = 1, . . . , n, we have

u(x, t) ≤ U(x− ct + ξ̂(t) + ĥ(t)) + d̂(t),(3.18)

vi(x, t) ≥ Πi(x− ct + ξ̂(t) + ĥ(t)) − d̂(t)k0i.

Finally, it remains to be seen whether the first inequality of (3.11) and the second

inequality of (3.12) hold with (τ, ξ, d, h) replaced by (t, ξ̂(t), d̂(t), ĥ(t)). In fact, by
using (3.13)–(3.14) and the monotonicity of (U ,Π), we can conclude that for all
(x, t) ∈ R × R+ and i = 1, . . . , n, there holds

u(x, t) ≥ U(x− ct + ξ − νd(1 − e−μ0t)) − de−μ0t

≥ U(x− ct + ξ − νd) − (d + ε∗(h0)h̄)e−μ0(t−1)

= U(x− ct + ξ̂(t)) − d̂(t),(3.19)

and

vi(x, t) ≤ Πi(x− ct + ξ − νd(1 − e−μ0t)) + dk0ie
−μ0t

≤ Πi(x− ct + ξ − νd) + (d + ε∗(h0)h̄)k0ie
−μ0(t−1)

= Πi(x− ct + ξ̂(t)) + d̂(t)k0i.(3.20)

Therefore (3.18), (3.19), and (3.20) imply the assertion of this lemma. The proof is
completed.

3.2. The proof of Theorem 1. Now we have every necessary tool at hand
to prove our main theorem. Note that it may take a long time for the solution
(u,v) of (2.1)–(2.2) with the initial data satisfying the condition of Theorem 1 to be
trapped between two translates of the wave whose difference of phase shifts is less
than 1. Therefore, the proof will consist of two main steps. First, we will use the
squeezing method [5, pp. 139–140] with minor modification to prove that the assertion
of Theorem 1 holds, but the rate constant of convergence κ̂ may depend on the initial
data (u(·, 0),v(·, 0)) (see Lemma 3.6). Next, we will show that the exponent constant
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κ̂ can be replaced with a universal constant κ. We remark that the presentation of
this subsection is similar to that in [36] where we study a single quasilinear diffusion-
advection equation. But for completeness and reader’s convenience, we would like to
include it here.

Lemma 3.6. Under the assumption of Theorem 1, there exists a positive constant
κ̂ which may depend on the initial data (u(·, 0),v(·, 0)) such that

sup
x∈R

|u(x, t) − U(x− ct + ξ∗)| ≤ Ke−κ̂t, sup
x∈R

|vi(x, t) − Πi(x− ct + ξ∗)| ≤ Ke−κ̂t,

for i = 1, . . . , n, and for some constants ξ∗ and K which may depend on (u(·, 0),v(·, 0)).
Proof. The proof consists of four steps.
Step 1. Define the quantity

d̃∗ := min{1/(2ν), d0/2}.

For this d̃∗, by Lemma 3.3 and the fact that (U(+∞),Π(+∞)) = (1,b2), (U(−∞),
Π(−∞)) = (0,b0), there exist sufficiently large constants h0 > 2 and T̃0 such that
the following holds:

U(x− cT̃0 − h0/4) − d̃∗ ≤ u(x, T̃0) ≤ U(x− cT̃0 − h0/4 + h0/2) + d̃∗,(3.21)

Π(x− cT̃0 − h0/4 + h0/2) − d̃∗k0i ≤ v(x, T̃0) ≤ Π(x− cT̃0 − h0/4) + d̃∗k0i(3.22)

for all x ∈ R and i = 1, . . . , n. Therefore (3.11)–(3.12) holds with τ = T̃0, ξ = −h0/4,
h = h0/2, and d = d̃∗. Let ε∗(h0) be defined as in the proof of Lemma 3.5, and set

d∗0 := ε∗(h0)/4, κ∗
0 := νε∗(h0)/2 < 1/4.

Note that ε∗(h0) ≤ d̃∗ by the definition of ε∗(h0). Therefore we can fix a sufficiently
large constant t∗0 ≥ 2 with the property that

e−μ0(t
∗
0−1)(d̃∗ + ε∗(h0)) ≤ d∗0 and e−μ0(t

∗
0−1)(1 + ε∗(h0)/d

∗
0) ≤ 1 − κ∗

0.

Now by (3.21)–(3.22) and Lemma 3.5, we can conclude that (3.11)–(3.12) hold for

τ = T̃0+t∗0, some ξ̂ ∈ [−h0/4−νd̃∗,−h0/4+1+νd̃∗], h = ĥ(T̃0+t∗0), and d = d̂(T̃0+t∗0).

By the associated definitions, we can estimate ĥ(T̃0 + t∗0) and d̂(T̃0 + t∗0) as follows:

ĥ(T̃0 + t∗0) ≤
h0

2
− νε∗(h0) + 2νd̃∗ <

h0

2
+ 1 < h0,

d̂(T̃0 + t∗0) ≤ e−μ0(t
∗
0−1)(d̃∗ + ε∗(h0)) ≤ d∗0.

Together with the monotonicity of (U ,Π), the above discussion leads to

U(x− c(T̃0 + t∗0) + ξ̂) − d∗0 ≤ u(x, T̃0 + t∗0) ≤ U(x− c(T̃0 + t∗0) + ξ̂ + h0) + d∗0,(3.23)

Πi(x− c(T̃0 + t∗0) + ξ̂ + h0) − d∗0k0i ≤ vi(x, T̃0 + t∗0)

≤ Πi(x− c(T̃0 + t∗0) + ξ̂) + d∗0k0i(3.24)

for all x ∈ R and i = 1, . . . , n. Therefore (3.11)–(3.12) hold for τ = T0 := T̃0 + t∗0,

some ξ̂ ∈ [−h0/4−νd̃∗,−h0/4+1+νd̃∗], h = h0, and d = d∗0. Although the remainder
of the proof is almost identical to [5, pp. 139–140], for completeness and the later use,
we include it here.
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Step 2. Now we claim that there exists a finite time T1 > T0 such that (3.11)–
(3.12) hold for τ = T1, h = 1, d = d∗0, and some ξ ∈ R. Recall that h0 > 2. Let
N be the unique positive integer such that h0 ∈ [1 + (N − 1)κ∗

0, 1 + Nκ∗
0). Now by

(3.23)–(3.24) and Lemma 3.5, it follows that (3.11)–(3.12) hold for τ = T0 + t∗0, some

ξ ∈ [ξ̂ − νd∗0, ξ̂ + 1 + νd∗0], h = ĥ(T0 + t∗0), and d = d̂(T0 + t∗0). As before, ĥ(T0 + t∗0)

and d̂(T0 + t∗0) can be estimated as follows:

ĥ(T0 +t∗0) ≤ h0−νε∗(h0)+2νd∗0 = h0−κ∗
0, d̂(T0 +t∗0) ≤ e−μ0(t

∗
0−1)(d∗0 +ε∗(h0)) ≤ d∗0.

Combined with the monotonicity of (U ,Π), it follows that (3.11)–(3.12) hold for

τ = T0 + t∗0, some ξ ∈ [ξ̂ − νd∗0, ξ̂ + 1 + νd∗0], h = h0 − κ∗
0, and d = d∗0. Repeating the

same process N times, it yields that (3.11)–(3.12) hold for τ = T1 := T0 +Nt∗0, some
ξ0 ∈ R, h = h0 −Nκ∗

0, and d = d∗0. Finally, by the monotonicity of (U ,Π) again, the
assertion of this claim follows.

Step 3. Now we claim that for each k ∈ N ∪ {0}, (3.11)–(3.12) hold for some
ξ = ξk ∈ R and

τ = T k := T1 + kt∗0, h = hk := (1 − κ∗
0)

k, d = dk := (1 − κ∗
0)

kd∗0.

Moreover, we have

|ξk+1 − ξk| ≤ (1 + νd∗0)(1 − κ∗
0)

k for all k ∈ N ∪ {0}.(3.25)

Indeed, Step 2 implies that the claim holds for k = 0. Now we assume that the claim
holds for some k = m ≥ 0. Applying Lemma 3.5 with (τ, ξ, h, d) = (Tm, ξm, hm, dm),

we then obtain that (3.11)–(3.12) hold for (τ, ξ, h, d) = (Tm + t∗0, ξ̂(T
m + t∗0), ĥ(Tm +

t∗0), d̂(T
m + t∗0)) which satisfies the following:

ξm+1 := ξ̂(Tm + t∗0) ∈ [ξm − νdm, ξm + νdm + hm],

ĥ(Tm + t∗0) ≤ hm − νε∗(h0)h
m + 2νdm

= (1 − κ∗
0)

m+1,

d̂(Tm + t∗0) ≤ e−μ0(t
∗
0−1)(dm + ε∗(h0)h

m)

= (1 − κ∗
0)

md∗0e
−μ0(t

∗
0−1)(1 + ε∗(h0)/d

∗
0)

≤ (1 − κ∗
0)

m+1d∗0.

Using this and the monotonicity of (U ,Π), we can conclude that (3.11)–(3.12) hold
for (τ, ξ, h, d) = (Tm+1, ξm+1, hm+1, dm+1). This completes the proof of the first part
of this claim.

Finally, noting that |ξk+1 − ξk| ≤ νdk + hk and using the definitions of hk and
dk, (3.25) follows.

Step 4. Finally, we will prove the assertion of the lemma. For each k ∈ N ∪ {0},
recall that (3.11)–(3.12) hold for (τ, ξ, h, d) = (T k, ξk, hk, dk). Hence from (3.13)–
(3.14) and the monotonicity of (U ,Π), it follows that (3.11)–(3.12) hold for τ ∈
[T k,∞), d = dk, h = hk +2νdk, and ξ = ξk−νdk. Hence, if we define ξ(t) = ξk−νdk,
h(t) = hk + 2νdk, and d(t) = dk for all t ∈ [T k, T k+1), then it follows that for all
(x, t) ∈ R × [T1,+∞) and i = 1, . . . , n, there holds

U(x− ct + ξ(t)) − d(t) ≤ u(x, t) ≤ U(x− ct + ξ(t) + h(t)) + d(t),(3.26)

Πi(x− ct + ξ(t) + h(t)) − d(t)k0i ≤ vi(x, t) ≤ Πi(x− ct + ξ(t)) + d(t)k0i.(3.27)
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Next, for each t ∈ [T1,+∞), there exists a unique nonnegative integer m = m(t) which
is the largest integer not greater than (t−T1)/t

∗
0. Then we have t ∈ [Tm, Tm+1), and

from the definitions of h(t) and d(t), it follows that for all t ≥ T1, there holds

h(t) = hm + 2νdm ≤ (1 + 2νd∗0) exp

[( t− T1

t∗0
− 1

)
ln(1 − κ∗

0)

]
,(3.28)

d(t) = dm ≤ d∗0 exp

[( t− T1

t∗0
− 1

)
ln(1 − κ∗

0)

]
.(3.29)

Now we will show that ξ(∞) := limt→+∞ ξ(t) exists. Indeed, for any τ ≥ t ≥ T1,
there exist nonnegative integers l and p such that τ ∈ [T l, T l+1) and t ∈ [T p, T p+1).
Then by the definitions of ξ(t) and (3.25), we can estimate |ξ(τ) − ξ(t)| as follows:

|ξ(τ) − ξ(t)| = |(ξl − νdl) − (ξp − νdp)|

≤
l−1∑
i=p

|ξi+1 − ξi| + ν|dl − dp|

=
(1 + νd∗0

κ∗
0

+ νd∗0

)
|(1 − κ∗

0)
p − (1 − κ∗

0)
l)|,

which tends to zero as τ, t → +∞. Hence ξ(∞) exists. Moreover, we have

|ξ(t) − ξ(∞)| ≤
(1 + νd∗0

κ∗
0

+ νd∗0

)
exp

[( t− T1

t∗0
− 1

)
ln(1 − κ∗

0)
]

(3.30)

for all t ≥ T1. Now set

κ̂ := − ln(1 − κ∗
0)/t

∗
0,

which may depend on the initial data (u(·, 0),v(·, 0)). Finally, combining (3.26)–(3.30)
with the mean-value theorem, we obtain the assertion of this lemma. This completes
the proof.

Final Proof of Theorem 1. With this preparation, we are ready to complete the
proof of Theorem 1. Note that it remains to be seen whether the exponent constant
κ̂ can be replaced with a universal constant κ.

First, we define the following two quantities:

d∗ :=
ε∗(1)

4
and κ∗ :=

νε∗(1)

2
<

1

4
,

where ε∗(1) is defined in the proof of Lemma 3.5. We then fix a sufficiently large
constant t∗ ≥ 2 with the property that

e−μ0(t
∗−1)(1 + ε∗(1)/d∗) ≤ 1 − κ∗.

Let ξ∗ be defined in Lemma 3.6. Next, by Lemma 3.6, there exists a positive constant
T such that there holds

U(x− cT + ξ∗) − d∗ ≤ u(x, T ) ≤ U(x− cT + ξ∗) + d∗,

Πi(x− cT + ξ∗) − d∗k0i ≤ vi(x, T ) ≤ Πi(x− cT + ξ∗) + d∗k0i

for all x ∈ R and i = 1, . . . , n. Define

κ := − ln(1 − κ∗)/t∗,
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which is independent of the initial data (u(·, 0),v(·, 0)). Finally, by using a similar
argument of Step 3–Step 4 in the proof of Lemma 3.6, we can conclude that

sup
x∈R

|u(x, t) − U(x− ct + ξ∗)| ≤ Ke−κt, sup
x∈R

|vi(x, t) − Πi(x− ct + ξ∗)| ≤ Ke−κt

hold for all t > 0 and i = 1, . . . , n, and for some constant K. This completes the
proof.
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EXISTENCE OF SOLUTIONS FOR SUPPLY CHAIN MODELS
BASED ON PARTIAL DIFFERENTIAL EQUATIONS∗

M. HERTY† , A. KLAR† , AND B. PICCOLI‡

Abstract. We consider a model for supply chains governed by partial differential equations.
The mathematical properties of a continuous model are discussed and existence and uniqueness
are proven. Moreover, Lipschitz continuous dependence on the initial data is proven. We make
use of the front tracking method to construct approximate solutions. The obtained results extend
the preliminary work of [S. Göttlich, M. Herty, and A. Klar, Commun. Math. Sci., 3 (2005), pp.
545–559].

Key words. supply chains, networks, front tracking

AMS subject classifications. 90B10, 65Mxx

DOI. 10.1137/060659478

1. Introduction. Supply chain modeling is characterized by different mathe-
matical approaches: on one hand, there are discrete event simulations based on con-
siderations of individual parts; on the other hand, continuous models like [1, 2, 3]
using partial differential equations have been introduced. We consider supply chain
modeling based on the latter—the continuous models. Recently those models based
on scalar conservation laws have been reformulated in the framework of network mod-
els where the dynamics on the arcs is governed by a partial differential equation; see
[12]. This approach is inspired by other recent discussions on networks; see, e.g.,
[4, 8, 13, 14].

We recall the basic supply chain model under consideration: a supply chain net-
work consists of connected suppliers which are going to process parts. Further, each
supplier consists of a processor for assembling and construction and a buffer for un-
processed parts, called a queue. We have the following definition.

Definition 1.1 (network definition). A supply chain network is a finite, con-
nected, directed graph consisting of a finite set of arcs J and a finite set of vertices V.
Each supplier j is modeled by an arc j, which is again parameterized by an interval
[aj , bj ].

Each processor is characterized by a maximum processing capacity μj , its length
Lj , and the processing time Tj . The rate Lj/Tj describes the processing velocity and
we assume for simplicity that Lj/Tj = 1 for all j. To model the evolution of parts
inside the processor we introduce the function ρj(x, t), i.e., the density of parts in
processor j at point x and time t. Now, the dynamics of each processor on an arc j
are governed by an advection equation as in [2]:

∂tρj(x, t) + ∂x min

{
μj ,

Lj

Tj
ρj(x, t)

}
= 0 ∀x ∈ [aj , bj ], t ∈ R

+,(1.1a)

ρj(x, 0) = ρj,0(x) ∀x ∈ [aj , bj ].(1.1b)
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Equation (1.1) can be derived from a discrete event simulation [2] and allows for
the following interpretation: The parts are processed with velocity Lj/Tj but with a
maximal flux of μj . The dynamical behavior of the queues is discussed in detail in
the following sections. Roughly speaking, if the inflow is greater than the maximum
possible outflow, then the queue increases proportionally to the difference of the two,
while it decreases in the opposite case.

First, in section 2, we consider a chain-like network geometry as in Figure 1 for
which the discussion below simplifies. Then, in the following section, we turn to the
situation of arbitrary networks—in particular, those with vertices having more than
two connected arcs.

Our main achievement is the extension of results proposed in [12]. The correct
space to be considered is that of couples (ρj , qj): density of parts and queue buffer
occupancy. We prove existence and uniqueness of weak solutions for a general network
of supply chains and bounded variation (BV) initial data. The densities ρj are Lips-
chitz continuous in time w.r.t. the L1 metric, while the queue’s buffer occupancies qj
are absolutely continuous.

Moreover, we prove Lipschitz continuous dependence on the initial data. This,
in turn, permits us to extend the corresponding semigroup trajectories to L∞ initial
data.

The main idea of the proof is to construct approximated solutions by wave front
tracking [5] and derive bounds on the total variation by a careful estimate of the
interactions at the vertices of the network. The proof of Lipschitz dependence uses
the approach as in [6].

2. Consecutive processors. In this section we recall the supply chain network
model introduced and investigated in [12] and extend the existence results obtained
therein.

First, we consider the case where each vertex is connected to exactly to one
incoming arc and one outgoing arc and we assume that the arcs are consecutively
labeled, i.e., arc j is connected to arc j + 1, and that bj = aj−1; see also Figure 1.
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Fig. 1. Example of a simple network structure.

2.1. Modeling and previous results. As in the introduction, the supplier j
is defined by a queue j and a processor j. Physically, the queue is located in front of
each processor, i.e., at x = aj . To avoid technical difficulties, we assume that the first
supplier consists of a processor only and the last has infinite length, so a1 = −∞ and
bN = +∞ for the first and, respectively, the last supplier in the supply chain.

In addition to (1.1), the queue buffer occupancy in front of each processor is
modeled as time-dependent function t → qj(t). If the capacity of processor j − 1 and
the demand of processor j are not equal, the queue qj increases or decreases its buffer.
Mathematically, this implies that each queue qj satisfies the following equation:

(2.1) ∂tqj(t) = fj−1(ρj−1(bj−1, t)) − fj(ρj(aj , t)), j = 2, . . . , N.

Last, a reasonable mathematical condition for the boundary values for outgoing arcs
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j is given by (see [12])

fj(ρj(aj , t)) =

{
min{fj−1(ρj−1(bj−1, t)), μj}, qj(t) = 0,

μj , qj(t) > 0.
(2.2)

This allows for the following interpretation: If the outgoing buffer is empty, we process
as many parts as possible but at most μj . If the buffering queue contains parts, then
we process at the maximal possible rate, namely, again μj . Finally, the supply chain
model is a coupled system of partial and ordinary differential equations on a network
given by (1.1), (2.1), and (2.2).

We recall some preliminary facts from [12].
Note that due to the very special flux function

(2.3) fj(x) := min{μj ;Lj/Tjρ},

a Riemann problem for (1.1) and (x, t) ∈ R × R
+ admits one of the following two

solutions. Let ρj,0(x) = ρl for x < 0 and ρj,0 = ρr for x ≥ 0. If ρl < ρr, then the
solution ρj is given by

ρj(x, t) =

{
ρl, −∞ < x

t ≤ fj(ρr)−fj(ρl)
ρr−ρl

,

ρr,
fj(ρr)−fj(ρl)

ρr−ρl
< x

t < ∞.
(2.4)

If, on the contrary, ρl > ρr, then the following happens. If either ρl ≤ μj or ρr ≥ μj ,
then the solution is given by (2.4). Otherwise (i.e., if ρr < μj < ρl), we obtain the
solution given by

ρ(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

ρl, −∞ < x
t ≤ fj(ρl)−μj

ρl−μj
,

μj ,
fj(ρl)−μj

ρl−μj
< x

t ≤ μj−fj(ρr)
μj−ρr

,

ρr,
μj−fj(ρr)
μj−ρr

< x
t < ∞.

(2.5)

Notice that the right-hand side (RHS) of the first two inequalities is always 0 or 1.
We can introduce the following definition.
Definition 2.1 (network solution). A family of functions {ρj , qj}j∈J is called

an admissible solution for a network as in Figure 1 if, for all j, ρj is a weak entropic
solution [16] to (1.1), qj is absolutely continuous, and, in the sense of traces for ρjs,
(2.1) and (2.2) hold for a.e. t.

For the particular situation of a single vertex v ∈ V with incoming arc j = 1 and
outgoing arc j = 2 and constant initial data ρj,0(x) ≤ μj , there exists an admissible
solution {ρ1, ρ2, q2}. The solution has the explicit form

ρ1(x, t) = ρ1,0,(2.6a)

ρ2(x, t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f1(ρ1,0) < μ2

⎧⎨
⎩

ρ1,0, 0 ≤ (x− t0)/t < 1 =
f2(μ2)−f2(ρ1,0)

μ2−ρ1,0
,

μ2, 1 ≤ (x− t0)/t and x/t < 1,
ρ2,0, 1 ≤ x/t < ∞,

f1(ρ1,0) ≥ μ2

{
μ2, 0 ≤ x/t < 1 =

f2(μ2)−f2(ρ2,0)
μ2−ρ2,0

,

ρ2,0, 1 ≤ x/t < ∞,

(2.6b)

q2(t) = q2,0 +

∫ t

0

f1(ρ1,0) − f2(ρ2(a2+, τ))dτ,(2.6c)
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wherein t0 = q2,0/ (μ2 − f1(ρ1,0)) . For a network as in Figure 1, for initial data
{ρj,0(x)}j where each ρj,0 is a step function, and for initial values qj(0) = 0, there
exists an admissible solution {ρj , qj}j to the network problem (1.1), (2.1), (2.2); see
[12]. The construction of the solution is based on wave or front tracking (see below
and in [9, 5, 15]). For applications of this method in the context of network problems
we also refer the reader to [14, 8].

2.2. Wave front tracking approximations. To start, we introduce a equidis-
tant grid (iδ)Nx

i0 such that 0 ≤ (iδ) ≤ max{μj : j ∈ J } and such that ∀j∃ij : iδμj .
Here, it is implicitly assumed that μi/μj is rational. We approximate the initial data
by step functions ρδj,0 taking values in the set {iδ : i0, . . . , Nx}. Then each Riemann
problem inside an arc or at a vertex is solved, obtaining various traveling disconti-
nuities. If discontinuities collide, then the collision can be resolved either by solving
a Riemann problem inside the arc j (see (2.4),(2.5)) or as a collision with a vertex
(see (2.6)). In both cases we obtain new discontinuities propagating until the next
collision.

At the same time, an evolution of the queue’s buffers qj is automatically defined
when solving the Riemann problems at vertices.

This construction guarantees that the solution on arcs takes values only in the
set {iδ : i = 0, . . . , Nx} and we obtain a wave front tracking approximate solution
(denoted by (ρδ, qδ) := {(ρδj , qδj )}j) consisting of a set of moving discontinuities along
the intervals [aj , bj ] and the queue’s buffers’ evolutions.

As usual [5, 10], to guarantee the good definition of wave front tracking approx-
imate solutions and, passing to the limit, prove existence of solutions in the sense of
Definition 2.1, three basic estimates are in order:

1. the estimate on the number of waves;
2. the estimate on the number of interactions (between waves and of waves with

queues); and
3. the estimate on total variation of solutions for ρj .

Moreover, in our case, we need to prove some compactness of the sequence qδj in an
appropriate space.

It is easy to check that every collision inside an arc decreases the number of waves,
while the interactions with a vertex may produce two new waves; cf. (2.6). Also, since
the characteristic velocity of waves is always positive and is bounded from above, then
the first two estimates are readily obtained; see [12]. Therefore the construction of
wave front tracking approximations is well-defined up to any given time T.

2.3. Total variation estimates on densities. Here, we provide total variation
estimates on ρδj (i.e., along wave front tracking approximate solutions). This will imply
the existence of an admissible solution for BV initial data ρj,0.

First, we discuss the case of initial data ρj,0 additionally satisfying the following
assumption (K).

(K) For every j the initial datum satisfies ρj,0 ≤ μj .
The above construction guarantees that (K) remains valid for every time along wave
front tracking approximate solutions.

Each ρδj(x, t) is a piecewise constant function in x and thus will define a number

of constant states ρδj,i, i = 1, . . . , Nj , where we assume that ρδj(aj , ·) = ρδj,1, and so
forth. We define the total variation of the flux on the network as

(2.7) T.V.(f(ρδ)) =
∑
j∈J

T.V.(fj(ρ
δ
j(·, t))) =

∑
j∈J

Nj−1∑
i1

|fj(ρδj,i) − fj(ρ
δ
j,i+1)|.
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Note that, thanks to assumption (K), a bound on T.V.(fj(ρ
δ
j(·, t))) provides also a

bound on T.V.(ρδj(·, t)), since ρδj,i ≤ μj for all j, i. Furthermore, T.V.(f(ρδ)) does not
increase when discontinuities collide inside an arc j; see [5]. Next, we discuss the
collision of a discontinuity with a vertex.

Lemma 2.2. Assume a single vertex with incoming arc j = 1 and outgoing arc
j = 2. Furthermore, assume constant states ρj,0, j = 1, 2, at the vertex and consider
a discontinuity colliding at time t0. Denote the new solution at the vertex after the
collision by ρ̄j. Assume no more collision of discontinuities happens until t∗. Then,
for all t0 < t < t∗,

(2.8)

2∑
j=1

T.V.(fj(ρj(·, t))) + |∂tq2(t)| ≤
2∑

j=1

T.V.(fj(ρj(·, t0))) + |∂tq2(t0)|.

Proof. By construction the colliding discontinuity has to arrive from arc j = 1, and
therefore the total variation of the flux on this arc decreases by |f1(ρ̄1)−f1(ρ1,0)|. On
the outgoing arc j = 2 we distinguish two cases. First, assume that f2(ρ2,0) = f1(ρ1,0).
Then, due to (2.1) we have ∂tq2(t0) = 0. If f1(ρ̄1) ≤ μ2, then f2(ρ̄2) = f1(ρ̄1) and
(2.8) holds. If, on the other hand, f1(ρ̄1) > μ2, then due to (2.2), f2(ρ̄2) = μ2 and
again (2.8) holds, since for t > t0

|f1(ρ̄1) − f1(ρ1,0)| = |μ2 − f1(ρ1,0)| + |f1(ρ̄1) − μ2|
= |f2(ρ̄2) − f2(ρ2,0)| + |∂tq2(t)|.

In the second case, we assume f2(ρ2,0) = μ2. Then,

|∂tq2(t0)| = |f1(ρ1,0) − μ2|

and we distinguish two more subcases depending on whether the queue is increasing
or decreasing after the collisions. First, assume f1(ρ̄1) ≥ μ2, i.e., the queue q2 is
increasing with

|∂tq2(t)| = f1(ρ̄1) − μ2

and

f2(ρ̄2) = f2(ρ2,0) = μ2.(2.9)

Inequality (2.8) still holds, since

|f1(ρ1,0) − f1(ρ̄1)| + |∂tq2(t0)| ≥ |∂tq2(t)|

for t > t0. Second, assume f1(ρ̄1) < μ2, i.e., the queue q2 is decreasing. Let t̄ be such
that q2(t̄) = 0. Then (2.8) holds since for t < min{t̄, t∗}

T.V.(f2(ρ̄2(·, t))) = 0

and

|f1(ρ̄1) − f1(ρ1,0)| + |f1(ρ1,0) − μ2| ≥ |μ2 − f1(ρ̄1)|
= |∂tq2(t)|.
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If t̄ < t∗ we obtain a new traveling discontinuity on the outgoing arc j = 2 for times
t > t̄ when the queue q2 becomes empty: f2(ρ̄2(a2+, t)) = f1(ρ̄1) and ∂tq(t) = 0 for
t > t̄. Then, (2.8) still holds, since

T.V.(f2(ρ2(·, t))) + |∂tq2(t)|

is constant for this interaction. This finishes the proof.
Summarizing, we conclude that for all δ > 0 the following holds for all t > 0:

N∑
j=1

T.V.(ρδj(·, t)) +

N∑
j=2

|∂tqδj (t)| ≤
N∑
j=1

T.V.(ρδj,0(·)) +

N∑
j=2

|∂tqδj (0)|(2.10a)

and ρδj(x, t) ≤ max
j

μj ∀j, x.(2.10b)

2.4. Total variation estimates on queues buffers. Let us now estimate the
total variation of ∂tqj .

Lemma 2.3. Assume we have a single vertex with incoming arc j = 1 and
outgoing arc j = 2 (of infinite length). Furthermore, assume we have constant states
ρj,0, j = 1, 2, at the vertex and consider a discontinuity collision at time t0. Denote
the new solution at the vertex after the collision by ρ̄j. Assume no more collisions of
discontinuities happen until t∗. Then, for all t0 < t < t∗,

(2.11) T.V.(∂tq2, [t0, t]) ≤ 2 |f1(ρ̄1) − f1(ρ1,0)| + |∂tq2(t0)|.

Proof. The interactions are clearly the same examined in Lemma 2.2.
First, assume that f2(ρ2,0) = f1(ρ1,0). Then, due to (2.1) we have ∂tq2(t0) = 0.

If f1(ρ̄1) ≤ μ2, then f2(ρ̄2) = f1(ρ̄1) and ∂tq2(t) = 0; thus (2.11) holds because the
left-hand side vanishes.

If on the other hand, f1(ρ̄1) > μ2, then

|f1(ρ̄1) − f1(ρ1,0)| = |f2(ρ̄2) − f2(ρ2,0)| + |∂tq2(t)| ≥ |∂tq2(t)|;

thus (2.11) holds because ∂tq2(t0) = 0.
In the second case, we assume f2(ρ2,0) = μ2. Then,

(2.12) ∂tq2(t0) = f1(ρ1,0) − μ2, ∂tq2(t0+) = f1(ρ̄1) − μ2.

If the queue is increasing after the interaction, then

(2.13) T.V.(∂tq2(t), [t0, t]) = |f1(ρ1,0) − μ2 − (f1(ρ̄1) − μ2)| = |f1(ρ1,0) − f1(ρ̄1)|.

Second, assume f1(ρ̄1) < μ2, i.e., the queue q2 is decreasing. Let t̄ be such that
q2(t̄) = 0. For t < min{t̄, t∗}, (2.13) still holds; thus we conclude the case t∗ ≤ t̄. If,
on the contrary, t̄ < t∗, we obtain a new traveling discontinuity on the outgoing arc
j = 2 for times t > t̄ when the queue q2 becomes empty: f2(ρ̄2(a2+, t)) = f1(ρ̄1) and
∂tq2(t) = 0 for t > t̄. Then,

T.V.(∂tq2(t), [t0, t]) = |∂tq2(t0) − ∂tq2(t0+)| + |∂tq2(t0+) − ∂tq2(t)|

≤ |f1(ρ1,0) − f1(ρ̄1)| + |f1(ρ̄1) − μ2|

≤ 2 |f1(ρ1,0) − f1(ρ̄1)| + |∂tq2(t0)|.
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We can now reason as follows. Define

η = min
j

|bj − aj |

as the minimum length of a supplier and set

TV k
j = T.V.(fj(ρ

δ
j(·, kη))), qkj = ∂tq

δ
j (kη).

Then by Lemmas 2.2 and 2.3, we get

T.V.(∂tq
δ
j , [kη, (k + 1)η]) ≤ 2TV k

j−1 + qkj ,

qkj + TV k
j−1 + TV k

j ≤ qk−1
j + TV k−1

j−1 + TV k−1
j .

Moreover, defining by T̃ V
k

N the variation in the flux produced on the last supplier by
the queue qδN on the time interval [kη, (k + 1)η], we get

TV k
1 ≤ TV 0

1 , qkN + TV k
N−1 + T̃ V

k

N ≤ qk−1
N + TV k−1

N−1 + T̃ V
k−1

N .

Therefore, summing up on j and k we get the following:

N∑
j=2

T.V.(∂tq
δ
j , [0,Kη]) =

N∑
j=2

K−1∑
k=0

T.V.(∂tq
δ
j , [kη, (k + 1)η])

≤
N∑
j=2

K−1∑
k=0

(
2TV k

j−1 + qkj
)
≤ K

N∑
j=2

(
2TV 0

j−1 + q0
j

)
.

Restating, we have

(2.14)
N∑
j=2

T.V.(∂tq
δ
j , [0,Kη]) ≤ K

N∑
j=2

(
2 T.V.(ρδj−1,0(·)) + |∂tqδj (0)|

)
∀t.

2.5. Existence of a network solution for BV initial data. For existence of
solutions, we consider the space the space of data (ρ, q) on the supply chain with the
norm

(2.15) ‖(ρ, q)‖ =
∑
j

‖ρj‖L1 +
∑
j

|qj |.

Then, we want to find a solution in the space Lip([0, T ], L1((aj , bj))) for the ρ com-
ponents and in the space W 1,1([0, T ]) for the q components.

Due to the special flux function, we obtain discontinuities traveling with speed v
at most equal to 1. Therefore, we have for t1 < t2 and every j

(2.16)

∫ bj

aj

|ρδj(x, t1) − ρδj(x, t2)|dx ≤ T.V.(ρδj(·, t1))|t1 − t2| +
∫ t2

t1

|f(ρδj(aj , t))| dt.

The estimate (2.16) guarantees Lipschitz dependence w.r.t. time in L1, while (2.10)
ensures uniform BV bounds. Therefore, by using standard techniques [5, 17], one can
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show that for δ → 0 a subsequence of ρδ converges in L1 provided that T.V.(ρj,0(x))
is bounded. Furthermore, the limit solution ρ∗ is a weak entropic solution for (1.1).

Concerning qj , we observe that ∂tqj are of bounded variation. Again by BV
compactness, we have that ∂tqj converges by subsequences in BV, in particular, almost
everywhere and strongly in L1. Thus qj converges uniformly. Finally qj converges by
subsequences in W 1,1.

Remark 2.4. Notice that we can pass to the limit using the uniform Lipschitz
continuities of qj . In fact, by definition, Lipt(qj) ≤ max{μj−1, μj}. Thus we can pass
to the limit obtaining Lipschitz continuous functions with the same bound on the
Lipschitz constant.

Also, we can pass to the limit using estimate (2.10) and the Ascoli–Arzelá theorem,
but in that case we cannot guarantee that ∂tqj is in BV and that qj is in W 1,1.

Consider now the case in which (K) is violated. For every j, the data entering the
supplier from aj satisfies (K). Consider the generalized characteristic πj(t) starting
from aj at time 0 and let τj (possibly +∞) be the time in which it reaches bj . We
can divide the supplier into two regions:

Aj = {(t, x) : x ≤ πj(t)}, Bj = {(t, x) : x > πj(t)};

see Figure 2.

A

B

a b

π

j j

j

j
j

τ j

x

t

Fig. 2. Regions Aj and Bj .

Aj is the region influenced by the incoming flux from aj , while Bj is the region
where ρ depends only on the initial datum ρj,0. Notice that for t ≥ τj , Bj ∩ {(t, x) :
aj ≤ x ≤ bj} = ∅. On Aj , (K) holds true; thus the estimate (2.10) also holds. On Bj

the solution is the same as the solution to a scalar problem; thus the total variation is
decreasing. We thus again reach compactness in BV and the existence of a solution.

Finally, we get the following.
Proposition 2.5. If T.V.(ρj,0(x)) ≤ C for some C > 0, then there exists a

solution (ρ, q) on the network such that (ρ, q) ∈ Lip([0, T ], L1((aj , bj)))×W 1,1([0, T ]),
ρ is BV for every time, and ∂tqj is in BV.

2.6. Uniqueness and Lipschitz continuous dependence. We want to prove
uniqueness and Lipschitz continuous dependence on the space of data (ρ, q) on the
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supply chain with the norm (2.15). We use the same approach of [6, 10] and thus
consider a Riemannian metric on this space where the tangent vectors are considered
only for ρj piecewise constant functions.

Let us first focus on the ρj ’s: a “generalized tangent vector” consists of two
components (v, ξ), where v ∈ L1 describes the L1 infinitesimal displacement, while ξ ∈
R

n describes the infinitesimal displacement of discontinuities. A family of piecewise
constant functions θ → ρθ, θ ∈ [0, 1], with the same number of jumps, say, at the
points xθ

1 < · · · < xθ
M , admits a tangent vector in the following functions is well

defined (see Figure 3):

L1 � vθ(x)=̇ lim
h→0

ρθ+h(x) − ρθ(x)

h
,

and also the numbers

ξθβ=̇ lim
h→0

xθ+h
β − xθ

β

h
, β = 1, . . . ,M.

β

ξ

x

ρ

ρ

θ

θ+ h

v

Fig. 3. Construction of “generalized tangent vectors.”

Notice that the path θ → ρθ is not differentiable w.r.t. the usual differential
structure of L1; in fact, if ξθβ = 0, as h → 0 the ratio

[
ρθ+h(x) − ρθ(x)

]
/h does not

converge to any limit in L1.
The L1 length of the path γ : θ → ρθ is given by

(2.17) ‖γ‖L1 =

∫ 1

0

∥∥vθ∥∥
L1 dθ +

M∑
β=1

∫ 1

0

∣∣ρθ(xβ+) − ρθ(xβ−)
∣∣ ∣∣ξθβ∣∣ dθ.

According to (2.17), the L1 length of a path γ is the integral of the norm of its tangent
vector, defined as follows:

‖(v, ξ)‖ =̇ ‖v‖L1 +

M∑
β=1

|Δρβ | |ξβ | ,
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where Δρβ = ρ(xβ+) − ρ(xβ−) is the jump across the discontinuity xβ .
Now, given two piecewise constant functions ρ and ρ′, call Ω(u, u′) the family of

all “differentiable” paths γ : [0, 1] → γ(t) with γ(0) = u, γ(1) = u′. The Riemannian
distance between u and u′ is given by

d(u, u′)=̇ inf {‖γ‖L1 , γ ∈ Ω(u, u′)} .

To define d on all L1, for given u, u′ ∈ L1 we set

d(u, u′)=̇ inf {‖γ‖L1 + ‖u− ũ‖L1 + ‖u′ − ũ′‖L1 :

ũ, ũ′ piecewise constant functions, γ ∈ Ω(u, u′)} .

It is easy to check that this distance coincides with the distance of L1.
To estimate the L1 distance among wave front tracking approximate solutions we

proceed as follows. Take ρ, ρ′ piecewise constant initial data and let γ0(ϑ) = uϑ be a
regular path joining ρ = ρ0 with ρ′ = ρ1. Define ρϑ(t, x) to be a wave front tracking
approximate solution with initial data ρϑ and let γt(ϑ) = ρϑ(t, ·). Then for every
t ≥ 0, γt is a differentiable path. If we can prove that

(2.18) ‖γt‖L1 ≤ ‖γ0‖L1

for every t ≥ 0, then

(2.19) ‖ρ(t, ·) − ρ′(t, ·)‖L1 ≤ inf
γt

‖γt‖ L1 ≤ inf
γ0

‖γ0‖L1 = ‖ρ(0, ·) − ρ′(0, ·)‖L1 .

Now, to obtain (2.18), and hence (2.19), it is enough to prove that, for every tangent
vector (v, ξ)(t) to any regular path γt, one has

(2.20) ‖(v, ξ)(t)‖ ≤ ‖(v, ξ)(0)‖ ;

i.e., the norm of a tangent vector does not increase in time. Moreover, if (2.19)
is established, then uniqueness and Lipschitz continuous dependence of solutions to
Cauchy problems are straightforwardly achieved passing to the limit on the wave front
tracking approximate solutions.

Remark 2.6. Since the Riemannian distance d is equivalent to the L1 metric, the
reader could think that the whole framework is not so useful. On the contrary, the
different differential structure permits one to rely on tangent vectors, whose norm can
be easily controlled. This would not be possible using the tangent vectors of the usual
differential structure of L1, i.e., having only the v component.

Also, while for systems of conservation laws it is possible to find a decreasing
functional (see [7]), this is not the case for networks (see [10]), even for a scalar
conservation law.

Let us now turn to the supply chains case. It is easy to see that all paths in L1

connecting piecewise constant functions can be realized using only the ξ component
of the tangent vector; see [5, 6]. Therefore, indicating by xβj

i
the positions of discon-

tinuities, j = 1, . . . , N , i = 1, . . . ,Mj , a tangent vector to a function defined on the
network is given by

(ξβj
i
, ηj),

where ξβj
i

is the shift of the discontinuity xβj
i
, while ηj is the shift of the queue buffer

occupancy qj . The norm of a tangent vector is given by

‖(ξβj
i
, ηj)‖ =

∑
j,i

|ξβj
i
||Δρβj

i
| +

∑
j

|ηj |.
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Again, to control the distance among solutions it is enough to control the evolution
of norms of tangent vectors. Finally, we have the following lemma.

Lemma 2.7. The norm of tangent vectors are decreasing along wave front tracking
approximations.

Proof. The norm of tangent vectors changes only at interaction times or if a wave
is generated (see [6]); thus we have to consider three cases.

(i) Two waves interact on a supplier.
(ii) A wave interacts with a vertex.
(iii) One queue empties down.

Case (i) is the same as the classical case; see [5, 6].
Consider case (ii) and assume that the interaction happens with vertex j at time

t. Let us indicate by f±
j the value of the flux at aj before and after the interaction

and, similarly, by f±
j−1 the value of the flux at bj−1. In general we use the symbols +

and − to indicate quantities before and after the interaction, respectively.
Assume first that qj(t) = 0; then f−

j−1 = f−
j < μj . If f+

j−1 ≤ μj , then the
queue remains empty, a ρ wave is generated on supplier j, and the tangent vector
norm remains unchanged. If f+

j−1 > μj , then ξ+ = ξ−, Δρ+ = μj − f−
j , and η+ =

η− + ξ−(f+
j−1 − μj). Since Δρ− = f+

j−1 − f−
j−1 = f+

j−1 − f−
j , the norm is conserved.

Assume now that qj(t) > 0; then f−
j = f+

j = μj . No ρ wave is produced,

η+ = η− + ξ−Δρ−, and again we conclude.
Let us pass to case (iii) and use the same notation of case (ii). Then f−

j = μj

and f+
j = f−

j−1 = f+
j−1 < μj . We get Δρ+ = μj − f−

j−1, ξ
+ = η−/(μj − f−

j−1), and

η+ = 0; thus we are finished.

2.7. Existence for L1 initial data. Since we proved Lipschitz continuous de-
pendence, by an approximation argument, we also get existence for L1 initial data.
More precisely, we get the following theorem.

Theorem 2.8. There exists a Lipschitz continuous semigroup St defined on the
domain D = {(ρj , qj) : ρj ∈ L∞, qj ∈ R}. Moreover, for every initial datum (ρj , qj)
with ρj of bounded variation, the semigroup trajectory t �→ St(ρj , qj) is a network
solution.

We point out that assumption (K) guarantees the existence of a solution on the
network, while this is not granted in the general case, as shown by the following
example.

Example 2.9. Consider a simple network formed by only one vertex connecting
an incoming arc j = 1 and an outgoing arc j = 2 and initial data

ρ1(0, x) = μ1 = μ2, ρ2(0, x) = μ2 + sin2

(
1

x− a2

)
, q2(0) > 0.

Clearly on the outgoing arc j = 2 the solution takes values in the flat part of the flux;
thus it is constant in time. In particular, ρ2(t, x) has no trace as x → a2 for any value
of t.

Remark 2.10. Notice that (2.2) still makes sense for Example 2.9 if we interpret
the relation to hold for every limit limn ρ2(t, xn) with xn → a2. On the other side, we
can make oscillations in ρ2 arbitrarily large if we put no constraints on the possible
values of ρ2.

3. General networks. Now, we turn to the case of more general networks as,
for example, depicted in Figure 4.



SOLUTIONS TO SUPPLY CHAIN MODEL BASED ON PDES 171

� ������������������������������������������������������������������������������������������������������������������������

�

����������������������������

�

����
����
����
����
����
����
����

�

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�

������������������������

� ������������������������

�

����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����

����
����
��

�

��
���
��
���
���
���
���
��
��
�

� ������������������������

�

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
��

� ��������������������

�

���
��
��
���
���
��
��
���
�

�

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

� ��������������������

�

���������������������

� ���������������������������������������������������������������������������������������������������������������������������������

�

����������������������������

�

����
����
����
����
����
����
����

�
�

�
�

�
�

�
�

�
�

�
�

Fig. 4. Network geometry for a supply chain.

3.1. Modeling. We consider general vertices v ∈ V with mv incoming and nv

outgoing arcs. The set of arc indices of incoming (outgoing) arcs is denoted by δ−v
(δ+

v ). If we have more than one outgoing arc, we need to define the distribution of the
goods from the incoming arcs. Similar to [8], we model this as follows. We assume
that for each single vertex v a matrix Av := A(αij)i,j ∈ R

mv×nv is given and that the
total flux willing to go to arc j ∈ δ+

v is given by∑
i∈δ−v

αijfi(ρi(bi−, t)).

Therefore, we assume that the matrix A satisfies for all i ∈ δ−v , j ∈ δ+
v : 0 ≤ αij ≤ 1

and
∑

j∈δ+
v
αij = 1. Then, the supply chain network model is given by (1.1) and for

each junction v by the equations for the queues (see also [11])

∀j ∈ δ+
v : ∂tqj(t) =

∑
i∈δ−v

αijfi(ρi(bi−, t)) − fj(ρj(aj+, t)),(3.1)

and the boundary values ∀j ∈ δ+
v ,

fj(ρj(aj+, t)) =

{
min{

∑
i∈δ−v

αijfi(ρi(bi−, t));μj}, qj(t) = 0,
μj , qj(t) > 0.

(3.2)

Note that due to the positive velocity of the occurring waves the boundary conditions
are well defined. In particular, and in contrast to [8, 14], no additional maximization
problem near the vertex has to be solved. Moreover, due to (3.1) and the assumption
on A, we conserve the total flux at each vertex v for all times t > 0:∑

j∈δ+
v

(∂tqj(t) + fj(ρj(aj+, t))) =
∑
i∈δ−v

fi(ρi(bi−, t)).

Now, the construction of a solution to the network problem (1.1), (3.1), (3.2) is as
before. In particular, the results of [12] extend to problem (1.1), (3.1), (3.2) on the
network (J ,V). It is enough to control the number of waves and interactions: Let
η = minj(bj − aj) be the minimum length of a supplier. Since all waves move at
positive velocity at most equal to 1, two interactions with vertices of the same wave
can happen at most every η units of time. If N is the number of suppliers, then there
is at most a multiplication by N every η unit of time; thus we control the number of
waves and interactions.

Therefore, for given piecewise constant initial data ρδj,0 on a network, a solution

(ρδ, qδ) can be defined by the wave tracking method up to any time T. Next, we
extend Lemma 2.2 to the more general situation of a vertex v above.
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3.2. Existence, uniqueness, and Lipschitz continuous dependence of a
weak solution. We can get again BV estimates.

Lemma 3.1. Assume we have a single vertex with incoming arcs δ− = {1, . . . ,m}
and outgoing arcs δ+ = {m + 1, . . . ,m + n}. Furthermore, assume we have constant
states ρj,0, j ∈ δ− ∪ δ+, at the vertex and consider a discontinuity collision at time t0.
Denote the new solution at the vertex after the collision by ρ̄j. Assume that there are
no more collision of discontinuities until t∗. Then, for all t0 < t < t∗,∑

j∈δ−∪δ+

T.V.(fj(ρj(·, t))) +
∑
j∈δ+

|∂tqj(t)|(3.3)

≤
∑

j∈δ−∪δ+

T.V.(fj(ρj(·, t0))) +
∑
j∈δ+

|∂tqj(t0)|.

Proof. The proof is very similar to the proof of Lemma 2.2. The colliding discon-
tinuity has to arrive on an arc i ∈ δ− and we assume i = 1. The total variation on
the incoming arc i = 1 therefore decreases by

|f1(ρ̄1) − f1(ρ1,0)| =
∑
j∈δ+

|α1jf1(ρ̄1) − α1jf1(ρ1,0)|.

Hence, it suffices to prove that for any fixed outgoing arc j ∈ δ+ and for all t > t0 the
following inequality holds:

(3.4) |α1jf1(ρ̄1) − α1jf1(ρ1,0)| + |∂tqj(t0)| ≥ T.V.(fj(ρj(·, t))) + |∂tqj(t)|.

Fix j ∈ δ+. With the other cases being similar we discuss only the (most interesting)
case: Assume ∑

i∈δ−

αijfi(ρi,0) > fj(ρj,0)

and

α1jf1(ρ̄1) +
∑
i,i 	=1

fi(ρi,0) < μj .

Then, the queue qj is decreasing after the collision at time t0, and we denote again by
t̄ the time when qj(t̄)0. Then for t < min{t̄, t∗} we obtain T.V.(fj(ρ̄j(·, t))) = 0 and
|α1jf1(ρ̄1)−α1jf1(ρ1,0)|+ |∂tqj(t0)| ≥ μj −

∑
i,i 	=1 αijfi(ρi,0)−α1jf1(ρ̄1) = |∂tqj(t)|.

If t̄ < t∗, then a new discontinuity is generated since the queue qj empties. By (3.2)
we have

fj(ρ̄j(aj+, t)) =
∑
i,i 	=1

αijfj(ρj,0) + α1jf1(ρ̄1),

and therefore

|∂tq(t̄)|T.V.(fj(ρj(·, t)))

for t > t̄. Hence, (3.4) holds for all t > t0. This finishes the proof.
Therefore, we again obtain the estimate (2.10), where the sum now should run

over all arcs and nodes of the network. Moreover, the estimates on ∂tqj work in the
same way.

The same arguments as above give existence and uniqueness of a weak solution
as well as the Lipschitz continuous dependence on the data in the general case for BV
initial data. Finally, Theorem 2.8 holds for a general network.
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4. Summary. We have proven existence, uniqueness, and Lipschitz continuous
dependence of a weak solution to a network model for supply chains. The model
consists of a scalar hyperbolic equation governing the dynamics of a supplier and an
ordinary differential equation for describing the behavior of the queues. The proof
of existence relies on the front tracking approximations and estimates on the total
variation.
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BIFURCATION FOR A FREE BOUNDARY PROBLEM MODELING
TUMOR GROWTH BY STOKES EQUATION∗

AVNER FRIEDMAN† AND BEI HU‡

Abstract. We consider a free boundary problem modeling tumor growth in fluid-like tissue. The
model equations include a diffusion equation for the nutrient concentration, and the Stokes equation
with a source which represents the proliferation density of the tumor cells. The proliferation rate μ
and the cell-to-cell adhesiveness γ which keeps the tumor intact are two parameters which characterize
the “aggressiveness” of the tumor. For any positive radius R there exists a unique radially symmetric
stationary solution with radius r = R. We prove that for a sequence μ/γ = Mn(R) there exist
symmetry-breaking bifurcation branches of solutions with free boundary r = R + εYn,0(θ) + O(ε2)
(n even ≥ 2) for small |ε|, where Yn,0 is the spherical harmonic of mode (n, 0). Furthermore, the
smallest Mn(R), say, Mn∗ (R), is such that n∗ = n∗(R) → ∞ as R → ∞. The biological implications
of this result are discussed at the end of the paper.

Key words. free boundary problems, stationary solution, stability, instability, bifurcation,
symmetry-breaking, tumor growth
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1. Introduction. Mathematical models of solid tumor growth, which consider
the tumor tissue as a density of proliferating cells, have been developed and studied in
many papers; see [1, 2, 3, 4, 7, 9, 10, 18, 20, 21, 23, 27, 28, 30, 31] and the references
given there. Most of the models discuss the case of radially symmetric tumors.

Tumors grown in vitro have a nearly spherical shape, but tumors in vivo may
develop all kinds of protrusions. It is therefore interesting to explore the existence of
nonspherical solutions of tumor models.

Let Ω(t) denote the tumor domain at time t, and p the pressure within the tumor
resulting from proliferation of the tumor cells. The density of the cells, c, depends
on the concentration of nutrients, σ, and, assuming that this dependence is linear, we
simply identify c with σ. We also assume a linear dependence of the proliferation rate
S on σ, that is,

S = μ(σ − σ̃),

where σ̃ > 0 is a threshold concentration and μ is a positive parameter. If the
consumption rate of nutrients by tumor cells is proportional to the concentration of
the nutrients, then σ satisfies

(1.1) βσt − Δσ + σ = 0 in Ω(t), σ = σ on ∂Ω(t).

Most tumor models assume that the tissue has the structure of a porous medium
for which Darcy’s law holds. If we denote by p the pressure within the tumor resulting
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from the proliferation of tumor cells, then p is related to the velocity �v by which the
cells move, by Darcy’s law �v = −∇p. Since by conservation of mass

(1.2) div�v = S = μ(σ − σ̃),

we obtain for the pressure p the equation

(1.3) Δp = −μ(σ − σ̃) in Ω(t).

There are, however, tumors for which the tissue is more naturally modeled as
fluid. For example, in early stages of breast cancer the tumor is confined to the
duct of a mammary gland, which consists of epithelial cells, a meshwork of proteins,
and extracellular fluid. Several recent papers on ductal carcinoma in the breast use
the Stokes equation in their mathematical models [15, 16, 17]. If we denote the
fluid velocity by �v = (v1, v2, v3) and the fluid pressure by p, then the constitutive
law is σij = −pδij + 2ν(eij − 1

3Δ δij), where σij is the stress tensor, p = − 1
3σkk,

eij = 1
2 ( ∂vi

∂xj
+

∂vj

∂xi
) is the strain tensor, Δ = ekk = div�v is the dilation, and ν is the

viscosity coefficient. If there are no body forces, then
∂σij

∂xj
= 0.

We can rewrite this equation as the Stokes equation

(1.4) −νΔ�v + ∇p− (ν/3)∇ div�v = 0 in Ω(t), t > 0.

We now turn to the boundary conditions at the boundary Γ(t) of Ω(t). We assume
that the tumor is held together by the forces of cell-to-cell adhesion with constant γ;
the role of γ is discussed in [5, 6, 8]. Introducing the stress tensor Q = ν(∇�v+(∇�v)T )−
(p+ 2

3ν div�v)I with components Qij = ν( ∂vi

∂xj
+

∂vj

∂xi
)− δij(p+ 2ν

3 div�v), we then have

Q�n = −γκ�n on Γ(t), where �n is the outward normal and κ is the mean curvature
(κ > 0 if Γ(t) is the surface of a convex body). Noting that 2ν

3 div�v = 2ν
3 μ(σ − σ̃) on

Γ(t), this boundary condition can be written in the form

(1.5) T�n =
{
−γκ + (2ν/3)μ(σ − σ̃)

}
�n on Γ(t), t > 0,

where Tij = ν( ∂vi

∂xj
+

∂vj

∂xi
) − δijp.

We also assume the kinematic condition �v · �n = Vn on Γ(t), t > 0.
The system (1.2), (1.4), and (1.5) has six-dimensional kernel V0 consisting of

rigid motions �v0 = �a +�b × �x. We must therefore add six scalar constraints. These
constraints can be written in the form

∫
Ω(t)

�v dx = �A(t),
∫
Ω(t)

�v× �x dx = �B(t), where

�A(t), �B(t) are prescribed functions. Finally, we prescribe the initial condition

(1.6) Ω(t)
∣∣∣
t=0

= Ω0, σ
∣∣∣
t=0

= σ0(x) in Ω0.

Local existence and uniqueness of solutions for the system (1.4)–(1.6) for a general
domain were recently proved by Friedman [19].

In this paper we are interested in discovering a nonspherical stationary solution
to the tumor model based on the Stokes equation. For the case of Darcy’s law it was
proved in Friedman and Reitich [23] that if σ̃ < σ then there exists a unique stationary
spherical solution with radius R = RS which is determined by σ̃/σ. It was further
proved in Fontelos and Friedman [13] that there exists a family of symmetry-breaking
bifurcation branches of stationary solutions with free boundary

(1.7) r = RS + εYn,0 + O(ε2) (n ≥ 2)
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with μ, γ such that

(1.8)
μ

γ
= Mn(RS) + O(ε), Mn(R) =

(n− 1)n(n + 2)

2R5P0(R)[P1(R) − Pn(R)]
,

where Yn,0 is the spherical harmonic of order (n, 0), Pn(R) = In+3/2(R)/[RIn+1/2(R)],
and Im(r) is the modified Bessel function of order m; furthermore, Mn(R) < Mn+1(R).
For dimension 2, such a result was proved earlier in Friedman and Reitich [24].

The purpose of the present paper is to establish the existence of symmetry-
breaking bifurcation branches of stationary solutions in the case where we replace
Darcy’s law by the Stokes equation and maintain the conservation law (1.2).

By scaling we may assume that ν = 1 and σ = 1. We also take �A = 0, �B = 0 in
the constraints. Then the stationary problem becomes

−Δσ + σ = 0 in Ω, σ = 1 on ∂Ω,(1.9)

−Δ�v + ∇p = (μ/3)∇(σ − σ̃) in Ω,(1.10)

div�v = μ(σ − σ̃) in Ω (σ̃ < 1),(1.11)

T (�v, p)�n =
(
−γκ +

2ν

3
μ(1 − σ̃)

)
�n on ∂Ω,(1.12)

�v · �n = 0 on ∂Ω,(1.13) ∫
Ω

�v dx = 0,

∫
Ω

�v × �x dx = 0,(1.14)

where T (�v, p) = (∇�v)T + ∇�v − p I, I = (δij)
3
i,j=1.

In this paper, we shall prove that there exists a family of symmetry-breaking
bifurcation branches of stationary solutions of (1.9)–(1.14) with free boundary as
(1.7) for n even ≥ 2, where

(1.15)
μ

γ
= Mn(RS) + O(ε), Mn(R) =

n(n + 2)(2n + 1)

4(n + 1)(2n + 3)

1

R3P0(R)[P1(R) − Pn(R)]

instead of (1.8). In an interesting contrast to the situation for (1.8), the present
sequence Mn(RS) is generally not monotone increasing for all n ≥ 2. Instead,
it is monotone increasing beginning only from some n = n(RS); furthermore, if
Mn∗(RS)(RS) = min{Mn(RS); n = 2, 3, 4, . . . }, then n∗(RS) → ∞ if RS → ∞.
The biological implications of this result will be discussed in the concluding section of
this paper. For the reader’s convenience, some important formulas on vector spherical
harmonics and on Bessel functions are collected in Appendices A and B.

2. Radially symmetric stationary spherical solution. The only radially
symmetric solution of (1.9) is

(2.1) σS(r) =
RS

sinhRS

sinh r

r
=

R
1/2
S

I1/2(RS)

I1/2(r)

r1/2
in {r < RS},

where RS is uniquely determined by integrating (1.11) over {r < RS} and using the

relation (1.13),
∫ RS

0
μ(σS − σ̃)r2dr = 0, or (cf. [23])

(2.2) P0(RS) ≡ (RS cothRS − 1)/R2
S = σ̃/3.
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We shall show that the pressure and velocity corresponding to σS are

(2.3) pS(r) = p +
4μ

3
σS(r), �vS = μG(r)r�er, G(r) =

R1/2

I1/2(R)

I3/2(r)

r3/2
− P0(R),

where R = RS , and the constant p in (2.3) is determined by

(2.4) pS(R) =
γ

R
+

4μ

3
(1 − σ̃) ≡ γ

R
+

4μ

3
(1 − 3P0(R)).

In fact, from (B.14) with n = 0 we get G(R) = 0, so that (1.13) is satisfied. Using
various properties of the Bessel functions we verify

RG′(R) = 1 − 3P0(R) = σS(R) − σ̃,(2.5)

4G′(r) + rG′′(r) = (σS)r(r) =
R1/2

I1/2(R)

I3/2(r)

r1/2
,(2.6)

( ∂

∂xi
(G(r)xj) +

∂

∂xj
(G(r)xi)

)∣∣∣
r=R

= 2G′(R)
xixj

R

∣∣∣
r=R

,(2.7)

from which we deduce that (1.10)–(1.12) are satisfied. Finally, the constraints in
(1.14) are obviously satisfied. From now on we set R = RS .

3. The bifurcation problem. Consider a family of domains with boundaries
∂Ωε : r = RS + R̃(θ, φ), where R̃(θ, φ) = εS(θ, φ). Let (σ,�v, p) be the solution of
(1.9)–(1.12) with the constraints (1.14). We define a function F by

(3.1) F (R̃, μ) = �v · �n.

Then (σ,�v, p,RS + R̃) is a stationary solution if and only if F (R̃, μ) = 0.
The function S(θ, φ) may be viewed as a function defined on the unit sphere

Σ = {x; |x| = 1}. We shall later assume that S(θ, φ) is in Cm+α(Σ), that is, S is
Cm+α as a function defined on Σ; note that this does not mean that S(θ, φ) is in
Cm+α in the variable (θ, φ). We shall see in sections 4–6 that F maps the space
Cm+α(Σ)×R into the space Cm+α−1(Σ). In section 4 we shall formally compute the
Fréchet derivatives of F . Since F is smooth (as will be shown in section 6), the formal
derivation will be rigorously justified.

In order to compute the Fréchet derivatives of F , we need the expansion of (σ,�v, p)
of order ε. Note that the normal vector �n is given by

(3.2) �n = �er − ε
Sθ

R
�eθ − ε

Sφ

R sin θ
�eφ + O(ε2) = �er −

ε

R
∇ωS + O(ε2).

We can formally write, for any fixed value of the positive parameter μ,

σ = σS + εσ1 + O(ε2), p = pS + εp1 + O(ε2), �v = �vS + ε�v1 + O(ε2),(3.3)

∂Ωε : r = R + εS(θ, φ).(3.4)

Since �vS(R) = 0, F (εS, μ) = ε(�v1 + S ∂
∂r�vS)|r=R · �er + O(ε2). Using the relation

S(θ, φ) ∂
∂r�vS |r=R · �er = μG′(R)R S(θ, φ) and (2.5), the Fréchet derivative is given by

(3.5) [FR̃(0, μ)]S =
(
�v1 + S

∂

∂r
�vS

)∣∣∣
r=R

· �er = �v1

∣∣∣
r=R

· �er + μ(1 − 3P0(R))S(θ, φ).
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Without the constraint (1.14), the velocity �v1 is determined only up to an additive

vector of the form �a+�b×�x. In section 4 we shall compute this Fréchet derivative, and
in section 5 we shall prove that this derivative satisfies the conditions of the bifurcation
theorem of Crandall and Rabinowitz for a sequence of parameters Mn, thus allowing
us to conclude the existence of symmetry-breaking bifurcations initiating from Mn.

4. Computation of Fréchet derivative. In this section we shall compute the
Fréchet derivative [FR̃(0, μ)]S. For clarity we shall first perform the computation in a
formal way; namely, we assume that the asymptotic formulas (3.3) are valid and that
these relations may be differentiated several times; we also drop all the O(ε2) terms.
All these formal computations will be made rigorous in section 6.

Lemma 4.1.

[FR̃(0, μ)]Yl,0 =
{
μR2P0(R)[P1(R) − Pl(R)]

(
1 +

l

(2l2 + 4l + 3)

)

− γ(l + 2)(2l + 1)l

4R(2l2 + 4l + 3)

}
Yl,0 for l �= 1,

(4.1)

[FR̃(0, μ)]Y1,0 = 0 for l = 1.(4.2)

The rigorous proof of this lemma will be given in section 5.
Since we will not impose in this section the constraints of (1.14), �v and �v1 are

determined only up to additive vectors �a+�b× �x. In the next section we shall impose
the constraints (1.14) for �v and then determine �v1 in a unique way in the form �v1 =

�v1∗ +�a+�b×�x, where �v1∗ is a special solution satisfying (1.9)–(1.13) and �a,�b are such
that (1.14) is satisfied.

4.1. Computation of σ1. Formally, s1|∂BR
= σ1|∂Ωε

+ O(ε), so that

(4.3) εσ1

∣∣∣
∂BR

= εσ1

∣∣∣
∂Ωε

+ O(ε2) = −ε(σS)r(R)S + O(ε2).

Substituting (3.3) and (4.3) into (1.9), we find that σ1 satisfies

(4.4) −Δσ1 + σ1 = 0 in BR, σ1 = −(σS)r(R)S(θ, φ) on ∂BR.

Hence, we have the following lemma.
Lemma 4.2. If S = Yl,m, then

(4.5) σ1 = −(σS)r(R)
Il+1/2(r)

r1/2

R1/2

Il+1/2(R)
Yl,m(θ, φ).

Remark 4.1. Lemma 4.2 is understood in the sense that it holds for the real and
imaginary parts of Yl,m separately. The same interpretation will be used in subsequent
computations.

4.2. Computation of �v1 and p1. Substituting (3.3) into (1.10), (1.11), we get

−Δ�v1 + ∇p1 = (μ/3)∇σ1 in BR,(4.6)

div�v1 = μσ1 in BR.(4.7)

By taking the divergence in (4.6) and using (4.7), we also have

(4.8) Δ
(
p1 − (4μ/3)σ1

)
= 0 in BR.
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Using (4.4), we can rewrite (4.6) in the form

(4.9) Δ
(
�v1 − μ∇σ1

)
= ∇

(
p1 − (4μ/3)σ1

)
in BR.

In the special case S = Yl,m, we look for a solution (�v1, p1) of the form

�v1 = �a +�b× �x + μ∇σ1 + vl,m(r)�Vl,m + xl,m(r) �Xl,m + wl,m(r) �Wl,m,(4.10)

p1 =
4μ

3
σ1 + pl,m(r)Yl,m,(4.11)

where �Vl,m, �Xl,m, and �Wl,m are vector spherical harmonics; see (A.10)–(A.12) for
their expressions.

Then by (A.15)

∇
(
p1 −

4μ

3
σ1

)
=

( l + 1

2l + 1

)1/2[
− ∂

∂r
pl,m +

l

r
pl,m

]
�Vl,m

+
( l

2l + 1

)1/2[ ∂

∂r
pl,m +

l + 1

r
pl,m

]
�Wl,m.

(4.12)

Applying (A.15) to Il+1/2(r)/r
1/2 and using (B.9) and (B.10), we obtain

∇σ1 = −(σS)r(R)
R1/2

Il+1/2(R)

{
−
( l + 1

2l + 1

)1/2 Il+3/2(r)

r1/2
�Vl,m

+
( l

2l + 1

)1/2 Il−1/2(r)

r1/2
�Wl,m

}
.

(4.13)

Taking the divergence in (4.10) and using (4.4) and (A.16)–(A.18), we find that

div�v1 = μσ1 −
( l + 1

2l + 1

)1/2[dvl,m
dr

+
l + 2

r
vl,m

]
Yl,m

+
( l

2l + 1

)1/2[dwl,m

dr
− l − 1

r
wl,m

]
Yl,m.

(4.14)

Similarly, taking the Laplacian in (4.10) and using (A.20)–(A.22), we obtain

(4.15) Δ
(
�v1 − μ∇σ1

)
= Ll+1(vl,m)�Vl,m + Ll(xl,m) �Xl,m + Ll−1(wl,m) �Wl,m.

Then the system (4.7), (4.6) reduces to four ODEs:

−
( l + 1

2l + 1

)1/2[dvl,m
dr

+
l + 2

r
vl,m

]
+
( l

2l + 1

)1/2[dwl,m

dr
− l − 1

r
wl,m

]
= 0,(4.16)

Ll+1(vl,m) =
( l + 1

2l + 1

)1/2[
− ∂

∂r
pl,m +

l

r
pl,m

]
,(4.17)

Ll(xl,m) = 0,(4.18)

Ll−1(wl,m) =
( l

2l + 1

)1/2[ ∂

∂r
pl,m +

l + 1

r
pl,m

]
.(4.19)

Lemma 4.3. The solutions of the system (4.16)–(4.19) have the form

pl,m(r) = 2A1(2l + 3)rl,(4.20)

vl,m(r) =
2lA1

2l + 1

(2l + 1

l + 1

)1/2

rl+1,(4.21)

xl,m(r) = B1r
l,(4.22)

wl,m(r) = C1l
(2l + 1

l

)1/2

rl−1 +
A1(2l + 3)l

(2l + 1)

(2l + 1

l

)1/2

rl+1,(4.23)
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where A1, B1, C1 are arbitrary constants.
Proof. From (4.8), (4.11), and (A.19), we have Ll(pl,m) = 0. This equation

has two linearly independent solutions, rl and r−l−1. Since pl,m is not singular at
r = 0, we have pl,m(r) = D1r

l for some constant D1. Hence (4.17) is reduced to
Ll+1(vl,m) = 0. This equation has linearly independent solutions rl+1 and r−l−2.
Since vl,m(r) is not singular at r = 0, it must be equal to const · rl+1, which, for
convenience in future computations, we write in the form (4.21).

Similarly, xl,m(r) has the form (4.22). Finally, (4.19) is reduced to

(4.24) Ll−1(wl,m) = D1

( l

2l + 1

)1/2

(2l + 1)rl−1;

the general solution of this equation which is not singular at r = 0 is of the form

(4.25) wl,m(r) = C1l
(2l + 1

l

)1/2

rl−1 +
D1

2

( l

2l + 1

)1/2

rl+1,

where C1 is an arbitrary constant. A direct computation shows that (4.16) holds if
and only if

(4.26) − 2lA1

2l + 1
(2l + 3) +

( l

2l + 1

)1/2

D1

( l

2l + 1

)1/2

= 0.

Therefore, wl,m(r) is given by (4.23).

4.3. The boundary condition for �v1 and p1. We need three equations to
determine the constants A1, B1, C1. They should come from the boundary conditions
for �v1 and p1. By [23], the curvature κ for the surface r = RS + εS is given by

(4.27) κ =
1

R
− ε

R2

(
S +

1

2
ΔωS

)
+ O(ε2).

Thus, by (3.2),

(4.28) κ�n =
1

R
�er −

ε

R2

{
∇ωS +

(
S +

1

2
ΔωS

)
�er

}
+ O(ε2).

A direct computation shows that

T (�v, p)�n
∣∣∣
∂Ωε

=
(
T (�vS , pS)

∣∣∣
∂Ωε

+ εT (�v1, p1)
∣∣∣
∂Ωε

)(
�er −

ε

R
∇ωS

)
+ O(ε2)

= T (�vS , pS)
∣∣∣
∂BR

�er + ε
{(

T (�v1, p1)
∣∣∣
∂BR

+ S
∂

∂r
T (�vS , pS)

∣∣∣
∂BR

)
�er(4.29)

− 1

R
T (�vS , pS)

∣∣∣
∂BR

∇ωS
}

+ O(ε2),

where T (�v1, p1) = ν(∇�v1+(∇�v1)
T )−p1I. Thus the boundary condition for �v becomes

(4.30) T (�v1, p1)
∣∣∣
∂BR

�er = �Φ1,

where

�Φ1 =
γ

R2

{
∇ωS +

(
S +

1

2
ΔωS

)
�er

}
− S

∂

∂r
T (�vS , pS)

∣∣∣
∂BR

�er

+
( 1

R
T (�vS , pS)

∣∣∣
∂BR

− 2μ

3R
(1 − σ̃)

)
∇ωS.

(4.31)
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For a (column) vector �Z, ∇Z denotes the matrix with components (∇�Z)ij = ∂xi
Zj ,

so that for any vector �U , we have ∇�Z · �U = (∂x1
�ZT · �U , ∂x2

�ZT · �U , ∂x3
�ZT · �U)T . Since

�vS = μG(r)r�er and r∇�er = I − �er�e
T
r , for any vector �U

∇�vS · �U =
[ ∂

∂r

(
μG(r)r

)
�er

]
�eTr · �U + μG(r)r∇�er · �U

=
∂

∂r

(
μG(r)r

)
(�U · �er)�er + μG(r)

(
�U − (�U · �er)�er

)
(4.32)

=
{
−μG(r) +

∂

∂r

(
μG(r)r

)}
(�U · �er)�er + μG(r)�U.

Since ∇ωS · �er = 0, if we apply (4.32) to �U = ∇ωS, the right-hand side of (4.32) will
vanish at r = R. The same is true if we replace ∇vS by (∇vS)T in (4.32), since ∇vS
is symmetric (cf. (2.7)). Hence(

T (�vS , pS)
∣∣∣
∂BR

− 2μ

3
(1 − σ̃)

)
∇ωS =

(
−pS(R) − 2μ

3
(1 − σ̃)

)
∇ωS

= −
( γ

R
+ 2μ(1 − 3P0(R))

)
∇ωS,

(4.33)

where in the last equality we used (2.2), (2.4). Similarly, taking �U = �er and differen-
tiating in r, we get

∂

∂r
T (�vS , pS)

∣∣∣
∂BR

�er =
[
2
∂2

∂r2

(
μG(r)r

)
− ∂pS(r)

∂r

]
r=R

�er

= −2μ
[ 2

R
(1 − 3P0(R)) − 1

3
RP0(R)

]
�er,

where in the last equality we used (2.5) and (2.6). Substituting this and (4.33) into
(4.31), we find that, in the special case S = Yl,m,

�Φ1 = −2μ

R
(1 − 3P0(R))∇ωYl,m +

{ γ

R2

(
1 − l(l + 1)

2

)
+

4μ

R
(1 − 3P0(R)) − 2μ

3
RP0(R)

}
Yl,m�er.

(4.34)

Using (A.13), (A.14), we then obtain the orthogonality relation

(4.35) 〈�Φ1, �Xl,m〉 = 0.

According to Lemma 4.1 of [26], if T (�v1, p1)�er = �Φ1 = M1
�Vl,m + M2

�Xl,m +

M3
�Wl,m, where �v1, p1 are as in (4.10), (4.11) with �a = 0, �b = 0, ∇σ1 = 0, then xl,m

satisfies

(4.36)
∂xl,m

∂r
− 1

r
xl,m = M2 at r = R.

The same is true if σ1 is as in (4.5) since, by (4.13), the introduction of σ1 does not

change M2 (i.e., 〈∇σ1, �Xl,m〉 = 0); the same is true if the constant vectors are not

equal to zero since T (�v1, p1) = T (�v1 − �a−�b× �x, p1). In the present case M2 = 0 (by
(4.34) and (A.13), (A.14)), so that, by (4.22), equation (4.36) reduces to

(4.37) B1

(
lRl−1 − Rl

R

)
= 0,
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and, since l ≥ 2, B1 = 0.
Using Lemma 4.3 with B1 = 0, and (4.5), one can verify that

(4.38) �v1 = �a +�b× �x + H1(r)Yl,m�er + H2(r)∇ωYl,m,

where

H1(r) =
{
−μRP0(R)

R1/2

Il+1/2(R)

(Il+3/2(r)

r1/2
+

l

r3/2
Il+1/2(r)

)
+ A1l r

l+1 + C1l r
l−1

}
,

(4.39)

H2(r) = −μRP0(R)
R1/2

Il+1/2(R)

Il+1/2(r)

r3/2
+ A1

(l + 3)

(l + 1)
rl+1 + C1r

l−1.(4.40)

Also, by (4.11), (4.5), and the equality (σS)r(R) = RP0(R),

(4.41) p1

∣∣∣
r=R

=
(
−4μ

3
RP0(R) + 2A1(2l + 3)Rl

)
Yl,m.

Lemma 4.4. For any function H(r), there hold

∇
(
H(r)Yl,m�er

)
· �er = ∇

(
H(r)Yl,m

)
= H ′(r)Yl,m�er + r−1H(r)∇ωYl,m,(4.42) (

∇
(
H(r)Yl,m�er

))T

· �er = H ′(r)Yl,m�er,(4.43)

∇
(
H(r)∇ωYl,m

)
· �er = −r−1H(r)∇ωYl,m,(4.44) (

∇
(
H(r)∇ωYl,m

))T

· �er = H ′(r)∇ωYl,m.(4.45)

Proof. As in the proof of Lemma 4.1 of [26], the following relations hold for any

vectors �U, �Z and scalar Ψ:

∇(Ψ�Z) · �er = Ψ∇�Z · �er + (�Z · �er)∇Ψ,(4.46)

(∇�Z)T �U = (∇�Z)�U − �U × (∇× �Z),(4.47)

(∇�Z) · �U = ∇(�Z · �U) −∇�U · �Z,(4.48)

∇�er · �Z = r−1
(
�Z − (�Z · �er)�er

)
.(4.49)

Using (4.46) with Ψ = H(r)Yl,m and �Z = �er, and then also recalling (4.49), we
obtain (4.42).

Using (A.4)–(A.5), we can directly compute ∇× (H(r)Yl,m�er). If we now apply

(4.47) with �U = �er, Z = H(r)Yl,m�er and use (4.42), we obtain the assertion (4.43).
Similarly, ∇(H(r)∇ωYl,m) ·�er = H(r)∇(∇ωYl,m) ·�er, since ∇ωYl,m ·�er = 0. Using

(4.48) with �Z = ∇ωYl,m, �U = �er, we derive ∇(∇ωYl,m) · �er = −∇�er · ∇ωYl,m, and
using (4.49), the inequality (4.44) follows.

Finally, using (A.4)–(A.7) and (A.10)–(A.14), one can verify directly that, for

some function Q̃,

∇× (H(r)∇ωYl,m) = H ′(r)
(
�eφ∂θYl,m − �eθ

sin θ
∂φYl,m

)
+ Q̃�er

+ r−1H(r)
(
�eφ(∂θYl,m) − �eθ

sin θ
(∂φYl,m)

)
.

(4.50)
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Taking the vector product with �er and using (4.44), (4.47), we obtain (4.45).
By Lemma 4.4,(

(∇�v1) + (∇�v1)
T
)∣∣∣

r=R
· �er

= 2H ′
1(r)

∣∣∣
r=R

Yl,m�er +
(
r−1H1(r) − r−1H2(r) + H ′

2(r)
)∣∣∣

r=R
∇ωYl,m.

A direct computation shows that

2H ′
1(r)

∣∣∣
r=R

= −2μRP0(R)
(
1− 2Pl(R)+

l(l − 1)

R2

)
+2A1l(l+1)Rl +2C1l(l − 1)Rl−2,

and (
r−1H1(r) − r−1H2(r) + H ′

2(r)
)∣∣∣

r=R

= −2μRP0(R)
(
Pl(R) +

l − 1

R2

)
+ 2A1

l(l + 2)

(l + 1)
Rl + 2C1(l − 1)Rl−2.

Recalling (4.34), one can verify that the boundary condition (4.30) reduces to the two
equations

2A1
l(l + 2)

(l + 1)
Rl + 2C1(l − 1)Rl−2

= −2μ

R
(1 − 3P0(R)) + 2μRP0(R)

(
Pl(R) +

l − 1

R2

)(4.51)

and

2A1R
l(l2 − l − 3) + 2C1R

l−2l(l − 1)

=
γ

R2

(
1 − l(l + 1)

2

)
+

4μ

R
(1 − 3P0(R))

− 4μRP0(R)Pl(R) + 2μRP0(R)
l(l − 1)

R2
.

(4.52)

In order to compute the Fréchet derivative in (3.5), we need only to compute the
linear combination A1R

l+1 + C1R
l−1, since they always appear in this form. To do

that, note that the combination 3(l + 1)R× (4.51) + (2l + 1)R× (4.52) gives

2(l − 1)(2l2 + 4l + 3)
(
A1R

l+1 + C1R
l−1

)
y

= −γ
(l − 1)(l + 2)

2R
(2l + 1) + 2μ(1 − 3P0(R))(l − 1)

− 2μR2P0(R)Pl(R)(l − 1) + 2μP0(R)(l − 1)(2l2 + 4l + 3).

(4.53)

If l �= 1, then

A1R
l+1 + C1R

l−1 = μP0(R) +
1

2(2l2 + 4l + 3)

{
−γ

(l + 2)

2R
(2l + 1)

+ 2μ(1 − 3P0(R)) − 2μR2P0(R)Pl(R)
}
,

so that by (4.39), (4.40),
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(
�v1 − �a−�b× �x

)
· �er

∣∣∣
r=R

=
{
−μRP0(R)

(
RPl(R) +

l

R

)
+ A1lR

l+1 + C1lR
l−1

}
Yl,m

=
{
−μR2P0(R)Pl(R) +

l

2(2l2 + 4l + 3)

(
−γ

(l + 2)

2R
(2l + 1)

+ 2μ(1 − 3P0(R)) − 2μR2P0(R)Pl(R)
)}

Yl,m.

Recalling that 1 − 3P0(R) = R2P0(R)P1(R) (cf. (B.16) with n = 0), we obtain(
�v1 − �a−�b× �x

)
· �er

∣∣∣
r=R

+ μ(1 − 3P0(R))Yl,m

=
{
μR2P0(R)[P1(R) − Pl(R)]

(
1 +

l

(2l2 + 4l + 3)

)
− γ(l + 2)(2l + 1)l

4R(2l2 + 4l + 3)

}
Yl,m.

(4.54)

From (3.5) and the fact that (�b× �x) · �er = 0 we then get

[FR̃(0, μ)]Yl,m =
{
μR2P0(R)[P1(R) − Pl(R)]

(
1 +

l

(2l2 + 4l + 3)

)

− γ(l + 2)(2l + 1)l

4R(2l2 + 4l + 3)

}
Yl,m + �a · �er.

(4.55)

Note that we have not yet implemented the constraints (1.14). This will be done
in the next section, where we shall prove that (1.14) for l ≥ 2 is satisfied with �a = 0

and some vector �b.
Hence, for l ≥ 2, �a = 0 in (4.55). Therefore, the expression in (4.55) vanishes if

and only if μ/γ = Ml(R), where

(4.56) Ml(R) =
k(l)

R3P0(R)[P1(R) − Pl(R)]
, k(l) =

l(l + 2)(2l + 1)

4(l + 1)(2l + 3)
, l ≥ 2.

So far we have assumed that the Fréchet derivative exists and we computed it at
S = Yl,m. Since the Fréchet derivative is a linear operator, the formula (4.55) formally
extends to any S =

∑
l alYl,0(θ).

5. Constraints in (1.14).
Proof of Lemma 4.1. When we computed the Fréchet derivative in (4.54) we

assumed that (σ,�v, p) is a solution of (1.9)–(1.13), but we have not yet imposed the
constraints in (1.14). If we impose these constraints on �v, then we obtain similar
constraints on �v1:

(5.1)

∫
BR

�v1 dx = 0,

∫
BR

�v1 × �x dx = 0.

Writing v1 in the form (4.38), namely, �v1 = �a +�b× �x + �v1∗, where

(5.2) �v1∗ = H1(r)Yl,m�er + H2(r)∇ωYl,m

and H1, H2 are given by (4.39)–(4.40), we then need to determine �a,�b such that

(5.3)

∫
BR

(�a+�b×�x)dx = −
∫
BR

�v1∗ dx,

∫
BR

(�a+�b×�x)×�x dx = −
∫
BR

�v1∗ × �x dx,
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by (5.1). By a direct computation using (A.1), (5.3) is reduced to

(5.4)

∫
BR

�v1∗ dx = −4π

3
R3�a,

∫
BR

�v1∗ × �x dx =
8π

15
R5�b.

The case l ≥ 2. Since Yl,0 is orthogonal to Y1,0 for l �= 1,

(5.5)

∫ π

0

Yl,0(θ) cos θ �e3(sin θdθ) =

∫ π

0

Yl,0(θ)2

√
π

3
Y1,0(θ) �e3(sin θdθ) = 0,

and using (A.1), (5.5), we obtain

(5.6)

∫ 2π

0

(∫ π

0

Yl,0(θ)�er sin θdθ
)
dφ = 2π

∫ π

0

Yl,0(θ) cos θ �e3 sin θdθ = 0;

similarly, by integration by parts,

(5.7)

∫ 2π

0

(∫ π

0

∇ωYl,0(θ) sin θdθ
)
dφ = 4π

∫ π

0

Yl,0(θ) cos θ �e3 sin θdθ = 0.

If we substitute (5.2) into the left-hand side of (5.4) and then use (5.6), (5.7), we
get

∫
BR

�v1∗ dx = 0 if l �= 1; hence

(5.8) �a = 0 if l �= 1.

We can solve �b by (5.4), but since (�b× �x) ·�er = r(�b×�er) ·�er = 0, the extra term from
�b × �x does not contribute anything to the Fréchet derivative (cf. (3.5), (4.54)), and
hence Lemma 4.1 holds in this case.

In the derivation of some of the formulas above we have assumed l ≥ 2. So the
cases l = 0 and l = 1 have to be treated separately.

The case l = 0. Since Y0,0 is a constant, if we perturb the system by R+ εY0,0,
the system remains radially symmetric, and in fact, as easily verified,

σ1 = −Y0,0(σS)r(R)
I1/2(r)

r1/2

R1/2

I1/2(R)
= −Y0,0(σS)r(R)σS(r),(5.9)

�v1 = μ∇σ1 = μ(σ1)r(r)�er, p1 = p1 +
4μ

3
σ1,(5.10)

where p1 is a uniquely determined constant. Thus

�v1

∣∣∣
r=R

· �er = μ(σ1)r(R) = −μY0,0[(σS)r(R)]2 = −μY0,0R
2P 2

0 (R).

By (3.5) and the relation 1 − 3P0(R) = R2P0(R)P1(R) (by (B.16)), we then obtain

(5.11) [FR̃(0, μ)]Y0,0 = −μY0,0R
2P0(R)[P0(R) − P1(R)].

Thus (4.1) is valid also for l = 0.
The case l = 1. The case l = 1 has to be treated in a special way. In this

case, if we follow the proof for l ≥ 2 we find that the constants C1 and B1 in (4.22)
and (4.23) are not determined by the boundary conditions, so some changes need to
be made. However, it is easier to compute the Fréchet derivative in a different and
more illuminating way. We shall write the spherically symmetric solution (σS , �vS , pS)



186 AVNER FRIEDMAN AND BEI HU

on BRS
(0) = {|x| < RS} in the form (σS(x), �vS(x), pS(x)). Let �x0 = 3√

4π
�e3. Then

the translated functions (σS(x − εx0), �vS(x − εx0), pS(x − εx0)) form a solution on
BRS

(εx0) = {|x− εx0| < RS}. We can rewrite the boundary |x− εx0| = RS as

r = |x| = RS + εr�er
3√
4π

�e3 + O(ε2) = RS + εY1,0(θ) + O(ε2).

This means that when the perturbation is given by εY1,0, we have the explicit
translated solution up to an error of order O(ε2). Thus vS(x − εx0) = O(ε2) on
r = RS + εY1,0(θ) and, by (3.1), F (εY10, μ) = O(ε2). It follows that

(5.12) [FR̃(0, μ)]Y1,0 = 0 for any μ > 0.

6. Rigorous justification. For S ∈ Ck+α(Σ), k ≥ 3, we set Ωε = {r < R+εS},
and define σ1 by (4.4) and (p1, �v1) by (4.6)–(4.7), (4.30)–(4.31), and (5.1).

Note that (σ, p,�v) is defined only on Ωε, while (σS , pS , �vS) is defined on whole R
3

and (σ1, p1, �v1) is defined on BR. We need to transform all these functions to the same
domain Ωε and shall do it by the Hanzawa transformation, which is a diffeomorphism
defined by (r, θ, φ) = Hε(r

′, θ′, φ′) ≡ (r′ + χ(R − r′)εS(θ′, φ′), θ′, φ′), where χ ∈ C∞,
χ(z) = 0 if |z| ≥ 3δ0/4, and χ(z) = 1 if |z| < δ0/4. Observe that Hε maps BR onto Ωε

while keeping the ball {r < R− (3δ0/4)} fixed. The inverse Hanzawa transformation
H−1

ε maps Ωε onto BR. Note that Hε = I + εN , where N is a C∞ operator.
It was rigorously proved in [22, Lemma 3.2] that

(6.1) ‖σ − (σS + εσ1(H
−1
ε ·))‖Ck+α(Ωε) ≤ C|ε|2‖S‖Ck+α(Ωε)

for k = 3; the proof extends to all k ≥ 2.
From (6.1), it follows that the formal expansion for σ is rigorous. We now proceed

to rigorously justify the expansion used in section 5 for p and �v in the same manner
as was done in [22], using estimates derived for the (inhomogeneous) Stokes equation
instead of the parabolic equation of [22].

By (4.6)–(4.7), (4.30)–(4.31), and (5.1), we can apply the estimates for the Stokes
equation [32, Proposition 2] to obtain

(6.2) ‖�v1‖Ck−1+α(BR) + ‖p1‖Ck−2+α(BR) ≤ C‖�Φ1‖Ck−2+α(Σ) ≤ C‖S‖Ck+α(Σ).

Using (4.6), (4.7) and (6.1), (6.2), we can rewrite (1.10)–(1.11) in the form

−Δ
(
�v − �vS − ε�v1(H

−1
ε x)

)
+ ∇

(
p− pS − εp1(H

−1
ε x)

)
= ε2f̃ in Ωε,(6.3)

div
(
�v − �vS − ε�v1(H

−1
ε x)

)
= ε2g̃ in Ωε,(6.4)

where

(6.5) ‖f̃‖Ck−3+α(Ωε)
+ ‖g̃‖Ck−2+α(Ωε)

≤ C‖S‖Ck+α(Σ).

In order to derive estimates for the expansion of (�v, p), we also need to estimate
the boundary conditions. By the proof of [25, Theorem 8.1],

(6.6)
∥∥κ−R−1 + εR−2

(
S + ΔωS/2

)∥∥
Ck−2+α(Σ)

≤ C|ε|2‖S‖Ck+α(Σ).

We also have, from (3.2),

(6.7)
∥∥�n−

(
�er − εR−1∇ωS

)∥∥
Ck+α(Σ)

≤ C|ε|2‖S‖Ck+1+α(Σ).
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By essentially repeating all the formal computations of section 4 while keeping
track of the error terms (using (6.6) and (6.7)), we find that

‖T [�v − �vS − ε�v1(H
−1
ε x), p− pS − εp1(H

−1
ε x)] · �n‖Ck−2+α(Σ) ≤ C|ε|2‖S‖Ck+α(Σ).

The constraints in (1.14) imposed on �v1 ensure that

(6.8)
∣∣∣∫

Ωε

(
�v − �vS − ε�v1(H

−1
ε x)

)
dx

∣∣∣ +
∣∣∣∫

Ωε

(
�v − �vS − ε�v1(H

−1
ε x)

)
× �x dx

∣∣∣ ≤ C|ε|2.

We can then apply again the estimates from [32] for the Stokes equation to obtain

‖�v − �vS − ε�v1(H
−1
ε ·)‖Ck−1+α(Ωε)

≤ C|ε|2‖S‖Ck+α(Σ),(6.9)

‖p− pS − εp1(H
−1
ε ·)‖Ck−2+α(Ωε)

≤ C|ε|2‖S‖Ck+α(Σ).(6.10)

These estimates combined with (6.1) ensure that the expansion in the computations
of the Fréchet derivative are rigorous, that is,

‖F (R̃, μ) − F (0, μ) − εFR̃(0, μ)S‖Ck−1+α ≤ const · |ε| ‖R̃‖Ck+α(Σ), R̃ = εS,

where S → FR̃(0, μ)S is the linear operator defined by (4.1), (4.2).

7. Monotonicity of Mn(R). In the model with Darcy’s law (1.2), it was proved
in [13] that Mn(R) < Mn+1(R) for all n ≥ 2 and all R > 0.

For the present model (1.9)–(1.14) we have a different result:

(7.1) Mn(R) is monotone increasing beginning only from some n = n(R);

furthermore, if Mn∗(R)(R) = min{Mn(R); n = 2, 3, 4, . . . }, then

(7.2) n∗(R) → ∞ if R → ∞,

whereas

(7.3) for R small, n∗(R) = 3, and M3(R) < M2(R) < M4(R).

It is clear from (4.56) that k(n) = n/4 + O(n−1). Using this in (4.56), we obtain
the assertion (7.1). We next establish the assertion (7.2).

Theorem 7.1. (i) For every n > m ≥ 2, there exists an R∗(n,m) such that

(7.4) Mn(R) < Mm(R) for R > R∗(n,m);

(ii) (7.2) holds.

Proof. By (B.21), Pn(R) = 1
R − n+1

R2 + O( n2

R3 ), so that

(7.5) Mn(R) =
k(n)

(n− 1)RP0(R)

[
1 + O

(n2

R

)]
.

Clearly k(n)
n−1 = 1

4 (1 + 2n2+4n+3
(n2−1)(2n+3) ) = 1

4 (1 + 2
2n+3 + 4n+5

(n2−1)(2n+3) ) and the sequence
2

2n+3 is monotone decreasing. Since also, for x > 2, the function f(x) = 4x+5
(x2−1)(2x+3)

satisfies f ′(x) < 0, the assertion (7.4) follows.
To prove (7.2) note that if n∗(Rj) remains bounded for a sequence of Rj → ∞,

then (7.5) is valid uniformly for R = Rj . By taking a subsequence, we may assume
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that n∗(Rj) is a number n∗ independent of j. By the previous analysis, if n > n∗ and
Rj is large enough, then Mn(Rj) < Mn∗(Rj), which is a contradiction.

We next state (7.3) more precisely.
Theorem 7.2. If 0 < R < R#, where R# ≈ 2.601086, then Mn(R) is monotone

increasing for n ≥ 4, and

(7.6) M3(R) < M2(R) < M4(R) for 0 < R < R#.

Proof. The inequality (7.6) can be verified numerically with R# uniquely de-
termined by the equation M2(R

#) = M4(R
#). The monotonicity of Mn(R) for

0 < R < R# and n ≥ 4 can be rigorously established using (B.16), (B.20), and
(B.22); the details are omitted.

8. Bifurcation. We shall apply the following Crandall–Rabinowitz theorem.
Theorem 8.1 (see [11, Theorem 1.7]). Let X,Y be real Banach spaces and

F (x, μ) a Cp map, p ≥ 3, of a neighborhood (0, μ0) in X × R into Y . Suppose
(i) F (0, μ) = 0 for all μ in a neighborhood of μ0.
(ii) kerFx(0, μ0) is one dimensional space, spanned by x0.
(iii) ImFx(0, μ0) = Y1 has codimension 1.
(iv) Fμx(0, μ0)x0 /∈ Y1.

Then (0, μ0) is a bifurcation point of the equation F (x, μ) = 0 in the following sense:
In a neighborhood of (0, μ0) the set of solutions of F (x, μ) = 0 consists of two Cp−2

smooth curves Γ1 and Γ2 which intersect only at the point (0, μ0); Γ1 is the curve
(0, μ) and Γ2 can be parameterized as follows:

Γ2 : (x(ε), μ(ε)), |ε| small, (x(0), μ(0)) = (0, μ0), x
′(0) = x0.

As in [13] we introduce the Banach spaces: for k ≥ 3,

Xk+α =
{
R̃ ∈ Ck+α(Σ), R̃ is π-periodic in θ, 2π-periodic in φ

}
,

Xk+α
1 = closure of the linear space spanned by {Yj,0(θ), j = 0, 1, 2, . . . } in Xk+α,

Xk+α
2 = closure of the linear space spanned by {Yj,0(θ), j = 0, 2, 4, . . . } in Xk+α.

Notice that (A.8) implies that Yj,0(π − θ) = Yj,0(θ) if and only if j is even. Thus
Xk+α

2 coincides with the subspace of the Ck+α(Σ)-closure of the smooth functions
consisting of those functions u that are independent of φ and satisfies u(θ) = u(π−θ).
This property ensures that F defined by (3.1) satisfies F : Xk+α

2 → Xk−1+α
2 .

We shall take X = Xk+α
2 and Y = Xk−1+α

2 and define F by (3.1) for any

R̃ ∈ Xk+α
2 . It is clear that

(8.1) ker[FR̃(0, μ)] = {0} if μ/γ �= M2,M4,M6, . . . .

If, for some R > 0 and some even integer n ≥ 2,

(8.2) Mn(R) �= M2m(R) for all 2m �= n,

then ker[FR̃(0, μ)] = span{Yn,0}. Since [FR̃(0,Mn)]Y2m,0 = f(2m,n)Y2m,0, where
f(2m,n) �= 0 for 2m �= n, we have

Im[FR̃(0,Mn)] ⊕ span{Yn,0} = Y,
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so that the codimension of Y1 = Im[FR̃(0,Mn)] is 1. From Lemma 4.1 we also have

[FμR̃(0,Mn)]Yn,0 = R2P0(R)[P1(R) − Pn(R)]
(
1 +

n

2n2 + 4n + 3

)
Yn,0 /∈ Y1.

Thus all the assumptions of Theorem 8.1 are satisfied and we obtain the following
theorem.

Theorem 8.2. For even n ≥ 2, if R = RS is such that (8.2) is satisfied, then the
point (0,Mn) is a bifurcation point for the problem (1.9)–(1.14), and the corresponding
branch of solutions has free boundaries of the form r = R + εYl,0(θ) + O(ε2).

Remark 8.1. From Theorems 7.1 and 7.2 it follows that for any n,m larger than 3,
there exists at least one R such that Mn(R) = Mm(R). Therefore, the assumption
(8.2) for R = RS cannot be dropped. On the other hand, for any given n ≥ 2, (8.2)
is satisfied for all R with the exception of a discrete sequence.

Remark 8.2. The choice of Xk+α
2 is necessary in order to be able to use the

Crandall–Rabinowitz theorem (this choice is also necessary in the proof of [14, The-
orem 2] in order to apply the Crandall–Rabinowitz theorem). Indeed, if we replace
Xk+α

2 by Xk+α
1 , then, for n ≥ 2, the subspace ker[FR̃(0, μ)] = span{Yn,0, Y1,0} is of

dimension 2, so that the condition (ii) in Theorem 8.1 is not satisfied. Note that Y1,0

is the kernel element which corresponds to translation.
Remark 8.3. Theorem 8.2 establishes bifurcation only for even integer n ≥ 2.

One can probably also establish bifurcation for any odd integer n ≥ 3 by the method
of expansion into the power series of ε as done in [13]. However, we should be able
to establish bifurcation for any odd n ≥ 3 also by applying the Crandall–Rabinowitz
theorem in a more delicate manner, working with the space

Mk+α = closure of the linear space spanned by {Yj,0(θ), j = 0, 2, 3, 4, . . . } in Xk+α

for k ≥ 3. Here we face the problem that F does not map Mk+α into Mk−1+α, but
we propose to shift the center of the system in order to eliminate the mode of Y1,0

and so that the modified F will map Mk+α into Mk−1+α. Since the image of the
shift is of higher order than εY1,0, we should be able to use a fixed point theorem in
order to make a shift which will eliminate the term with mode (1, 0). The mapping

F̃ composed of F followed by this shift of the origin will map Mk+α onto Mk−1+α,
and the Crandall–Rabinowitz theorem could then be applied to F̃ . Indeed, a similar
argument was carried out in [21].

9. Conclusion: Biological interpretation. Although the tumor model ana-
lyzed in this paper is quite simple, we may nevertheless draw some interesting bi-
ological conclusions from the mathematical results. Tumors grown in culture are
typically spherical. However, tumors in vivo can have a variety of shapes. In par-
ticular, invasion of tumors into their surrounding stroma is associated with growth
of protrusions, or “fingers.” In our model, these protrusions are expressed by the
shape r = RS + εYn,0(θ) + O(ε2) of the free boundary; the number of protrusions is
proportional to n.

The aggressiveness of a tumor is measured by two parameters, μ and γ. The
parameter μ is the proliferation rate; the larger the μ is the more aggressive the
tumor is. The parameter γ is the cell-to-cell adhesiveness; it plays an important role
in keeping the tumor cohesive (see [5, 6, 8]). A smaller value of γ enables the tumor
to develop fingers more easily and thus be more prone to invasion. In our model the
two parameters appear as a quotient μ/γ. As this parameter increases, the tumor will
lose its spherical shape, develop fingers, and become invasive.
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The ability of a tumor to invade the surrounding tissue depends also on the ma-
terial properties of its surroundings. If the tissue is a porous medium, then, according
to [13], the smallest value of μ/γ which generates protrusions is M2(RS), at which
time the tumor will have just three protrusions, no matter how large the radius RS

is. In contrast, in fluid-like tissue as in the present paper, the smallest value of μ/γ
which generates protrusions is Mn∗(RS), where n∗ → ∞ as RS → ∞. Thus, when a
large spherical tumor develops protrusions, it does so right away with a large number
of protrusions, namely, with a number proportional to n∗(RS). This makes the tumor
invasion more hazardous, since it increases the probability that one or several of the
many invasive protrusions will reach a blood vessel and lead to metastasis.

Appendix A. Vector spherical harmonics. We use the notation �er, �eθ, �eφ
for the unit normal vectors in the r, θ, φ directions, respectively; here 0 ≤ r < ∞,
0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. Then, written in the Cartesian coordinates in R

3,

�er = sin θ cosφ �e1 + sin θ sinφ �e2 + cos θ �e3,(A.1)

�eθ = cos θ cosφ �e1 + cos θ sinφ �e2 − sin θ �e3,(A.2)

�eφ = − sinφ �e1 + cosφ �e2,(A.3)

where (�e1, �e2, �e3) is the standard basis in R
3 in Cartesian coordinates, i.e., �e1 =

(1, 0, 0)T , �e2 = (0, 1, 0)T , �e3 = (0, 0, 1)T . The gradient is given by

∇x = �er ∂r + �eθ r
−1 ∂θ + �eφ (r sin θ)−1 ∂φ ≡ �er ∂r + r−1∇ω,

and

�er × �eθ = �eφ, �eφ × �er = �eθ, �eθ × �eφ = �er,(A.4)

∂r�er = 0, ∂r�eθ = 0, ∂r�eφ = 0,(A.5)

∂θ�er = �eθ, ∂θ�eθ = −�er, ∂θ�eφ = 0,(A.6)

∂φ�er = sin θ �eφ, ∂φ�eθ = cos θ �eφ, ∂φ�eφ = − sin θ �er − cos θ �eθ.(A.7)

The spherical harmonic Yl,m(θ, φ) is defined by

(A.8) Yl,m(θ, φ) = (−1)m

√
(2l + 1)(l −m)!

2(l + m)!
Pm
l (cos θ)

eimφ

√
2π

(m = −l, . . . , l),

where Pm
l (z) = 1

2ll!
(1 − z2)m/2 dl+m

dzl+m (z2 − 1)l. The family of functions {Yl,m} forms
a complete orthonormal basis for L2(Σ), where Σ is the unit sphere, and

(A.9) ΔωYl,m = −l(l + 1)Yl,m,

where Δω = 1
sin θ

∂
∂θ (sin θ ∂

∂θ ) + 1
sin2 θ

∂2

∂φ2 is the Laplace operator on Σ. The vector
spherical harmonics are defined by

�Vl,m = �er

{
−
( l + 1

2l + 1

)1/2

Yl,m

}
+ �eθ

{ 1

[(l + 1)(2l + 1)]1/2
∂Yl,m

∂θ

}
(A.10)

+ �eφ

{ imYl,m

[(l + 1)(2l + 1)]1/2 sin θ

}
,

�Xl,m = �eθ

{ −mYl,m

[l(l + 1)]1/2 sin θ

}
+ �eφ

{ −i

l(l + 1)]1/2
∂Yl,m

∂θ

}
,(A.11)
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�Wl,m = �er

{( l

2l + 1

)1/2

Yl,m

}
+ �eθ

{ 1

[l(2l + 1)]1/2
∂Yl,m

∂θ

}
(A.12)

+ �eφ

{ imYl,m

[l(2l + 1)]1/2 sin θ

}
.

The family of vector spherical harmonics {�Vl,m, �Xl,m, �Wl,m} forms a complete or-
thonormal basis for (L2(Σ))3. We shall need the well-known formulas (see [29] or [26])

∇Yl,m =
1

r
∇ωYl,m =

l

r

( l + 1

2l + 1

)1/2
�Vl,m +

l + 1

r

( l

2l + 1

)1/2
�Wl,m,(A.13)

�erYl,m = −
( l + 1

2l + 1

)1/2
�Vl,m +

( l

2l + 1

)1/2
�Wl,m;(A.14)

for any function H(r),

∇[H(r)Yl,m] =
( l + 1

2l + 1

)1/2[
−dH

dr
+

l

r
H
]
�Vl,m(A.15)

+
( l

2l + 1

)1/2[dH
dr

+
l + 1

r
H
]
�Wl,m,

div[H(r)�Vl,m] = −
( l + 1

2l + 1

)1/2[dH
dr

+
l + 2

r
H
]
Yl,m,(A.16)

div[H(r) �Xl,m] = 0,(A.17)

div[H(r) �Wl,m] =
( l

2l + 1

)1/2[dH
dr

− l − 1

r
H
]
Yl,m,(A.18)

and

Δ[H(r)Yl,m] = Ll(H)Yl,m,(A.19)

Δ[H(r)�Vl,m] = Ll+1(H)�Vl,m,(A.20)

Δ[H(r) �Xl,m] = Ll(H) �Xl,m,(A.21)

Δ[H(r) �Wl,m] = Ll−1(H) �Wl,m,(A.22)

where

(A.23) Ll =
∂2

∂r2
+

2

r

∂

∂r
− l(l + 1)

r2
.

Appendix B. Bessel functions. We introduce the Bessel functions (see [12])

(B.1) Il(ξ) =
(ξ

2

)l ∞∑
k=0

1

k!Γ(l + k + 1)

(ξ
2

)2k

and recall some well-known properties:

I1/2(ξ) =
√

2/(πξ) sinh ξ,(B.2)

I3/2(ξ) =
√

2/(πξ)
(
−ξ−1 sinh ξ + cosh ξ

)
,(B.3)

I5/2(ξ) =
√

2/(πξ)
{
(3ξ−2 + 1) sinh ξ − 3ξ−1 cosh ξ

}
,(B.4)

I ′′l (ξ) + ξ−1I ′l(ξ) −
(
1 + l2ξ−2

)
Il(ξ) = 0,(B.5)

I ′l(ξ) + lξ−1Il(ξ) = Il−1(ξ), l ≥ 1,(B.6)

I ′l(ξ) − lξ−1Il(ξ) = Il+1(ξ), l ≥ 0,(B.7)

Il−1(ξ) − Il+1(ξ) = 2lξ−1Il(ξ), l ≥ 1.(B.8)
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From (B.6) and (B.7) we obtain

( d

dr
− l

r

)Il+1/2(r)

r1/2
=

Il+3/2(r)

r1/2
,(B.9) ( d

dr
+

l + 1

r

)Il+1/2(r)

r1/2
=

Il−1/2(r)

r1/2
.(B.10)

One can also easily verify that, for the operator Ll given in (A.23),

(B.11) Ll

(
Il+1/2(r)/r

1/2
)

= Il+1/2(r)/r
1/2.

From (B.7) we derive, for any complex number s,

(B.12)
d

dr

[Il+1/2(r
√
s + 1 )

r1/2

]
=

l

r3/2
Il+1/2(r

√
s + 1 ) +

√
s + 1

r1/2
Il+3/2(r

√
s + 1 ).

By differentiating (B.12) in r and using (B.6) and (B.7), we obtain

d2

dr2

[Il+1/2(r
√
s + 1 )

r1/2

]
=

(s + 1

r1/2
+

l(l − 1)

r5/2

)
Il+1/2(r

√
s + 1 )

− 2
√
s + 1

r3/2
Il+3/2(r

√
s + 1 ).

(B.13)

We next introduce the functions

(B.14) Pn(ξ) =
In+3/2(ξ)

ξIn+1/2(ξ)
, n = 0, 1, 2, 3, . . . .

From the preceding properties of the Bessel functions we can derive the following
relations (see [20]). For ξ complex,

P0(ξ) = ξ−1 coth ξ − ξ−2, P1(ξ) = (ξ coth ξ − 1)−1 − 3ξ−2,(B.15)

Pn(ξ) = 1/{ξ2Pn+1(ξ) + (2n + 3)}, Pn(0) = 1/(2n + 3),(B.16)

(d/dξ)Pn(ξ) = ξ−1 − (2n + 3)ξ−1Pn(ξ) − ξP 2
n(ξ),(B.17)

|Pn(ξ)| ≤
√

2Pn(|ξ|) ≤
√

2/(2n + 3) for |arg(ξ)| ≤ π/4,(B.18)

and, for r > 0,

Pn(r) > Pn+1(r), n ≥ 0,(B.19)

2n + 5

r2 + (2n + 3)(2n + 5)
< Pn(r) <

r2 + (2n + 5)(2n + 7)

2(2n + 5)r2 + (2n + 3)(2n + 5)(2n + 7)
,(B.20)

1

r
− n + 1

r2
< Pn(r) <

1

r
− n + 1

r2
+

n2 + n + 1

2r3
,(B.21)

d

dr
Pn(r) < 0.(B.22)
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and G. Simonett, eds., Birkhäuser, Basel, 1999, pp. 643–671.



SIAM J. MATH. ANAL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 39, No. 1, pp. 195–209

SINGULAR PERTURBATION AS A SELECTION CRITERION
FOR YOUNG-MEASURE SOLUTIONS∗
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Abstract. We prove existence of Young-measure solutions of an Euler–Lagrange equation arising
from a one-dimensional nonconvex variational problem in nonlinear elasticity. In particular, we
consider a physically reasonable stored-energy density W such that W (x, μ) goes to infinity for
μ ↘ 0 and μ → ∞. The selection criterion for the Young measure is a singular perturbation in form
of an interfacial energy with capillarity coefficient ε. We first establish uniform a priori bounds on
all solutions of the Euler–Lagrange equation, before passing to the limit for ε ↘ 0. Moreover, the
singular perturbation allows us to characterize the support of the Young measure.
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1. Introduction. This paper is motivated to a large extent by results presented
in [11]. There we consider a two-phase model for an elastic solid in the presence of
live-body forcing and interfacial or higher-gradient effects, the latter characterized by
a small capillarity coefficient ε > 0. The existence of families of equilibria is routine,
and the main goal in [11] is the analysis of those solutions in the limit ε ↘ 0. Assuming
that the loading is bounded and everywhere nonnegative, we obtain uniform a priori
bounds on solutions via maximum-principle arguments. An important by-product of
that analysis is a certain monotonicity property for all solutions. In the end we obtain
global weak solutions that satisfy the Maxwell condition.

In this work we pursue precisely the same question without presuming that the
live-body forcing is bounded or satisfies a sign condition, the latter obviating any
apparent maximum principle. Instead we impose very general, physically reasonable
growth conditions on both the stored-energy function (double-well) and the body
force function. Also in contrast to [11], we impose the pointwise unilateral constraint
ensuring that all deformations of the bar are injective (with the concomitant infinite
growth of the stored energy).

The outline of this work is as follows: After presenting our formulation in section
2, we obtain uniform a priori bounds on solutions of the regularized (ε > 0) problem
in section 3. There we pay careful attention to the injectivity constraint and show
that the strains are uniformly (pointwise) positive. The existence of solutions is
fairly routine, which we summarize in section 4. In section 5 we examine the limit
ε ↘ 0. We demonstrate strong convergence to a continuous displacement field and
weak* convergence to a stress field and a strain field, the latter two of which are each
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characterized by the family of Young measures generated by the sequence of strains.
The limiting strain is generally incompatible with the displacement field. Remarkably
the limiting stress has a C1 representation (within its equivalence class) that satisfies
the force-balance equilibrium equation classically. Finally, we show that the family of
Young measures reduces to a family of “Dirac” masses in stress field regimes where the
stress is an injective function of strain (for “large enough” compressive and tensile
stresses). In particular, within those regimes our limiting fields reduce to classical
solutions.

L. C. Young first employed (what is now called) the Young measure in the study
of problems from the calculus of variations for which a classical minimizer does not
exist [23]. Since that time Young measures have become an important tool for char-
acterizing highly oscillatory sequences of functions. Tartar was the first to introduce
them in the context of measure-valued solutions of conservation laws (see [20]), and
their use in the study of evolutionary PDEs is now well known, e.g., [7], [8], [16].
Existence of Young-measure solutions was proven for PDEs (see, e.g., [9], [19], [21])
and the Young measure serves also as an important tool to prove existence of classical
solutions for quasilinear PDEs (see, e.g., [12], [14]). The original ideas of Young have
also found great application in the “sharp interface” energetic theory of martensitic
phase transformations, e.g., [3], [4]. Our motivation here is similar. However, we
focus instead on the behavior of sequences of equilibrium solutions (of a regularized
theory), albeit in the context of a simple model problem. In particular, our limit-
ing stress field satisfies equilibrium (pointwise), which is typically not the case for
minimizing sequences.

2. Formulation. We consider a one-dimensional elastic bar placed in a soft
loading device. We follow the reasoning of [13]; see also [5] and [10].

Let [0, 1] be the reference configuration in the undeformed state and let

u(x) be the placement of the bar;

i.e., u(x) is the position of the material point occupying position x in the unde-
formed state; μ ≡ u′ is the stretch ratio. The bar is presumed elastic and inhomo-
geneous, which is reflected by an explicit dependence of the stored-energy function
W ∈ C2([0, 1]× R

+) upon the spatial variable x in the interval [0, 1]. We assume the
function W (x, ·) to be a double-well potential. We also require

(2.1) lim
μ↘0

W (x, μ) = ∞, lim
μ→∞

W (x, μ) = ∞.

The first condition reflects the fact that an infinite amount of energy is required to
compress any finite segment of the bar to zero length, while the second accounts for
the fact that an infinite amount of energy is needed to stretch any finite segment of
the bar to infinite length.

The bar is presumed “stable” in the undeformed state; i.e., for every x ∈ [0, 1],

(2.2) W (x, 1) = Wμ(x, 1) = 0 and Wμμ(x, 1) > 0.

The stress is defined by σ(x, μ) := Wμ(x, μ). Moreover, we impose the following
assumptions on W : For arbitrary x ∈ [0, 1] we have

W (x, μ) ≥ W (x, 1) = 0 for every μ ∈ R
+.(2.3)
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Furthermore, there exist for every x ∈ [0, 1] numbers c1(x), c2(x) ∈ R with cj ∈
C1(0, 1) for j = 1, 2 such that

(2.4) Wμμ(x, μ)

{
< 0 for μ ∈ (c1(x), c2(x)),

> 0 otherwise.

Let B : R
+
0 × [0, 1] → R denote a loading potential delivering a live-body force

−∂B

∂u
(u, x) =: b(u, x),

where

b ∈ C(R+
0 × [0, 1]).

We require the following growth conditions for σ and b:
(i) We assume for all x ∈ [0, 1]

(2.5) lim
μ→∞

Wμ(x, μ)μ

μp+1
≥ K > 0,

where K is independent of x, p ∈ N, and
(ii)

(2.6) |b(u, x)| ≤ c3 |u|r + c4

for some 0 < r < p, c3, c4 ≥ 0. Moreover, both constants can be chosen
independently of x, u.

The left end of the bar is fixed, viz., u(0) = 0. The free end of the bar is subjected to
a concentrated force τ . The total potential energy of the bar is given by

J(u) :=

∫ 1

0

[W (x, u′) + B(u, x)] dx− τu(1),

u(0) = 0.

(2.7)

The corresponding Euler–Lagrange equation is

d

dx
[σ(x, u′)] + b(u, x) = 0,

u(0) = 0, and σ(1, u′(1)) = τ.
(2.8)

Note that (2.7) has no global minimizer, in general, due to the fact that W is non-
convex in u′. In particular, existence of a global minimizer of problem (2.7) cannot
be guaranteed by the direct methods of the calculus of variations (see [6] for details).
For the same reason, the boundary value problem (2.8) is singular, obviating any
systematic solution strategy.

Instead we introduce a “relaxed” variational problem by adding an additional
strain gradient term, intended to model interfacial energy:

Jε(u) :=

∫ 1

0

(ε
2
u′′2 + W (x, u′) + B(u, x)

)
dx− τu(1),

u(0) = 0,

(2.9)
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where ε > 0 is a small parameter. The Euler–Lagrange equation of equilibrium is the
fourth-order equation

(2.10) −εu(4) +
d

dx
[σ(x, u′)] + b(u, x) = 0

with boundary conditions

(2.11) u(0) = u′′(0) = u′′(1) = 0, εu′′′(1) = σ(1, u′(1)) − τ.

Integration of (2.10) yields the system

u′ = z,

− εz′′ + σ(x, z) =

∫ 1

x

b(u(η), η)dη + τ,

u(0) = z′(0) = z′(1) = 0.

(2.12)

In contrast to (2.7) and (2.8), (2.9) and (2.12) are amenable to fairly standard exis-
tence methods for each ε > 0, which we quote in section 4.

3. A priori bounds. In this section we prove some a priori bounds for solutions
of (2.12) (provided they exist) which hold independently of ε. Our first result states
that the derivative of all solutions of (2.12) is uniformly bounded away from the
singularity of W , namely, 0, which generalizes in a certain sense a result of Antman
and Brezis; see [1].

Theorem 1. Let W and b satisfy the growth conditions (2.1), (2.5), and (2.6).
Let (uε) be a solution of (2.12) and set zε := u′

ε. Then there exists some δ > 0 such
that for every ε > 0 we have

zε(x) > δ

for all x ∈ [0, 1].
Proof. We prove by contradiction and therefore we assume sequences (εn)n,

(xn)n ∈ [0, 1], and (zεn)n := (zn)n with

εn ↘ 0, zn(xn) ↘ 0.

We separate the proof into several steps.
Step 1. We claim ||zn||Lp+1(0,1) → ∞. Without loss of generality we assume that

xn is a location of the global minimum of zn and hence z′′n(xn) ≥ 0 for every n ∈ N.
Equation (2.12) and the property (2.1) yield

(3.1)

∫ 1

xn

b(un(η), η)dη + τ ≤ σ(xn, zn(xn)) → −∞.

Assumption (2.6) with c3 > 0 then yields

||un||Lr(0,1) → ∞.

(If c3 = 0 in (2.6), then (3.1) is a contradiction and Theorem 1 is proved.) By the
fundamental theorem of calculus and with Hölder’s inequality, r < p, we obtain the
assertion.
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Step 2. We define

An := {x ∈ [0, 1] | zn(x) > 1} :=

k(n)⋃
j=1

(xj
1(n), xj

2(n)).

Observe that zn is monotonically increasing at xj
1(n) and monotonically decreasing

at xj
2(n) for every j = 1, . . . , k(n) and z′n(0) = z′n(1) = 0, which yields

(3.2) z′n(xj
1(n)) ≥ 0, z′n(xj

2(n)) ≤ 0

for all j. Multiplying (2.12) by zn and integrating over An give
(3.3)∫

An

εn(z′n)2dx−
∑
j

εnznz
′
n|

xj
2

xj
1

=

∫
An

(
−σ(x, zn) +

∫ 1

x

b(un(η), η)dη + τ

)
zndx.

Note that the left-hand side of (3.3) is nonnegative by (3.2), and hence

(3.4)

∫
An

σ(x, zn)zndx ≤
∫
An

[∫ 1

x

(b(un(η), η)dη + τ) zn

]
dx

for every n ∈ N.
Step 3. From Step 1 we deduce

(3.5) ||zn||Lp+1(An) → ∞.

Multiplying (3.4) by 1

||zn||p+1

Lp+1(An)

we obtain for every n ∈ N

1

||zn||p+1
Lp+1(An)

∫
An

σ(x, zn)zn dx

≤ 1

||zn||p+1
Lp+1(An)

∫
An

(∫ 1

x

b(un(η), η)dη + τ

)
zndx.

(3.6)

We claim the following.
(a) The right side of (3.6) converges to 0 for n → ∞. By assumption (2.6) and

Hölder’s inequality we obtain∣∣∣∣
∫
An

(∫ 1

x

b(un(η), η)dηzn

)
dx

∣∣∣∣ ≤
∫
An

∫ 1

x

|b(un(η), η)| dη |zn| dx

≤
∫ 1

0

|b(un(η), η)| dη
∫
An

|zn| dx ≤
∫ 1

0

(c3 |un|r + c4) dη ||zn||L1(An) .

Due to the continuous imbedding Lp+1(0, 1) ↪→ Lr(0, 1), the inequality ||un||Lr(0,1) ≤
||zn||Lr(0,1), and zn|(0,1)\An

< 1, the following holds:∫ 1

0

(c3 |un|r + c4) dη ||zn||L1(An) ≤
(
c3 ||zn||rLp+1(0,1) + c4

)
||zn||Lp+1(An)

≤
(
c3 + c3 ||zn||rLp+1(An) + c4

)
||zn||Lp+1(An)

≤ c3 ||zn||r+1
Lp+1(An) + (c3 + c4) ||zn||Lp+1(An) .

In view of r < p and (3.5), we see that assertion (a) is proved.
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(b) We have

(3.7) lim
n→∞

1

||zn||p+1
Lp+1(An)

∫
An

σ(x, zn)zn dx ≥ K > 0

with K given in (2.5). For any 	 > 0, (2.5) implies the existence of to = to(	) such
that

(3.8) σ(x, t)t−K |t|p+1
> −	

2
|t|p+1

for every t > to. Due to (3.8) we get for an arbitrary n ∈ N and for all x ∈ [0, 1] with
zn(x) > to the estimate

(3.9)
1

||zn||p+1
Lp+1(An)

(
σ(x, zn(x))zn(x) −K |zn(x)|p+1

)
> −	

2

|zn(x)|p+1

||zn||p+1
Lp+1(An)

.

Furthermore, we have by the continuity of σ(x, ·) for every x ∈ [0, 1] with zn(x) ∈ [1, to]

1

||zn||p+1
Lp+1(An)

∣∣∣σ(x, zn(x))zn(x) −K |zn(x)|p+1
∣∣∣ ≤ 1

||zn||p+1
Lp+1(An)

C.

Note that the constant C depends only on 	. Hence we deduce the existence of
n1 = n1(	) such that for every n > n1 we have

(3.10)
1

||zn||p+1
Lp+1(An)

(
σ(x, zn(x))zn(x) −K |zn(x)|p+1

)
> −	

2

for every x ∈ [0, 1] with zn(x) ∈ [1, to]. We define

Bn := {x ∈ [0, 1] | zn(x) > to} .

Then we obtain by virtue of (3.9) and (3.10)

1

||zn||p+1
Lp+1(An)

∫
An

(σ(x, zn)zn dx−K

=
1

||zn||p+1
Lp+1(An)

(∫
An

(σ(x, zn)zn −K |zn(x)|p+1
) dx

)

=
1

||zn||p+1
Lp+1(An)

[(∫
An∩Bn

+

∫
An∩Bc

n

)(
σ(x, zn)zn −K |zn|p+1

)
dx

]

≥ −	

2

1

||zn||p+1
Lp+1(An)

||zn||p+1
Lp+1(An) −

	

2
= −	.

(3.11)

Because 	 > 0 was chosen arbitrarily, (3.7) holds.
Now by virtue of (3.6) we get

0 < K ≤ lim
n→∞

(
1

||zn||p+1
Lp+1(An)

∫
An

σ(x, zn)zn dx

)

≤ lim
n→∞

(
1

||zn||p+1
Lp+1(An)

∫
An

(∫ 1

x

b(un(η), η)dη + τ

)
zn dx

)
= 0,

(3.12)

which is obviously a contradiction, and the proof is complete.
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In what follows we will always assume the growth conditions (2.5), (2.6). Next
we consider an arbitrary sequence of solutions of (2.12) (εn, un)n∈N, εn ↘ 0 and we
define zn := u′

n. We now show that the sequence (zn)n∈N is uniformly bounded (in
some appropriate function space).

Lemma 2. Let σ and b satisfy the above-mentioned growth conditions and let
(un)n∈N be a sequence of solutions of (2.12) for corresponding εn as εn ↘ 0. Then
there exists a constant C > 0 independent of n ∈ N such that

(3.13) ||zn||Lp+1 ≤ C.

Proof. Let (un)n∈N be a solution of (2.12) and zn = u′
n. We assume

(3.14) ||zn||Lp+1(0,1) → ∞.

As in the proof of Theorem 1, we obtain

1

||zn||p+1
Lp+1(0,1)

∫ 1

0

σ(x, zn)zn dx

≤ 1

||zn||p+1
Lp+1(0,1)

∫ 1

0

(∫ 1

x

b(un(η), η)dη + τ

)
zndx.

(3.15)

In particular, as in Step 3 of the proof of Theorem 1 we have on the one hand that
the right side of (3.15) converges to 0 for n → ∞ and, on the other hand,

lim
n→∞

1

||zn||p+1
Lp+1(0,1)

∫ 1

0

σ(x, zn)zn dx ≥ K > 0

with K given in (2.5), which is a contradiction.
We can actually prove a stronger result, which seems to be limited to the one-

dimensional case.
Lemma 3. Let (zn)n∈N be a sequence as in Lemma 2. Then we obtain the

following: The sequence (zn)n∈N is uniformly bounded in C0([0, 1]).
Proof. Let (zn)n∈N be a sequence as in Lemma 2 and assume for any constant

K > 0 the existence of a certain x ∈ [0, 1] and n ∈ N such that zn(x) > K. In
particular, we obtain xm ∈ [0, 1] and nm such that znm(xm) > m for every m ∈ N.

By the continuity of znm we know that

x 	→ znm(x) has a global maximum in [0, 1],

and without loss of generality, we assume this maximum is at x = xm. By properties
(2.5) we deduce

(3.16) lim
m→∞

σ(xm, znm(xm)) = ∞.

Moreover, we have for every m ∈ N

(3.17) −εnmz′′nm
(xm) + σ(xm, znm(xm)) =

∫ 1

xm

b(unm(η), η)dη + τ.

The growth conditions (2.6) together with (3.13) imply for every m ∈ N∣∣∣∣
∫ 1

xm

b(unm(η), η)dη

∣∣∣∣ ≤ c3 ||unm ||r∞ + c4 ≤ c3 ||unm ||r1,p+1 + c4 ≤ c5.
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Therefore, we have by (3.16)

εnmz′′nm
(xm) ≥ σ(xm, znm(xm)) − c5 → ∞

for m → ∞, and, in particular, we get z′′nm
(xm) > 0 for m sufficiently large. On

the other hand, we have z′nm
(xm) = 0 for every m ∈ N (note that this is also true if

xm = 0 or xm = 1 by our boundary conditions). Hence xm cannot be a maximum,
which contradicts our assumption.

Lemma 4. Let (zn)n∈N be a sequence as in Lemma 2. Then there exists a subse-
quence of (zn)n∈N, not relabeled, such that εnz

′′
n ⇀∗ 0 in L∞(0, 1).

Proof. Let (zn)n∈N be a sequence with the above-mentioned property. To prove
the assertion, we multiply (2.12) by zn, integrate the equation over the unit interval,
and integrate by parts to find∫ 1

0

εn(z′n)2dx =

∫ 1

0

(∫ 1

x

b(un(η), η)dη + τ − σ(x, zn)

)
zn dx,

which proves immediately that

(3.18) (
√
εnz

′
n)n∈N is bounded in L2(0, 1).

Let ϕ ∈ C∞
0 (0, 1); then integration by parts and (3.18) yield∣∣∣∣

∫ 1

0

εnz
′′
nϕdx

∣∣∣∣ ≤ √
εn

∫ 1

0

|√εnz
′
nϕ

′| dx ≤ √
εn ||

√
εnz

′
n||L2 ||ϕ′||L2 → 0

for n → ∞. Because ϕ was chosen arbitrarily, we have εnz
′′
n ⇀ 0 in L1(0, 1). Since

(εnz
′′
n)n is also uniformly bounded in L∞(0, 1) by (2.12) and Lemma 3, the assertion

follows.

4. Critical points of the singular perturbed Euler–Lagrange equation.
We have now established various properties of solutions of (2.12) presuming the latter
exist. There are at least two well-known approaches to existence, each of which we now
briefly discuss. First we may examine the energy functional (2.9), which is readily seen
to be weakly lower semicontinuous and coercive over W 2,2(0, 1). Hence the existence
of a minimizer is ensured. That the minimizer also satisfies the weak form of the
Euler–Lagrange equation requires a rather delicate argument [1], associated with the
pointwise constraint μ = u′ > 0, accompanied by the growth condition (2.1). A
standard bootstrap argument then shows that the minimizer is actually a classical
solution. However, in the context of our problem, the methods of [1] do not provide
a uniform bound as in Theorem 1.

Another approach to existence follows along the lines of [11]. We first embed
the loading “b” within a one-parameter family and then obtain global branches of
solutions. The only difference here is our pointwise restriction u′ > 0, which does not
alter the arguments in [11] in view of Theorem 1.

5. Generalized solutions. In this section we consider a sequence (zn)n∈N,
where zn = u′

n and un is a solution of (2.12) for corresponding εn, with εn ↘ 0.
By virtue of Lemma 3, the sequence (zn)n∈N is uniformly bounded in L∞(0, 1). As
such it has a weak∗ limit, say, z. The uniform boundedness also yields the existence
of a family of probability measures, called Young measures,

ν : [0, 1] → Prob(R),
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such that

(5.1) z(x) = 〈νx, Id〉 ≡
∫

R

ρ dνx(ρ)

for a.e. x ∈ [0, 1] (see [2] for details). Recall from Theorem 1 that zn(x) > δ > 0 for
all x ∈ [0, 1] and every n, from which we conclude that

z(x) ≥ δ a.e.

In view of Lemma 2 we see that the sequence (un)n∈N is uniformly bounded in
W 1,p+1([0, 1]). Thus, by compact imbedding (un)n∈N has a subsequence that con-
verges uniformly to some u ∈ C0([0, 1]). We now prove the following theorem.

Theorem 5. Let ν be the Young measure generated by a sequence (zn)n∈N, where
zn is a solution of (2.12) for corresponding εn. Then ν satisfies the equation

(5.2) 〈νx, σ(x, ·)〉 =

∫
R+

σ(x, ρ)dνx(ρ) =

∫ 1

x

b(u(η), η)dη + τ

for a.e. x ∈ [0, 1], where u ∈ W 1,∞(0, 1) ∩ {v | v(0) = 0} is the limit of (un)n∈N—in
particular, the function

(5.3) x 	→ 〈νx, σ(x, ·)〉 ∈ C1(0, 1).

Proof. We consider a sequence (un, zn)n∈N of solutions of (2.12) for corresponding
εn with εn ↘ 0. Accordingly, for every n ∈ N we have

−εnz
′′
n + σ(x, zn) =

∫ 1

x

b(un(η), η)dη + τ.

By Theorem 1, Lemma 3, and the smoothness of σ(·), we see that the sequence
of stresses (σ(·, zn))n∈N is also uniformly bounded in L∞(0, 1). Accordingly, it too
possesses a weak limit, which, by the fundamental theorem for Young measures (cf. [2],
[17]), has the following characterization:

σ(x, zn) ⇀∗ 〈νx, σ(x, ·)〉 in L∞(0, 1).

Also,

∫ 1

x

b(un(η), η)dη →
∫ 1

x

b(u(η), η)dη

uniformly. Taking into account Lemma 4, we arrive at (5.2). Finally, the conti-
nuity of both b(·) and u shows there is a C1 member within the equivalence class
〈νx, σ(x, ·)〉.

In summary, our selection procedure delivers a displacement field

un → u in C0([0, 1]),

a strain field

u′
n ⇀∗ z = 〈νx, Id〉 in L∞(0, 1),
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and a stress field

σ(x, zn) ⇀∗ σ̃ := 〈νx, σ(x, ·)〉 in L∞(0, 1),

where νx is the family of Young measures generated by the sequence (zn)n. Equation
(5.2) expresses force balance at x ∈ [0, 1]. Observe by (5.3) that (5.2) may even be
differentiated:

d

dx
〈νx, σ(x, ·)〉 = b(u(x), x) in (0, 1).

We call the pair (u, νx) a Young-measure solution of (2.12). Note that we recover
classical elasticity in the special case when the Young measure reduces to a Dirac
mass, viz., νx = δz(x) a.e. In particular, (5.2) then expresses the usual stress-strain
relation σ̃(x) = σ(x, z(x)).

Remark 6. Under more specific assumptions on the sign change of b one can prove
that the Young-measure solution is a Dirac mass a.e. (see [15]).

Next we show that the Young measures νx reduce to a Dirac mass in the “re-
gions” where the stress function is monotonic. Following the approach in [22], the key
ingredient here is the following inequality.

Lemma 7. Let ϕ ∈ C1([0, 1] × R
+
0 ,R) be an arbitrary function with ϕz(x, z) ≥ 0

for every x ∈ [0, 1]. Then we deduce the inequality

(5.4)

∫ 1

0

〈νx, σ(x, ρ)ϕ(x, ρ)〉 dx ≤
∫ 1

0

〈νx, σ(x, ρ)〉 〈νx, ϕ(x, ρ)〉 dx,

where ν is the Young measure generated by a sequence (zn)n∈N of solutions of (2.12)
for corresponding εn, εn ↘ 0.

Proof. Multiplying (2.12) by ϕ and integrating over the unit interval yield∫ 1

0

(−εz′′ϕ(x, z) + σ(x, z)ϕ(x, z)) dx =

∫ 1

0

(∫ 1

x

b(u(η), η)dη + τ

)
ϕ(x, z)dx.

Integration by parts, taking the boundary conditions and the assumption on ϕ into
account, yields∫ 1

0

σ(x, z)ϕ(x, z)dx

=

∫ 1

0

(
−εz′ϕx(x, z) − εz′2ϕz(x, z) +

(∫ 1

x

b(u(η), η)dη + τ

)
ϕ(x, z)

)
dx

≤
∫ 1

0

(
−εz′ϕx(x, z) +

(∫ 1

x

b(u(η), η)dη + τ

)
ϕ(x, z)

)
dx.

(5.5)

Consider a sequence (εn, zn)n∈N with εn ↘ 0 and zn a solution of (2.12) for corre-
sponding εn. Let ν be the Young measure generated by (zn)n∈N. It is easy to see
that

lim
n→∞

∫ 1

0

−εnz
′
nϕx(x, zn(x))dx = 0,

and (5.5) implies∫ 1

0

〈νx(ρ), σ(x, ρ)ϕ(x, ρ)〉 dx ≤
∫ 1

0

[(∫ 1

x

b(u(η), η)dη + τ

)
〈νx(ρ), ϕ(x, ρ)〉

]
dx,

which together with Theorem 5 immediately implies (5.4).
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Similar to the treatment in [22], we now consider an estimate which is more
convenient for our forthcoming analysis. Therefore, we consider the product measure
ν̃ := ν ⊗ ν over R × R.

Lemma 8. Let ϕ be a test function as in Lemma 7 and let ν be a Young measure
generated by a sequence (zn)n∈N. Then

(5.6)

∫ 1

0

[∫
R2

(
ϕ(x, ρ) − ϕ(x, τ)

)(
σ(x, ρ) − σ(x, τ)

)
d
(
νx(ρ) ⊗ νx(τ)

)]
dx ≤ 0.

Proof. Let ν̃ := ν⊗ ν and let ν be the Young measure generated by a sequence of
solutions of (2.12). Furthermore, let (ρ, τ) ∈ R

2 and ϕ be an arbitrary test function
as the one considered in Lemma 7. Then we obtain by Fubini’s theorem

〈νx, σ〉 〈νx, ϕ〉

=
1

2

[∫
R

σ(x, ρ)dνx(ρ)

∫
R

ϕ(x, τ)dνx(τ) +

∫
R

σ(x, τ)dνx(τ)

∫
R

ϕ(x, ρ)dνx(ρ)

]

=
1

2

[∫
R2

(σ(x, ρ)ϕ(x, τ) + σ(x, τ)ϕ(x, ρ)) d(ν̃x(ρ, τ))

]
.

(5.7)

On the other hand, due to the fact that νx is a probability measure for a.e. x ∈ [0, 1],
we have

(5.8)

∫
R

σ(x, ρ)ϕ(x, ρ)dνx(ρ) =
1

2

[∫
R2

(σ(x, ρ)ϕ(x, ρ) + σ(x, τ)ϕ(x, τ)) d(ν̃x(ρ, τ))

]
.

By (5.7) and (5.8) we conclude that

〈νx, σϕ〉− 〈νx, σ〉 〈νx, ϕ〉

=
1

2

[∫
R2

(σ(x, ρ) − σ(x, τ)) (ϕ(x, ρ) − ϕ(x, τ)) d(ν̃x(ρ, τ))

]
,

and Lemma 7 gives the result.
We introduce certain functions

ra(x) := min
{
r ∈ R

+ | σ(x, r) = σ(x, c2(x))
}
,

rb(x) := max
{
r ∈ R

+ | σ(x, r) = σ(x, c1(x))
}
,

where c1(x), c2(x) are defined as in (2.4). Furthermore,

σ ∈ C1([0, 1] × R
+,R),

which implies that ra, rb ∈ C1([0, 1]). Note that σ(x, ρ) is injective for ρ ∈ (−∞, ra(x))
∪ (rb(x),∞). We define

T (x) := R\[σ(x, c2(x)), σ(x, c1(x))],

and, furthermore, for some u ∈ C0(0, 1) ∩ {v | v(0) = 0}, let

(5.9) A(u) :=

{
x ∈ [0, 1] |

∫ 1

x

b(u(η), η)dη + τ ∈ T (x)

}
.

Note that A(u) is an open subset of [0, 1] by the continuity of x 	→
∫ 1

x
b(u(η), η)dη

and by the assumptions on W . Now we can prove the following.
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Theorem 9. Let (zn)n be a sequence of solutions of (2.12) for corresponding εn,
εn ↘ 0, let z be the weak limit of the sequence, and let u(x) =

∫ x

0
z(s)ds. Furthermore,

let ν be the Young measure generated by this sequence. Then we obtain for a.e. x ∈
A(u)

(5.10) νx = δz(x).

In particular, there exists a subsequence, not relabeled, of (zn)n∈N such that zn(x) →
z(x) for a.e. x ∈ A(u).

Remark 10. Note that the last assertion is clear by (5.10) (see [17, p. 118]).
Proof. Let (zn)n∈N be a sequence of solutions of (2.12) for corresponding εn with

εn ↘ 0 and let ν be the Young measure generated by this sequence. Let u be the
limit of the corresponding sequence (un)n∈N.

To deduce the result we define a test function ϕ ∈ C1([0, 1] × R
+
0 ,R) with the

following properties:
(i) ϕ(x, ·)|R+

0 \[ra(x),rb(x)] is strictly monotonically increasing for every x ∈ [0, 1],

(ii) ϕ(x, ·)|[ra(x),rb(x)] ≡ const for every x ∈ [0, 1].
Moreover, we define

f(x, ρ, τ) := (σ(x, ρ) − σ(x, τ)) (ϕ(x, ρ) − ϕ(x, τ)) ,

f : [0, 1] × R
+ × R

+ → R,

and by the properties of ϕ we obtain for every x ∈ [0, 1]

(5.11) f(x, ρ, τ)

{
> 0 if (	, τ) /∈ [ra(x), rb(x)]2 and ρ �= τ ,

= 0 elsewhere.

By virtue of (5.6) and (5.11), we deduce∫
R2

f(x, ρ, τ) d(νx(ρ) ⊗ νx(τ)) = 0 for a.e. x ∈ [0, 1].

Hence, we have

(5.12) supp(νx ⊗ νx) ⊆
{
(ρ, τ) ∈ R

2 | f(x, ρ, τ) = 0
}

for a.e. x ∈ [0, 1].

We now show that if supp νx consists of at least two points, then x /∈ A(u). Assume
supp νx ⊃ {c(x), d(x)}; then

{c(x), d(x)} × {c(x), d(x)} ∈ supp(νx ⊗ νx).

Because of (5.11) and (5.12) we deduce {c(x), d(x)} ∈ [ra(x), rb(x)]. Thus we obtain

(5.13) supp νx ⊆ [ra(x), rb(x)],

which, in view of Theorem 5, implies

∫ 1

x

b(u(η), η)dη + τ = 〈νx, σ〉 ∈ [σ(x, c2(x)), σ(x, c1(x))].

We conclude immediately that x /∈ A(u). This yields the desired result.
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In the same way one can prove the following corollary just using z(x) = 〈νx, Id〉
for a.e. x ∈ [0, 1], where z is the weak limit of (zn)n∈N and ν is the Young measure
generated by (zn)n∈N.

Corollary 11. Let (zn)n∈N and ν be as in Theorem 9, and let z be the weak
limit of (zn)n∈N. Then for a.e. x ∈ [0, 1] with z(x) ∈ R

+\[ra(x), rb(x)] we obtain
νx = δz(x). Moreover, we have the following: If supp νx ⊆ (−∞, ra(x)) ∪ (rb(x),∞)
is valid, then we also get νx = δz(x).

Another immediate consequence of (5.13) is the following corollary.
Corollary 12. Let the assumptions be as in Corollary 11 and define u(x) :=∫ x

0
z(s)ds. Then for a.e. x ∈ [0, 1] \A(u) we have

supp νx ⊆ [ra(x), rb(x)].

Proof. We assume some x ∈ [0, 1] \A(u) such that

(5.14) c /∈ [ra(x), rb(x)] and {c} ∈ supp νx.

Without loss of generality we assume c < ra(x), and hence

σ(x, c) <

∫ 1

x

b(u(η), η)dη + τ = 〈νx, σ〉 ∈ [σ(x, c2(x)), σ(x, c1(x))].

In particular, supp νx consists of at least two points {c, d} with d > c. By the same
procedure as in Theorem 9, we obtain (see (5.13))

{c, d} ⊆ [ra(x), rb(x)],

contradicting (5.14).
Remark 13. By Theorem 9 and Corollary 12 we conclude the following: Let

(zn)n∈N be a sequence of solutions of (2.12) for corresponding εn, εn ↘ 0. By virtue
of Theorem 1 there exists δ > 0 with zn(x) > δ > 0 for every n ∈ N and x ∈ [0, 1]. Let
ν be the Young measure generated by (zn)n∈N and let {c} ∈ supp νx. Then c ≥ δ.

6. Concluding remarks. (i) The Young measure ν = (νx)x∈Ω generated by a
sequence (vn)n∈N, where vn : Ω 	→ R

N , Ω denotes some open set, has the following
interpretation: The measure νx0 can be thought of as the limiting probability of values
of (vn)n∈N in a small neighborhood of x0 ∈ Ω. In order to be mathematically more
precise we have the following: First we define

μx0,δ,vn(C) :=
|{x ∈ Bδ(x0) | vn(x) ∈ C}|

|Bδ(x0)|
,

where Bδ(x0) is an open ball with center x0 and radius δ, C denotes some measurable
set in R

N , and |·| denotes the Lebesgue measure. Then we have for every f ∈ C0(R
N )

lim
δ↘0

lim
n→∞

〈μx0,δ,vn
, f〉 = 〈νx0

, f〉 .

Hence we obtain the following by Theorem 9: Let u(x) :=
∫ x

0
z(s)ds, where z is

the weak limit of the generating sequence (zn)n∈N. If
∫ 1

x
b(u(η), η)dη + τ ∈ A(u),

where A(u) is defined by (5.9), then the limit of the generating sequence (zn)n∈N is
determined, because the resulting Young measure ν is a Dirac measure for a.e. x ∈
A(u). In particular, we have by the Vitalis theorem

lim
n→∞

zn|A(u) = z|A(u) in L1(A).
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On the other hand, if x /∈ A(u), then νx is not necessarily a Dirac measure, indicating
the possibility of strongly oscillatory behavior of the sequence (zn)n∈N in this region.
However, by virtue of Corollary 12, the values attained by (zn)n∈N in [0, 1] \A(u) are
in the interval [ra(x) − θ, rb(x) + θ] for arbitrary θ > 0 and for n = n(θ) sufficiently
large. Thus the amplitude of the possible oscillation is restricted by these two values.

(ii) Note that ∫ 1

0

(〈νx,W 〉 + B(u, x)) dx− τu(1),

u(0) = 0, u′(x) = 〈νx, Id〉 ,∫ 1

0

∫
R

||s||p+1
dνx(s)dx < ∞

(6.1)

possesses a global minimizer in the space of Young measures (see [18]). Since we do

not know if
∫ 1

0
ε(z′ε)

2 dx ↘ 0 as ε ↘ 0, it is unclear if the Young-measure solution ν
obtained here is the global minimizer of (6.1)—even in the case when the family of
critical points corresponds to the global minimizers of (2.9).

(iii) Problem (2.10) with Dirichlet boundary conditions seems to be more difficult
than problem (2.10), (2.11). Indeed the latter is statically determinate, a by-product
of which is the reformulation (2.12). In particular, it is unclear if Theorem 1 and
Lemma 2 hold for the Dirichlet problem.

(iv) In higher-dimensional problems, we consider a nonconvex W : Ω×R
N×M →

R (Ω ⊆ R
N is some bounded smooth domain) with the usual polynomial growth

conditions and some subcritical B : Ω × R
M → R; then by similar techniques to

those presented here, we can prove the existence of Young-measure solutions of the
corresponding nonelliptic Euler–Lagrange system of the variational problem∫

Ω

W (x,Du(x)) + B(u(x), x) dx,

u|Γ = 0,

where Γ ⊆ ∂Ω and the (n − 1)-dimensional Hausdorff measure of Γ is positive. In
addition, if we require the analogue of (2.1), namely, W = W (x, F,detF ), where
F ∈ R

N×N with

lim
detF↘0

W (x, F,detF ) = ∞

for a.e. x ∈ Ω, then proving a version of Theorem 1 is an open problem.
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BIFURCATION ANALYSIS OF AN ELLIPTIC FREE BOUNDARY
PROBLEM MODELLING THE GROWTH OF AVASCULAR TUMORS∗
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Abstract. We study bifurcations from radially symmetric solutions of a free boundary problem
modelling the dormant state of nonnecrotic avascular tumors. This problem consists of two semilinear
elliptic equations with a Dirichlet and a Neumann boundary condition, respectively, and a third
boundary condition coupling surface tension effects on the free interface to the internal pressure. By
reducing the full problem to an abstract bifurcation equation in terms of the free boundary only
and by characterizing the linearization as a Fourier multiplication operator, we carry out a precise
analysis of local bifurcations of this problem.
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1. Introduction. In this paper we consider the following free boundary problem:

(1.1)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Δσ = f(σ) in Ω,

Δp = −g(σ) in Ω,

σ = σ̄ on ∂Ω,
∂p
∂ν = 0 on ∂Ω,

p = γκ on ∂Ω,

where σ, p are unknown functions defined on an a priori unknown domain Ω. Fur-
thermore, f and g are given functions defined on [0,∞), satisfying suitable conditions
(A1)–(A3) on the following page, σ̄ is a positive constant, ∂/∂ν denotes the deriva-
tive in the direction of outward normal ν of the free boundary ∂Ω, γ is a positive
parameter, and κ is the mean curvature of the free boundary ∂Ω. The manner of
determining the sign of κ is such that κ ≥ 0 at points where ∂Ω is (locally) convex.

The above problem is a mathematical model describing the dormant state of a
nonnecrotic avascular tumor. In this model Ω is the domain occupied by the tumor,
σ denotes the concentration of nutrient within the tumor, p is the tumor’s tissue
pressure, and f and g are the nutrient consumption rate function and the tumor-cell
proliferation rate function, respectively. It is assumed that all tumor cells are alive
and dividable and that their density is constant. This explains why f and g are
independent of the cell density. Typical examples of f and g are as follows:

(1.2) f(σ) = σ, g(σ) = μ(σ − σ̃),
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where μ and σ̃ are positive constants (see Byrne and Chaplain [2]) and

(1.3)
g(σ) = μ(σ) − ν(σ) ≡ Aσm1

σm1
c +σm1

−B

(
1− δσm2

σm2

d +σm2

)
,

f(σ) = βμ(σ) + h(σ),

where A, B, β, δ, m1, m2, σc, and σd are positive constants, and h(u) is a nonnegative
increasing function (see Ward and King [12]). In this paper we shall assume that f ,
g are general functions satisfying the following condition (A):

(A1) f ∈ C∞[0,∞) and g ∈ C∞[0,∞),

(A2) f ′(σ) > 0 for σ ≥ 0 and f(0) = 0,

(A3) g′(σ) > 0 for σ ≥ 0 and g(σ̃) = 0 for some σ̃ > 0,

(A4) σ̃ < σ̄.

Note that the positive value σ̃ in (A3) plays the role of a threshold in the sense that
g(σ) < 0 for 0 ≤ σ < σ̃ and g(σ) > 0 for σ > σ̃. Moreover, using the maximum
principle and Green’s formula, one can easily prove that (1.1) does not have any
solution if σ̃ ≥ σ̄. Thus it is reasonable to assume that (A4) holds true.

A basic result is that under the above assumptions (A), the problem (1.1) has
a radially symmetric solution, which is unique up to translation and rotation (see
section 2). Moreover, it can be shown that this solution is globally asymptotically
stable under radially symmetric perturbations, namely, if we consider the correspond-
ing evolutionary problem and regard the solution of (1.1) as a stationary solution of
the corresponding evolutionary problem, then all radially symmetric transient solu-
tions converge to this radially symmetric stationary solution as time goes to infinity.
A natural and very interesting question is whether the problem (1.1) admits nonradial
solutions. This question has the following obvious implication: If (1.1) has a nonra-
dial solution, then we cannot expect that the radially symmetric solution is globally
asymptotically stable under nonradially symmetric perturbations.

In the particular case that f and g have the simple form given in (1.2), this
question has been answered by Friedman and Reitich [8] in the two-dimensional case,
and by Fontelos and Friedman [7] in the three-dimensional case. They considered
(1.1) as a bifurcation problem with γ being the bifurcation parameter and used the
power series method suggested by the work of Greenspan [11] and Byrne [1] to prove
that there exists a sequence of positive numbers γk, such that in a neighborhood of
each γk there exists a bifurcation branch (σε, pε,Ωε, γε), with ε being a small param-
eter (bifurcation parameter) of nonradial solutions which bifurcates from the radially
symmetric solution at γk. This power series method has also been used by Friedman
and Reitich [9] to consider the symmetry-breaking bifurcation of some other related
free boundary problems. Recently, Borisovich and Friedman [3] used a different ap-
proach to reconsider all of those free boundary problems. By this new approach, these
problems were reduced to bifurcation problems treatable by the standard bifurcation
theory developed, e.g., by Crandall and Rabinowitz [4], and Krasnoselskii.

In this paper we study the problem (1.1) for general nonlinear functions f and g
satisfying the condition (A) and for star shaped domains Ω. As in [3, 4, 5, 6, 7, 8, 9], we
shall also regard (1.1) as a bifurcation problem with γ being the bifurcation parameter.
However, we shall not use the power series method, because in the general situation
f , g are not necessarily analytic functions, and therefore this approach is certainly
not applicable. Instead, we shall solve the first four equations in terms of an unknown
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function η describing the free boundary and substitute the solution into the last
equation, reducing the problem (1.1) in that way into a bifurcation problem of the
following form:

(1.4) A(η) + c = γB(η),

where η, c are the unknowns and A, B are nonlinear operators mapping a hypersurface
M of a suitable Banach space X into another Banach space Y . In our application it
turns out that X is compactly embedded into Y and that (A, B) is smooth. The key
step of our approach is to show that for each eigenvalue γk of the linearized problem
of (1.4), there exist corresponding closed subspaces Xk of X and Yk of Y , such that
Xk is compactly embedded into Yk, A : Xk ∩M → Xk and B : Xk ∩M → Yk, and
when restricted to Xk, the linearized problem possesses γk as a simple eigenvalue so
that the well-known Crandall–Rabinowitz theorem is applicable.

The main result of this paper is the following theorem.
Theorem 1.1. Assume that condition (A) holds true. Then there exist a null

sequence of numbers {γk}k≥2 and an integer k∗ ≥ 2 such that in a neighborhood of
each γk with k ≥ k∗, the problem (1.1) has a branch of nonradial solutions bifurcating
from the radially symmetric solution. If γ 	= γk for all k ≥ 2, then γ is not a
bifurcation point.

It is worthwhile to note that our proof of Theorem 1.1 yields an asymptotic expan-
sion of the bifurcation branch with respect to the bifurcation parameter; cf. section
5. This expansion particularly shows that the domains corresponding to the above
bifurcation solutions are always star shaped perturbations of round spheres.

We also remark that the proof of Theorem 1.1 shows that all mutually distinct
γk are bifurcation points and that k∗ is the smallest number such that all γk with
k ≥ k∗ are distinct. It is known that in the linear case (1.2) this threshold value
k∗ is minimal, i.e., k∗ = 2 and all γk are bifurcation points; cf. [7]. For general
nonlinearities f and g this seems to be in unknown. However, it can be shown that if
f and g are real analytic functions, then, excluding at most a discrete set of boundary
concentrations σ, all γk are distinct and thus bifurcation points. We are indebted to
one of the referees for bringing this point to our attention.

The structure of this paper is as follows. In section 2 we study the existence and
uniqueness of radially symmetric solutions to problem (1.1). The linearization of (1.1)
at radially symmetric solutions is determined in section 3, where we also calculate the
eigenvalues of the linearized problem. In section 4 we reduce the problem (1.1) into
the abstract form (1.4), and we show that if γ 	= γk, then no bifurcation occurs at γ.
In the last section we prove the local bifurcation result.

2. Radially symmetric solutions. In this section we study the existence and
uniqueness of radially symmetric solutions to the system (1.1). Obviously, this prob-
lem is equivalent to the study of the following free boundary value problem:

(2.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ′′
0 (r) + n−1

r σ′
0(r) = f(σ0(r)), 0 < r < R,

p′′0(r) + n−1
r p′0(r) = −g(σ0(r)), 0 < r < R,

σ0, p0 ∈ C1[0, R] ∩ C2(0, R),

σ0(R) = σ̄,

p′0(R) = 0,

p0(R) = γ
R .
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That is, if (σ0, p0, R) is a solution of (2.1) then, letting Ω0 = {x ∈ R
n : |x| < R}, the

triple (σ0(|x|), p0(|x|),Ω0) is a radially symmetric solution of (1.1) and vice versa.

Given any c > 0, it can be shown by ODE techniques that the first equation in
(2.1) has a unique local solution σ0 ∈ C∞[0, δ] such that σ0(0) = c. We extend this
local solution to a solution which is not further extendable, and let [0, R∗) be the
maximal interval of existence, where 0 < R∗ ≤ ∞. We claim that

(2.2) σ′
0(r) > 0 for 0 < r < R∗.

Indeed, it is not difficult to see that σ′
0(0) = 0. Since σ0(0) = c > 0, we infer from

the first equation in (2.1) that σ′′
0 (0) = f(c)/n > 0. Hence there is a δ > 0 such that

σ′
0(r) > 0 for 0 < r < δ. If σ′

0(r) > 0 does not hold for some 0 < r < R∗, then for
the first positive zero r0 of σ′

0(r) we have σ′′
0 (r0) ≤ 0. On the other hand, the first

equation in (2.1) shows that σ′′
0 (r0) = f(σ0(r0)) > f(c) > 0, which is a contradiction.

Hence (2.2) holds.

From the just-established relation (2.2), it is clear that if R∗ < ∞, then

(2.3) lim
r→R∗

σ0(r) = ∞.

We claim that even if R∗ = ∞, then (2.3) still holds true. Indeed, by (2.2) we know
that σ0(r) ≥ σ0(0) = c for all 0 < r < R∗ = ∞. Further, the first equation of (2.1)
shows that

(2.4) σ′
0(r) =

1

rn−1

∫ r

0

f(σ0(ρ))ρ
n−1dρ ≥ 1

rn−1

∫ r

0

f(c)ρn−1dρ =
1

n
f(c)r,

which implies limr→∞ σ0(r) = ∞.

Given c ∈ (0, σ̄), it follows from (2.2) and (2.3) that there exists a unique Rc > 0
such that

σ0(Rc) = σ̄.

Since σ0(r) is clearly increasing in c and smooth we conclude that Rc is a smooth and
decreasing function of c on 0 < c < σ̄. Moreover, it is also clear that

lim
c→0+

Rc = ∞, lim
c→σ̄−

Rc = 0.

Hence, given R > 0, there exists a unique 0 < c < σ̄ such that Rc = R. Thus, we
have shown that for any given R > 0, the problem

(2.5) σ′′
0 (r) +

n−1

r
σ′

0(r) = f(σ0(r)), σ0(R) = σ̄,

has a unique solution, which we denote by σ0(r,R).

In the following, we shall derive a further representation of σ0(r,R). To this end
we consider the following parameter-dependent problem:

(2.6)

⎧⎪⎨
⎪⎩

∂2U(r, λ)

∂r2
+

n−1

r

∂U(r, λ)

∂r
= λf(U(r, λ)), 0 < r < 1,

∂U

∂r

∣∣∣
r=0

= 0, U
∣∣∣
r=1

= σ̄,
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where λ is a positive parameter. By a similar argument, as used previously, we see
that for every λ > 0 this problem has a unique solution U(r, λ). Clearly, U(r, λ) is
smooth in both variables r and λ. We have

(2.7)
∂U(r, λ)

∂r
> 0,

∂U(r, λ)

∂λ
< 0 for 0 < r < 1, λ > 0,

and

(2.8) lim
λ→0+

U(r, λ) = σ̄, lim
λ→∞

U(r, λ) = 0 for 0 ≤ r < 1.

Indeed, the first inequality in (2.7) is obvious. The second inequality follows from
the maximum principle applied to the equation satisfied by ∂U(r, λ)/∂λ. Concerning
(2.8), the first relation is also obvious, because if λ = 0 in (2.6), then we get the
trivial solution U = σ̄. To prove the second relation, we apply Lebesgue’s dominated
convergence theorem to the integral representation of U(r, λ) in terms of f(U(r, λ)) to
get limλ→∞ U(r, λ) = 0; cf. also [5], where a similar argument is used. By uniqueness
of the solution of the problem (2.5), one can easily verify that

(2.9) σ0(r,R) = U
( r

R
,R2

)
for 0 ≤ r ≤ R.

Next let us consider the second equation in (2.1), where σ0(r) = σ0(r,R). Clearly this
equation has a unique local solution p̄0(r) satisfying the following initial conditions:

p̄0(0) = 0, p̄′0(0) = 0;

cf. [6]. Since the ODE for p̄ is linear and regular on r > 0, its solution p̄0(r) can be
extended to the whole interval [0, R∗). Moreover, we have

p̄′0(R) = − 1

Rn−1

∫ R

0

g(σ0(r,R))rn−1dr = −R

∫ 1

0

g(U(ρ,R2))ρn−1dρ.

Consider next the auxiliary function

ψ(R) =

∫ 1

0

g(U(ρ,R2))ρn−1dρ, R > 0.

Since g′ > 0 and ∂U(r, λ)/∂λ < 0, it is clear that ψ is strictly decreasing. Recalling
(2.8) and (A3), (A4), we have

lim
R→0+

ψ(R) =
1

n
g(σ̄) > 0, lim

R→∞
ψ(R) =

1

n
g(0) < 0.

Hence, there exists a unique R > 0 such that ψ(R) = 0, showing that p̄′0(R) = 0.
Summarizing, we have constructed a unique solution to the first five equations of (2.1)
under the additional condition p̄0(0) = 0. The solution of the full system (2.1) is now
obtained by replacing p̄0(r) with

p(r) =
γ

R
+ p̄0(r) − p̄0(R),

which is clearly the unique solution of this problem.
For later purposes we shall derive the following property of p(r):

(2.10) p′(r) > 0 for 0 < r < R, p′(r) < 0 for R < r < R∗.
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The proof is simple: We have

d

dr

(p′(r)
r

)
= − d

dr

( 1

rn

∫ r

0

g(σ0(ρ))ρ
n−1dρ

)
= − d

dr

∫ 1

0

g
(
U
(rρ
R

,R2
))

ρn−1dρ

= − 1

R

∫ 1

0

g′
(
U
(rρ
R

,R2
))∂U

∂r

(rρ
R

,R2
)
ρndρ < 0.

Both the relation and the fact that p′(R) = 0 obviously implies (2.10).
We summarize the above considerations in the following theorem.
Theorem 2.1. Under the assumption (A), the problem (1.1) has a unique radially

symmetric solution (σ0(r), p0(r),Ω0), where Ω0 = {x ∈ R
n : r = |x| < R}. Moreover,

the functions σ0(r) and p0(r) can be extended to a maximal interval [0, R∗), where
0 < R∗ ≤ ∞, such that σ0(r), p0(r) ∈ C∞[0, R∗). In addition, the properties (2.2),
(2.3), and (2.10) hold true.

As pointed out in section 1, the radially symmetric solution is globally asymptot-
ically stable under radially symmetric perturbations. This means that if we consider
the corresponding time-dependent problem, then all radially symmetric transient so-
lutions converge to the solution of (2.1) obtained above. A proof of this fact in the
three-dimensional case is given in [5]; the proof for higher dimensional problems is
similar.

3. Linearization. In this section we determine the linearization of the problem
(1.1) at the unique radially symmetric solution constructed in the previous section.
We also provide conditions which imply that the linearized problem has nontrivial
solutions.

Consider perturbations of the radially symmetric solution (σ0(r), p0(r),Ω0) of the
form

σ(x) = σ0(r) + εϕ(r, ω), p(x) = p0(r) + εψ(r, ω), Ω = {x ∈ R
n : r < R + εη(ω)},

where r = |x| and ω = x/|x|. Moreover, ε is a small parameter and ϕ, ψ, η are new
unknown functions. Let Δω be the Laplace–Beltrami operator on the sphere S

n−1.
Using the corresponding equations of (2.1), one can easily verify that the linearization
of the first two equations of (1.1) is given by

(3.1)
∂2ϕ

∂r2
+

n−1

r

∂ϕ

∂r
+

1

r2
Δωϕ = f ′(σ0(r))ϕ,

(3.2)
∂2ψ

∂r2
+

n−1

r

∂ψ

∂r
+

1

r2
Δωψ = −g′(σ0(r))ϕ.

Besides, it is also immediate to see that the linearization of the first boundary condi-
tion in (1.1) is given by

(3.3) ϕ(R,ω) + σ′
0(R)η(ω) = 0.

To find the linearization of the second boundary condition of (1.1), we first compute
the outward normal of ∂Ω:

ν =
ω − ε∇ωη(ω)

|ω − ε∇ωη(ω)| = ω − ε∇ωη(ω) + o(ε),
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where ∇ω denotes the tangent mapping on the sphere S
n−1, or the orthogonal pro-

jection of the gradient ∇ to the tangent space Tω(Sn−1), when regarding a function
in ω ∈ S

n−1 as a function in x ∈ R
n with ω = x/|x|, so that ω · ∇ω = 0. Thus

∂p

∂ν
= ν · ∇p|r=R+εη = [ω − ε∇ωη(ω) + o(ε)] ·

(∂p
∂r

ω + ∇ωp
)∣∣∣

r=R+εη

=
∂p

∂r
(R,ω) + ε

(∂2p

∂r2
(R,ω)η(ω) −∇ωη(ω) · ∇ωp(R,ω)

)
+ o(ε)

= p′0(R) + ε
(∂ψ
∂r

(R,ω) + p′′0(R)η(ω)
)

+ o(ε).

Since p′0(R) = 0 and p′′0(R) = −g(σ̄), we see that the desired linearization is given by

(3.4)
∂ψ

∂r
(R,ω) − g(σ̄)η(ω) = 0.

Finally, we have the following formula for the mean curvature of the hypersurface
given by r = R + εη(ω) (see [9]):

κ =
1

R
− ε

R2

[
η(ω) +

1

n−1
Δωη(ω)

]
+ o(ε).

Therefore the linearization of the last equation in (1.1) reads as

(3.5) ψ(R,ω) +
γ

R2

[
η(ω) +

1

n−1
Δωη(ω)

]
= 0.

Summarizing, we have the following lemma.
Lemma 3.1. The linearization of the problem (1.1) at the radially symmetric

solution (σ0(|x|), p0(|x|),Ω0) is given by the problem (3.1)–(3.5).
We now investigate the question of whether there exists γ > 0 such that the

problem (3.1)–(3.5) has nontrivial solutions. For this purpose we first note that stan-
dard results for second order elliptic partial differential equations imply that all so-
lutions ϕ, ψ, η are smooth, namely, ϕ,ψ ∈ C∞(BR) ⊆ C∞([0, R], C∞(Sn−1)), and
η ∈ C∞(Sn−1). Thus these functions can be expanded in the following way:

(3.6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(r, ω) =
∞∑
k=1

dk∑
l=1

ukl(r)Ykl(ω),

ψ(r, ω) =

∞∑
k=1

dk∑
l=1

vkl(r)Ykl(ω),

η(ω) =

∞∑
k=1

dk∑
l=1

cklYkl(ω),

where we denote by Ykl(ω) (l = 1, 2, . . . , dk) the normalized orthogonal basis of all
spherical harmonics of degree k. Note that

d1 = n, dk =
( n+k−1

k

)
−
( n+k−3

k−2

)
(k ≥ 2).

The coefficients ukl(r), vkl(r), ckl satisfy the following estimates: Given positive in-
tegers N , k, and 1 ≤ l ≤ dk, we have

|ukl(r)| ≤ CN (1 + k)−N , |vkl(r)| ≤ CN (1 + k)−N , |ckl| ≤ CN (1 + k)−N .
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Substituting (3.6) into (3.1)–(3.5), using the relation

ΔωYkl(ω) = −λkYkl(ω), λk = k2 + (n− 2)k (k = 1, 2, . . . ),

and comparing coefficients of every Ykl(ω), we get

(3.7) u′′
kl(r) +

n−1

r
u′
kl(r) −

λk

r2
ukl(r) = f ′(σ0(r))ukl(r),

(3.8) v′′kl(r) +
n−1

r
v′kl(r) −

λk

r2
vkl(r) = −g′(σ0(r))ukl(r),

(3.9) ukl(R) + σ′
0(R)ckl = 0,

(3.10) v′kl(R) − g(σ̄)ckl = 0,

(3.11) vkl(R) +
γ

R2

(
1 − λk

n−1

)
ckl = 0.

Solutions of (1.1) are innately nonunique: Any translation or rotation of a solution is
again a solution. This nonuniqueness of solutions to (1.1) causes, correspondingly, a
nonuniqueness of solutions to (3.1)–(3.5). To eliminate this nonuniqueness we assume
that

(3.12) c1l = 0, u1l(r) = 0, v1l(r) = 0, l = 1, 2, . . . , n.

Observe that, given k ≥ 2, we have

(n− 1) − λk = (n− 1) − k2 − (n− 2)k ≤ −n− 1 < 0.

Using this fact it is not difficult to see that any solution of (3.7) is given by

(3.13) ukl(r) = αklr
μk ūk(r),

where αkl is an arbitrary constant,

(3.14) μk =
1

2

[√
(n− 2)2 + 4λk − (n− 2)

]
= k ≥ 2,

and ūk(r) is the unique solution of the problem

(3.15)

{
ū′′
k(r) +

ak
r
ū′
k(r) = f ′(σ0(r))ūk(r),

ūk(0) = 1, ū′
k(0) = 0,

where

(3.16) ak = 2μk + n− 1 = 2k + n− 1 ≥ n + 3.

Note that (3.15) is a linear equation, which is regular on r > 0. Hence the maximal
existence interval of ūk(r), and, consequently, also that of ukl(r), is the same as
that for σ0(r), namely, [0, R∗). Besides, since σ0 ∈ C∞[0, R∗) and ak > 0, we have
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ūk ∈ C∞[0, R∗); cf. [6]. Substituting (3.13) into the right-hand side of (3.8) we infer
that solutions of (3.8) are given by

(3.17) vkl(r) = αklr
μk v̄k(r) + βklr

μk ,

where αkl is as before, βkl is an arbitrary constant proportional to αkl, i.e., βkl = cαkl

for an arbitrary constant c, and v̄k is the unique solution of the problem

(3.18)

{
v̄′′k (r) +

ak
r
v̄′k(r) = −g′(σ0(r))ūk(r),

v̄k(0) = 0, v̄′k(0) = 0.

Note that v̄k(r), and, consequently, also vk(r), is defined for all 0 ≤ r < R∗, and
v̄k ∈ C∞[0, R∗). Substituting (3.13) and (3.17) into (3.9)–(3.11) we get the following
equations for αkl, βkl, and ckl:

(3.19)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Rμk ūk(R)αkl + σ′
0(R)ckl = 0,

[Rμk v̄′k(R) + μkR
μk−1v̄k(R)]αkl + μkR

μk−1βkl − g(σ̄)ckl = 0,

Rμk v̄k(R)αkl + Rμkβkl +
γ

R2

(
1 − λk

n−1

)
ckl = 0.

Hence, (3.1)–(3.5) has a nontrivial solution if and only if there exists k ≥ 2 such that
(3.19) has a nontrivial solution. In the following, we provide conditions on γ which
guarantee that (3.19) has a nontrivial solution.

Lemma 3.2. The system (3.19) has a nontrivial solution if and only if γ = γk,
where

(3.20) γk =
(n−1)R3

(λk−n+1)μk

[
g(σ̄) − σ′

0(R)

ūk(R)Rak

∫ R

0

g′(σ0(ρ))ūk(ρ)ρ
akdρ

]
, k ≥ 2.

In this case the nontrivial solutions of (3.19) are unique up to a constant factor.
Moreover, γk > 0 for all k ≥ 2 and there exists a k∗ = k∗(f, g,R, n) such that

(3.21) γk+1 < γk ∀ k ≥ k∗.

Finally, limk→∞ γk = 0.
Proof. A simple computation shows that the determinant of the coefficient matrix

of (3.19) is equal to the product of R2μk−1μkūk(R) with

R

μk

[
g(σ̄) +

v̄′k(R)σ′
0(R)

ūk(R)

]
+

γ

R2

(
1 − λk

n−1

)
≡ Dk(γ).

Hence, (3.19) has a nontrivial solution if and only if Dk(γ) = 0, or

γ = γk ≡ (n−1)R3

(λk−n+1)μk

[
g(σ̄) +

v̄′k(R)σ′
0(R)

ūk(R)

]
.

From (3.18) we further infer that

(3.22) v̄′k(r) = − 1

rak

∫ r

0

g′(σ0(ρ))ūk(ρ)ρ
akdρ, r ∈ [0, R∗),
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which shows that γk is given by (3.20). If γ = γk, then clearly solutions of (3.19) are
unique up to a constant factor. To prove γk > 0, we need only to show that

(3.23) g(σ̄) >
σ′

0(R)

ūk(R)Rak

∫ R

0

g′(σ0(ρ))ūk(ρ)ρ
akdρ.

Since ak = 2μk + n− 1 (see (3.16)), we infer that ρak ≤ Rμk−1ρμk+n for 0 < ρ ≤ R.
Thus

σ′
0(R)

ūk(R)Rak

∫ R

0

g′(σ0(ρ))ūk(ρ)ρ
akdρ ≤ σ′

0(R)

ūk(R)Rμk+n

∫ R

0

g′(σ0(ρ))ūk(ρ)ρ
μk+ndρ

=
1

Rn

∫ R

0

g′(σ0(ρ))w(ρ)ρndρ,

where w(r) =
σ′
0(R)rμk ūk(r)
Rμk ūk(R) . But (A2) implies that ūk(r) > 0, and we conclude that

w′′(r) +
n−1

r
w′(r) − n−1

r2
w(r) ≥ w′′(r) +

n−1

r
w′(r) − λk

r2
w(r) = f ′(σ0(r))w(r),

and

w(0) = 0, w(R) = σ′
0(R).

This implies, by comparison, that w(r) < σ′
0(r) for 0 < r < R, since by differentiating

the first equation of (2.1) we get that

σ′′′
0 (r) +

n−1

r
σ′′

0 (r) − n−1

r2
σ′

0(r) = f ′(σ0(r))σ
′
0(r),

and we know that σ′
0(0) = 0. Hence

1

Rn

∫ R

0

g′(σ0(ρ))w(ρ)ρndρ <
1

Rn

∫ R

0

g′(σ0(ρ))σ
′
0(ρ)ρ

ndρ

= g(σ0(R)) − n

Rn

∫ R

0

g(σ0(ρ))ρ
n−1dρ

= g(σ̄) +
n

R
p′0(R) = g(σ̄).

This proves (3.23). Hence, γk > 0 for k ≥ 2.

To verify (3.21), we first observe that (3.15) implies that

ū′
k(r) =

1

rak

∫ r

0

f ′(σ0(ρ))ūk(ρ)ρ
akdρ, r ∈ [0, R∗).

Hence ūk is increasing. Let us introduce the notation

δk :=
σ′

0(R)

ūk(R)Rak

∫ R

0

g′(σ0(ρ))ūk(ρ)ρ
akdρ.
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Integration by parts shows that

δk =
Rσ′

0(R)g′(σ̄)

ak+1
− σ′

0(R)

(ak+1)ūk(R)Rak

∫ R

0

g′′(σ0(ρ))σ
′
0(ρ)ūk(ρ)ρ

ak+1dρ

− σ′
0(R)

(ak+1)ūk(R)Rak

∫ R

0

g′(σ0(ρ))ū
′
k(ρ)ρ

ak+1dρ

=
Rσ′

0(R)g′(σ̄)

ak+1
− σ′

0(R)

(ak+1)ūk(R)Rak

∫ R

0

g′′(σ0(ρ))σ
′
0(ρ)ūk(ρ)ρ

ak+1dρ

− σ′
0(R)

(ak+1)ūk(R)Rak

∫ R

0

∫ ρ

0

g′(σ0(ρ))ρf
′(σ0(η))ūk(η)η

akdηdρ

≡ Rσ′
0(R)g′(σ̄)

ak+1
− σ′

0(R)

(ak+1)
εk(R).

Since ūk is increasing, we have 0 ≤ ūk(ρ)ρ
ak/ūk(R)Rak ≤ (ρ/R)ak for 0 ≤ ρ ≤ R,

which implies that limk→∞ ūk(ρ)ρ
ak/ūk(R)Rak = 0 for 0 ≤ ρ < R. Hence, by

dominated convergence, we see that limk→∞ εk(R) = 0, or

δk =
Rσ′

0(R)g′(σ̄)

ak+1
(1 + o(1)) as k → ∞.

Substituting this expression into (3.20), we deduce that

γk+1 − γk = −3(n− 1)R3g(σ̄)

k4
(1 + o(1)) as k → ∞,

so that γk is strictly decreasing for k sufficiently large. This completes the proof of
(3.21). Finally, limk→∞ ck = ∞ implies that (γk) is a null sequence.

Remark 3.1. We note that

D1(γ) = 0 for any γ > 0.

Indeed, letting c = n
f(σ0(0))

, it is easy to verify that ū1(r) = c
σ′
0(r)
r solves (3.15) in

the case k = 1. Thus using (3.22) we get

D1(γ) = R
[
g(σ̄) +

v̄′1(R)σ′
0(R)

ū1(R)

]
= R[g(σ̄) + c−1Rv̄′1(R)]

= R

[
g(σ̄) − 1

Rn

∫ R

0

g′(σ0(ρ))σ
′
0(ρ)ρ

ndρ

]
=

n

R
p′0(R) = 0.

This implies that for k = 1, the system (3.19) has nontrivial solutions for any γ > 0.
This nonuniqueness is a consequence of the fact that the system (1.1) is invariant
under translations of Ω.

We now summarize the main result of this section.
Theorem 3.3. The system of (3.1)–(3.5) has a nontrivial solution if and only if

γ = γk for some k ≥ 2.
In the succeeding section we shall express (1.1) as a bifurcation problem in a

suitable function space which can be treated by standard bifurcation theory in Banach
spaces. We shall see that Theorem 3.3 implies that γ′

ks are bifurcation points of the
full system (1.1), provided k ≥ k∗.
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4. Nonbifurcation at γ �= γk. In this section we shall reduce the system of
equations (1.1) into the form (1.4), and use the reduced equation and the implicit
function theorem to prove that if γ 	= γk (k ≥ 2), then no bifurcation occurs at γ.

For a given R > 0, we denote by BR the open ball in R
n centered at the origin

with radius R, and for a given function η ∈ C(Sn−1) satisfying

max
ω∈Sn−1

|η(ω)| < R,

we denote

Ωη = {x ∈ R
n : x = rω, 0 ≤ r < R + η(ω), ω ∈ S

n−1}.

Given two Banach spaces X and Y , we denote by L(X,Y ) the Banach space of all
bounded linear mappings from X into Y , by C(X,Y ) the Fréchet space of all contin-
uous mappings from X into Y , and by C1(X,Y ) the Fréchet space of all continuously
Fréchet differentiable mappings from X to Y . We shall use both DF (u) and F ′(u) to
denote the Fréchet derivative. For a positive integer m, we denote by Cm(X,Y ) the
Fréchet space of all m-times continuously Fréchet differentiable mappings from X into
Y , and we write C∞(X,Y ) = ∩m≥1C

m(X,Y ). Given 0 < μ < 1, a positive integer m,
and two open sets Ω1,Ω2 ⊆ R

n, we denote by Diffm+μ(Ω1,Ω2) the set of all Cm+μ-
diffeomorphisms from Ω1 onto Ω2. We also set Diff∞(Ω1,Ω2) = ∩m≥1Diffm(Ω1,Ω2).

We now use the so-called Hanzawa transformation to convert the original problem
(1.1) into a nonlinear problem on the fixed reference domain BR. For this purpose
pick a function φ ∈ C∞[0,∞) such that

(4.1) φ(t) = 0 for 0 ≤ t ≤ 1

2
, φ(1) = 1,

and

(4.2) 0 ≤ φ′(t) ≤ C0 for t ≥ 0, φ′′(t) ≥ 0 for 0 ≤ t ≤ 1.

By the mean value theorem we have C0 > 2. Given a number R > 0 and a function
η ∈ C(Sn−1) satisfying

(4.3) max
ω∈Sn−1

|η(ω)| < R

C0 − 1
,

we consider the mapping Ψη : R
n → R

n defined by

Ψη(x) = x− η(ω)φ

(
|x|

R + η(ω)

)
ω, x ∈ R

n,

where ω = x
|x| for x 	= 0. Using (4.1)–(4.3), one can easily verify that if η ∈

Cm+μ(Sn−1) for some m ∈ N and 0 ≤ μ < 1, then

Ψη ∈ Diffm+μ(Rn,Rn)
⋂

Diffm+μ(Ωη, BR).

As usual we denote by Ψ∗
η and (Ψη)∗ the pullback and push-forward operators,

respectively, induced by Ψη, i.e.,

Ψ∗
ηu = u ◦ Ψη for u ∈ C(BR), (Ψη)∗v = v ◦ Ψ−1

η for v ∈ C(Ωη).
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Clearly, if η ∈ Cm+μ(Sn−1) for some m ∈ N and 0 ≤ μ < 1, then

Ψ∗
η ∈ L(Cm+μ(BR), Cm+μ(Ωη)), (Ψη)∗ ∈ L(Cm+μ(Ωη), C

m+μ(BR)).

We denote by Ψ, Ψ∗, and Ψ∗, respectively, the three mappings

η �→ Ψη, η �→ Ψ∗
η, η �→ (Ψη)∗.

Since φ ∈ C∞[0,∞), we also have

Ψ ∈ C∞(Cm+μ(Sn−1) ∩M(R,C0),Diffm+μ(Ωη, BR)),

where

M(R,C0) =

{
η ∈ C(Sn−1) : max

ω∈Sn−1
|η(ω)| < R

C0 − 1

}
.

Similar mapping properties of Ψ∗ and Ψ∗ can easily be formulated.
Given η ∈ C2+μ(Sn−1) ∩ M(R,C0), we define operators L(η) : C2+μ(BR) →

Cμ(BR) and N(η) : C2+μ(BR) → C1+μ(∂BR) by

L(η) = (Ψη)∗ ◦ Δ ◦ Ψ∗
η, N(η) = (Ψη|∂Ωη

)∗ ◦
∂

∂ν
◦ Ψ∗

η,

where ∂/∂ν denotes the outward normal derivative operator on ∂Ωη, and Ψη|∂Ωη

denotes the restriction of Ψη on ∂Ωη. Clearly, if η ∈ Cm+μ(Sn−1) (m ≥ 2), then

L(η) ∈ L(Cm+μ(BR), Cm+μ−2(BR)), N(η) ∈ L(Cm+μ(BR), Cm+μ−1(∂BR)).

Moreover, the mappings η �→ L(η) and η �→ N(η) are smooth on Cm+μ(Sn−1) ∩
M(R,C0). In order to handle the right-hand sides of (1.1), we define the operators
F,G : Cm+μ(BR) → Cm+μ(BR) and Γ0 : Cm+μ(BR) → Cm+μ(∂BR) by

F (u) = f ◦ u, G(u) = g ◦ u, Γ0u = u|∂BR

for u ∈ Cm+μ(BR), as well as B : Cm+2+μ(Sn−1) → Cm+μ(∂BR), where

B(η)(Rω) = the mean curvature of the hypersurface r = R + η(ω)

at the point x = (R + η(ω))ω

for η ∈ Cm+2+μ(Sn−1). Again it is not difficult to verify that these mappings depend
smoothly on their argument.

With the above notations we can now transform the problem (1.1) into the fol-
lowing system: Find (u, v, η) ∈ C2+μ(BR) × C2+μ(BR) × C2+μ(Sn−1), such that

L(η)u = F (u),(4.4)

Γ0u = σ̄,(4.5)

L(η)v = −G(u),(4.6)

N(η)v = 0,(4.7)

Γ0v = γB(η).(4.8)

Fix m ∈ N with m ≥ 2 and 0 < μ < 1. Given η ∈ Cm+μ(Sn−1), it follows from
Theorems 9.5 and 12.8 in [10] that the problem (4.4), (4.5) has a unique solution
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u ∈ Cm+μ(BR), satisfying 0 < u(x) ≤ σ̄ for x ∈ BR. We define a mapping A1 :
Cm+μ(Sn−1) → Cm+μ(BR) by setting A1(η) = u.

Next, let us introduce the functional Φ on Cm+μ(Sn−1) by setting

(4.9) Φ(η) =

∫
BR

G(A1(η))(x)Jη(x)dx for η ∈ Cm+μ(Sn−1),

where Jη(x) is the determinant of the Jacobian of the transformation x �→ Ψ−1
η (x).

Substituting u = A1(η) into (4.6) and using the Fredholm property of (4.6) (4.7), we
see that Φ(η) = 0 is a necessary (and sufficient) condition for the solvability of problem
(4.6), (4.7). Later we shall see that Φ ∈ C∞(Cm+μ(Sn−1) ∩M(R,C0),R), and that
Φ′(0) 	= 0. Therefore, M := Φ−1(0) is a C∞ Banach submanifold of codimension 1
in a small neighborhood of the origin of Cm+μ(Sn−1). By elliptic Schauder theory,
given any η ∈ M, the problem (4.6), (4.7) has a solution v ∈ Cm+μ(BR), which is
unique up to a constant. Let us denote by v the particular solution which is zero
at the origin, and define a mapping A2 : M → Cm+μ(BR) by setting A2(η) = v.
Finally, we set A = Γ0 ◦A2. Then, clearly, A : M → Cm+μ(∂BR).

With the above notations, it is not difficult to verify that the problem (4.4)–(4.8)
reduces to the following problem: Find η ∈ Cm+μ(Sn−1) and c ∈ R such that

(4.10)

{
A(η) + c = γB(η),

Φ(η) = 0.

We summarize with the following lemma.
Lemma 4.1. The problem (1.1) is equivalent to the system of (4.10). More

precisely, if (σ, p,Ω), where σ ∈ Cm+μ(Ω), p ∈ Cm+μ(Ω), Ω = {x ∈ Rn : r <
η(ω), r = |x|, ω = x/|x|}, and η ∈ Cm+μ(Sn−1) is a solution of (1.1), then there
exists a unique real number c such that (η, c) is a solution of (4.10). Conversely, if
(η, c) ∈ Cm+μ(Sn−1) × R is a solution of (4.10), then there exists a unique pair of
functions (σ, p) ∈ Cm+μ(Ω) × Cm+μ(Ω), such that (σ, p,Ω), with Ω as above, is a
solution of (1.1).

Remark. Using the above equivalence and a standard bootstrapping argument,
one can easily show that if (σ, p,Ω) is a solution of (1.1)–(1.5), then η ∈ C∞(Sn−1)
and, consequently, also σ ∈ C∞(Ω), p ∈ C∞(Ω). Besides, if (σ, p,Ω) is a solution of
(1.1), then the value of c in (5.20) is clearly equal to p(0).

We now prove the following preliminary result.
Lemma 4.2. Let m ∈ N ∪ {∞} with m ≥ 2 and 0 < μ < 1 be given. Then we

have the following assertions:
(i) Φ ∈ C∞(Cm+μ(Sn−1)∩M(R,C0),R) with Φ′(0)1 < 0, where 1 represents the

function on S
n−1 taking identically the value 1.

(ii) There exists a neighborhood N of 0 in Cm+μ(Sn−1) such that M := Φ−1(0)∩N
is a C∞-Banach submanifold of codimension 1. Moreover, we have

(4.11) A ∈ C∞(M, Cm+μ(∂BR)).

Proof. We define a mapping

F : (Cm+μ(Sn−1) ∩M(R,C0)) × Cm+μ(BR) → Cm+μ−2(BR) × Cm+μ(∂BR)

by setting

F(η, u) := (L(η)u− F (u),Γ0u− σ̄).
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Clearly, F is smooth and the system (4.4), (4.5) is equivalent to F(η, u) = 0. Thus,
by the definition of A1, given any η ∈ Cm+μ(Sn−1) ∩ M(R,C0), this equation has
a unique solution u = A1(η). Consider the partial Fréchet derivative DuF(η, u) of
F(η, u) in u. An easy computation reveals that

DuF(η, u)v = (L(η)v − F ′(u)v,Γ0v) = (L(η)v − f ′(u)v,Γ0v) ∀v ∈ Cm+μ(BR).

Given any (η, u) ∈ (Cm+μ(Sn−1) ∩ M(R,C0)) × Cm+μ(BR), we have that L(η) is
a uniformly elliptic operator in divergence form without the zero order term and
f ′(u) ≥ 0. Hence standard elliptic theory implies that for any (w, z) ∈ Cm+μ−2(BR)×
Cm+μ(∂BR)), the elliptic boundary value problem L(η)v − f ′(u)v = w, Γ0v = z
has a unique solution v ∈ Cm+μ(BR). This means that the mapping DuF(η, u) :
Cm+μ(BR) → Cm+μ−2(BR) × Cm+μ(∂BR) is an isomorphism. It follows by the
Banach inverse mapping theorem that its inverse is also bounded. Thus, by the
implicit function theorem we conclude that A1 is smooth with

A′
1(η) = −(DuF(η,A1(η)))

−1 ◦DηF(η,A1(η)).

Since G ∈ C∞(Cm+μ(BR), Cm+μ(BR)) and since it is obvious that the mapping η �→
Jη belongs to C∞(Cm+μ(Sn−1)∩M(R,C0), C

m+μ−1(BR)), we immediately conclude
that Φ ∈ C∞(Cm+μ(Sn−1) ∩M(R,C0),R).

Next, we compute Φ′(0)1. The change of variables x �→ Ψη(x) in the integral on
the right-hand side of (4.9) shows that

Φ(η) =

∫
Ωη

g(ση(x))dx,

where ση denotes the solution of the boundary value problem

Δση = f(ση) in Ωη, ση = σ̄ on ∂Ωη.

In the case η = ε1, we simply denote σε1 by σε, so that Φ(ε1) =
∫
BR+ε

g(σε(x))dx. It

follows that

Φ′(0)1 =
d

dε
Φ(ε1)

∣∣∣
ε=0

= g(σ̄)
d

dε
|BR+ε|

∣∣∣
ε=0

+

∫
BR

g′(σ0(|x|))
d

dε
σε(x)

∣∣∣
ε=0

dx

= cnR
n−1g(σ̄) + cn

∫ R

0

g′(σ0(r))v0(r)r
n−1dr,

where cn denotes the surface measure of S
n−1, and where v0 is the solution of the

boundary value problem⎧⎨
⎩ v′′0 (r) +

n− 1

r
v′0(r) = f ′(σ0(r))v0(r) for 0 < r < R,

v′0(0) = 0, v0(R) = −σ′
0(R).

Using the maximum principle, one can easily show that v0(r) < −σ′(r) for 0 < r < R.
Hence

Φ′(0)1 < cnR
n−1g(σ̄) − cn

∫ R

0

g′(σ0(r))σ
′
0(r)r

n−1dr

=
cn
R

∫ R

0

g′(σ0(r))σ
′
0(r)r

ndr − cn

∫ R

0

g′(σ0(r))σ
′
0(r)r

n−1dr < 0.
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Here we use the fact that

g(σ̄) − 1

Rn

∫ R

0

g′(σ0(r))σ
′
0(r)r

ndr =
n

R
p′0(R) = 0.

This proves assertion (i).
(ii) By continuity of Φ′, we infer that there exists a neighborhood N of 0 in

Cm+μ(Sn−1) such that Φ′(η)1 	= 0 for all η ∈ N . It follows that M = Φ−1(0) ∩ N is
a C∞ Banach submanifold of codimension 1 in Cm+μ(Sn−1). Based on the implicit
function theorem one sees that, similarly as for A1, that A2 is smooth. Hence A =
Γ0 ◦A2 ∈ C∞(M, Cm+μ(∂BR)). This completes the proof.

Recall that D1(γ) = 0 for all γ > 0; see Remark 3.1. This implies that the
operator (η, c) �→ A′(0)η + c − γB′(0)η, (η, c) ∈ Cm+μ(Sn+1) × R, is not injective
for any γ > 0. For this reason we shall restrict the operators A, B on the subspace
Cm+μ

2 (Sn−1) of Cm+μ(Sn+1), which is defined as follows: We first let

H1(S
n−1) = the span of all spherical harmonics of degree 1,

and then set

Cm+μ
2 (Sn−1) = {η ∈ Cm+μ(Sn−1) : η is orthogonal to H1(S

n−1) in L2(Sn−1)}.

It can be easily shown that

Cm+μ(Sn−1) = H1(S
n−1) ⊕ Cm+μ

2 (Sn−1).

Given a point x0 ∈ R, we denote by Sx0
the translation on R

n induced by x0, i.e.,
Sx0(x) = x + x0 for x ∈ R

n. Further, let r0 = |x0|, ω0 = x0/|x0|, and assume that
r0 ∈ (0, R/4). Given η ∈ C(Sn−1) such that

||η||L∞(Sn−1) < min

{
R

C0 − 1
,
R

4

}
,

consider the image of the hypersurface r = R+η(ω) under the translation Sx0 . Clearly,
this hypersurface has the equation r = R + η̃(ω), where η̃ is uniquely determined by
η and x0. We use the notation

η̃ = S∗
x0

(η).

An explicit expression of S∗
x0

is given by

η̃(ω′) =
√

[R + η(ω)]2 + r2
0 + 2r0[R + η(ω)]ω · ω0 −R,

where ω′ ∈ S
n−1 and ω ∈ S

n−1 are connected by the relation

ω′ =
[R + η(ω)]ω + r0ω0√

[R + η(ω)]2 + r2
0 + 2r0[R + η(ω)]ω · ω0

.

Now, since the problem (1.1) is invariant under translations, we see that if η is a
solution of (4.10), then for any x ∈ R

n with |x| sufficiently small, η̃ = S∗
x(η) is also a
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solution of (4.10). This shows that if we denote by Bε(0) the ball in R
n with radius

ε, and assume that η is a solution of (5.20), then for ε > 0 small enough we have

(4.12)

{
A(S∗

x(η)) + c = γB(S∗
x(η))

Φ(S∗
x(η)) = 0

for any x ∈ Bε(0).

Hence, for any solution η of (4.10) which lies in Cm+μ
2 (Sn−1), we get a new solution

of (4.10) by applying S∗
x to η for any x ∈ Bε(0). The following lemma shows that the

converse is also true, i.e., any small solution of (4.10) can be obtained by a suitable
translation of a solution belonging to Cm+μ

2 (Sn−1).
Lemma 4.3. For ε > 0 sufficiently small, let Bε be the ball in Cm+μ(Sn−1) with

radius ε. Then for any η ∈ Bε, there exists a unique ξ ∈ Cm+μ
2 (Sn−1) and a unique

x ∈ Bε such that S∗
x(ξ) = η.

Proof. We introduce a mapping F : Bε×Bε → R
n by defining the jth component

of F (η, x) to be

Fj(η, x) = nc−1
n

∫
Sn−1

S∗
−x(η)(ω)ωjdω, j = 1, 2, . . . , n,

where cn denotes the surface measure of S
n−1, and dω represents the volume element

on S
n−1. It can be easily shown that F ∈ Cm+μ(Bε × Bε,R

n). Besides, it is clear
that F (0, 0) = 0, and a simple calculation shows that DxF (0, 0) = −id. Hence,
by the implicit function theorem, we infer that there exist a small neighborhood O
of the origin of Cm+μ(Sn−1) and a Cm-mapping ϕ : O → Bε such that ϕ(0) = 0,
F (η, ϕ(η)) = 0 for all η ∈ O, and x = ϕ(η) is the unique solution of the equation
F (η, x) = 0 in Bε for every fixed η ∈ Bε. Let ξ = S∗

−x(η) = S∗
−ϕ(η)(η). Then,

clearly, ξ ∈ Cm+μ(Sn−1), S∗
x(ξ) = η, and the condition F (η, x) = 0 implies that ξ is

orthogonal to all first order spherical harmonics in L2(Sn−1), so that ξ ∈ Cm+μ
2 (Sn−1),

as desired.
Based on Lemma 4.3, we may assume without restriction that

(4.13) η ∈ Cm+μ
2 (Sn−1).

Let R and p0(r) be as in section 2. We know that R, p0 are independent of γ.
By the definition of A, B it is clear that

(4.14) A(0) = p0(R), B(0) =
1

R
.

We now set

cγ =
γ

R
− p0(R) for γ > 0,

and remark that given any γ > 0, the pair (η, c) = (0, cγ) is a solution of (4.10).
Lemma 4.4. Let γ0 > 0. If γ0 	= γk, k = 2, 3, . . . , then there exists ε > 0 such

that for any γ ∈ (γ0 − ε, γ0 + ε) the pair (0, cγ) is the only solution of (4.10), i.e., γ0

is not a bifurcation point of (4.10).
Proof. We set

X = (M∩ Cm+μ
2 (Sn−1)) × R, Y = Cm−2+μ(Sn−1),
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and define a mapping F : X × R → Y by

F (ζ, γ) = A(η) + c− γB(η), ζ = (η, c) ∈ X, γ ∈ R.

Here we regard X as a smooth Banach submanifold of Cm+μ
2 (Sn−1) × R. Clearly,

F ∈ C∞(X,Y ) and (4.10) is equivalent to

(4.15) F (ζ, γ) = 0.

We already know that given γ > 0, this equation has the solution ζ = ζγ ≡ (0, cγ).
Thus, by the Banach inverse mapping theorem and the implicit function theorem,
it suffices to prove that for any γ 	= γk, k = 2, 3, . . . , the operator DζF (ζγ , γ) :
Tζγ (X) → T0(Y ) is an isomorphism. Here Tζγ (X) denotes the tangent space of X at
ζγ . Observe that

Tζγ (X) = T0(M∩ Cm+μ
2 (Sn−1)) × R,

and, given ζ = (η, c) ∈ Tζγ (X), we have

DζF (ζγ , γ)ζ = A′(0)η + c− γB′(0)η.

Hence, for any ξ ∈ T0(Y ) = Y , the equation DζF (ζγ , γ)ζ = ξ is equivalent to the
system

(4.16)

{
A′(0)η + c− γB′(0)η = ξ,

Φ′(0)η = 0, η ∈ Cm+μ
2 (Sn−1).

In particular, DζF (ζγ , γ)ζ = 0 is equivalent to the system

(4.17)

{
A′(0)η + c− γB′(0)η = 0,

Φ′(0)η = 0, η ∈ Cm+μ
2 (Sn−1).

Since (4.17) is the linearization of (4.10) with the constraint η ∈ Cm+μ
2 (Sn−1), and

(4.10) is equivalent to (1.1), whose linearization is (3.1)–(3.5), we see that (4.17) is
equivalent to (3.1)–(3.5) subject to the constraint η ∈ Cm+μ

2 (Sn−1). By Theorem
3.3, we know that if γ 	= γk, k = 2, 3, . . . , then (3.1)–(3.5) does not have nontrivial
solutions in Cm+μ

2 (Sn−1). Hence, if γ 	= γk, k = 1, 2, . . . , then the pair (0, cγ) is the
only solution to (4.17), i.e., DζF (ζγ , γ) is injective.

Next, by assertion (i) of Lemma 4.2 we see that the curve in Cm+μ(Sn−1) starting
from 0 ∈ M with tangent 1: t �→ t1 is transverse to M. Since M is of codimension
1 in Cm+μ(Sn−1), it follows that Cm+μ(Sn−1) = T0(M) ⊕ R1, and the mapping
ζ = (η, c) → η+c1 is an isomorphism from Tζγ (M×R) = T0(M)×R to Cm+μ(Sn−1).
For η ∈ Cm+μ(Sn−1), let η = η+c1, where η ∈ T0(M) and c ∈ R. The above argument
implies that (η, c) is uniquely determined by η. Clearly,

B′(0)η = B′(0)η − c

R2
.

We define a bounded linear operator Lγ : Cm+μ(Sn−1) → Cm+μ(Sn−1) by

Lγη = A′(0)η + c− γc

R2
.

Then (4.16) is equivalent to

Lγη − γB′(0)η = ξ, with η ∈ Cm+μ
2 (Sn−1).
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Note that B′(0) is a linear second order elliptic differential operator on S
n−1. Hence

the well-known Fredholm theory for elliptic operators implies that, given any ξ ∈
Cm−2+μ(Sn−1), the solvability of the above equation is equivalent to the uniqueness
of solutions of the corresponding homogeneous equation. Thus, by the uniqueness
assertion we have just proved, it follows that if γ 	= γk, then for any given ξ ∈
Cm−2+μ(Sn−1) this equation has a solution η ∈ Cm+μ

2 (Sn−1). Hence, (4.16) is solvable
for any ξ ∈ Cm−2+μ(Sn−1), implying that the operator DζF (ζγ , γ) is surjective. This
completes the proof.

By combining Lemmas 4.1 and 4.4 we get the following theorem.
Theorem 4.5. If γ 	= γk, k = 2, 3, . . . , then γ is not a bifurcation point of the

problem (1.1).

5. Bifurcation at γk. In this section we prove that γk is a bifurcation point,
provided k ≥ k∗; cf. Lemma 3.2. We first tackle the case n = 2 in some detail and
then indicate how to treat the general case n ≥ 3.

5.1. The case n = 2. Throughout this subsection we use (r, θ) to indicate
polar coordinates in R

2. We shall also frequently identify a 2π-periodic function η
on R with the function ψ∗(η) = η ◦ ψ on S

1, where ψ : S
1 → R, ψ(cos θ, sin θ) = θ

for θ ∈ [0, 2π). The Banach space of all 2π-periodic functions on R of class Cm+μ is
denoted by Cm+μ

2π . Given a positive integer l, we also introduce the space

C∞
2π,l =

{
η(θ) = a0 +

∞∑
k=1

[ak cos(klθ) + bk sin(klθ)] : a0, ak, bk ∈ R, and

∀N > 0 ∃CN ≥ 0 : |ak| + |bk| ≤ CN (1 + k)−N , k = 1, 2, · · ·
}
.

It is well known that C∞
2π = C∞

2π,l=1. Furthermore, by writing C∞
2π,l,0 and C∞

2π,l,1 for
the spaces obtained from C∞

2π,l by letting bk = 0 and ak = 0, respectively, it is clear
that C∞

2π,l, C
∞
2π,l,0, C

∞
2π,l,1 are closed subspaces of C∞

2π and that

C∞
2π,l = C∞

2π,l,0 ⊕ C∞
2π,l,1.

Further, given integers m ≥ 0, l ≥ 1, and a number 0 ≤ μ < 1, let

Cm+μ
2π,l = the closure of C∞

2π,l in Cm+μ
2π .

The spaces Cm+μ
2π,l,i for i = 0, 1 are defined similarly.

We now collect some properties of the above spaces, which we need in what
follows.

Lemma 5.1. The following assertions hold:
(1) ∂

∂θ ∈ L(Cm+μ
2π,l,0, C

m+μ−1
2π,l,1 ) ∩ L(Cm+μ

2π,l,1, C
m+μ−1
2π,l,0 ).

(2) ∂2

∂θ2 ∈ L(Cm+μ
2π,l,0, C

m+μ−2
2π,l,0 ) ∩ L(Cm+μ

2π,l,1, C
m+μ−2
2π,l,1 ).

(3) If η1, η2 ∈ Cm+μ
2π,l,0, then η1η2 ∈ Cm+μ

2π,l,0; if ζ1, ζ2 ∈ Cm+μ
2π,l,1, then ζ1ζ2 ∈ Cm+μ

2π,l,0;

if η ∈ Cm+μ
2π,l,0 and ζ ∈ Cm+μ

2π,l,1, then ηζ ∈ Cm+μ
2π,l,1.

(4) If f ∈ C∞(R), then f ◦ η ∈ Cm+μ
2π,l,0 for η ∈ Cm+μ

2π,l,0, and f ◦ η ∈ Cm+μ
2π,l for

η ∈ Cm+μ
2π,l .

Proof. The first three assertions are immediate. Assertion (4) follows from the
Stone–Weierstrass theorem and (3).

In the following, we write BR for the closed ball in R
2 centered at 0 with radius R.

We often regard a given function u defined on BR as a mapping from [0, R] to the set
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of 2π-periodic functions on R by identifying u with the mapping r �→ u(r cos θ, r sin θ).
We further set

Cm+μ
2π,l (BR) = the closure of C∞(BR) ∩ C∞([0, R], C∞

2π,l(R)) in Cm+μ(BR).

The spaces Cm+μ
2π,l,i(BR) for i = 0, 1 are defined similarly.

Given η ∈ Cm+μ
2π , the mean curvature of the surface r = R + η(θ) is given by

κ =
2[η′(θ)]2 − [R + η(θ)]η′′(θ) + [R + η(θ)]2

{[R + η(θ)]2 + [η′(θ)]2} 3
2

,

and the outward normal derivative can be expressed as

∂

∂ν
=

R + η(θ)

{[R + η(θ)]2 + [η′(θ)]2} 1
2

{
∂

∂r
− η′(θ)

[R + η(θ)]2
∂

∂θ

}
.

Finally, shrinking M we may assume that max |η| ≤ R/(C0 −1) for all η ∈ M. Using
these notations, we prove the following properties of the operators A and B appearing
in (4.10).

Lemma 5.2. For any integers m ≥ 2, l ≥ 1, and any 0 ≤ μ < 1 we have

A ∈ C∞(Cm+μ
2π,l,0 ∩M, Cm+μ

2π,l,0) ∩ C∞(Cm+μ
2π,l ∩M, Cm+μ

2π,l ),

B ∈ C∞(Cm+μ
2π,l,0 ∩M, Cm+μ−2

2π,l,0 ) ∩ C∞(Cm+μ
2π,l ∩M, Cm+μ−2

2π,l ).

Proof. The assertion for B is an immediate consequence of Lemma 5.1. In what
follows we give the proof of the assertion for A.

We first prove that A maps Cm+μ
2π,l,0 ∩ M into Cm+μ

2π,l,0. Given η ∈ Cm+μ
2π,l,0 ∩ M,

there exists a sequence {ηj}∞j=1 ⊆ C∞
2π,l,0 ∩ M such that ηj → η in Cm+μ

2π . By the

continuity of A : M → Cm+μ
2π , we have A(ηj) → A(η) in Cm+μ

2π . If we can prove
that A(ηj) ∈ C∞

2π,l,0, then A(η) ∈ Cm+μ
2π,l,0 by definition of Cm+μ

2π,l,0. Hence it suffices
to prove that if η ∈ C∞

2π,l,0 ∩ M, then A(η) ∈ C∞
2π,l,0. Let η ∈ C∞

2π,l,0 ∩ M and set
u = A1(η), i.e., u is the unique solution of (4.4) and (4.5). Since η ∈ C∞

2π, we have that
u ∈ C∞(BR) ⊆ C∞([0, R], C∞

2π(R)). Consequently, u(r, θ) has the Fourier expansion

u(r, θ) = a0(r) +

∞∑
k=1

[ak(r) cos(kθ) + bk(r) sin(kθ)],

with coefficients satisfying the following conditions: a0, ak, bk ∈ C∞[0, R] (k ≥ 1),
and for any integer m ≥ 0 and any N > 0 there exists a constant Cm,N > 0 such that

|a(m)
k (r)| + |b(m)

k (r)| ≤ Cm,N (1 + k)−N , r ∈ [0, R], k = 1, 2, . . . .

We now prove that all bk’s are zero, and if k is not proportional to l, then ak is
also zero. To this end we let H1

2π be the usual H1(R) Sobolev spaces of 2π-periodic
functions on R. We also write H1

2π,l,0 and H1
2π,l,0, respectively, for the closed subspaces

of H1
2π consisting of all functions having the Fourier expansions

ζ(θ) = a0 +

∞∑
k=1

akl cos(klθ) and ζ(θ) =

∞∑
k=1

bkl sin(klθ),
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respectively, and let H1
2π,l = H1

2π,l,0 ⊕H1
2π,l,1. Then, clearly,

H1
2π = H1

2π,l,0 ⊕H1
2π,l,1 ⊕ (H1

2π,l)
⊥.

Next, we introduce an analogous splitting of the usual Sobolev space H1(BR). Let
H1

l,0(BR) and H1
l,1(BR) be the closed subspaces of H1(BR) defined by

H1
l,0(BR) =

{
w ∈ H1(BR) : w(r, θ) = a0(r) +

∞∑
k=1

akl(r) cos(klθ)

}

and

H1
l,1(BR) =

{
w ∈ H1(BR) : w(r, θ) =

∞∑
k=1

bkl(r) cos(klθ)

}
,

respectively, and set H1
l (BR) = H1

l,0(BR) ⊕H1
l,1(BR). Then, clearly,

H1(BR) = H1
l,0(BR) ⊕H1

l,1(BR) ⊕ (H1
l (BR))⊥.

Given η ∈ C∞
2π,l,0 ∩M, let Ψη be the Hanzawa transformation introduced in section

4, and define

Λη = (Ψη)∗ ◦ ∇ ◦ Ψ∗
η.

Further, let f1 be an antiderivative of f , i.e., f ′
1 = f . Without loss of generality, we

may assume that f is asymptotically linear at infinity, because the solution of (4.4)
and (4.5) satisfies 0 < u ≤ σ̄, so that changing values of f in the interval (σ̄,∞)
without changing its monotonicity and smoothness does not change the solution. We
now consider the functional I on H1

l,0(BR) ∩H1
0 (BR) defined by

I(w) =
1

2

∫
BR

|Ληw(y)|2Jη(y)dy +

∫
BR

f1(σ̄ + w(y))Jη(y)dy.

Using a standard argument, we can easily prove that I has a local minimum in
H1

l,0(BR) ∩ H1
0 (BR), which we denote by u0. Since both η and f are smooth, we

actually have u0 ∈ C∞(BR) ∩ C∞([0, R], C∞
2π,l,0). In what follows we prove that

u = σ̄ + u0.
First, since u0 is the minimum point of I, we have

(5.1) 0 = I ′(u0)w =

∫
BR

Ληu0(y) · Ληw(y)Jη(y)dy +

∫
BR

f(σ̄ + u0(y))w(y)Jη(y)dy

for any w ∈ H1
l,0(BR) ∩H1

0 (BR). Next, we set ρ = |y| and write r = r(ρ, η) for the
inverse function of

ρ = r − ηφ

(
r

R + η

)

for any fixed |η| < R/(C0 − 1). Then a simple computation shows that

(5.2) Jη(y) =
r(ρ, η(θ))

ρ

∂r(ρ, η(θ))

∂ρ
.
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This expression, Lemma 5.1, and η ∈ C∞
2π,l,0 ∩M(R,C0) show that Jη ∈ C∞(BR) ∩

C∞([0, R], C∞
2π,l,0). Note that u0 ∈ C∞(BR)∩C∞([0, R], C∞

2π,l,0) and Lemma 5.1 also

imply that f(σ̄ + u0(y)) ∈ C∞(BR) ∩ C∞([0, R], C∞
2π,l,0). Hence we conclude that

f(σ̄ + u0(y))Jη(y) ∈ C∞(BR) ∩ C∞([0, R], C∞
2π,l,0) ⊆ H1

l,0(BR). Therefore, given any

v ∈ H1
l,1(BR) ⊕ (H1

l (BR))⊥ = (H1
l,0(BR))⊥, we have

(5.3)

∫
BR

f(σ̄ + u0(y))v(y)Jη(y)dy = 0.

Finally, denoting

a(ρ, η) = 1 − η

R + η
φ′
( r

R + η

)
and b(ρ, η) =

η

(R + η)2
φ′
( r

R + η

)
− φ

( r

R + η

)
,

a simple computation shows that

(5.4)

Ληu0(y) · Ληv(y) =

[
a2(ρ, η) +

b2(ρ, η)

r2(ρ, η)
(η′)2

]
∂u0

∂ρ

∂v

∂ρ

+
b(ρ, η)

r2(ρ, η)

[
∂u0

∂ρ

∂v

∂θ
η′ +

∂v

∂ρ

∂u0

∂θ
η′
]

+
1

r2(ρ, η)

∂u0

∂θ

∂v

∂θ
.

From (5.2), (5.4), and a similar argument as above, we can easily deduce that

(5.5)

∫
BR

Ληu0(y) · Ληv(y)Jη(y)dy = 0

for any v ∈ H1
l,1(BR) ⊕ (H1

l (BR))⊥ = (H1
l,0(BR))⊥. Invoking (5.1), (5.3), and (5.5),

we conclude that∫
BR

Ληu0(y) · Ληv(y)Jη(y)dy +

∫
BR

f(σ̄ + u0(y))v(y)Jη(y)dy = 0

for any v ∈ H1
0 (BR). This shows that if we use the same formula to redefine I

as a functional on the larger space H1
0 (BR), then u0 is also a critical point of this

functional; see (5.1). But it is well known that the Euler–Lagrange equations of the
variational problem of this redefined functional I are given by (4.4) and (4.5). Hence,
σ̄ + u0 is a solution of (4.4) and (4.5). By uniqueness, we conclude that u = σ̄ + u0,
so that u ∈ C∞(BR) ∩ C∞([0, R], C∞

2π,l,0).
Now, substituting u = A1(η) into (4.6) and using a similar argument, we deduce

that v = A2(η) ∈ C∞(BR) ∩ C∞([0, R], C∞
2π,l,0). This readily implies that A(η) ∈

C∞
2π,l,0, as desired.

A similar argument shows that A also maps Cm+μ
2π,l ∩M into Cm+μ

2π,l , so that the
proof is completed.

Let Ml,0 = Cm+μ
2π,l,0∩M. It is not difficult to see that Ml,0 is a smooth submanifold

of Cm+μ
2π,l,0 of codimension 1. We denote by Al,0 and Bl,0 the restrictions of A and B

to Ml,0 and study the abstract problem

(5.6) Al,0(η) + c̃ = γBl,0(η).

Clearly, (5.6) is not equivalent to (4.10), but any solution of (5.6) is of course a solution
of (4.10).
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Given ε > 0, let

Nl,0,ε = {η ∈ Cm+μ
2π,l,0 : η = η + c, Φl,0(η) = 0, ||η||Cm+μ

2π,l,0(R) < ε, c ∈ R, |c| < ε}.

Then it is not difficult to see that the mapping (η, c) �→ η+ c is a C∞-diffeomorphism
from Ml,0 × (−ε, ε) onto Nl,0,ε.

We define mappings A(·, γ) : Nl,0,ε → Cm+μ
2π,l,0 and B : Nl,0,ε → Cm+μ−2

2π,l,0 by

A(η, γ) = Al,0(η) + c + cγ − cγ

R2
, B(η) = Bl,0(η) −

c

R2
,

where cγ is as in section 4 and η̄ = η + c ∈ Nl,0,ε. These mappings allow a reduction
of the system (5.6) to

(5.7) A(η, γ) = γB(η),

with c̃ = c + cγ . Observe that

B
′
(0)η = B′

l,0(0)η − c

R2
= − 1

R2
(η′′ + η) − c

R2
= − 1

R2
(η′′ + η).

Since l ≥ 2 the operator η → η′′ +η is an isomorphism mapping Cm+μ
2π,l,0 onto Cm−2+μ

2π,l,0 ,

so that B
′
(0) is also is an isomorphism as well. We now define the mapping F :

Cm−2+μ
2π,l,0 × (0,∞) → Cm−2+μ

2π,l,0 by

F (ξ, γ) = A(B
′
(0)−1ξ, γ) − γB(B

′
(0)−1ξ), ξ ∈ Cm−2+μ

2π,l,0 , γ > 0.

Setting η = B
′
(0)−1ξ, (5.7) is equivalent to

(5.8) F (ξ, γ) = 0.

Clearly, F ∈ C∞(Cm−2+μ
2π,l,0 × (0,∞), Cm−2+μ

2π,l,0 ) and

F (0, γ) = 0, DξF (0, γ)ξ = K(γ)ξ − γξ,

where

K(γ)ξ = DηA(0, γ)B
′
(0)−1ξ, ξ ∈ Cm−2+μ

2π,l,0 .

Obviously, the operator K(γ) : Cm−2+μ
2π,l,0 → Cm−2+μ

2π,l,0 is compact, so that DξF (0, γ) is

a Fredholm operator of index zero on Cm−2+μ
2π,l,0 . We claim that

(5.9) dim KerDξF (0, γ) = 1 if γ = γl.

Indeed, using the variable transformation ξ = B
′
(0)η, we see that DξF (0, γ)ξ = 0

is equivalent to DηA(0, γ)η = γB
′
(0)η. Letting η = η + c as before, this equation is

equivalent to

(5.10) A′
l,0(0)η + c = γB′

l,0(0)η.

It follows from the discussion in section 3, in particular from Lemma 3.2, that, if
γ = γl with l ≥ k∗, then (5.10) has nontrivial solutions, given by η = C(cos(lθ) + cl),
with C ∈ R and where cl is a real constant uniquely determined by l. This proves
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(5.9). Moreover, letting ξk := B
′
(0)(cos(kθ) + ck) for k ∈ N, the deduction in section

3 also yields

DξF (0, γl)ξk =
(γk − γl)

R2
k2 cos(kθ), k ∈ N.

Furthermore, a direct calculation shows that

DγDξF (0, γl)ξl =
γl
R2

(1 − l2) cos(lθ).

Hence we conclude that

R ·DγDξF (0, γl)ξl ⊕ imDξF (0, γl) = Cm−2+μ
2π,l,0 .

This observation implies the nondegeneration condition in the Crandall–Rabinowitz
theorem on bifurcation from simple eigenvalues; cf. [4]. From the latter result we
conclude that (ξ, γ) = (0, γl) is a bifurcation point for (5.8). The corresponding
bifurcation branch of solutions is of the form

ξ =
ε(l2 − 1)

R2
cos(lθ) + O(ε2), γ = γl + O(|ε|)

for a small real parameter ε. Returning to the original problem, we get the result
stated in Theorem 1.1 in the case n = 2.

5.2. The case n ≥ 3. Let us briefly indicate how the general n-dimensional
case can be treated. In polar coordinates the Laplacian Δ on R

n is given by

Δu =
1

rn−1

∂

∂r

(
rn−1 ∂u

∂r

)
+

1

r2
Δωu,

where Δω represents the Laplace–Beltrami operator on S
n−1. In the following, we

identify a point ω=(ω1, ω2, . . . , ωn−1, ωn) on S
n−1 with

(θ1, θ2, . . . , θn−2, θn−1) ∈ [0, π] × [0, π] × · · · [0, π] × [0, 2π)

via the spherical coordinates⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ω1 = cos θ1,
ω2 = sin θ1 cos θ2,
...
ωn−1 = sin θ1 sin θ2 · · · sin θn−2 cos θn−1,
ωn = sin θ1 sin θ2 · · · sin θn−2 sin θn−1.

Let ξ = (ξ1, ξ2, . . . , ξn−1) be the point on S
n−2 related to ω, i.e.,

ω2 = ξ1 sin θ1, ω3 = ξ2 sin θ1, . . . , ωn = ξn−1 sin θ1,

and denote by Δξ the Laplace–Beltrami operator on S
n−2. Then

(5.11) Δω =
1

sinn−2 θ1

∂

∂θ1

(
sinn−2 θ1

∂u

∂θ1

)
+

1

sin2 θ1

Δξu.

To reduce the notation we omit the subscript of θ1 and simply write θ.
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Given a closed surface in the form r = R + η(θ), where R is a positive constant
and η ∈ C2[0, π] with η′(0) = η′(π) = 0, the mean curvature of this surface is given
by

κ =
1

n−1

{
(n−1)[R + η(θ)]2 + n[η′(θ)]2 − [R + η(θ)]η′′(θ)

{[R + η(θ)]2 + [η′(θ)]2} 3
2

− (n−2)η′(θ) cot θ

[R + η(θ)]{[R + η(θ)]2 + [η′(θ)]2} 1
2

}
.

Now let Zn
k (ω) denote the zonal spherical harmonics of degree k with pole e =

(1, 0, . . . , 0), i.e.,

Zn
k (ω) = cnkC

n
2 −1

k (ω · e) = cnkC
n
2 −1

k (cos θ),

where Cλ
k represents the ultraspherical (or Gegenbauer) polynomial of degree k and

index λ, i.e.,

Cλ
0 (t) = 1, Cλ

k (t) =
1

Γ(λ)

[
k
2

]∑
j=0

(−1)j
Γ(λ+k−j)

j!(k−2j)!
(2t)k−2j (k ≥ 1),

and cnk is the normalization factor. Using (6.18) and

(1 − t2)(Cλ
k (t))′′ − (n− 1)t(Cλ

k (t))′ + k(k + n− 2)Cλ
k (t) = 0,

one can easily verify that Z
(n)
k (θ) satisfies

ΔωZ
n
k (ω) = −k(k + n− 2)Zn

k (ω).

We next introduce

Pzon(Sn−1) = the span of {Zn
k (ω), k = 0, 1, 2, . . . },

and for any nonnegative integer m and any 0 ≤ μ < 1 we define

Cm+μ
zon (Sn−1) = the closure of Pzon(Sn−1) in Cm+μ(Sn−1).

A significant difference between the cases n ≥ 3 and n = 2 is that in the latter
the closure of the linear space spanned by all Z2

kl(θ) = cos(klθ), k = 0, 1, 2, . . . , in
Cm+μ(S1) is an algebra for any l ≥ 2. In the case n ≥ 3 this is not true for l ≥ 3.
However, we have the following result. We omit the details of the proof.

Lemma 5.3. The following assertions hold:

(1) If η ∈ Cm+μ
zon (Sn−1), then ∂2η

∂θ2 ∈ Cm−2+μ
zon (Sn−1) for m ≥ 2.

(2) If η ∈ Cm+μ
zon (Sn−1), then ∂η

∂θ cot θ ∈ Cm−2+μ
zon (Sn−1) for m ≥ 2.

(3) If η1, η2 ∈ Cm+μ
zon (Sn−1), then η1η2 ∈ Cm+μ

zon (Sn−1).
(4) If η1, η2 ∈ Cm+μ

zon (Sn−1), then ∂η1

∂θ
∂η2

∂θ ∈ Cm−1+μ
zon (Sn−1) for m ≥ 1.

(5) If η ∈ Cm+μ
zon (Sn−1), then f ◦ η ∈ Cm+μ

zon (Sn−1) for any f ∈ C∞(R).
Based on Lemma 5.3 one can show the following analogue to Lemma 5.2.
Lemma 5.4. Let A, B be the operators defined in section 4. For any integer

m ≥ 2 and any 0 ≤ μ < 1, we have the following assertions:

A ∈ C∞(Cm+μ
zon (Sn−1) ∩M, Cm+μ

zon (Sn−1)),
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B ∈ C∞(Cm+μ
zon (Sn−1) ∩M(R,C0), C

m+μ−2
zon (Sn−1)).

Due to Lemma 5.4, we can now slightly modify the deduction in section 5.1 to
prove that every γk with k ≥ k∗ is a bifurcation point. Indeed, in the present case we
have to replace the space Cm+μ

2π,l,0 by the space Cm+μ
zon (Sn−1). Since for every k ≥ k∗ the

kernel in Cm+μ
zon (Sn−1) ∩ Cm+μ

2 (Sn−1) of the operator (η, c) �→ A′(0)η + c− γkB
′(0)η

is given by R · (cos(kθ), ck), we get the result after a Lyapunov–Schmidt reduction.
We omit the details.

Acknowledgments. We are grateful to the anonymous referees for helpful sug-
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Abstract. In this work we present the justification of the formally derived homogenized prob-
lem for the quasi-static initial boundary value problem with internal variables, which models the
deformation behavior of viscoplastic materials with a periodic microstructure.
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1. Introduction and statement of results. During the last few decades, the
rigorous mathematical investigation of homogenization has brought appreciable suc-
cess in determining the macroscopic behavior from the knowledge of the microstruc-
ture in many problems from different sciences. Among them are problems from the
linear and nonlinear theory of elasticity, linear viscoelasticity and electrodynamics,
hydrodynamics, and porous media; see, for example, [5], [7], [9], [10], [19], [22], [23],
[24], [25], [28], [29], [31]. The only rigorous results of homogenization related to prob-
lems from the theory of plasticity or viscoplasticity known to the author are [4] and
[17]. This is in contrast to the importance of homogenization in solid mechanics. This
circumstance motivated the further study of these problems.

In this work I deal with the homogenization of the initial boundary value problem
describing the deformation behavior of inelastic materials with a periodic microstruc-
ture, in particular for plastic and viscoplastic materials. The formulation of the
problem is based on the assumption that only small strains occur: Let Ω be an open
bounded set, the set of material points of the body, with C1-boundary ∂Ω. Te denotes
a positive number (time of existence) and for 0 ≤ t ≤ Te

Ωt = Ω × (0, t).

Let S3 denote the set of symmetric 3×3 matrices, and let u(x, t) ∈ R
3 be the unknown

displacement of the material point x at time t; T (x, t) ∈ S3 is the unknown Cauchy
stress tensor, and z(x, t) ∈ R

N denotes the unknown vector of internal variables. The
model equations of the problem (a microscopic problem) are

−divxT (x, t) = b(x, t),(1)

T (x, t) = D
[
x

η

]
(ε(∇xu(x, t)) −Bz(x, t)),(2)

∂

∂t
z(x, t) ∈ g

(
x

η
,−∇zψ

(
x

η
, ε(∇xu(x, t)), z(x, t)

))
(3)

= g

(
x

η
,BTT (x, t) − L

[
x

η

]
z(x, t)

)
,
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which must hold for x ∈ Ω and t ∈ [0,∞). The initial value for z(x, t) is taken in the
form

z(x, 0) = z(0)

(
x,

x

η

)
,(4)

which must hold for x ∈ Ω. We consider the Dirichlet boundary condition

u(x, t) = γ(x, t),(5)

which must be satisfied for (x, t) ∈ ∂Ω × [0,∞).
Here

ε(∇xu(x, t)) =
1

2
(∇xu(x, t) + (∇xu(x, t))T ) ∈ S3

is the strain tensor, and B : R
N → S3 is a linear mapping, which assigns to the vector

z(x, t) the plastic strain tensor εp(x, t) = Bz(x, t). For every y ∈ R
3 we denote by

D[y] : S3 → S3 a linear, symmetric, positive definite mapping, the elasticity tensor.
The mapping y → D[y] is assumed to be measurable and periodic with a periodicity
cell Y ⊂ R

3. Suppose that there exist two positive constants 0 < α ≤ β satisfying

α|ξ|2 ≤ Dijkl[y]ξklξij ≤ β|ξ|2 for any ξ ∈ S3.

The function b : Ω × [0,∞) → R
3 is the volume force, and z(0) : Ω × R

3 → R
N is the

initial value of the vector of internal variables, periodic in y with the same periodicity
cell Y . The positive semidefinite quadratic form

ψ(y, ε, z) =
1

2
D[y](ε−Bz) · (ε−Bz) +

1

2
(L[y]z) · z(6)

represents the free energy (see [1, Appendix]), and for all y ∈ R
3 the function z →

g(y, z) : R
N → 2R

N

is monotone satisfying 0 ∈ g(y, 0); y → g(y, z) is periodic with the
periodicity cell Y ⊂ R

3. The positive semidefinite N ×N matrix L[y] is measurable
and periodic with the same periodicity cell Y .

A function g : D(g) ⊆ R
N 	→ 2R

N

is called monotone if

(z1 − z2, y1 − y2) ≥ 0

for any yi ∈ g(zi) and any zi ∈ D(g), i = 1, 2. A monotone function is said to be
maximal monotone if it has no monotone extension. In other words, g is maximal
monotone if and only if the inequality

(z1 − z2, y1 − y2) ≥ 0 ∀ y1 ∈ g(z1)

implies y2 ∈ g(z2).
The number η > 0 is the scaling parameter of the microstructure.
The differential inclusion (3) with the given function g and (2) together define

the material behavior. They are the constitutive relations which model the inelastic
response of the body, whereas (1) is the conservation law of linear momentum. The
differential inclusion (3) is called a constitutive relation (or equation) of monotone
type which was first introduced in [1]. The class of constitutive relations of monotone
type naturally generalizes the class of constitutive relations of generalized standard
materials defined by B. Halphen and N. Q. Son, because in the last case the function
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g is the gradient or the subdifferential of a convex function. For examples of models
from engineering, and for the study of whether they are of monotone type, we refer
the reader to [1]. It must be said here that the classical models like the Prandtl–Reuss
and the Norton–Hoff laws belong to the class of constitutive equations of monotone
type. However, this class is still too small to include all models used in engineering.
Namely, most models describing the deformation behavior of inelastic bodies with
infinitesimal strains can be written in the form (3), but often the function g is not
monotone.1

The existence and uniqueness theory for (1)–(3) is well understood under addi-
tional assumptions: If the free energy is not only positive semidefinite but positive
definite (equivalently, if the N ×N matrix L is positive definite), and, additionally, if
the mapping z → g(y, z) is maximal monotone for all y ∈ R

3, then the initial bound-
ary value problem has a unique solution denoted by (uη, Tη, zη); see [3] or [1]. We want
to point out that in many cases the free energy is not positive definite but positive
semidefinite. For example, the Prandtl–Reuss and Norton–Hoff laws are constitutive
equations with positive semidefinite free energy, whereas models with linear hardening
have positive definite free energy. For problems with semidefinite free energy, to the
author’s knowledge there have been no general existence results until now. But for
some models with a particular choice of the function g the existence and uniqueness
theory is already available; see, for example, [15], [14], [13], [30], and the literature
cited there concerning this side of the investigation.

To study the asymptotic behavior of (uη, Tη, zη) as η tends to 0 we postulate that

this function is close to the function (ûη, T̂η, ẑη) defined by

ûη(x, t) = u0(x, t) + ηu1

(
x,

x

η
, t

)
,

T̂η(x, t) = T0

(
x,

x

η
, t

)
,

ẑη(x, t) = z0

(
x,

x

η
, t

)
,

where (u0, u1, T0, z0) solves the homogenized initial boundary value problem (see [2]):

−divxT∞(x, t) = b(x, t),(7)

T∞(x, t) =
1

|Y |

∫
Y

T0(x, y, t)dy,(8)

−divyT0(x, y, t) = 0,(9)

T0(x, y, t) = D[y](ε(∇yu1(x, y, t)) −Bz0(x, y, t)(10)

+ε(∇xu0(x, t))),

∂

∂t
z0(x, y, t) ∈ g(y,BTT0(x, y, t) − L[y]z0(x, y, t)),(11)

z0(x, y, 0) = z
(0)
0 (x, y),(12)

1To the author’s knowledge all models proposed in engineering sciences belong to the problems
of premonotone type. The problem (1)–(3) is of a premonotone type if the multifunction g in (3)
satisfies the inequality

∀ z ∈ D(g), ∀ z∗ ∈ g(z) z∗ · z ≥ 0.
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which must hold for (x, y, t) ∈ Ω × Y × [0,∞),

u0(x, t) = γ(x, t), (x, t) ∈ ∂Ω × [0,∞).(13)

Note. For fixed x, (9)–(12) together with the periodicity assumption on y 	→
(u1, T0)(x, y, t), which can be considered to be a boundary condition, define an initial
boundary problem, the cell problem, in Y × [0,∞). u0, u1 can be interpreted as
macro- and microdisplacement, T0 as a microstress; the macrostress T∞ is obtained
by averaging of T0 over the representative volume element. In Theorem 2 in [4] it was
shown that under some additional assumptions on the function g the homogenized
initial boundary value problem (7)–(13) has a unique solution,

(u0, u1, T∞) ∈ L2(0, Te;H
1(Ω,R3)) × L2(ΩTe

, H1(Y,R3)) × L2(ΩTe
,S3)

(T0, z0) ∈ L2((Ω × Y )Te
,S3) × C([0, Te];L

2(Ω × Y,RN )).

The main goal of this work is to prove that the solution of the microscopic problem
(uη, Tη, zη) has as the asymptotics the function (ûη, T̂η, ẑη). The justification uses
methods from the established homogenization theory for linear problems, but several
difficulties arise not present in this theory.

First, the existence and uniqueness theory for the homogenized initial boundary
value problem as well as the justification procedure are more complicated due to the
impossibility of decoupling the homogenized problem (the first equation) and the so-
called cell problem (the last three equations with the periodicity assumption, which
can be considered as a boundary condition), unlike in linear elasticity, where the
homogenized and the cell problem can be decoupled. This difficulty was successfully
solved in [4].

Second, difficulties arise which are based on the fact that the solution of the ho-
mogenized problem is of low regularity because of the nonlinearity of the constitutive
equation. One of the difficulties resulting from the low regularity of the solution of the
homogenized problem is that the mapping x 	→ (T0, z0)(x, x/η, t) is not well defined
because x 	→ (x, x/η) maps Ω onto a three-dimensional subspace of a six-dimensional
space Ω × R

3.
Indeed, x 	→ (x, x/η) maps Ω onto a three-dimensional subspace of Ω × R

3 (see
Figure 1) and by virtue of Theorem 5.2.2 in [12] the mapping x 	→ (T0, z0)(x, x/η, t)
is not well defined. In other words, the function (T0, z0)(t) ∈ L2(Ω× Y,S3)×L2(Ω×
Y,RN ) has no trace on a three-dimensional subspace of a six-dimensional space.

In [4] this difficulty is overcome by imposing higher regularity on the given data
in such a way that the solution of the homogenized problem becomes smoother and
the existence of the trace for (T0(t), z0(t)) on the three-dimensional subspace is an
easy consequence of this obtained smoothness. The higher regularity of the solution
of the homogenized problem plays an essential role in that work also at another place:
in order to apply the energy method of Tartar2 (see [27, 34]) in the justification,
the author needs ∂tdivxT0(x, y, t) |y=x/η and ∂trotx∇yu1(x, y, t) |y=x/η to belong

to a compact subset of H−1
loc . This is provided by the smoothness of (T0, u1)(x, y, t).

Unfortunately, one cannot expect that the solution is of this higher regularity globally
in time. Instead, after a certain finite time the solution is only of lower regularity.
Therefore in [4] the justification of the homogenized problem is only possible locally

2It is also called the oscillating test function method.
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x ∈ R
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������� (x, x/η + ŷ)

� (x, x/η)

Fig. 1.

in time. In contrast, here we can justify the homogenized problem globally in time
without imposing additional smoothness on the data.

To avoid the difficulty with the trace I, follow an idea,3 proposed in [2], of intro-
ducing an additional fast variable y, which is plugged into (1)–(5):

−divxT (x, y, t) = b(x, t),(14)

T (x, y, t) = D
[
x

η
+ y

]
(ε(�xu(x, y, t)) −Bz(x, y, t)),(15)

∂

∂t
z(x, y, t) ∈ g

(
x

η
+ y,BTT (x, y, t) − L

[
x

η
+ y

]
z(x, y, t)

)
,(16)

z(x, y, 0) = z(0)

(
x,

x

η
+ y

)
,(17)

which hold for (x, y) ∈ Ω×Y and t ∈ [0,∞), and of the Dirichlet boundary condition

u(x, y, t) = γ(x, t),(18)

which holds for (x, y) ∈ ∂Ω × Y and t ∈ [0,∞). The function (uη, Tη, zη)(x, y, t) is
periodic in y.

We give the definition of a solution of the initial boundary value problem (14)–
(18). η > 0 is fixed.

Definition 1.1. Let

(uη, Tη, zη) : Ω × R
3 × R

+ 	→ R
3 × S3 × R

N

be a function which satisfies the initial condition (17) for a.e. (x, y) ∈ Ω×R
3 and for

which the function (x, y) 	→ (uη, Tη, zη)(x, y, t) is a solution of (14)–(18) for almost

3The idea of considering the family of shifted problems was also used in [16] to show that for
some linear and nonlinear problems the averaging over the shifting y eliminates the rapid oscillations
in the solution. For details we refer the reader to this work.
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all y ∈ R
3. Then (uη, Tη, zη) is called a family of solutions of the initial boundary

value problem (14)–(18) depending on the fast variable y.
We assume now that for all 0 < η < η0 such a solution family (uη, Tη, zη) of the

initial boundary value problem depending on the fast variable y exists and is close to

ûη(x, y, t) = u0(x, t) + ηu1

(
x,

x

η
+ y, t

)
,(19)

T̂η(x, y, t) = T0

(
x,

x

η
+ y, t

)
,(20)

ẑη(x, y, t) = z0

(
x,

x

η
+ y, t

)
.(21)

The functions u0(x, t), u1(x, y, t), T0(x, y, t), z0(x, y, t), which are assumed to be peri-
odic with respect to the y-argument with a periodicity cell Y ⊂ R

3, solve the problem
(7)–(13).

Notation. Banach spaces Wm,p(Ω,RN ) are endowed with the norm ‖ · ‖m,p,Ω.
Hm(Ω,RN ) = Wm,2(Ω,RN ) are Hilbert spaces with the usual scalar product on them
and the norm ‖ · ‖m,Ω, ‖ · ‖Ω = ‖ · ‖0,Ω.

Define the space

W (Y ) =

{
v ∈ H1(Y ) | 1

|Y |

∫
Y

v(y)dy = 0

}
,

which becomes a Banach space due to the Poincaré–Wirtinger inequality (see [18,
Proposition 3.38]) for the norm ‖u‖W (Y ) = ‖∇u‖Y .

The symbols Dη and Lη denote the mappings D[x/η + y] and L[x/η + y], respec-
tively, i.e., Dη := D[x/η + y], Lη := L[x/η + y].

Now we can formulate the main result of this work.
Theorem 1.2. Let Te > 0. Assume that the matrix L ∈ L∞(Y,RN×N ) in (6)

is uniformly positive definite and that the mapping g : R
3 × R

N → 2R
N

satisfies the
following three conditions:

• 0 ∈ g(y, 0) for almost all y ∈ Y ,
• z 	→ g(y, z) is maximal monotone for almost all y ∈ Y ,
• the mapping y 	→ jλ(y, z) : R

3 → R
N is measurable for all λ > 0, where

jλ(y, z) is the inverse of z 	→ z + λg(y, z).4

Suppose that b ∈ W 2,1(0, Te;L
2(Ω,R3)) and γ ∈ W 2,1(0, Te;H

1(Ω,R3)). Assume that
z(0) ∈ L2(Ω × Y,RN ) and there exists ζ ∈ L2(Ω × Y,RN ) such that

ζ(x, y) ∈ g(y,BTT (0)(x, y) − L[y]z(0)(x, y)) a.e. in Ω × Y,

where (u(0), T (0)) is a weak solution of the problem of linear elasticity theory (25)–(27)

to the data b̂ = b(0), ε̂p = Bz(0), γ̂ = γ(0).
Assume further that there exists a positive function h ∈ L2(Ω × Y,RN ) such that

the inequality

| gλ(x/η + y,BTT (0) − L[x/η + y]z(0))| ≤ Ch(x, y)(22)

4The mapping z �→ jλ(y, z) is single valued and well defined, since z �→ g(y, z) is assumed to be
maximal monotone.
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with a constant C = C(λ) independent of η holds, where gλ is the Yosida approxima-
tion of g.

Then the solution (uη, Tη, zη) of the microscopic problem (14)–(18) with parameter
y satisfies for all 0 ≤ t ≤ Te,

lim
η→0

(‖u0(t) − uη(t)‖Ω×Y + ‖T̂η(t) − Tη(t)‖Ω×Y + ‖ẑη(t) − zη(t)‖Ω×Y ) = 0.(23)

Note. We note that the inequality (22) is easily satisfied in practice. Let us take,
for example, the model of Melan–Prager with the Prandtl–Reuss flow rule, i.e.,

g(z) = ∂IK

(
T − k

(
·
η

)
z

)
,

where k : R
3 → R

+ is a material function with k(y) ≥ C > 0, and IK is the indicator
function of a closed convex set K = {σ ∈ S3| σD ·σD ≤ c} specified by the von Mises
yield criterion. Here σD is the deviator of σ and c > 0 is a given constant. We assume
that c is independent of η. Then the Yosida approximation of g is (see [11, p. 46])

gλ(z) =
1

λ

(
T − k

(
·
η

)
z − projK

(
T − k

(
·
η

)
z

))
.

If k ∈ L∞(Y,R+), then (22) is satisfied for h = |T + ‖k‖L∞(Y,R+)z| + ‖projK(T −
k( ·

η )z)‖L∞(Ω×Y,S3). Note that (22) is fulfilled for k(y) ≥ 0 as well, but in this case

the existence theory fails. In a similar way one gets that the inequality (22) holds for
the model of Melan–Prager with the Norton–Hoff flow rule.

Note. For future use we need an estimate obtained in Theorem 2 in [4] for the
time derivative of z0. Define a function h = −(BTDQB + L)z0 + BTσ0, where the
operator Q is a projector in L2(Ω×Y,S3), and the function σ0 solves the usual linear
elasticity problem. Then the function h satisfies the inequality∥∥∥∥ ∂

∂t
h(t)

∥∥∥∥
Ω×Y

≤ |Ch(0)| + ||BTσ0,t(0)||Ω×Y +

∫ t

0

||BTσ0,tt(s)||Ω×Y ds,(24)

with |Cζ| = inf{‖(BTDQB + L)ξ‖Ω×Y | ξ(x, y) ∈ g(y, ζ(x, y)) a.e.}.
See [4] for more details.

2. Justification of the homogenized model.

2.1. Preliminaries. In this section we deal with a boundary value problem,
a linear problem of elasticity theory with a parameter y, formed by the following
equations:

−divxT (x, y) = b̂(x),(25)

T (x, y) = D
[
x

η
+ y

]
(ε(∇xu(x, y)) − ε̂p(x, y)),(26)

u(x, y) = γ̂(x), x ∈ ∂Ω.(27)

The solution of this problem is understood in the following sense: A function (u, T ) ∈
L2(Y,H1(Ω,R3)) × L2(Ω× Y,S3) is a solution of (25)–(27), if (26) is satisfied, and if

for b̂ ∈ L2(Ω,R3), γ̂ ∈ H1(Ω,R3), ε̂p ∈ L2(Ω×Y,S3) and for a.e. y ∈ Y , the following
identity (

D
[
·
η

+ y

]
(ε(∇xu(·, y)) − ε̂p(·, y)), ε(∇xv(·))

)
Ω

= (b̂, v)Ω(28)
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holds for all v ∈ H1
0 (Ω,R3), and if u can be represented in the form u = γ̂ + w with

w ∈ L2(Y,H1
0 (Ω,R3)).

By the well-known theory for elliptic boundary value problems (see [35]) one gets

immediately that to b̂ ∈ L2(Ω,R3), γ̂ ∈ H1(Ω,R3), ε̂p ∈ L2(Ω×Y,S3) and for a fixed
η > 0 there is a unique weak solution (u, T ) satisfying

‖u‖L2(Y,H1(Ω,R3)) + ‖T‖Ω×Y ≤ C(‖b̂‖Ω + ‖ε̂p‖Ω×Y + ‖γ̂‖1,Ω),(29)

with a constant C independent of η.
In the following we need a special projection operator.
Definition 2.1. For every ε̂p ∈ L2(Ω × Y,S3) a linear operator Pη : L2(Ω ×

Y,S3) 	→ L2(Ω × Y,S3) is defined by

Pη ε̂p = ε(∇xu),

where (u, T ) is a unique solution of (25)–(27) to b̂ = γ̂ = 0. Furthermore, we define
a linear operator Qη = I − Pη. Here I is an identity operator.

It is immediately seen from the estimate (29) that the operator Pη is uniformly
bounded. Other properties of Pη and Qη are delivered by the following lemma.

Lemma 2.2. (i) The operators Pη and Qη are orthogonal projectors with respect
to the scalar product [ξ, ζ]Ω×Y = (Dηξ, ζ)Ω×Y on L2(Ω × Y,S3).

(ii) The operator BTDηQηB : L2(Ω × Y,RN ) 	→ L2(Ω × Y,RN ) is selfajoint and
nonnegative with respect to the scalar product (ξ, ζ)Ω×Y . Moreover, there exists a
constant C > 0 such that

‖BTDηQηBξ‖Ω×Y ≤ C‖ξ‖Ω×Y(30)

for all η > 0.
Proof. See Lemma 2.5 in [3].
Since Lη is uniformly positive definite, it follows from Lemma 2.2 that the operator

Lη + BTDηQηB is uniformly positive definite and bounded. This implies that

〈ξ, ζ〉Ω×Y,η = ((Lη + BTDηQηB)ξ, ζ)Ω×Y

defines a scalar product on L2(Ω×Y,RN ). Furthermore, the associated norm ||ξ||Ω×Y,η

= 〈ξ, ξ〉1/2Ω×Y,η is equivalent to the norm || · ||Ω×Y .

2.2. Reduction to an evolution equation. The preparations made in the
previous section enable us to reduce the initial boundary value problem (14)–(18) to
an evolution equation with a monotone operator.

Note that (15) yields

BTTη − Lηzη = BTDη(ε(∇xuη) −Bzη) − Lηzη.(31)

Let (uη, Tη, zη) be a solution of the initial boundary value problem (14)–(18). Now
we fix t. If z(t) is known, then (14), (15), (18) is a boundary value problem for the
components uη(t), Tη(t) of the solution, the problem from the linear elasticity theory
with a parameter y. Due to linearity of these problems the functions are obtained in
the form

(uη(t), Tη(t)) = (ũη(t), T̃η(t)) + (vη(t), ση(t)),
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with a solution (vη(t), ση(t)) of the Dirichlet boundary value problem (25)–(27) to

the data b̂ = b(t), γ̂ = γ(t), ε̂p = 0, and with a solution (ũη(t), T̃η(t)) of the problem

(25)–(27) to the data b̂ = γ̂ = 0, ε̂p = Bzη(t). Thus one obtains

ε((∇xuη)(t)) −Bzη(t) = (Pη − I)Bzη(t) + ε((∇xvη)(t)).

We insert this equation into (31) and obtain that (16) can be rewritten in the following
form:

∂

∂t
zη(t) ∈ Gη(−(BTDηQηB + Lη)zη(t) + BTση(t)),(32)

with the mapping Gη : L2(Ω × Y,RN ) 	→ 2L
2(Ω×Y,RN ) defined by

Gη(ξ) = {ζ ∈ L2(Ω × Y,RN )|ζ(x, y) ∈ g(x/η + y, ξ(x, y)) a.e.}.

The function ση can be determined from the boundary value problem (25)–(27) to
the given data b, γ, ε̂p = 0 and can be considered as known.

The evolution equation (32) for zη can be rewritten as a nonautonomous evolution
equation in L2(Ω × Y,RN )

∂

∂t
zη(t) + Aη(t)zη(t) � 0,(33)

with the operator

Aη(t)z(t) = −Gη(−(BTDηQηB + Lη)zη(t) + BTση(t)).

It turns out that the operator Aη(t) is maximal monotone as the next lemma shows.
Lemma 2.3. Operator Aη(t) is maximal monotone on L2(Ω×Y,RN ) with respect

to the scalar product 〈ξ, ζ〉Ω×Y,η.
Proof. Set for simplicity Mη = BTDηQηB + Lη.
Monotonicity of Aη(t) for all t and η with respect to the scalar product 〈ξ, ζ〉Ω×Y,η

is shown in Theorem 3.3 in [3].

Now we prove that the mapping Gη : L2(Ω × Y,RN ) 	→ 2L
2(Ω×Y,RN ), defined

through the maximal monotone function g : Y × R
N 	→ 2R

N

with g(y, 0) � 0, is
maximal monotone with respect to the scalar product (ξ, ζ)Ω×Y .

It is well known that Gη is maximal monotone if and only if I +Gη is surjective.
To show the surjectivity, we must prove that for every q ∈ L2(Ω×Y,RN ) the equation

q ∈ z + Gηz(34)

has a solution z ∈ L2(Ω × Y,RN ). Since g is maximal monotone, for a.e. (x, y) the

mapping (· + g(x/η + y, ·)) : R
N 	→ 2R

N

has an inverse j(x/η + y, ·) : R
N 	→ R

N ,
which satisfies for a.e. (x, y) the inequality |j(x/η + y, ξ) − j(x/η + y, ζ)| ≤ |ξ − ζ|
for all ξ, ζ ∈ R

N . This Lipschitz continuity, together with the measurability of j with
respect to the first argument, yields that the function j(x/η+y, q) is of Caratheodory
type. Thus one can prove that the mapping (x, y) 	→ j(x/η+y, q(x, y)) is measurable.
From g(·, 0) � 0 it follows that j(x/η + y, 0) = 0, whence

|j(x/η + y, ξ)| = |j(x/η + y, ξ) − j(x/η + y, 0)| ≤ |ξ|.(35)

For q ∈ L2(Ω × Y,RN ) we define z(x, y) = j(x/η + y, q(x, y)) for all (x, y) ∈ Ω × Y .
Obviously, such defined z solves (34) if z ∈ L2(Ω × Y,RN ). Yet, (35) yields that
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indeed z ∈ L2(Ω× Y,RN ) and therefore we conclude that I +Gη is surjective. Hence
Gη is maximal monotone.

With this result it is easy to prove that Aη(t) is maximal monotone for all t. In
other words we have to show that for all [z, ξ] ∈ L2(Ω × Y,RN )× L2(Ω × Y,RN ) and

all [ẑ, ξ̂] ∈ GrAη(t) such that

〈z − ẑ, ξ − ξ̂〉Ω×Y,η ≥ 0,

it follows that [z, ξ] ∈ GrAη(t).
Indeed,

〈z − ẑ, ξ − ξ̂〉Ω×Y,η = ((−Mηz + BTσ) − (−Mη ẑ + BTσ), (−ξ) + ξ̂)Ω×Y ≥ 0.

Since Gη is maximal monotone, [−Mηz+BTσ,−ξ] ∈ GrGη, which means that [z, ξ] ∈
GrAη(t).

2.3. Beginning of the justification. Now we can prove the main result of this
work, Theorem 1.2.

The approximate solution (u0, T̂η, ẑη)(x, y, t), determined from the homogenized
problem, solves the same initial boundary value problem as the exact solution, how-
ever, with a special right-hand side. Observing (7)–(13) we get by a simple computa-
tion that (u0, T̂η, ẑη) satisfies the equations (a special microscopic problem)

−divxT̂η = −divxT0(x, ξ, t)|ξ= x
η +y,(36)

T̂η = D
[
x

η
+ y

]
(ε(∇xu0) −Bẑη + ε(∇ξu1(x, ξ, t))|ξ= x

η +y),(37)

∂

∂t
ẑη ∈ g

(
x

η
+ y,BT T̂η − L

[
x

η
+ y

]
ẑη

)
,(38)

ẑη(x, y, 0) = z
(0)
0

(
x,

x

η
+ y

)
, (x, y) ∈ Ω × Y,(39)

u0(x, t) = γ(x, t) (x, t) ∈ ∂Ω × [0,∞).(40)

Since these equations have the same structure as the equations of the microscopic
problem with a parameter y, we can again employ the procedure from the last section
and obtain that if (v̂η(t), σ̂η(t)) is the solution of the linear boundary value problem
(25)–(27) to the data

b̂(x) = −divxT0(x, ξ, t)|ξ=x/η+y,(41)

ε̂p(x) = −ε(∇ξu1(x, ξ, t))|ξ=x/η+y,(42)

γ̂(x) = γ(x, t),(43)

then the special microscopic problem is equivalent to a nonautonomous evolution
equation

∂

∂t
ẑη(t) + Âη(t)ẑη(t) � 0,(44)

where

Âη(t)v = −g

(
x

η
+ y,−(BTDηQηB + Lη)v + BT σ̂η

)
.
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It turns out that the operator Âη(t) is maximal monotone, as we will see in the
following lemma.

Lemma 2.4. The operator Âη(t) is maximal monotone on L2(Ω × Y,RN ) with
respect to the scalar product 〈ξ, ξ〉Ω×Y,η.

Proof. The proof is the same as for Aη(t) (Lemma 2.3).
We are going to use the results of Lemmas 2.3 and 2.4 and a special distance

between two maximal monotone operators to estimate the difference of solutions of the
evolution inclusions (33), (44) by the norm of a function, which solves a linear elasticity
problem to a special data. This is a crucial step in the justification of the homogenized
model because we are able to employ classical results from homogenization theory for
linear problems. In the next section this estimate is given.

2.4. Main estimate. We define a special distance between two maximal mono-
tone operators due to [35]. With its help we obtain an important estimate in the
justification procedure of the homogenized model.

Let H be a Hilbert space.
Definition 2.5. The distance between two maximal monotone operators on H

is defined as

dis(A1, A2) = sup

{
(y1 − y2, x2 − x1)

‖y1‖ + ‖y2‖ + 1
| xi ∈ D(Ai), yi ∈ Aixi, i = 1, 2

}

with the value possibly equal to +∞.
The distance dis is not a metric because in a general case the triangle inequality

is not fulfilled.
Concerning properties and applications to the study of evolution equations in a

Hilbert space, the reader is referred to the original work [35].
The following lemma plays an important role in the proof of the convergence

result, since it reduces the convergence problem for the nonlinear evolution equation
to the convergence problem for a linear system of elasticity.

Lemma 2.6. For the functions ẑη(t) and zη(t), the following estimate with a
constant C independent of η holds:

‖ẑη(t) − zη(t)‖2
Ω×Y ≤ C

∫ t

0

‖σ̂η(s) − ση(s)‖Ω×Y ds.(45)

Proof. We use the operator distance introduced in Definition 2.5:

dis(Âη(t), Aη(t)) = sup
z1∈D(Âη), z2∈D(Aη)

y1∈Âηz1, y2∈Aηz2

〈y1 − y2, z2 − z1〉Ω×Y,η

1 + ‖y1‖Ω×Y,η + ‖y2‖Ω×Y,η
,

which is well defined, since Âη and Aη are maximal monotone operators.
We get

〈y1 − y2, z2 − z1〉Ω×Y,η = (Mη(y1 − y2), z2 − z1)Ω×Y

= −(−y2 + y1, (−Mηz2 + BTση(t)) − (−Mηz1 + BT σ̂η(t)))Ω×Y

−(y2 − y1, B
Tση(t) −BT σ̂η(t))Ω×Y

≤ −(y2 − y1, B
T (ση(t) − σ̂η(t)))Ω×Y ,



HOMOGENIZATION IN VISCOPLASTICITY 247

since the inclusion −y2 + y1 ∈ Gη(−Mηz2 +BTση(t))−Gη(−Mηz1 +BT σ̂η(t)) holds
and the operator Gη is monotone.

Then we have

dis(Âη(t), Aη(t)) ≤ sup
z1∈D(Âη), z2∈D(Aη)

y1∈Âηz1, y2∈Aηz2

|(y2 − y1, B
T (ση(t) − σ̂η(t)))Ω×Y |

1 + ‖y1‖Ω×Y,η + ‖y2‖Ω×Y,η

≤ sup
z1∈D(Âη), z2∈D(Aη)

y1∈Âηz1, y2∈Aηz2

(‖y2‖Ω×Y,η + ‖y1‖Ω×Y,η)‖BT (ση(t) − σ̂η(t))‖Ω×Y

1 + ‖y1‖Ω×Y,η + ‖y2‖Ω×Y,η

≤ ‖BT (ση(t) − σ̂η(t))‖Ω×Y ≤ C1‖ση(t) − σ̂η(t)‖Ω×Y .

Now we use the last inequality to obtain the main estimate. If ẑη(t) and zη(t) are,
respectively, absolutely continuous solutions of the monotone evolution equations (33)
and (44) with the same initial conditions, then one easily gets

d

dt
‖ẑη(t) − zη(t)‖2

Ω×Y,η = 2〈ẑη,t(t) − zη,t(t), ẑη(t) − zη(t)〉Ω×Y,η

= 2
〈ẑη,t(t) − zη,t(t), ẑη(t) − zη(t)〉Ω×Y,η

1 + ‖ẑη,t(t)‖Ω×Y,η + ‖zη,t(t)‖Ω×Y,η
(1 + ‖ẑη,t(t)‖Ω×Y,η + ‖zη,t(t)‖Ω×Y,η)

≤ 2 dis(Âη(t), Aη(t))(1 + ‖ẑη,t(t)‖Ω×Y,η + ‖zη,t(t)‖Ω×Y,η)

≤ 2C1‖σ̄η(t)‖Ω×Y (1 + ‖ẑη,t(t)‖Ω×Y + ‖zη,t(t)‖Ω×Y ),

since −ẑη,t(t) ∈ Âη ẑη(t), −zη,t(t) ∈ Aηzη(t) a.e. Here σ̄η(t) = ση(t) − σ̂η(t).
As a result of all calculations:

‖ẑη(Te) − zη(Te)‖2
Ω×Y ≤ 2C1

∫ Te

0

‖σ̄η(t)‖Ω×Y (1 + ‖ẑη,t(t)‖Ω×Y + ‖zη,t(t)‖Ω×Y )dt.

We have to show that ‖ẑη,t(t)‖Ω×Y and ‖zη,t(t)‖Ω×Y are uniformly bounded with
respect to η.

We can transform (33) into an autonomous equation by inserting

hη = −(BTDηQηB + Lη)zη + BTση

into (32). This autonomous equation is

d

dt
hη(t) + Cηh(t) � BTση,t(t)

with the operator Cη : L2(Ω × Y,RN ) →2L
2(Ω×Y,RN ) defined by Cη = (BTDηQηB +

Lη)Gη. The operator Cη is maximal monotone (see Theorem 3.3 in [3]).
The estimate (79) then implies∥∥∥∥ ∂

∂t
hη(t)

∥∥∥∥
Ω×Y

≤ ||Gλh(0)||Ω×Y + ||BTση,t(0)||Ω×Y +

∫ t

0

||BTση,tt(s)||Ω×Y ds.

From the estimate (29) with ε̂p = 0 we conclude that the L2(Ω × Y )-norm of ση is
uniformly bounded with respect to η. By virtue of the assumptions made on b, γ, we
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can differentiate (25)–(27) with respect to t and apply the existence theory for elliptic
problems to the obtained system. It results in the inequality

‖vη,t‖L2(Y,H1(Ω,R3)) + ‖ση,t‖Ω×Y ≤ C(‖b̂t‖Ω + ‖γ̂t‖1,Ω),(46)

with a constant C independent of η. Equation (46) yields that the L2(Ω × Y )-norm
of ση,t is uniformly bounded with respect to η. Similarly, we conclude the same result
for ση,tt. From (22) it follows that ||Gλh(0)||Ω×Y is also uniformly bounded with
respect to η (Gλ is the Yosida approximation of G). These conclusions imply that
the function zη,t is uniformly bounded.5

We notice that ‖ẑη,t‖Ω×Y = ‖z0,t‖Ω×Y , where z0(t) is a solution of the homog-
enized problem. Thus the required result is obtained from the estimate (24). This
completes the proof of the lemma.

Note. Using the special distance between two maximal monotone operators, the
difference of solutions of the evolution inclusions can be estimated by the norm of a
function which solves a linear elasticity problem for special data. It is a crucial step
in the justification of the homogenized model. Instead of treating evolution equations
(inclusions) with, in general, nonlinear multivalued operators, the problem is reduced
to the linear elasticity case. It allows us the possibility of using standard methods
which work perfectly for linear problems.

2.5. End of the justification. Thus, we can estimate ẑη − zη by the difference
ση − σ̂η. In the next section we present an estimate for the function ση − σ̂η. Both,
ση and σ̂η solve the same boundary value problem, the problem of linear elasticity
theory, but for different data. Here we only state the estimate and refer to the next
section for the proof.

Lemma 2.7. Let (vη(t), ση(t)) be a solution of the boundary value problem (25)–
(27) for the data

b̂ = b(t), ε̂p = 0, γ̂ = γ(t),

and let (v̂η(t), σ̂η(t)) be a solution of the problem (25)–(27) for the data

b̂ = −divxT0

(
x,

x

η
+ y, t

)
, ε̂p = −ε

(
∇yu1

(
x,

x

η
+ y, t

))
, γ̂ = γ(t).

Then for all t ∈ [0, Te]

‖vη(t) − v̂η(t)‖Ω×Y + ‖ση(t) − σ̂η(t)‖Ω×Y → 0 as η → 0.(47)

Moreover, there exists a constant C independent of η such that for all t ∈ [0, Te] and
all η > 0,

‖ση(t) − σ̂η(t)‖Ω×Y ≤ C.(48)

With this lemma the proof of Theorem 1.2 can be finished.
Proof of Theorem 1.2. Lemma 2.7 and the inequality (45) yield, together with

Lebesgue’s convergence theorem, that for all t ∈ [0, Te],

lim
η→0

‖ẑη(t) − zη(t)‖Ω×Y = 0.(49)

5Remember also that the operator (BTDηQηB + Lη) is uniformly bounded and invertible.
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We observe also that (14), (15), (18) form the boundary value problem for (uη, Tη)

and (36), (37), (40) form a boundary value problem for (u0, T̂η). Definition 2.1 of Pη

and the definitions of (v̂η(t), σ̂η(t)) and (vη(t), ση(t)) thus yield the decomposition

uη = wη + vη, Tη = D
[
·
η

+ y

]
(Pη − I)Bzη + ση,

u0 = ŵη + v̂η, T̂η = D
[
·
η

+ y

]
(Pη − I)Bẑη + σ̂η,

where wη(t), ŵη(t) ∈ L2(Y,H1
0 (Ω,R3)) are the unique functions from Definition 2.1

which satisfy ε(∇xwη(t)) = PηBzη(t) and ε(∇xŵη(t)) = PηBẑη(t). We thus have

ε(∇x(wη − ŵη)) = PηB(zη − ẑη),(50)

Tη − T̂η = −D
[
·
η

+ y

]
QηB(zη − ẑη) + (ση − σ̂η),(51)

u0 − uη = (wη − ŵη) + (vη − v̂η).(52)

From Lemma 2.7, (49), (51), and the uniform boundedness of DηQηB, we infer that

lim
η→0

‖T̂η(t) − Tη(t)‖Ω×Y = 0.

Since for a.e. y ∈ Y the function (wη − ŵη) belongs to H1
0 (Ω,R3), we conclude from

the first Korn’s inequality that the inequality ‖(wη − ŵη)(t, y)‖1,Ω ≤ C‖ε(∇x(wη −
ŵη)(t, y))‖Ω holds for a.e. y and from (49), (50) that ‖wη(t) − ŵη(t)‖Ω×Y → 0 as
η → 0; from Lemma 2.7 and (52) we thus conclude that

lim
η→0

‖u0(t) − uη(t)‖Ω×Y = 0

for all t ∈ [0, Te]. These two relations and (49) together yield

lim
η→0

(‖u0(t) − uη(t)‖Ω×Y + ‖T̂η(t) − Tη(t)‖Ω×Y + ‖ẑη(t) − zη(t)‖Ω×Y ) = 0.

This completes the proof of Theorem 1.2.
To finish the proof of Theorem 1.2 it thus remains to verify Lemma 2.7. The next

section is devoted to the proof of this lemma.

3. Convergence results based on the two-scale convergence method.
In this section we present the convergence result stated in Lemma 2.7. To do this
an auxiliary function is taken into consideration. We define it to be a solution of
a Dirichlet boundary value problem of the linear elasticity theory for special data.
These data are chosen to be smooth enough so the two-scale convergence method
can be applied. The direct application of the method seems impossible to the author
because of the low regularity of the functions T0(x, y, t) and u1(x, y, t), the solutions
of the homogenized problem, which are now considered as the data for the elasticity
problem.

Now we give the definition of the so-called two-scale converged sequence.
We assume that |Y | = 1.
Definition 3.1. A sequence of functions uη in L2(Ω,R3) is said to two-scale

converge to a limit u0(x, y) belonging to L2(Ω×Y,R3) if, for any test function ψ(x, y)
in L2(Ω, C(Y,R3)), one has

lim
η→0

∫
Ω

uη(x)ψ

(
x,

x

η

)
dx =

∫
Ω

∫
Y

u0(x, y)ψ(x, y)dxdy.(53)
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Note. This definition makes sense for every bounded sequence uη in L2(Ω,R3).
As it is shown in Theorem 1.2 in [6] for such a sequence uη there exists a limit
u0 ∈ L2(Ω × Y,R3) such that, with possible expanse of extracting a subsequence,
uη(x) two-scale converges to u0(x, y).

Note. The two-scale convergence method [27], [6] is an alternative to the en-
ergy method of Tartar [26], applied for partial differential equations with periodically
oscillating coefficients. We refer the reader to [6] for main properties of two-scale
converged sequences.

Let the boundary value problem be given:

−divxT (x, y) = b̂(x),(54)

T (x, y) = D
[
x

η
+ y

]
(ε(∇xu(x, y)) − ε̂p(x, y)),(55)

u(x, y) = γ̂(x), x ∈ ∂Ω,(56)

with given functions b̂ : Ω 	→ R
3, γ̂ : ∂Ω 	→ R

3, ε̂p : Ω 	→ S3, a given number η > 0,
and fixed y ∈ Y . This is the linear problem of elasticity with a parameter y.

We recall that for a.e. y ∈ Y the function (vη(t), ση(t)) solves the boundary value
problem (54)–(56) to the data

b̂ = b(t), ε̂p = 0, γ̂ = γ(t),

and (v̂η(t), σ̂η(t)) solves the problem (54)–(56) to

b̂ = −divxT0

(
x,

x

η
+ y, t

)
, ε̂p = −ε

(
∇yu1

(
x,

x

η
+ y, t

))
, γ̂ = γ(t).

My goal now is to show that for almost all y ∈ Y and all t ∈ [0, Te],

lim
η→0

‖vη(·, y, t) − v̂η(·, y, t)‖Ω = 0,

lim
η→0

‖ση(·, y, t) − σ̂η(·, y, t)‖Ω = 0.

These relations follow from two auxiliary lemmas proved in the next section.

3.1. Two auxiliary lemmas.
Lemma 3.2. Let the function τ ∈ L2(Ω×Y,S3) have the property divyτ(x, y) = 0,

and let the family {τη,n(x) = τn(x, x/η)}η,n with τn ∈ L2(Ω, C(Y,S3)) be such that
the sequence τn(x, y) converges strongly to τ(x, y) in L2(Ω × Y,S3). Denote

τn,∞(x) :=
1

|Y |

∫
Y

τn(x, y)dy and τ∞(x) =
1

|Y |

∫
Y

τ(x, y)dy.

Then τn,∞(x) converges strongly to τ∞(x) in L2(Ω,S3).
Let (vη,n, ση,n) ∈ H1

0 (Ω,R3)×L2(Ω,S3) be a weak solution of the boundary value
problem formed by the equations

−div ση,n = b + divxτη,n, x ∈ Ω,(57)

ση,n = D
[
·
η

]
ε(∇xvη,n), x ∈ Ω.(58)

If, additionally, the function τ∞ satisfies

−divτ∞ = b
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for b ∈ L2(Ω,R3), then

lim
n→∞

lim
η→0

(‖vη,n‖Ω + ‖ση,n‖Ω) = 0.

Proof. First, we observe that the symmetry of the matrices ση,n, τη,n and (57)–
(58) yields

c‖ση,n‖2
Ω ≤

∫
Ω

D−1

[
x

η

]
ση,n(x) · ση,n(x)dx =

∫
Ω

ε(∇xvη,n(x)) · ση,n(x)dx

= (vη,n, b)Ω +

(
divxτn

(
·, ·
η

)
, vη,n

)
Ω

(59)

= (vη,n, b)Ω −
(
τn

(
·, ·
η

)
,∇xvη,n

)
Ω

.

Now we notice that for a fixed n the function τn(x, x/η) can be considered as a test
function in the definition of the two-scale convergence (see Definition 3.1), and by
properties of these functions

‖ψ
(
·, ·
η

)
‖Ω ≤ ‖ψ(·, ·)‖L2(Ω,C(Y,R3)) ≡

(∫
Ω

sup
y∈Y

|ψ(x, y)|2dx
)1/2

,(60)

we can easily conclude using the standard estimates for elliptic boundary value prob-
lems that the sequence vη,n is uniformly bounded in H1

0 (Ω,R3) for a fixed n. Then
by virtue of the property (i) of Proposition 1.14 in [6], one gets the following result:

(vη,n, b)Ω −
(
τn

(
·, ·
η

)
,∇xvη,n

)
Ω

→ (v0,n, b)Ω

(61)

−
∫

Ω×Y

τn(x, y) · ∇xv0,n(x)dxdy −
∫

Ω×Y

τn(x, y) · ∇yw1,n(x, y)dxdy

= (v0,n, b)Ω − (τn,∞,∇xv0,n)Ω −
∫

Ω×Y

τn(x, y) · ∇yw1,n(x, y)dydx,

where the function (v0,n, w1,n) ∈ H1
0 (Ω,R3)×L2(Ω,W (Y,R3)) solves the problem

written in the variational form∫
Y

∫
Ω

D[y]ε(∇v0,n(x) + ∇yw1,n(x, y))ε(∇ψ(x) + ∇yψ1(x, y))dxdy

= (b + divxτn,∞, ψ)Ω(62)

with a function (ψ,ψ1) ∈ H1
0 (Ω,R3)×L2(Ω,W (Y,R3)). Here v0,n(x) is a weak limit

of vη,n(x) in H1
0 (Ω,R3). Equation (62) is obtained in the same way as (89) in the

proof of Theorem 4.2.
The existence and uniqueness of the solution for this problem is obtained in

Theorem 4.2. If in (62) we choose ψ = v0,n and ψ1 = w1,n, then we easily obtain the
following estimate for (v0,n(x), w1,n(x, y)) with constants C,C1 independent of n:

‖v0,n‖2
1,Ω + ‖w1,n‖2

L2(Ω,W (Y,R3)) ≤ C(‖b‖Ω + ‖τn,∞‖Ω) ≤ C1.(63)
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As a consequence of the last estimate, one can extract subsequences of v0,n(x) and
w1,n(x, y), which converge weakly to v0,∞(x) in H1

0 (Ω,R3) and to w1,∞(x, y) in L2(Ω,
W (Y,R3)), respectively. Taking into account this fact and the properties of τ∞ and
τ we finally obtain after the passage to the limit in (62) as n → ∞ that

(v0,∞, b)Ω − (τ∞,∇xv0,∞)Ω − (τ,∇yw1,∞)Ω×Y

= (b + divxτ∞, v0,∞)Ω + (divyτ, w1,∞)Ω×Y = 0.

This means that ‖ση,n‖Ω → 0 as η → 0 and n → ∞. Together with Korn’s inequality
it follows that

lim
n→∞

lim
η→0

(‖ση,n‖Ω + ‖vη,n‖Ω) = 0.

This ends the proof of Lemma 3.2.
Lemma 3.3. Let κη(x) := κ(x, x/η) be a sequence of functions in L2(Ω,R3×3),

where κ ∈ L2(Ω, C(Y,R3×3)) satisfies the relation κ = ∇yϑ with a suitable Y -periodic
in y function ϑ(x, y). Suppose that (vη, ση) ∈ H1

0 (Ω,R3)×L2(Ω,S3) is a weak solution
of the boundary value problem formed by the equations

−div ση = 0, x ∈ Ω,(64)

ση = D
[
·
η

]
(ε(∇xvη) + ε(κη)), x ∈ Ω.(65)

Then

lim
η→0

(‖vη‖Ω + ‖ση‖Ω) = 0.

Proof. Similarly as in the proof of Lemma 3.2, the symmetry of ση and (64)–(65)
yields

c‖ση‖2
Ω ≤

∫
Ω

κ

(
x,

x

η

)
· ση(x)dx +

∫
Ω

∇xvη · ση(x)dx = (κη, ση)Ω.(66)

Notice that due to the regularity assumption on the function κ(x, x/η) it can be
taken as a test function in the sense of the definition of two-scale convergence (see
Definition 3.1). Moreover, from the estimate∥∥∥∥ψ

(
x,

x

η

)∥∥∥∥
L2(Ω,R3×3)

≤ ‖ψ(x, y)‖L2(Ω,C(Y,R3×3)),

which holds for every ψ ∈ L2(Ω, C(Y,R3×3)) and from (66) we obtain

c‖ση‖2
Ω ≤ ‖κη‖L2(Ω,C(Y,R3×3)) ‖ση‖Ω,

which implies that ση(x) is uniformly bounded in L2(Ω,S3). Simultaneously, one gets
a uniform bound for vη in H1

0 (Ω,R3). The boundness of ση allows us to pass to the
limit in the inequality (66) as η → 0. Using the property (iii) of Proposition 1.14 in
[6] we obtain∫

Ω

κ

(
x,

x

η

)
· ση(x)dx →

∫
Ω×Y

κ(x, y) · σ0(x, y)dxdy = −(ϑ, divyσ0)Ω×Y = 0,
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where σ0(x, y) is a two-scale limit of the sequence ση(x). From the last limit relation
and the inequality (66) we can conclude that ση converges strongly to 0 in L2(Ω,S3).

Now we observe that the uniform boundness of vη in H1
0 (Ω,R3) gives us the

possibility of extracting a subsequence, which converges weakly to a function v0 in
H1

0 (Ω,R3), or, by the compactness result, converges strongly to the same function
v0 in L2(Ω,R3). To finish the proof of Lemma 3.3 we have to show that v0(x) = 0.
Notice first that well-known properties6 of functions from L2(Ω, C(Y,R3×3)) yield the
weak convergence of κη to 0 in L2(Ω,R3×3). Indeed, from the weak convergence of
κ(·, ·/η) and periodicity of ϑ(x, y) with respect to the second variable it follows that
for ψ ∈ L2(Ω,R3×3),∫

Ω

κ

(
x,

x

η

)
· ψ(x)dx →

∫
Ω

∫
Y

∇yϑ(x, y)dy ψ(x)dx = 0.

Taking into account the last result we get from the equality

(ε(∇xvη), ψ)Ω + (κη, ψ)Ω =

∫
Ω

D−1

[
x

η

]
ση(x) · ψ(x)dx,

where ψ ∈ L2(Ω,S3), that ε(∇xvη(x)) weakly converges to 0 in L2(Ω,S3).7

Since ∇xvη ⇀ ∇xv0 in L2(Ω,R3×3) it follows that ε(∇xv0(x)) = 0. Using that
v0 ∈ H1

0 (Ω,R3) we conclude from the first Korn’s inequality that v0(x) = 0.
Therefore

‖ση‖Ω + ‖vη‖Ω → 0 as η → 0.

This completes the proof of Lemma 3.3.

3.2. Proof of Lemma 2.7. Now we are well prepared to prove Lemma 2.7. The
crucial point in the proof of Lemma 2.7 is to introduce an auxiliary function, which
solves a linear elasticity problem to smoothed data. These smoothed data satisfy all
requirements of Lemmas 3.2 and 3.3. The rest of the proof is the consequence of these
two lemmas.

Proof. Let T0,n(x, y, t) be a sequence of smooth functions in C∞
0 (Ω, C(Y,S3)) that

converges strongly to T0(x, y, t) in L2(Ω × Y,S3) for all t, and let u1,n(t) be another
sequence of smooth functions in C∞

0 (Ω, C(Y,R3)) that converges strongly to u1(t)
in L2(Ω, H1(Y,R3)) for all t. We notice that an approximation sequence for T∞(t)
in the strong topology of L2(Ω,S3) necessarily has to be of the form T∞,n(x, t) =∫
Y
T0,n(x, y, t)dy.
Now we fix t and introduce an auxiliary function8 (vη,n, ση,n). We define it as

a unique solution of an elasticity problem to the data determined by the smooth
functions T0,n(x, y, t) and u1,n(x, y, t):

−divση,n(x) = −divxT0,n

(
x,

x

η
+ y, t

)
,(67)

6We use the fact (Lemma 9.1 of [18]) that for any ψ ∈ L2(Ω, C(Y,R3×3)) the sequence

ψ

(
·, ·
η

)
⇀

∫
Y
ψ(·, y)dy weakly in L2(Ω,R3×3).

7From the strong convergence of ση to 0 and the inequality ‖D−1[·/η]ση‖Ω ≤ C‖ση‖Ω, we
conclude that the sequence D−1[·/η]ση also converges strongly to 0 in L2(Ω,S3). The constant C is
independent of η.

8A similar idea was used in [8].
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ση,n(x) = D
[
x

η
+ y

](
ε(∇xvη,n(x)) + ε

(
∇yu1,n

(
x,

x

η
+ y, t

)))
,(68)

vη,n(x) = γ(x, t), x ∈ ∂Ω.(69)

The existence and uniqueness of the function (vη,n, ση,n) as a solution of the bound-
ary value problem (67)–(69) can be obtained by the well-known theory for elliptic
problems. Details are omitted.

We obviously have that

ση(x, t) − σ̂η(x, t) = (ση(x, t) − ση,n(x)) + (ση,n(x) − σ̂η(x, t)),

vη(x, t) − v̂η(x, t) = (vη(x, t) − vη,n(x)) + (vη,n(x) − v̂η(x, t)).

The proof of the convergence result will be separated into two steps. In the first step
we show that the sequences (v̄η,n(x), σ̄η,n(x)) with σ̄η,n(x) := ση(x, t) − ση,n(x) and
v̄η,n(x) := vη(x, t) − vη,n(x) converge to 0 in appropriate strong topologies. Then
the same result will be shown for sequences (v̂η,n(x), σ̂η,n(x)), where σ̂η,n(x) :=
ση,n(x) − σ̂η(x, t) and v̂η,n(x) := vη,n(x) − v̂η(x, t).

First step. By definition, (v̄η,n(x), σ̄η,n(x)) is a weak solution of the boundary
value problem (54)–(56) to the data

b̂(x) = b(x, t) + divxT0,n

(
x,

x

η
+ y, t

)
,(70)

ε̂p(x, y) = ε

(
∇yu1,n

(
x,

x

η
+ y, t

))
,(71)

γ̂(x) = 0.(72)

By linearity of the problem (54)–(56) to the data (70)–(72) the required convergence
of (v̄η,n(x), σ̄η,n(x)) is an easy consequence of Lemmas 3.2 and 3.3, which are applied
for a.e. value y = ŷ ∈ Y .

Indeed, to see that we set for fixed t and a.e. ŷ,

τη,n(x) = T0,n

(
x,

x

η
+ ŷ, t

)
, τ(x, y) = T0(x, y + ŷ, t), τ∞(x) = T∞(x, t),

κη,n(x) = −∇yu1,n

(
x,

x

η
+ ŷ, t

)
, τ∞,n(x) = T∞,n(x, t), b = b(t).

Note first that the periodicity of T0,n, T0 and the choice of T0,n yield∫
Ω×Y

(T0,n(x, y + ŷ, t) − T0(x, y + ŷ, t))2dxdy

=

∫
Ω×Y

(T0,n(x, y, t) − T0(x, y, t))
2dxdy → 0 as n → ∞.

From (9) one immediately gets

divyτ(x, y) = divyT0(x, y + ŷ, t) = 0

and

divxτη,n(x) = divxT0,n

(
x,

x

η
+ ŷ, t

)
.



HOMOGENIZATION IN VISCOPLASTICITY 255

Due to the periodicity of T0(x, y, t) we obtain also that∫
Y

T0(x, y + ŷ, t)dy =

∫
Y

T0(x, y, t)dy = T∞(x, t) = τ∞(x),

and from the strong convergence of T0,n to T0 we deduce that the sequence τ∞,n(x) =
T∞,n(x, t) converges strongly to τ∞(x) = T∞(x, t) in L2(Ω,S3). One needs to apply
Hölder’s inequality.

Moreover, (7) implies that

b + divxτ∞(x) = b(t) + divxT∞(t) = 0.

Since by definition (v̄η,n(x), σ̄η,n(x)) is a weak solution of the boundary value problem
(54)–(56) to the data

b̂(x) = b(x, t) + divxT0,n

(
x,

x

η
+ ŷ, t

)
= b + divxτη,n,

ε̂p(x) = ε(∇yu1,n(x, y, t))|y= x
η +ŷ = −ε(κη)

γ̂(x) = 0,

we can use the linearity of the problem (54)–(56) to write the function (v̄η,n(x),
σ̄η,n(x)) as a sum of two functions

(v̄η,n, σ̄η,n)(x) = (v̄, σ̄)(x) + (v̂, σ̂)(x),

where the function (v̄, σ̄)(x) solves the boundary problem (57)–(58) and the function
(v̂, σ̂)(x) solves the problem (64)–(65). Then the application of Lemmas 3.2 and 3.3
to (v̄, σ̄) and (v̂, σ̂) gives, for every t and a.e. ŷ ∈ Y ,

lim
n→∞

lim
η→0

(‖v̄η,n(·, ŷ, t)‖Ω + ‖σ̄η,n(·, ŷ, t)‖Ω) = 0.(73)

Second step. We fix t and y. The function (v̂η,n(x), σ̂η,n(x)) is a weak solution
of the boundary value problem (54)–(56) to the data

b̂(x) = −divx

(
T0,n

(
x,

x

η
+ y, t

)
− T0

(
x,

x

η
+ y, t

))
(74)

ε̂p(x) = −ε

(
∇y

(
u1,n

(
x,

x

η
+ y, t

)
− u1

(
x,

x

η
+ y, t

)))
,(75)

γ̂(x) = 0.(76)

Using the properties of Dη, we obtain an elliptic theory applied to the boundary

value problem (54)–(56) to the data (74)–(76), observing that b̂ ∈ H−1(Ω,R3),
ε̂p ∈ L2(Ω,S3), γ̂ ∈ H1(Ω,R3), and η > 0, y ∈ Y , and that there is a constant
C independent of η, y, t, and n, such that

‖σ̂η,n(t)‖2
Ω ≤ C

[ ∥∥∥∥T0,n

(
·, ·
η

+ y, t

)
− T0

(
·, ·
η

+ y, t

)∥∥∥∥
2

Ω

+

∥∥∥∥∇yu1,n

(
·, ·
η

+ y, t

)
−∇yu1

(
·, ·
η

+ y, t

)∥∥∥∥
2

Ω

]
.



256 SERGIY NESENENKO

We integrate the right-hand side of this inequality with respect to the parameter y
over Y . As a result we have∫

Ω

∫
Y

∣∣∣∣T0,n

(
x,

x

η
+ y, t

)
− T0

(
x,

x

η
+ y, t

)∣∣∣∣
2

+

∣∣∣∣∇yu1,n

(
x,

x

η
+ y, t

)
−∇yu1

(
x,

x

η
+ y, t

)∣∣∣∣
2

dydx

=

∫
Ω

∫
x
η +Y

|T0,n(x, y, t) − T0(x, y, t)|2

+ |∇yu1,n(x, y, t) −∇yu1(x, y, t)|2 dydx

= ‖T0,n(t) − T0(t)‖2
Ω×Y + ‖∇yu1,n(t) −∇yu1(t)‖2

Ω×Y .

Thus the function ση(t) − σ̂η(t) must satisfy the following inequality:

‖ση(t) − σ̂η(t)‖2
Ω×Y ≤ C

(∫
Y

‖σ̄η,n(y, t)‖2
Ωdy

+ ‖T0,n(t) − T0(t)‖2
Ω×Y + ‖∇yu1,n(t) −∇yu1(t)‖2

Ω×Y

)
.

We notice that the L2(Ω)-norm of σ̄η,n is uniformly bounded with respect to η and y.
Indeed, (v̄η,n(x), σ̄η,n(x)) is the solution of (54)–(56) to the data (70)–(72). Applying
the standard existence theory for linear elliptic problems we obtain that

‖σ̄η,n(y, t)‖Ω ≤ C

(
‖b(t)‖Ω +

∥∥∥∥T0,n

(
·, ·
η

+ y, t

)∥∥∥∥
Ω

+

∥∥∥∥∇yu1,n

(
·, ·
η

+ y, t

)∥∥∥∥
Ω

)
.

The functions T0,n, ∇yu1,n can be considered as an “admissible” test function in the
definition of the two-scale convergence. By the properties of these functions we get
that

‖σ̄η,n(y, t)‖Ω ≤ C (‖b(t)‖Ω + ‖T0,n(t)‖L2(Ω,C(Y,S3))

+ ‖∇yu1,n(t)‖L2(Ω,C(Y,R3×3))).

Thus we can use Lebesgue’s convergence theorem to interchange the passage to the
limit and the integration in the lines below.

Let us now pass to the limit as η → 0:

lim
η→0

‖ση(t) − σ̂η(t)‖2
Ω×Y ≤ C lim

η→0

(∫
Y

‖σ̄η,n(y, t)‖2
Ωdy

+‖T0,n(t) − T0(t)‖2
Ω×Y + ‖∇yu1,n(t) −∇yu1(t)‖2

Ω×Y

)

= C

(∫
Y

lim
η→0

‖σ̄η,n(y, t)‖2
Ωdy + ‖T0,n(t) − T0(t)‖2

Ω×Y

+‖∇yu1,n(t) −∇yu1(t)‖2
Ω×Y

)
.
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Lemmas 3.2 and 3.3 imply, if we set τη,n(x) = T0,n(x, x/η + y, t) and κη,n(x) =
−∇yu1,n(x, x/η + y, t), that the function limη→0 ‖σ̄η,n(y, t)‖2

Ω is uniformly bounded
with respect to n and y. It follows from (59), (62), and (63) and we can now pass to
the limit as n → ∞:

lim
η→0

‖ση(t) − σ̂η(t)‖2
Ω×Y ≤ lim

n→∞
C

(∫
Y

lim
η→0

‖σ̄η,n(y, t)‖2
2,Ωdy

+ lim
n→∞

‖T0,n(t) − T0(t)‖2
Ω×Y + lim

n→∞
‖∇yu1,n(t) −∇yu1(t)‖2

Ω×Y

)

= C

(∫
Y

lim
n→∞

lim
η→0

‖σ̄η,n(y, t)‖2
2,Ωdy + lim

n→∞
‖T0,n(t) − T0(t)‖2

Ω×Y

+ lim
n→∞

‖∇yu1,n(t) −∇yu1(t)‖2
Ω×Y

)
= 0.

In exactly the same way we get

lim
η→0

‖vη(t) − v̂η(t)‖2
Ω×Y ≤ C

(∫
Y

lim
n→∞

lim
η→0

‖v̄η,n(y)‖2
2,Ωdy

+ lim
n→∞

‖T0,n(t) − T0(t)‖2
Ω×Y + lim

n→∞
‖∇yu1,n(t) −∇yu1(t)‖2

Ω×Y

)
= 0.

This ends the proof of Lemma 2.7.

4. Appendix.

4.1. Existence of solutions for the reduced equation. In this subsection
we are going to show the existence result9 in a Hilbert space H for the following
Cauchy problem:

d

dt
u(t) + A(u(t)) � f(t),(77)

u(0) = u0(78)

with A = MG, where M is a linear, bounded, positive definite, selfadjoint operator,
and G is a maximal monotone operator with respect to the usual scalar product (·, ·).
It is already shown in Theorem 3.3 in [3] that A is maximal monotone with respect
to the scalar product 〈·, ·〉 = (M−1·, ·).

Theorem 4.1. Let Gλ be a Yosida approximation of G. Assume that u0 ∈
D(A) and f ∈ W 1,1(0, Te;H). Then the Cauchy problem has a unique solution u ∈
W 1,∞(0, Te;H). The solution satisfies the inequality∥∥∥∥ d

dt
u(t)

∥∥∥∥
H

≤ C‖Gλu0‖H + ‖f(0)‖H +

∫ t

0

‖f ′
(s)‖Hds(79)

with a constant C independent of λ.

9Actually in [11], [32] it is already shown that the problem (77) has a unique solution, but in one
place in the justification proof we need other estimates for solutions than this theory delivers. We
slightly modify the classical proof in order to obtain the mentioned estimates. More details can be
found in [11], [32].
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Proof. The uniqueness follows directly from the monotonicity of A.
For each λ > 0 let uλ be the solution of

d

dt
uλ(t) + Aλ(uλ(t)) � f(t),(80)

uλ(0) = u0(81)

with a maximal monotone (with respect to 〈·, ·〉 = (M−1·, ·)) operator Aλ = MGλ.
Then similarly as in Theorem IV.4.1 in [32] we get the estimate for u

′

λ,

‖u′

λ(t)‖H ≤ ‖Aλu0‖H + ‖f(0)‖H +

∫ t

0

‖f ′
(s)‖Hds

≤ C‖Gλu0‖H + ‖f(0)‖H +

∫ t

0

‖f ′
(s)‖Hds

≤ C|G0u0| + ‖f(0)‖H +

∫ t

0

‖f ′
(s)‖Hds.(82)

From (80) and (82) it follows that u
′

λ, uλ, and Aλuλ are uniformly bounded in
C([0, Te], H).

uλ is a Cauchy sequence in C([0, Te], H). To see that, let λ, μ > 0 and use (80)
to obtain

1

2

d

dt
‖uλ(t) − uμ(t)‖2 = −〈Aλ(uλ(t)) −Aμ(uμ(t)), uλ(t) − uμ(t)〉.

With uλ = λGλuλ +Jλuλ and uμ = μGμuμ +Jμuμ (Jλ is a resolvent of G) we obtain
as in Theorem IV.4.1 in [32]

‖uλ(t) − uμ(t)‖2 ≤ λ + μ

2
K2, 0 ≤ t ≤ Te,

where K = sup{‖Gλ(uλ(t))‖ | 0 ≤ t ≤ Te, λ > 0}, so uλ is a Cauchy sequence in
C([0, Te], H) with

(83)

‖uλ(t) − u(t)‖H ≤
√

λ

2
C

(
|G0u0| + ‖f(0)‖H + ‖f‖C([0,Te],H) +

∫ Te

0

‖f ′
(s)‖Hds

)
.

The proof ends similarly as in Theorem IV.4.1 in [32].

4.2. Homogenization of linear elasticity systems. Now we show how to
apply the two-scale convergence method to the homogenization of linear elasticity
systems with periodically oscillating coefficients. This example is of great importance
in the rigorous justification procedure because of the frequent use of estimates ob-
tained for the sequence of solutions of the linear elasticity problem as well as of its
homogenized problem. Therefore the proof, actually a rephrasing of Theorem 2.3 in
[6] for the case of linear elasticity with a slight modification, is given in detail.

Consider the following problem:

−div D
[
x

η

]
ε (∇xu(x)) = b(x), x ∈ Ω,(84)

u(x) = 0, x ∈ ∂Ω,(85)
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with a given function b ∈ L2(Ω,R3) and a Y -periodic linear positive definite
mapping D[y] : S3 	→ S3, the elasticity tensor. D[y] is such that there exist two
positive constants 0 < α ≤ β satisfying

α|ξ|2 ≤ Dijkl[y]ξklξij ≤ β|ξ|2 for any ξ ∈ S3.(86)

The last assumption (86) implies that the mapping D[y] belongs to L∞(Y,S3) and,
consequently, by virtue of the first Korn’s inequality (see, for example, [28]) that
the problem (84)–(85) admits a unique solution uη in H1

0 (Ω,R3), which satisfies the
estimate

‖uη‖1,Ω ≤ C‖b‖2,(87)

where C is a positive constant that depends on Ω and α and not on η.
Theorem 4.2. The sequence uη of solutions of the problem (84)–(85) converges

weakly to u(x) in H1
0 (Ω,R3), and the sequence ∇uη two-scale converges to ∇u(x) +

∇yu1(x, y), where (u, u1) ∈ H1
0 (Ω,R3)×L2(Ω,W (Y,R3)) is the unique solution of the

following two-scale homogenized system:

−divy[D[y]ε(∇u(x) + ∇yu1(x, y))] = 0 in Ω × Y,

−divx

[∫
Y

D[y]ε(∇u(x) + ∇yu1(x, y))dy

]
= b(x) in Ω,

y 	→ u1(x, y) Y-periodic.

Proof. By virtue of the estimate (87) and Proposition 1.14 in [6], the sequence
uη and the sequence of its gradient ∇uη, up to a subsequence, have the weak limit
u ∈ H1

0 (Ω,R3) and the two-scale limit ∇u(x) + ∇yu1(x, y), respectively, with u1 ∈
L2(Ω,W (Y,R3)).

Multiply (84) by a test function ψ(x) + ηψ1(x, x/η), with ψ ∈ C∞
0 (Ω,R3) and

ψ1 ∈ C∞
0 (Ω, C∞(Y,R3)). Integration by parts of the resulting equation and some

rewriting imply∫
Ω

∇uη(x)D
[
x

η

]
ε

[
∇ψ(x) + ∇yψ1

(
x,

x

η

)]
dx(88)

+η

∫
Ω

D
[
x

η

]
ε(∇uη(x))ε

(
∇xψ1

(
x,

x

η

))
dx =

∫
Ω

b(x)

(
ψ(x) + ηψ1

(
x,

x

η

))
dx.

Here the symmetry of D was used in the first term.
It is easily seen now that applying consecutively the limit relation in the definition

of the admissible test functions and Theorem 1.8 in [6] justifies the passage to the
two-scale limit in (88):∫

Y

∫
Ω

D[y]ε(∇u(x) + ∇yu1(x, y))ε(∇ψ(x) + ∇yψ1(x, y))dxdy

=

∫
Ω

b(x)ψ(x)dx.(89)

Equation (89) holds true for any function (ψ,ψ1) ∈ H1
0 (Ω,R3)×L2(Ω,W (Y,R3)).

Equation (89) is the variational formulation associated with the two-scale homoge-
nized problem stated above. Due to the first Korn’s inequality and to the Korn’s
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inequality for periodic functions (see [28]), the Hilbert space H = H1
0 (Ω,R3)×

L2(Ω,W (Y,R3)) can be endowed with the following norm:

‖Ψ‖2
H = ‖ψ‖2

1,Ω + ‖ε(∇yψ1)‖2
Ω×Y .

Then the application of the Lax–Milgram lemma shows that there exists a unique
solution of the two-scale homogenized problem. Consequently, the entire sequences
uη(x) and ∇uη(x) converge to u(x) and ∇u(x) + ∇yu1(x, y).

4.3. Homogenization of the second order elliptic operators with non-
uniformly oscillating coefficients. For another interesting application of a pa-
rameter y consider the following problem with nonuniformly oscillating coefficients
(Chapter 1, section 6 in [9]):

−div D
[
x,

x

η

]
(∇xuη(x)) = b(x), x ∈ Ω,(90)

uη(x) = 0, x ∈ ∂Ω,(91)

with a given b ∈ L2(Ω) and with a Y -periodic in y matrix D[x, y]. We assume that
there exist two positive constants 0 < α ≤ β such that the matrix D[x, y] satisfies

α|ξ|2 ≤ Dij [x, y]ξiξj ≤ β|ξ|2 for any ξ ∈ R
N .(92)

The last assumption (92) implies that the mapping D[x, y] belongs to L∞(Ω×Y,RN×N ).
But it is not enough to ensure that the mapping x 	→ D[x, x/η] is measurable, so in [9]
it is assumed that D ∈ C(Ω, L∞(Y,RN×N )) to obtain a solution of (90)–(91). Instead
of increasing the regularity of D[x, y] we consider a family of shifted problems

−divx D
[
x,

x

η
+ y

]
(∇xuη(x, y)) = b(x), (x, y) ∈ Ω × Y,(93)

uη(x, y) = 0, (x, y) ∈ ∂Ω × Y.(94)

Now the problem (93)–(94) admits a unique solution uη in L2(Y,H1
0 (Ω)), which sat-

isfies the estimate

‖uη‖L2(Y,H1
0 (Ω)) ≤ C‖b‖Ω,

where C is a positive constant independent of η. For a.e. fixed y ∈ Y the existence of
the solution is provided by the well-known result for second order elliptic operators
and the integrability with respect to y is then the easy consequence of it.

It is convenient now to write (93)–(94) in the form

−divxση(x, y) = b(x), (x, y) ∈ Ω × Y,(95)

ση(x, y) = D
[
x,

x

η
+ y

]
(∇xuη(x, y)) , (x, y) ∈ Ω × Y,(96)

uη(x, y) = 0, (x, y) ∈ ∂Ω × Y.(97)

Now the solution of (95)–(97) is a function (uη, ση) ∈ L2(Y,H1
0 (Ω))×L2(Ω×Y,RN ).

Then inserting the formal ansatz for the solution uη

ûη(x, y) = u0(x) + ηu1

(
x,

x

η
+ y

)
+ η2u2

(
x,

x

η
+ y

)
+ · · ·
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into the boundary problem (93)–(94) and identifying powers of η lead to the homog-
enized problem

−divxσ∞(x) = b(x),

σ∞(x) =
1

|Y |

∫
Y

σ0(x, y)dy,

−divyσ0(x, y) = 0,

σ0(x, y, t) = D[x, y](∇yu1(x, y) + ∇xu0(x)),

which must hold for (x, y) ∈ Ω × Y ,

u0(x) = 0,

which must hold for x ∈ ∂Ω. This form of the homogenized problem is equivalent
to the already obtained one in [9]. A slight modification of the proof of Lemma 2.7
yields the following convergence result:

lim
η→0

(‖u0 − uη‖Ω×Y + ‖σ0 − ση‖Ω×Y ) = 0,(98)

where (u0, u1, σ0) is the solution of the homogenized problem and (uη, ση) is the
solution of the problem (95)–(97) with a parameter y.

Equation (98) holds without imposing additional regularity on D[x, y], b(x), and
∂Ω.
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FLUX OF SUPERCONDUCTING VORTICES THROUGH A DOMAIN∗
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Abstract. This article addresses the mathematical study of a mean-field model of supercon-
ducting vortices in a II-type superconductor, previously introduced in [S. J. Chapman, SIAM J.
Appl. Math., 55 (1995), pp. 1259–1279]. We investigate a hyperbolic-elliptic type system of PDEs in
a given domain. Motivated by physical experiments, we consider nonzero and nonconstant boundary
conditions, which describe a flux of superconducting vortices through the domain. We prove the
existence of the regular solutions of a parabolic-elliptic approximated system and establish a uni-
form L∞-bound for the vorticity and the convergence to the initial system. Finally, we analyze the
regularity of weak solutions.
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1. The statement of the problem. Certain materials, when cooled through
a critical temperature, exhibit a superconducting state in which they have the ability
to conduct electric currents without resistance. Many models have been proposed to
describe the behavior of superconductors: the microscopic theory of Bardeen, Cooper,
and Schrieffer, the mesoscopic theories of London, Ginzburg, and Landau, and the
macroscopic critical state theories, like the Bean model. For the description and
relationship of these models we refer to the excellent works of Chapman [3], [4]. In
this paper we investigate a mean-field model of superconducting vortices in a II-
type superconductor, formulated in [5]. In 1-D and 2-D cases the following system
describes the evolution of the vorticity ω and the average magnetic field h of the
superconducting sample:

ωt + div (ω�v) = 0, (�x, t) ∈ ΩT := Ω × (0, T ),(1.1)

−Δh + h = ω, (�x, t) ∈ ΩT ,(1.2)

�v = −∇h, (�x, t) ∈ ΩT ,(1.3)

with the following boundary conditions:

�v �n = a(�x, t), (�x, t) ∈ ΓT := Γ × (0, T ),(1.4)

ω = b(�x, t), (�x, t) ∈ Γ−
T := Γ− × (0, T )(1.5)

and the initial conditions

ω(�x, 0) = ω0(�x), �x ∈ Ω.(1.6)
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Here �n denotes the outward normal to the C2+γ-smooth boundary Γ = Γ+ ∪Γ0 ∪Γ−

of the bounded domain Ω ⊂ R
n, with some γ > 0; Γ+ is the part of the boundary

Γ, where �v �n = a > 0; Γ0 is the part of Γ, where �v �n = a = 0; Γ− is the part of Γ,
where �v �n = a < 0 and meas(Γ+) �= 0, meas(Γ−) �= 0. Let us note that the physical
statement of the system is valid just for n = 1 and n = 2, but in this article we
shall consider the common case, when n ≥ 1. Note that the system (1.1)–(1.3) is of
hyperbolic-elliptic type for unknown functions {ω, h}.

Many articles on (1.1)–(1.3) have been written in the last ten years. The prob-
lem has been studied through various approaches ranging from asymptotic analysis,
numerical simulations, and rigorous mathematical analysis. As we know that the
first positive existence result for the system (1.1)–(1.3), (1.6) was obtained by Huang
and Svobodny [12] in the case of the Cauchy problem for the domain Ω = R

2, us-
ing the method of characteristics and potentials. In the articles [2], [17], the system
(1.1)–(1.3), (1.6) was considered in the case of a bounded domain Ω with boundary
conditions

h(�x, t) = a, (�x, t) ∈ ΓT ,

ω(�x, t) = b, (�x, t) ∈ Γ−
T ,(1.7)

where a, b are given constants. In [17] the existence of a weak solution of (1.1)–
(1.3), (1.6)–(1.7) for b = 0 was deduced by an approach based on a parabolic-elliptic
approximation. In the 1-D case the authors have shown the uniqueness of the solution.
Also in this work and in [6] the existence of a steady state solution {ω, h} of (1.1)–(1.3),
(1.6)–(1.7) was demonstrated. In [9] the solvability of (1.1)–(1.3), (1.6)–(1.7) with an
additional curvature term in (1.1) was shown. In [10], the case of flux pinning and
boundary nucleation of vorticity (i.e., the constants a, b > 0) was considered, where
existence and uniqueness of a solution in the 1-D case were proved. The discretization,
the convergence of discretizated solutions, and numerical simulations of (1.1)–(1.3)
were extensively studied in articles [7], [11], [19], [2]. In all mentioned works the
boundary conditions (1.7) were taken as zero or constant valued. The evolution of
vortices arises under penetration of the magnetic field into superconducting bodies
and due to it the vortices are generated only at the boundary, hence the question of
the boundary conditions is important in the modelling of the motion of the vortices.
Chapman discussed this question in many articles (see, for instance, [3], [4], [5]). One
of the possible boundary conditions suggested by him is to define the value of the
vorticity ω on Γ− as a nonlinear combination of the current ∇⊥h,

(1.8) ω = αmax{|∇⊥h| − J, 0} on Γ−
T ,

where α, J are physical constants. The physical meaning of the condition (1.8) is
that the nucleation of the vortices at the boundary provided the magnitude of current
is larger than the so-called nucleation current J . The nucleation of the vorticity
is a consequence of the behavior of the current ∇⊥h, i.e., the case of nonzero or
nonconstant boundary conditions is really physical.

In this article we assume that the nucleation of the vorticity can be measured by
a physical experiment, which is possible (we refer to the Web site: http://www.fys.
uio.no/super/results/sv/index.html), that is, the normal component of the velocity �v
and the vorticity ω on the boundary Γ are defined by (1.4) and (1.5), respectively.
The system (1.1)–(1.6) exhibits a transport effect, which plays an important role in
understanding the behavior of the vortices after the nucleation.
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In this article, we consider the problem (1.1)–(1.6) for the general case, when
a(�x, t), b(�x, t) are arbitrary given functions of the conditions (1.4)–(1.5). We prove
the existence of solution {ω, h} with a natural smooth restriction on the data of the
problem.

1.1. Terminology and notations. In accordance with the notations intro-
duced in the books [14], [15], we shall use Sobolev’s spaces Lq(Ω), W l

q(Ω), W l,m
q (ΩT ),

W l
q(Γ), W l,m

q (ΓT ) for l, q ≥ 1, m ≥ 0 and the Hölder spaces Cl(Ω), Cl,m(ΩT ),

Cl,m(ΓT ) for l,m ≥ 0, where the index l corresponds to the variable �x and m to the
variable t ( l, q,m are integer or noninteger).

Let B be a given Banach space. We denote by C(0, T ;B) the space of continuous
functions from [0, T ] into the Banach space B with the norm

||u||C(0,T ; B) = max
t∈[0,T ]

||u(t)||B

and by Lp(0, T ;B) for any 1 ≤ p ≤ ∞, the space of measurable functions from [0, T ]
into the Banach space B with pth power summable on [0, T ], with the norm

||u||Lp(0,T ; B) =

(∫ T

0

||u(t)||pBdt
) 1

p (
= ess sup

0<t<T
||u(t)||B if p = ∞

)
.

We also introduce the space V 1,0
2 (ΩT ) with the norm

||u||V 1,0
2 (ΩT ) = max

t∈[0,T ]
||u(x, t)||L2(Ω) + ||ux(x, t)||L2(ΩT ).

1.2. Regularity of data. We assume that the datum a satisfies the condition

(1.9) a ∈ Cη, θ(ΓT ) for some η, θ ∈ (0, 1)

and the data b, ω0 admit an extension ω̆, defined on the domain ΩT , such that

ω̆(�x, t) = b(�x, t), (�x, t) ∈ Γ−
T ; ω̆(�x, 0) = ω0(�x), �x ∈ Ω;(1.10)

and ω̆ satisfies

0 ≤ ω̆(�x, t) ≤ ℵ for a.e. (�x, t) ∈ ΩT ,(1.11)

(||∂tω̆(·, t)||L1(Ω) + || � ω̆(·, t)||L1(Ω) + || � ω̆(·, t)||L∞(Ω)) ∈ L1(0, T ),(1.12)

where ℵ is a constant.
Remark 1. The assumption (1.11) implies that the functions ω0 and b are positive

and bounded above by the constant ℵ on Ω and Γ−
T , respectively. In section 6 we give

sufficient conditions on the data b, ω0 that permit the existence of an extension ω̆ on
the domain ΩT , satisfying the conditions (1.10)–(1.12).

Let us give the definition of the weak solution of our problem.
Definition 1. A pair of functions {ω, h} is said to be a weak solution of the

problem (1.1)–(1.6), if ω ∈ L∞(ΩT ), h ∈ L∞(0, T ; C1+α(Ω)) ∩ L2(0, T ; W 2
2 (Ω′)) for

some α ∈ (0, 1) and for any subdomain Ω′ of Ω such that Ω′ ⊂ Ω and the following
equalities: ∫

ΩT

ω(ψt + �v∇ψ) d�xdt +

∫
Ω

ω0 ψ(�x, 0) d�x = −
∫

Γ−
T

a b ψ d�xdt,(1.13)

−Δh + h = ω a.e. in ΩT ,(1.14)

�v = −∇h a.e. in ΩT ,(1.15)

−∇h�n = a a.e. on ΓT(1.16)
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hold for an arbitrary function ψ ∈ H1(ΩT ), such that

ψ(�x, T ) = 0 for �x ∈ Ω and ψ(�x, t) = 0 for (�x, t) ∈ Γ+
T ∪ Γ0

T .(1.17)

Our main result in this work is the following theorem.
Theorem 1. If the data a, b, ω0 satisfy (1.9)–(1.12), then there exists at least

one weak solution {ω, h} of the problem (1.1)–(1.6). Moreover, we have

ω ∈ L∞(ΩT ), ∂tω ∈ L∞(0, T ;H−1(Ω))(1.18)

and

h ∈ L∞(0, T ; C1+η(Ω)) ∩ L∞(0, T ; W 2
q (Ω′)),

h, �h ∈ C0, θ(Ω′ × [0, T ])(1.19)

for any q ∈ (1,∞) and for any Ω′, such that Ω′ ⊂ Ω.
Remark 2. A similar result is valid for both Dirichlet and Robin boundary con-

ditions (in accordance with “www.wikipedia.org” terminology), instead of (1.16), on
the function h. For simplicity, we prove this theorem for the dimension n ≥ 2.

We divide the proof of this theorem into four steps:
Step 1: In section 2, we remember well-known results from the theory of elliptic

equations that will be very useful in what follows.
Step 2: In section 3, we show that an approximate problem of (1.1)–(1.6), which

is of parabolic-elliptic type, is solvable, if the initial and boundary conditions are
smooth; the reasoning is based on the Schauder fixed point theorem.

Step 3: In section 4, by using the principle of maximum-minimum and the results
of potential theory for elliptic equations, mentioned in section 2, we deduce L∞-
estimates and some additional a priori estimates for the solutions of the approximate
problem of (1.1)–(1.6).

Step 4: In section 5, we use a compactness argument to establish the existence of
a solution for the original problem.

2. Auxiliary assertions. The elliptic boundary value problem. In this
section, for the convenience of the reader, we give well-known results on elliptic equa-
tions.

According to the potential theory for elliptic equations [20], the solution of the
problem ⎧⎨

⎩
−Δh1 + h1 = F, �x ∈ Ω,

−∇h1 �n = 0, �x ∈ Γ
(2.1)

can be written in the form h1(�x) = (K1 ∗ F )(�x) :=
∫
Ω
K1(�x, �y) F (�y) d�y, and the

solution of the problem ⎧⎨
⎩

−Δh2 + h2 = 0, �x ∈ Ω,

−∇h2 �n = g, �x ∈ Γ
(2.2)

can be written in the form h2 = (K2 ∗ g)(�x) :=
∫
Γ
K2(�x, �y)g(�y) d�y. Since Γ is C2+γ-

smooth, the kernels K1, K2 satisfy the inequalities

|Ki(�x, �y)| ≤ C|x− y|2−n,

|∇�xKi(�x, �y)| ≤ C|x− y|1−n, i = 1, 2, for any �x, �y ∈ Ω
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in the n-dimensional case with n > 2 and

|Ki(�x, �y)| ≤ C|ln|x− y||,
|∇�xKi(�x, �y)| ≤ C|x− y|−1, i = 1, 2, for any �x, �y ∈ Ω

in the 2-D case.
According to the theory of elliptic equations [15, pp. 169–193], the embedding

theorem of Sobolev, W 1
p (Ω) ⊂ Cα(Ω) with α = 1− n

p if n < p < ∞ (see, for instance,

[14, p. 61]), and the potential theory [13, p. 191, Lemma 1.4], [8, p. 88, Lemma 10.1];
[16, p. 100, Theorem 3.4 and Remark], the operators F → K1 ∗F , g → K2 ∗ g possess
the following properties.

Lemma 1. For any n-dimensional case with n ≥ 2
(1) the function h1 = K1 ∗ F satisfies the following estimates:

h1 ≥ 0 in Ω if F ≥ 0 a.e. in Ω,(2.3)

||h1||W 2
p (Ω) ≤ C||F ||Lp(Ω) if 1 < p < ∞,(2.4)

||h1||C1+α(Ω) ≤ C||F ||Lp(Ω) α = 1 − n

p
if n < p < ∞,(2.5)

||h1||C1+α(Ω) ≤ C||F ||L∞(Ω) ∀ α ∈ (0, 1),(2.6)

||h1||W 1
1 (Ω) ≤ C||F ||L1(Ω).(2.7)

(2) the function h2 = K2 ∗ g satisfies the following estimates:

||h2||C1+α(Ω) ≤ C||g||Cα(Γ) if 0 < α < 1,(2.8)

||h2||Cl(Ω
′
) ≤ C||g||L1(Γ),(2.9)

for any Ω′, such that Ω
′ ⊂ Ω and any l ≥ 0.

3. Construction of approximate solutions. Let ω̆ε, aε for ε > 0 be smooth
approximations of the functions ω̆, a, such that

0 ≤ω̆ε(�x, t)≤ ℵ for (�x, t) ∈ ΩT ,

0 <aε(�x, t) for (�x, t) ∈ Γ+
T ,

0 =aε(�x, t) for (�x, t) ∈ Γ0
T ,

aε(�x, t)< 0 for (�x, t) ∈ Γ−
T .(3.1)

We require also that ⎧⎪⎨
⎪⎩

ω̆ε(�x, t)−→
ε→0

ω̆(�x, t) a.e. in ΩT ,

||aε − a ||Cη,θ(ΓT ) −→
ε→0

0
(3.2)

and ∫ T

0

{||∂t(ω̆ε − ω̆)||L1(Ω) + || � (ω̆ε − ω̆)||L1(Ω)

+ || � (ω̆ε − ω̆)||L∞(Ω)} dt−→
ε→0

0.(3.3)

Let us fix a positive number R. Next we construct the pair {ωε,R, hε,R} as a solution
of auxiliary Problem Pε,R. For the sake of simplicity, in this section we suppress
the dependence ωε,R, hε,R on ε,R and write ω and h.
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Let us consider the problem which is a coupling of the following two systems.
Problem Pε,R. Find ω ∈ W 2,1

2 (ΩT ), satisfying the system⎧⎨
⎩

ωt + div(ω�v) = εΔω and �v = −∇h for (�x, t) ∈ ΩT ,

ω(�x, t) = ω̆ε(�x, t), (�x, t) ∈ ΓT , ω(�x, 0) = ω̆ε(�x, 0), �x ∈ Ω
(3.4)

and find h ∈ W 2
2 (Ω), satisfying the system⎧⎨

⎩
−Δh + h = [ω]R, (�x, t) ∈ ΩT ,

−∇h�n = aε(�x, t), (�x, t) ∈ ΓT ,
(3.5)

where [·]R is the cut-off function defined as [φ]R := max{0, min{R,φ}}.
To prove the solvability of Problem Pε,R we use the Schauder fixed point argu-

ment. Let us introduce the class of functions

M = {ω(�x, t) ∈ C(0, T ; L2(Ω)) : ||ω||C(0,T ; L2(Ω)) ≤ M},(3.6)

where an exact value of M will be determined below. First we define the operator T1,
which transforms a “fixed” vorticity into the corresponding superconductive field

M � ω̃ �→ T1[ω̃] = h(3.7)

as the solution of (3.5), where instead of ω we put the chosen ω̃. By (2.1), (2.2) the
solution h can be represented in the form

(3.8) h(�x, t) = (K1 ∗ [ω̃]R)(�x, t) + (K2 ∗ aε)(�x, t)

for a.e. (�x, t) ∈ ΩT , and by (2.5), (2.8) of Lemma 1 we derive the estimate

||h||L∞(0,T ; C1(Ω)) ≤ C(|| [ω̃]R ||L∞(ΩT ) + ||aε||L∞(0,T ; Cη(Γ)))

≤ C(R + 1),(3.9)

where the constant C depends on the datum aε being independent of ε,R. The second
operator T2 describes the evolution of the vorticity

�v = −∇h �→ T2[h] = ω,(3.10)

where ω is the solution of (3.4) for the found “superconductive field” h in (3.7).
Taking into account (3.9) and the results of [14, Theorem 4.1, p. 153 and Theorem
4.2, p. 160], there exists a unique weak solution ω of (3.4) such that

||ω||V 1,0
2 (ΩT ) ≤ C∗,(3.11)

||ω(·, t1) − ω(·, t2)||L2(Ω) ≤ φ∗(|t1 − t2|) ∀t1, t2 ∈ [0, T ],(3.12)

where the constant C∗ and the function φ∗ = φ∗(t) ∈ C([0, T ]), φ∗(0) = 0 depend on
ε,R and the data ω̆ε, aε. Setting M := C∗ in (3.6) and T = T2 ◦ T1, by (3.6), (3.11),
(3.12), we see that T maps the bounded set M into a compact subset of M.

In order to apply the Schauder fixed point theorem we need to prove that the
operator T is continuous. Let ω̃n, ω̃ ∈ M and ω̃n → ω̃ in C(0, T ; L2(Ω)). From (3.8)
and (2.5) of Lemma 1, it follows that for any p > n

||∇hn −∇h||Cα(Ω) ≤ C||[ω̃n]R − [ω̃]R||Lp(Ω)

≤ C · (2R)
p−2
p ||[ω̃n]R − [ω̃]R||2/pL2(Ω) ≤ C(R)||ω̃n − ω̃||2/pL2(Ω)

n→∞−→ 0,
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where the constant C(R) depends on R being independent of ε and the index n. Hence

||∇hn −∇h||C(0,T ; Cα(Ω)) → 0,(3.13)

where hn and h are the solutions of (3.5) with ω replaced by ω̃n and ω̃, respectively.
Next we consider ωn = T [ω̃n] and ω = T [ω̃n]. Using (3.13) and the results of [14] we
conclude that

max
t∈[0,T ]

||ωn(·, t) − ω(·, t)||L2(Ω) + ||∇(ωn − ω)||L2(ΩT ) → 0.

Therefore we conclude that the sequence ωn itself converges to ω and the continuity
of the operator T is proved.

Hence there exists a fixed point ω, such that ω = T [ω]. We now show the following
lemma.

Lemma 2. There exists at least one solution {ω, h} of the systems (3.4)–(3.5),
such that for some α ∈ (0, 1)

ω ∈W 1,0
2 (ΩT ) ∩ C(0, T ; L2(Ω)), h ∈ C(0, T ; C1+α(Ω)).

By the theory of parabolic and elliptic equations the constructed functions ω, h
have a better regularity. In fact we deduce the following result.

Theorem 2. For fixed ε,R > 0, there exists a unique pair of functions

ω ∈ W 2,1
2 (ΩT ) ∩ Cα,α/2(ΩT ), h ∈ C2+α,α/2(ΩT )(3.14)

for some α ∈ (0, 1), which is the solution of Problem Pε,R.
Proof. Because of (3.1), the function ω̆ε is bounded in ΩT by the constant ℵ.

Applying Theorem 7.1, p. 181 of [14], we have

||ω||L∞(ΩT ) ≤ C(R, ε)ℵ,(3.15)

where the constant C(R, ε) depends on R, ε. Hence ω is the solution of the equation

ωt − εΔω = F(�x, t), (�x, t) ∈ ΩT

with F = −∇ω�v−ω([ω]R−h) ∈ L2(ΩT ) by (3.9), (3.11), (3.15). Using Theorem 6.1,
p. 178 of [14], we deduce ω(�x, t) ∈ W 2,1

2 (ΩT ) and also by Theorem 10.1, p. 204 of
[14], we have ω ∈ Cα,α/2(ΩT ) for some α ∈ (0, 1). Moreover, by the theory of elliptic
equations [15], we conclude that h ∈ C2+α,α/2(ΩT ).

The uniqueness of the solution {ω, h} for Problem Pε,R follows in the usual
way. Let ωi, hi, i = 1, 2, be different solutions of Problem Pε,R and ω = ω1−ω2, h =
h1 − h2. Then the pair {ω, h} satisfies⎧⎨

⎩
ωt − εΔω = div(∇h1ω + ω2∇h), (�x, t) ∈ ΩT ,

ω(�x, t) = 0, (�x, t) ∈ ΓT , ω(�x, 0) = 0, �x ∈ Ω,

⎧⎨
⎩

−Δh + h = [ω1]R − [ω2]R, (�x, t) ∈ ΩT ,

−∇h�n = 0, (�x, t) ∈ ΓT .
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Multiplying the first equation by ω, the second one by h, and integrating them over
Ω, we obtain the following relations:

1

2

d

dt

∫
Ω

ω2 d�x + ε

∫
Ω

|∇ω|2 d�x = −
∫

Ω

(∇h1ω + ω2∇h)∇ω d�x,∫
Ω

(
|∇h|2 + |h|2

)
d�x =

∫
Ω

([ω1]R − [ω2]R)h d�x.

Applying the property of the cut-off function, that |[ω1]R − [ω2]R| ≤ |ω1 − ω2| , and
Cauchy’s inequality, we come to the inequality

d

dt

∫
Ω

ω2 d�x + ε

∫
Ω

|∇ω|2 d�x ≤ C

∫
Ω

ω2 d�x and

∫
Ω

ω2(�x, 0) d�x = 0

with some constant C = C(ε, ‖∇h1‖L∞(ΩT ) , ‖ω2‖L∞(ΩT )). Application of the stan-
dard Gronwall inequality completes the proof of the uniqueness of solution.

4. A priori estimates independent of ε,R. In this section we derive a priori
estimates of the solution {ωε,R, hε,R} for Problem Pε,R, which do not depend on
ε,R.

In sections 4, 5, and 6, all constants C, which are used in a priori estimates, do
not depend on ε and R.

4.1. Maximum-minimum principle for ω and h. In this section, we show
that the solution {ωε,R, hε,R} is bounded in L∞(ΩT ), independently of ε,R. Through-
out the section, for simplicity of presentation, we continue to suppress the dependence
of ωε,R and hε,R on ε,R and write ω and h.

The proof of boundedness of the functions ω, h is divided into a few lemmas. First
let us show the positivity of ω.

Lemma 3. For all (�x, t) ∈ ΩT

ω(�x, t) ≥ 0.(4.1)

Proof. By (3.14) we have

sup
�x∈Ω

∣∣∣div�v(�x, t)
∣∣∣ ≤ λ(t) = max

�x∈Ω

∣∣∣[ω(�x, t)]R − h(�x, t)
∣∣∣ ∈ C(0, T ).(4.2)

Let us denote ω− = min(ω, 0). Then using (3.1), the first equation of (3.4), and
the boundary condition ω−(�x, t) = 0 for all (�x, t) ∈ ΓT , it is easy to verify that the
function ω− satisfies the inequality

d

dt

∫
Ω

ω2
− d�x + ε

∫
Ω

∣∣∣∇ω−

∣∣∣2 d�x = −
∫

Ω

div�v ω2
− d�x ≤ λ(t)

∫
Ω

ω2
− d�x.

Since ω−(�x, 0) = 0 for all �x ∈ Ω, from the Gronwall inequality we have ω− = 0 for
all (x, t) ∈ ΩT , which implies (4.1).

Now we show that ω is bounded in the space L1(Ω).
Lemma 4. There exists a constant Υ0, independent of R, ε, such that

||ω(·, t)||L1(Ω) ≤ Υ0 ∀t ∈ [0, T ].(4.3)

Proof. The function z = ω − ω̆ε satisfies the problem⎧⎨
⎩

zt + div (z�v) = εΔz + F, (�x, t) ∈ ΩT ,

z|ΓT
= 0, (�x, t) ∈ ΓT , z|t=0 = 0, �x ∈ Ω

(4.4)
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with

F = ε� ω̆ε − ∂tω̆
ε − div (�v ω̆ε).(4.5)

By (3.1)–(3.3) and (3.5), we have

||div (�v ω̆ε)(·, t)||L1(Ω) ≤ ||ω̆ε||L∞(ΩT ) ||[ω]R − h||L1(Ω)

+||∇ω̆ε(·, t)||L∞(Ω) ||�v||L1(Ω) ≤ λ(t)(||[ω]R − h||L1(Ω) + ||�v||L1(Ω))(4.6)

with λ(t) ∈ L1(0, T ). Using (3.8) and the estimates (2.7), (2.8) of Lemma 1, we derive
that for a.e. t ∈ [0, T ],

||h(·, t)||L1(Ω)

||�v(·, t)||L1(Ω)

⎫⎬
⎭ ≤ C(||ω(·, t)||L1(Ω) + ||aε(·, t)||Cη(Γ))

≤ C||z(·, t)||L1(Ω) + C.(4.7)

Therefore, according to (3.2), (3.3), we deduce that

||F (·, t)||L1(Ω) ≤ λ(t)
(
||z(·, t)||L1(Ω) + 1

)
with λ(t) ∈ L1(0, T ),(4.8)

where λ(t) does not depend on ε,R. Multiplying (4.4) by sgnδz := z√
z2+δ

with some

δ ∈ (0, 1), we obtain that

∂t((z
2 + δ)1/2) + div(�v (z2 + δ)1/2) − δ

(z2 + δ)1/2
div�v

= ε div

(
∇z

z

(z2 + δ)1/2

)
− εδ

|∇z|2
(z2 + δ)3/2

+ F sgnδz.(4.9)

Taking into account that z = 0 on ΓT and integrating this equality over Ω, we have

d

dt

(
||
√
z2 + δ||L1(Ω)

)
+ Iδ(t) ≤ λ(t)

(
||z||L1(Ω) + 1

)
for a.e. t ∈ [0, T ],

with Iδ(t) =
∫
Ω
[div(�v

√
z2 + δ) − δ

(z2+δ)1/2 div�v] d�x. Since

|Iδ| ≤ δ1/2

{∫
Ω

(|ω| + |h|) d�x +

∣∣∣∣
∫

Γ

aε d�x

∣∣∣∣
}
−→
δ→0

0,

we deduce the inequality

d

dt
||z||L1(Ω) ≤ λ(t) (||z||L1(Ω) + 1), a.e. t ∈ [0, T ],

where the function λ(t) does not depend on ε,R. Hence applying the Gronwall in-
equality, we obtain ||z(·, t)||L1(Ω) ≤ C for t ∈ [0, T ] with the constant C independent
of ε,R. This immediately implies the estimate (4.3).

Now we prove an auxiliary lemma.
Lemma 5. There exists a positive constant R∗, such that

(4.10) max
ΩT

ω(�x, t) ≤ max

{
max
ΩT

h(�x, t), ℵ
}
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for any fixed R ≥ R∗. The constant R∗ depends on Υ0,Γ,Ω, ||a||L∞(0;T ; Cη(Γ)) and ℵ
being independent of ε.

Proof. (A) If ω attains its maximum on the parabolic boundary ΓT , then (4.10)
is obvious.

(B) If ω attains a positive maximum ω = ω(�x0, t0) inside ΩT , then we come to
the relation

(4.11) 0 ≤ ωt(�x0, t0) − ε � ω(�x0, t0) = ω(h(�x0, t0) − [ω]R)

and hence

[ω]R = min{R,ω} ≤ max
ΩT

h(�x, t).

Let us consider two possibilities.
(B.1) If ω ≤ R, we have [ω]R = ω ≤ maxΩT

h(�x, t), and therefore (4.10) is
proved.

(B.2) If ω > R, we have

(4.12) R ≤ max
ΩT

h(�x, t).

Let us prove that this case is impossible for large enough R. Using the representation
(3.8), Lemma 4, and (2.3), (2.5), (2.8) of Lemma 1, we have

max
Ω

|h| ≤ max
Ω

|K1 ∗ ([ω]R
1/q

[ω]R
1−1/q

)| + max
Ω

|h2|

≤ C(q,Ω) ||ω||L1(Ω) R1−1/q + C(Γ)||aε||Cη(Γ)

≤ C(q,Ω) Υ0 R1−1/q + C(Γ)||aε||Cη(Γ)

with n < q < ∞. The previous inequality implies that

max
ΩT

|h| ≤ C∗

(
max
ΩT

R1−1/q + 1

)

with some constant C∗ = C(q,Ω,Γ,Υ0, ||a||L∞(0;T ; Cη(Γ))), which does not depend on
ε,R. Since 0 < 1 − 1/q < 1, there exists a constant R∗, depending on C∗, such that
C∗(R

1−1/q + 1) ≤ R
2 for any R ≥ R∗. Therefore we conclude that

max
ΩT

|h| ≤ R

2
for any R ≥ R∗.

But this inequality contradicts with (4.12).
Remark 3. Let us note that if we consider that the system (3.4)–(3.5) with the

right side of (3.5) equals ω, instead of [ω]R, then the desired assertion of Lemma 5
follows immediately from an analog of the relation (4.11),

(4.13) 0 ≤ ωt(�x0, t0) − ε � ω(�x0, t0) = ω(h(�x0, t0) − ω).

Now we are able to show the boundedness of {ω, h} in L∞(ΩT ).
Lemma 6. There exist constants Υ1,Υ2 depending on the data ω̆, a, but inde-

pendent of R, ε, such that

||ω||L∞(ΩT ) ≤ Υ1,(4.14)

||h||L∞(ΩT ), ||∇h||L∞(ΩT ) ≤ Υ2.(4.15)
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Proof. Using the representation (3.8), Lemma 4, and (2.3), (2.5), (2.8) of Lemma
1, we have

max
Ω

|h| ≤ max
Ω

|K1 ∗ ([ω]R
1/q

[ω]R
1−1/q

)| + max
Ω

|h2|

≤ C(q,Ω) Υ0 max
Ω

ω1−1/q + C(Γ)||aε||Cη(Γ)

with n < q < ∞. The previous inequality implies that

(4.16) max
ΩT

|h| ≤ C

(
max
ΩT

ω1−1/q + ||a||L∞(0;T ; Cη(Γ))

)

with some constant C = C(q,Ω,Γ,Υ0), which does not depend on ε,R. Joining (4.10)
and (4.16), we obtain the inequality

(4.17) max
ΩT

ω ≤ C max

{
max
ΩT

ω1−1/q + ||a||L∞(0;T ; Cη(Γ)), ℵ
}
,

which leads to (4.14), because 0 < 1 − 1/q < 1. The estimates (4.15) follow immedi-
ately from (2.5), (2.8) of Lemma 1. This completes the proof.

Choosing R := max{R∗,Υ1} in (3.5), we see that the cut-off function [·]R in (3.5)
can be omitted. In the following, we consider the solution of (3.4), (3.5) as ωε, hε,
depending only on ε (not R).

4.2. Estimates of derivatives. From this section we shall write ωε, hε, and
�vε = −� hε. Let us show the following lemma.

Lemma 7. There exist constants C independent of ε, such that

||
√
ε∇ωε||L2(ΩT ) ≤ C,(4.18)

||∂t(ωε)||L2(0,T ; H−1(Ω)) ≤ C,(4.19)

||hε||L∞(0,T ; C1+η(Ω)) ≤ C,(4.20)

||hε(·, t)||L∞(0,T ; W 2
p (Ω′)) ≤ C,(4.21)

for any p ∈ [1,∞) and for any Ω′, such that Ω′ ⊂ Ω.
Proof. According to Lemma 6, we have that

(4.22) ||hε||L∞(ΩT ), ||∇hε||L∞(ΩT ), ||ωε||L∞(ΩT ) ≤ Υ3,

where Υ3 is independent of ε. Multiplying (4.4) by zε = ωε − ω̆ε and using (3.1),
(4.22), div�vε = ωε − hε, we easily get

1

2

d

dt
||zε||2L2(Ω) + ε||∇zε||L2(Ω)

≤ −
∫

Ω

div�vε
z2
ε

2
d�x +

∫
Ω

Fε zε d�x ≤ C + C||Fε||L1(Ω).

Integrating on (0, T ) and taking into account (1.12), (3.3), we have

||
√
ε∇zε||L2(ΩT ) ≤ C,(4.23)

which implies (4.18).
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Let us choose an arbitrary function φ ∈ H1(ΩT ), such that φ(�x, T ) = φ(�x, 0) = 0
for all �x ∈ Ω and φ(�x, t) = 0, (�x, t) ∈ ΓT . Multiplying the first equation in (3.4) by φ
and integrating it over ΩT , from (4.22)–(4.23) we obtain∣∣∣∣∣∣

∫
ΩT

ωε φt d�xdt

∣∣∣∣∣∣ ≤ C ‖φ‖L2(0,T ; H1
0 (Ω)),

which gives (4.19).
Taking into account the representation (3.8), we have

(4.24) hε(�x, t) = (K1 ∗ ωε)(�x, t) + (K2 ∗ aε)(�x, t).

Hence by (2.6), (2.8) of Lemma 1 we have for all t ∈ (0, T ),

||hε(·, t)||C1+η(Ω) ≤ C
(
||ωε(·, t)||L∞(Ω) + ||aε(·, t)||Cη(Γ)

)
and by (2.4), (2.9) of Lemma 1

||hε(·, t)||W 2
p (Ω′) ≤ C

(
||ωε(·, t)||L∞(Ω) + ||aε(·, t)||L1(Γ)

)
for all p ∈ [1,∞) and for any Ω′ such that Ω′ ⊂ Ω. With the help of (1.9), (3.2), and
(4.22), we derive the assertions (4.20), (4.21).

5. Limit transition. In this section we prove Theorem 2.
From (4.21), (4.22) we conclude that there exists a subsequence of {ωε, hε} such

that

hε ⇀ h weakly − ∗ in L∞(ΩT ) ∩ L∞(0, T ; W 2
p (Ω′)),

∇hε ⇀ ∇h weakly − ∗ in L∞(ΩT ),(5.1)

for any p ∈ (1,∞) and for any Ω′, such that Ω
′ ⊂ Ω. By results obtained in [1], [18],

the compact embedding of L2(Ω) in H−1(Ω) and (4.19) imply

(5.2) ωε → ω strongly in L2(0, T ; H−1(Ω)).

In view of (4.18), (4.22), we have

ωε ⇀ ω weakly − ∗ in L∞(ΩT ),

ε∇ωε ⇀ 0 weakly in L2(ΩT ).(5.3)

With the help of (3.2), (5.1), (5.3), the limit transition in the representation (4.24)
on ε → 0 yields

(5.4) h(�x, t) = (K1 ∗ ω)(�x, t) + (K2 ∗ a)(�x, t) for a.e. (�x, t) ∈ ΩT .

From the elliptic theory [15], [20] and (2.6), (2.8) of Lemma 1, the function h satisfies
(1.14) with the boundary conditions (1.16), such that

(5.5) h ∈ L∞(0, T ; C1+η(Ω)).

Definition 2. Let the distance between any given point �x ∈ R
n and any subset

A ⊆ R
n be defined by d(�x,A) := inf�y∈A|�x− �y|. Let d = d(�x) be the distance function

on Γ, defined by

d(�x) := d(�x,Rn\Ω) − d(�x,Ω) for any �x ∈ R
n.
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Let A be an arbitrary subdomain of Ω. We also introduce the distance between A and
the boundary Γ by d(A,Γ) := inf�y∈Ad(�y).

The set of all points of Ω, whose distance to Γ (respectively, to Γ− and to Γ+) is
less than σ, is denoted by Uσ(Γ) (respectively, Uσ(Γ−) and Uσ(Γ+)). Since Γ ∈ C2+γ ,
the function d = d(�x) belongs to C2 in a neighborhood Uσ0(Γ) of Γ for some σ0 > 0.
For 0 < 2σ < σ0, we introduce the approximation of the unit function for all �x ∈ Ω
by

1σ(�x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if �x ∈ Ω\U2σ(Γ),

d−σ
σ if σ < d(�x) < 2σ,

0 if 0 ≤ d(�x) < σ.

(5.6)

Now we show an auxiliary lemma, playing the crucial role in the proof that the
function ω satisfies the boundary condition (1.5) in the sense of the equality (1.13).

Lemma 8. For any positive ψ ∈ C1,1(ΩT ), such that supp (ψ) ⊂ ΩT ∪ Γ−
T , and

ψ(�x, T ) = 0, �x ∈ Ω, we have

lim
σ→0

(
lim
ε→0

1

σ

∫ T

0

∫
[σ<d<2σ]

|ωε − ω̆ε| �vε � d ψ d�xdt

)
= 0.(5.7)

Proof. Taking into account that zε = ωε − ω̆ε = 0 on ΓT and multiplying the
equality (4.9) by an arbitrary nonnegative function η ∈ H1(ΩT ) with η(�x, T ) = 0, �x ∈
Ω, we derive that

−
∫ ∫

ΩT

ηt(z
2
ε + δ)1/2 d�xdt +

∫
Ω

η(�x, 0)(z2
ε(�x, 0) + δ)1/2 d�x

+

∫
ΓT

aε
√
δ η d�xdt −

∫ ∫
ΩT

(z2
ε + δ)1/2 �vε∇η d�xdt

−
∫ ∫

ΩT

δ

(z2
ε + δ)1/2

(ωε − hε)η d�xdt = −ε

∫ ∫
ΩT

∇zε∇η
zε

(z2
ε + δ)1/2

d�xdt

−εδ

∫ ∫
ΩT

|∇zε|2
(z2

ε + δ)3/2
η d�xdt +

∫ ∫
ΩT

Fε sgnδzε η d�xdt.

Let us denote Gε := |∂tω̆ε| + | � ω̆ε| and G := |∂tω̆| + | � ω̆|. Since the functions
{zε, ωε, hε} and aε are uniformly bounded with respect to ε in L∞(ΩT ) and in
L∞(ΓT ), using (4.5) and (4.18), we obtain

−
∫ ∫

ΩT

(z2
ε + δ)1/2 �vε∇η d�xdt ≤ C

∫ ∫
ΩT

(|ηt| + |η| + |η| |Gε|) d�xdt

+C

∫
Ω

|η(�x, 0)| d�x + C
√
δ

∫
ΓT

|η| d�xdt + C
√
ε||∇η||L2(ΩT ).

Taking δ → 0, we get

−
∫ ∫

ΩT

|zε| �vε∇η d�xdt ≤ C

∫ ∫
ΩT

(|ηt| + |η| + |η| |Gε|) d�xdt

+ C

∫
Ω

|η(�x, 0)| d�x + C
√
ε||∇η||L2(ΩT ).(5.8)



276 S. N. ANTONTSEV AND N. V. CHEMETOV

Let us choose an arbitrary function ψ ∈ C1,1(ΩT ), satisfying the conditions of the
present lemma and take the test function in (5.8). As ησ = (1−1σ)ψ, we derive that

∫ ∫
ΩT

|zε|ψ
�vε∇d

σ
χ[σ<d<2σ] d�xdt

≤ C

∫ ∫
ΩT

(|∂tησ| + |ησ| + |ησ| |Gε| + (1 − 1σ)|∇ψ|) d�xdt

+ C

∫
Ω

|ησ(�x, 0)| d�x + C
√
ε||∇ησ||L2(ΩT ).

By (4.20) the set {�vε(·, t)} is uniformly continuous on Ω, independent of ε and t ∈
[0, T ]. Also we have that the function d(�x) ∈ C2 in the neighborhood Uσ0(Γ) and
�d = −�n on Γ. Hence there exists σ1 < σ0, independent of ε and t ∈ [0, T ], such that

{
ψ �vε � d

}
(�x, t) =

⎧⎨
⎩

> 0 if (�x, t) ∈ Uσ1(Γ
−) × [0, T ],

0 if (�x, t) ∈ Uσ1(Γ
+ ∪ Γ0) × [0, T ].

(5.9)

Therefore for any 2σ ∈ (0, σ1), according to (3.3), we have

0 ≤ lim
ε→0

1

σ

∫ T

0

∫
[σ<d<2σ]

ψ |zε|�vε∇d d�xdt ≤ C

∫
Ω

|ησ(�x, 0)| d�x

+ C

∫ ∫
ΩT

(|∂tησ| + |ησ| + |ησ| |G| + (1 − 1σ)|∇ψ|) d�xdt d�x.

This implies the property (5.7), since ησ = (1−1σ)ψ, ∂tησ = (1−1σ)ψt, and (1−1σ) →
0 in ΩT , when σ → 0.

Now we are able to prove that the pair {ω, h} satisfies (1.13). For any 2σ ∈ (0, σ1),
we put ησ = 1σ ψ, where ψ is an arbitrary function, satisfying the conditions of Lemma
8. Clearly, ησ ∈ H1(ΩT ), ησ(�x, T ) = 0 for �x ∈ Ω, and ησ = 0 on ΓT . Multiplying the
first equation in (3.4) by ησ and integrating it over ΩT , we derive that

0 =

{∫
ΩT

[ωε(ψt + �vε∇ψ)]1σ − ε∇ωε∇ησ d�xdt +

∫
Ω

ω̆ε(�x, 0) ησ(�x, 0) d�x

}

+
1

σ

∫ T

0

∫
[σ<d<2σ]

ωε (�vε∇d)ψ d�xdt = Iε,σ + Jε,σ.(5.10)

Using (5.1), (5.2) and �vε∇ψ 1σ ⇀
ε→0

�v∇ψ 1σ weakly in L2(0, T ; H1
0 (Ω)) with �v = −∇h,

we have

lim
ε→0

∫
ΩT

ωε �vε∇ψ 1σ d�xdt =

∫
ΩT

ω�v∇ψ 1σ d�xdt.

Because 1σ −→
σ→0

1 in ΩT and Ω, we get

lim
σ→0

(
lim
ε→0

Iε,σ
)

=

∫
ΩT

ω(ψt + �v∇ψ) d�xdt +

∫
Ω

ω0ψ(�x, 0) d�x.
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Since

Jε,σ =

[
1

σ

∫ T

0

∫
[σ<d<2σ]

zε (�vε∇d)ψ d�xdt

]

+

[
1

σ

∫ T

0

∫
[σ<d<2σ]

ω̆ε (�vε∇d)ψ d�xdt

]
= Jε,σ

1 + Jε,σ
2 ,

according to Lemma 8, we have

lim
σ→0

(
lim
ε→0

|Jε,σ
1 |
)

= 0.

By (5.5) the set of functions �vε � d is uniformly continuous on Ω for all t ∈ [0, T ],
independent of ε, and the trace of �vε � d on ΓT satisfies, in the usual sense,

�vε � d = −aε for (�x, t) ∈ ΓT .

By the standard theory of traces and (1.10), (1.12), (3.3), the function ω̆ε has a trace
on the boundary Γ−

T , which converges to b, when ε → 0, in the space L1(0, T ; Lq(Γ
−))

for any q ∈ [1,∞). Therefore the convergences (3.2), (3.3) imply

lim
σ→0

(
lim
ε→0

Jε,σ
2

)
= −

∫ T

0

∫
Γ−
T

abψ d�xdt.

Therefore the pair {ω, h} satisfies (1.13) for any ψ, satisfying the conditions of Lemma
8. In view of the linearity of (1.13) with respect to ψ, we see that this equation is also
fulfilled for any ψ, satisfying the conditions (1.17) of Definition 1.

Let us show that the limit functions ω, h,�h admit additional regularity with
respect to the time variable t.

Lemma 9. For any Ω′, such that Ω
′ ⊂ Ω, we have

∂t ω ∈ L∞(0, T ; H−1(Ω)),(5.11)

h, �h ∈ C0, θ(Ω′ × [0, T ]).(5.12)

Proof. Let us choose in (1.13) the test function φ(�x, t) := ψ(�x)ϕ(t), such that
ψ(�x) ∈ H1

0 (Ω) and ϕ(t) ∈ W 1
1 ([0, T ]) : ϕ(0) = ϕ(T ) = 0, which yields∣∣∣∣∣∣

∫ T

0

⎛
⎝∫

Ω

ω ψ d�x

⎞
⎠ϕtdt

∣∣∣∣∣∣ ≤ C ‖ψ‖H1
0 (Ω)||ϕ||L1(0,T ),

which is equivalent to (5.11).
Now we show the Hölder continuity of h with respect to the time t ∈ [0, T ]. By

the representation (5.4) this can be done for h1 := (K1 ∗ ω) and h2 := (K2 ∗ a),
separately. Let

ρ(s) ∈ C∞
0 (R) with ρ(s) :=

{
1 if |s| ≤ 1,
0 if |s| > 2.

We introduce the functions ρσ(�x) := ρ(|�x|/σ) and ρΓ
σ(�x) := ρ(d(�x)/σ) for σ > 0. Let

Ω′ be a subdomain of Ω, such that δ := dist(Ω′,Γ) > 0. Then, for any fixed �x ∈ Ω′
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and for any σ < δ
4 , the function �h1 can be written in the form

∇h1(�x, t) =

∫
Ω

∇�xK1(�x, �y) ω(�y, t) d�y

=

∫
Ω

∇�xK1(�x, �y) ρΓ
σ(�y) ω(�y, t) d�y

+

∫
Ω

∇�xK1(�x, �y) ρσ(�x− �y) ω(�y, t) d�y

+

∫
Ω

∇�xK1(�x, �y) (1 − ρΓ
σ(�y) − ρσ(�x− �y)) ω(�y, t) d�y.(5.13)

Hence for any t1, t2 ∈ [0, T ] we have that

∇h1(�x, t2) −∇h1(�x, t1) = I1 + I2 + I3.

Using ω ∈ L∞(ΩT ), the terms Ii, i = 1, 2, 3 are estimated by

|I1| ≤ ||ρΓ
σ ∇�xK1(�x, ·)||L1(Ω) ||ω(·, t2) − ω(·, t1)||L∞(Ω) ≤ Cσ,

|I2| ≤ ||ρσ ∇�xK1(�x, ·)||L1(Ω) ||ω(·, t2) − ω(·, t1)||L∞(Ω) ≤ Cσ,(5.14)

and

|I3| ≤ ||(1 − ρΓ
σ − ρσ)∇�xK1(�x, ·)||H1

0 (Ω)||ω(·, t2) − ω(·, t2)||H−1(Ω).(5.15)

Since the function (1−ρΓ
σ−ρσ)∇�xK1(�x, �y), �y ∈ Ω, has a singularity just at the point

�x ∈ Ω′, we obtain

||(1 − ρΓ
σ − ρσ)∇�xK1(�x, ·)||H1

0 (Ω) ≤ C | ln(σ)|(5.16)

and by (5.11)

||ω(·, t2) − ω(·, t1)||H−1(Ω) ≤
∥∥∥∥
∫ t2

t1

∂tω(·, t) dt
∥∥∥∥
H−1(Ω)

≤ |t2 − t1| max
t∈[0,T ]

|| ∂tω ||L∞(0,T ; H−1(Ω)) ≤ C|t2 − t1|.(5.17)

Therefore choosing σ := |t2 − t1|, from (5.13)–(5.17), we derive

|∇h1(�x, t2) −∇h1(�x, t1)| ≤ C|t2 − t1| | ln|t2 − t1| |(5.18)

for all t1, t2 ∈ [0, T ]. Using this approach we can deduce the same estimate for h1.
In view of (2.9) of Lemma 1, we have

(5.19) ||h2(·, t2) − h2(·, t1)||C1(Ω′) ≤ C||a(·, t2) − a(·, t1)||L1(Γ) ≤ C|t2 − t1|θ

for any t1, t2 ∈ [0, T ]. Therefore, accounting for (5.18) and (5.19), we derive (5.12).
This completes the proof of the lemma.

6. Appendix. Let us suppose that initially the boundary and initial data b, ω0

of the problem (1.1)–(1.6) are known. In this section we give sufficient conditions
on these data under which there exists at least one extension ω̆ on the domain ΩT ,
satisfying the conditions (1.10)–(1.12).
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Let us assume that the data b, ω0 admit the following regularity:

ω0 ∈ W
(2− 1

p )
p (Ω) ∩ L∞(Ω), b ∈ W

(2− 1
p )

p (Γ−
T ) ∩ L∞(Γ−

T )(6.1)

with some p > n, such that

(6.2) ω0(�x) ≥ 0 a.e. in Ω, b(�x, t) ≥ 0 a.e. on Γ−
T .

Since Γ ∈ C2+γ for γ > 0, there exists a function b̆ = b̆(�x, t), defined on the
boundary ΓT , such that

b̆ ∈W (2− 1
p )

p (ΓT ) ∩ L∞(ΓT ) and b̆
∣∣
Γ−
T

= b, b̆ ≥ 0 on ΓT(6.3)

and

⎧⎪⎨
⎪⎩

||b̆||L∞(ΓT ) ≤ ||b||L∞(Γ−
T ),

||b̆||
W

(2− 1
p

)

p (ΓT )
≤ ||b||

W
(2− 1

p
)

p (Γ−
T )
.

(6.4)

Let ω̆ be the solution of the system

⎧⎨
⎩

ω̆t − Δω̆ = 0, (�x, t) ∈ ΩT ,

ω̆
∣∣
ΓT

= b̆; ω̆
∣∣
t=0

= ω0(�x), �x ∈ Ω.

According to (6.1)–(6.4), by [14, Theorem 9.1, p. 341 and Theorem 7.1, p. 181], there
exists a unique solution ω̆ ∈ W 2,1

p (ΩT ) ∩ L∞(ΩT ), such that

ω̆ ≥ 0 a.e. on ΩT ,

||ω̆||L∞(ΩT ) ≤ C(||b̆||L∞(ΓT ) + ||ω0||L∞(Ω))

≤ C(||b||L∞(Γ−
T ) + ||ω0||L∞(Ω))(6.5)

and

||ω̆||W 2,1
p (ΩT ) ≤ C

(
||b̆||

W
(2− 1

p )
p (ΓT )

+ ||ω0||
W

(2− 2
p )

p (Ω)

)

≤ C

(
||b||

W
(2− 1

p )
p (Γ−

T )

+ ||ω0||
W

(2− 2
p )

p (Ω)

)
,(6.6)

where the constants C depend only on p and Ω. The previous inequality implies
that

∫ T

0

|| � ω̆(·, t)||pL∞(Ω) dt ≤ C||ω̆||p
W 2,1

p (ΩT )
.(6.7)

Combining the estimates (6.5)–(6.7), we see that the constructed function ω̆ is an
extension of b, ω0 on the domain ΩT , which satisfies the conditions (1.10)–(1.12).
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CONVERGENCE OF SCHRÖDINGER OPERATORS∗

JOHANNES F. BRASCHE† AND KATEŘINA OŽANOVÁ‡

Abstract. We prove two limit relations between Schrödinger operators perturbed by measures.
First, weak convergence of finite real-valued Radon measures μn −→ m implies that the operators
−Δ + ε2Δ2 + μn in L2(Rd, dx) converge to −Δ + ε2Δ2 + m in the norm-resolvent sense, provided
d ≤ 3. Second, for a large family, including the Kato class, of real-valued Radon measures m, the
operators −Δ + ε2Δ2 + m tend to the operator −Δ + m in the norm-resolvent sense as ε tends to
zero. Explicit upper bounds for the rates of convergences are derived. Since one can choose point
measures μn with mass at only finitely many points, a combination of both convergence results leads
to an efficient method for the numerical computation of the eigenvalues in the discrete spectrum and
corresponding eigenfunctions of Schrödinger operators.

Key words. point interaction, eigenvalue, eigenfunction, singular Schrödinger operator

AMS subject classifications. 81-08, 35P15, 47B25

DOI. 10.1137/060651598

1. Introduction. In this paper we are going to analyze convergence of Schrödin-
ger operators perturbed by measures. It is known that weak convergence of potentials
implies norm-resolvent convergence of the corresponding one-dimensional Schrödinger
operators. This result from [6] may be interesting for several reasons. For instance,
every finite real-valued Radon measure on R is the weak limit of a sequence of point
measures with mass at only finitely many points. There exist efficient numerical meth-
ods for the computation of the eigenvalues and corresponding eigenfunctions of one-
dimensional Schrödinger operators with a potential supported by a finite set; actually
the effort for the computation grows at most linearly with the number of points of the
support [9]. Since the norm-resolvent convergence implies convergence of the eigenval-
ues in the discrete spectra and corresponding eigenspaces, we get an efficient method
for the numerical calculation of the discrete spectra of one-dimensional Schrödinger
operators. Norm-resolvent convergence also has other important consequences: locally
uniform convergence of the associated unitary groups and semigroups, convergence of
the spectral projectors (which implies the mentioned results on the discrete spectra),
etc.

Let us also mention a completely different motivation for studying the convergence
of operators with point potentials. In quantum mechanics neutron scattering is often
described via so-called zero-range Hamiltonians (the monograph [1] is an excellent
standard reference to this research area). In a wide variety of models the positions of
the neutrons are described via a family (Xj)

n
j=1 of independent random variables with

joint distribution μ. Usually the number n of neutrons is large, and one is interested
in the limit when n tends to infinity and the strengths of the single size potentials
tend to zero. In the one-dimensional case this motivates one to investigate the limits
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of operators of the form

− d2

dx2
+

a

n

n∑
j=1

δXj(ω), ω ∈ Ω,

a �= 0 being a real constant and (Ω,F ,P) a probability space. By the theorem of
Glivenko–Cantelli, for P-almost all ω ∈ Ω the sequence ( a

n

∑n
j=1 δXj(ω))n∈N converges

to the measure aμ weakly. By the mentioned result from [6], this implies that

− d2

dx2
+ aμ = lim

n−→∞

⎛
⎝− d2

dx2
+

a

n

n∑
j=1

δXj(ω)

⎞
⎠

in the norm-resolvent sense P a.s.
It is the purpose of the present note to derive analogous results in the two-

and three-dimensional cases. It was shown in [6] and [8] that one can approximate
Schrödinger operators perturbed by suitable measures by a point potential Hamilto-
nian. However, the convergence there was in the strong resolvent sense, which is of
course a weaker result than the norm-resolvent convergence.

If the dimension is higher than one, then it seems to be impossible to work
directly with operators of the form −Δ + μ, μ being a point measure. In fact, while

the operators − d2

dx2 +
∑n

j=1 ajδxj
can be defined in dimension one via Kato’s quadratic

form method as the unique lower semibounded self-adjoint operator associated to the
energy form

D(E) := H1(R),

E(f, f) :=

∫
|f ′(x)|2dx +

n∑
j=1

aj |f̃(xj)|2, f ∈ D(E),

f̃ being the unique continuous representative of f ∈ H1(R), in higher dimension d > 1,
the quadratic form

D(E) := {f ∈ H1(Rd) : f has a continuous representative f̃},

E(f, f) :=

∫
|∇f(x)|2dx +

n∑
j=1

aj |f̃(xj)|2, f ∈ D(E),

is not lower semibounded and closable if at least one coefficient aj is different from
zero.

The strategy to overcome the mentioned problem in higher dimensions is based
on two simple observations:

1. The lower semibounded self-adjoint operator Δ2+μ can be defined via Kato’s
quadratic form method for every real-valued finite Radon measure μ on R

d

(if d ∈ {1, 2, 3}), including point measures.
2. −Δ + ε2Δ2 −→ −Δ in the norm-resolvent sense, as ε > 0 tends to zero.

We show the convergence claim in two steps. In section 2 we shall prove that the
sequence (−Δ + ε2Δ2 + μn)n∈N converges to −Δ + ε2Δ2 + m in the norm-resolvent
sense provided d ≤ 3, ε > 0, and the finite real-valued Radon measures μn on R

d

converge to the finite real-valued Radon measure m weakly. Then for a large class of
measures m we shall prove that

−Δ + ε2Δ2 + m −→ −Δ + m
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in the norm-resolvent sense as ε tends to zero; cf. section 3. Actually, we will not only
prove convergence but also give explicit error estimates.

As approximating measures μn we can, in particular, choose point measures with
mass at only finitely many points. In section 4 we will present formulas which make
it possible to calculate the eigenvalues and corresponding eigenspaces of operators
perturbed by a finite number point measures. Then similarly to [1, Chapter II.2],
the spectral problem means to solve an implicit equation and the effort for these
computations grows at most as O(n3).

Putting both convergence results from sections 2 and 3 and formulas from section
4 together, we get an efficient method to calculate the eigenvalues in the discrete spec-
trum and corresponding eigenspaces of Schrödinger operators −Δ + m numerically.

Our method covers not only the case when m is absolutely continuous w.r.t. the
(d − 1)-dimensional volume measure of a manifold with codimension one but also a
fairly large class of measures m containing the set of all finite real-valued measures
belonging to the Kato class. In particular, the absolutely continuous case dm = V dx,
where −Δ + m = −Δ + V is a regular Schrödinger operator, is contained in our
approach. We refer to [10] for related convergence results in the regular case.

Notation and auxiliary results. Let μ be a real-valued Radon measure on R
d.

By the Hahn–Jordan theorem, there exist unique positive Radon measures μ± on R
d

such that

μ = μ+ − μ− and μ+(Rd \B) = 0 = μ−(B)

for some suitably chosen Borel set B. We put

‖ μ ‖:= μ+(Rd) + μ−(Rd) and |μ| := μ+ + μ−.

If μ is finite, then we define its Fourier transform μ̂ as

μ̂(p) := (2π)−d/2

∫
eipxμ(dx), p ∈ R

d.

Similarly, f̂ also denotes the Fourier transform of f ∈ L2(dx) := L2(Rd, dx), dx being
the Lebesgue measure.

For s > 0 we denote the Sobolev space of order s by Hs(Rd); i.e.,

Hs(Rd) :=

{
f ∈ L2(dx) :

∫
(1 + p2)s|f̂(p)|2dp < ∞

}
,

‖ f ‖Hs :=

(∫
(1 + p2)s|f̂(p)|2dp

)1/2

, f ∈ Hs(Rd).

We shall use occasionally the abbreviations L2(μ) := L2(Rd, μ) and Hs := Hs(Rd).
‖ T ‖H1,H2

denotes the operator norm of T as an operator from H1 to H2, and
‖ T ‖H:=‖ T ‖H,H. ‖ f ‖H and (f, h)H represent the norm and the scalar product in
the Hilbert H, respectively. If the reference to a measure is missing, then we tacitly
refer to the Lebesgue measure dx. For instance, “integrable” means “integrable w.r.t.
dx” if not stated otherwise; ‖ T ‖, (f, h), and ‖ f ‖ denote the operator norm of
T , the scalar product, and the norm in the Hilbert space L2(dx), respectively. We
denote by C∞

0 (Rd) the space of smooth functions with compact support.
For arbitrary ε ≥ 0 (ε = 0 will be admitted only in section 3) let Eε be the nonneg-

ative closed quadratic form in the Hilbert space L2(dx) associated to the nonnegative
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self-adjoint operator −Δ + ε2Δ2 in L2(dx). Obviously we have

D(Eε) = H2(Rd),

Eε(f, f) = ε2 (Δf,Δf) + (∇f,∇f) ≥ ε2 (Δf,Δf), f ∈ D(Eε),

for every ε > 0. Note that for ε = 0 the form domain is H1(Rd), and E0 is the classical
Dirichlet form. For any α > 0 we put

Eε,α(f, h) := Eε(f, h) + α(f, h), f, h ∈ D(Eε).

2. Operator norm convergence. Throughout this section let d ≤ 3, and let μ
be a finite real-valued Radon measure on R

d. Then, by Sobolev’s embedding theorem,
for every s > 3/2, and, in particular, for s = 2, every f ∈ Hs(Rd) has a unique
continuous representative f̃ and

‖ f̃ ‖∞:= sup{|f̃(x)| : x ∈ R
d} ≤ cs ‖ f ‖Hs , f ∈ Hs(Rd),(1)

for some finite constant cs. Note that cs ≤ 1 if s = 2. It follows that for every ε > 0
and every η > 0 there exists an α = α(ε, η) < ∞ such that

‖ f̃ ‖2
∞≤ η Eε(f, f) + α(f, f), f ∈ H2(Rd).(2)

Since μ is finite, for arbitrary ε, η > 0 and some finite α we get∣∣∣∣
∫

|f̃ |2dμ
∣∣∣∣ ≤ η ‖ μ ‖ Eε(f, f) + α ‖ μ ‖ (f, f), f ∈ H2(Rd).(3)

We put

D(Eμ
ε ) := H2(Rd),

Eμ
ε (f, f) := Eε(f, f) +

∫
|f̃ |2dμ, f ∈ D(Eμ

ε ).

By (3) and the Kato-Lax-Milgram-Nelson (KLMN) theorem [7, Theorem 1.5], Eμ
ε is

a lower semibounded closed quadratic form in L2(dx). We denote the lower semi-
bounded self-adjoint operator in L2(dx) associated to Eμ

ε by −Δ + ε2Δ2 + μ.
Our main tool to prove convergence results will be a Krein-like formula which

expresses the resolvent (−Δ + ε2Δ2 + μ + α)−1 by means of the resolvent

Gε,α := (−Δ + ε2Δ2 + α)−1.

The operator Gε,α has the integral kernel gε,α(x− y) with the Fourier transform

ĝε,α(p) :=
1

ε2p4 + p2 + α
, p ∈ R

d.

For every ε ≥ 0 and α > 0, the function gε,α(x) is continuous on R
d \ {0}, and, if

d = 1 or if d ≤ 3 and ε > 0, it is continuous on whole R
d. Moreover, it is radially

symmetric. Finally, g0,α is the Green function of the free Laplacian in R
d, and it is

nonnegative. By the dominated convergence theorem,

‖ gε,α ‖2
H2=

∫
(1 + p2)2

|ε2p4 + p2 + α|2 dp −→ 0 as |α| −→ ∞,(4)
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which, by Sobolev’s inequality, implies that

‖ gε,α ‖∞−→ 0 as |α| −→ ∞.(5)

The fact that gε,α is the Green function of −Δ + ε2Δ2 means that∫
gε,α(x− y)(−Δ + ε2Δ2 + α)h(y)dy = h(x) dx a.e.

for all h ∈ D(−Δ + ε2Δ2) = H4(Rd). The equation above not only holds almost
everywhere w.r.t. the Lebesgue measure dx but even pointwise everywhere, as the
following lemma states.

Lemma 1. Let the Green function gε,α and the operator −Δ+ε2Δ2+α be defined
as above. Then one has∫

gε,α(x− y)(−Δ + ε2Δ2 + α)h(y)dy = h̃(x), x ∈ R
d,(6)

for all h ∈ H4(Rd).
Proof. In fact, we have only to show that the integral on the left-hand side is

a continuous function of x ∈ R
d. We choose any sequence (fn)n∈N of continuous

functions with compact support converging to (−Δ + ε2Δ2 + α)h in L2(dx). By (4),
gε,α ∈ H2(Rd) ⊂ L2(dx); therefore, we can write∫

gε,α(x− y)(−Δ + ε2Δ2 + α)h(y)dy = lim
n−→∞

∫
gε,α(x− y)fn(y)dy, x ∈ R

d.

Obviously the mapping x �→
∫
gε,α(x−y)fn(y)dy, R

d −→ C, is the unique continuous

representative G̃ε,αfn of Gε,αfn for every n ∈ N. Since Gε,α is a bounded operator
from L2(dx) to H2(Rd) (even to H4(Rd)), the sequence (Gε,αfn)n∈N converges in
H2(Rd) to Gε,α(−Δ + ε2Δ2 + α)h = h. By Sobolev’s inequality (1), this implies

that the sequence (G̃ε,αfn)n∈N of the unique continuous representatives converges to
a continuous function uniformly. By the last equality, x �→

∫
gε,α(x−y)(−Δ+ε2Δ2 +

α)h(y)dy, R
d −→ C, is this continuous uniform limit, and we have proved (6).

We introduce the following integral operator:

Gμ
ε,αf(x) :=

∫
gε,α(x− y)f̃(y)μ(dy) dx a.e., f ∈ H2(Rd).

We can prove several estimates of its operator norm.
Lemma 2. The operator Gμ

ε,α is bounded on H2(Rd), and its operator norm
‖ Gμ

ε,α ‖H2 decays with α −→ ∞. The operator is bounded also w.r.t. other operator
norms; in particular, there are finite real numbers ci, i = 1, 2, 3, such that

‖ Gμ
ε,αf ‖H2 ≤ c1(α) ‖ f̃ ‖∞,

‖ Gμ
ε,αf ‖L2 ≤ c2(α) ‖ f̃ ‖L2(|μ|), f ∈ H2(Rd),

‖ G̃μ
ε,αf ‖L2(|μ|) ≤ c3(α) ‖ f̃ ‖L2(|μ|),

and all three numbers ci vanish in the limit α −→ ∞.
Proof. Using Sobolev’s inequality we have for arbitrary f ∈ H2(Rd)

|̂̃fμ(p)|2 ≤ (2π)−d ‖ f̃ ‖2
∞‖ μ ‖2≤ (2π)−d ‖ f̃ ‖2

H2‖ μ ‖2, p ∈ R
d.
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Then the convolution theorem yields

‖ Gμ
ε,αf ‖2

H2 =

∫
|(1 + p2)2| |(gε,α ∗ f̃μ)̂(p)|2dp

= (2π)d
∫

(1 + p2)2

|ε2p4 + p2 + α|2 |̂̃fμ(p)|2dp

≤
∫

(1 + p2)2

|ε2p4 + p2 + α|2 ‖ f̃ ‖2
∞‖ μ ‖2 dp

≤
∫

(1 + p2)2

|ε2p4 + p2 + α|2 dp ‖ f̃ ‖2
H2‖ μ ‖2< ∞, f ∈ H2(Rd).

Therefore Gμ
ε,α is an everywhere defined bounded operator on H2(Rd), and we get an

upper bound for the norm

‖ Gμ
ε,α ‖H2,H2≤‖ μ ‖

(∫
(1 + p2)2

|ε2p4 + p2 + α|2 dp
)1/2

,(7)

and the expression on the right-hand side (R.H.S.) is also the uniform upper bound
c1.

To determine the remaining upper bounds c2 and c3, we can write∫
|Gμ

ε,αf(x)|2dx

=

∫ ∣∣∣∣
∫

gε,α(x− y)f̃(y)μ+(dy) −
∫

gε,α(x− y)f̃(y)μ−(dy)

∣∣∣∣
2

dx

≤ 2

∫ ∣∣∣∣
∫

gε,α(x− y)f̃(y)μ+(dy)

∣∣∣∣
2

dx + 2

∫ ∣∣∣∣
∫

gε,α(x− y)f̃(y)μ−(dy)

∣∣∣∣
2

dx

≤ 2

∫ ∫
|gε,α(x− y)|2μ+(dy)

∫
|f̃(y)|2μ+(dy) dx

+ 2

∫ ∫
|gε,α(x− y)|2μ−(dy)

∫
|f̃(y)|2μ−(dy) dx

≤ 2

∫
|gε,α(x)|2dx ‖ μ ‖

∫
|f̃(y)|2|μ|(dy), f ∈ H2(Rd).(8)

In a similar way we arrive at∫
|G̃μ

ε,αf(x)|2|μ|(dx) ≤ 2 ‖ gε,α ‖2
∞‖ μ ‖2

∫
|f̃(y)|2|μ|(dy).

Finally, from (4) and (5) one concludes that all of the upper bounds of the operator
norms tend to zero in the limit α −→ ∞.

General results of [3] (cf. also section 3 below) provide, in particular, an explicit
formula for the resolvent of the operator −Δ + ε2Δ2 + μ. In this resolvent formula
there occur operators acting in different Hilbert spaces. This is inconvenient when we
investigate the convergence of sequences of such operators, and we shall use a slightly
different resolvent formula:

(−Δ + ε2Δ2 + μ + α)−1 = Gε,α −Gμ
ε,α(I + Gμ

ε,α)−1Gε,α.(9)

For the sake of completeness we present the proof of the above Krein’s formula in the
appendix. According to Lemma 2, we can choose α > 0 such that ‖ Gμ

ε,α ‖H2,H2< 1.
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Then the operator I + Gμ
ε,α is invertible, and its inverse is everywhere defined on

H2(Rd) and bounded; here I denotes the identity on H2(Rd). By (3), we can choose
α > 0 such that, in addition,

Eμ
ε,α(f, f) := Eμ

ε (f, f) + α(f, f) ≥ (f, f), f ∈ D(Eμ
ε ).(10)

We are now prepared for the proof of the main theorem of this section.
Theorem 3. Let m and μn, n ∈ N, be finite real-valued Radon measures on R

d.
Suppose that the sequence (μn)n∈N converges to m weakly and supn∈N

‖ μn ‖< ∞.
Let ε, α > 0 and d ∈ {1, 2, 3}. Then the operators −Δ + ε2Δ2 + μn converge to
−Δ + ε2Δ2 + m in the norm-resolvent sense.

Proof. Let ε > 0 be arbitrary. We choose 0 < c < 1 and α > 0 such that

‖ μn ‖2

∫
(1 + p2)2

|ε2p4 + p2 + α|2 dp ≤ c2, n ∈ N,(11)

and

‖ m ‖2

∫
(1 + p2)2

|ε2p4 + p2 + α|2 dp ≤ c2.(12)

According to (3), we can choose α > 0 such that, in addition,

Eμn
ε,α(f, f) ≥ (f, f), f ∈ H2(Rd), n ∈ N.(13)

Since (μn)n∈N converges to m weakly, (13) also holds when we replace μn by m. By
Lemma 2, in particular estimate (7), inequalities (11) and (12) yield

‖ Gμn
ε,α ‖H2,H2 ≤ c, n ∈ N,

‖ Gm
ε,α ‖H2,H2 ≤ c,(14)

‖ Gm
ε,αf ‖H2 ≤ c ‖ f̃ ‖∞, f ∈ H2(Rd).

Hence the resolvent formula (9) is valid both for μ = m and for μ = μn, n ∈ N. By
Lemma 2, we can choose α sufficiently large so that also∫

|Gm
ε,αh(x)|2dx ≤ c2

∫
|h̃|2d|m| and

∫
|G̃m

ε,αh(x)|2|m|(dx) ≤ c2
∫

|h̃|2d|m|(15)

for every h ∈ H2(Rd).
For notational brevity we put

g0 := g0,1, g := gε,α, G := Gε,α, Gμn := Gμn
ε,α, and Gm := Gm

ε,α.

With this notation we have

(−Δ + ε2Δ2 + μn + α)−1 − (−Δ + ε2Δ2 + m + α)−1

= Gm[I + Gm]−1G−Gμn [I + Gμn ]−1G

= (Gm −Gμn)[I + Gm]−1G + (Gμn −Gm)[I + Gm]−1(Gμn −Gm)[I + Gμn ]−1G

+Gm[I + Gm]−1(Gμn −Gm)[I + Gμn ]−1G.

Since G is a bounded operator from L2(dx) to H2(Rd), we have only to show that

‖ Gm −Gμn ‖H2,L2(dx)−→ 0 as n −→ ∞,(16)

‖ Gm[I + Gm]−1(Gm −Gμn) ‖H2,L2(dx)−→ 0 as n −→ ∞.(17)
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We introduce

νn := m− μn,

νnx(dy) := g(x− y) νn(dy), x ∈ R
d, n ∈ N.

As d ≤ 3, the function

y �→
∫

g0(y − a) f(a) da

is continuous and bounded for every f ∈ L2(dx); this well-known fact can be proved
in the same way as (6). Since the function g is bounded and g0 is nonnegative, it
follows that ∣∣∣∣

∫
|g(x− y)|

∫
|g0(y − a)| |(−Δ + 1)h(a)| da ν±n (dy)

∣∣∣∣ < ∞

for all x ∈ R
d and h ∈ H2(Rd). Hence by Fubini’s theorem, the function kνnx

: R
d −→

R, defined by

kνnx(a) :=

{ ∫
g0(y − a) g(x− y) νn(dy) if defined,

0 otherwise,

is Borel measurable, the integral on the R.H.S. is defined and finite for almost all
a ∈ R

d (almost all w.r.t. the Lebesgue measure) and

|(Gνnh)̃(x)|2 =

∣∣∣∣
∫

g(x− y)h(y) νn(dy)

∣∣∣∣
2

=

∣∣∣∣
∫

g(x− y)

∫
g0(y − a)(−Δ + 1)h(a) da νn(dy)

∣∣∣∣
2

≤
∫

|kνnx
(a)|2da ·

∫
|(−Δ + 1)h(a)|2da

≤ 2 ‖ h ‖2
H2

∫
|kνnx

(a)|2da, h ∈ H2(Rd), n ∈ N.(18)

Thus in order to prove (16) we have only to show that∫ ∫
|kνnx(a)|2da dx −→ 0 as n −→ ∞.(19)

We have ∫ ∫
|kνnx

(a)|2da dx = (2π)d
∫ ∫

|ĝ0(p)|2|ν̂nx(p)|2dp dx

=

∫ ∫
1

|1 + p2|2
∫

eipyg(x− y) νn(dy)

∫
e−ipzg(x− z)νn(dz) dp dx.(20)

Since |1 + p2|−2 and g are integrable w.r.t. the Lebesgue measure, g is bounded, and
the Radon measures νn are finite, we can change the order of integration. Let us
rewrite (20) as ∫

f(y, z)h(y, z) νn ⊗ νn(dy dz).
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The function

f(y, z) :=

∫
eipye−ipz 1

|1 + p2|2 dp, y, z ∈ R
d,

is bounded and continuous. It follows from the fact that it is (up to multiplication
by (2π)d/2) the inverse Fourier transform of the integrable function |1 + p2|−2 at the
point z − y.

Also the function

h(y, z) :=

∫
g(x− y) g(x− z) dx

is bounded and continuous for y, z ∈ R
d. This can be shown using the following obser-

vation. Let y ∈ R
d and K be any compact neighborhood of y. Since |x|jgε,α(x) −→ 0

for every j ∈ N as |x| −→ ∞, there exists a constant a < ∞ such that

|g(x− y) g(x− z)| ≤ a ‖ g ‖∞ dist(x,K)−4, x ∈ R
d \K, z ∈ R

d, y ∈ K.

By the Stone–Weierstrass theorem, the set of functions of the form
∑N

j=1 fj(x)gj(y),
N ∈ N, where fj , gj are bounded and continuous, is dense in the space of bounded
continuous functions w.r.t. the supremum norm. Since the measures νn tend to zero
weakly and supn∈N

‖ νn ‖< ∞, this implies that the product measures νn ⊗ νn tend
to zero weakly, too. Hence by (20), we have proved (19) and therefore also (16).

It only remains to prove (17). For this purpose we first note that

cn :=

∫ ∫
|kνnx

(a)|2 da |m|(dx) −→ 0 as n −→ ∞.

This can be shown by mimicking the proof of (19). By (18), it follows that∫
|(Gνnh)̃(x)|2 |m|(dx) ≤ 2cn ‖ h ‖2

H2 , h ∈ H2(Rd).

Thus, in order to prove (17), we have only to show that there exists a finite constant
C such that

‖ Gm(I + Gm)−1h ‖L2(dx)≤ C

(∫
|h̃|2d|m|

)1/2

, h ∈ H2(Rd).(21)

Using the estimates (14), we have

Gm(I + Gm)−1 = −
∞∑
j=1

(−Gm)j .(22)

According to (15),

‖ (Gm)j+1h ‖L2(dx)≤ c

(∫
| ˜(Gm)jh|2d|m|

)1/2

≤ c · cj
(∫

|h̃|2d|m|
)1/2

for every j ∈ N, and hence∥∥∥∥∥∥
∞∑
j=1

(−Gm)jh

∥∥∥∥∥∥
L2(dx)

≤
∞∑
j=1

cj
(∫

|h̃|2d|m|
)1/2

=
c

1 − c

(∫
|h̃|2d|m|

)1/2

.

By (22), this implies (21) and the proof of the theorem is complete.
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Remark 4. We have shown that

‖ (−Δ + ε2Δ2 + μn + α)−1 − (−Δ + ε2Δ2 + m + α)−1 ‖2

≤ C1

∫ ∫ ∣∣∣∣
∫

g0,1(y − a)gε,α(x− y)(m− μn)(dy)

∣∣∣∣
2

da dx

+ C2

∫ ∫ ∣∣∣∣
∫

g0,1(y − a)gε,α(x− y)(m− μn)(dy)

∣∣∣∣
2

da |m|(dx)

for some finite constants Cj = Cj(ε, α), j = 1, 2, which can be computed with the
aid of the proof of Theorem 3. Thus the proof provides explicit upper bounds for the
error one makes when one replaces the operator −Δ+ε2Δ2 +m by −Δ+ε2Δ2 +μn.

Remark 5. The essential spectrum of −Δ + ε2Δ2 + m remains the same for any
finite real-valued Radon measure m on R

d; i.e.,

σess(−Δ + ε2Δ2 + m) = σess(−Δ + ε2Δ2) = [0,∞).(23)

By Sobolev’s inequality and [4, Lemma 19], the mapping f �→ f̃ from H2(Rd) to
L2(|m|) is compact. Therefore using estimate (8), one may conclude that Gμ

ε,α is

compact if regarded as an operator from H2(Rd) to L2(dx). According to the resolvent
formula (9), this implies that the resolvent difference Gm

ε,α−Gε,α is compact, and hence
the corresponding essential spectra coincide.

3. Dependence on the coupling constant. In this section we are going to
prove that

−Δ + ε2Δ2 + m −→ −Δ + m as ε ↓ 0,(24)

in the norm-resolvent sense. Here m denotes a real-valued Radon measure on R
d, and

we assume, in addition, that for every η > 0 there exists a βη < ∞ such that∫
|f |2d|m| ≤ η

(∫
|∇f |2dx + βη

∫
|f |2dx

)
, f ∈ C∞

0 (Rd).(25)

Note that we neither require that m is finite nor that d ≤ 3. On the other hand, the
condition (25) implies that m(B) = 0 for every Borel set B with classical capacity
zero, and, for instance, it is excluded that m is a point measure if d > 1.

The inequality (25) holds, in particular, provided m belongs to the Kato class;
i.e.,

sup
n∈Z

|m|([n, n + 1]) < ∞, d = 1,

lim
ε→0

sup
x∈R2

∫
B(x,ε)

| log(|x− y|)| |m|(dy) = 0, d = 2,

lim
ε→0

sup
x∈R3

∫
B(x,ε)

1

|x− y| |m|(dy) = 0, d = 3,

with B(x, ε) denoting the ball of radius ε centered at x (cf. [11, Theorem 3.1]). We
refer to [7, Chapter 1.2] for additional examples of measures satisfying (25).

In general, the elements f in the form domain of −Δ do not possess a continuous
representative f̃ . Therefore we shall give a definition of Em

ε different from the one in
section 2 so that it works for all ε ≥ 0. Of course, both definitions are equivalent in
the special case of positive ε.
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Since the space C∞
0 (Rd) of smooth functions with compact support is dense in the

Sobolev space H1(Rd), there exists a unique bounded linear mapping Jm : H1(Rd) −→
L2(|m|) satisfying

Jmf = f, f ∈ C∞
0 (Rd)

(strictly speaking Jm maps the dx-equivalence class of the continuous function f̃ ∈
C∞

0 (Rd) to the |m|-equivalence class of f̃). We put

D(Em
ε ) := D(Eε),

Em
ε (f, f) := Eε(f, f) + (AmJmf, Jmf)L2(|m|), f ∈ D(Em

ε ),

where D(Eε) = H1(Rd) for ε = 0, D(Eε) = H2(Rd) otherwise, and

Amh(x) :=

{
h(x), x ∈ B,
−h(x), x ∈ R

d \B,
h ∈ L2(|m|),

with B being any Borel set such that m+(Rd \ B) = 0 = m−(B). By (25) and the
KLMN theorem, the quadratic form Em

ε in L2(dx) is lower semibounded and closed,
and

Em
ε,β1

(f, f) ≥ 0, f ∈ D(Em
ε ).

Again, −Δ+ε2Δ2+m denotes the lower semibounded self-adjoint operator associated
to Em

ε , and we put

Rm
ε,α := (−Δ + ε2Δ2 + m + α)−1,

provided the inverse operator exists. Gε,α is defined the same way as in section 2.
One key for the proof of the convergence result (24) is the observation that one

can decompose

ĝε,α(p) =
c(ε)

p2 + α(ε)
− c(ε)

p2 + β(ε)
,

whenever c(ε) is defined. The coefficients −α(ε) and −β(ε) are the roots of the
polynomial ε2x2 + x + α; a simple calculation yields

c(ε) :=
1√

1 − 4ε2α
−→ 1 as ε ↓ 0,

α(ε) :=
2α

1 +
√

1 − 4ε2α
−→ α as ε ↓ 0,(26)

β(ε) :=
1 +

√
1 − 4ε2α

2ε2
−→ ∞ as ε ↓ 0.

Using the parameters introduced above, we arrive at

Gε,α = c(ε)G0,α(ε) − c(ε)G0,β(ε).(27)

In the proof of the convergence result (24) we will use again a Krein-like resolvent
formula, this time using the one from [3]; cf. (29) below. First we need some prepara-
tion. Let α > 0 and ε ≥ 0. We introduce the operator Jm,ε,α from the Hilbert space
(D(Eε), Eε,α) to L2(|m|) as follows:

D(Jm,ε,α) := D(Eε),
Jm,ε,αf := Jmf, f ∈ D(Jm,ε,α).
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By (25), the operator norm of Jm,ε,α is less than or equal to η provided α ≥ βη. Thus
we can choose α0 > 0 and c < 1 such that

‖ Jm,ε,α ‖(D(Eε),Eε,α),L2(|m|) ≤
√
c, α ≥ α0.(28)

Due to (28), the hypothesis of Theorem 3 in [3] is satisfied, and the theorem
implies that −α belongs to the resolvent set of −Δ + ε2Δ2 + m and

Rm
ε,α = Gε,α − (Jm,ε,α)∗Am(1 + JmJ∗

m,ε,αAm)−1JmGε,α, α ≥ α0.(29)

In fact, we can write

J∗
m,ε,α′ = (JmGε,α′)∗, α′ > 0,(30)

since we have

(J∗
m,ε,α′f, h) = Eε,α′(J∗

m,ε,α′f,Gε,α′h) = (f, Jm,ε,α′Gε,α′h)L2(|m|) = ((JmGε,α′)∗f, h)

for every h ∈ L2(dx), ε ≥ 0, and α′ > 0.
Theorem 6. Let m be a real-valued Radon measure on R

d satisfying (25). Then
the operators −Δ + ε2Δ2 + m converge to −Δ + m in the norm-resolvent sense as
ε ↓ 0.

Proof. Both resolvents are written by means of Krein’s formula (29), so we can
compare the first and second terms separately. To see that ‖ Gε,α − G0,α ‖L2(dx)

vanishes in the limit ε ↓ 0 is simple. It is enough to use the first resolvent formula

G0,α(ε) −G0,α = (α− α(ε))G0,αG0,α(ε)(31)

and the fact that

‖ G0,α′ ‖2
L2(dx),H1≤ k(α′), α′ > 0,

for some continuous function k vanishing at infinity (actually, k(x) = 1/x2 for x ≤ 2
and k(x) = 1/(4(x − 1)) for x > 2). Then the decomposition (27) of Gε,α and the
asymptotic behavior (26) of α(ε), β(ε), and c(ε) finish the argument.

The proof that the difference of second terms in Krein’s formula also tends to
zero as ε → 0 can be reduced into two tasks

‖ JmGε,α − JmG0,α ‖L2(dx),L2(|m|) −→ 0 as ε ↓ 0,

‖ (1 + JmJ∗
m,ε,αAm)−1 − (1 + JmJ∗

m,0,αAm)−1 ‖L2(|m|) −→ 0 as ε ↓ 0.

The argument for the first line is similar to the one we have presented above for
Gε,α −G0,α; we only have to add that, by hypothesis (25), it follows that

‖ JmG0,α′ ‖2
L2(dx),L2(|m|)≤ max(1, β1)k(α′), α′ > 0,(32)

where the function k(α′) is defined as above.
To show the second line we choose any α > α0; then from (28) we get

‖ (1 + JmJ∗
m,ε,αAm)−1 ‖L2(|m|)≤

1

1 − c
, ε ≥ 0.

By the second resolvent identity

(1 + A)−1 − (1 + B)−1 = (1 + A)−1(B −A)(1 + B)−1,
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it is sufficient to prove that

‖ JmJ∗
m,ε,α − JmJ∗

m,0,α ‖L2(|m|)−→ 0 as ε ↓ 0.(33)

From (27) and (30) follows that

JmJ∗
m,ε,α = c(ε)Jm(JmG0,α(ε))

∗ − c(ε)Jm(JmG0,β(ε))
∗;

note that c(ε) is real for sufficiently small ε. Using this expression and (31) and (30),
we get

‖ JmJ∗
m,ε,α − JmJ∗

m,0,α ‖L2(|m|)

≤ ‖ (c(ε) − 1)Jm(JmG0,α(ε))
∗ ‖L2(|m|) + ‖ Jm(JmG0,α(ε))

∗ − Jm(JmG0,α)∗ ‖L2(|m|)

+ ‖ c(ε)Jm(JmG0,β(ε))
∗ ‖L2(|m|)

= ‖ (c(ε) − 1)Jm,0,α(ε)J
∗
m,0,α(ε) ‖L2(|m|) + ‖ (α− α(ε))JmG0,α(JmG0,α(ε))

∗ ‖L2(|m|)

+ ‖ c(ε)Jm,0,β(ε)J
∗
m,0,β(ε) ‖L2(|m|), ε > 0.

According to (25), the mapping ‖ Jm,0,αJ
∗
m,0,α ‖L2(|m|) is locally bounded for α ∈

(0,∞) and tends to zero as α tends to infinity. Since α(ε) −→ α, c(ε) −→ 1, and
β(ε) −→ ∞ as ε ↓ 0, this implies, in conjunction with (32), that (33) holds.

Remark 7. By the proof above, ‖ Gm
ε,α−Gm

0,α ‖ is upper bounded by an expression
of the form c · (ε2 + η(m, ε)), where the finite constant c can be extracted from the
proof and η(m, ε) has to be chosen (and can be chosen) such that (25) holds with η
and β replaced by η(m, ε) and β(ε), respectively.

4. Eigenvalues and eigenspaces of the approximating operators. In this
section let d ≤ 3, and let m be a finite real-valued Radon measure satisfying (25)
(e.g., let m be from the Kato class). By the two preceding convergence results,
we can approximate the operator −Δ + m in L2(Rd, dx) by operators of the form
−Δ+ε2Δ2 +μ, where ε > 0 and μ is a point measure with mass at only finitely many
points. Since the convergence is in the norm-resolvent sense, we can thus approximate
the negative eigenvalues and corresponding eigenspaces of the former operator by the
corresponding eigenvalues and eigenfunctions of the latter one. Note that we know
from (23) and [5, Theorem 3.1] that the essential spectra coincide.

The following theorem shows how to compute the eigenvalues and corresponding
eigenspaces of the approximating operators.

Theorem 8. Let d ≤ 3 and ε > 0. Let μ =
∑N

j=1 cjδxj
, where N ∈ N, x1, . . . , xN

are N distinct points in R
d, and c1, . . . , cN are real numbers different from zero. Then

the following holds:
(a) The real number −α < 0 is an eigenvalue of −Δ + ε2Δ2 + μ if and only if

det

(
δjk
ck

+ gε,α(xj − xk)

)
1≤j,k≤N

= 0.

(b) For every eigenvalue −α < 0 the corresponding eigenfunctions have the fol-
lowing form:

N∑
k=1

hkgε,α(· − xk), (hk)
T
1≤k≤N ∈ ker

(
δjk
ck

+ gε,α(xj − xk)

)
1≤j,k≤N

.
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Proof. Since D(Eε) = H2(Rd), the mapping Jμ can be understood as

Jμf := f̃ |μ| a.e., f ∈ H2(Rd).

By (6),
∫
gε,α(· − y)f(y)dy is the unique continuous representative of Gε,αf . Hence

JμGε,α is the integral operator from L2(dx) to L2(|μ|) with kernel gε,α(x−y), and its
inverse operator (JμGε,α)∗ is the integral operator from L2(|μ|) to L2(dx) with the
same kernel. Thus we get

Jμ(JμGε,α)∗Aμh(xj) =

N∑
k=1

ckgε,α(xj − xk)h(xk), 1 ≤ j ≤ N,(34)

for every h ∈ L2(|μ|).
Due to Krein’s formula (29), −α < 0 belongs to the resolvent set of (−Δ+ε2Δ2 +

μ) provided 1 + Jμ(JμGε,α)∗Aμ is bijective. Since L2(|μ|) is finite-dimensional and
we have expression (34), that is true if and only if

λ(α) := det(δjk + ckgε,α(xj − xk))1≤j,k≤N �= 0,

with δj,k being the Kronecker delta. As gε,α(x) is a real analytic function of α ∈ (0,∞)
for every x ∈ R

d, the function λ(α) is also real analytic on (0,∞). By (5), it is different
from zero for all sufficiently large α. Thus the set of zeros on (0,∞) of this function
is discrete.

Since JμGε,α is surjective and (JμGε,α)∗Aμ injective, the resolvent formula (29)
implies that any α0 > 0 satisfying λ(α0) = 0 is a pole of Rμ

ε,α. Thus we have proved
that −α0 is an eigenvalue of −Δ + ε2Δ2 + μ if and only if λ(α0) = 0. Finally, the
expression

det(δjk + ckgε,α(xj − xk))1≤j,k≤N = ΠN
k=1ck · det(δjk/ck + gε,α(xj − xk))1≤j,k≤N

implies assertion (a).
By the preceding considerations and [3, Lemma 1],

h �→ (JμGε,α)∗Aμh

is a linear bijective mapping from ker(1+Jμ(JμGε,α)∗Aμ) onto ker(−Δ+ε2Δ2+μ+α).
Assertion (b) follows from a simple algebraic calculation.

Remark 9. Since the Hilbert space L2(|μ|) is N -dimensional with N < ∞, the
resolvent formula (29) implies that the difference Gμ

ε,α−Gε,α is a finite rank operator
with rank less than or equal to N . Thus the number, counting multiplicity, of negative
eigenvalues of −Δ + ε2Δ2 + μ is less than or equal to N .

Let us illustrate the approximation by point measures on a simple example in
dimension two. Suppose that measure m is a minus length measure supported by a
circle of radius R; i.e., m is a constant and negative measure. This makes the choice of
approximating point measures very simple: We spread equidistantly N points along
the circle, and all of the points have the same coupling constant c:

c = −γ2πR

N
.

Due to the symmetry, the spectrum of −Δ+m is known; it consists of the essential
spectrum [0,∞) and a finite number of negative eigenvalues, which are all except the
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Fig. 1. The dependence of the approximate eigenvalues on the number of point potentials for a
circle with R = 10 and ε = 0.1 (a), ε = 0.01 (b). The dashed lines represent the exact eigenvalues
of −Δ + m.

lowest one twice degenerate; see [2]. To find the eigenvalues, one has to decompose
L2(R2) into angular momentum subspaces and then to look for solutions of an implicit
equation in each of the subspaces. Therefore we can compute and compare both exact
and approximate eigenvalues.

Each approximation is characterized by a pair of numbers, ε > 0 and N ∈ N. In
numerical calculations we fix ε, and we let N grow. The results for one chosen radius
and two different parameters ε are depicted in Figure 1; cases (a) and (b) correspond
to ε = 0.1 and ε = 0.01, respectively. We observe that below some threshold number of
points the approximate discrete spectrum has no resemblance to the exact spectrum.
The approximate eigenvalues may be very large negative, and their number may be
much higher than the number of exact eigenvalues (in Figure 1, we have not even
plotted all of the eigenvalues which exist only for small N).

It appears that, for larger ε, we get a fast convergence of eigenvalues; however,
they are all shifted from the exact ones. The reason is that, since we work with fixed
ε, the limit operator is, in fact, −Δ + ε2Δ2 +m instead of −Δ +m. On the contrary,
small ε means that one needs more points to obtain a qualitatively correct spectrum,
but then for a large number of points one gets much closer to the exact spectrum.

We can also compare this approximation to [8], where approximating operators
were Laplacians with point potentials. Those point potentials are, of course, different:
They are not defined via a quadratic form and cannot be understood as a special case
ε = 0 of section 2; instead boundary conditons on wave functions are used; see [1].
Figure 2 presents the eigenvalues of Laplacians perturbed by point potentials which
converge to −Δ+m with the same measure m as above. We have already mentioned
in the introduction that, here, we obtain a stronger convergence result than the one
in [8]. Moreover, comparing both Figures 1 and 2, we see that employing fourth-order
differential operators in the approximation may improve significantly the spectral
convergence.
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Fig. 2. The dependence of the approximate eigenvalues on the number of point potentials for
R = 10, using the standard two-dimensional point potentials. The dashed lines represent the exact
eigenvalues of −Δ + m.

Appendix. In section 2 we have employed Krein’s formula (9). Various forms of
this formula can be found in the literature. Let us prove here the one we have used.

Let f ∈ L2(dx). Since Eε and Eμ
ε are associated to −Δ+ε2Δ2 and −Δ+ε2Δ2+μ,

respectively, it follows from Kato’s representation theorem that

Eε,α(Gε,αf, h) = (f, h) = Eμ
ε,α((−Δ + ε2Δ2 + μ + α)−1f, h)(35)

for any h ∈ H2(Rd) and f ∈ L2(Rd). Moreover we have

Eε,α(Gμ
ε,αψ, h) = (Gμ

ε,αψ, (−Δ + ε2Δ2 + α)h)

=

∫ ∫
gε,α(x− y)

¯̃
ψ(y)μ(dy)(−Δ + ε2Δ2 + α)h(x) dx

=

∫ ∫
gε,α(x− y)(−Δ + ε2Δ2 + α)h(x) dx

¯̃
ψ(y)μ(dy)

=

∫
h̃

¯̃
ψ μ(dy), ψ ∈ H2(Rd), h ∈ D(−Δ + ε2Δ2).(36)

We could change the order of integration in the second step. In fact, as μ± are finite
Radon measures and gε,α is square integrable w.r.t. the Lebesgue measure dx, the
mappings x �→

∫
|gε,α(x− y)|μ±(dy), R

d −→ R, are square integrable w.r.t. dx. Since

ψ̃ is bounded and (−Δ + ε2Δ2 + α)h ∈ L2(dx), it follows that∫ ∫
|gε,α(x− y)

¯̃
ψ(y)|μ±(dy)|(−Δ + ε2Δ2 + α)h(x)|dx < ∞,

and, by Fubini’s theorem, we could change the order of integration in the second
step. In the last step we have used (6). Employing Sobolev’s inequality and the fact
that D(−Δ + ε2Δ2) is dense in (D(Eε), Eε,α), we can extend (36) to all functions
ψ, h ∈ D(Eε).

Put

φ := Gε,αf −Gμ
ε,α(I + Gμ

ε,α)−1Gε,αf.
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Then φ ∈ H2(Rd) = D(Eμ
ε ), and (35) and extended (36) yield

Eμ
ε,α(φ, h) = Eε,α(Gε,αf, h) − Eε,α(Gμ

ε,α(I + Gμ
ε,α)−1Gε,αf, h)

+

∫
[Gε,αf −Gμ

ε,α(I + Gμ
ε,α)−1Gε,αf

¯̃
]h̃dμ

= (f, h) −
∫

[(I + Gμ
ε,α)−1Gε,αf

¯̃
]h̃dμ

+

∫
[(I + Gμ

ε,α)(I + Gμ
ε,α)−1Gε,αf −Gμ

ε,α(I + Gμ
ε,α)−1Gε,αf

¯̃
]h̃dμ

= (f, h), h ∈ H2(Rd).

Due to (10), Eμ
ε,α is a scalar product on D(Eμ

ε,α) = H2(Rd). Thus (35) and the
calculation above imply that φ = (−Δ + ε2Δ2 + μ + α)−1f .
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OPTIMALLY SPARSE MULTIDIMENSIONAL REPRESENTATION
USING SHEARLETS∗

KANGHUI GUO† AND DEMETRIO LABATE‡

Abstract. In this paper we show that shearlets, an affine-like system of functions recently intro-
duced by the authors and their collaborators, are essentially optimal in representing 2-dimensional
functions f which are C2 except for discontinuities along C2 curves. More specifically, if fS

N is the
N -term reconstruction of f obtained by using the N largest coefficients in the shearlet representation,
then the asymptotic approximation error decays as ‖f − fS

N‖2
2 � N−2 (logN)3, N → ∞, which is

essentially optimal, and greatly outperforms the corresponding asymptotic approximation rate N−1

associated with wavelet approximations. Unlike curvelets, which have similar sparsity properties,
shearlets form an affine-like system and have a simpler mathematical structure. In fact, the elements
of this system form a Parseval frame and are generated by applying dilations, shear transformations,
and translations to a single well-localized window function.

Key words. affine systems, curvelets, geometric image processing, shearlets, sparse representa-
tion, wavelets
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1. Introduction. The notion of efficient representation of data plays an increas-
ingly important role in areas across applied mathematics, science, and engineering.
Over the past few years, there has been a rapidly increasing pressure to handle ever
larger and higher-dimensional data sets, with the challenge of providing representa-
tions of these data that are sparse (that is, “very” few terms of the representation
are sufficient to accurately approximate the data) and computationally fast. Sparse
representations have implications reaching beyond data compression. Understanding
the compression problem for a given data type entails a precise knowledge of the
modeling and approximation of that data type. This in turn is useful for many other
important tasks, including classification, denoising, interpolation, and segmentation
[13].

Multiscale techniques based on wavelets have emerged over the last two decades
as the most successful methods for the efficient representation of data, as attested, for
example, by their use in the new FBI fingerprint database [3] and in JPEG2000, the
new standard for image compression [4, 19]. Indeed, wavelets are optimally efficient
in representing functions with pointwise singularities [27, Chap. 9].

More specifically, consider the wavelet representation (using a “nice” wavelet ba-
sis) of a function f of a single variable that is smooth apart from a point discontinuity.
Because the elements of the wavelet basis are well localized (i.e., they have very fast
decay both in the spatial and in the frequency domain), very few of them interact
significantly with the singularity, and thus very few elements of the wavelet expansion
are sufficient to provide an accurate approximation. This contrasts sharply with the
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Fourier representation, for which the discontinuity interacts extensively with the ele-
ments of the Fourier basis. Denoting by fN the approximation obtained by using the
largest N coefficients in the wavelet expansion, the asymptotic approximation error
satisfies

‖f − fN‖2
2 � N−2, N → ∞.

This is the optimal approximation rate for this type of function [10], and outperforms
the corresponding Fourier approximation error rate N−1 [13, 27]. In addition, the
multiresolution analysis (MRA) associated with wavelets provides very fast numerical
algorithms for computing the wavelet coefficients [27].

However, despite their remarkable success in applications, wavelets are far from
optimal in dimensions larger than one. Indeed wavelets are very efficient in dealing
with pointwise singularities only. In higher dimensions other types of singularities
are usually present or even dominant, and wavelets are unable to handle them very
efficiently. Consider, for example, the wavelet representation of a 2-dimensional (2-
D) function that is C2 away from a discontinuity along a curve of finite length (a
reasonable model for an image containing an edge). Because the discontinuity is
spatially distributed, it interacts extensively with the elements of the wavelet basis.
As a consequence, the wavelet coefficients have a slow decay, and the approximation
error ‖f − fN‖2

2 decays at most as fast as O(N−1) [27]. This is better than the
rate of the Fourier approximation error N−1/2, but far from the optimal theoretical
approximation rate (cf. [12])

(1.1) ‖f − fN‖2
2 � N−2, N → ∞.

There is, therefore, large room for improvements, and several attempts have been
made in this direction both in the mathematical and engineering communities in recent
years. Those include contourlets, complex wavelets and other “directional wavelets”
in the filter bank literature [1, 2, 11, 22, 26, 28], as well as brushlets [8], ridgelets [5],
curvelets [7], and bandelets [24].

The most successful approach so far are the curvelets of Candès and Donoho.
This is the first and so far the only construction providing an essentially optimal ap-
proximation property for 2-D piecewise smooth functions with discontinuities along
C2 curves [7]. The main idea in the curvelet approach is that, in order to approx-
imate functions with edges accurately, one has to exploit their geometric regularity
much more efficiently than traditional wavelets. This is achieved by constructing an
appropriate tight frame of well-localized functions at various scales, positions, and
directions. We refer to [6, 7] for more details about this construction.

The main goal of this paper is to show that shearlets, a construction based on
the theory of composite wavelets, also provides an essentially optimal approximation
property for 2-D piecewise C2 functions with discontinuities along C2 curves. We
will show that the approximation error associated with the N -term reconstruction fS

N

obtained by taking the N largest coefficients in the shearlet expansion satisfies

(1.2) ‖f − fS
N‖2

2 � N−2(logN)3, N → ∞.

This is exactly the approximation rate obtained using curvelets. The proof of our
result adapts several ideas from the corresponding sparsity result of the curvelets
[7] and follows the general architecture of that proof, but does not follow directly
from the curvelets construction. Indeed, as we will argue in the following, our alter-
native approach based on shearlets has some mathematical advantages with respect
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to curvelets, including a simplified construction that provides the framework for a
simpler mathematical analysis and fast algorithmic implementation (see also [9, 14]).

The theory of composite wavelets, recently proposed by the authors and their
collaborators [16, 17, 18], provides a most general setting for the construction of
truly multidimensional, efficient, multiscale representations. Unlike the curvelets,
this approach takes full advantage of the theory of affine systems on R

n. Specifically,
the affine systems with composite dilations are the systems

(1.3) AAB(ψ) = {ψj,�,k(x) = |detA|j/2 ψ(B� Ajx− k) : j, � ∈ Z, k ∈ Z
n},

where A,B are n×n invertible matrices and |detB| = 1. The elements of this system
are called composite wavelets if AAB(ψ) forms a Parseval frame (also called a tight
frame) for L2(Rn); that is, ∑

j,�,k

|〈f, ψj,�,k〉|2 = ‖f‖2

for all f ∈ L2(Rn). The shearlets, which will be considered in this paper, are a special
class of composite wavelets where A is an anisotropic dilation and B is a shear matrix.
Details for this construction will be given in section 1.2. These representations have
fully controllable geometrical features, such as orientations, scales, and shapes, which
set them apart from traditional wavelets as well as complex and directional wavelets.
In addition, thanks to their mathematical structure, there is a multiresolution anal-
ysis naturally associated with composite wavelets. This is particularly useful for the
development of fast algorithmic implementations of these transformations [23, 25].

Observe that curvelets are not of the form (1.3), and, unlike the shearlets, are
not generated from the action of a family of operators on a single or finite family of
functions.

1.1. Notation. Throughout this paper, we shall consider the points x ∈ R
n to

be column vectors, i.e.,

x =

⎛
⎜⎝
x1

...
xn

⎞
⎟⎠ ,

and the points ξ ∈ R̂
n (the frequency domain) to be row vectors, i.e., ξ = (ξ1, . . . , ξn).

A vector x multiplying a matrix a ∈ GLn(R) on the right is understood to be a column
vector, while a vector ξ multiplying a on the left is a row vector. Thus, ax ∈ R

n and
ξa ∈ R̂

n. The Fourier transform is defined as

f̂(ξ) =

∫
Rn

f(x) e−2πiξx dx,

where ξ ∈ R̂
n, and the inverse Fourier transform is

f̌(x) =

∫
R̂n

f(ξ) e2πiξx dξ.

1.2. Shearlets. The collection of shearlets that we are going to define in this
section is a special example of composite wavelets in L2(R2), of the form (1.3), where

(1.4) A =

(
4 0
0 2

)
, B =

(
1 1
0 1

)
,
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and ψ will be defined in the following. It is useful to observe that, by applying the
Fourier transform to the elements ψj,�,k in (1.3), we obtain

ψ̂j,�,k(ξ) = |detA|−j/2 ψ(ξA−jB−�) e2πiξA−jB−�k.

For any ξ = (ξ1, ξ2) ∈ R̂
2, ξ1 	= 0, let ψ be given by

(1.5) ψ̂(ξ) = ψ̂(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2

(
ξ2
ξ1

)
,

where ψ̂1, ψ̂2 ∈ C∞(R̂), supp ψ̂1 ⊂ [− 1
2 ,−

1
16 ] ∪ [ 1

16 ,
1
2 ], and supp ψ̂2 ⊂ [−1, 1]. We

assume that

(1.6)
∑
j≥0

|ψ̂1(2
−2jω)|2 = 1 for |ω| ≥ 1

8

and

(1.7) |ψ̂2(ω − 1)|2 + |ψ̂2(ω)|2 + |ψ̂2(ω + 1)|2 = 1 for |ω| ≤ 1.

It follows from the last equation that, for any j ≥ 0,

(1.8)

2j∑
�=−2j

|ψ̂2(2
j ω + �)|2 = 1 for |ω| ≤ 1.

It also follows from our assumptions that ψ̂ ∈ C∞
0 (R̂2), with supp ψ̂ ⊂ [− 1

2 ,
1
2 ]2. There

are several examples of functions ψ1, ψ2 satisfying the properties described above (see
the appendix).

Observe that (ξ1, ξ2)A
−jB−� = (2−2jξ1,−�2−2jξ1+2−jξ2). Using (1.6) and (1.8),

it is easy to see that

∑
j≥0

2j∑
�=−2j

|ψ̂(ξ A−jB−�)|2 =
∑
j≥0

2j∑
�=−2j

|ψ̂1(2
−2j ξ1)|2

∣∣∣∣ψ̂2

(
2j

ξ2
ξ1

− �

)∣∣∣∣
2

=
∑
j≥0

|ψ̂1(2
−2j ξ1)|2

2j∑
�=−2j

∣∣∣∣ψ̂2

(
2j

ξ2
ξ1

− �

)∣∣∣∣
2

= 1

for (ξ1, ξ2) ∈ DC , where DC = {(ξ1, ξ2) ∈ R̂
2 : |ξ1| ≥ 1

8 , |
ξ2
ξ1
| ≤ 1}. This equation,

together with the fact that ψ̂ is supported inside [− 1
2 ,

1
2 ]2, implies that the collection

of shearlets,

(1.9) SH(ψ) =

{
ψj,�,k(x) = 2

3j
2 ψ(B�Ajx− k) : j ≥ 0,−2j ≤ � ≤ 2j , k ∈ Z

2

}
,

is a Parseval frame for L2(DC)∨ = {f ∈ L2(R2) : supp f̂ ⊂ DC}. Details about the
argument that this system is a Parseval frame can be found in [18, sect. 5.2.1].

To obtain a Parseval frame for L2(R2), one can construct a second system of
shearlets which form a Parseval frame for the functions with frequency support in
the vertical cone DC̃ = {(ξ1, ξ2) ∈ R̂

2 : |ξ2| ≥ 1
8 , |

ξ1
ξ2
| ≤ 1}. Finally, one can easily
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(a)

ξ1

ξ2

(b)

��

∼ 22j

�

�

∼ 2j

Fig. 1.1. (a) The tiling of the frequency plane R̂
2 induced by the shearlets. (b) Frequency

support of the shearlet ψj,�,k, for ξ1 > 0. The other half of the support, for ξ1 < 0, is symmetrical.

construct a Parseval frame (or an orthonormal basis) for L2([− 1
8 ,

1
8 ]2)∨. Then any

function in L2(R2) can be expressed as a sum f = PCf + PC̃f + P0f , where each
component corresponds to the orthogonal projection of f into one of the three sub-
spaces of L2(R2) described above. The tiling of the frequency plane R̂

2 induced by
this system is illustrated in Figure 1.1(a). The above construction was first introduced
in [15].

The conditions on the support of ψ̂1 and ψ̂2 imply that the functions ψ̂j,�,k have
frequency support:

supp ψ̂j,�,k ⊂
{

(ξ1, ξ2) : ξ1 ∈ [−22j−1,−22j−4] ∪ [22j−4, 22j−1],

∣∣∣∣ξ2ξ1 − � 2−j

∣∣∣∣ ≤ 2−j

}
.

Thus, the system SH(ψ), given by (1.9), is a Parseval frame exhibiting the following
properties:

(i) Time-frequency localization. Since ψ̂ ∈ C∞
0 (R̂2), then |ψ(x)| ≤ CN (1+|x|)−N

for any N ∈ N, and thus the elements ψj,�,k are well localized.

(ii) Parabolic scaling. Each element ψ̂j,�,k has support on a pair of trapezoids,
each one contained in a box of size approximately 22j×2j (see Figure 1.1(b)).
Because the shearlets are well localized, each ψj,�,k is essentially supported
on a box of size 2−2j × 2−j . Thus, their supports become increasingly thin
as j → ∞.

(iii) Directional sensitivity. The elements ψ̂j,�,k are oriented along lines with slope
given by � 2−j . As a consequence, the corresponding elements ψj,�,k are ori-
ented along lines with slope −� 2−j . The number of orientations (approxi-
mately) doubles at each finer scale.

(iv) Spatial localization. For any fixed scale and orientation, the shearlets are
obtained by translations on the lattice Z

2.
(v) Oscillatory behavior. The shearlets ψj,�,k are nonoscillatory along the orien-

tation axis of slope −� 2−j , and oscillatory across this axis.
Observe that the curvelets of Candès and Donoho also satisfy similar properties,

with the following main differences. Concerning property (iii), the number of orienta-
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tions in the curvelet constructions doubles at every other scale. Concerning property
(iv), the curvelets are not associated with a fixed translation lattice. However, for a
given scale parameter j and orientation θ, they are obtained by translations on a grid
that depends on j and θ. In fact, as we mentioned before, unlike the shearlets, the
curvelets are not generated from the action of a family of operators on a single or
finite family of functions.

1.3. Main results. One major feature of shearlets is that, if f is a compactly
supported function which is C2 away from a C2 curve, then the sequence of shearlet
coefficients {〈f, ψj,�,k〉} has (essentially) optimally fast decay. As a consequence, if
fS
N is the N -term approximation of f obtained from the N largest coefficients of its

shearlet expansion, then the approximation error is essentially optimal.
Before stating the main theorems, let us define more precisely the class of functions

we are interested in. We follow [7] and introduce STAR2(A), a class of indicator
functions of sets B with C2 boundaries ∂B. In polar coordinates, let ρ(θ) : [0, 2π) →
[0, 1]2 be a radius function, and define B by x ∈ B if and only if |x| ≤ ρ(θ). In
particular, the boundary ∂B is given by the curve in R

2:

(1.10) β(θ) =

(
ρ(θ) cos(θ)
ρ(θ) sin(θ)

)
.

The class of boundaries of interest to us is defined by

(1.11) sup |ρ′′(θ)| ≤ A, ρ ≤ ρ0 < 1.

We say that a set B ∈ STAR2(A) if B ⊂ [0, 1]2 and B is a translate of a set obey-
ing (1.10) and (1.11). In addition, we set C2

0 ([0, 1]2) to be the collection of twice
differentiable functions supported inside [0, 1]2.

Finally, we define the set E2(A) of functions which are C2 away from a C2 edge
as the collection of functions of the form

f = f0 + f1 χB ,

where f0, f1 ∈ C2
0 ([0, 1]2), B ∈ STAR2(A), and ‖f‖C2 =

∑
|α|≤2‖Dαf‖∞ ≤ 1.

Let M be the set of indices {(j, �, k) : j ≥ 0,−2j ≤ � ≤ 2j , k ∈ Z
2}, and let

{ψμ}μ∈M be the Parseval frame of shearlets given by (1.9). The shearlet coefficients
of a given function f are the elements of the sequence {sμ(f) = 〈f, ψμ〉 : μ ∈ M}.
We denote by |s(f)|(N) the Nth largest entry in this sequence. We can now state the
following results.

Theorem 1.1. Let f ∈ E2(A), and let {sμ(f) = 〈f, ψμ〉 : μ ∈ M} be the sequence
of shearlet coefficients associated with f . Then

(1.12) sup
f∈E2(A)

|s(f)|(N) ≤ C N−3/2 (logN)3/2.

Let fS
N be the N -term approximation of f obtained from the N largest coefficients

of its shearlet expansion, namely,

fS
N =

∑
μ∈IN

〈f, ψμ〉ψμ,

where IN ⊂ M is the set of indices corresponding to the N largest entries of the
sequence {|〈f, ψμ〉|2 : μ ∈ M}. Then the approximation error satisfies

‖f − fS
N‖2

2 ≤
∑
m>N

|s(f)|2(m).
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Therefore, from (1.12) we immediately have the following.
Theorem 1.2. Let f ∈ E2(A) and fS

N be the approximation to f defined above.
Then

‖f − fS
N‖2

2 ≤ C N−2 (logN)3.

1.4. Analysis of the shearlet coefficients. The argument that will be used
to prove Theorem 1.1 follows essentially the architecture of the proofs in [7]. In order
to measure the sparsity of the shearlet coefficients {〈f, ψμ〉 : μ ∈ M}, we will use the
weak-�p quasi-norm ‖·‖w�p defined as follows. Let |sμ|(N) be the Nth largest entry in
the sequence {sμ}. Then

‖sμ‖w�p = sup
N>0

N
1
p |sμ|(N).

One can show (cf. [29, sect. 5.3]) that this definition is equivalent to

‖sμ‖w�p =

(
sup
ε>0

#{μ : |sμ| > ε} εp
) 1

p
.

To analyze the decay properties of the shearlet coefficients {〈f, ψμ〉} at a given
scale 2−j , we will smoothly localize the function f near dyadic squares. Fix the scale
parameter j ≥ 0. For this j fixed, let Mj = {(j, �, k) : −2j ≤ � ≤ 2j , k ∈ Z

2} and
Qj be the collection of dyadic cubes of the form Q = [k1

2j ,
k1+1
2j ] × [k2

2j ,
k2+1
2j ], with

k1, k2 ∈ Z. For w a nonnegative C∞ function with support in [−1, 1]2, we define a
smooth partition of unity ∑

Q∈Qj

wQ(x) = 1, x ∈ R
2,

where, for each dyadic square Q ∈ Qj , wQ(x) = w(2jx1−k1, 2
jx2−k2). We will then

examine the shearlet coefficients of the localized function fQ = f wQ, i.e., {〈fQ, ψμ〉 :
μ ∈ Mj}.

For f ∈ E2(A), the decay properties of the coefficients {〈fQ, ψμ〉 : μ ∈ Mj} will
exhibit a very different behavior depending on whether the edge curve intersects the
support of wQ or not. Let Qj = Q0

j ∪ Q1
j , where the union is disjoint and Q0

j is the
collection of those dyadic cubes Q ∈ Qj such that the edge curve intersects the support
of wQ. Since each Q has sidelength 2 · 2−j , then Q0

j has cardinality |Q0
j | ≤ C0 2j ,

where C0 is independent of j. Similarly, since f is compactly supported in [0, 1]2,
|Q1

j | ≤ 22j + 4 · 2j .
We have the following results, which will be proved in section 2.
Theorem 1.3. Let f ∈ E2(A). For Q ∈ Q0

j , with j ≥ 0 fixed, the sequence of
shearlet coefficients {〈fQ, ψμ〉 : μ ∈ Mj} obeys

‖〈fQ, ψμ〉‖w�2/3 ≤ C 2−
3j
2

for some constant C independent of Q and j.
Theorem 1.4. Let f ∈ E2(A). For Q ∈ Q1

j , with j ≥ 0 fixed, the sequence of
shearlet coefficients {〈fQ, ψμ〉 : μ ∈ Mj} obeys

‖〈fQ, ψμ〉‖w�2/3 ≤ C 2−3j
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for some constant C independent of Q and j.
As a consequence of these two theorems, we have the following.
Corollary 1.5. Let f ∈ E2(A) and, for j ≥ 0, let sj(f) be the sequence

sj(f) = {〈f, ψμ〉 : μ ∈ Mj}. Then

‖sj(f)‖w�2/3 ≤ C

for some C independent of j.
Proof. Using Theorems 1.3 and 1.4, by the p-triangle inequality for weak �p spaces,

p ≤ 1, we have

‖sj(f)‖2/3

w�2/3 ≤
∑

Q∈Qj

‖〈fQ, ψμ〉‖2/3

w�2/3

=
∑

Q∈Q0
j

‖〈fQ, ψμ〉‖2/3

w�2/3 +
∑

Q∈Q1
j

‖〈fQ, ψμ〉‖2/3

w�2/3

≤ C |Q0
j | 2−j + C |Q1

j | 2−2j .

The proof is completed by observing that |Q0
j | ≤ C0 2j , where C0 is independent of j,

and |Q1
j | ≤ 22j + 4 · 2j .

We can now prove Theorem 1.1.
Proof of Theorem 1.1. By Corollary 1.5, we have that

(1.13) R(j, ε) = #{μ ∈ Mj : |〈f, ψμ〉| > ε} ≤ C ε−2/3.

Also, observe that, since ψ̂ ∈ C∞
0 (R2), then

|〈f, ψμ〉| =

∣∣∣∣
∫

R2

f(x) 23j/2 ψ(B�Ajx− k) dx

∣∣∣∣
≤ 23j/2 ‖f‖∞

∫
R2

|ψ(B�Ajx− k)| dx

= 2−3j/2 ‖f‖∞
∫

R2

|ψ(y)| dy < C ′ 2−3j/2.(1.14)

As a consequence, there is a scale jε such that |〈f, ψμ〉| < ε for each j ≥ jε. Specifically,
it follows from (1.14) that R(j, ε) = 0 for j > 2

3 (log2(ε
−1) + log2(C

′)) > 2
3 log2(ε

−1).
Thus, using (1.13), we have that

#{μ ∈ M : |〈f, ψμ〉| > ε} ≤
∑
j≥0

R(j, ε) ≤ C ε−2/3 log2(ε
−1),

and this implies (1.12).

2. Proofs. This section contains the constructions and proofs needed for the
theorems in section 1.4.

2.1. Proof of Theorem 1.3. Suppose that a function in E2(A) contains a C2

edge. Following the approach in [7], we suppose that, for j > j0, the scale 2−j is
small enough so that over the square −2−j ≤ x1, x2 ≤ 2−j the edge curve may be
parametrized as

(
E(x2)
x2

)
or
( x1

E(x1)

)
. (The case where j ≤ j0 is small requires a much

simpler analysis and will be discussed in section 2.3.) Without loss of generality, let
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x1

x2

E(x2)

�

�

2 · 2−j

Fig. 2.1. Representation of an edge fragment.

us assume that the first parametrization holds. Then an edge fragment is a function
of the form

f(x1, x2) = w(2jx1, 2
jx2) g(x1, x2)χ{x1≥E(x2)},

where g ∈ C2
0 ((0, 1)2). For simplicity, let us assume that the edge goes through the

origin and, at this point, its tangent is vertical (see Figure 2.1). Then, using the
regularity of the edge curve, we have that

(i) E(0) = 0, E′(0) = 0;
(ii) sup|x2|≤2−j |E(x2)| ≤ 1

2 sup|x2|≤2−j 2−2j |E′′(x2)|.
That means that, for |x2| ≤ 2−j , the edge curve is almost straight. Observe that any
arbitrary edge fragment is obtained by rotating and translating the one above. Since
the analysis of the edge fragment that will be presented in the following is not affected
by these transformations, there is no loss of generality in considering this case only.

In order to quantify the decay properties of the shearlet coefficients, we first need
to analyze the decay of the Fourier transform of the edge fragment along radial lines
in the region DC ⊂ R̂

2, defined in section 1.2. It will be convenient to introduce polar
coordinates. Let ξ = (ξ1, ξ2) ∈ DC . Using polar coordinates, we have

ξ1 = λ cos θ, ξ2 = λ sin θ, with |θ| ≤ π

4
, λ ∈ R, |ξ1| ≥

1

8
.

Using this notation, the radial lines have the form (λ cos θ, λ sin θ), λ ∈ R, |θ| ≤ π
4 .

For ξ = (ξ1, ξ2) ∈ DC , j ≥ 0, −2j ≤ � ≤ 2j , we introduce the notation

(2.1) Γj,�(ξ) = ψ̂1

(
2−2j ξ1

)
ψ̂2

(
2j

ξ2
ξ1

− �

)
.

We have the following claim.
Proposition 2.1. Let f be an edge fragment and Γj,� be given by (2.1). Then∫

R2

|f̂(ξ)|2 |Γj,�(ξ)|2 dξ ≤ C 2−3j (1 + |�|)−5.
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In order to prove this proposition, we need to recall the following result [7,
Thm. 6.1].

Theorem 2.2. Let f be an edge fragment and Ij a dyadic interval [22j−α, 22j+β ]
with α ∈ {0, 1, 2, 3, 4}, β ∈ {0, 1, 2}. Then, for all θ,∫

|λ|∈Ij

|f̂(λ cos θ, λ sin θ)|2 dλ ≤ C 2−3j
(
1 + 2j | sin θ|

)−5

.

Proof of Proposition 2.1. The assumptions on the support of ψ̂1 and ψ̂2 imply
that

(2.2) supp ψ̂1(2
−2jξ1) ⊂

{
ξ1 ∈ [−22j−1,−22j−4] ∪ [22j−4, 22j−1]

}
and

supp ψ̂2

(
2j

ξ2
ξ1

− �

)
⊂
{

(ξ1, ξ2) :

∣∣∣∣2j ξ2ξ1 − �

∣∣∣∣ ≤ 1

}
.

Since tan θ = ξ2
ξ1

, the last expression can be written as

(2.3) supp ψ̂2

(
2j

ξ2
ξ1

− �

)
⊂
{
(λ, θ) : 2−j(�− 1) ≤ tan θ ≤ 2−j(� + 1)

}
.

Since λ2 = ξ2
1 + ξ2

2 = ξ2
1 (1 + (tan θ)2) and |�| ≤ 2j , then, using (2.2) and (2.3), we

have

|λ| ≤ 22j−1
(
1 + 2−2j(1 + |�|)2

) 1
2 ≤ 22j−1

(
1 + 2−2j(1 + 2j)2

) 1
2 ≤ 22j+1

and

|λ| ≥ 22j−4
(
1 + 2−2j(|�| − 1)2

) 1
2 ≥ 22j−4.

Thus, the support of Γj,� is contained in

Wj,� = {(λ, θ) : 22j−4 ≤ |λ| ≤ 22j+1, arctan(2−j(�− 1)) ≤ θ ≤ arctan(2−j(� + 1))}.

Observe that, in particular, |θ| ≤ arctan 2. Since, for |θ| ≤ 2, we have that1 tan θ ≈
sin θ, it follows from (2.3) that, on Wj,�,

(2.4) 2j | sin θ| ≈ 2j (2−j |�|) = |�|.

Thus, using (2.4) and Theorem 2.2, we have that∫
R̂2

|f̂(ξ)|2 |Γj,�(ξ)|2 dξ ≤ C

∫
Wj,�

|f̂(λ cos θ, λ sin θ)|2 λ dλ dθ

≤ C

∫ arctan(2−j(�+1))

arctan(2−j(�−1))

∫ 22j+1

22j−4

|f̂(λ cos θ, λ sin θ)|2 |λ| dλ dθ

≤ C 22j+1

∫ arctan(2−j(�+1))

arctan(2−j(�−1))

2−4j
(
1 + 2j | sin θ|

)−5

dθ

≤ C 2−2j (1 + |�|)−5
(
arctan(2−j(�− 1)) − arctan(2−j(� + 1))

)
= C 2−3j (1 + |�|)−5.

1We use the notation f(x) ≈ g(x), x ∈ D, to mean that there are constants C1, C2 > 0 such that
C1 g(x) ≤ f(x) ≤ C2 g(x) for all x ∈ D.
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The following proposition provides a similar estimate for the partial derivatives
of the Fourier transform of the edge fragment.

Proposition 2.3. Let f be an edge fragment, Γj,� be given by (2.1), and L be
the differential operator

L =

(
I −
(

22j

2π (1 + |�|)

)2
∂2

∂ξ2
1

) (
1 −
(

2j

2π

)2
∂2

∂ξ2
2

)
.

Then ∫
R̂2

∣∣∣L(f̂(ξ) Γj,�(ξ)
)∣∣∣2 dξ ≤ C 2−3j (1 + |�|)−5.

In order to prove this proposition, we need to recall the following result [7,
Cor. 6.6].

Corollary 2.4. Let f be an edge fragment and Ij a dyadic interval [22j−α, 22j+β ]
with α ∈ {0, 1, 2, 3, 4}, β ∈ {0, 1, 2}. Then, for each m = (m1,m2) ∈ N × N and for
each θ,

∫
|λ|∈Ij

∣∣∣∣ ∂m1

∂ξm1
1

∂m2

∂ξm2
2

f̂(λ cos θ, λ sin θ)

∣∣∣∣
2

dλ

≤ Cm 2−2j|m|
(
2−(4+2m1)j (1 + 2j | sin θ|)−5 + 2−10j

)
,

where Cm is independent of j and � and N = N ∪ {0}.
We also need the following lemma, which follows from a direct computation.

Lemma 2.5. Let Γj,� be given by (2.1). Then, for each m = (m1,m2) ∈ N × N,
m1,m2 ∈ {0, 1, 2},

∣∣∣∣ ∂m1

∂ξm1
1

∂m2

∂ξm2
2

Γj,�(ξ1, ξ2)

∣∣∣∣ ≤ Cm 2−(2m1+m2)j (1 + |�|)m1 ,

where |m| = m1 + m2 and Cm is independent of j and �.

We can now prove Proposition 2.3.

Proof of Proposition 2.3. From Corollary 2.4, using (2.4), we have

∫ 22j+1

22j−4

∣∣∣∣ ∂2

∂ξ2
1

f̂(λ cos θ, λ sin θ)

∣∣∣∣
2

dλ ≤ C 2−4j
(
2−8j (1 + |�|)−5 + 2−10j

)
.

Thus, using the same idea as in the proof of Proposition 2.1,

∫
R̂2

∣∣∣∣
(

∂2

∂ξ2
1

f̂(ξ)

)
Γj,�(ξ)

∣∣∣∣
2

dξ

≤ C

∫ arctan(2−j(�+1))

arctan(2−j(�−1))

∫ 22j+1

22j−4

∣∣∣∣ ∂2

∂ξ2
1

f̂(λ cos θ, λ sin θ)

∣∣∣∣
2

|λ| dλ dθ

≤ C 2−3j
(
2−8j (1 + |�|)−5 + 2−10j

)
.(2.5)
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Similarly, using Corollary 2.4 and Lemma 2.5, we have

∫
R̂2

∣∣∣∣
(

∂

∂ξ1
f̂(ξ)

) (
∂

∂ξ1
Γj,�(ξ)

)∣∣∣∣
2

dξ

≤ C 2−4j(1 + |�|)2
∫ arctan(2−j(�+1))

arctan(2−j(�−1))

∫ 22j+1

22j−4

∣∣∣∣ ∂

∂ξ1
f̂(λ cos θ, λ sin θ)

∣∣∣∣
2

|λ| dλ dθ

≤ C 2−4j(1 + |�|)2 2−j
(
2−6j (1 + |�|)−5 + 2−10j

)
= C 2−5j(1 + |�|)2

(
2−6j (1 + |�|)−5 + 2−10j

)
(2.6)

and ∫
R̂2

∣∣∣∣f̂(ξ)

(
∂2

∂ξ2
1

Γj,�(ξ)

)∣∣∣∣
2

dξ

≤ C 2−8j(1 + |�|)4
∫ arctan(2−j(�+1))

arctan(2−j(�−1))

∫ 22j+1

22j−4

∣∣∣f̂(λ cos θ, λ sin θ)
∣∣∣2 |λ| dλ dθ

≤ C 2−8j(1 + |�|)4 2−3j (1 + |�|)−5 = C 2−11j (1 + |�|)−1.(2.7)

Finally, combining (2.5), (2.6), (2.7), and using the fact that |�| ≤ 2j , we have that

(2.8)

∫
R̂2

∣∣∣∣∣
(

22j

2π(1 + |�|)

)2
∂2

∂ξ2
1

(
f̂(ξ) Γj,�(ξ)

)∣∣∣∣∣
2

dξ ≤ C 2−3j (1 + |�|)−5.

Similarly for the derivatives with respect to ξ2 we have

(2.9)

∫
R̂2

∣∣∣∣
(

∂2

∂ξ2
2

f̂(ξ)

)
Γj,�(ξ)

∣∣∣∣
2

dξ ≤ C 2−3j
(
2−4j (1 + |�|)−5 + 2−10j

)
,

(2.10)

∫
R̂2

∣∣∣∣
(

∂

∂ξ2
f̂(ξ)

) (
∂

∂ξ2
Γj,�(ξ)

)∣∣∣∣
2

dξ ≤ C 2−3j
(
2−4j (1 + |�|)−5 + 2−10j

)
,

(2.11)

∫
R̂2

∣∣∣∣f̂(ξ)

(
∂2

∂ξ2
2

Γj,�(ξ)

)∣∣∣∣
2

dξ ≤ C 2−7j (1 + |�|)−5.

Combining (2.9), (2.10), (2.11), and using again the fact that |�| ≤ 2j , we have that

(2.12)

∫
R̂2

∣∣∣∣∣
(

2j

2π

)2
∂2

∂ξ2
2

(
f̂(ξ) Γj,�(ξ)

)∣∣∣∣∣
2

dξ ≤ C 2−3j (1 + |�|)−5.

Similarly, one can show that

(2.13)

∫
R̂2

∣∣∣∣ 23j

(1 + |�|)(2π)2
∂2

∂ξ2
2

∂2

∂ξ2
1

(
f̂(ξ) Γj,�(ξ)

)∣∣∣∣
2

dξ ≤ C 2−3j (1 + |�|)−5.

The proof is completed using (2.8), (2.12), (2.13), and Lemma 2.5.
We can now prove Theorem 1.3. The following proof adapts some ideas from [7].
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Proof of Theorem 1.3. Fix j ≥ 0 and, for simplicity of notation, let f = fQ. For
μ ∈ Mj , the shearlet coefficient of f is

〈f, ψμ〉 = 〈f, ψj,�,k〉 = |detA|−j/2

∫
R̂2

f̂(ξ) Γj,�(ξ) e
2πiξA−jB−�k dξ,

where Γj,�(ξ) is given by (2.1) and A, B are given by (1.4). Observe that

2πiξA−jB−�k = 2πi
(
ξ1 ξ2

)(2−2j 0
0 2−j

)(
1 −�
0 1

)(
k1

k2

)
= 2πi

(
(k1 − k2�)2

−2jξ1 + k22
−jξ2
)
.(2.14)

Using (2.14), a direct computation shows that

∂2

∂ξ2
1

(
2πξA−jB−�k

)
= −(2π)22−4j(k1 − k2�)

2 =

{
−(2π)2 �2 2−4j(k1

� − k2)
2 if � 	= 0,

−(2π)2 2−4jk2
1 if � = 0,

∂2

∂ξ2
2

(
2πξA−jB−�k

)
= −(2π)2 2−2jk2

2.(2.15)

By the equivalent definition of weak �p norm, the theorem is proved, provided we
show that

(2.16) #{μ ∈ Mj : |〈f, ψμ〉| > ε} ≤ C 2−j ε−
2
3 .

Let L be the second order differential operator defined in Proposition 2.3. Using
(2.14) and (2.15), it follows that
(2.17)

L
(
e2πiξA−jB−�k

)
=

⎧⎨
⎩
(

1 +
(

�
(1+|�|)

)2 (
k1

� − k2

)2)
(1 + k2

2) e
2πiξA−jB−�k if � 	= 0,

(1 + k2
1)(1 + k2

2) e
2πiξA−jB−�k if � = 0.

Integration by parts gives

〈f, ψμ〉 = |detA|−j/2

∫
R̂2

L
(
f̂(ξ) Γj,�(ξ)

)
L−1
(
e2πiξA−jB−�k

)
dξ.

Let us consider first the case � 	= 0. In this case, from (2.17) we have that

(2.18) L−1
(
e2πiξA−jB−�k

)
= G(k, �)−1 e2πiξA−jB−�k,

where G(k, �) =
(
1 +
(

�
(1+|�|)

)2(k1

� − k2

)2)
(1 + k2

2). Thus

〈f, ψμ〉 = |detA|−j/2 G(k, �)−1

∫
R̂2

L
(
f̂(ξ) Γj,�(ξ)

)
e2πiξA−jB−�k dξ,

or, equivalently,

G(k, �) 〈f, ψμ〉 = |detA|−j/2

∫
R̂2

L
(
f̂(ξ) Γj,�(ξ)

)
e2πiξA−jB−�k dξ.

Let K = (K1,K2) ∈ Z
2, and define RK = {k = (k1, k2) ∈ Z

2 : k1

� ∈ [K1,K1+1], k2 =

K2}. Since, for j, � fixed, the set {|detA|−j/2 e2πiξA−jB−�k : k ∈ Z
2} is an orthonormal
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basis for the L2 functions on [− 1
2 ,

1
2 ]AjB�, and the function Γj,�(ξ) is supported on

this set, then ∑
k∈RK

|〈G(k, �) f, ψμ〉|2 ≤
∫

R̂2

∣∣∣L(f̂(ξ) Γj,�(ξ)
)∣∣∣2 dξ.

From the definition of RK it follows that∑
k∈RK

|〈f, ψμ〉|2 ≤ C
(
1 + (K1 −K2)

2
)−2

(1 + K2)
−2
∫

R̂2

∣∣∣L(f̂(ξ) Γj,�(ξ)
)∣∣∣2 dξ.

By Proposition 2.3,

(2.19)
∑

k∈RK

|〈f, ψμ〉|2 ≤ C L−2
K 2−3j(1 + |�|)−5,

where LK = (1 + (K1 − K2)
2)(1 + K2

2 ). For j, � fixed, let Nj,�,K(ε) = #{k ∈ RK :
|ψj,�,k| > ε}. Then it is clear that Nj,�,K(ε) ≤ C (|�| + 1), and (2.19) implies that

Nj,�,K(ε) ≤ C L−2
K 2−3j ε−2(1 + |�|)−5.

Thus

(2.20) Nj,�,K(ε) ≤ C min
(
|�| + 1, L−2

K 2−3j ε−2(1 + |�|)−5
)
.

Using (2.20), we will now show that

(2.21)
2j∑

�=−2j

Nj,�,K(ε) ≤ C L
− 2

3
K 2−j ε−

2
3 .

In fact, let �∗ be defined by (�∗ + 1) = L−2
K 2−3j ε−2(1 + �∗)−5. That is, �∗ + 1 =

L
−1/3
K 2−j/2 ε−1/3. Then

2j∑
�=−2j

Nj,�,K(ε) ≤
∑

|�|≤(�∗+1)

Nj,�,K(ε) +
∑

|�|>(�∗+1)

Nj,�,K(ε)

≤
∑

|�|≤(�∗+1)

(|�| + 1) +
∑

|�|>(�∗+1)

L−2
K 2−3j ε−2(1 + |�|)−5

≤ (�∗ + 1)2 + C L−2
K 2−3j ε−2(1 + �∗)−4 ≤ C (�∗ + 1)2,

which gives (2.21).

Since
∑

K∈Z2 L
−2/3
K < ∞, using (2.21) we then have that

#{μ ∈ Mj : |〈f, ψμ〉| > ε} ≤
∑
K∈Z2

2j∑
�=−2j

Nj,�,K(ε) ≤ C 2−j ε−
2
3
∑
K∈Z2

L
− 2

3
K ≤ C 2−j ε−

2
3 ,

and, thus (2.16) holds.
The case � = 0 is similar. Indeed, in this case

L−1
(
e2πiξA−jB−�k

)
= (1 + k2

1)
−1(1 + k2

2)
−1 e2πiξA−jB−�k,

and we can proceed as in the case � 	= 0, with LK = (1+K2
1 ) (1+K2

2 ). It is clear that

also in this case
∑

K∈Z2 L
−2/3
K < ∞. This completes the proof of the theorem.
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2.2. Proof of Theorem 1.4. In order to prove Theorem 1.4, the following
lemmata will be useful.

Lemma 2.6. Let f = g wQ, where g ∈ E2(A) and Q ∈ Q1
j . Then

(2.22)

∫
Wj,�

|f̂(ξ)|2 dξ ≤ C 2−10j .

Proof. The proof follows [7, Lem. 8.1] and is reported here for completeness.
The function f belongs to C2

0 (R2), and its second partial derivative with respect
to x1 is

∂2f

∂x2
1

=
∂2g

∂x2
1

wQ + 2
∂ g

∂x1

∂ wQ

∂x1
+ f

∂2wQ

∂x2
1

= h1 + h2 + h3.

Using the fact that wQ is supported in a square of sidelength 2 · 2−j , we have∫
R̂2

|ĥ1(ξ)|2 dξ =

∫
R2

|h1(x)|2 dx ≤ C 2−2j .

Next, observe that ‖ ∂
∂x1

h2‖∞ ≤ C 22j . Using again the condition on the support of
wQ, it follows that

∫
R̂2

|2πξ1 ĥ2(ξ)|2 dξ =

∫
R2

∣∣∣∣ ∂

∂x1
h2(x)

∣∣∣∣
2

dx ≤ C 22j ,

and thus, for ξ ∈ Wj,� (hence ξ1 ≈ 22j),∫
Wj,�

|ĥ2(ξ)|2 dξ ≤ C 2−2j .

Finally, observing that ‖ ∂2

∂x2
1
h3‖∞ ≤ C 24j , a computation similar to the one above

shows that ∫
Wj,�

|ĥ3(ξ)|2 dξ ≤ C 2−2j .

Since −(2π)2 ξ2
1 f̂(ξ) = ĥ1(ξ)+ ĥ2(ξ)+ ĥ3(ξ), it follows from the estimates above that∫

Wj,�

|f̂(ξ)|2 dξ ≤ C 2−10j .

This completes the proof.
Lemma 2.7. Let m = (m1,m2) ∈ N × N, ξ = (ξ1, ξ2) ∈ R̂

2, and Γj,� be given by
(2.1). Then

2j∑
�=−2j

∣∣∣∣ ∂m1

∂ξm1
1

∂m2

∂ξm2
2

Γj,�(ξ)

∣∣∣∣
2

≤ Cm 2−2|m|j ,

where Cm is independent of j and ξ and |m| = m1 + m2.
Proof. Observe that Wj,� ∩ Wj,�+�′ = ∅ whenever |�′| ≥ 3. Since |�| ≤ 2j , the

lemma then follows from Lemma 2.5.
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Lemma 2.8. Let f = g wQ, where g ∈ E2(A) and Q ∈ Q1
j . Define

(2.23) T =

(
I − 2j

(2π)2
Δ

)
,

where Δ = ∂2

∂ξ2
1

+ ∂2

∂ξ2
2
. Then

∫
R̂2

2j∑
�=−2j

∣∣∣T 2
(
f̂ Γj,�

)
(ξ)
∣∣∣2 dξ ≤ C 2−10j .

Proof. Observe that, for N ∈ N,

ΔN
(
f̂ Γj,�

)
=

∑
|α|+|β|=2N

Cα,β

(
∂α1

∂ξα1
1

∂α2

∂ξα2
2

f̂

) (
∂β1

∂ξβ1

1

∂β2

∂ξβ2

2

Γj,�

)
.

Then, using Lemma 2.7, we have that

∫
R̂2

2j∑
�=−2j

∣∣∣∣ ∂α1

∂ξα1
1

∂α2

∂ξα2
2

f̂(ξ)

∣∣∣∣
2
∣∣∣∣∣ ∂

β1

∂ξβ1

1

∂β2

∂ξβ2

2

Γj,�(ξ)

∣∣∣∣∣
2

dξ

≤ Cβ 2−2|β|j
∫
Wj,�

∣∣∣∣ ∂α1

∂ξα1
1

∂α2

∂ξα2
2

f̂(ξ)

∣∣∣∣
2

dξ.

Recall that f(x) is of the form g(x)w(2jx). It follows that xα f(x) = 2−j|α| g(x)wα(2jx),
where wα(x) = xαw(x). By Lemma 2.6, g(x)wα(2jx) obeys the estimate (2.22).

Thus, observing that ∂α1

∂ξ
α1
1

∂α2

∂ξ
α2
2

f̂(ξ) is the Fourier transform of (−2πix)αf(x), we

have that ∫
Wj,�

∣∣∣∣ ∂α1

∂ξα1
1

∂α2

∂ξα2
2

f̂(ξ)

∣∣∣∣
2

dξ ≤ Cα 2−2j|α| 2−10j .

Combining the estimates above, we have that, for each α, β with |α| + |β| = 2N ,

(2.24)

∫
R̂2

2j∑
�=−2j

∣∣∣∣ ∂α1

∂ξα1
1

∂α2

∂ξα2
2

f̂(ξ)

∣∣∣∣
2
∣∣∣∣∣ ∂

β1

∂ξβ1

1

∂β2

∂ξβ2

2

Γj,�(ξ)

∣∣∣∣∣
2

dξ ≤ Cα,β 2−10j 2−4jN .

Since T 2 = 1 − 2 2j

(2π)2 Δ + 22j

(2π)4 Δ2, the lemma now follows from (2.24) and Lemma
2.7.

We can now prove Theorem 1.4.
Proof of Theorem 1.4. Using (2.15), for T given by (2.23), we have that

(2.25) T
(
e2πiξA−jB−�k

)
=
(
1 + 2−2j(k1 − k2 �)

2 + k2
2

)
e2πiξA−jB−�k.

Fix j ≥ 0 and let f = fQ. Then, using integration by parts as in the proof of
Theorem 1.3, from (2.25) it follows that

〈f, ψμ〉 = |detA|−j
(
1 + 2−2j(k1 − k2 �)

2 + k2
2

)−2
∫

R̂2

T 2
(
f̂ Γj,�

)
(ξ) e2πiξA−jB−�k dξ.
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Let K = (K1,K2) ∈ Z
2 and RK be the set {(k1, k2) ∈ Z

2 : k2 = K2, 2
−j(k1 −K2�) ∈

[K1,K1 +1]}. Observing that, for each K, there are only 1+2j choices for k1 in RK ,
it follows that the number of terms in RK is bounded by 1 + 2j . Thus, arguing again
as in the proof of Theorem 1.3, we have that

∑
k∈RK

|〈f, ψμ〉|2 ≤ C
(
1 + K2

1 + K2
2

)−4
∫

R̂2

∣∣∣T 2
(
f̂ Γj,�

)
(ξ)
∣∣∣2 dξ.

From this inequality, using Lemma 2.8, we have that

2j∑
�=−2j

∑
k∈RK

|〈f, ψμ〉|2 ≤ C (1 + K2)−4

∫
R̂2

2j∑
�=−2j

∣∣∣T 2
(
f̂ Γj,�

)
(ξ)
∣∣∣2 dξ

≤ C (1 + K2)−4 2−10j .(2.26)

For any N ∈ N, provided 1
2 < p < 2, the Hölder inequality yields

(2.27)

N∑
m=1

|am|p ≤
(

N∑
m=1

|am|2
)p

2

N

(
1−p

2

)
.

Since the cardinality of RK is bounded by 1 + 2j , it follows from (2.26) and (2.27)
that, for 1

2 < p < 2,

2j∑
�=−2j

∑
k∈RK

|〈f, ψμ〉|p ≤ C
(
22j
)(1−p

2 )
(1 + K2)−2p 2−5pj .

Thus, since p > 1
2 ,

∑
μ∈Mj

|〈f, ψμ〉|p ≤ C 2

(
2j(1−p

2 )−5pj
) ∑

K∈Z2

(1 + K2)−2p ≤ C 2(2−3p)j ,

and, in particular,

‖〈f, ψμ〉‖�2/3 ≤ C 2−3j .

2.3. Coarse scale analysis. In section 2.1, we assumed that the scale parameter
j was large enough. The situation where j is small can be treated in a much simpler
way. In fact, if fQ is an edge fragment, then a trivial estimate shows that

‖fQ‖2 =

(∫
suppwQ

|fQ(x)|2 dx
)1/2

≤ C |suppwQ| = C 2−j .

It follows that ‖〈fQ, ψμ〉‖�2 ≤ C 2−j , and thus, by the Hölder inequality,

‖〈fQ, ψμ〉‖�2/3 ≤ C 2j .

This satisfies Theorem 1.3 for j small.
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2.4. Additional remarks.
• In order to define the collection of shearlets, in section 1.2 we have constructed

a function ψ̂ ∈ C∞
0 . This property allows us to obtain a collection of elements

that are well localized. Observe, however, that we need only ψ̂ ∈ C2
0 in order

to prove all the results presented in this paper.
• In this paper, we have considered the representation of functions containing a

discontinuity along a C2 curve. More generally, we can consider the situation
where a function f contains many edge curves of this type, exhibiting finitely
many junctions or corners between them. In this setting, the discontinuity
curve is not globally C2 but only piecewise C2. The results reported in this
paper, namely Theorems 1.1 and 1.2, extend to this setting as well. We refer
to [7] for a similar discussion in the case of curvelets.

• The assumption we made about the regularity of the discontinuity curve plays
a critical role in our construction. If the discontinuity curve is in Cα, with
α > 2, then our argument still works and we can still prove Theorem 1.2.
This result, however, is not (essentially) optimal as in the case α = 2. On the
other hand, if the discontinuity curve is in Cα, with α < 2, then the estimate
given by Theorem 1.2 does not hold, and the estimate could be worse in
general. We refer to [24] for additional observations about this fact, and for
an alternative approach, based on an adaptive construction, to the sparse
representation of functions with edges.

• There are natural ways of extending the shearlets to dimensions larger than 2.
We refer to [18] for a discussion of these extensions, as well as the extensions
of the shear transformations to the general multidimensional setting. For
example, in dimension 3, let A =

(
4 0
0 2 I2

)
; define the shear matrices {Sk =(

1 k
0 I2

)
: k ∈ Z

2}, where I2 is the 2 × 2 identity matrix, 0 = ( 0
0 ); and, for

ξ = (ξ1, ξ2, ξ3) ∈ R
3, define ψ by

ψ̂(ξ) = ψ̂1(ξ1) ψ̂2

(
ξ2
ξ1

)
ψ̂2

(
ξ3
ξ1

)
,

where ψ1 and ψ2 are given as in the 2-D case. Then, similarly to their 2-D
counterpart, one can construct a Parseval frame of well-localized 3-D shearlets

{ψj,�,k = |detA|−j/2 ψ(S� A
−jx− k) : j ∈ Z, � ∈ Z

2, k ∈ Z
2},

with frequency support on a parallelepiped of approximate size 22j × 2j ×
2j , at various scales j, with orientations controlled by the 2-D index � and
spatial location k. Then, using a heuristic argument, one can argue that these
systems provide sparse representations for 3-D functions f that are smooth
away from “nice” surface discontinuities of finite area. In fact, thanks to
their frequency support and their localization properties, the elements ψj,�,k,
at scale j, are essentially supported on a parallelepiped of size 2−2j×2−j×2−j ,
with location controlled by k and orientation controlled by �. Thus, there are
at most O(22j) significant shearlet coefficients SHj,�,k(f) = 〈f, ψj,�,k〉, and
they are bounded by C 2−2j . This implies that the Nth largest 3-D shearlet
coefficient |SHN (f)| is bounded by O(N−1), and thus, if f is approximated by
taking the N largest coefficients in the 3-D shearlets expansion, the L2-error
would approximately obey

‖f − fS
N‖2

L2 ≤
∑
�>N

|SH�(f)|2 ≤ C N−1,
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up to lower order factors. A rigorous proof of this fact will be presented
elsewhere.

Appendix. Construction of ψ1, ψ2. In this section we show how to construct
examples of functions ψ1, ψ2 satisfying the properties described in section 1.2.

In order to construct ψ1, let h(t) be an even C∞
0 function, with support in (− 1

6 ,
1
6 ),

satisfying
∫

R
h(t) dt = π

2 , and define θ(ω) =
∫ ω
−∞ h(t) dt. Then one can construct a

smooth bell function as

b(ω) =

⎧⎪⎪⎨
⎪⎪⎩

sin
(
θ
(
|ω| − 1

2

))
if 1

3 ≤ |ω| ≤ 2
3 ,

sin
(

π
2 − θ

(
|ω|
2 − 1

2

))
if 2

3 < |ω| ≤ 4
3 ,

0 otherwise.

It follows from our assumptions (cf. [20, sect. 1.4]) that

∞∑
j=−1

b2(2−jω) = 1 for |ω| ≥ 1

3
.

Now letting u2(ω) = b2(2ω) + b2(ω), it follows that

∞∑
j≥0

u2(2−2jω) =

∞∑
j=−1

b2(2−jω) = 1 for |ω| ≥ 1

3
.

Finally, let ψ1 be defined by ψ̂1(ω) = u( 8
3ω). Then supp ψ̂1 ⊂ [− 1

2 ,−
1
16 ]∪ [ 1

16 ,
1
2 ], and

(1.6) is satisfied. This construction is illustrated in Figure A.1(a).

0 0.1 0.2 0.3 0.4 0.5 0.6
0
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1.2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

(a) ω

�
��

b2(ω)

b2(2ω)

�
��

|ψ̂1(ω)|2

(b) ω

ψ̂2(ω)

Fig. A.1. (a) The function |ψ̂1(ω)|2 (solid line), for ω > 0; the negative side is symmetrical.
This function is obtained, after rescaling, from the sum of the window functions b2(ω) + b2(2ω)

(dashed lines). (b) The function ψ̂2(ω).

For the construction of ψ2, we start by considering a smooth bump function f1 ∈
C∞

0 (−1, 1) such that 0 ≤ f1 ≤ 1 on (−1, 1) and f1 = 1 on [− 1
2 ,

1
2 ] (cf. [21, sect. 1.4]).

Next, let f2(t) =
√

1 − exp (1/t). Then (in the left limit sense) f2(0) = 1, f
(k)
2 (0) = 0

for k ≥ 1 and 0 < f2 < 1 on (−1, 0). Define f(t) = f1(t)f2(t) for t ∈ [−1, 0]. It is
then easy to see that f (k)(−1) = 0 for k ≥ 0, and f(0) = 1, f (k)(0) = 0 for k ≥ 1.
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Since g(t) = exp ( 1
2(t−1) ) for t ∈ ( 1

2 , 1), it follows that limt→1− g(k)(t) = 0 for k ≥ 0.

Finally, we define

ψ̂2(ω) =

⎧⎪⎨
⎪⎩
f(ω) if ω ∈ [−1, 0),

g(ω) if ω ∈ [0, 1],

0 otherwise.

Then ψ̂2 ∈ C∞
0 (R), with supp ψ̂2 ⊂ [−1, 1], and

ψ̂2
2
(ω) + ψ̂2

2
(ω − 1) = 1, ω ∈ [0, 1].

The last equality implies (1.7). The function ψ̂2 is illustrated in Figure A.1(b).
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TRAVELING FRONTS OF PYRAMIDAL SHAPES IN THE
ALLEN–CAHN EQUATIONS∗
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Abstract. This paper studies pyramidal traveling fronts in the Allen–Cahn equation or in the
Nagumo equation. For the nonlinearity we are concerned mainly with the bistable reaction term
with unbalanced energy density. Two-dimensional V-form waves and cylindrically symmetric waves
in higher dimensions have been recently studied. Our aim in this paper is to construct truly three-
dimensional traveling waves. For a pyramid that satisfies a condition, we construct a traveling front
for which the contour line has a pyramidal shape. We also construct generalized pyramidal fronts
and traveling waves of a hybrid type between pyramidal waves and planar V-form waves. We use
the comparison principles and construct traveling fronts between supersolutions and subsolutions.
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1. Introduction. In this paper we consider the following equation:

∂u

∂t
= Δu + f(u) in R

3, t > 0,

u|t=0 = u0 in R
3.

Here a given function u0 is bounded and of class C1. The Laplacian Δ stands for
∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2. If the nonlinearity f is cubic, it is called the Allen–Cahn
equation or the Nagumo equation. We study general nonlinear terms of a bistable
type including cubic ones.

In the one-dimensional space, let Φ(x−kt) be a traveling wave that connects two
stable equilibrium states ±1 with speed k. By putting μ = x− kt, Φ satisfies

(1)
−Φ′′(μ) − kΦ′(μ) − f(Φ(μ)) = 0 −∞ < μ < ∞,

Φ(−∞) = 1, Φ(∞) = −1.

To fix the phase we set Φ(0) = 0. Such one-dimensional traveling waves have been
studied in many works. See Fife and McLeod [5], Aronson and Weinberger [1],
Kanel’ [10, 11], Chen [2], and Terman [18], for instance. We state equations for
the unbalanced nonlinearity and the balanced one.

The unbalanced case is as follows. The following are the assumptions on f in this
paper:

(A1) f is of class C1[−1, 1], with f(±1) = 0 and f ′(±1) < 0.

(A2)
∫ 1

−1
f > 0 holds true.

(A3) There exists Φ(μ) that satisfies (1) for some k ∈ R.
The assumption (A1) implies that f is bistable and that (A2) means that it

is unbalanced. Note that (A2) implies k > 0. Under (A1), (k,Φ(μ)) is uniquely
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determined if it exists. For the proof of this uniqueness, see [5] or [2]. We show simple
examples for f here.

Example 1. If f satisfies f ′(β) > 0 and

f(s) > 0 for β < s < 1,

f(s) < 0 for −1 < s < β,

with some β ∈ (−1, 1) in addition to (A1), then it is well known that (A3) is valid.
See [5] or [2]. Especially, f(u) = −(u + 1)(u + a)(u − 1) has a one-dimensional
traveling wave Φ(μ) = − tanh(μ/

√
2) with speed k =

√
2a for every a ∈ [0, 1). This

traveling wave is sometimes called the Huxley solution. See Nagumo, Yoshizawa, and
Arimoto [14].

Example 2 (Fife and McLeod [5, Theorem 2.7]). Assume f satisfies (A1) and
(A2). For −1 < λ < 1 assume that there exists (cL,ΦL) to

−Φ′′
L(μ) − kΦ′

L(μ) − f(ΦL(μ)) = 0 −∞ < μ < ∞,
ΦL(−∞) = 1, ΦL(∞) = λ,

and there exists (cR,ΦR) to

−Φ′′
R(μ) − kΦ′

R(μ) − f(ΦR(μ)) = 0 −∞ < μ < ∞,
ΦR(−∞) = λ, ΦR(∞) = −1.

If cL > cR, then (A3) holds true. If cL ≤ cR, there exists no solution to (1).
Example 3. For G with (B1) and (B2) below, we define

f(u) = −G′(u) + k
√

2G(u)

for k > 0. Then Φ0(μ) given by (3) is a solution to (1) for k > 0. If k is small enough,
f(u) satisfies (A1), (A2), and (A3).

We note that (A1) and (A2) do not always imply (A3), because we can construct
such f with cL ≤ cR in Example 2. If it exists, it is always monotone in μ as in
Lemma 1. See [5, Lemma 2.1] for the proof of the monotony of one-dimensional
fronts. We use this monotony and the comparison principles in this paper.

The balanced case is as follows:

∂u

∂t
= Δu−G′(u) in R

3, t > 0,(2)

u|t=0 = u0 in R
3.

The assumptions on G are as follows:
(B1) G is of class C2[−1, 1], with G′(±1) = 0, G′′(±1) > 0.
(B2) G(1) = 0 and G(s) > 0 for −1 < s < 1.

Under (B1) and (B2), (2) has a standing wave solution Φ0(x) to

−Φ′′
0(μ) + G′(Φ0(x)) = 0 −∞ < μ < ∞,

Φ0(−∞) = 1, Φ0(∞) = −1.

Φ0 is given by

(3) x = −
∫ Φ0

0

dv√
2G(v)

.
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The condition G(1) = 0 means that a potential density term G has minimizers with
an equal depth. If G takes a negative value or zero in (−1, 1), there exists no standing
wave. Thus (B2) is the condition for the existence of a standing wave solution Φ0. A
typical balanced nonlinearity term is −G′(u) = u− u3, with G(u) = (1/4)(1 − u2)2.

First we study traveling waves for the unbalanced nonlinearity. We adopt the
moving coordinate of speed c toward the z-axis without loss of generality. We put
s = z − ct and u(x, y, z, t) = w(x, y, s, t). We denote w(x, y, s, t) by w(x, y, z, t) for
simplicity. Then we obtain

wt − wxx − wyy − wzz − cwz − f(w) = 0 in R
3, t > 0,(4)

w|t=0 = u0 in R
3.

Here wt stands for ∂w/∂t and so on. We write the solution as w(x, y, z, t;u0). If v is
a traveling wave with speed c, it satisfies

(5) L[v]
def
= − vxx − vyy − vzz − cvz − f(v) = 0 in R

3.

We assume

c > k

throughout this paper. There exist many traveling waves in this situation, because k
is the speed of a planar traveling wave, and the curvature effect often accelerates the
speed.

In the two-dimensional plane there exists the following V-form wave.
Theorem 1 (see [15]). Under the assumptions c > k, (A1), (A2), and (A3),

there exists v∗(x, y), with

−(v∗)xx − (v∗)yy − c(v∗)y − f(v∗) = 0 for (x, y) ∈ R
2,

lim
R→∞

sup
x2+y2>R2

∣∣∣∣∣v∗(x, y) − Φ

(
k

c

(
y −

√
c2 − k2

k
|x|

))∣∣∣∣∣ = 0.

Under these two equalities v∗(x, y) is uniquely determined.
See also Hamel, Monneau, and Roquejoffre [8, 9] for V-form waves in the Allen–

Cahn equation. Recently Haragus and Scheel [13] studied V-form waves in reaction-
diffusion systems including the Allen–Cahn equation by using the bifurcation theory
when the angle arctan(

√
c2 − k2/k) is small enough. Such a bifurcation technique is

applicable to the cases where a one-dimensional traveling front loses its monotony.
For three- or higher-dimensional cases with cylindrical symmetry, Hamel, Mon-

neau, and Roquejoffre [8, 9] studied conical traveling waves for unbalanced bistable
nonlinearity. The proof is based on the results for bounded cylinders, and a passage
to the limit gives the existence of a conical front in the whole domain.

Now we study three-dimensional traveling waves, and our aim is to search truly
three-dimensional traveling waves that have pyramidal structures and are neither
cylindrically symmetric nor reducible to two-dimensional traveling waves. For this
purpose, we construct pyramidal traveling waves to (5). We apply the method of
Ninomiya and Taniguchi [15, 16]. A supersolution for the V-form wave is constructed
in [15] as follows. In the moving coordinate we put an almost flat planar front above
the shape “V.” This curve is almost flat, and then the real solution goes downwards
with speed c − k > 0, since we are using a moving coordinate. This means that
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an almost flat stationary planar front is a supersolution. This method is based on
the monotony of a one-dimensional traveling front and the comparison methods. The
application of this method is restricted to equations for which the comparison principle
holds true. In this paper, we put a mollified pyramid above a pyramid in R

3 and
construct a supersolution carefully, because a pyramidal wave is everywhere apart
from a pyramid near the edges.

Let n ≥ 3 be a given integer. We put

(6) τ
def
=

√
c2 − k2

k
> 0.

Assume (Aj , Bj) ∈ R
2 satisfies

(7) A2
j + B2

j = 1 for all j = 1, . . . , n

and

(8)
AjBj+1 −Aj+1Bj > 0, 1 ≤ j ≤ n− 1,

AnB1 −A1Bn > 0.

We assume (Aj1 , Bj1) �= (Aj2 , Bj2) if j1 �= j2. Now (−τAj ,−τBj , 1) is the normal
vector of a surface {z = τ(Ajx + Bjy)}. We put

hj(x, y)
def
= τ (Ajx + Bjy) ,

h(x, y)
def
= max

1≤j≤n
hj(x, y) = τ max

1≤j≤n
(Ajx + Bjy) .(9)

Then z = h(x, y) represents a pyramid in R
3. We set

Ωj = {(x, y) |h(x, y) = hj(x, y)}

and obtain

R
2 = ∪n

j=1Ωj .

We locate Ω1,Ω2, . . . ,Ωn counterclockwise as in Figure 1. To ensure this location we
assumed (8). We set

E
def
= ∪n

j=1 ∂Ωj ⊂ R
2.

Now the lateral surfaces of a pyramid are given by

Sj = {(x, y, z) ∈ R
3 | z = hj(x, y), (x, y) ∈ Ωj}

for j = 1, . . . , n. We put

Γj
def
=

{
Sj ∩ Sj+1 if 1 ≤ j ≤ n− 1,
Sn ∩ S1 if j = n.

Then Γj represents an edge of a pyramid. Also

Γ
def
= ∪n

j=1 Γj

represents the set of all edges.
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Fig. 1. The decomposition of the x-y plane by Ωj for n = 5.

For every (Aj , Bj) with (7), (5) has a solution Φ ((k/c)(z − hj(x, y))) , which is
called a planar wave. Now we have

Φ

(
k

c
(z − h(x, y))

)
= max

1≤j≤n
Φ

(
k

c
(z − hj(x, y))

)
= max

1≤j≤n
Φ

(
k

c
(z − ajx− bjy)

)
.

This becomes a subsolution to (5). We define

(10) D(γ)
def
= {(x, y, z) ∈ R

3 | dist((x, y, z), Γ ) > γ}

for γ > 0. We will construct a supersolution that is larger than this subsolution and
obtain a traveling wave between them.

The following theorem is the main assertion in this paper.
Theorem 2. Let c > k, and let h(x, y) be given by (9). Under the assumptions

(A1), (A2), and (A3), there exists a solution V (x, y, z) to (5) with

Φ

(
k

c
(z − h(x, y))

)
< V (x, y, z) < 1 in R

3

and

lim
γ→+∞

sup
(x,y,z)∈D(γ)

∣∣∣∣V (x, y, z) − Φ

(
k

c
(z − h(x, y))

)∣∣∣∣ = 0,(11)

Vz(x, y, z) < 0 for all (x, y, z) ∈ R
3.(12)

We state the proof of this theorem in section 3. A domain D(γ) is a complement
of a neighborhood of the edges. The property (11) implies that the geometric shape
of V can be approximated by a combination of n planar waves except on a neigh-
borhood of the edges (see Figure 2). We conjecture that the geometric shape of V
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Fig. 2. A pyramidal traveling wave.

can be approximated by two-dimensional V-form waves on the edges and that V is
a combination of planar waves and two-dimensional V-form waves. The uniqueness
and the stability of V is yet to be proved.

Section 4 is devoted to applications of Theorem 2. A two-dimensional V-form
wave in Theorem 1 immediately gives a three-dimensional wave v∗(x, z). We call this
wave a planar V-form wave. It is natural to search for a combination of a pyramidal
wave and a planar V-form wave. In section 4 we study a traveling wave of a hybrid type
between pyramidal waves and planar V-form waves as a special case of Theorem 2.

We studied pyramids whose lateral surfaces contain the origin in R
3 in Theorem 2.

We consider the case where the surfaces do not have a common point in section 5.
Even in that case a combination of n planar waves gives three-dimensional traveling
waves, and we construct generalized pyramidal traveling waves when the zero level
sets of planar waves have no common point.

We study traveling waves for the balanced nonlinearity in section 6. For any given
c > 0 we study

(13) L0[v]
def
= − vxx − vyy − vzz − cvz + G′(v) = 0 in R

3.

We call −G′(u) in Example 3 a balanced nonlinearity. Cylindrically symmetric trav-
eling waves for balanced nonlinearity have been studied in Chen et al [3] for two
or higher dimensions. The limit of traveling waves for unbalanced nonlinearity terms
when the difference of energy density goes to zero gives a traveling wave in (13). Pyra-
midal traveling waves for unbalanced nonlinear terms converge to traveling waves for
a balanced nonlinearity term as the difference of the energy density goes to zero. Up
to now the profile of the limit traveling wave is unknown and is yet to be studied.
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The characterization and classification of all traveling waves for unbalanced and
balanced nonlinearities will give interesting problems and are left for further studies.

2. Pyramids and mollified pyramids. In this section we make preparations.
We state known results for one-dimensional traveling waves and construct mollified
pyramids

Lemma 1 (Fife and McLeod [5]). Under the assumptions (A1) and (A3), Φ(μ)
as in (1) satisfies

Φ′(μ) < 0 for all μ ∈ R,

max {|Φ′(μ)|, |Φ′′(μ)|, |μΦ′(μ)|} ≤ K0 exp (−κ0|μ|) .

Here K0, κ0 are positive constants.
There exists a positive constant δ∗ (0 < δ∗ < 1/4), with

−f ′(s) > κ1 if |s + 1| < 2δ∗ or |s− 1| < 2δ∗,

where

κ1
def
=

1

2
min {−f ′(−1),−f ′(1)} > 0.

We construct mollified pyramids. Let ρ̃(r) ∈ C∞[0,∞) be a function with the
following properties:

ρ̃(r) > 0, ρ̃r(r) ≤ 0 for r ≥ 0,

ρ̃(r) ≡ 1 if 0 ≤ r ≤ 1
2 ,

ρ̃(r) = e−r if r > 0 is large enough,

2π

∫ ∞

0

rρ̃(r)dr = 1.

Then ρ(x, y)
def
= ρ̃(

√
x2 + y2) belongs to C∞(R2) and satisfies

∫
R2 ρ = 1. For a pyramid

z = h(x, y) we define a mollified pyramid z = ϕ(x, y) as ϕ(x, y)
def
= ρ ∗ h, which means

(14) ϕ(x, y) =

∫
R2

ρ(x−x′, y−y′)h(x
′
, y

′
)dx

′
dy

′
=

∫
R2

ρ(x′, y′)h(x−x
′
, y−y

′
)dx

′
dy

′
.

We set (aj , bj)
def
= τ(Aj , Bj). Then (aj , bj) ∈ R

2 satisfies

(15)
c√

1 + a2
j + b2j

= k for all j = 1, . . . , n.

We put

(16) S(x, y)
def
=

c√
1 + ϕx(x, y)2 + ϕy(x, y)2

− k.

Then we have the following lemma.
Lemma 2. Let ϕ and S be as in (14) and (16), respectively. Then one has

sup
(x,y)∈R2

|Di1
x Di2

y ϕ(x, y)| < +∞
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for all integers i1 ≥ 0, i2 ≥ 0, and

h(x, y) < ϕ(x, y) ≤ h(x, y) + 2πτ

∫ ∞

0

r2ρ̃(r) dr

|(∇ϕ)(x, y)| < τ, 0 < S(x, y) < c(17)

for all (x, y) ∈ R
2.

Proof. Now ρ satisfies |Di1
x Di2

y ρ(x, y)| ≤ (const)e−
√

x2+y2
for large

√
x2 + y2 > 0.

We get the first estimate from Di1
x Di2

y (ρ∗ gj) = (Di1
x Di2

y ρ)∗ gj . Note that ρ∗hj = hj .
Using ρ > 0, hj(x, y) ≤ h(x, y), and hj(x, y) �≡ h(x, y), we have a strict inequality
hj(x, y) < ϕ(x, y). Thus we get h(x, y) = max1≤j≤n (hj(x, y)) < ϕ(x, y). Now

|hj(x
′, y′) − hj(x, y)| ≤ τ

√
(x′ − x)2 + (y′ − y)2

gives

|h(x′, y′) − h(x, y)| ≤ τ
√

(x′ − x)2 + (y′ − y)2.

Thus we obtain

ϕ− h ≤
∫

R2

|h(x− x′, y − y′) − h(x, y)| ρ(x′, y′)dx′dy′ ≤ τ

∫
R2

√
x2 + y2ρ(x, y)dxdy

and prove the first inequality. We have

(∇ϕ)(x) =

∫
R2

ρ(x′, y′)(∇h)(x− x′, y − y′) dx′dy′.

Here ∇h is a constant vector in each Ωj , and at least two of these vectors are linearly
independent. Thus we get a strict inequality

|(∇ϕ)(x)| <
∫

R2

ρ(x′, y′)|(∇h)(x− x′, y − y′)| dx′dy′.

The right-hand side equals∫
R2

√
a2
j + b2j ρ(x

′, y′) dx′dy′ = τ.

Clearly S < c is valid, and S > 0 follows from |∇ϕ| < τ . This completes the
proof.

The following proposition plays a key role in this paper.
Proposition 1. For every integer i1 ≥ 0, i2 ≥ 0, with 2 ≤ i1 + i2 ≤ 3,

sup
(x,y)∈R2

|(Di1
x Di2

y ϕ)(x, y)|
S(x, y)

< +∞

holds true.
The proof of this proposition is given at the end of this section.
We study the difference of a mollified pyramid and the original pyramid, that is,

ϕ(x, y) − h(x, y). We put

(18) ϕ̃j(x, y)
def
= ϕ(x, y) − hj(x, y) = ϕ(x, y) − ajx− bjy.
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Then we have ϕ(x, y) − h(x, y) = ϕ̃j(x, y) in Ωj . It suffices to study ϕ̃j(x, y) in each
Ωj for studying ϕ(x, y) − h(x, y) in R

2. To do this we study here the simplest case.
For

q(x, y)
def
= max{x, 0} =

{
−x x < 0,
0 x ≥ 0,

we define

P (x)
def
=

∫
R2

ρ(x′, y′)q(x− x′, y − y′) dx′dy′

= −
∫ ∞

−∞

(∫ ∞

x

ρ(x′, y′)(x− x′) dx′
)
dy′ > 0.(19)

This P (x) is a mollified function for q(x, y). We use it to estimate ϕ(x, y) − h(x, y)
because it stands for the influence of a lateral surface when we construct a mollified
pyramid from the original pyramid. Then we have

P ′(x) = −
∫ ∞

−∞

(∫ ∞

x

ρ(x′, y) dx′
)
dy < 0,

P ′′(x) =

∫ ∞

−∞
ρ(x, y) dy =

∫ ∞

−∞
ρ̃(
√

x2 + y2) dy > 0,

P (3)(x) =

∫ ∞

−∞

x√
x2 + y2

ρ̃r(
√
x2 + y2) dy ≤ 0.

Especially we have

P ′′(x) =

∫ ∞

−∞
e−

√
x2+y2

dy, P (3)(x) = −
∫ ∞

−∞

x√
x2 + y2

e−
√

x2+y2
dy,

if x > 0 is large enough. Now we have the following lemma.
Lemma 3. Let P (x) be as in (19). Then it satisfies

lim
x→∞

P (x)√
2πxe−x

= 1

and

lim
x→∞

|P (i)(x)|
P (x)

= 1, 0 < inf
x≥1

|P (i)(x)|
P (x)

≤ sup
x≥1

|P (i)(x)|
P (x)

< +∞

for all i with 1 ≤ i ≤ 3.
Proof. For x > 0 we use y =

√
s2 + 2sx and obtain

2

∫ ∞

0

e−
√

x2+y2
dy = 2e−x

∫ ∞

0

e−s s + x√
s2 + 2sx

ds =
√

2xe−xQ(x).

Here

Q(x)
def
=

∫ ∞

0

1√
s
e−s

(
1 +

s

x

)(
1 +

s

2x

)− 1
2

ds.

By Lebesgue’s convergence theorem we have

lim
x→∞

Q(x) =

∫ ∞

0

1√
s
e−s ds =

√
π.
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Thus we have

(20) P ′′(x) =
√

2πxe−x(1 + o(1)) as x → ∞.

Similarly we get

2

∫ ∞

0

x√
x2 + y2

e−
√

x2+y2
dy =

√
2xe−x

∫ ∞

0

e−s

√
2x

s2 + 2sx
ds

=
√

2xe−x

∫ ∞

0

e−s 1√
s

(
1 +

s

2x

)− 1
2

ds =
√

2πxe−x (1 + o(1)) as x → ∞.

Thus we obtain

lim
x→∞

−P (3)(x)

P ′′(x)
= 1.

Now the Cauchy mean value theorem gives

P ′′(x)

P ′(x)
=

P (3)(x′)

P ′′(x′)

for some x′ > x. This yields

lim
x→∞

P ′′(x)

−P ′(x)
= 1.

Similarly we have

lim
x→∞

−P ′(x)

P (x)
= lim

x→∞

P ′′(x)

−P ′(x)
= 1.

Thus we obtain

lim
x→∞

−P ′(x)

P (x)
= lim

x→∞

P ′′(x)

−P ′(x)
= lim

x→∞

−P (3)(x)

P ′′(x)
= 1.

This completes the proof.
Now we come back to study

ϕ̃j(x, y) = ϕ(x, y) − hj(x, y) = (ρ ∗ (h− hj)) (x, y)

in Ωj . Hereafter we assume (x, y) ∈ Ωj . We write

aj = (aj , bj) (1 ≤ j ≤ n).

Then we get

(21) 0 < τ2 − |∇ϕ|2 = −2aj · ∇ϕ̃j − |∇ϕ̃j |2.

We have

h(x, y) − hj(x, y) =

{
(aj+1 − aj)x + (bj+1 − bj)y in Ωj+1,
(aj−1 − aj)x + (bj−1 − bj)y in Ωj−1.
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Fig. 3. The definition of λ±.

Now

(22) m+

j
def
=

√
(aj+1 − aj)2 + (bj+1 − bj)2, m−

j
def
=

√
(aj−1 − aj)2 + (bj−1 − bj)2

give the gradients of the adjacent surfaces Sj+1 and Sj−1 from a surface Sj , respec-
tively. Let the angle of Ωj be denoted by 2θj , with θj ∈ (0, π/2) for j = 1, . . . , n as
in Figure 3. For (x, y) ∈ Ωj , let λ+ and λ− be the lengths of the perpendiculars onto
∂Ωj . We have

(23) λ+ =
(aj − aj+1)x + (bj − bj+1)y

m+

j

, λ− =
(aj − aj−1)x + (bj − bj−1)y

m−
j

.

We study ϕ̃j(x, y) and its derivatives in Ωj when
√
x2 + y2 is large enough. The

number of the nearest latent surfaces for (x, y) ∈ Ωj is at most two. This fact suggests

that ϕ̃j(x, y) can be approximated by m+P (λ+) + m−P (λ−) in Ωj if
√
x2 + y2 → ∞

up to the derivatives. We have

ϕ̃j = ρ ∗ (max{hj+1 − hj , 0}) + ρ ∗ (max{hj−1 − hj , 0}) + ρ ∗ gj ,

where

gj
def
= h− hj − max{hj+1 − hj , 0} − max{hj−1 − hj , 0}.

Using P , we write the first and the second terms as

(ρ ∗ (max{hj+1 − hj , 0})) (x, y) = m+

j P (λ+),

(ρ ∗ (max{hj−1 − hj , 0})) (x, y) = m−
j P (λ−),
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respectively. We estimate the third term. We have

gj ≡ 0 on Ωj−1 ∪ Ωj ∪ Ωj+1

and

hj(x, y) ≥ 0 for all (x, y) ∈ Ωj .

The distance between (x, y) and a line {(x, y) |hj(x, y) = 0} is (1/τ)hj(x, y). The gra-
dients of the planes hj (1 ≤ j ≤ n) are at most τ . We put Λ+ = dist((x, y),Ωj+2) and
Λ− = dist((x, y),Ωj−2). We have 0 < sin θj < 1 and min{λ+, λ−} ≤ (hj(x, y)/τ) sin θj .
There exists γ0 > 1 such that we have

γ0 min{λ+, λ−} ≤ min

{
Λ+,Λ−,

1

τ
hj(x, y)

}
.

The following lemma is useful to estimate ρ ∗ gj and ϕ(x, y) − h(x, y).
Lemma 4. For every j (1 ≤ j ≤ n), one has

ϕ(x, y) − h(x, y) = m+

j P (λ+) + m−
j P (λ−) + (ρ ∗ gj)(x, y) for all (x, y) ∈ Ωj,

where m±
j , λ± are given by (22) and (23), respectively. For all nonnegative integers

i1, i2, with 0 ≤ i1 + i2 ≤ 3, one has∣∣Di1
x Di2

y (ρ ∗ gj)(x, y)
∣∣ ≤ K (γ0 min{λ+, λ−})

1
2 exp (−γ0 min{λ+, λ−})

for (x, y) ∈ Ωj and x2 + y2 ≥ 1. Here K > 0 and γ0 > 1 are constants independent
of j, i1, and i2. In particular one has

lim
λ→∞

sup
{
S(x, y) | (x, y) ∈ R

2,dist((x, y), E) ≥ λ
}

= 0,

lim
λ→∞

sup
{
ϕ(x, y) − h(x, y) | (x, y) ∈ R

2,dist((x, y), E) ≥ λ
}

= 0.

Proof. We already obtained the first equality. We decompose gj as

gj = gjχ{hj+2−hj+1>0} + gjχ{hj−2−hj−1>0} + gjχ{hj+2−hj+1≤0,hj−2−hj−1≤0},

where χ{hj+2−hj+1>0} is the characteristic function of {hj+2 − hj+1 > 0} and so on.
For all nonnegative integers i1, i2, with 0 ≤ i1 + i2 ≤ 3, we take γ1 > 0 so large to get
|Di1

x Di2
y ρ(x, y)| ≤ γ1ρ(x, y) for all (x, y) ∈ R

2. Then applying Lemma 3 we obtain

|(Di1
x Di2

y ρ) ∗ gj(x, y)| ≤ 6τγ1P (Λ+) + 6τγ1P (Λ−) + 6τγ1P

(
−1

τ
hj(x, y)

)

for all (x, y) ∈ R
2. Using Di1

x Di2
y (ρ∗gj) = (Di1

x Di2
y ρ)∗gj , we get the desired inequality.

The last two equalities follow from this inequality.
We have

ϕ̃j(x, y) = m+

j P (λ+) + m−
j P (λ−) + (ρ ∗ gj)(x, y).

Using Lemma 4 we obtain

lim√
x2+y2→∞

ϕ̃j(x, y)

m+

j P (λ+) + m−
j P (λ−)

= 1,

lim√
x2+y2→∞

aj · (∇ϕ̃j)(x, y)

−τm+

j P
′(λ+) cos(θj + π

2 ) − τm−
j P

′(λ−) cos(θj + π
2 )

= 1.
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For all integers i1 ≥ 0, i2 ≥ 0, with 2 ≤ i1 + i2 ≤ 3, we can estimate |Di1
x Di2

y ϕ̃j(x, y)|
by ∣∣∣P ′′

(λ+)
∣∣∣ +

∣∣∣P (3)(λ+)
∣∣∣ +

∣∣∣P ′′
(λ−)

∣∣∣ +
∣∣∣P (3)(λ−)

∣∣∣ .
From Lemma 4 there exists a constant M > 0, with

(24) |Di1
x Di2

y ϕ̃j(x, y)| ≤ M (P (λ+) + P (λ−)) in Ωj

for every j (1 ≤ j ≤ n) and all integers i1 ≥ 0, i2 ≥ 0, with 0 ≤ i1 + i2 ≤ 3.
The definition of S(x, y) and (21) give

(25)
k3

2c2
(
−2aj · ∇ϕ̃j − |∇ϕ̃j |2

)
< S(x, y) <

k2

c + k

(
−2aj · ∇ϕ̃j − |∇ϕ̃j |2

)
.

Lemma 5. For any given ω > 0

0 < inf {S(x, y) | dist((x, y), E) ≤ ω}

holds true.
Proof. It suffices to prove the lemma assuming (x, y) ∈ Ωj and dist((x, y), ∂Ωj) ≤

ω. We have

−2(aj ,∇(m+

j P (λ+))) −
∣∣∇(m+

j P (λ+))
∣∣2

= −P ′(λ+)
(
2(aj ,aj − aj+1) + P ′(λ+)|aj+1 − aj |2

)
≥ −P ′(λ+)

(
2(aj ,aj − aj+1) −

1

2
|aj+1 − aj |2

)
= −P ′(λ+)

(
|aj |2 − (aj ,aj+1)

)
> 0.

As
√
x2 + y2 → ∞, we can assume λ+ remains finite and λ− → ∞ without loss of

generality. Then the inequality stated above implies

lim
r→∞

inf
{
S(x, y) | (x, y) ∈ Ωj ,dist((x, y), ∂Ωj) ≤ ω, x2 + y2 ≥ r2

}
> 0.

This completes the proof.
Now we prove the following lemma.
Lemma 6. There exists positive constants ν1, ν2 so that

0 < ν1 ≤ ϕ(x, y) − h(x, y)

S(x, y)
≤ ν2

holds true for (x, y) ∈ R
2.

Proof. We note that (ϕ(x, y)−h(x, y))/S(x, y) is a positive function in R
2. With-

out loss of generality, we assume (x, y) lies in Ωj . Due to Lemma 5 it suffices to prove

that it remains no less than a positive constant as
√
x2 + y2 → ∞ under the condition

|∇ϕ̃j | → 0. We have

lim sup√
x2+y2→∞

∣∣∣∣ ϕ̃j(x, y)

−aj · (∇ϕ̃j)(x, y)

∣∣∣∣ =
1

τ sin θj
lim sup√
x2+y2→∞

∣∣∣∣∣ m+

j P (λ+) + m−
j P (λ−)

−m+

j P
′(λ+) −m−

j P
′(λ−)

∣∣∣∣∣ .
The right-hand side takes a positive bounded value. Using Lemma 5, (25), and this
fact, we complete the proof.
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Proof of Proposition 1. Without loss of generality we can assume (x, y) ∈ Ωj for
some j. By Lemma 5 it suffices to prove

(26) sup
(x,y)∈Ωj

|(Di1
x Di2

y ϕ̃j)(x, y)|
S(x, y)

< +∞

for each i1 ≥ 0, i2 ≥ 0, with 2 ≤ i1 + i2 ≤ 3, under the condition |∇ϕ̃j | → 0. From
(24) we obtain

lim√
x2+y2→∞

∣∣∣∣∣ (Di1
x Di2

y ϕ̃j)(x, y)

−aj · (∇ϕ̃j)(x, y)

∣∣∣∣∣ ≤ M ′

τ sin θj
lim√

x2+y2→∞

∣∣∣∣∣ m+

j P (λ+) + m−
j P (λ−)

−m+

j P
′(λ+) −m−

j P
′(λ−)

∣∣∣∣∣ .
Here M ′ > 0 is a constant. The right-hand side is bounded. Using this estimate, (25),
and (21), we obtain (26). This completes the proof.

3. Proof of Theorem 2. In this section we prove Theorem 2 by constructing
a supersolution and a subsolution and by finding a pyramidal traveling wave between
them.

For α ∈ (0, 1) we consider the graph of

(27) z =
1

α
ϕ(αx, αy).

Later we will choose α to be small enough. We use this function as a mollified pyramid.
We note that

1

α
h(αx, αy) = h(x, y).

We use a rescaled coordinate (ξ, η, ζ) as

ξ = αx, η = αy, ζ = αz

and write (27) as ζ = ϕ(ξ, η).
For (x0, y0) ∈ R

2, the tangent plane of (27) at (x0, y0, α
−1ϕ(αx0, αy0)) is ex-

pressed by

−ϕξ(ξ0, η0)(x− x0) − ϕη(ξ0, η0)(y − y0) + z − 1

α
ϕ(ξ0, η0) = 0,

where ξ0 = αx0, η0 = αy0. The length of the perpendicular from (x0, y0, z0) onto the
tangent plane is ∣∣z0 − 1

αϕ(ξ0, η0)
∣∣√

1 + ϕξ(ξ0, η0)2 + ϕη(ξ0, η0)2
.

We define

(28) μ̂
def
=

z − 1
αϕ(αx, αy)√

1 + ϕξ(αx, αy)2 + ϕη(αx, αy)2
=

1

α

ζ − ϕ(ξ, η)√
1 + ϕξ(ξ, η)2 + ϕη(ξ, η)2

.

Then we have

μ̂z =
1√

1 + ϕ2
ξ + ϕ2

η

, μ̂zz = 0.
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Also we get

μ̂x = − ϕξ√
1 + ϕ2

ξ + ϕ2
η

+ αμ̂F1(ξ, η), μ̂xx = αG11(ξ, η) + α2μ̂H11(ξ, η),

where

F1(ξ, η)
def
=

√
1 + ϕ2

ξ + ϕ2
η

⎛
⎝ 1√

1 + ϕ2
ξ + ϕ2

η

⎞
⎠

ξ

,

G11(ξ, η)
def
= −

⎛
⎝ ϕξ√

1 + ϕ2
ξ + ϕ2

η

⎞
⎠

ξ

− ϕξ

⎛
⎝ 1√

1 + ϕ2
ξ + ϕ2

η

⎞
⎠

ξ

=
(−1 + ϕ2

ξ − ϕ2
η)ϕξξ + (2ϕ2

ξ + 2ϕξϕη)ϕξη

(1 + ϕ2
ξ + ϕ2

η)
3
2

,

H11(ξ, η)
def
= (F1(ξ, η))ξ + F1(ξ, η)

2.

Similarly we obtain

μ̂xy = αG12(ξ, η) + α2μ̂H12(ξ, η),

where

G12(ξ, η)
def
= −

⎛
⎝ ϕξ√

1 + ϕ2
ξ + ϕ2

η

⎞
⎠

η

− ϕη

⎛
⎝ 1√

1 + ϕ2
ξ + ϕ2

η

⎞
⎠

ξ

,

H12(ξ, η)
def
= (F1(ξ, η))η + F1(ξ, η)F2(ξ, η).

We get

μ̂y = − ϕη√
1 + ϕ2

ξ + ϕ2
η

+ αμ̂F2(ξ, η), μ̂yy = αG22(ξ, η) + α2μ̂H22(ξ, η),

where

F2(ξ, η)
def
=

√
1 + ϕ2

ξ + ϕ2
η

⎛
⎝ 1√

1 + ϕ2
ξ + ϕ2

η

⎞
⎠

η

,

G22(ξ, η)
def
= −

⎛
⎝ ϕη√

1 + ϕ2
ξ + ϕ2

η

⎞
⎠

η

− ϕη

⎛
⎝ 1√

1 + ϕ2
ξ + ϕ2

η

⎞
⎠

η

,

H22(ξ, η)
def
= (F2(ξ, η))η + F2(ξ, η)

2.

We define

(29) U(x, y, z) = Φ(μ̂) + σ(x, y),

where μ̂ is as in (28) and

σ(x, y)
def
= εS(αx, αy).
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Here we will fix ε > 0 later. We have

Uz =
1√

1 + ϕ2
ξ + ϕ2

η

Φ′(μ̂), Uzz =
1

1 + ϕ2
ξ + ϕ2

η

Φ′′(μ̂),

and

Uxx + Uyy = Φ
′
(μ̂)(μ̂xx + μ̂yy) + Φ

′′
(μ̂)(μ̂2

x + μ̂2
y) + σxx + σyy.

Thus we get

Uxx + Uyy = αΦ
′
(μ̂)(G11(ξ, η) + G22(ξ, η)) + α2μ̂Φ

′
(μ̂)(H11(ξ, η) + H22(ξ, η))

+ Φ
′′
(μ̂)

ϕ2
ξ + ϕ2

η

1 + ϕ2
ξ + ϕ2

η

− 2αμ̂Φ
′′
(μ̂)

ϕξ(ξ, η)F1(ξ, η) + ϕη(ξ, η)F2(ξ, η)√
1 + ϕξ(ξ, η)2 + ϕη(ξ, η)2

+ α2μ̂2Φ
′′
(μ̂)(F1(ξ, η)

2 + F2(ξ, η)
2) + σxx + σyy.

We calculate L[U ] as

L[U ] = −Φ
′′
(μ̂) − c√

1 + ϕ2
ξ + ϕ2

η

Φ
′
(μ̂) − f(Φ + σ)

− αΦ
′
(μ̂)(G11(ξ, η) + G22(ξ, η)) − α2μ̂Φ

′
(μ̂)(H11(ξ, η) + H22(ξ, η))

+ 2αμ̂Φ
′′
(μ̂)

ϕξ(ξ, η)F1(ξ, η) + ϕη(ξ, η)F2(ξ, η)√
1 + ϕξ(ξ, η)2 + ϕη(ξ, η)2

− α2μ̂2Φ
′′
(μ̂)(F1(ξ, η)

2 + F2(ξ, η)
2) − εα2(Sξξ + Sηη).

We have

Sξξ(ξ, η) + Sηη(ξ, η) =

⎛
⎝ c√

1 + ϕ2
ξ + ϕ2

η

⎞
⎠

ξξ

+

⎛
⎝ c√

1 + ϕ2
ξ + ϕ2

η

⎞
⎠

ηη

and define

R(ξ, η, μ; ε, α)
def
= − Φ

′
(μ)(G11(ξ, η) + G22(ξ, η)) − αμΦ

′
(μ)(H11(ξ, η) + H22(ξ, η))

+ 2μΦ
′′
(μ)

ϕξ(ξ, η)F1(ξ, η) + ϕη(ξ, η)F2(ξ, η)√
1 + ϕξ(ξ, η)2 + ϕη(ξ, η)2

− αμ2Φ
′′
(μ)(F1(ξ, η)

2 + F2(ξ, η)
2) − εα (Sξξ(ξ, η) + Sηη(ξ, η)) .

Thus we get

L[U ] = −Φ
′′
(μ̂) − c√

1 + ϕ2
ξ + ϕ2

η

Φ
′
(μ̂) − f(Φ + σ) + αR(ξ, η, μ̂; ε, α).

Using −Φ
′′
(μ) − kΦ

′
(μ) − f(Φ) = 0, we obtain

L[U ] = −Φ
′
(μ̂)S(ξ, η) − σ

∫ 1

0

f
′
(Φ(μ̂) + sσ)ds + αR(ξ, η, μ̂; ε, α).
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We estimate |R(ξ, η, μ; ε, α)| using

|R(ξ, η, μ; ε, α)| ≤ max
{
|Φ′

(μ)|, |μΦ
′
(μ)|, |μΦ

′′
(μ)|, |μ2Φ

′′
(μ)|

}
× (|G11(ξ, η)| + |G22(ξ, η)| + |H11(ξ, η)| + |H22(ξ, η)| + 2|F1(ξ, η) + F2(ξ, η)|

+|F1(ξ, η)|2 + |F2(ξ, η)|2 + |Sξξ(ξ, η)| + |Sηη(ξ, η)|
)

if 0 < α < 1. The first term |G11(ξ, η)| includes the second derivatives of ϕ as in the
definition of G11. Other terms also include the second or third derivatives of ϕ. Using
Lemmas 1 and 2, we estimate all terms and obtain

|G11(ξ, η)| + |G22(ξ, η)| + |H11(ξ, η)| + |H22(ξ, η)| + 2|F1(ξ, η) + F2(ξ, η)|
+|F1(ξ, η)|2 + |F2(ξ, η)|2 + |Sξξ(ξ, η)| + |Sηη(ξ, η)|
≤ A′

∑
2≤i1+i2≤3

|(Di1
ξ Di2

η ϕ)(ξ, η)| for all (ξ, η) ∈ R
2

with a constant A′. Using Proposition 1 we find a constant A so that

|R(ξ, η, μ; ε, α)|
S(ξ, η)

< A

holds true for all (ξ, η) ∈ R
2, μ ∈ R, ε ∈ (0, 1), and α ∈ (0, 1). Constants A′ and A

depend only on f and c. We continue to calculate L[U ] as

L[U ] = S(ξ, η)

(
−Φ

′
(μ̂) − ε

∫ 1

0

f
′
(Φ(μ̂) + sσ)ds + α

R(ξ, η, μ̂; ε, α)

S(ξ, η)

)
.

Thus we get

(30) L[U ] ≥ S(ξ, η)

(
−Φ

′
(μ̂) − ε

∫ 1

0

f
′
(Φ(μ̂) + sσ)ds− αA

)
.

Now we choose ε and α as was mentioned before. We take ε small enough to get

(31) 0 < ε < min

{
1

2
,
δ∗
c
,
2K0

c
,
min−1+δ∗≤Φ(p)≤1−δ∗(−Φ

′
(p))

4 max|s|≤1+δ∗ |f
′(s)|

}
.

Then we choose α small enough to get

(32) 0 < α < min

{
1

2
,
εκ1

2A
,
min−1+δ∗≤Φ(p)≤1−δ∗(−Φ

′
(p))

4A
,

kκ0ν1

log
(

2K0

cε

)
}
.

Now we show that U is a supersolution and is larger than the maximum of planar
solutions.

Lemma 7. Assume ε and α satisfy (31) and (32), respectively. Let U be as in
(29). Then

L[U ] > 0 in R
3

holds true. Moreover

Φ

(
k

c
(z − h(x, y))

)
< U(x, y, z) in R

3

holds true.
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Proof. If Φ(μ̂) < −1+δ∗ or Φ(μ̂) > 1−δ∗, we have |sεS| ≤ sεc ≤ δ∗ for 0 ≤ s ≤ 1
in view of Lemma 2. We get Φ(μ̂) + sεS < −1 + 2δ∗ or Φ(μ̂) + sεS > 1 − 2δ∗.
Combining −Φ′(μ̂) > 0 and (30), we obtain

L[U ] ≥ S(ξ, η) (εκ1 − αA) > 0.

If −1 + δ∗ ≤ Φ(μ̂) ≤ 1 − δ∗, then we have

L[U ] ≥ S(ξ, η)

(
min

−1+δ∗≤Φ(p)≤1−δ∗
(−Φ

′
(p)) − ε max

|s|≤1+δ∗
|f ′

(s)| − αA

)
> 0.

In both cases we proved that U is a supersolution.
We use a similar argument as in [15] to prove the latter statement. It suffices to

prove

(33) Φ

(
k

c
(z − ajx− bjy)

)
< U(x, y, z)

for fixed j. Temporarily we denote aj , bj simply by a, b to prove (33). If

μ̂ ≤ k

c
(z − ax− by),

we get

U(x, y, z) > Φ(μ̂) ≥ Φ

(
k

c
(z − ax− by)

)
.

Thus it suffices to prove (33) by assuming

μ̂ >
k

c
(z − ax− by).

Substituting the definition of μ̂ into this inequality, we obtain

z − ax− by +
(
ax + by − 1

αϕ(ξ, η)
)

√
1 + ϕ2

ξ + ϕ2
η

>
k

c
(z − ax− by),

which is equivalent to

⎛
⎝ c√

1 + ϕ2
ξ + ϕ2

η

− k

⎞
⎠ (z − ax− by) ≥ c

α

ϕ(ξ, η) − aξ − bη√
1 + ϕ2

ξ + ϕ2
η

.

Combining this inequality with the definition of S(ξ, η), we get

(34) z − ax− by ≥ cν1

α
√

1 + ϕ2
ξ + ϕ2

η

≥ kν1

α
.
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Using α(ax + by) = aξ + bη ≤ ϕ(ξ, η), we obtain

U(x, y, z) − Φ

(
k

c
(z − ax− by)

)

≥ Φ

⎛
⎝ z − ax− by√

1 + ϕ2
ξ + ϕ2

η

⎞
⎠− Φ

(
k

c
(z − ax− by)

)
+ εS(ξ, η)

=
(z − ax− by)S(ξ, η)

c

∫ 1

0

Φ′

⎛
⎝
⎛
⎝ θ√

1 + ϕ2
ξ + ϕ2

η

+
k

c
(1 − θ)

⎞
⎠ (z − ax− by)

⎞
⎠ dθ

+ εS(ξ, η)

≥ S(ξ, η)

⎛
⎝ε− 1

c
sup

|μ|≥ kν1
α

∣∣∣∣μΦ′
(
k

c
μ

)∣∣∣∣
⎞
⎠ .

By virtue of Lemma 1 and (32) we have

1

c
sup

|μ|≥ kν1
α

∣∣∣∣μΦ′
(
k

c
μ

)∣∣∣∣ < ε

2

and obtain

U(x, y, z) − Φ

(
k

c
(z − ax− by)

)
>

ε

2
S(ξ, η) > 0,

which yields (33). This completes the proof.
Thus U is a supersolution to (5). Now we prove the main assertion.
Proof of Theorem 2. We put

(35) v(x, y, z) = Φ

(
k

c
(z − h(x, y))

)

and consider solutions of (4) given by w(x, y, z, t; v) and w(x, y, z, t;U). Since U is a
supersolution and v is a subsolution, we have

v ≤ w(x, y, z, t; v) ≤ w(x, y, z, t;U) ≤ U

for (x, y, z) ∈ R
3 and t ≥ 0 by using [17, Theorem 3.4]. Then

(36) V (x, y, z)
def
= lim

t→∞
w(x, y, z, t; v)

exists in L∞(R3), with

v(x, y, z) < V (x, y, z) < U(x, y, z) in R
3.

This V (x, y, z) is a solution of (5). See Sattinger [17, Theorem 3.6] for detailed
arguments. Now we have

v(x, y, z) < V (x, y, z) < Φ(μ̂) + εS.
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Now we prove (11). Let ε be arbitrarily given. Let U be as in (29). It suffices to
prove

(37) sup
(x,y,z)∈D(γ)

(
U(x, y, z) − Φ

(
k

c
(z − h(x, y))

))
< 2ε

if γ > 0 is large enough. Assume the contrary. Then there exists (γn) such that we
have

(38) lim
n→∞

γn = ∞, (xn, yn, zn) ∈ D(γn),

and

(39)

∣∣∣∣Φ(μ̂n) − Φ

(
k

c
(zn − h(xn, yn))

)∣∣∣∣ ≥ ε.

Here we put ξn = αxn, ηn = αyn, ζn = αzn, and

μ̂n =
1

α

ζn − ϕ(ξn, ηn)√
1 + ϕξ(ξn, ηn)2 + ϕη(ξn, ηn)2

=
zn − h(xn, yn) − 1

α (ϕ(ξn, ηn) − h(ξn, ηn))√
1 + ϕξ(ξn, ηn)2 + ϕη(ξn, ηn)2

.

If we have limn→∞ dist ((ξn, ηn), E) = ∞, then we obtain limn→∞ |ϕ(ξn, ηn)−h(ξn, ηn)| =

0 and limn→∞ S(ξn, ηn) = 0 by applying Lemma 4. Recall E
def
= ∪n

j=1∂Ωj ⊂ R
2. Then

we get

lim
n→∞

∣∣∣∣μ̂n − k

c
(zn − h(xn, yn))

∣∣∣∣ = 0.

This contradicts (39). If dist ((ξn, ηn), E) remains finite uniformly in n, then (38)
implies that limn→∞(zn − h(xn, yn)) = ±∞ and limn→∞ μ̂n = ±∞, respectively.
This contradicts (39). This completes the proof of Theorem 2.

4. Application of Theorem 2. In this section we state applications of The-
orem 2. Traveling waves in Theorem 2 have a contour line of a pyramidal shape if
the normal vectors of lateral surfaces are linearly independent. What is the shape of
traveling waves in Theorem 2 if lateral surfaces are linearly dependent? In this section
we show an example of such a traveling wave.

Lemma 8. Let h(x, y) be given by (9) with (7) and (8). Assume that h(−x, y) =
h(x, y) and that at least one Aj is positive. For any fixed y, assume that h(x, y) is
nondecreasing for x > 0. Then V in Theorem 2 satisfies

V (−x, y, z) = V (x, y, z) in R
3,

Vx(x, y, z) > 0 for x > 0.

The same statement holds for y.
Proof. We have v(−x, y, z) = v(x, y, z) and thus w(−x, y, z, t; v) = w(x, y, z, t; v).

Then V given by (36) satisfies V (−x, y, z) = V (x, y, z). We have (v)x (x, y, z) ≥ 0 for
x > 0. Now wx(x, y, z, t; v) satisfies the derivative of (4) by x in {(x, y, z) ∈ R

3 |x > 0}
with the Neumann boundary condition wx(x, y, z, t; v) = 0 on {(x, y, z) ∈ R

3 |x = 0}.
Then the comparison principle gives wx ≥ 0 and thus Vx ≥ 0 for x > 0. From
Theorem 2, Vx �≡ 0, and thus we get Vx > 0.
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x

y

o

Fig. 4. The contour lines of τ max{x, |y|}.

We consider

h1(x, y) = τy, h2(x, y) = −τy,

and thus h(x, y) = τ |y|. Theorem 2 and its proof are applicable to this case. Then
V (x, y, z) as in Theorem 2 equals v∗(y, z), where v∗ is as in Theorem 1. The uniqueness
follows from that of Theorem 1 in this case. We call this a planar V-form wave.

As an application of Theorem 2 we consider the following example:

h1(x, y) = τx, h2(x, y) = τy, h3(x, y) = −τy,

and thus

(40) h(x, y) = max
1≤j≤3

hj(x, y) = τ max {x, |y|} .

See Figure 4. The edge lines are given by

Γ1 = {(x, y, z) |x = y = z, z ≥ 0} ,
Γ2 = {(x, y, z) |x = −y = z, z ≥ 0} ,
Γ3 = {(x, 0, 0) |x ≤ 0} .

We have Γ = ∪3
j=1Γj and D(γ) as in (10).

Proposition 2. Assume c > k, (A1), (A2), and (A3). Let V1(x, y, z) be a
solution of (5) as in Theorem 2 for (40). Then V1(x, y, z) satisfies V1(x,−y, z) =
V1(x, y, z) and

0 ≤ V1(x, 0, 0) for all x ≤ 0,

(V1)z (x, y, z) < 0, (V1)x (x, y, z) > 0 in R
3,

(V1)y (x, y, z) > 0 if (x, y, z) ∈ R
3, y > 0.
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Proof. We put v−
1 (x, y, z)

def
= Φ ((k/c)(z − τ max{x, |y|})). It suffices to prove

(V1)x > 0. We have (v−
1 )x ≥ 0 in R

3. The comparison principle yields

wx(x, y, z, t; v−
1 ) ≥ 0, (V1)x ≥ 0 in R

3.

The maximum principle gives (V1)x > 0. (V1)y > 0 follows from Lemma 8 for y > 0.
This completes the proof.

From Theorem 2, V1(x, y, z) satisfies

lim
γ→∞

sup
(x,y,z)∈D(γ)

∣∣∣∣V1(x, y, z) − Φ

(
k

c
(z − τ max{x, |y|})

)∣∣∣∣ = 0.

If x < 0 and |x| is large enough, V1 has a profile of the planar V-form wave. If x > 0
is large, V1 has a profile of a pyramidal wave. Thus V1 is a hybrid of them.

5. Generalized pyramidal traveling waves. The lateral surfaces of a pyra-
mid have a common point. As a combination of planar traveling waves associated with
the surfaces, we construct a pyramidal traveling wave in Theorem 2. How about if the
surfaces have no common point? In this section we treat planes that have no common
point and construct a generalized pyramidal traveling wave from a combination of
planar traveling waves.

We introduce the following example:

h1(x, y) = τx, h2(x, y) = τy,
h3(x, y) = −τx, h4(x, y) = −τy.

Then we have

(41) h(x, y) = τ max{|x|, |y|}.

Let V2 be a solution as in Theorem 2 for (41). Then Lemma 8 gives

(V2)x(x, y, z) > 0 for x > 0,

(V2)y(x, y, z) > 0 for y > 0.

Let U2(x, y, z) be a supersolution as in Lemma 7 for (41). For any given a ≥ 0, we
define

h̃1(x, y) = τ(x− a), h̃2(x, y) = τy,

h̃3(x, y) = −τ(x + a), h̃4(x, y) = −τy,

and

(42) h̃(x, y; a)
def
= max

1≤j≤4
h̃j(x, y; a) = τ max{|y|, |x| − a}.

The edges of a pyramid z = h̃(x, y; a) are given by

Γ̃1 = {(x, y, z) | z = τ(x− a), x− a = y, z ≥ 0},
Γ̃2 = {(x, y, z) | z = τy, y = −x− a, z ≥ 0},
Γ̃3 = {(x, y, z) | z = −τ(x + a), x + a = y, z ≥ 0},
Γ̃4 = {(x, y, z) | z = −τy,−y = x− a, z ≥ 0}.
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We put Γ̃ = ∪4
j=1Γ̃j and

D̃(γ)
def
=

{
(x, y, z) ∈ R

3 | dist((x, y, z), Γ̃ ) > γ
}
.

We set

v−
2 (x, y, z)

def
= Φ

(
k

c
(z − h̃(x, y; a))

)
= max

1≤j≤4
Φ

(
k

c
(z − h̃j(x, y; a))

)
.

Let w(x, y, z, t; v−
2 ) be the solution of (4) with an initial condition w|t=0 = v−

2 . From
the comparison principle we obtain

(43) v−
2 (x, y, z) < w(x, y, z, t; v−

2 ) < U2(x− x0, y, z)

for any x0 with |x0| ≤ a. Thus we get

v−
2 (x, y, z) < w(x, y, z, t; v−

2 ) ≤ inf
−a≤x0≤a

U2(x− x0, y, z).

Then we get the limit function

Ṽ (x, y, z)
def
= lim

t→∞
w(x, y, z, t; v−

2 ) in C2
loc(R

3).

This satisfies (5). See Sattinger [17] for the general arguments. For every x0 ∈ [−a, a]
we have

h̃(x, y; a) ≤ τ max{|y|, |x− x0|}

and thus

v−
2 (x, y, z) ≤ Φ

(
k

c
(z − τ max{|y|, |x− x0|})

)
.

We consider each side as an initial function of (4) and send t → ∞. Then we get

Φ

(
k

c
(z − τ max{|y|, |x| − a})

)
< Ṽ (x, y, z) < V2(x− x0, y, z).

The strict inequality follows from the strong maximum principle. See Figure 5.
Theorem 3. Assume c > k, (A1), (A2), and (A3). Let V2 be the solution of (5)

in Theorem 2 for h(x, y) = τ max{|x|, |y|}. There exists a solution Ṽ (x, y, z) to (5)
with

Φ

(
k

c
(z − τ max{|y|, |x| − a})

)
< Ṽ (x, y, z) < inf

−a≤x0≤a
V2(x− x0, y, z)

and

(Ṽ )z(x, y, z) < 0 in R
3.

Ṽ satisfies Ṽ (−x, y, z) = Ṽ (x, y, z), Ṽ (x,−y, z) = Ṽ (x, y, z), and

(Ṽ )x(x, y, z) > 0 for x > 0,

(Ṽ )y(x, y, z) > 0 for y > 0.
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Fig. 5. A generalized pyramidal traveling wave.

Moreover

lim
γ→∞

sup
(x,y,z)∈D(γ)

∣∣∣∣Ṽ (x, y, z) − Φ

(
k

c
(z − h̃(x, y; a))

)∣∣∣∣ = 0

holds true.
Proof. Since (v−

2 )z ≤ 0, we get wz(x, y, z, t; v
−
2 ) ≤ 0 and also get (Ṽ )z < 0.

Lemma 8 and the proof are applicable to h̃(x, y; a). Thus we get (Ṽ )x > 0 for x > 0

and (Ṽ )y > 0 for y > 0. The asymptotic property of Ṽ (x, y, z) follows from that of
V2 in Theorem 2.

This Ṽ (x, y, z) is a generalized pyramidal traveling wave. The method of this
section might be applicable to a general case. The classification of all generalized
pyramidal waves will give interesting problems.

6. Traveling fronts for balanced bistable nonlinearity. In this section we
study traveling waves for balanced nonlinearity. Recently Chen et al. [3] constructed
two-dimensional traveling waves and n-dimensional cylindrically symmetric traveling
waves for balanced nonlinearity. They constructed such traveling waves as the limit of
traveling waves for an unbalanced nonlinearity term when the difference of the energy
density goes to zero.

Now we construct traveling waves for balanced nonlinearity by taking the limit
of pyramidal traveling waves for unbalanced nonlinearity terms when the difference
of the energy density goes to zero.

We consider (2) with a balanced nonlinear term −G′(u). Let c > 0 be arbitrarily
fixed. We study (13) in section 1. We define

(44) Lδ[v]
def
= − vxx − vyy − vzz − cvz − fδ(v) = 0 in R

3
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for any δ with 0 < δ < 1, where

fδ(v)
def
= −G′(v) + δc

√
2G(v).

Putting k = δc, we see that Φ0(μ) given by (3) satisfies (1). Let Vδ(x, y, z) be a
solution of (44) as in Theorem 2 for

hδ(x, y) =

√
1 − δ2

δ
max{|x|, |y|}.

We fix λ1 ∈ (−1, 1), with G′(λ1) < 0. Let z1(δ) be defined by

(45) Vδ(0, 0, z1(δ)) = λ1.

We construct a solution of (13) as the limit of Vδ(x, y, z + z1(δ)).
Proposition 3. Assume (B1) and (B2). Let c > 0 be arbitrarily fixed. Let

Vδ(x, y, z) be a solution of (44) as in Theorem 2 for hδ(x, y) = (
√

1 − δ2/δ) max{|x|, |y|}.
There exists 1 > δ1 > δ2 > · · · > δi > · · · → 0 so that one has

lim
i→∞

Vδi(x, y, z + z1(δi)) = V∗(x, y, z) in C2
loc(R

3).

This solution V∗ satisfies V∗(0, 0, 0) = λ1 and

L0[V∗] = 0, (V∗)z < 0 in R
3.

Proof. We denote Vδi(x, y, z + z1(δi)) simply by vi(x, y, z). Let B(N) be a closed
ball defined by

B(N)
def
=

{
(x, y, z) |

√
x2 + y2 + z2 ≤ N

}
for N ∈ N. For any fixed N , vi(x, y, z) satisfies

L[vi] = 0, −1 < vi < 1 in B(N).

For any p > 1, (vi) is bounded in Lp(B(N)). The Schauder interior estimates [6,
Theorem 9.11] imply that

sup
i

‖vi‖W 2,p(B(N)) < ∞.

We take p so large as to get 1 − 3/p > β > 0. Then W 2,p(B(N)) is compactly
embedded in C1,β(B(N)). By taking a subsequence (vi) converges in C1,β(B(N)) as
i → ∞. Applying the Schauder interior estimates [6, Corollary 6.3] again, we find that
(vi) converges in C2,β(B(N)). By the diagonal argument we find a subsequence (vi)

that converges in C2,β
loc (R3). Let V∗ be the limit function. Then it satisfies (13). Since

(vi)z < 0 in R
3, we have (V∗)z ≤ 0 in R

3. From Lemma 8 we have (vi)xx(0, 0, 0) ≥ 0
and (vi)yy(0, 0, 0) ≥ 0 and thus (V∗)xx(0, 0, 0) ≥ 0 and (V∗)yy(0, 0, 0) ≥ 0. If (V∗)z ≡ 0,
we obtain a contradiction by G′(λ1) < 0 and L0[V∗] = 0 at the origin. By the strong
maximum principle, we get (V∗)z < 0 in R

3.
This V∗ might inherit pyramidal structures, or it might not. This problem is

yet to be studied. If we replace hδ(x, y) by (
√

1 − δ2/δ) max1≤j≤n (Ajx + Bjy) with
(7) and (8), we get the associated limit traveling waves from the argument stated
above and also find interesting open problems. The classification and the stability of
all traveling waves for unbalanced and balanced nonlinearity have a wide variety of
unknown problems and are left for further studies.
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SELF-SIMILAR SOLUTIONS TO THE OORT–HULST–SAFRONOV
COAGULATION EQUATION∗

VÉRONIQUE BAGLAND† AND PHILIPPE LAURENÇOT‡

Abstract. The existence of self-similar solutions with a finite first moment is established for the
Oort–Hulst–Safronov coagulation equation when the coagulation kernel is given by a(y, y∗) = yλ+yλ∗
for some λ ∈ (0, 1). The corresponding self-similar profiles are compactly supported and have a
discontinuity at the edge of their support.

Key words. coagulation equation, Oort–Hulst–Safronov model, self-similar solution, compact
support
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1. Introduction. Coagulation models provide a mean-field description of par-
ticle growth, the particles increasing their size as a consequence of successive binary
mergers. Assuming the particles to be fully identified by their size, the resulting equa-
tions determine the dynamics of the size distribution function g(t, v) ≥ 0 of particles
of size v ∈ R+ := (0,∞) at time t ≥ 0. Of particular interest are the predictions
concerning the large time behavior of the size distribution of the particles which can
be drawn from these models. It is actually commonly expected that, for coagulation
kernels with a moderate growth for large sizes, the size distribution function g should
approach a mass-conserving self-similar function gs for large times; that is,

(1.1) g(t, v) ∼ gs(t, v) =
1

s(t)2
ξ

(
v

s(t)

)
as t → ∞,

where s(t) denotes the mean particle size at time t > 0 and ξ is a nonnegative function
in L1(R+, vdv) (see the extensive discussion in [4, 19] for Smoluchowski’s coagulation
equation [24, 25]). However, the validity of the dynamical scaling hypothesis (1.1)
has up to now mainly been checked by numerical simulations [7, 14, 18] and is not yet
established rigorously (except in a few particular cases, [2, 13, 16, 17, 20]). The first
difficulty encountered is actually the existence of the profile ξ, and such a result has
been obtained only recently for Smoluchowski’s coagulation equation [6, 8]. The aim
of the present paper is to investigate the existence of self-similar solutions for another
coagulation equation which has been proposed in astrophysics by Oort and van de
Hulst [21] and Safronov [22] in order to describe the aggregation of stellar objects.
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More precisely, the Oort–Hulst–Safronov (OHS) equation reads

∂tg = QOHS(g), (t, v) ∈ (0,∞)2,(1.2)

QOHS(g)(v) := −∂v

(∫ v

0

v∗ a(v, v∗) g(v∗) dv∗ g(v)

)

−
∫ ∞

v

a(v, v∗) g(v∗) dv∗ g(v),(1.3)

g(0) = g0,(1.4)

where the coagulation kernel a is a nonnegative and symmetric function. On one
hand, the first term on the right-hand side of (1.3) describes the formation of clusters
of size v from smaller clusters with the growth rate∫ v

0

v∗ a(v, v∗) g(v∗) dv∗

which does not depend on the sizes of the clusters involved in the coagulation reaction
but on the size distribution of the small clusters. On the other hand, the second term
on the right-hand side of (1.3) accounts for the disappearance of clusters of size v by
“sedimentation” on larger clusters. Let us mention at this point that a solution to
(1.2), (1.4) is expected to satisfy the conservation of mass

(1.5)

∫ ∞

0

v g(t, v) dv =

∫ ∞

0

v g0(v) dv for t ≥ 0,

a property which holds true if a does not grow too fast for large values of v and v∗.
For the coagulation kernels we consider in this paper, the weak solutions constructed
in [15] enjoy the mass conservation property.

For a homogeneous coagulation kernel satisfying

a(uv, uv∗) = uλa(v, v∗), (u, v, v∗) ∈ (0,∞)3,

for some λ ∈ (−∞, 1), it is rather natural to expect that the self-similar function gs is
in fact a self-similar solution to (1.2). Inserting the self-similar ansatz (1.1) in (1.2),
we obtain s(t) := (w(1 − λ)t)1/(1−λ), while ξ satisfies

(1.6) w [y ∂yξ(y) + 2 ξ(y)] + QOHS(ξ)(y) = 0, y ∈ (0,∞),

for some positive constant w. In addition, in view of (1.5), we require that ξ ∈
L1(0,∞; y dy) with

(1.7)

∫ ∞

0

ξ(y) y dy = �

for some positive constant �. We first observe that, if ξ is a solution to (1.6), (1.7) for
the parameters (w, �), then the function ξA,B defined by ξA,B(y) = A ξ(B y), A > 0,
B > 0, is a solution to (1.6), (1.7) for

(
w A B−(1+λ), � A B−2

)
. Choosing

A =
1

�

(
�

w (1 − λ)

)2/(1−λ)

, B =

(
�

w (1 − λ)

)1/(1−λ)

,

then the function ξA,B is a solution to (1.6), (1.7) for (1/(1−λ), 1). We therefore may
assume without loss of generality that

w = γ := 1/(1 − λ) and � = 1.
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From now on, we assume further that the coagulation kernel is given by

(1.8) a(y, y∗) = yλ + yλ∗ , (y, y∗) ∈ (0,∞)2,

for some λ ∈ (0, 1) and prove the following result.
Theorem 1.1. There exists a nonnegative function ξ ∈ L1(0,∞; (y + yλ) dy),

y0 ∈ (0,∞), and q ∈ (0,∞) such that∫ ∞

0

y ξ(y) dy = 1, Mλ :=

∫ ∞

0

yλ ξ(y) dy ∈ (1, γ),(1.9)

ξ ∈ C((0,∞) \ {y0}) with Supp ξ = [0, y0] and ξ(y0−) > 0,(1.10)

lim
y→0

yτ ξ(y) = q with τ := 2 − Mλ

γ
∈ (1, 1 + λ) and γ =

1

1 − λ
,(1.11)

and satisfying
(1.12)(
γ y −

∫ y

0

(
yλ + yλ∗

)
y∗ ξ(y∗) dy∗

)
ξ(y) =

(
γ −

∫ ∞

y

yλ∗ ξ(y∗) dy∗

) ∫ ∞

y

ξ(y∗) dy∗

for y ∈ (0, y0).
We first note that (1.12) is in fact a weak formulation of (1.6) but that ξ satisfies

(1.6) in (0, y0) and (y0,∞). Next, on one hand, we point out that the profile ξ has
a singularity at y = 0 and is actually not integrable near y = 0 by (1.11): a similar
property is enjoyed by the profile of self-similar solutions to Smoluchowski’s coagula-
tion equation (see [4, 19] for formal arguments and [5, 9] for a rigorous proof). By
the way, the exponent of the singularity of ξ can be predicted by formal computa-
tions similar to the ones done for the Smoluchowski coagulation equation [4, 19]. On
the other hand, a striking difference between the profiles of self-similar solutions to
the OHS and Smoluchowski coagulation equations is that the former are compactly
supported with a discontinuity at the edge of the support while the latter belong to
C1((0,∞)) with infinite support [9]. Such a difference had already been noticed for the
constant coagulation kernel (a ≡ 1), for which self-similar profiles to Smoluchowski’s
coagulation equation are explicitly given by y �→ (4/�) e−2y/� [4, 19], while self-similar
profiles to (1.2) are also explicit and given by y �→ (2/�)1[0,�](y) [16].

The function ξ constructed in Theorem 1.1 allows us to construct a self-similar
solution to (1.2) (in a weak sense).

Corollary 1.2. Let ξ be the function constructed in Theorem 1.1 and put

gs(t, v) := t−2γ ξ
(
vt−γ

)
, (t, v) ∈ (0,∞)2.

Then gs is a weak solution to (1.2), that is,

d

dt

∫ ∞

0

gs(t, v) ϑ(v) dv

=

∫ ∞

0

∫ v

0

(v∗ ∂vϑ(v) − ϑ(v∗))
(
vλ + vλ∗

)
gs(t, v∗) gs(t, v) dv∗dv

for every t ∈ (0,∞) and ϑ ∈ C∞
0 ((0,∞)). In addition, for t > 0,∫ ∞

0

v gs(t, v) dv =

∫ ∞

0

v ξ(v) dv = 1.
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Remark 1.3. More generally, given w > 0 and � > 0, the function

(t, v) �−→ 1

sw(t)2
A ξ

(
B v

sw(t)

)

with

sw(t) := (w(1−λ)t)1/(1−λ), A := �

(
w(1 − λ)

�

)2/(1−λ)

, B =

(
w(1 − λ)

�

)1/(1−λ)

,

is also a weak (self-similar) solution to (1.2) in the sense of Corollary 1.2 with a first
moment equal to � for each t > 0. Observe that all the profiles y �→ Aξ(By) of these
self-similar solutions have the same singular behavior as y → 0. In particular, it does
not depend on the parameter �.

Owing to the nonintegrability of ξ, v �−→ gs(t, v) does not belong to L1(R+) for
t > 0 and actually solves (1.2) in a weaker sense than the solutions constructed in
[15]. Since gs(t) has a finite moment of order λ for each t > 0, the above formulation
actually makes sense for any test function ϑ ∈ C1(R+) such that |∂vϑ(v)| ≤ C vλ−1

and ϑ(0) = 0. In fact, in view of the well-posedness results obtained recently for
the Smoluchowski coagulation equation [10], it is likely that the existence of (weak)
solutions can be shown for nonnegative initial data in L1(R+, v

λdv).
To prove Theorem 1.1, we use a dynamical approach as in [6, 8, 11] relying on the

fact that finding profiles ξ that satisfy (1.6), (1.7) amounts to finding steady states to

(1.13) ∂tf = γ (y ∂yf + 2 f) + QOHS(f), (t, y) ∈ R
2
+.

To this aim, we recall the following result.
Theorem 1.4. Let X be a locally convex topological vector space and K be a

nonempty compact and convex subset of X. If F : [0,∞)×K → X is a semiflow on
X for which F(t,K) ⊂ K for each t ≥ 0, then there is x0 ∈ K such that F(t, x0) = x0

for each t ≥ 0. In other words, x0 is a steady state for the semiflow F in K.
The proof of Theorem 1.4 relies on the Tychonov–Schauder fixed point theorem

(or Brouwer fixed point theorem if dim X < ∞) [1, 6, 11]. For the sake of complete-
ness, the proof of Theorem 1.4 is given in Appendix A.

Applying Theorem 1.4 thus requires finding a functional setting in which (1.13)
is well-posed and possesses a compact and convex invariant set as well. The exis-
tence of mass-conserving weak solutions to (1.2), (1.4) in L1(R+, (1+ v) dv) has been
established in [15]: noting that, if f is a solution to (1.13), (1.4), then

g(t, v) =
1

(1 + t)2γ
f

(
ln (1 + t),

v

(1 + t)γ

)

is a solution to (1.2), (1.4), we thus also obtain weak solutions to (1.13), (1.4) in the
same functional setting. However, since the function ξ constructed in Theorem 1.1
does not belong to L1(R+), and gs defined in Corollary 1.2 is not a weak solution to
(1.2) in the sense of [15], we thus have to find a more appropriate functional setting.
Furthermore, as far as uniqueness and continuous dependence are concerned, it turns
out that it is more convenient to construct a semiflow in L1(R+) for the cumulative
distribution function F defined by

F (t, y) =

∫ ∞

y

f(t, y∗) dy∗, (t, y) ∈ R
2
+.
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But at this point another serious difficulty to be bypassed arises: indeed, for each
r > 0, γ r−λ δy=r is a measure-valued stationary solution to (1.13), δy=r denoting
the Dirac measure at y = r. A consequence of this remark and Theorem 1.1 is that
(1.12) has singular (measure-valued) and “regular” solutions. As the singular ones are
explicit, our aim is to construct a “regular” solution, and thus the functional setting
to be used must exclude the singular solutions. Unfortunately, we have been unable
to find a suitable functional framework for either f or F in which the application of
Theorem 1.4 warrants the existence of a “regular” solution to (1.12).

One difference between the singular solutions γ r−λ δy=r, r > 0 and the “regular”
solutions we are looking for is that the latter are expected to have an invertible prim-
itive while the primitive of the former has only a generalized inverse. This property
leads us to study the inverse function Φ(t, .) of F (t, .), hoping that a similar difficulty
will not show up with this alternative formulation. Formally, Φ is a solution to

∂tΦ(t, x) = −γ (x ∂xΦ(t, x) + Φ(t, x)) + x

(∫ x

0

Φ(t, x∗)
λ dx∗

)
∂xΦ(t, x)

+

∫ ∞

x

(
Φ(t, x)λ + Φ(t, x∗)

λ
)

Φ(t, x∗) dx∗.(1.14)

A weak stationary solution Ψ to (1.14) then solves

x

(
γ −

∫ x

0

Ψ(x∗)
λ dx∗

)
Ψ(x) =

∫ ∞

x

∫ x

0

(
Ψ(x∗)

λ + Ψ(x′)λ
)

Ψ(x∗) dx′dx∗

for x > 0 and this equation has no solution of the form A 1[0,B].
A natural functional setting for the well-posedness of (1.14) is the set

KR :=

{
U ∈ L1(0,∞) is a nonnegative and nonincreasing function such that
‖U‖1 = 1, ‖U‖∞ ≤ R and ‖Uλ‖1 ≤ R

}
,

which is also invariant for sufficiently large R. Unfortunately, KR is not convex since
λ ∈ (0, 1). Therefore we cannot use Theorem 1.4, and this leads us to introduce the
following modified equation:

∂tΦ(t, x) = −γ (x ∂xΦ(t, x) + Φ(t, x)) + x

(∫ x

0

Φ(t, x∗)
λ dx∗ + δx

)
∂xΦ(t, x)

+

∫ ∞

x

(
Φ(t, x)λ + Φ(t, x∗)

λ + 2δ
)

Φ(t, x∗) dx∗,(1.15)

where δ ∈ (0, 1). Let us mention at this point that (1.15) can be obtained from (1.13)
with the coagulation kernel aδ(y, y∗) = yλ + yλ∗ + 2δ by the same procedure as (1.14).
We then investigate the existence of steady states to (1.15). For that purpose, we first
study in section 2 the well-posedness of (1.15) supplemented with the initial condition

(1.16) Φ(0, x) = Φ0(x).

We then determine in section 3 a compact and convex set which is left invariant by
the semiflow induced by (1.15), (1.16). The existence of a stationary solution to (1.15)
then follows by applying Theorem 1.4. We obtain a stationary solution to (1.14) by
letting δ → 0. Section 4 is then devoted to the analysis of the smoothness of this
stationary solution. The proof of Theorem 1.1 is carried out in section 5.
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Remark 1.5. As a final comment, let us point out that Theorem 1.1 and Corol-
lary 1.2 are only a first step towards the study of the validity of the dynamical scaling
hypothesis (1.1). Indeed, our analysis shows the existence of at least one self-similar
solution with a first moment being constant through time evolution and equal to �
for each � > 0 (see Remark 1.3) but we do not have any clue concerning the stability
of this solution. A related open question is the uniqueness of the profile ξ given by
Theorem 1.1 (in the class of functions).

Finally, we introduce some notations: for any u, v ∈ R, we define

u ∧ v = min {u, v}, u ∨ v = max {u, v},
u+ = max {u, 0}, sign+(u) = sign(u+).

For any p ∈ [1,∞] and ζ ∈ Lp(0,∞), we set

‖ζ‖p = ‖ζ‖Lp(0,∞).

2. Well-posedness of (1.15), (1.16). In this section we prove the following
theorem.

Theorem 2.1. Assume that
(2.1){

Φ0 ∈ L∞(R+) is a nonnegative and nonincreasing compactly supported function
such that Supp Φ0 ⊂ [0, R0] for some R0 > 0.

Then there is a unique function Φ ∈ C([0,∞);L1(0,∞)) such that
• Φ(t, .) is nonnegative and nonincreasing with compact support in [0, eγt R0],
• ‖Φ(t)‖1 = ‖Φ0‖1 and Φ ∈ L∞((0, t) × (0,∞)),

and Φ satisfies (1.15) in the following weak sense:

d

dt

∫ ∞

0

Φ(t, y) ϑ(y) dy

=

∫ ∞

0

∂yϑ(y)

(
γ y − δ y2 − y

∫ y

0

Φ(t, y∗)
λ dy∗

)
Φ(t, y) dy

−
∫ ∞

0

∂yϑ(y)

∫ ∞

y

∫ y

0

(
Φ(t, y∗)

λ + Φ(t, y′)λ + 2δ
)

Φ(t, y∗) dy′dy∗ dy(2.2)

for every t ≥ 0 and ϑ ∈ C∞
0 ((0,∞)).

Before proving Theorem 2.1, we first observe that, if ϕ is a weak solution to

∂tϕ(t, x) = x

(∫ x

0

ϕ(t, x∗)
λ dx∗ + δx(1 + t)λγ

)
∂xϕ(t, x)

+

∫ ∞

x

(
ϕ(t, x)λ + ϕ(t, x∗)

λ + 2δ(1 + t)λγ
)
ϕ(t, x∗) dx∗,(2.3)

ϕ(0, x) = Φ0(x),(2.4)

then the function Φ defined by

(2.5) Φ(t, x) = e−γtϕ(et − 1, e−γtx), (t, x) ∈ (0,∞)2,

is a weak solution to (1.15), (1.16).
We now consider the existence part of Theorem 2.1 and show that there exists

a weak solution to (2.3), (2.4). It then implies the existence of a weak solution to
(1.15), (1.16) by (2.5).
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Remark 2.2. Formally, if Φ is the solution to (1.15), (1.16) given by Theorem 2.1,
then f̃(t, .) = − d

dyΦ(t, .)−1 is a solution to (1.13) with coagulation kernel aδ(y, y∗) =

yλ + yλ∗ + 2δ and vice versa. A rigorous justification of this fact does not seem to be
obvious and prevents us from using [15] to prove the existence part of Theorem 2.1.

2.1. The regularized problem. We first investigate a regularized problem and
prove the existence of a solution by the method of characteristics. Let ε > 0, R > 1,
and χR ∈ C1(R+) be such that

χR(x) =

{
x if x ≤ R + 1,
2R if x ≥ 4R,

and

0 ≤ χR(x) ≤ 2R, 0 ≤ χ′
R(x) ≤ 1 for x ≥ 0.

We consider the following equation:

∂tϕ(t, x) = x

(∫ x

0

Rε(ϕ(t, x∗)) dx∗ + δ (1 + t)λγχR0(x)

)
∂xϕ(t, x)

+

∫ ∞

x

(
Rε(ϕ(t, x)) + Rε(ϕ(t, x∗)) + 2 δ (1 + t)λγ

)
ϕ(t, x∗) dx∗,(2.6)

ϕ(0, x) = Φ0(x),(2.7)

where the initial condition Φ0 fulfills (2.1) (R0 is given in (2.1)) and

Rε(z) := (ε + z)λ − ελ, z ∈ R+

is a C1-smooth approximation of z �→ zλ. In particular, Rε enjoys the following
properties:
(2.8)
0 ≤ Rε(z) ≤

(
λ ελ−1 z

)
∧ zλ, |Rε(z) −Rε(z∗)| ≤ λ ελ−1|z − z∗|, (z, z∗) ∈ R

2
+.

We now establish the existence of a solution to (2.6), (2.7) by a fixed point method.
Let M , C1, L1, and Tε be four positive real numbers, the values of which we will specify
later. We denote by Hε the set of nonnegative functions h ∈ C([0, Tε];L

1(0,∞)) such
that, for every t ∈ [0, Tε],

• h(t, .) is nonincreasing with compact support Supp h(t, .) ⊂ [0, R0],
• ‖h(t)‖∞ ≤ M , ‖h(t)‖1 ≤ C1, and |h(t, x) − h(t, x∗)| ≤ L1|x − x∗| for every

(x, x∗) ∈ R
2
+.

For h ∈ Hε, we consider the following transport equation:

(2.9) ∂tϕ(t, x) + Ah(t, x) ∂xϕ(t, x) = Bh(t, x),

where

Ah(t, x) = −x

∫ x

0

Rε(h(t, x∗)) dx∗ − δ x (1 + t)λγχR0(x),

Bh(t, x) =

∫ ∞

x

(
Rε(h(t, x)) + Rε(h(t, x∗)) + 2 δ (1 + t)λγ

)
h(t, x∗) dx∗.

Since h(t, .) is nonincreasing for every t ∈ [0, Tε], we have

(2.10) xh(t, x) ≤
∫ x

0

h(t, x∗) dx∗, (t, x) ∈ [0, Tε] × (0,∞).



352 VÉRONIQUE BAGLAND AND PHILIPPE LAURENÇOT

Owing to (2.8) and (2.10), Ah and Bh enjoy the following properties.
Lemma 2.3. For h ∈ Hε, Ah is continuous on [0, Tε] × [0,∞) and, for every

(t, x) ∈ [0, Tε] × [0,∞), we have

−xλ ελ−1 C1 − 2 δ R0 x (1 + Tε)
λγ ≤ Ah(t, x) ≤ 0,

−2λελ−1C1 − 6 δ R0 (1 + Tε)
λγ ≤∂xAh(t, x)≤ 0.

Moreover, Bh(t, .) is a nonincreasing function with compact support in [0, R0] for
every t ∈ [0, Tε] and

0 ≤ Bh(t, x) ≤ 2
(
Mλ + δ (1 + Tε)

λγ
)
C1, (t, x) ∈ [0, Tε] × [0,∞).

We then construct the characteristic curves associated with (2.9): for h ∈ Hε,
t ∈ [0, Tε], and x ∈ [0,∞), it follows from the continuity of Ah and the boundedness of
∂xAh established in Lemma 2.3 and the Cauchy–Lipschitz theorem that the ordinary
differential equation

dX

ds
(s; t, x) = Ah(s,X(s; t, x)),(2.11)

X(t; t, x) = x,(2.12)

has a unique global solution X(.; t, x) ∈ C1([0, Tε]; R). Furthermore, Lemma 2.3 war-
rants that

x e−(λελ−1C1+2 δ R0 (1+Tε)
λγ)(s−t) ≤ X(s; t, x) ≤ x for s ∈ [t, Tε],(2.13)

x ≤ X(s; t, x) ≤ x e(λελ−1C1+2 δ R0 (1+Tε)
λγ)(t−s) for s ∈ [0, t].(2.14)

Proposition 2.4. Consider Φ0 ∈ W 1,∞(R+) satisfying (2.1) and h ∈ Hε. Set-
ting

(2.15) ϕ(t, x) = Φ0(X(0; t, x)) +

∫ t

0

Bh(s,X(s; t, x)) ds, (t, x) ∈ [0, Tε] × [0,∞),

then ϕ is the unique weak solution to (2.9) with initial condition Φ0. In addition,
ϕ(t, .) is nonincreasing and Supp ϕ(t, .) ⊂ [0, R0] for each t ∈ [0, Tε]. Moreover, if
ε ∈ (0, λγ), M = 1 + 2‖Φ0‖∞, C1 = 2‖Φ0‖1, L1 = 4(‖∂xΦ0‖∞ +M + (M2/C1)), and

Tε = min

(
21/(λγ) − 1,

1

8λ ελ−1 ‖Φ0‖1 + 24 δ R0

)
,

then ϕ ∈ Hε.
Proof. The first assertion of Proposition 2.4 is classical and the compactness of

the support of ϕ(t, .) follows from that of Φ0 and Bh (see Lemma 2.3). We next
investigate the behavior of the L∞- and L1-norms of ϕ. We deduce from Lemma 2.3
that

(2.16) 0 ≤ ϕ(t, x) ≤ ‖Φ0‖∞ + 2
(
Mλ + δ (1 + Tε)

λγ
)
C1 Tε

for every (t, x) ∈ [0, Tε] × [0,∞). Next, the change of variables x∗ = X(s; t, x) is a
diffeomorphism for every (s, t) ∈ [0, Tε]

2 and we have x = X(t; s, x∗) with

(2.17) ∂xX(t; s, x∗) = exp

(∫ t

s

∂xAh(σ,X(σ; s, x∗)) dσ

)
.
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Consequently, we deduce from (2.13), (2.14), and (2.15) that

∫ ∞

0

ϕ(t, x) dx =

∫ ∞

0

Φ0(x∗) exp

(∫ t

0

∂xAh(σ,X(σ; 0, x∗)) dσ

)
dx∗

+

∫ t

0

∫ ∞

0

Bh(s, x∗) exp

(∫ t

s

∂xAh(σ,X(σ; s, x∗)) dσ

)
dx∗ ds.

The nonpositivity of ∂xAh (see Lemma 2.3) implies that

∫ ∞

0

ϕ(t, x) dx ≤
∫ ∞

0

Φ0(x∗) dx∗ +

∫ t

0

∫ ∞

0

Bh(s, x∗) dx∗ ds.

But, by (2.8), we get the following equation by the monotonicity and the compactness
of the support of h(s, .) for s ∈ [0, Tε]:

∫ t

0

∫ ∞

0

Bh(s, x∗) dx∗ ds ≤ 2λ ελ−1

∫ t

0

∫ ∞

0

h(s, x∗)

∫ ∞

x∗

h(s, x) dx dx∗ ds

+ 2 δ(1 + Tε)
λγ

∫ t

0

∫ R0

0

∫ R0

x∗

h(s, x) dx dx∗ ds

≤ λ ελ−1 Tε C
2
1 + 2 δ R0 C1 Tε (1 + Tε)

λγ .

Thus,

(2.18) ‖ϕ(t)‖1 ≤ ‖Φ0‖1 + 2C1 Tε

(
λ ελ−1 C1 + δ R0 (1 + Tε)

λγ
)
, t ∈ [0, Tε].

We next turn to the Lipschitz property and put L0 := ‖∂xΦ0‖∞. For every
(x, x∗) ∈ (0,∞)2, we have

|ϕ(t, x) − ϕ(t, x∗)| ≤ |Φ0(X(0; t, x)) − Φ0(X(0; t, x∗))|

+

∫ t

0

|Bh(s,X(s; t, x)) −Bh(s,X(s; t, x∗))| ds.

But, by (2.8),

|Bh(s,X(s; t, x)) −Bh(s,X(s; t, x∗))|
≤ 2M

(
λ ελ−1M + δ (1 + Tε)

λγ
)
|X(s; t, x) −X(s; t, x∗)|

+ λ ελ−1 C1 |h(s,X(s; t, x)) − h(s,X(s; t, x∗))|.

Consequently,

|ϕ(t, x) − ϕ(t, x∗)| ≤ L0 |X(0; t, x) −X(0; t, x∗)|

+
(
λ ελ−1(L1 C1 + 2M2) + 2 δM (1 + Tε)

λγ
) ∫ t

0

|X(s; t, x) −X(s; t, x∗)| ds.

We next deduce from (2.17) and Lemma 2.3 that, for s ∈ [0, t],

|X(s; t, x) −X(s; t, x∗)| ≤ exp
((

2λ ελ−1C1 + 6 δ R0 (1 + Tε)
λγ
)
(t− s)

)
|x− x∗|.
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Consequently,

|ϕ(t, x) − ϕ(t, x∗)|

≤ |x− x∗|
[(

L0 +
M2

C1
+

M

3R0

)
exp

{
(2λ ελ−1 C1 + 6 δ R0 (1 + Tε)

λγ)Tε

}

+
L1

2

(
exp

{
(2λ ελ−1 C1 + 6 δ R0 (1 + Tε)

λγ)Tε

}
− 1

) ]
.(2.19)

Moreover, (2.17) implies that the function x �→ X(s; t, x) is nondecreasing for ev-
ery (s, t) ∈ [0, Tε]

2. It thus follows from the monotonicity of Φ0 and Bh(s, .) (see
Lemma 2.3) that x �→ ϕ(t, x) is a nonincreasing function.

Finally, if ε ∈ (0, λγ), we put M = 1 + 2‖Φ0‖∞, C1 = 2‖Φ0‖1,

L1 = 4

(
L0 +

M2

C1
+ M

)
, Tε = min

(
21/(λγ) − 1,

1

4λ ελ−1 C1 + 24 δ R0

)
,

and notice that C1 ≤ R0M . It then readily follows from (2.16), (2.18), and (2.19)
that ϕ belongs to Hε.

Theorem 2.5. Consider ε ∈ (0, λγ) and Φ0 ∈ W 1,∞(R+) satisfying (2.1). Then
there exists a nonnegative weak solution ϕε ∈ C([0,∞);L1(0,∞)) to (2.6), (2.7) such
that ϕε(t, .) is a nonincreasing function for every t ≥ 0 and ϕε satisfies

Supp ϕε(t, .) ⊂ [0, R0], ‖ϕε(t)‖1 = ‖Φ0‖1, t ∈ (0,∞).

To prove the existence of a weak solution to (2.6), (2.7), we need a preliminary
lemma.

Lemma 2.6. Consider ε ∈ (0, λγ) and Φ0 ∈ W 1,∞(R+) satisfying (2.1). Assume
that the parameters M , C1, L1, and Tε are given by Proposition 2.4. Let h1 and h2

be two functions in Hε and denote by X1 and X2 the associated characteristic curves.
Setting z := X1 −X2, we have
(2.20)
|z(s; t, x)| ≤ λ ελ−1 Tε ‖h1−h2‖C([0,Tε];L1(0,∞)) Xi(s; t, x) exp

(
2Tε (λ ελ−1 C1+6 δ R0)

)
,

for 0 ≤ s ≤ t ≤ Tε, x ∈ [0,∞) and i = 1, 2.

Proof. By (2.11), for s ≤ t, we have

|z(s; t, x)| ≤
∫ t

s

|Ah1
(σ,X1(σ; t, x)) −Ah1

(σ,X2(σ; t, x))| dσ

+

∫ t

s

|(Ah1
−Ah2

)(σ,X2(σ; t, x))| dσ.

Since (1 + Tε)
λγ ≤ 2, it follows from Lemma 2.3 that

|z(s; t, x)| ≤ 2 (λ ελ−1 C1 + 6 δ R0)

∫ t

s

|z(σ; t, x)| dσ

+

∫ t

s

X2(σ; t, x)

∫ X2(σ;t,x)

0

|Rε(h1(σ, x∗)) −Rε(h2(σ, x∗))| dx∗ dσ.



SELF-SIMILAR SOLUTIONS TO THE OHS EQUATION 355

For s ≤ t, (2.8) thus leads to

|z(s; t, x)| ≤ 2 (λ ελ−1 C1 + 6 δ R0)

∫ t

s

|z(σ; t, x)| dσ

+ λ ελ−1 ‖h1 − h2‖C([0,Tε];L1(0,∞))

∫ t

s

X2(σ; t, x) dσ.

The Gronwall lemma and the monotonicity of X2(.; t, x) then imply that, for s ≤ t,
(2.20) holds for i = 2. By symmetry of X1 and X2, we infer that (2.20) also holds for
i = 1.

Proof of Theorem 2.5. Let M , C1, L1, and Tε be the four parameters given by
Proposition 2.4. We consider the map T : Hε −→ Hε defined by T (h) = ϕ, where ϕ
is given by (2.15). Let us check that T is continuous and compact for the topology
of C([0, Tε];L

1(0,∞)).
Continuity of T

Let (hn)n≥1 be a sequence in Hε that converges to h ∈ Hε. Let Xn and X be the
characteristic curves defined by (2.11), (2.12) associated to Ahn

and Ah, respectively.
We set zn = Xn −X, ϕn = T (hn) and ϕ = T (h) for n ≥ 1. Then,

‖ϕn(t) − ϕ(t)‖1 ≤
∫ ∞

0

|Φ0(Xn(0; t, x)) − Φ0(X(0; t, x))| dx (=: J1(t))

+

∫ ∞

0

∫ t

0

|Bhn
(s,Xn(s; t, x)) −Bh(s,Xn(s; t, x))| ds dx (=: J2(t))

+

∫ ∞

0

∫ t

0

|Bh(s,Xn(s; t, x)) −Bh(s,X(s; t, x))| ds dx (=: J3(t)).

Owing to the compactness of the support of Φ0, we have

J1(t) =

∫ R0

0

|Φ0(Xn(0; t, x)) − Φ0(X(0; t, x))| dx ≤ ‖∂xΦ0‖∞
∫ R0

0

|zn(0; t, x)| dx,

and we deduce from (2.14) and (2.20) that
(2.21)

J1(t) ≤
1

2
λ ελ−1 Tε ‖∂xΦ0‖∞ R2

0 exp
(
Tε (3λ ελ−1 C1+16 δ R0)

)
‖hn−h‖C([0,Tε];L1(0,∞)).

Let us now consider J2(t). A change of variables yields

J2(t) =

∫ t

0

∫ ∞

0

|Bhn(s, x∗) −Bh(s, x∗)| ∂xXn(t; s, x∗) dx∗ds

≤
∫ t

0

∫ ∞

0

|Bhn(s, x) −Bh(s, x)| dxds,

the last inequality being a consequence of the nonpositivity of ∂xAhn and (2.17). Since
both h(s, .) and hn(s, .) are nonincreasing and compactly supported for s ∈ [0, Tε], we
obtain

J2(t) ≤
∫ t

0

∫ ∞

0

|Rε(hn(s, x)) −Rε(h(s, x))|
∫ ∞

x

hn(s, x∗) dx∗ dx ds

+ 2

∫ t

0

∫ R0

0

(
Rε(h(s, x)) + δ (1 + s)λγ

) ∫ ∞

x

|(hn − h)(s, x∗)| dx∗ dx ds

+

∫ t

0

∫ ∞

0

hn(s, x)

∫ ∞

x

|Rε(hn(s, x∗)) −Rε(h(s, x∗))| dx∗ dx ds.
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By (2.8), we get

J2(t) ≤ λ ελ−1 C1

∫ t

0

∫ ∞

0

|(hn − h)(s, x)| dx ds

+ 2 δ R0 Tε (1 + Tε)
λγ ‖hn − h‖C([0,Tε];L1(0,∞))

+ λ ελ−1 ‖hn − h‖C([0,Tε];L1(0,∞))

∫ t

0

∫ R0

0

(2h(s, x) + hn(s, x)) dx ds,

from whence

(2.22) J2(t) ≤ 4Tε

(
λ ελ−1 C1 + δ R0

)
‖hn − h‖C([0,Tε];L1(0,∞)).

It remains to handle J3(t). By the compactness of the support of h(s, .) for s ∈ [0, Tε],
we have

J3(t)

≤
∫ t

0

∫ R0

0

|Rε(h(s,Xn(s; t, x))) −Rε(h(s,X(s; t, x)))|
∫ ∞

Xn(s;t,x)

h(s, x∗) dx∗ dx ds

+

∫ t

0

∫ R0

0

(
Rε(h(s,X(s; t, x))) + 2 δ (1 + s)λγ

) ∣∣∣∣∣
∫ X(s;t,x)

Xn(s;t,x)

h(s, x∗) dx∗

∣∣∣∣∣ dx ds
+

∫ t

0

∫ R0

0

∣∣∣∣∣
∫ X(s;t,x)

Xn(s;t,x)

h(s, x∗)Rε(h(s, x∗)) dx∗

∣∣∣∣∣ dx ds.
Thanks to (2.8), we obtain

J3(t) ≤ λ ελ−1 C1

∫ t

0

∫ R0

0

|h(s,Xn(s; t, x)) − h(s,X(s; t, x))| dx ds

+ 2M
(
λ ελ−1 M + δ (1 + Tε)

λγ
) ∫ t

0

∫ R0

0

|zn(s; t, x)| dx ds.

The Lipschitz continuity of h, (2.14) and (2.20) then imply that

(2.23) J3(t) ≤
(
λ ελ−1 M2 + 2 δM +

1

2
λ ελ−1 C1 L1

)
λ ελ−1 T 2

ε R2
0

× exp
(
Tε (3λ ελ−1 C1 + 16 δ R0)

)
‖hn − h‖C([0,Tε];L1(0,∞)).

Finally, since

‖ϕn(t) − ϕ(t)‖1 ≤ J1(t) + J2(t) + J3(t),

we infer from (2.21), (2.22), and (2.23) that T is continuous.
Compactness of T

Let (hn)n≥1 be a sequence in Hε and put ϕn = T (hn) for n ≥ 1. On one
hand, since ϕn belongs to Hε for each n ≥ 1, the sequence (ϕn)n≥1 is bounded in
L∞(0, Tε;W

1,∞(0, R0)). On the other hand, we have ∂tϕn = −Ahn
∂xϕn + Bhn

by
Lemma 2.3 and Proposition 2.4, from which we readily conclude that (∂tϕn)n≥1 is
bounded in L∞((0, Tε) × (0, R0)). By the Arzelà–Ascoli theorem, (ϕn)n≥1 is then
relatively compact in C([0, Tε] × [0, R0]), from whence C([0, Tε];L

1(0,∞)) thanks to
the compactness of the support of ϕn(t, .) for each t ∈ [0, Tε] and n ≥ 1.



SELF-SIMILAR SOLUTIONS TO THE OHS EQUATION 357

Therefore, Hε is a nonempty, convex, closed, and bounded subset of C([0, Tε];
L1(0,∞)), and T is a compact and continuous map from Hε into Hε. The Schauder
fixed point theorem ensures the existence of a fixed point of T that is a weak solu-
tion ϕε,1 ∈ C([0, Tε];L

1(0,∞)) to (2.6), (2.7) such that ϕε,1(t, .) is nonnegative and
nonincreasing with compact support in [0, R0] for each t ∈ [0, Tε].

Now, since Supp ϕε,1(t, .) ⊂ [0, R0] for t ∈ [0, Tε] and χR0
(x) = x for x ≤ R0 + 1,

we deduce from (2.6) that

d

dt

∫ ∞

0

ϕε,1(t, x) dx = 0,

from whence ‖ϕε,1(t)‖1 = ‖Φ0‖1 for t ∈ [0, Tε]. Observing that Tε depends only
on R0 and ‖Φ0‖1, we may thus proceed as before with ϕε,1(Tε) instead of Φ0 and
deduce the existence of a solution ϕε,2 ∈ C([0, Tε];L

1(0,∞)) to (2.6) with initial
condition ϕε,1(Tε). Repeating this argument yields the existence of a solution ϕε ∈
C([0,∞);L1(0,∞)) to (2.6), (2.7) that satisfies the desired properties.

The next task is to pass to the limit as ε → 0. For that purpose, we need the
following estimates.

Proposition 2.7. Let ε ∈ (0, λγ) and Φ0 ∈ W 1,∞(0,∞) satisfy (2.1). The weak
solution ϕε to (2.6), (2.7) given by Theorem 2.5 is nonnegative, ϕε(t, .) is nonincreas-
ing with compact support in [0, R0], and

‖ϕε(t)‖1 = ‖Φ0‖1,(2.24)

‖ϕε(t)‖∞ ≤ (1 + ‖Φ0‖∞) e2‖Φ0‖1t (1+δ (1+t)λγ),(2.25)

for every t ≥ 0.

Proof. All statements of Proposition 2.7 are actually a consequence of Theo-
rem 2.5, except the L∞-bound which we establish now. Let p > 2. Multiplying (2.6)
by pϕε(t, x)p−1 and recalling that Supp ϕε(t, .) ⊂ [0, R0] for t ≥ 0, we get

d

dt

∫ ∞

0

ϕε(t, x)p dx

= −
∫ ∞

0

ϕε(t, x)p
(∫ x

0

Rε(ϕ
ε(t, x∗)) dx∗ + δ (1 + t)λγx

)
dx

−
∫ ∞

0

ϕε(t, x)p
(
xRε(ϕ

ε(t, x)) + δ (1 + t)λγ x
)
dx

+ p

∫ ∞

0

ϕε(t, x)

∫ x

0

ϕε(t, x∗)
p−1 Rε(ϕ

ε(t, x∗)) dx∗ dx

+ p

∫ ∞

0

(
Rε(ϕ

ε(t, x)) + 2 δ (1 + t)λγ
)
ϕε(t, x)

∫ x

0

ϕε(t, x∗)
p−1 dx∗ dx.

By (2.8), it follows from the nonnegativity and the monotonicity of ϕε that, for
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t ∈ [0, T ],

d

dt

∫ ∞

0

ϕε(t, x)p dx

≤ 2p

∫ ∞

0

ϕε(t, x)

∫ x

0

(
ϕε(t, x∗)

p+λ−1 + δ (1 + t)λγ ϕε(t, x∗)
p−1

)
dx∗ dx

≤ 2p ‖Φ0‖1

[ ∫ ∞

0

ϕε(t, x∗)
p(p+λ−2)/(p−1) ϕε(t, x∗)

(1−λ)/(p−1) dx∗

+ δ (1 + t)λγ
∫ ∞

0

ϕε(t, x∗)
p(p−2)/(p−1) ϕε(t, x∗)

1/(p−1) dx∗

]
.

Since p > 2, the Young inequality implies that

d

dt

∫ ∞

0

ϕε(t, x)p dx ≤ 2p ‖Φ0‖1(1 + δ (1 + t)λγ)

[ ∫ ∞

0

ϕε(t, x)p dx + ‖Φ0‖1

]
.

Thus, we infer from the Gronwall lemma that

‖ϕε(t)‖pp ≤ (‖Φ0‖pp + ‖Φ0‖1) e
2p‖Φ0‖1t (1+δ (1+t)λγ).

Hence,

‖ϕε(t)‖p ≤ (‖Φ0‖p + ‖Φ0‖1/p
1 ) e2‖Φ0‖1t (1+δ (1+t)λγ).

Letting p −→ ∞ leads to (2.25).

2.2. Proof of Theorem 2.1. The existence part of Theorem 2.1 is a straight-
forward consequence of (2.5) and the following proposition.

Proposition 2.8. Let Φ0 ∈ L∞(0,∞) satisfy (2.1). Then, there exists a weak
solution ϕ ∈ C([0,∞);L1(0,∞)) to (2.3), (2.4) such that ϕ(t, .) is nonnegative and
nonincreasing with compact support in [0, R0],

‖ϕ(t)‖1 = ‖Φ0‖1 and sup
0≤s≤t

‖ϕ(s)‖∞ < ∞,

for every t ≥ 0.
Proof. We fix k0 ≥ 1 such that k0 > λ−γ and T > 0. Let (Φk

0)k≥k0
be a sequence

of functions from W 1,∞(R+) such that Φk
0 is nonnegative and nonincreasing with

compact support in [0, R0], Φk
0(x) ≤ 2Φ0(x) a.e., and (Φk

0)k≥k0
converges towards Φ0

in L1(R+).
For all k ≥ k0, we set εk = 1/k < λγ and denote by ϕk = ϕεk the solution

to (2.6) with initial condition Φk
0 given by Theorem 2.5. It follows from (2.6) and

Proposition 2.7 that

(ϕk)k≥k0 is bounded in L∞((0, T ) × (0, R0)) ∩ L∞(0, T ;BV (0, R0)),

(∂tϕ
k)k≥k0 is bounded in L∞(0, T ;W 1,1(0, R0)

′).

Since L∞(0, R0)∩BV (0, R0) is compactly embedded in L1(0, R0) [12] and L1(0, R0) is
continuously embedded in W 1,1(0, R0)

′, we infer from [23, Corollary 4] that (ϕk)k≥k0

is relatively compact in C([0, T ];L1(0, R0)), from whence in C([0, T ];L1(0,∞)) since
ϕk identically vanishes in (0,∞)×(R0,∞) for each k ≥ k0. Consequently, there exists
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ϕ ∈ C([0, T ];L1(0,∞)) such that, up to an extraction, (ϕk) converges towards ϕ in
C([0, T ];L1(0,∞)) and a.e. on [0, T ] × (0,∞).

Let ϑ ∈ C∞
0 ((0,∞)). Then, recalling that Supp ϕk(t, .) ⊂ [0, R0] and χR0

(x) = x
for x ≤ R0 + 1, we deduce from (2.6) that, for every t ∈ [0, T ],

∫ ∞

0

ϕk(t, x)ϑ(x) dx−
∫ ∞

0

Φk
0(x)ϑ(x) dx

= −
∫ t

0

∫ ∞

0

ϕk(s, x) ∂xϑ(x)x

(∫ x

0

Rεk(ϕk(s, x∗)) dx∗ + δ x (1 + s)λγ
)

dx ds

−
∫ t

0

∫ ∞

0

ϕk(s, x)ϑ(x)

(∫ x

0

Rεk(ϕk(s, x∗)) dx∗ + xRεk(ϕk(s, x)) + 2 δ x (1 + s)λγ
)
dx ds

+

∫ t

0

∫ ∞

0

ϑ(x)

∫ ∞

x

ϕk(s, x∗)
(
Rεk(ϕk(s, x)) + Rεk(ϕk(s, x∗)) + 2 δ (1 + s)λγ

)
dx∗ dx ds.

Thanks to the dominated convergence theorem, we let k → ∞ and get that ϕ is a weak
solution to (2.3), (2.4). The properties satisfied by ϕ follow easily from Proposition
2.7.

The uniqueness assertion of Theorem 2.1 is actually a consequence of the following
result.

Proposition 2.9. Consider two functions Φ0 and Φ̂0 fulfilling the assumptions
(2.1). If Φ and Φ̂ are weak solutions to (1.15), (1.16) with initial data Φ0 and Φ̂0,
respectively, and T > 0, then there exists C(T ) depending only on λ, ‖Φ0‖∞, ‖Φ̂0‖∞,
R0, and T such that

(2.26)
∥∥∥Φ(t) − Φ̂(t)

∥∥∥
1
≤ C(T )

∥∥∥Φ0 − Φ̂0

∥∥∥
1

for t ∈ [0, T ].

Proof. Let T > 0. By Proposition 2.8 and (2.5), the support of Φ(t, .) and
Φ̂(t, .) is contained in [0, R0 eγt] for each t ∈ [0, T ] and both Φ and Φ̂ belong to
L∞((0, T ) × (0,∞)). Consequently, we have

Λ := sup
t∈[0,T ]

{∥∥Φ(t)λ
∥∥

1
∨
∥∥∥Φ̂(t)λ

∥∥∥
1

}
≤ R0 eγT sup

t∈[0,T ]

{
‖Φ(t)‖λ∞ ∨

∥∥∥Φ̂(t)
∥∥∥λ
∞

}
< ∞,

and notice that the monotonicity of Φ and Φ̂ imply that

(2.27) x Φ(t, x)λ ≤
∫ x

0

Φ(t, x∗)
λ dx∗ ≤ Λ and x Φ̂(t, x)λ ≤

∫ x

0

Φ̂(t, x∗)
λ dx∗ ≤ Λ

for x > 0. We put E := Φ − Φ̂ and σ = sign(E) and give only a formal proof
of (2.26) below as both Φ and Φ̂ do not have the required smoothness to justify
the forthcoming computations. Nevertheless, a rigorous proof can be performed by
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approximation arguments as in [3]. We infer from (1.15) that

d

dt
‖E(t)‖1 = −γ

∫ ∞

0

(x ∂x|E(t, x)| + |E(t, x)|) dx

+ δ

∫ ∞

0

x2 ∂x|E(t, x)| dx + 2δ

∫ ∞

0

σ(t, x)

∫ ∞

x

E(t, x∗) dx∗dx

+
1

2

∫ ∞

0

x

(∫ x

0

(
Φλ + Φ̂λ

)
(t, x∗) dx∗

)
∂x|E(t, x)| dx

+
1

2

∫ ∞

0

x σ(t, x)

(∫ x

0

(
Φλ − Φ̂λ

)
(t, x∗) dx∗

)
∂x

(
Φ + Φ̂

)
(t, x) dx

+

∫ ∞

0

σ(t, x)

∫ ∞

x

(
Φ(t, x)λ Φ(t, x∗) − Φ̂(t, x)λ Φ̂(t, x∗)

)
dx∗dx

+

∫ ∞

0

σ(t, x)

∫ ∞

x

(
Φ1+λ − Φ̂1+λ

)
(t, x∗) dx∗dx.

Integrating by parts the first, third, and fifth terms of the right-hand side of the above
equality and using the fact that |σ(t, x)| ≤ 1, we obtain

d

dt
‖E(t)‖1 ≤

[
(−γ x + δ x2) |E(t, x)|

]∞
0

+
1

2

[
x

(∫ x

0

(
Φ(t, x∗)

λ + Φ̂(t, x∗)
λ
)

dx∗

)
|E(t, x)|

]∞
0

+ 2δ

∫ ∞

0

∫ ∞

x

|E(t, x∗)| dx∗dx− 2δ

∫ ∞

0

x |E(t, x)| dx (=: −I1(t))

− 1

2

∫ ∞

0

∫ x

0

(
Φλ + Φ̂λ

)
(t, x∗) dx∗ |E(t, x)| dx (=: −I2(t))

− 1

2

∫ ∞

0

x
(
Φλ + Φ̂λ

)
(t, x) |E(t, x)| dx (=: −I3(t))

+
1

2

∫ ∞

0

x

(∫ x

0

∣∣∣Φλ − Φ̂λ
∣∣∣ (t, x∗) dx∗

) ∣∣∣∂x (Φ + Φ̂
)

(t, x)
∣∣∣ dx (=: I4(t))

+

∫ ∞

0

∫ ∞

x

∣∣∣Φ(t, x)λ Φ(t, x∗) − Φ̂(t, x)λ Φ̂(t, x∗)
∣∣∣ dx∗dx (=: I5(t))

+

∫ ∞

0

∫ ∞

x

∣∣∣Φ1+λ − Φ̂1+λ
∣∣∣ (t, x∗) dx∗dx. (=: I6(t)).

Owing to the compactness of the support of Φ(t, .) and Φ̂(t, .), the boundary terms in
the previous inequality vanish. Also, we clearly have I1(t) ≥ 0 by the Fubini theorem.
Consequently,

(2.28)
d

dt
‖E(t)‖1 ≤ −I2(t) − I3(t) + I4(t) + I5(t) + I6(t).
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Thanks to the monotonicity of Φ(t, .) and Φ̂(t, .) with respect to x, I4(t) also reads

2 I4(t) = −
∫ ∞

0

x

(∫ x

0

∣∣∣Φλ − Φ̂λ
∣∣∣ (t, x∗) dx∗

)
∂x

(
Φ + Φ̂

)
(t, x) dx

= −
[
x

(∫ x

0

∣∣∣Φλ − Φ̂λ
∣∣∣ (t, x∗) dx∗

) (
Φ + Φ̂

)
(t, x)

]∞
0

+

∫ ∞

0

x
∣∣∣Φλ − Φ̂λ

∣∣∣ (t, x)
(
Φ + Φ̂

)
(t, x) dx

+

∫ ∞

0

∫ x

0

∣∣∣Φλ − Φ̂λ
∣∣∣ (t, x∗) dx∗

(
Φ + Φ̂

)
(t, x) dx.

As in the above computation, the boundary terms vanish. Since

(2.29) (Φ + Φ̂)(t, x) = 2
(
Φ ∧ Φ̂

)
(t, x) + |E(t, x)|,

we infer from the mean value theorem that

2 I4(t) ≤ 2λ

∫ ∞

0

x
(
Φ ∧ Φ̂

)λ

(t, x) |E(t, x)| dx

+

∫ ∞

0

x
∣∣∣Φλ − Φ̂λ

∣∣∣ (t, x) |E(t, x)| dx

+ 2λ

∫ ∞

0

∫ x

0

(
Φ ∧ Φ̂

)λ−1

(t, x∗) |E(t, x∗)| dx∗

(
Φ ∧ Φ̂

)
(t, x) dx

+

∫ ∞

0

∫ x

0

∣∣∣Φλ − Φ̂λ
∣∣∣ (t, x∗) dx∗ |E(t, x)| dx.

Using the monotonicity of Φ(t, .) and Φ̂(t, .) with respect to x and (2.27), we further
obtain

2 I4(t) ≤ 2λ Λ ‖E(t)‖1 + 2 Λ ‖E(t)‖1

+ 2λ

∫ ∞

0

∫ x

0

(
Φ ∧ Φ̂

)λ−1

(t, x) |E(t, x∗)| dx∗

(
Φ ∧ Φ̂

)
(t, x) dx

+ 2 Λ ‖E(t)‖1

≤ 2(λ + 2) Λ ‖E(t)‖1 + 2λ

∫ ∞

0

∫ ∞

x∗

(
Φ ∧ Φ̂

)λ

(t, x) dx |E(t, x∗)| dx∗

I4(t) ≤ 2(λ + 1) Λ ‖E(t)‖1.(2.30)
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Next, by (2.29), the Fubini theorem and the mean value theorem, we have

I5(t) ≤
1

2

∫ ∞

0

∫ ∞

x

(
Φλ + Φ̂λ

)
(t, x) |E(t, x∗)| dx∗dx

+
1

2

∫ ∞

0

∫ ∞

x

(
Φ + Φ̂

)
(t, x∗)

∣∣∣Φλ − Φ̂λ
∣∣∣ (t, x) dx∗dx

≤ 1

2

∫ ∞

0

∫ x

0

(
Φλ + Φ̂λ

)
(t, x∗) dx∗ |E(t, x)| dx

+ λ

∫ ∞

0

∫ ∞

x

(
Φ ∧ Φ̂

)
(t, x∗)

(
Φ ∧ Φ̂

)λ−1

(t, x) |E(t, x)| dx∗dx

+
1

2

∫ ∞

0

∫ ∞

x

∣∣∣Φλ − Φ̂λ
∣∣∣ (t, x) |E(t, x∗)| dx∗dx

≤ I2(t) + λ

∫ ∞

0

∫ ∞

x

(
Φ ∧ Φ̂

)λ

(t, x∗) |E(t, x)| dx∗dx + Λ ‖E(t)‖1,

the last inequality resulting from the monotonicity of Φ(t, .) and Φ̂(t, .) with respect
to x. We therefore end up with

(2.31) I5(t) ≤ I2(t) + (λ + 1) Λ ‖E(t)‖1.

Next, using once more the monotonicity of Φ(t, .) and Φ̂(t, .) with respect to x and
the mean value theorem, we obtain

I6(t) ≤ (1 + λ)

∫ ∞

0

∫ ∞

x

(
Φ(t, x∗) ∨ Φ̂(t, x∗)

)λ

|E(t, x∗)| dx∗dx

≤ (1 + λ)

∫ ∞

0

(
Φ(t, x) ∨ Φ̂(t, x)

)λ
∫ ∞

x

|E(t, x∗)| dx∗dx

≤ 2 (1 + λ) Λ ‖E(t)‖1.(2.32)

Since I3 is nonnegative, we infer from (2.28), (2.30), (2.31), and (2.32) that

d

dt
‖E(t)‖1 ≤ 5 (1 + λ) Λ ‖E(t)‖1

for t ∈ [0, T ], from whence (2.26).

3. Stationary solutions to (1.14). To establish the existence of a steady state
Ψ to (1.14) satisfying ‖Ψ‖1 = 1, we proceed in two steps and first show that, for each
δ ∈ (0, 1), there is a stationary solution Ψδ to (1.15) such that ‖Ψδ‖1 = 1. We next
prove that the family (Ψδ)δ∈(0,1) belongs to a compact subset of L1(0,∞) and that the
cluster points of (Ψδ)δ∈(0,1) are stationary solutions to (1.14) satisfying the required
L1-constraint.

In order to apply Theorem 1.4 to the semiflow associated to (1.15), (1.16), we
have to identify a compact and convex subset of L1(0,∞) which is left invariant by
the semiflow. We first recall that when Φ0 satisfies (2.1), then Φ(t, .) is compactly
supported with Supp Φ(t, .) ⊂ [0, R0 eγt] and

(3.1)

∫ ∞

0

Φ(t, x) dx = 1 :=

∫ ∞

0

Φ0(x) dx for t ≥ 0.

We next investigate the time evolution of the L∞-norm.
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Lemma 3.1. Consider δ ∈ (0, 1) and assume that Φ0 satisfies (2.1). Denoting by
Φ the corresponding solution to (1.15), (1.16), we have

(3.2) ‖Φ(t)‖∞ ≤ m(t), t ≥ 0,

where m is the solution to

(3.3)
dm

dt
(t) = 2

(
m(t)λ + δ

)
− γ m(t), m(0) = ‖Φ0‖∞.

Proof. We fix T > 0 and recall that Supp Φ(t, .) ⊂ [0, xT ] for t ∈ [0, T ] with
xT := R0 eγT . For t ∈ [0, T ], it follows from (1.15), (3.1) and the monotonicity and
nonnegativity of Φ that

d

dt

∫ ∞

0

(Φ(t, x) −m(t))+ dx =
d

dt

∫ xT

0

(Φ(t, x) −m(t))+ dx

≤ γ

∫ xT

0

sign+(Φ(t, x) −m(t)) (Φ(t, x) −m(t) − Φ(t, x)) dx

− 2δ

∫ xT

0

x (Φ(t, x) −m(t))+ dx

+ 2δ

∫ xT

0

sign+(Φ(t, x) −m(t))

∫ ∞

x

Φ(t, x∗) dx∗dx

+

∫ xT

0

sign+(Φ(t, x) −m(t))

∫ ∞

x

Φ(t, x∗)
(
Φ(t, x)λ + Φ(t, x∗)

λ
)
dx∗dx

−
∫ xT

0

sign+(Φ(t, x) −m(t))
dm

dt
(t) dx

≤
∫ xT

0

sign+(Φ(t, x) −m(t))

(
2δ − γ m(t) − dm

dt
(t)

)
dx

+ 2

∫ xT

0

sign+(Φ(t, x) −m(t)) Φ(t, x)λ dx.

By (3.3), we have the lower bound m(t) ≥ m(0) e−γt ≥ m(0) e−γT , and we obtain

d

dt

∫ ∞

0

(Φ(t, x) −m(t))+ dx ≤ 2

∫ xT

0

sign+(Φ(t, x) −m(t))
(
Φ(t, x)λ −m(t)λ

)
dx

≤ 2 λ m(t)λ−1

∫ xT

0

(Φ(t, x) −m(t))+ dx

≤ 2 λ m(0)λ−1 eT
∫ xT

0

(Φ(t, x) −m(t))+ dx

≤ 2 λ m(0)λ−1 eT
∫ ∞

0

(Φ(t, x) −m(t))+ dx.

Consequently,∫ ∞

0

(Φ(t, x) −m(t))+ dx ≤ C(T )

∫ ∞

0

(Φ0(x) −m(0))+ dx = 0,

from which the inequality (3.2) readily follows for t ∈ [0, T ]. Since T was arbitrarily
chosen, we obtain the expected result.
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Having excluded the occurrence of large values of Φ throughout time evolution,
we next turn to a refined estimate on the propagation of the support of Φ.

Lemma 3.2. Consider δ ∈ (0, 1) and assume that Φ0 satisfies (2.1). Denoting by
Φ the corresponding solution to (1.15), (1.16), we have

(3.4) Supp Φ(t, .) ⊂ [0, R(t)], t ≥ 0,

where R is the solution to

(3.5)
dR

dt
(t) = γ R(t) − δ R(t)2, R(0) = R0.

Proof. For t ∈ (0,∞), it follows from (1.15) and the Fubini theorem that

d

dt

∫ ∞

R(t)

Φ(t, x) dx

= −dR

dt
(t) Φ(t, R(t)) − γ

[
x Φ(t, x)

]∞
R(t)

+

[
x Φ(t, x)

(
δ x +

∫ x

0

Φ(t, x∗)
λ dx∗

)]∞
R(t)

−
∫ ∞

R(t)

(
δ x +

∫ x

0

Φ(t, x∗)
λ dx∗

)
Φ(t, x) dx

−
∫ ∞

R(t)

x
(
δ + Φ(t, x)λ

)
Φ(t, x) dx

+

∫ ∞

R(t)

∫ x

R(t)

(
Φ(t, x)λ + Φ(t, x∗)

λ + 2δ
)

Φ(t, x) dx∗dx

=

(
−dR

dt
(t) + γ R(t) − δ R(t)2 −R(t)

∫ R(t)

0

Φ(t, x∗)
λ dx∗

)
Φ(t, R(t))

−
∫ ∞

R(t)

∫ x

0

(
2δ + Φ(t, x)λ + Φ(t, x∗)

λ
)

Φ(t, x) dx∗dx

+

∫ ∞

R(t)

∫ x

R(t)

(
Φ(t, x)λ + Φ(t, x∗)

λ + 2δ
)

Φ(t, x) dx∗dx

≤ 0,

from which we deduce (3.4) by integration.
Observe that the estimate on the expansion on the support of Φ obtained in the

previous lemma heavily depends on δ and will thus not be useful to pass to the limit
as δ → 0. For that purpose, a control on the behavior of Φ for large x which does not
depend on δ is obtained in the next lemma.

Lemma 3.3. Consider δ ∈ (0, 1) and assume that Φ0 satisfies (2.1). Denoting by
Φ the corresponding solution to (1.15), (1.16), we have

(3.6) L(t) :=

∫ ∞

0

x(1−λ)/λ Φ(t, x) dx ≤ �(t), t ≥ 0,

where

d�

dt
(t) =

1

λ
�(t) − 1 − λ

(1 + λ)λ1+λ
�(t)1+λ, �(0) = L(0) =

∫ ∞

0

x(1−λ)/λ Φ0(x) dx.
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Proof. For t ∈ (0,∞), it follows from (1.15), the compactness of the support of
Φ(t, .) and the Fubini theorem that

dL
dt

(t) =
L(t)

λ
− 1

λ

∫ ∞

0

x(1−λ)/λ

(
δ x +

∫ x

0

Φ(t, x∗)
λ dx∗

)
Φ(t, x) dx

−
∫ ∞

0

x1/λ
(
δ + Φ(t, x)λ

)
Φ(t, x) dx

+

∫ ∞

0

∫ x

0

x
(1−λ)/λ
∗

(
2δ + Φ(t, x)λ + Φ(t, x∗)

λ
)

Φ(t, x) dx∗dx

=
L(t)

λ
+

(
2λ− 1 − 1

λ

)
δ

∫ ∞

0

x1/λ Φ(t, x) dx

+

∫ ∞

0

∫ x

0

(
x

(1−λ)/λ
∗ − x(1−λ)/λ

λ

)
Φ(t, x∗)

λ Φ(t, x) dx∗dx

− (1 − λ)

∫ ∞

0

x1/λ Φ(t, x)1+λ dx.

Since λ ∈ (0, 1), we end up with

dL
dt

(t) ≤ L(t)

λ
− 1 − λ

λ

∫ ∞

0

x(1−λ)/λ

∫ x

0

Φ(t, x∗)
λ dx∗ Φ(t, x) dx.

Using Lemma B.1, we further obtain

dL
dt

(t) ≤ L(t)

λ
− 1 − λ

λ1+λ

∫ ∞

0

x(1−λ)/λ Φ(t, x)

(∫ x

0

x
(1−λ)/λ
∗ Φ(t, x∗) dx∗

)λ

dx

≤ L(t)

λ
− 1 − λ

(1 + λ)λ1+λ
L(t)1+λ,

from whence (3.6) by the comparison principle.
We are now in a position to construct stationary solutions to (1.15).
Proposition 3.4. Given δ ∈ (0, 1), there exists a nonnegative and nonincreasing

function Ψδ ∈ L1(0,∞) ∩ L∞(0,∞) such that Supp Ψδ ⊂ [0, γ/δ],

(3.7) ‖Ψδ‖1 = 1, ‖Ψδ‖∞ ≤ A(λ) + 2 δ,

∫ ∞

0

x(1−λ)/λ Ψδ(x) dx ≤ B(λ),

and

x

(
γ − δ x−

∫ x

0

Ψδ(x∗)
λ dx∗

)
Ψδ(x)

=

∫ ∞

x

∫ x

0

(
Ψδ(x∗)

λ + Ψδ(x
′)λ + 2δ

)
Ψδ(x∗) dx′dx∗(3.8)

for almost every x ∈ (0, γ/δ). The parameters A(λ) and B(λ) are given by

A(λ) :=

(
2

γ

)γ

, B(λ) := λ

(
1 + λ

1 − λ

)1/λ

.

Proof. Given δ ∈ (0, 1), we introduce the set Kδ defined by

Kδ :=

⎧⎪⎪⎨
⎪⎪⎩
U ∈ L1(0,∞) is a nonnegative and nonincreasing compactly sup-
ported function such that Supp U ⊂ [0, γ/δ], ‖U‖1 = 1, ‖U‖∞ ≤
z(δ) and

∫ ∞

0

x(1−λ)/λ U(x) dx ≤ B(λ)

⎫⎪⎪⎬
⎪⎪⎭ ,
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where z(δ) is the unique positive zero of z �−→ 2(δ + zλ) − γz. We note that

(3.9) z(0) = A(λ) ≤ z(δ) ≤ A(λ) + 2δ.

Then, Kδ is a closed convex subset of L1(0,∞). In addition, if (Un)n≥1 is a sequence
in Kδ, then (Un)n≥1 is bounded in BV (0,∞) and there is a subsequence of (Un)n≥1

(not relabeled) and a function U such that (Un(x)) converges towards U(x) for almost
every x ∈ (0,∞) as n → ∞ [12]. On one hand, this convergence and the Fatou lemma
imply that U is a nonnegative and nonincreasing function with compact support in
[0, γ/δ] and satisfies

‖U‖∞ ≤ z(δ) and

∫ ∞

0

x(1−λ)/λ U(x) dx ≤ B(λ).

On the other hand, since (Un)n≥1 is bounded in L∞(0,∞) with Supp Un ⊂ [0, γ/δ],
we deduce from the Lebesgue dominated convergence theorem that (Un) converges
towards U in L1(0,∞), from whence ‖U‖1 = 1. Therefore, U ∈ Kδ, and we have thus
shown that Kδ is a closed convex and compact subset of L1(0,∞).

We now claim that, if Φ0 ∈ Kδ, then Φ(t, .) ∈ Kδ for each t ≥ 0, Φ being
the corresponding solution to (1.15), (1.16). Indeed, consider Φ0 ∈ Kδ. From the
analysis of the previous section and (3.1), we know that Φ(t, .) is a nonnegative and
nonincreasing function in L1(0,∞) with ‖Φ(t)‖1 = ‖Φ0‖1 = 1 for t ≥ 0. Next, it
readily follows from (3.3) that m(t) ≤ ‖Φ0‖∞ ∨ z(δ), from whence ‖Φ(t)‖∞ ≤ z(δ)
for t ≥ 0 by Lemma 3.1. Similarly, as Supp Φ0 ⊂ [0, γ/δ], the function R defined
by (3.5) is bounded from above by R(0) ∨ (γ/δ) = γ/δ and we infer from Lemma 3.2
that Supp Φ(t, .) ⊂ [0, γ/δ] for t ≥ 0. Finally, Lemma 3.3 implies that∫ ∞

0

x(1−λ)/λ Φ(t, x) dx ≤
(∫ ∞

0

x(1−λ)/λ Φ0(x) dx

)
∨B(λ) = B(λ), t ≥ 0.

Consequently, Kδ is a closed convex and compact subset of L1(0,∞) which is left
invariant by the semiflow associated to (1.15), (1.16). Applying Theorem 1.4 with
X = L1(0,∞) and K = Kδ, we obtain the existence of a stationary solution Ψδ to
(1.15) which belongs to Kδ. This last property and (3.9) yield the bounds (3.7) while
(3.8) follows from (2.2).

We are thus left to pass to the limit as δ → 0 to construct a stationary solution
to (1.14) and this is the purpose of the next proposition.

Proposition 3.5. There exists a nonnegative and nonincreasing function Ψ ∈
L1(0,∞) ∩ L∞(0,∞) such that

(3.10) ‖Ψ‖1 = 1, ‖Ψ‖∞ ≤ A(λ),

∫ ∞

0

x(1−λ)/λ Ψ(x) dx ≤ B(λ),

and

(3.11) x

(
γ −

∫ x

0

Ψ(x∗)
λ dx∗

)
Ψ(x) =

∫ ∞

x

∫ x

0

(
Ψ(x∗)

λ + Ψ(x′)λ
)

Ψ(x∗) dx′dx∗

for almost every x ∈ (0,∞), the parameters A(λ) and B(λ) being defined in Proposi-
tion 3.4.

Proof. For δ ∈ (0, 1), let Ψδ be a stationary solution to (1.15) given by Propo-
sition 3.4. We infer from Proposition 3.4 that (Ψδ)δ∈(0,1) is bounded in BV (0,∞) ∩
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L1(0,∞;x(1−λ)/λ dx)∩L∞(0,∞) which is clearly compactly embedded in L1(0,∞) as
(1 − λ)/λ > 0. Consequently, there is a sequence (δn)n≥1, δn → 0, and Ψ ∈ L1(0,∞)
such that Ψδn converges to Ψ in L1(0,∞) and a.e. in (0,∞). Passing to the limit
as δn → 0 in (3.7), we obtain (3.10) (with the help of the Fatou lemma for the
moment estimate and a weak convergence argument for the L∞-bound). Owing
to the boundedness of (Ψδn) and the convergence of (Ψδn) towards Ψ in L1(0,∞)
and a.e., it is straightforward to pass to the limit as δn → 0 in (3.8) and obtain
(3.11).

4. Properties of stationary solutions to (1.14). We next turn to the study
of properties of stationary solutions Ψ to (1.14) given by Proposition 3.5. We first
establish their C1-smoothness on [0,∞).

Proposition 4.1. Let Ψ be a stationary solution to (1.14) given by Proposi-
tion 3.5. Then, Ψ ∈ C1([0,∞)) and Ψλ ∈ L1(0,∞) with

(4.1) Lλ := ‖Ψλ‖1 < γ.

Proof. We first observe that, since Ψ ∈ L∞(0,∞), we have

x0 := sup

{
x ≥ 0 such that

∫ x

0

Ψ(x∗)
λ dx∗ < γ

}
∈ (0,∞].

It then clearly follows from (3.10) and (3.11) that Ψ ∈ C1((0, x0)) with

x

(
γ −

∫ x

0

Ψ(x∗)
λ dx∗

)
dΨ

dx
(x)

= −γ Ψ(x) +

∫ ∞

x

Ψ(x∗)
λ+1 dx∗ + Ψ(x)λ

∫ ∞

x

Ψ(x∗) dx∗(4.2)

for x ∈ (0, x0).
Assume for contradiction that x0 < ∞. Then

(4.3)

∫ x0

0

Ψ(x∗)
λ dx∗ = γ

and the nonnegativity of Ψ and (3.11) imply that Ψ(x) = 0 for x > x0. It next follows
from (4.2) and the monotonicity of Ψ that, if x ∈ (0, x0), we have

x

(
γ −

∫ x

0

Ψ(x∗)
λ dx∗

)
dΨ

dx
(x) ≤ −γ Ψ(x) + 2 Ψ(x)

∫ x0

x

Ψ(x∗)
λ dx∗

≤ −γ Ψ(x) + 2 Ψ(x)

(
γ −

∫ x

0

Ψ(x∗)
λ dx∗

)
,

from whence

x
dΨ

dx
(x) ≤ −γ Ψ(x)

(
γ −

∫ x

0

Ψ(x∗)
λ dx∗

)−1

+ 2 Ψ(x).

Therefore

d

dx

{
x Ψ(x)λ

}
= Ψ(x)λ + λ x Ψ(x)λ−1 dΨ

dx
(x)

≤ Ψ(x)λ − γ λ Ψ(x)λ
(
γ −

∫ x

0

Ψ(x∗)
λ dx∗

)−1

+ 2 λ Ψ(x)λ

≤ d

dx

{
−(1 + 2λ)

∫ x0

x

Ψ(x∗)
λ dx∗ + λ γ log

(
γ −

∫ x

0

Ψ(x∗)
λ dx∗

)}
,
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from which we deduce after integration over (0, x), x ∈ (0, x0) that

x Ψ(x)λ + (1 + 2λ)

∫ x0

x

Ψ(x∗)
λ dx∗ − λ γ log

(
γ −

∫ x

0

Ψ(x∗)
λ dx∗

)

≤ (1 + 2λ)

∫ x0

0

Ψ(x∗)
λ dx∗ − λ γ log γ

≤ (1 + 2λ) γ − λ γ log γ.(4.4)

But the right-hand side of (4.4) is finite while the left-hand side of (4.4) diverges to
infinity as x → x0 by (4.3) and a contradiction. Therefore, x0 = ∞, Ψ ∈ C1((0,∞))
and ∫ x

0

Ψ(x∗)
λ dx∗ < γ for each x ∈ (0,∞).

In particular, Ψλ ∈ L1(0,∞) and Lλ = ‖Ψλ‖1 ≤ γ.
Suppose now for contradiction that ‖Ψλ‖1 = γ. Arguing as before, we realize

that (4.4) is valid for every x ∈ (0,∞). Then, letting x → ∞ in (4.4) yields that
the left-hand side of (4.4) diverges to infinity while the right-hand side is finite, from
whence a contradiction. We have thus shown that Lλ < γ, from whence the claim
(4.1).

We next turn to the regularity of Ψ at x = 0. Since Ψ is a nonincreasing and
bounded function, the limit Ψ(0+) of Ψ(x) as x → 0 exists and is finite and we may
actually set Ψ(0) = Ψ(0+). Then Ψ ∈ C([0,∞)). In addition, since ‖Ψ‖1 = 1 > 0, Ψ
is not identically equal to zero and thus Ψ(0) > 0 by the monotonicity of Ψ. Since
the identity (3.11) also reads(
γ −

∫ x

0

Ψ(x∗)
λ dx∗

)
Ψ(x) =

∫ ∞

x

Ψ(x∗)
λ+1 dx∗+

1

x

∫ x

0

Ψ(x∗)
λ dx∗

∫ ∞

x

Ψ(x∗) dx∗,

we may let x → 0 in the previous inequality and obtain

(4.5) γ Ψ(0) =

∫ ∞

0

Ψ(x∗)
λ+1 dx∗ + Ψ(0)λ.

It follows from (3.11), (4.5) and the monotonicity of Ψ that

γ (Ψ(0) − Ψ(x)) =

∫ x

0

Ψ(x∗)
1+λ dx∗ − Ψ(x)

∫ x

0

Ψ(x∗)
λ dx∗

+ Ψ(0)λ − 1

x

∫ x

0

Ψ(x∗)
λ dx∗

∫ ∞

x

Ψ(x∗) dx∗

≤ 2 x Ψ(0)1+λ +

(
Ψ(0)λ − 1

x

∫ x

0

Ψ(x∗)
λ dx∗

)
≤ 2 x Ψ(0)1+λ +

(
Ψ(0)λ − Ψ(x)λ

)
≤ 2 x Ψ(0)1+λ + λ Ψ(x)λ−1 (Ψ(0) − Ψ(x)),

from whence

(
γ − λ Ψ(x)λ−1

) Ψ(0) − Ψ(x)

x
≤ 2 Ψ(0)1+λ.
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As λ ∈ (0, 1) and γ ≥ Ψ(0)λ−1 by (4.5), we have γ > λ Ψ(0)λ−1 and we infer from
the continuity of Ψ at x = 0 that there are δ1 > 0 and x1 > 0 such that

γ − λ Ψ(x)λ−1 ≥ δ1 for x ∈ (0, x1).

Combining the above two inequalities and the monotonicity of Ψ yields

(4.6) 0 ≤ Ψ(0) − Ψ(x)

x
≤ 2

δ1
Ψ(0)1+λ for x ∈ (0, x1),

so that x �−→ (Ψ(0) − Ψ(x))/x belongs to L∞(0, x1).
Another consequence of (4.5) is that we may pass to the limit as x → 0 in (4.2)

to deduce that

(4.7) lim
x→0

x
dΨ

dx
(x) = 0.

Using once more (4.5), the identity (4.2) also reads

γ x
dΨ

dx
(x) = x

∫ x

0

Ψ(x∗)
λ dx∗

dΨ

dx
(x) − γ (Ψ(x) − Ψ(0)) −

∫ x

0

Ψ(x∗)
1+λ dx∗

+
(
Ψ(x)λ − Ψ(0)λ

)
− Ψ(x)λ

∫ x

0

Ψ(x∗) dx∗,

from which we deduce that

γ
dΨ

dx
(x) +

(
γ − λ Ψ(0)λ−1

) Ψ(x) − Ψ(0)

x

=

(
1

x

∫ x

0

Ψ(x∗)
λ dx∗

) (
x

dΨ

dx
(x)

)
− 1

x

∫ x

0

Ψ(x∗)
1+λ dx∗ −

Ψ(x)λ

x

∫ x

0

Ψ(x∗) dx∗

+
1

x

(
Ψ(x)λ − Ψ(0)λ − λ Ψ(0)λ−1(Ψ(x) − Ψ(0))

)
,

On one hand, by (4.7) and the continuity of Ψ at x = 0, we have

lim
x→0

(
1

x

∫ x

0

Ψ(x∗)
λ dx∗

) (
x

dΨ

dx
(x)

)
= 0,

lim
x→0

1

x

∫ x

0

Ψ(x∗)
1+λ dx∗ = lim

x→0

Ψ(x)λ

x

∫ x

0

Ψ(x∗) dx∗ = Ψ(0)1+λ.

On the other hand, it follows from the concavity of r �→ rλ, the monotonicity of Ψ,
and (4.6) that, if x ∈ (0, x1), then∣∣∣∣ 1x (

Ψ(x)λ − Ψ(0)λ − λ Ψ(0)λ−1(Ψ(x) − Ψ(0))
)∣∣∣∣

=
1

x

(
Ψ(0)λ − Ψ(x)λ − λ Ψ(0)λ−1(Ψ(0) − Ψ(x))

)
≤ λ

x

(
Ψ(x)λ−1 − Ψ(0)λ−1

)
(Ψ(0) − Ψ(x))

≤ λ sup
x∗∈(0,x1)

(
Ψ(0) − Ψ(x∗)

x∗

) (
Ψ(x)λ−1 − Ψ(0)λ−1

)
≤ 2 λ

δ1
Ψ(0)1+λ

(
Ψ(x)λ−1 − Ψ(0)λ−1

)
−→
x→0

0
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by the continuity of Ψ at x = 0. Consequently,

(4.8) lim
x→0

{
γ

dΨ

dx
(x) +

(
γ − λ Ψ(0)λ−1

) Ψ(x) − Ψ(0)

x

}
= −2 Ψ(0)1+λ.

Introducing ω := 1 − λ Ψ(0)λ−1 γ−1, we have ω > 0 by (4.5) and the previous limit
also reads

lim
x→0

{
x−ω d

dx
(xω (Ψ(x) − Ψ(0)))

}
= −2 Ψ(0)1+λ

γ
,

from whence, by integration,

lim
x→0

Ψ(x) − Ψ(0)

x
= −2 Ψ(0)1+λ

γ (ω + 1)
.

Therefore, Ψ is differentiable at x = 0 with

(4.9)
dΨ

dx
(0) = − 2 Ψ(0)1+λ

2 γ − λ Ψ(0)λ−1
< 0,

and (4.8) ensures the continuity of dΨ/dx at x = 0.
We next turn to the positivity and monotonicity properties of stationary solutions

to (1.14).
Proposition 4.2. Let Ψ be a stationary solution to (1.14) given by Proposi-

tion 3.5. Then

(4.10) Ψ(x) > 0 and
dΨ

dx
(x) < 0 for x ≥ 0.

Proof. Recalling that Lλ := ‖Ψλ‖1 < γ by Proposition 4.1, we have for δ > 0 and
x ≥ δ

δ (γ − Lλ) ≤ x

(
γ −

∫ x

0

Ψ(x∗)
λ dx∗

)
.

We then infer from (4.2) and the nonpositivity of dΨ/dx ≤ 0 that

δ (γ − Lλ)
dΨ

dx
(x) ≥ −γ Ψ(x), x ≥ δ.

Therefore,

Ψ(x) ≥ Ψ(δ) exp

{
γ (δ − x)

δ (γ − Lλ)

}
, x ≥ δ.

Owing to the continuity of Ψ at x = 0 and the positivity of Ψ(0), we also have
Ψ(δ) > 0 for δ sufficiently small, which, together with the above lower bound for Ψ,
entail the positivity of Ψ in [0,∞). Similarly, it follows from (4.2) that Ψ is twice
differentiable in (0,∞) with

x

(
γ −

∫ x

0

Ψ(x∗)
λ dx∗

)
d2Ψ

dx2
(x)

=

(
x Ψ(x)λ + λ Ψ(x)λ−1

∫ ∞

x

Ψ(x∗) dx∗ +

∫ x

0

Ψ(x∗)
λ dx∗ − 2 γ

)
dΨ

dx
(x)

− 2 Ψ(x)1+λ

≤ −2 γ
dΨ

dx
(x),
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the last inequality being a consequence of the positivity and monotonicity of Ψ. Con-
sequently, if δ > 0 and x ≥ δ,

d2Ψ

dx2
(x) ≤ −2 γ

x

dΨ

dx
(x)

(
γ −

∫ x

0

Ψ(x∗)
λ dx∗

)−1

≤ − 2 γ

δ (γ − Lλ)

dΨ

dx
(x),

from whence

dΨ

dx
(x) ≤ dΨ

dx
(δ) exp

{
2 γ (δ − x)

δ (γ − Lλ)

}
, x ≥ δ.

Recalling that dΨ/dx ∈ C([0,∞)) with dΨ(0)/dx < 0 by (4.9), we easily deduce from
the previous inequality that dΨ(x)/dx < 0 for x ≥ 0.

We finally identify the behavior of Ψ as x → ∞.
Proposition 4.3. Let Ψ be a stationary solution to (1.14) given by Proposi-

tion 3.5. Then Lλ :=
∥∥Ψλ

∥∥
1
> 1 and there is a positive constant b > 0 such that

(4.11) lim
x→∞

xα Ψ(x) = b and lim
x→∞

x1+α dΨ

dx
(x) = −α b,

with α := γ/(γ − Lλ) > 0.
Proof. We first establish that

(4.12) Lλ =
∥∥Ψλ

∥∥
1
> 1.

Indeed, since Ψ(x) > 0 for x ≥ 0, we multiply (4.2) by λ Ψ(x)λ−1 and integrate over
(0,∞) to obtain

[
x
(
γ −

∫ x

0

Ψ(x∗)
λ dx∗

)
Ψ(x)λ

]∞
0

−
∫ ∞

0

Ψ(x)λ
(
γ −

∫ x

0

Ψ(x∗)
λ dx∗ − x Ψ(x)λ

)
dx

= −λ γ Lλ + λ

∫ ∞

0

∫ ∞

x

(
Ψ(x)λ−1 Ψ(x∗)

λ+1 + Ψ(x)2λ−1 Ψ(x∗)
)
dx∗dx

= −λ γ Lλ + λ

∫ ∞

0

∫ x

0

(
Ψ(x)λ+1 Ψ(x∗)

λ−1 + Ψ(x) Ψ(x∗)
2λ−1

)
dx∗dx.

Since Ψ is nonincreasing and Ψλ ∈ L1(0,∞), the boundary terms vanish and we end
up with

(1 − λ) γ Lλ =

∫ ∞

0

∫ x

0

(
Ψ(x)λ Ψ(x∗)

λ + Ψ(x)2λ
)
dx∗dx

− λ

∫ ∞

0

∫ x

0

(
Ψ(x)λ+1 Ψ(x∗)

λ−1 + Ψ(x) Ψ(x∗)
2λ−1

)
dx∗dx,

Lλ =

∫ ∞

0

∫ x

0

(
Ψ(x)λ + Ψ(x∗)

λ
) (

Ψ(x)λ−1 − λ Ψ(x∗)
λ−1

)
Ψ(x) dx∗dx.
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Since Ψ(x) ≤ Ψ(x∗) for x∗ ∈ (0, x), it follows from Lemma B.2 and the elementary
inequality Ψ(x)λ + Ψ(x∗)

λ ≤ 21−λ (Ψ(x) + Ψ(x∗))
λ that

Lλ ≤ 21−λ

∫ ∞

0

∫ x

0

Ψ(x)λ Ψ(x∗)
λdx∗dx = 2−λ L2

λ.

Therefore, Lλ ≥ 2λ > 1 which completes the proof of (4.12).
We next infer from (4.2) and the positivity and monotonicity of Ψ that

x (γ − Lλ)
dΨ

dx
(x) ≥ x

(
γ −

∫ x

0

Ψ(x∗)
λ dx∗

)
dΨ

dx
(x) ≥ −γ Ψ(x),

from whence

x

∣∣∣∣dΨdx (x)

∣∣∣∣ ≤ γ

γ − Lλ
Ψ(x),

and

(γ − Lλ) x
dΨ

dx
(x) + γ Ψ(x) ≤

(
2 Ψ(x) + x

∣∣∣∣dΨdx (x)

∣∣∣∣
) ∫ ∞

x

Ψ(x∗)
λ dx∗

for x > 0. We combine the previous inequalities to obtain

(γ − Lλ) x
dΨ

dx
(x) + γ Ψ(x) ≤

(
2 +

γ

γ − Lλ

)
Ψ(x)

∫ ∞

x

Ψ(x∗)
λ dx∗.

Recall that α = γ/(γ − Lλ) > 0 and fix ε ∈ (0, α). Since Ψλ ∈ L1(0,∞), there is
xε > 0 such that ∫ ∞

x

Ψ(x∗)
λ dx∗ ≤ γ − Lλ

2 + α
ε for x ≥ xε.

Therefore, for x ≥ xε, we have

x
dΨ

dx
(x) + α Ψ(x) ≤ ε Ψ(x),

from which we deduce by integration that

Ψ(x) ≤ xα−ε
ε Ψ(xε)

xα−ε
for x ≥ xε.

Recalling that Ψ ∈ L∞(0,∞), we have thus established that, for each ε ∈ (0, α), there
is κε > 0 such that

(4.13) Ψ(x) ≤ κε x−α+ε for x > 0.

Once more we use (4.2) to obtain that

(γ − Lλ)
d

dx
{xα Ψ(x)} = (γ − Lλ) xα dΨ(x)

dx
+ γ xα−1 Ψ(x)

= xα−1

(∫ ∞

x

Ψ(x∗)
1+λ dx∗ + Ψ(x)λ

∫ ∞

x

Ψ(x∗) dx∗

)

− xα dΨ

dx
(x)

∫ ∞

x

Ψ(x∗)
λ dx∗.(4.14)
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Now, since Lλ > 1 by (4.12), we have α > λα > 1 and there exists ε ∈ (0, α− 1) such
that λα > 1 + (1 + λ)ε. Then, on one hand, by the monotonicity of Ψ and (4.13), an
integration by parts yields

0 ≤ −
∫ ∞

1

xα dΨ

dx
(x)

∫ ∞

x

Ψ(x∗)
λ dx∗dx

≤ Ψ(1)

∫ ∞

1

Ψ(x∗)
λ dx∗ +

∫ ∞

1

Ψ(x)

(
α xα−1

∫ ∞

x

Ψ(x∗)
λ dx∗ − xα Ψ(x)λ

)
dx

≤ C +
α κ1+λ

ε

λα− 1 − λε

∫ ∞

1

x(1+λ)ε−λα dx

≤ C(ε).

On the other hand, it follows from the monotonicity of Ψ and (4.13) that

∫ ∞

1

xα−1

(∫ ∞

x

Ψ(x∗)
1+λ dx∗ + Ψ(x)λ

∫ ∞

x

Ψ(x∗) dx∗

)
dx

≤ 2
κ1+λ
ε

α− 1 − ε

∫ ∞

1

x(1+λ)ε−λα dx ≤ C(ε).

Consequently, the right-hand side of (4.14) belongs to L1(1,∞) and is positive, from
which we conclude that x �−→ xα Ψ(x) has a positive limit b as x → ∞. We have
thus proved the first assertion in (4.11).

As for dΨ/dx, we note that the large x-behavior of Ψ ensures that there is x∞
large enough such that xα Ψ(x) ≤ 2b for x ≥ x∞. Consequently, for x ≥ x∞, we have

xα

(∫ ∞

x

Ψ(x∗)
λ+1 dx∗ + Ψ(x)λ

∫ ∞

x

Ψ(x∗) dx∗

)
≤ 2 xα Ψ(x)λ

∫ ∞

x

Ψ(x∗) dx∗

≤ 2 (2b)λ+1 x(1−λ)α

∫ ∞

x

x−α
∗ dx∗

≤ 2 (2b)λ+1

α− 1
x1−λα.

Recalling that λα > 1 by (4.12), we conclude that

lim
x→∞

xα

(∫ ∞

x

Ψ(x∗)
λ+1 dx∗ + Ψ(x)λ

∫ ∞

x

Ψ(x∗) dx∗

)
= 0.

We now multiply (4.2) by xα and let x → ∞ in the resulting identity with the
help of the previous limit and the first statement in (4.11) to complete the proof of
(4.11).

5. Proofs of Theorem 1.1 and Corollary 1.2. By Proposition 3.5 there
exists a nonnegative function Ψ ∈ L1(0,∞) satisfying (3.10) and (3.11). In addition,
Ψ ∈ C1([0,∞)) is a positive and decreasing function from [0,∞) onto (0, y0] with
y0 := Ψ(0) by Propositions 4.1 and 4.2. We then denote its inverse function by
Ξ : (0, y0] −→ [0,∞) which is also a decreasing and nonnegative function in C1((0, y0])
and put ξ := −dΞ/dy > 0. We extend Ξ and ξ to (y0,∞) by setting Ξ(y) = ξ(y) = 0
for y > y0. Then ξ ∈ C((0,∞) \ {y0}) with ξ(y0−) = −(dΨ/dx(0))−1 > 0 by (4.9)
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and ξ(y0+) = 0. Also, since Ξ(y) −→ ∞ as y → 0, we infer from Propositions 4.1
and 4.3 that

lim
y→0

y Ξ(y)γ/(γ−Lλ) = b, lim
y→0

−Ξ(y)1+(γ/(γ−Lλ))

ξ(y)
= − γ b

γ − Lλ

with Lλ :=
∥∥Ψλ

∥∥
1
∈ (1, γ), from whence

lim
y→0

y2−(Lλ/γ) ξ(y) =
γ − Lλ

γ
b1−Lλ/γ > 0.

In addition, Ξ being a C1-diffeomorphism from (0, y0] onto [0,∞), a simple change of
variables yields

∫ ∞

0

y ξ(y) dy = ‖Ψ‖1 = 1 and

∫ ∞

0

yλ ξ(y) dy =
∥∥Ψλ

∥∥
1

= Lλ.

We have thus shown that ξ enjoys all the properties (1.9), (1.10), and (1.11) listed in
Theorem 1.1. To check (1.12), we consider y ∈ (0, y0) and take x = Ξ(y) in (4.2) to
obtain

−
(
γ −

∫ Ξ(y)

0

Ψ(x∗)
λ dx∗

)
Ξ(y)

ξ(y)
= −γ y +

∫ ∞

Ξ(y)

(
Ψ(x∗)

λ+1 + yλ Ψ(x∗)
)
dx∗,

from whence (1.12) after performing the change of variables x∗ = Ξ(y∗) in the in-
tegrals. The proof of Theorem 1.1 is now complete and we show that Corollary 1.2
follows. Let t ∈ (0,∞) and ϑ ∈ C∞

0 ((0,∞)). Then

d

dt

∫ ∞

0

gs(t, y) ϑ(y) dy

=
d

dt

(
1

t2γ

∫ ∞

0

ξ
( y

tγ

)
ϑ(y) dy

)

=
d

dt

(
1

tγ

∫ ∞

0

ξ(y) ϑ (y tγ) dy

)

= − γ

t1+γ

∫ ∞

0

ξ(y) ϑ (y tγ) dy +
γ

t

∫ ∞

0

y ξ(y) ∂yϑ (y tγ) dy

=
γ

t

∫ ∞

0

y ξ(y) ∂yϑ (y tγ) dy − γ

t

∫ ∞

0

ξ(y)

∫ y

0

∂yϑ (y∗ tγ) dy∗dy,

from whence

t
d

dt

∫ ∞

0

gs(t, y) ϑ(y) dy = γ

∫ ∞

0

(
y ξ(y) −

∫ ∞

y

ξ(y∗) dy∗

)
∂yϑ (y tγ) dy∗dy.
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Using (1.12), we deduce that

t
d

dt

∫ ∞

0

gs(t, y) ϑ(y) dy

=

∫ ∞

0

∂yϑ (y tγ)

∫ y

0

(
yλ + yλ∗

)
y∗ ξ(y∗) dy∗ ξ(y) dy

−
∫ ∞

0

∂yϑ (y tγ)

(∫ ∞

y

yλ∗ ξ(y∗) dy∗

) (∫ ∞

y

ξ(y′) dy′
)

dy

=
1

t(3+λ)γ

∫ ∞

0

∂yϑ(y)

∫ y

0

(
yλ + yλ∗

)
y∗ ξ

(y∗
tγ

)
dy∗ ξ

( y

tγ

)
dy

− 1

tγ

∫ ∞

0

ϑ (y tγ)

∫ ∞

y

(
yλ + yλ∗

)
ξ(y∗) ξ(y) dy∗dy

= t(1−λ)γ

∫ ∞

0

∂yϑ(y)

∫ y

0

(
yλ + yλ∗

)
y∗ gs(t, y∗) gs(t, y) dy∗dy

− t(1−λ)γ

∫ ∞

0

ϑ(y)

∫ ∞

y

(
yλ + yλ∗

)
gs(t, y∗) gs(t, y) dy∗dy

= t

∫ ∞

0

∫ y

0

(y∗ ∂yϑ(y) − ϑ(y∗))
(
yλ + yλ∗

)
gs(t, y∗) gs(t, y) dy∗dy,

since γ = 1/(1−λ). Dividing the above equality by t yields that gs is a weak solution
to (1.2) and completes the proof of Corollary 1.2.

Appendix A. Proof of Theorem 1.4.
We first recall the definition of a semiflow.
Definition A.1. Let X be a topological vector space. A semiflow F : [0,∞) ×

X → X is a continuous mapping such that F(0, x) = x and F(t,F(s, x)) = F(t+s, x)
for every (s, t, x) ∈ [0,∞)2 ×X.

We first need a preliminary result.
Proposition A.2. Let X be a topological vector space and F a semiflow on X.

For T > 0, we denote the set of T -periodic orbits by KT , that is,

KT := {x ∈ X, F(T, x) = x}.

If there is T > 0 such that

KT is compact and KT2−k �= ∅ for every k ∈ N,

then K := {x ∈ X such that F(t, x) = x for all t ≥ 0} is a nonempty compact subset
of X and K = ∩k≥0KT2−k .

Proof. Let k ≥ 0. If x ∈ KT2−(k+1) , then, by definition of a semiflow,

F(T2−k, x) = F(T2−(k+1),F(T2−(k+1), x))

= F(T2−(k+1), x) = x,

from whence KT2−(k+1) ⊂ KT2−k . Moreover, Kt = (Id − F(t, .))−1({0}) is a closed
set for every t ≥ 0 and KT2−k is thus compact for every k ≥ 0. Therefore Kstat :=
∩k≥0KT2−k is a nonempty compact subset of X.

Consider now x ∈ Kstat for which we have

F(T2−k, x) = x for every k ∈ N.
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Let t ∈ [0, T ]. For every k ≥ 1, there is ik ∈ {0, . . . , 2k − 1} such that

ik
2k

≤ t

T
<

1 + ik
2k

and lim
k→∞

ik
2k

=
t

T
.

But, by induction,

F
(
Tik
2k

, x

)
= F

(
T (ik − 1)

2k
,F

(
T

2k
, x

))
= x,

and the continuity of F leads to F(t, x) = x. We may then extend this result to
(T,∞) by the semiflow property. We have thus shown that Kstat = K.

We are now in a position to prove Theorem 1.4.
Proof of Theorem 1.4. Let T > 0. Since X is a locally convex topological vector

space and F(T, .) : K → K is continuous, the Tychonov–Schauder fixed point theorem
ensures the existence of xT ∈ K such that

F(T, xT ) = xT .

Then, with the notations introduced in Proposition A.2, KT is a nonempty closed
subset of K and KT is consequently compact. We thus conclude thanks to Proposi-
tion A.2.

Appendix B. Two inequalities.
Lemma B.1. Consider ϑ ∈ (0, 1) and a nonnegative and nonincreasing measur-

able function U such that Uϑ ∈ L∞(0,∞). Then

(B.1)

∫ x

0

x
(1−ϑ)/ϑ
∗ U(x∗) dx∗ ≤ ϑ

(∫ x

0

U(x∗)
ϑ dx∗

)1/ϑ

for x ∈ (0,∞). Furthermore, if Uϑ ∈ L1(0,∞), then U ∈ L1(0,∞;x(1−ϑ)/ϑ dx) and

(B.2)

∫ ∞

0

x(1−ϑ)/ϑ U(x) dx ≤ ϑ

(∫ ∞

0

U(x)ϑ dx

)1/ϑ

.

Proof. Consider x ∈ (0,∞) and x∗ ∈ (0, x). By the monotonicity of U , we have

x∗ U(x∗)
ϑ ≤

∫ x∗

0

U(y)ϑ dy,

from whence

x
1/ϑ
∗ U(x∗) ≤

(∫ x∗

0

U(y)ϑ dy

)1/ϑ

.

Consequently,∫ x

0

x
(1−ϑ)/ϑ
∗ U(x∗) dx∗ =

∫ x

0

x
(1−ϑ)/ϑ
∗ U(x∗)

1−ϑ U(x∗)
ϑ dx∗

≤
∫ x

0

U(x∗)
ϑ

(∫ x∗

0

U(y)ϑ dy

)(1−ϑ)/ϑ

dx∗

= ϑ

(∫ x

0

U(x∗)
ϑ dx∗

)1/ϑ

,



SELF-SIMILAR SOLUTIONS TO THE OHS EQUATION 377

from whence (B.1). Next, if Uϑ ∈ L1(0,∞), we may let x → ∞ in (B.1) to obtain
(B.2) and thus complete the proof of Lemma B.1.

Lemma B.2. Consider λ ∈ [0, 1], r > 0, and r∗ ∈ (0, r). Then

(B.3) (1 − λ) 2λ
rλ rλ−1

∗
(r + r∗)λ

≤ rλ−1
∗ − λ rλ−1 ≤ rλ rλ−1

∗
(r + r∗)λ

.

Proof. The inequalities (B.3) being obvious for λ ∈ {0, 1}, we restrict ourselves
to λ ∈ (0, 1) and put

p(z) := (1 + z)λ
(
1 − λ z1−λ

)
, q(z) := zλ − z − (1 − λ)

for z ∈ (0, 1). Then

p′(z) =
λ

zλ (1 + z)1−λ
q(z), q′(z) = λ zλ−1 − 1,

from which we deduce that q(z) ≤ q (λγ) for z ∈ (0, 1). Since q (λγ) =
(
λλγ − 1

)
(1−

λ) < 0, we conclude that p′(z) ≤ 0 for z ∈ (0, 1). Consequently, p(1) ≤ p(z) ≤ p(0)
for z ∈ (0, 1), from whence

(1 − λ) 2λ ≤ p(z) ≤ 1 for z ∈ (0, 1).

We next consider r > 0 and r∗ ∈ (0, r) and take z = r∗/r in the previous inequality
to obtain (B.3).
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[6] M. Escobedo, S. Mischler, and M. Rodriguez-Ricard, On self-similarity and stationary
problems for fragmentation and coagulation models, Ann. Inst. H. Poincaré Anal. Non
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LP -THEORY FOR A CLASS OF NON-NEWTONIAN FLUIDS∗

DIETER BOTHE† AND JAN PRÜSS‡

Abstract. Local-in-time well-posedness of the initial-boundary value problem for a class of

non-Newtonian Navier–Stokes problems on domains with compact C3--boundary is proven in an
Lp-setting for any space dimension n ≥ 2. The stress tensor is assumed to be of the generalized
Newtonian type, i.e., S = 2μ(|E|22)E − πI, E = 1

2
(∇u + ∇uT), where |E|22 =

∑n
i,j=1 ε

2
ij denotes the

Hilbert–Schmidt norm of the rate of strain tensor E. The viscosity function μ ∈ C2−(R+) is subject
only to the condition μ(s) > 0, μ(s) + 2sμ′(s) > 0, s ≥ 0, which for the standard power-law–like

function μ(s) = μ0(1 + s)
d−2
2 merely means μ0 > 0 and d ≥ 1. This result is based on maximal

regularity theory for a suitable linear problem and a contraction argument.

Key words. maximal regularity, non-Newtonian fluids, Lp-theory, R-boundedness, initial
boundary value problems, power-law–like fluids, strong ellipticity, Lopatinskii–Shapiro condition

AMS subject classifications. 35Q35, 76D03, 35K50, 47A60, 35K90

DOI. 10.1137/060663635

1. Introduction. In this paper, we study boundary value problems for the
Navier–Stokes system of non-Newtonian fluids. By this we mean the following prob-
lem:

(1.1)

∂t(ρu) + div (ρu⊗ u) = div S,
S = μ[∇u + (∇u)T] − πI,

div u = 0, t > 0, x ∈ G,

u(0, x) = u0(x), x ∈ G.

Here G ⊂ R
n, n ≥ 2, denotes the domain occupied by the fluid, and Γ = ∂G means the

boundary of G. We assume that Γ is compact and of class C3−. Throughout, u(t, x)
means the velocity field of the fluid, π(t, x) the pressure, and S(t, x) the stress tensor.
The numbers ρ > 0, μ > 0 represent the density and viscosity of the fluid, respectively.
We assume that ρ > 0 is constant, and without loss of generality (w.l.o.g.) ρ = 1.

On the other hand, the (nonconstant) viscosity μ will be taken of generalized
Newtonian type, i.e.,

(1.2) μ = μ(|E|22), E =
1

2
[∇u + (∇u)T].

Here E = (εij) denotes the rate of strain tensor and

|E|22 =

n∑
i,j=1

ε2
ij
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its Hilbert–Schmidt norm. Note that the first invariant of E , namely tr E = div u, is
zero, and hence the Hilbert–Schmidt norm of E coincides with the second invariant
of E up to a constant factor. It is believed that many isotropic fluids which are not
subject to viscoelastic memory effects can be described by such a material law. A
prominent example is the power-law fluid of Ostwald and de Waele,

μ(s) = msd/2−1,

where d ≥ 1 and m > 0. Due to the obvious defect of this constitutive equation at
s = 0, it is common practice to use modified power-laws like the truncated power law
of Spriggs, the Eyring model, the Carreau model, etc.; see Chapter 5 of [2].

A standard model in the mathematical literature is

μ(s) = μ0(1 + s)(d−2)/2, s ≥ 0,

where d ≥ 1 and μ0 > 0. The case d = 2 corresponds to the Newtonian case.
At this point it should be observed that such constitutive laws are just the most

basic ones beyond the Newtonian case. Such simple stress-strain relations cannot
account for many exciting phenomena observed in the world of non-Newtonian fluids;
they can only be considered as a starting point. Nevertheless, there has been—and
there still is—considerable interest in generalized Newtonian fluids, in the mathe-
matical as well as in the engineering communities, since a nonconstant viscosity that
depends on the shear rate covers the most important deviation from the linear be-
havior for many macromolecular fluids; see [2].

Three natural boundary conditions are of interest, namely the nonslip condition

u(t, x) = 0, t > 0, x ∈ Γ0,

the pure slip case

Sν − (ν|Sν)ν = 0, (u|ν) = 0, t > 0, x ∈ Γs,

and the pure Neumann condition

Sν = 0, x ∈ Γn.

Here we decompose Γ = ∂G disjointly as Γ = Γ0 ∪ Γs ∪ Γn, where each set Γj is
open and closed in Γ. The outer normal of G at x ∈ Γ is denoted by ν = ν(x). We
emphasize that each Γj may be empty.

Already in 1890, Schwedoff realized a nonlinearity in the torque-angular velocity
relationship for colloidal gelatin solutions in a Couette device; cf. [24] for further
historical information about rheology. It was Ladyzhenskaya who in 1964 suggested
studying the partial differential equations for incompressible flows of non-Newtonian
fluids in a mathematically rigorous way. Due to her also are the first results on weak
solutions, dating back to 1969 [14]. More recently, this problem has been studied
intensively by the group around Nečas, leading to many interesting results. This
group employs various notions of weak solutions, which have a number of advantages
in requiring less regularity of the data or allowing one to handle certain degenerate
or singular viscosities; they also yield results that hold globally in time and for large
data. We do not want to comment on all of the literature here, but concerning
weak solutions we refer to the survey article by Malék and Rajagopal [17], and to
the papers [6, 8, 9, 12, 13, 16, 18, 19, 20]. However, in any of the papers in the
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literature there are some restrictions on the exponent d. In space dimension 3, the
least restrictive condition we are aware of is d > 7/5; this concerns local-in-time
existence and uniqueness of strong solutions. This covers the case of shear-thickening
fluids well, but is quite restrictive or even does not apply in the shear-thinning case
d < 2. From the engineering literature one can infer that d ≥ 1 is the range of physical
interest. A first step toward a larger range of admissible exponents has been achieved
in Wielage [25] for the full-space case G = R

n.
We also want to mention that for small initial values u0 there are well-posedness

results for very general stress-strain relations (cf. [1]), and even analyticity of strong
solutions has been proved recently; cf. [7]. For such initial values it has already been
shown in [1] that for bounded domains unique strong solutions exist which are global
in time.

In this paper we show that, in fact, for d ≥ 1 the problem is well-posed, locally in
time, in any space dimension without restriction on the size of the initial velocity u0.

Another aspect are the boundary conditions. Mainly Dirichlet conditions or pe-
riodic boundary conditions have been employed in the non-Newtonian case, so far.
One exception is [8], where slip boundary conditions are treated. In the engineering
literature, in the non-Newtonian case the no-slip condition is no longer well accepted,
as the extensive and thorough discussion in [15] shows.

The consideration of pure slip conditions at the boundary requires a more careful
inspection of the form of the proper linearization of the Navier–Stokes system, which is
a key point of our analysis. In the end, it is this analysis which allows us to generalize
previous results to the situation d ≥ 1 in all space dimensions.

Our tools will be results on maximal Lp-regularity of the following linear problem,
which we call the generalized Stokes problem:

(1.3)

∂tv + A(x,D)v + ∇q = f(t, x), t > 0, x ∈ G,

div v = g(t, x), t > 0, x ∈ G,

Bj(x,D)v = hj(t, x), t > 0, x ∈ Γj , j = 0, s, n,

v(0, x) = v0(x), x ∈ G.

Here A(x,D) is a second order differential operator with continuous top order coef-
ficients acting on C

n-valued functions; Bj(x,D) denote boundary operators of order
zero or one, which correspond to the boundary conditions described above; and the
data f, g, hj , u0 are given. Assuming strong normal ellipticity (cf. section 3) of the
initial-boundary value problem without pressure and divergence condition, we show
that (1.3) is well-posed and has maximal regularity in Lp as well.

It should be mentioned here that, recently, this problem has also been investi-
gated by Solonnikov [23]. However, in his paper only Dirichlet conditions are consid-
ered, and—more importantly—only sufficient conditions for solvability are presented.
Moreover, additional regularity assumptions on the coefficients aklij are imposed, which
are too limiting for solving the nonlinear problem.

Based on our maximal regularity result for the generalized Stokes problem, we
are able to prove local well-posedness for the nonlinear problem (1.1) by a contraction
argument. This way we are able to extend results in the literature for the L2 case to
Lp, and at the same time we improve the conditions on μ in (1.2) to

(1.4) μ(s) > 0 and μ(s) + 2sμ′(s) > 0 for all s ≥ 0.
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In particular, for the model μ(s) = μ0(1 + s)(d−2)/2 this follows by μ0 > 0 and d ≥ 1.
Note that the second condition in (1.4) means that the function s �→ μ(s)

√
s is strictly

increasing. Physically, this is a natural assumption, meaning that the viscous stress
given by

|S0|2 = μ(|E|22)|E|2

is increasing with increasing rate of strain |E|2.
The linear generalized Stokes problem (1.3) is taken here in a fairly general form.

Therefore our approach can also be applied to constitutive laws more general than
the generalized Newtonian law considered here, in particular to nonisotropic ones.
The only restriction we impose is strong normal ellipticity of the proper linearization,
which implies parabolicity of the nonlinear problem. More precisely, we can easily
generalize our results to the case

Sij = −πδij + ∂εijψ(u, E),

where ψ : R
n × Sym(n) → R is of class C2 and Sym(n) is the space of real-valued

symmetric matrices of dimension n, provided that aklij = ∂εik∂εjlψ(u, E) is strongly
normally elliptic as defined in section 3. Roughly speaking, this means that the scalar
function ψ is uniformly convex in its second variable.

The boundary conditions considered here seem to be the most interesting ones,
but still generalizations are possible. First, an engineer might be confronted with a
fast flow through a tube in direction of coordinate z. Then he would of course require
the condition (u|ν) = 0, but he would also neglect circumferential convection at the
boundary, i.e., uφ = 0. However, because of fast flow he would omit friction in the
axial direction z, i.e., ∂zuz = 0. Such boundary conditions are covered by our analysis
as well, but we will not discuss them here. Secondly, there might be tangential friction
which leads to a boundary condition of the form

Sν − (Sν|ν)ν = −γ(u− (u|ν)ν),

where γ ≥ 0 is an empirical constant. This is known as the Navier condition in
the literature; cf. [15]. We will not deal with it here since the additional term is a
lower order perturbation, which even stabilizes to some extent but does not affect the
analysis of local well-posedness and regularity.

The plan for this paper is as follows. Section 2 contains the statement of the
main result of this paper, namely well-posedness in the Lp-sense. The discussion of
normal ellipticity of the linearized problem in section 3 leads to the condition (1.4) on
the function μ(s). The main result on the generalized Stokes problem is presented in
section 4. Sections 5 and 6 deal with constant coefficient generalized Stokes problems
on R

n and on the half-space R
n
+, respectively. By means of localization and straight-

ening of the boundary, these results are extended to general domains with compact
C3−-boundary in section 7. The contraction argument is carried out in section 8 for
the homogeneous slip and nonslip cases, and in section 9 for general inhomogeneous
boundary conditions. In an appendix (section 10), we summarize some auxiliary
results on optimal regularity for parabolic systems used in previous sections.
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2. Main results. With the definition of S := S0 − πI we have S0 = 2μ(|E|22)E ,

[divS0]i = μ(|E|22)
n∑

k=1

(∂2
kui + ∂i∂kuk) + 4μ′(|E|22)

n∑
j,k,l=1

εijεkl∂jεkl

= μ(|E|22)
n∑

k=1

(∂2
kui + ∂i∂kuk) + 4μ′(|E|22)

n∑
j,k,l=1

εik(u)εjl(u)∂k∂luj

=

n∑
j,k,l=1

aklij (u)∂k∂luj .

Here we have set

(2.1) aklij (u) = μ(|E|22)(δklδij + δilδjk) + 4μ′(|E|22)εik(u)εjl(u).

Observe that aklij (u) are real and that the symmetries aklij = alkji = aijkl = ailkj = akjil are
valid.

Define the quasi-linear differential operator A(u,D) as

A(u,D) =

n∑
k,l=1

aklij (u)DkDl,

where Dk = −i∂k. If the function u ∈ W
2−2/p
p (G; Rn) is known and p > n + 2, then

by the Sobolev embedding W
2−2/p
p (G; Rn) ↪→ BUC1(G; Rn) the coefficients of the

differential operator A(x,D) = A(u(x), D) are uniformly continuous and

[A(∞, D)v]i = −μ(0)

n∑
k=1

(∂2
kvi + ∂i∂kvk)

in case G is unbounded, since |Du(x)| → 0 as |x| → ∞. Denoting the boundary
operators on Γj by Bj(u,D), problem (1.1), complemented by the boundary conditions
discussed above, can be rewritten as

(2.2)

∂tu + A(u,D)u + ∇π = f(u), t ∈ J, x ∈ G,

div u = 0, t ∈ J, x ∈ G,

Bj(u,D)u = 0, t ∈ J, x ∈ Γj , j = 0, s, n,

u|t=0 = u0.

Here the boundary operators Bj will be B0(u,D)u = u on Γ0, while on Γn they will
be Sν = 0, i.e.,

Bn(u,D)(u, π) = 2μ(|E|22)Eν − πν.

Similarly, on Γs we obtain

Bs(u,D)u = ((u|ν), 2μ(|E|22)[Eν − (Eν|ν)ν]).

The nonlinearity f(u) is the convective term f(u) = −u · ∇u.
It is convenient to introduce the projection P defined by

Pw(x) = w(x) − (w(x)|ν(x))ν(x), x ∈ Γ,
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which projects a vector field w on the boundary Γ of G to its tangential part. P
preserves W s

p (Γ; Rn) for each s ∈ [0, 2], since G is assumed to be of class C3−, and

hence ν ∈ C2−(Γ; Rn); here a domain is said to be of class Ck− if its boundary is
locally parameterized by functions which are in Ck−1 with a Lipschitz continuous
(k−1)th derivative. Obtaining this property for P is the main reason that we impose
this particular regularity of the boundary. In what follows, we as usual let Ḣ1

p (G)

denote the completion of H1
p (G) w.r.t. the Lp-gradient norm, and 1

p + 1
p′ = 1.

Our main result is the following.
Theorem 2.1. Let G ⊂ R

n be a domain with compact boundary Γ = ∂G of class
C3−, where Γ = Γ0 ∪ Γs ∪ Γn with disjoint, open and closed Γj; let n + 2 < p < ∞;
and assume that μ ∈ C2−(R+) is such that

(2.3) μ(s) > 0 and μ(s) + 2sμ′(s) > 0 for all s ≥ 0.

Then for each u0 ∈ W
2−2/p
p (G; Rn) satisfying the compatibility conditions

(2.4) div u0|G = 0, u0|Γ0
= 0, (u0|ν)|Γs

= 0, PE(u0)ν|Γs∪Γn
= 0,

there is a unique solution (u, π) of (2.2) on a maximal time interval [0, t∗(u0)). The
solution is in the maximal regularity class

u ∈ H1
p (J, Lp(G; Rn)) ∩ Lp(J,H

2
p (G; Rn)), π ∈ Lp(J ; Ḣ1

p (G)),

additionally with

π|Γn ∈ W 1/2−1/2p
p (J ;Lp(Γn)) ∩ Lp(J ;W 1−1/p

p (Γn)),

for each interval J = [0, a] with a < t∗(u0). The maximal time t∗(u0) is characterized
by the property

if t∗(u0) < ∞, then lim
t→t∗(u0)

u(t) does not exist in W 2−2/p
p (G; Rn).

The solution map u0 �→ u generates a local semiflow on

Xpc := {v ∈ W 2−2/p
p (G; Rn) : v satisfies (2.4)},

the natural phase space for the problem in the Lp-setting.
Note that in case Γn = ∅ uniqueness of π means uniqueness up to a constant.

The remainder of this paper deals with the proof of this result. In fact, in section 9
we will even prove well-posedness for the completely inhomogeneous problem.

3. Linearization and strong normal ellipticity. Consider the differential
operator A(x,D) acting on C

n-valued functions as

[A(x,D)v(x)]i =

n∑
j,k,l=1

aklij (x)DkDlvj(x), x ∈ G.

Its symbol is defined as the matrix

A(x, ξ) =

n∑
k,l=1

aklij (x)ξkξl.
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Such a second order differential operator is called normally elliptic if the spectrum
σ(A(x, ξ)) of the matrix A(x, ξ) is entirely contained in the open right half-plane C+

for each x ∈ G, ξ ∈ R
n, |ξ| = 1; cf. the appendix. It is called strongly elliptic if the

numerical range of A(x, ξ) is a subset of C+ for each x ∈ G, ξ ∈ R
n, |ξ| = 1. Thus

strongly elliptic means that there is a constant c > 0 such that

Re (A(x, ξ)η|η) ≥ c for all ξ ∈ R
n, η ∈ C

n, |ξ| = |η| = 1, x ∈ G.

Here (·|·) denotes the inner product on C
n. Obviously, a strongly elliptic differential

operator A(x,D) is also normally elliptic, but the converse is false, in general.
Let us check what this means in our situation, where A(x,D) := A(u,D) is defined

as in section 2, with a given function u ∈ W
2−2/p
p (G; Rn). A simple computation shows

for ξ ∈ R
n, η ∈ C

n, |ξ| = |η| = 1, by the definition of aklij in (2.1) and using the sum
convention,

aklij ξlηj = μ(ξkηi + ξiηk) + 4μ′εikεjlξlηj .

Using the symmetry of E(u), this yields

aklij ξlηj = 2μcik + 4μ′εik((E|C)),

where C = (cik) = 1
2 (ξ⊗ η+ η⊗ ξ) and ((·|·)) means the inner product in C

n×n. Next
observe that this matrix is symmetric; hence we obtain

(A(x, ξ)η|η) = aklij ξlηjξkηi

= 2μcikξkηi + 4μ′εikξkηi((E|C))

= 2μ|C|22 + 4μ′|((E|C))|2

= μ(|ξ|2|η|2 + |(ξ|η)|2) + 4μ′|(Eξ|η)|2.

Notice that (A(x, ξ)η|η) is real, for each x ∈ G, ξ ∈ R
n, η ∈ C

n. To obtain a necessary
condition for strong ellipticity, choose ξ as an eigenvector of E and η perpendicular
to ξ. This shows that the condition μ(s) > 0 for each s ≥ 0 is necessary for strong
ellipticity. Obviously this condition is also sufficient in the case μ′(|E|22) ≥ 0. So
suppose that μ′(|E|22) < 0. Then the Cauchy–Schwarz inequality implies

(A(x, ξ)η|η) ≥ 2μ|C|22 + 4μ′|E|22|C|22 ≥ c|C|22,

provided that we have

μ(s) > 0 and μ(s) + 2sμ′(s) > 0 for all s ≥ 0.

If |C|2 = 0, then (Cξ|ξ) = 0, which means 2|ξ|2(η|ξ) = 0; hence (η|ξ) = 0 since |ξ| = 1
by assumption. But this in turn yields 2Cξ = η|ξ|2, and hence the contradiction
η = 0. Thus strong ellipticity is implied by (2.3), independently of the choice of

u ∈ W
2−2/p
p (G; Rn).

We note that the condition μ(s) + 2sμ′(s) > 0 for s > 0 is also necessary, if one
allows for all symmetric E ; choose, e.g., E = diag(

√
s, 0, . . . , 0) to see this.

Let us next discuss the Lopatinskii–Shapiro condition for the parabolic problem
without pressure and incompressibility. For this purpose let ξ ∈ R

n, ν ∈ R
n, |ν| = 1,

(ξ|ν) = 0, Reλ ≥ 0. For convenience, we drop the x-dependence. Consider the linear
ode-problem with constant coefficients

λw(y) + A(ξ − νDy)w(y) = 0, y > 0, B(ξ − νDy)w(0) = 0.
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The Lopatinskii–Shapiro condition requires that any solution w ∈ C0(R+; Cn) of
this problem be zero; cf. the appendix. Note that strong ellipticity already implies
w ∈ H2

2 (R+; Cn).
To verify the Lopatinskii–Shapiro condition, we form the inner product of the

equation with a solution w, integrate over R+, and integrate by parts to obtain the
result

0 = λ|w|22 +

∫ ∞

0

(A(ξ − νDy)w(y)|w(y))dy

= λ|w|22 +

∫ ∞

0

n∑
i,j,k,l=1

aklij (ξl − νlDy)wj(y)(ξk − νkDy)wi(y)dy

− i

n∑
i,j,k,l=1

νka
kl
ij (ξl − νlDy)wj(0)wi(0)

= λ|w|22 +

∫ ∞

0

n∑
i,j,k,l=1

aklij (ξl − νlDy)wj(y)(ξk − νkDy)wi(y)dy,

provided that the boundary term vanishes. This is, of course, the case if w is subject
to Dirichlet conditions, i.e., on Γ0, or in case of Neumann conditions on Γn,

[B(ξ − νDy)w]i(0) =

n∑
j,k,l=1

νka
kl
ij (ξl − νlDy)wj(0) = 0.

But it is also true in the case (w|ν) = 0 and

B(ξ − νDy)w(0) − (B(ξ − νDy)w(0)|ν)ν = 0,

which corresponds to the pure slip case, i.e., to Γs.
Next consider the generalized Stokes problem (1.3). The same arguments yield

0 = λ|w|22 +

∫ ∞

0

(A(ξ − νDy)w(y)|w(y))dy +

∫ ∞

0

((iξ − ν∂y)π(y)|w(y))dy

= λ|w|22 +

∫ ∞

0

n∑
i,j,k,l=1

[aklij (ξl − νlDy)wj(ξk − νkDy)wi + π((iξ + ν∂y)|w)]dy

− i

n∑
i,j,k,l=1

[νka
kl
ij (ξl − νlDy)wj(0) + iνiπ(0)]wi(0)

= λ|w|22 +

∫ ∞

0

n∑
i,j,k,l=1

aklij (ξl − νlDy)wj(y)(ξk − νkDy)wi(y)dy,

provided that the boundary term vanishes again, and since ((iξ + ν∂y)|w) = 0. Once
more, this is certainly true if w is subject to Dirichlet conditions on Γ0, or in case of
the relevant Neumann condition for this situation on Γn,

B(ξ − νDy)(w(0), π(0)) =

⎛
⎝ n∑

j,k,l=1

νka
kl
ij (ξl − νlDy)wj(0) + iπ(0)νi

⎞
⎠

n

i=1

= 0.
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However, as before, it is also true in the case (w|ν) = 0 and

B(ξ − νDy)w(0) − (B(ξ − νDy)w(0)|ν)ν = 0,

i.e., for the pure slip case on Γs.
Thus in all cases we have the identity

(3.1) 0 = λ|w|22 +

∫ ∞

0

n∑
i,j,k,l=1

aklij (ξl − νlDy)wj(y)(ξk − νkDy)wi(y)dy.

To satisfy the Lopatinskii–Shapiro condition, we would like to conclude from this
identity that w ≡ 0. For this purpose we introduce the following notation.

Definition 3.1. A(D) is called strongly normally elliptic if it is strongly elliptic
and

Re

n∑
i,j,k,l=1

aklij (ξluj − νlvj)(ξkui − νkvi) > 0

for all ξ, ν ∈ R
n, |ξ| = |ν| = 1, (ξ|ν) = 0, u, v ∈ C

n, Im (u|v) �= 0.
Let us show that this condition implies w ≡ 0, for each w ∈ H1

2 (R+; Cn) satisfying
(3.1) with Reλ ≥ 0. In fact, taking real parts in (3.1), we obtain

∫ ∞

0

Re

n∑
i,j,k,l=1

aklij (ξlwj(y) − νlDywj(y))(ξkwi(y) − νkDywi)(y)dy = 0,

and hence

d

dy
|w(y)|2 = 2 Re

(
d

dy
w(y)|w(y)

)
= −2 Im (Dyw(y)|w(y)) = 0, y > 0.

However, this implies that |w(y)| is constant on R+, and hence w(y) = 0 on R+. So
strong normal ellipticity implies the Lopatinskii–Shapiro condition for all three types
of boundary operators introduced above.

Let us check what strong normal ellipticity means for the generalized Stokes
problem with aklij from (2.1). With D = ξ⊗u+ ν⊗ v, C = 1

2 (D+DT ), and using sum
convention again, we have

aklijdlj = μ(dik + dki) + 4μ′εikεjldlj = 2μcik + 4μ′εik((E|C)),

by symmetry of E . Note that the resulting matrix is symmetric. This yields

aklijdljdki = 2μ|C|22 + 4μ′|((E|C))|2;

hence this expression is real and

aklijdljdki ≥ 2 min{μ, μ + 2μ′|E|22}|C|22.

Condition (2.3) implies aklijdljdki ≥ 0, and C = 0 in case of equality. This yields Cξ = 0
as well as Cν = 0, and leads to the relations

u + (v|ξ)ν + (u|ξ)ξ = v + (v|ν)ν + (u|ν)ξ = 0.
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Taking the inner product with ξ (resp., ν), we obtain (u|ξ) = (v|ν) = 0 and (u|ν) +
(v|ξ) = 0. We may then conclude

u = αν, v = −αξ,

and in particular (u|v) = 0.
Thus, the Lopatinskii–Shapiro condition also holds for the generalized Stokes

problem, as far as ξ �= 0. We want to stress that π = 0 follows from the equations as
long as ξ �= 0. However, if ξ = 0, then we obtain π = 0 from the Neumann boundary
condition, but only π = const in case of slip or no-slip conditions. This reflects the
nonuniqueness of the pressure for no-slip and slip conditions.

4. The generalized Stokes problem on domains. Let G ⊂ R
n be a domain

with compact boundary Γ = ∂G, and J = [0, a]. We decompose Γ disjointly as
Γ = Γ0 ∪ Γs ∪ Γn, where Γj is open and closed in Γ. In this section we consider the
fully inhomogeneous initial-boundary value problem

(4.1)

∂tv + A(t, x,D)v + ∇q = f, t ∈ J, x ∈ G,

div v = g, t ∈ J, x ∈ G,

Bj(t, x,D)v = hj , t ∈ J, x ∈ Γj , j = 0, s, n,

v|t=0 = v0.

Here A(t, x,D) =
∑n

k,l=1 Akl(t, x)DkDl denotes a strongly normally elliptic differen-
tial operator, and the boundary operator Bj(t, x,D) is B0(t, x,D)v = v on Γ0, while
on Γn it is given by

[Bn(t, x,D)(v, q)]i =

n∑
j,k,l=1

aklij (t, x)νkDlvj + iqνi,

and on Γs it is

[Bs(t, x,D)v]i =

⎛
⎝(v|ν),

n∑
j,k,l=1

aklij (t, x)νkDlvj −

⎡
⎣ n∑
r,j,k,l=1

aklrj(t, x)νkνrDlvj

⎤
⎦ νi

⎞
⎠ .

We suppose that the coefficients Akl(t, x) of A(t, x,D) are continuous on J ×G and
have limits Akl(t,∞) at x = ∞, uniformly in t ∈ J , in case G is unbounded, and that
A(t,∞, D) is strongly elliptic as well. In addition, we assume

aklij ∈ W 1/2−1/2p
s (J ;Lr(Γs ∪ Γn)) ∩ Ls(J ;W 1−1/p

r (Γs ∪ Γn)),

for some r, s ≥ p such that 1
s + n−1

2r < 1 − 1
p .

Suppose that (4.1) has a solution in the class

v ∈ H1
p (J ;Lp(G; Cn)) ∩ Lp(J ;H2

p (G; Cn)), q ∈ Lp(J ; Ḣ1
p (G)).

Then, following the paper of Denk, Hieber, and Prüss [5], we may conclude f ∈ Lp(J×
G; Cn), g ∈ Lp(J ;H1

p (G)), v0 ∈ W
2−2/p
p (G; Cn), and the compatibility div v0 = g|t=0.

Furthermore,

v|Γ ∈ W 1−1/2p
p (J ;Lp(Γ; Cn)) ∩ Lp(J ;W 2−1/p

p (Γ; Cn))
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and

∇v|Γ ∈ W 1/2−1/2p
p (J ;Lp(Γ; Cn×n)) ∩ Lp(J ;W 1−1/p

p (Γ; Cn×n)).

This implies

h0 ∈ W 1−1/2p
p (J ;Lp(Γ0; C

n)) ∩ Lp(J ;W 2−1/p
p (Γ0; C

n)),

hs ∈ W 1/2−1/2p
p (J ;Lp(Γs; C

n)) ∩ Lp(J ;W 1−1/p
p (Γs; C

n)),

hj2 := (u|ν) ∈ W 1−1/2p
p (J ;Lp(Γj)) ∩ Lp(J ;W 2−1/p

p (Γj)), j = 0, s,

hn ∈ W 1/2−1/2p
p (J ;Lp(Γn; Cn)) ∩ Lp(J ;W 1−1/p

p (Γn; Cn)),

and with hs1 := Phs the compatibility conditions h0|t=0 = v0|Γ0 in case p > 3/2,
hs1|t=0 = Paklij (0, x)νkDlu0j |Γs in case p > 3, hs2|t=0 = (v0|ν)|Γs , and Phn|t=0 =

Paklij (0, x)νkDlv0j |Γs in case p > 3. Note that ν is of class C2− since Γ is assumed to

be C3−.
But in addition to these natural conditions on the data, there is a more involved

structural property which is due to the divergence equation. To see this, take the
L2-inner product of a function φ ∈ H1

p′(G) with the equation div v = g, and integrate
to the result ∫

G

(div v)φdx−
∫

Γ

(v|ν)φdσ = −
∫
G

(v|∇φ)dx.

Replacing div v by g and (v|ν) by hν , this yields

〈Fg,hν |φ〉 :=

∫
G

gφ dx−
∫

Γ

hνφdσ = −
∫
G

(v|∇φ)dx.

Differentiating w.r.t. t, we get

d

dt
〈Fg,hν |φ〉 = −

∫
G

(∂tv|∇φ)dx.

Define Ḣ1
p,Γn

(G) as

Ḣ1
p,Γn

(G) = {v ∈ H1
p,loc(G) : ∇v ∈ Lp(G; Cn), v|Γn

= 0},

and set

Ḣ−1
p,Γn

(G) = (Ḣ1
p′,Γn

(G)/constants)∗.

Then we may conclude Fg,hν
∈ H1

p (J ; Ḣ−1
p,Γn

(G)). For this property, we write briefly

(g, hν) ∈ H1
p (J ; Ḣ−1

p,Γn
(G)). Summarizing, we obtain the following necessary condi-

tions on the data.
(D) Assumptions on the data.
(a) f ∈ Lp(J ×G; Cn).
(b1) g ∈ Lp(J ;H1

p (G)).

(b2) (g, hν) ∈ H1
p (J ; Ḣ−1

p,Γn
(G)), where hν = hj2 on Γj , j = 0, s.

(c) v0 ∈ W
2−2/p
p (G; Cn) and div v0 = g|t=0, hν |t=0 = (v0|ν)|Γj , j = 0, s.

(d0) h0 ∈ W
1−1/2p
p (J ;Lp(Γ0; C

n)) ∩ Lp(J ;W
2−1/p
p (Γ0; C

n));
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h0|t=0 = v0|Γ0
in case p > 3/2.

(ds) hs ∈ W
1/2−1/2p
p (J ;Lp(Γs; C

n)) ∩ Lp(J ;W
1−1/p
p (Γs; C

n)),

hs2 ∈ W
1−1/2p
p (J ;Lp(Γ0)) ∩ Lp(J ;W

2−1/p
p (Γ0));

hs1|t=0 = Paklij (0, x)νkDlv0j |Γs
in case p > 3.

(dn) hn ∈ W
1/2−1/2p
p (J ;Lp(Γn; Cn)) ∩ Lp(J ;W

1−1/p
p (Γn; Cn));

Phn|t=0 = Paklij (0, x)νkDlv0j |Γs in case p > 3.

Note that in case G is bounded and Γn = ∅, the natural compatibility condition∫
G

gdx−
∫

Γ

hνdσ = 0

is included in (b2).
Based on the results for problem (4.1) on G = R

n and G = R
n
+, by means of

localization and straightening of the boundary of G, we can prove also the sufficiency
of these conditions, which yields the following result.

Theorem 4.1. Let G and A(t, x,D) be as above, and let 1 < p < ∞, p �=
3/2, 3. Then (4.1) has maximal Lp-regularity in the following sense. There is a
unique solution (v, q) of (4.1) in the class

v ∈ H1
p (J ;Lp(G; Cn)) ∩ Lp(J ;H2

p (G; Cn)), q ∈ Lp(J ; Ḣ1
p (G)),

such that q ∈ W
1/2−1/2p
p (J ;Lp(Γn)) ∩ Lp(J ;W

1−1/p
p (Γn)) if and only if the data

f, g, v0, hj satisfy conditions (D). The solution (v, q) depends continuously on the data
in the corresponding spaces. For f ≡ g ≡ h ≡ 0 and aklij independent of t the solutions
u generate a semiflow in

Xpc = {v ∈ W 2−2/p
p (G; Cn) : div v = 0, v|Γ0

= (v|ν)|Γs = PaklijνkDlv|Γs∪Γn = 0},

the natural phase space for (4.1) in the Lp-setting.
The proof of this result is given in section 7.
It is sometimes convenient to reduce the data to v0 = g = hν = 0. For this we

have the following result.
Proposition 4.2. Let v0, g, hν satisfying the relevant conditions in (D) be given.

Then there is a function v∗ ∈ H1
p (J ;Lp(G; Cn)) ∩ Lp(J ;H2

p (G; Cn)) such that

div v∗ = g, v∗|t=0 = v0, (v∗|ν)|Γ0∪Γs = hν ,

and v∗ depends continuously on (v0, g, hν) in the corresponding spaces.
Proof. Since ∇ : Ḣ1

p′(G)/constants → Lp′(G; Cn) is injective and has closed

range, its dual ∇∗ := −div : Lp(G; Cn) → Ḣ−1
p (G) is surjective. Choose a bounded

right inverse R of ∇∗, which exists since the kernel of ∇∗ is complemented in Lp(G; Cn).
This assertion follows from the boundedness of the corresponding Helmholtz projec-
tion; cf. [22]. Then Rg ∈ H1

p (J ;Lp(G; Cn)). Next, solve the parabolic problem

(4.2)

(∂t − Δ)w = ∂tRg −∇g, t ∈ J, x ∈ G,

w|t=0 = v0, x ∈ G,

divw = g, t ∈ J, x ∈ Γ,

Pw = eΔΓt(Pv0|Γ),

where ΔΓ denotes the Laplace–Beltrami operator on Γ. Note that the right-hand side

f = ∂tRg − ∇g belongs to Lp(J × G), v0 ∈ W
2−2/p
p (G; Cn) by assumption; hence
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Pv0|Γ ∈ W
2−3/p
p (Γ; Cn), and so the boundary function h(t) = eΔΓt(Pv0|Γ) belongs to

W
1−1/2p
p (J ;Lp(Γ; Cn)) ∩ Lp(J ;W

2−1/p
p (Γ; Cn)), by parabolic regularity theory, and

the compatibility condition Ph|t=0 = Pv0|Γ is valid. Similarly, taking traces, g|Γ be-

longs to W
1/2−1/2p
p (J ;Lp(Γ; Cn)) ∩ Lp(J ;W

1−1/p
p (Γ; Cn)) by assumption and fulfills

the compatibility condition div v0 = g|t=0. Moreover, the Lopatinskii–Shapiro condi-
tion is easily seen to be valid (cf. the appendix), and hence problem (4.2) admits a
unique solution w in the maximal class of Lp, by Theorem 10.1. Now set φ = divw−g.
Then we see that φ solves the problem

(4.3)

(∂t − Δ)φ = 0, t ∈ J, x ∈ G,

φ|t=0 = 0, x ∈ G,

φ = 0, t ∈ J, x ∈ Γ;

i.e., φ = 0 by uniqueness of the parabolic problems. Thus the first two conditions in
the proposition are valid for w. To obtain v∗ we have to modify w in the following
way. Solve the problem

(4.4)

Δψ = 0, t ∈ J, x ∈ G,

∂νψ = hν − (w|ν), t ∈ J, x ∈ Γ0 ∪ Γs,

ψ = 0, t ∈ J, x ∈ Γn,

and set v∗ = w + ∇ψ. This function has the desired properties since for the

boundary datum we have hν ∈ H1
p (J ; Ẇ

−1/p
p (Γ0 ∪ Γs)) ∩ Lp(J ;W

2−1/p
p (Γ0 ∪ Γs)),

by assumption (b2). Here we once more used Γ ∈ C3−. Note that the time trace of
hν−(w|ν) at t = 0 is zero by construction, and hence v∗ has the right initial condition
v∗(0) = v0.

5. The generalized Stokes problem on R
n. Let J = [0, T ] be a compact

interval, and consider the problem

(5.1)

∂tu + A(D)u + ∇π = f(t, x), t ∈ J, x ∈ R
n,

div u = g(t, x), t ∈ J, x ∈ R
n,

u(0, x) = u0(x), x ∈ R
n.

Here A(D) =
∑n

k,l=1 AklDkDl denotes a differential operator with constant coefficient

matrices Akl acting on C
n-valued functions. We assume that A(D) is strongly elliptic.

This implies (cf. the appendix) that the problem

(5.2)
∂tu + A(D)u = f(t, x), t ∈ J, x ∈ R

n,

u(0, x) = u0(x), x ∈ R
n,

has maximal Lp-regularity, 1 < p < ∞. In particular, for each f ∈ Lp(J × R
n; Cn),

u0 ∈ W
2−2/p
p (Rn; Cn) there is a unique solution u of (5.2) in the class

u ∈ H1
p (J ;Lp(R

n; Cn)) ∩ Lp(J ;H2
p (Rn; Cn)) ↪→ C(J ;W 2−2/p

p (Rn; Cn)).

We want to show that a similar assertion is valid for the generalized Stokes problem
(5.1). More precisely, with the definition of

Ḣ−1
p (Rn) = (Ḣ1

p′(Rn)/constants)∗ = {f ∈ S ′(Rn) : F−1|ξ|−1Ff ∈ Lp(R
n)},
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where F denotes Fourier transform, we have the following result.
Theorem 5.1. Let 1 < p < ∞, and assume that A(D) =

∑n
k,l=1 AklDkDl is

strongly elliptic. Then (5.1) has maximal Lp-regularity in the following sense. There
is a unique solution (u, π) of (5.1) in the class

u ∈ H1
p (J ;Lp(R

n; Cn)) ∩ Lp(J ;H2
p (Rn; Cn)), π ∈ Lp(J ; Ḣ1

p (Rn)),

if and only if the data f, g, u0 satisfy the following conditions:
(a) f ∈ Lp(J × R

n; Cn);

(b) g ∈ H1
p (J ; Ḣ−1

p (Rn)) ∩ Lp(J ;H1
p (Rn));

(c) u0 ∈ W
2−2/p
p (Rn; Cn) and div u0 = g|t=0.

The solution (u, π) depends continuously on the data in the corresponding spaces. For
f ≡ g ≡ 0 the solutions generate a semiflow in

Xp = {v ∈ W 2−2/p
p (Rn; Cn) : div u = 0},

the natural phase space for (5.1) in the Lp-setting.
Proof. To prove sufficiency of the conditions, note that by the open mapping

theorem, the continuity assertion follows as soon as the solvability assertion is proved.
So let data f, g, u0 be given, which are subject to conditions (a), (b), and (c). We
first solve the parabolic problem

∂tv + A(D)v = f, v(0) = u0,

with maximal Lp-regularity, applying the main result of Denk, Hieber, and Prüss [4,
section 5]; cf. section 10, Theorem 10.1. Then w = u − v must be a solution of the
system

∂tw + A(D)w + ∇π = 0, div w = g0, w(0) = 0,

where g0 = g − div v has the same regularity as g and trace 0 at time t = 0.
Suppose that the pressure π is already known. Taking Fourier transform in the

space variables and Laplace transform in the time variable, we obtain the system

(5.3)
λŵ + A(ξ)ŵ = −iξπ̂,

i(ŵ|ξ) = ĝ0.

Solving for ŵ, this yields

ŵ = −i(λ + A(ξ))−1ξπ̂,

and inserting this relation into the second equation of (5.3), we obtain

ĝ0 = ((λ + A(ξ))−1ξ|ξ)π̂.

Set η = (λ + A(ξ))−1ξ; then η �= 0 unless ξ = 0, and

α(λ, ξ) := ((λ + A(ξ))−1ξ|ξ) = λ|η|2 + (η|A(ξ)η).

Hence strong ellipticity of A(D) implies α(λ, ξ) �= 0 for all ξ ∈ R
n, λ ∈ Σθ with

|ξ|+ |λ| �= 0, provided that θ > π/2 is sufficiently close to π/2. We may now solve for
π̂ to the result

π̂ =
ĝ0

α(λ, ξ)
,
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and for ŵ we get

ŵ = −i
(λ + A(ξ))−1ξ

α(λ, ξ)
ĝ0.

Choose

v0 ∈ 0H
1
p(J ;Lp(R

n; Cn)) ∩ Lp(J ;H2
p (Rn; Cn)), div v0 = g0;

this is possible by assumption (b) on the function g. In fact, setting

g1 = (−Δ)−1/2∂tg0 + (−Δ)1/2g0,

we obtain g0 = −div R(∂t −Δ)−1g1, where R denotes the Riesz transform defined by
the symbol iξ/|ξ|; i.e., we may choose v0 = −R(∂t − Δ)−1g1. Therefore

(∂t − Δ)w = T1(∂t − Δ)v0, ∇π = T2(∂t − Δ)v0,

where Tj are defined by means of their Fourier–Laplace symbols

T̂1(λ, ξ) =
(λ + A(ξ))−1ξ ⊗ ξ

α(λ, ξ)
, T̂2(λ, ξ) = − ξ ⊗ ξ

(λ + |ξ|2)α(λ, ξ)
.

Thus, to prove the theorem, it is enough to show that the operators Tj are bounded
in Lp.

This in turn will follow by an application of the Kalton–Weis theorem and R-
boundedness of families of Fourier multipliers. By the scaling μ = λ/|ξ|2, ζ = ξ/|ξ|,
we may rewrite the symbols as

T̂1(λ, ξ) =
(μ + A(ζ))−1ζ ⊗ ζ

α(μ, ζ)
, T̂2(λ, ξ) = − ζ ⊗ ζ

(1 + μ)α(μ, ζ)
.

By strong ellipticity, we already know α(μ, ζ) �= 0 for all ζ ∈ R
n, |ζ| = 1, and μ ∈ Σφ,

for some φ > π/2. As |μ| → ∞ we have μα(μ, ζ) → 1, while α(μ, ζ) → α(0, ζ) =
(A(ζ)−1ζ|ζ) �= 0 as μ → 0. Therefore, by compactness, |(1 + μ)α(μ, ζ)| ≥ α0 > 0
for all such ζ and μ, where α0 denotes a constant. This implies boundedness of the
symbols T̂j(μ|ξ|2, ξ), uniformly in ξ and μ. Furthermore, T̂j(μ|ξ|2, ξ) are homogeneous

in ξ of degree 0, and so |ξ||β|Dβ
ξ T̂j(μ|ξ|2, ξ) are also uniformly bounded in ξ and μ, for

each multi-index β ∈ N
n
0 . The classical Mikhlin multiplier theorem then implies

that these symbols are Fourier multipliers in Lp(R
n; Cn) w.r.t. ξ, which yields a

holomorphic uniformly bounded family {Tj(μ)}μ∈Σφ
⊂ B(Lp(R

n;Ej)) for j = 1, 2,
where E1 = C

n, E2 = C. Theorem 3.2 of Girardi and Weis [10] shows that this family
is also R-bounded in Lp(R

n;Ej), and hence in Lp(J ;Lp(R
n;Ej)) as well. Since the

operator L := ∂t(−Δ)−1 admits an H∞-calculus in Lp(J ;Lp(R
n;Ej)) of angle π/2,

the Kalton–Weis theorem [11] implies boundedness of Tj(L) in Lp(J ;Lp(R
n;Ej)).

This completes the proof of Theorem 5.1.
We can easily extend Theorem 5.1 to the case of variable coefficients with small

deviation from constant ones. To see this, let A(t, x,D) = A0(D)+A1(t, x,D), where

sup{|akl1,ij | : k, l, i, j = 1, . . . , n, t ∈ J, x ∈ R
n} ≤ η.

Let S denote the solution operator of the generalized Stokes problem (5.1) from The-
orem 5.1 for A0(D), and T that of the perturbed problem. Then we obtain the
identity

T = S + SBT, where B =

[
−A1(t, x,D) 0

0 0

]
.
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The norm of B as an operator from the maximal regularity space into Lp(J×R
n; Cn)

is bounded by Cη, where C > 0 denotes a constant independent of η. Let |S| stand
for the norm of the solution operator from the data space to the maximal regularity
space. If |S|Cη < 1, then a Neumann series argument shows that T = (I − SB)−1S
in fact exists and is bounded as a map from the data space to the maximal regularity
space as well. Let us record this as the following result.

Corollary 5.2. The assertions of Theorem 5.1 remain valid in the case of
variable coefficients A(t, x,D) = A0(D) + A1(t, x,D), provided that

sup{|akl1,ij(t, x)| : k, l, i, j = 1, . . . , n, t ∈ J, x ∈ R
n} ≤ η,

for some sufficiently small η > 0.
In section 7 we will need a certain decomposition of the solution operator. For

this purpose observe that from the proof of Theorem 5.1 we have the representations

û = [I − (λ + A(ξ))−1ξ ⊗ ξ](λ + A(ξ))−1f̂ − iα−1(λ + A(ξ))−1ξĝ

and

π̂ = −iα−1((λ + A(ξ))−1f̂ |ξ) +
ĝ

α
.

Here we have assumed u0 = 0 for simplicity. Let us have a closer look at the term
1/α(λ, ξ). We may write

1

α(λ, ξ)
= (μ + 1)

1

(μ + 1)((μ + A(ζ))−1ζ|ζ)

= μ + 1 + (μ + 1)

[
1

(μ + 1)((μ + A(ζ))−1ζ|ζ) − 1

]

= μ + 1 +
(μ + 1)[(μ + A(ζ)) − (μ + 1)]((μ + A(ζ))−1ζ|ζ)

(μ + 1)((μ + A(ζ))−1ζ|ζ)

= μ + 1 +
[A(ζ) − 1](μ + 1)((μ + A(ζ))−1ζ|ζ)

(μ + 1)((μ + A(ζ))−1ζ|ζ)

=
λ

|ξ|2 + 1 + M22(λ, ξ),

where we again used the notation μ = λ/|ξ|2 and ζ = ξ/|ξ|. As in the proof of
Theorem 5.1, ξ �→ M22(μ|ξ|2, ξ) is homogeneous of degree 0 and bounded, uniformly
in ξ ∈ R

n and λ ∈ Σφ. The arguments given there apply again to the result that

there is an Lp(J × R
n)-bounded operator S22 with symbol Ŝ22 = M22. In a similar

way we decompose

−iα−1(λ + A(ξ))−1ξ =
−iξ

|ξ|2 + (λ + |ξ|2)−1|ξ|M21(λ, ξ),

where M21 is the symbol of an Lp-bounded operator S21, as well as

−i((λ + A(ξ))−1 · |ξ) = −i(ξ/|ξ|2|·) + (λ + |ξ|2)−1|ξ|M12(λ, ξ),

and M12 is the symbol of an Lp-bounded operator S12. Last but not least, in the
same way we obtain the decomposition

[I − (λ + A(ξ))−1ξ ⊗ ξ](λ + A(ξ))−1 = (λ + |ξ|2)−1 + (λ + |ξ|2)2|ξ|−2M11(λ, ξ),
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with M11 the symbol of an Lp-bounded operator S11. Thus the solution operator S
of the generalized Stokes problem splits as S = S0 + S1, where the symbols of Sj are
given by

(5.4) Ŝ0 =

[
(λ + |ξ|2)−1 −iξ/|ξ|2
−i(ξ/|ξ|2|·) (λ + |ξ|2)/|ξ|2

]

and

(5.5) Ŝ1 =

[
(λ + |ξ|2)−2|ξ|2M11(λ, ξ) (λ + |ξ|2)−1|ξ|M12(λ, ξ)
(λ + |ξ|2)−1|ξ|M21(λ, ξ) M22(λ, ξ)

]
.

It is important that S0 is independent of the coefficients of A(D), and that S1 factors
as

Ŝ1 =

[
1

λ+|ξ|2 0

0 1
|ξ|

] [
M11 M12

M21 M22

][ |ξ|2
λ+|ξ|2 0

0 |ξ|

]
.

Here M = [Mij ] is the symbol of an Lp-bounded operator. It is a remarkable fact
that such a decomposition remains valid in the variable coefficient case of Corollary
5.2. This can be seen as follows. We have the Neumann series for T which reads

T = S +
∑
n≥1

(SB)nS = S0 + S1 +
∑
n≥1

(SB)nS.

By induction we obtain

(SB)n =

[
(S11A1)

n 0
S21A1(S11A1)

n−1 0

]

and

(SB)nS =

[
(S11A1)

nS11 (S11A1)
nS12

S21A1(S11A1)
n−1S11 S21A1(S11A1)

n−1S12

]
.

In symbolic notation, using the factorization of S, this yields for the first entry

(S11A1)
nS11 =

1

λ + |ξ|2

(
1 +

|ξ|2
λ + |ξ|2M11

)
(A1S11)

n−1A
(

1 +
|ξ|2

λ + |ξ|2M11

)
|ξ|2

λ + |ξ|2 .

Similarly, for the second entry we get

(S11A1)
nS12 =

1

λ + |ξ|2

(
1 +

|ξ|2
λ + |ξ|2M11

)
(A1S11)

n−1A1(ζ)

(
−iξ

|ξ| +
|ξ|2

λ + |ξ|2M12

)
|ξ|.

In the same way the third entry becomes

S21(A1S11)
n =

1

|ξ|

(
−iξ

|ξ| +
|ξ|2

λ + |ξ|2M21

)
(A1S11)

n−1A1(ζ)

(
1 +

|ξ|2
λ + |ξ|2M11

)
|ξ|2

λ + |ξ|2 ,

and finally the last entry is

S21A1(S11A1)
n−1S12

=
1

|ξ|

(
−iξ

|ξ| +
|ξ|2

λ + |ξ|2M12

)
(A1S11)

n−1A1

(
−iξ

|ξ| +
|ξ|2

λ + |ξ|2M12

)
|ξ|.

This proves the assertion.
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6. The generalized Stokes problem on R
n
+. In this section we consider the

generalized Stokes problem in R
n
+ = R

n−1 × R+ with any one of the three boundary
conditions mentioned above. Thus we consider the problem

(6.1)

∂tu + A(D)u + ∇π = f(t, x), t ∈ J, x ∈ R
n
+,

div u = g(t, x), t ∈ J, x ∈ R
n
+,

u(0, x) = u0(x), x ∈ R
n
+.

Here, as in section 5, A(D) =
∑n

k,l=1 AklDkDl denotes a strongly elliptic differential
operator with constant coefficients acting on C

n-valued functions. The boundary
conditions are either

(6.2) u(t, x) = h0(t, x), t ∈ J, x ∈ ∂R
n
+,

or

(6.3) un = hsn(t, x),

[
n∑

l=1

AnlDlu

]
k

= hsk(t, x) t ∈ J, x ∈ ∂R
n
+, k = 1, . . . , n− 1,

or

(6.4)
n∑

l=1

AnlDlu + iπen = hn(t, x), t ∈ J, x ∈ ∂R
n
+.

Of course, appropriate compatibility conditions have to be satisfied. Assuming strong
normal ellipticity, we already verified that the parabolic problem without pressure and
divergence condition satisfies the Lopatinskii–Shapiro condition for these boundary
conditions, and hence is well-posed and has maximal Lp-regularity for 1 < p < ∞. The
main result of this section states that these properties carry over to the generalized
Stokes problem. But before we state the theorem let us specify conditions (D) for the
half-space case.

Using the notation introduced in section 4, we define 0Ḣ
−1

p (Rn
+) as the dual of

Ḣ1
p,∂R

n
+
(Rn

+), and Ḣ−1
p (Rn

+) as the dual of Ḣ1
p,∅(R

n
+)/constants. Observe that the

space 0Ḣ
−1

p (Rn
+) consists solely of distributions in R

n
+, but Ḣ−1

p (Rn
+) does not have

this property. It should also be observed that (0, h) ∈ Ḣ−1
p (Rn

+) is equivalent to

h ∈ Ẇ
−1/p
p (Rn−1).

The conditions for right-hand side f and for the initial value u0 do not change;
they become the following:

(a) f ∈ Lp(J × R
n
+; Cn), u0 ∈ W

2−2/p
p (Rn

+; Cn).
For g, part of the conditions are

(b) g ∈ H1
p (J ; 0Ḣ

−1

p (Rn
+)) ∩ Lp(J ;H1

p (Rn
+)), div u0 = g|t=0.

The main part of the Dirichlet boundary condition is the same as well.
(d0) for Dirichlet boundary conditions:

h0 ∈ W
1−1/2p
p (J ;Lp(∂R

n
+; Cn)) ∩ Lp(J ;W

2−1/p
p (∂R

n
+; Cn)) and

for p > 3/2 in addition h(0, x) = u0(x);
Similarly, we have

(ds) for slip boundary conditions:

hsn ∈ W
1−1/2p
p (J ;Lp(∂R

n
+; Cn)) ∩ Lp(J ;W

2−1/p
p (∂R

n
+; Cn));

hsk ∈ W
1/2−1/2p
p (J ;Lp(∂R

n
+)) ∩ Lp(J ;W

1−1/p
p (∂R

n
+)) and, if p > 3,
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[
∑n

l=1 AnlDlu0]k = hsk(0, x) for x ∈ ∂R
n
+, k = 1, . . . , n− 1;

and
(dn) for Neumann boundary conditions:

hn ∈ W
1/2−1/2p
p (J ;Lp(∂R

n
+; Cn)) ∩ Lp(J ;W

1−1/p
p (∂R

n
+; Cn)) and, if p > 3,

[hn(0, x)]k = [
∑n

l=1 AnlDlu0(x)]k for x ∈ ∂R
n
+, k = 1, . . . , n− 1.

In case of Neumann conditions these are all requirements. In case of slip or Dirichlet
conditions we have the additional property

(e) (g, hjn) ∈ H1
p (J ; Ḣ−1

p (Rn
+)) and hjn(0, x) = u0n(x, 0), x ∈ R

n−1, j = 0, s.
After these preliminaries we can state the main result of this section.

Theorem 6.1. Let 1 < p < ∞, and assume that A(D) =
∑n

k,l=1 AklDkDl is
strongly normally elliptic. Then (6.1) with boundary conditions (6.2), (6.3), or (6.4)
has maximal Lp-regularity in the following sense. There is a unique solution (u, π) of
(6.1) in the class

u ∈ H1
p (J ;Lp(R

n
+; Cn)) ∩ Lp(J ;H2

p (Rn
+; Cn)), π ∈ Lp(J ; Ḣ1

p (Rn
+)),

satisfying the corresponding boundary condition with π ∈ W
1/2−1/2p
p (J ;Lp(∂R

n
+)) in

case of boundary condition (6.4), if and only if the data f, g, u0, h satisfy the conditions
(D). The solution u depends continuously on the data in the corresponding spaces.

Proof. According to the discussion above, we need to show only the sufficiency
part. Let data f , g, u0 and boundary data h with the corresponding regularity be
given. Without loss of generality we may assume f ≡ g ≡ u0 ≡ 0 and trace 0 of h
at t = 0 in case it exists. This can be seen as follows. First we solve the parabolic
initial-boundary value problem without pressure and divergence condition; this gives
a function u1 in the right regularity class. Then u2 := u− u1, and π should solve the
full problem with f ≡ h ≡ u0 ≡ 0 and g replaced by g1 := g − div u1, which belongs
to the same regularity class but has trace 0 at t = 0. Extend g1 evenly in xn to all
of J × R

n, and solve the full-space generalized Stokes problem (5.1) with f = u0 = 0
to obtain a pair (u3, π3) in the right regularity class. Then the pair (u4, π4) defined
by u4 := u2 − u3, π4 := π − π3 should solve (6.1) with the boundary condition in
question, where f ≡ g ≡ u0 ≡ 0 and h = −B(D)(u3, π3); here B(D) denotes the
boundary operator under consideration. Note that the new boundary data h belongs
to the right regularity class and has trace 0 at t = 0 whenever it exists.

So we have to solve the homogeneous problem (6.1) with one of the inhomogeneous
boundary conditions. It is convenient to split the spatial variables as x = (x′, y), where
x′ ∈ R

n−1 and y > 0; recall that ν = −en. Similarly we decompose u = (v, w), with
v ∈ R

n−1 the tangential and w ∈ R the normal velocity. Taking Fourier transform
in the tangential space directions, Laplace transform in t, we obtain the parameter-
dependent ode-problem

(6.5)

(λ + A11(ξ + enDy))v̂ + A12(ξ + enDy)ŵ + iξπ̂ = 0, y > 0,

A21(ξ + enDy)v̂ + (λ + A22(ξ + enDy))ŵ + ∂yπ̂ = 0, y > 0,

iξTv̂ + iDyŵ = 0, y > 0,

B11(ξ + enDy)v(0) + B12(ξ + enDy)w(0) = ĥv,

B21(ξ + enDy)v(0) + B22(ξ + enDy)w(0) + B23π(0) = ĥw,

where B is defined by one of the boundary conditions (6.2), (6.3), or (6.4). The
parameters ξ and λ satisfy (ξ, λ) ∈ R

n × Σφ for some φ > π/2 and ξn = 0. Here and
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below we identify ξ ∈ R
n−1 with (ξ, 0) ∈ R

n. Introducing the vector

x = [v̂, ŵ, ∂y v̂, ∂yŵ, π̂]T,

we rewrite this problem as the first order system

(6.6) E∂yx + Ax = 0, y > 0, Bx(0) = ĥ,

where the dependence on (λ, ξ) has been dropped. Here the (2n + 1)-dimensional
square matrix E is defined as

E =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 A0

11 A0
12 0

0 0 A0
21 A0

22 −1
0 1 0 0 0

⎤
⎥⎥⎥⎥⎦

and A by

A =

⎡
⎢⎢⎢⎢⎣

0 0 −1 0 0
0 0 0 −1 0

−(λ + A2
11) −A2

12 A1
11 A1

12 −iξ
−A2

21 −(λ + A2
22) A1

21 A1
22 0

iξT 0 0 0 0

⎤
⎥⎥⎥⎥⎦ .

Here we have used the abbreviations

A2 = (Aklξkξl), A1 = i(Aklνkξl + Aklνlξk), A0 = (Aklνkνl);

remember the summation convention. Observe that Ak are homogeneous in ξ of order
k; in particular, A0 is constant and invertible by ellipticity. Also note that E depends
neither on λ nor on ξ. The boundary matrices B are

B =

[
1 0 0 0 0
0 1 0 0 0

]

in the case of Dirichlet conditions,

B =

[
B1

11 B1
12 B0

11 B0
12 0

0 1 0 0 0

]

for slip conditions, and

B =

[
B1

11 B1
12 B0

11 B0
12 0

B1
21 B1

22 B0
21 B0

22 −1

]

in the case of Neumann conditions. Here Bk are homogeneous of order k in ξ, and
B0 = A0. Recall that the Lopatinskii–Shapiro condition means that system (6.6)

admits at most one solution x ∈ C0(R+; C2n+1), for each ĥ ∈ C
n and ξ ∈ R

n−1,
Reλ ≥ 0, ξ �= 0.

It is our purpose to derive a representation formula of the function x in terms of
the given data ĥ, which is accessible to inversion of the Fourier and Laplace transform.
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(i) Assume x ∈ C0(R+; C2n+1) to be a solution of (6.6). Taking Laplace transform
L in y, this yields

(zE + A)Lx(z) = Ex0, Re z > 0, Bx0 = ĥ,

where x0 = x(0) denotes the initial value of x. To obtain a representation of x we have
to study the operator pencil zE +A. To this end note that E is not invertible but its
kernel N(E) is one-dimensional, and N(E2) = N(E); hence N(E) ⊕ R(E) = C

2n+1.
Therefore, (6.6) is a differential-algebraic system of index ≥ 1. This implies that the
characteristic polynomial p(z) = det (zE + A) has at most order 2n. Let us show
that it is precisely of order 2n, i.e., that the index is 1. This can be seen as follows.
Expand det (zE +A) first w.r.t. the last column and the last row and then w.r.t. the
second row. This yields up to a sign

p(z) = z2det

[
z −1

−(λ + A2
11) zA0

11 + A1
11

]
+ q(z),

where q(z) is of order less than 2n. Asymptotically this yields for large z

p(z) ∼ z2det

[
z 0
0 zA0

11

]
= z2ndetA0

11,

and detA0
11 �= 0 by strong ellipticity. Therefore p(z) is of order 2n. Ellipticity shows

also that p(z) has no zeros on the imaginary axis for ξ �= 0. Now consider the case
ξ = 0. Then we see by the same procedure that p(z) is in fact a function of z2; i.e.,
if z0 is a zero of p, then −z0 is one as well. Unfortunately, z = 0 is a solution in case
ξ = 0; this is the degeneracy of the Stokes problem. We have to look at this zero
more closely.

The eigenvalue problem for these small zeros z(ξ) for small ξ (or large λ) becomes

(A(z, ξ) − λ)

[
x1

x2

]
=

[
iξ
z

]
, (iξ|x1) + zx2 = 0,

where

A(z, ξ) = z2A0 + zA1(ξ) −A2(ξ).

Since by λ �= 0 we have invertibility of A(z, ξ) − λ, this implies the condition([
iξ
z

]
|(A(z, ξ) − λ)−1

[
iξ
z

])
= 0

for the small eigenvalues. Writing (A(z, ξ)−λ)−1 as a Neumann series, this condition
becomes

z2 − |ξ|2 + O((|ξ| + |z|)4) = 0,

which shows that z = ±|ξ| + O(|ξ|2) near ξ = 0. Therefore the double zero z(0) = 0
for ξ = 0 splits into two simple real zeros, which behave like z±1 (ξ) ∼ ±|ξ| near ξ = 0.

Now varying ξ, we may conclude that p(z) has exactly n roots with positive real
parts, counting with multiplicity, for each ξ ∈ R

n−1, Reλ > 0, ξ �= 0, since none of
them can cross the imaginary axis by ellipticity.
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We may now write

Lx(z) = (zE + A)−1Ex0, Bx0 = ĥ,

for the Laplace transform of x. The initial value x0 thus must be chosen in such a
way that Lx(z) has no poles in the right half-plane, and Bx0 = ĥ holds.

Define the projection P+ by means of

P+ =
1

2πi

∫
Γ+

(zE + A)−1Edz,

where Γ+ denotes a closed simple contour in the right half-plane surrounding the poles
of (zE + A)−1, i.e., the zeros of p(z) in the right half-plane. Let zk, k = 1, . . . ,m+

denote the zeros of p(z) in the right and for k = −m−, . . . ,−1 in the left half-plane.
Set

Pk =
1

2πi

∫
|z−zk|=r

(zE + A)−1Edz.

These operators are mutually disjoint projections, and by Cauchy’s theorem we have

P+ =

m+∑
k=1

Pk.

It can be seen, e.g., by Cramer’s rule, that (zE +A)−1 is a rational function which is
bounded at ∞ and hence admits a limit as |z| → ∞. Therefore

z(zE + A)−1E = I − (zE + A)−1A

is bounded at ∞ as well and admits the limit

Q0 = lim
z→∞

z(zE + A)−1E,

which is a projection, too. We set P0 = I − Q0. Obviously, Q0x = 0 for each
x ∈ N(E), and, on the other hand, we have

EQ0 = lim
z→∞

zE(zE + A)−1E = lim
z→∞

(E −A(zE + A)−1E) = E.

This implies that P0 projects onto the kernel of E. Moreover,

∑
k

Pk = P0 + lim
R→∞

1

2πi

∫
|z|=R

(zE + A)−1Edz = P0 + Q0 = I,

which also shows that P0Pk = PkP0 = 0 for all k �= 0. Linear algebra implies further
that the dimension of the range of Pk is mk, and hence P+ has dimension n. Since

x0 = x(0) = lim
t→0+

x(t) = lim
R�z→∞

zLx(z) = lim
z→∞

z(zE + A)−1Ex0 = Q0x
0,

we must have P0x
0 = 0. It is not difficult to compute the projection P0; it is given by

P0x =
x4 + (iξ|x1)

α0

⎡
⎣ 0

A0−1[ 0
−1

]
1

⎤
⎦ ,
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where

α0 :=

([
0
1

]
|A0−1

[
0
1

])

is nonzero by ellipticity. Observe that

P0x
0 = 0 ⇔ x0

4 + (iξ|x0
1) = 0.

For later purposes we also compute the projection P±
1 corresponding to the small

eigenvalue z±1 (ξ) ∼ ±|ξ| for small ξ. The analysis of z±1 given above shows that an
eigenvector is given by

e±1 =

[
(A(z±1 ) − λ)−1

[
iξ
z±1

]
, z±1 (A(z±1 ) − λ)−1

[
iξ
z±1

]
, 1

]T

∼
[

1

λ

[
−iξ
∓|ξ|

]
, 0, 1

]T

.

For a dual eigenvector we get similarly

e∗1
± =

[
(z±1 A0 + A1)T(A(z±1 )T − λ)−1

[
iξ
z±1

]
, (A(z±1 )T − λ)−1

[
iξ
z±1

]
,−1

]T

,

and hence

e∗1
± ∼

[
0,

1

λ

[
−iξ
∓|ξ|

]
,−1

]T

.

The projections are then P±
1 x =

(e∗1
±|Ex)

(e∗1
±|Ee±1 )

e±1 . Note that (e∗1
±|Ee±1 ) ∼ ±2|ξ|/λ for

small ξ, and the asymptotics of z±1 , e±1 , and e∗1
± do not depend on the coefficients

aklij . Note also that

P+
1 x0 = 0 ⇔ (e∗1

+|Ex0) = 0,

which asymptotically yields the condition

x0
5 −

λ

|ξ|x
0
2 ∼

([
iξ/|ξ|

1

]
|A0

[
x0

3

x0
4

])
.

(ii) To determine the initial value x0 we therefore have to solve the linear system

(6.7) Bx0 = ĥ, P+x0 = 0, P0x
0 = 0.

The Lopatinskii–Shapiro condition is equivalent to the uniqueness of the solution x0

of this system, for ξ �= 0. To see that it is solvable for each ĥ ∈ C
n, observe that

the kernel N of P+ + P0 has dimension n. B : N → C
n is injective, and hence

the rank theorem implies that it is also surjective. Thus there is a linear operator
M = M(λ, ξ) such that x0 = M(λ, ξ)ĥ gives the unique solution of (6.7). We have
the explicit representation

x0 = (B∗B + (P+)∗P+ + P ∗
0 P0)

−1B∗ĥ,

which shows that M(λ, ξ) is holomorphic since B and P+ have this property. By
homogeneity, λ can even be taken from a sector Σφ for some φ > π/2, but ξ �= 0 in
general.
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Therefore, we have to look more closely at ξ = 0. Note that the projections P±
1

are not holomorphic at ξ = 0. However, P 0
1 := P+

1 + P−
1 does have this property. A

simple calculation shows that for ξ = 0 we have

P 0
1 x = x2

⎡
⎢⎢⎢⎢⎣

0
1
0
0
0

⎤
⎥⎥⎥⎥⎦ + (x5 −A0

21x3 −A0
22x4)

⎡
⎢⎢⎢⎢⎣

0
0
0
0
1

⎤
⎥⎥⎥⎥⎦ .

Therefore it is convenient to decompose x0 = y0 + αe−1 , with α ∈ C and P−
1 y0 = 0.

Setting P = P0 + P+ + P−
1 , we therefore have to solve the system

By0 + αBe−1 = ĥ, Py0 = 0.

From Py0 = 0 we obtain y0
2 = 0, y0

4 = 0, and y0
5 = A0

21y
0
3 . Solving the system

(zE + A)x = Ex0, we obtain with e−1 = [0, 0, 0, 0, 1]T and x0
2 = y0

2 = x0
4 = y0

4 = 0 the
relations x2 = x4 = 0 and

(z2A0
11 − λ)x1 = A0

11(x
0
3 + zx0

1), x3 = zx1 − x0
1, x5 = A0

21x3 +
α

z
,

since x0
5 − A0

21x
0
3 = α + y0

5 − A0
21y

0
3 = α. By strong ellipticity, A0

11 is invertible and
has spectrum in the open right half-plane, and hence we may compute further

x1(z) =
1

2
(z +

√
λ(A0

11)
−1/2)−1

(
y0
1 + (A0

11)
1/2 y0

3√
λ

)

+
1

2
(z −

√
λ(A0

11)
−1/2)−1

(
y0
1 − (A0

11)
1/2 y0

3√
λ

)
.

Now, x1(z) must be holomorphic in the right half-plane, which means that necessarily
we have y0

3 = −
√
λ(A0

11)
−1/2y0

1 . The boundary condition yields in the Dirichlet case

x0
1 = y0

1 = ĥ1, and in the slip or Neumann case x0
3 = y0

3 = (A0
11)

−1ĥ3. Note that in

the Neumann case, α = −ĥ4 is uniquely determined, in contrast to the Dirichlet or
slip case, where α is not unique. In fact, the function α(λ, ξ) is discontinuous at ξ = 0
for the latter, but holomorphic in the Neumann case.

Now, for ξ �= 0 small, we may parametrize the kernel of P by a holomorphic map

y �→ R(λ, ξ)y := [y, 0,−
√
λ(A0

11)
−1/2y, 0,−A0

21

√
λ(A0

11)
−1/2y]T + R1(λ, ξ)y,

where R1 = O(|ξ|) near ξ = 0, with y ∈ C
n−1. Then we have to solve the equation

BRy + αBe−1 = ĥ. For the pure Neumann case it then follows that y and α are
uniquely determined and holomorphic near ξ = 0; hence M(λ, ξ) is holomorphic also
at ξ = 0. However, in the other cases things are more involved. We begin with the
Dirichlet case. Then the system becomes

y − iαξ

λ
= ĥ1 + O(|ξ|)y + O(|ξ|2)α, α|ξ|

λ
= ĥ2 + O(|ξ|)y + O(|ξ|2)α,

and hence

α ∼ λ

|ξ| ĥ2, y ∼ ĥ1 +
iξ

|ξ| ĥ2.
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In the case of slip conditions we have similarly

−
√
λA0

11
1/2

y − αA0
11

iξ√
λ

= ĥ3 + O(|ξ|)y + O(|ξ|2)α, α|ξ|
λ

= ĥ2 + O(|ξ|)y + O(|ξ|2)α,

and so

α ∼ λ

|ξ| ĥ2, y ∼ −A0
11

1/2A
0
11

−1
ĥ3 + iξ

|ξ| ĥ2
√
λ

.

Thus there are holomorphic functions M0(λ, ξ) and α0(λ, ξ) such that

M(λ, ξ)ĥ = M0(λ, ξ)ĥ +

[
λ

|ξ| ĥ2 + (α0(λ, ξ)|ĥ)

]
e−1 ,

where ĥ2 denotes the normal component of u at the boundary ∂R
n
+.

(iii) We may now write the following representation of the solution x(y) = x(y, λ, ξ)
of (6.6):

(6.8) x(y, λ, ξ) =
1

2πi

∫
Γ−

ezy(zE + A(λ, ξ))−1EM(λ, ξ)ĥ(λ, ξ)dz,

where Γ− denotes a closed simple contour in the open left half-plane surrounding
the zeros of p(z) = p(z, λ, ξ) in the left half-plane. Employing residue calculus, this
representation can be rewritten as

x(y, λ, ξ) =
∑

Rezk<0

Resz=zk(λ,ξ)[e
zy(zE + A(λ, ξ))−1E]M(λ, ξ)ĥ(λ, ξ);

hence it is an exponential polynomial in y.
Note that the zeros zk of p(z) = p(z, λ, ξ) depend on ξ and λ, and hence the

integration path in (6.8) cannot be chosen independently of ξ and λ. To remove this
defect a scaling argument will help. With ρ =

√
λ + |ξ|2, the standard parabolic

symbol, and σ = λ/ρ2, ζ = ξ/ρ, the pair (σ, ζ) belongs to a compact subset of

C
n \ {0}. Replace π̂(y) by π̂(ρy)/ρ, x(y) by x(ρy), Neumann data ĥk by ĥk/ρ, and

leave Dirichlet data unchanged. Then homogeneity of A and B yield the modified
representation formula

(6.9) x(y, λ, ξ) =
1

2πi

∫
Γ−

eρzy(zE + A(σ, ζ))−1EM(σ, ζ)ĥ(λ, ξ)dz.

Since the poles of (zE + A(σ, ζ))−1 stay in a compact set in the left half-plane we
may now choose the contour Γ− independently of (σ, ζ). This argument parallels the
scaling employed in section 6 of Denk, Hieber, and Prüss [4] for the parabolic case.

Observe that the scaling of h induces

h ∈ Y := 0W
1−1/2p
p (J ;Lp(R

n−1; Cn)) ∩ Lp(J ;W 2−1/p
p (Rn−1; Cn)),

which is independent of the choice of the boundary conditions. Let L := (∂t −Δx)1/2

with natural domain

D(L) = 0H
1/2
p (J ;Lp(R

n−1; Cn)) ∩ Lp(J ;H1
p (Rn−1; Cn)).
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Then Y = DL(2 − 1/p, p); hence if h ∈ Y , then e−L·h ∈ D(L2); i.e.,

g(·) = L2e−L·h ∈ Lp(J × R
n
+; Cn).

The symbol of L is
√
λ + |ξ|2, which is precisely ρ. By means of the identity

ĥ =

∫ ∞

0

2ρe−2ρȳĥdȳ =
2

ρ

∫ ∞

0

e−ρȳ ĝ(ȳ)dȳ,

we may rewrite the representation of x(y) in the following way:

(6.10) x(y, λ, ξ) = diag

[
1

ρ2
,

1

ρ2
,

1

ρ2
,

1

ρ2
,

1

ρ|ξ|

] ∫ ∞

0

k̂(y, ȳ, λ, ξ)ĝ(ȳ, λ, ξ)dȳ,

where the Fourier–Laplace transform of k is given by

(6.11) k̂(y, ȳ, λ, ξ) =
1

iπ

∫
Γ−

eρ(yz−ȳ)D(ρ, |ξ|)(zE + A(σ, ζ))−1EM(σ, ζ)dz,

where D(ρ, |ξ|) = diag[ρ, ρ, ρ, ρ, |ξ|].
It remains to be shown that the integral operator with operator-valued kernel

K(y, ȳ) is bounded from Lp(J × R
n
+; Cn) to Lp(J × R

n
+; C2n+1), where the symbol of

K(y, ȳ) is k̂(y, ȳ, λ, ξ) from (6.11). This then implies that u belongs to the maximal
regularity space, and the remaining regularity statements concerning the pressure π
follow from the equations.

(iv) However, due to the presence of the small eigenvalues z±1 (ξ) introduced
above, there are problems at ζ = 0. We have to deal with the cases |ζ| ≤ η and
|ζ| > η for some small η > 0 separately. For this purpose we introduce a cut-off
function χ(|ζ|2), where χ belongs to C∞ and is 1 in Bη(0), 0 outside of B2η(0), and

between 0 and 1 elsewhere. Then we may decompose k̂(y, ȳ, λ, ξ) as k̂ = k̂S + k̂R,
where
(6.12)

k̂R(y, ȳ, λ, ξ) =
1

2πi

∫
Γ−

(1 − χ(ζ))D(ρ, |ξ|)eρ(zy−ȳ)(zE + A(σ, ζ))−1EM(σ, ζ)dz.

Let us first deal with k̂R and invert the Fourier transform via Mikhlin’s theorem.
Since Γ− is compact and contained in the open left half-plane, for |ζ| > η, (σ, ζ) runs
through a compact subset of C

n, and

Re ρ ≤ |ρ| ≤ cφRe ρ,

we obtain

|k̂R(y, ȳ, λ, ξ)| ≤ C|ρ|e−c|ρ|(y+ȳ) ≤ C

y + ȳ
, y, ȳ > 0,

where C, c > 0 are independent of y, ȳ, λ, and ξ. This is already sufficient in case
p = 2, by Plancherel’s theorem. For the case of general p ∈ (1,∞), note first that

|ξ|
∣∣∣∣1ρ∂ξkρ

∣∣∣∣ = |ξ|
∣∣∣∣ ξkρ2

∣∣∣∣ ≤ |ξ|2
ρ2

≤ 1,
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and similarly we have by induction |ξ||α||Dα
ξ ρ| ≤ Mα, for each multi-index α ∈ N

n−1
0 .

Next,

|ξ||∂ξkζj | = |ξ|
∣∣∣∣δkjρ − ζj∂ξkρ

ρ2

∣∣∣∣ ≤ M1,

and similarly for higher derivatives, by induction. The relation σ = 1− |ξ|2/ρ2 shows
that also |ξ||α||Dα

ξ σ| is uniformly bounded for each α. Next

|ξ||∂ξkeρ(yz−ȳ)| ≤ |ξ|
∣∣∣∣∂ξkρρ2

∣∣∣∣ |ρ2(yz − ȳ)eρ(yz−ȳ)| ≤ C|ρ|e−c|ρ|(y+ȳ) ≤ C

y + ȳ
,

and similarly by induction also for all higher derivatives. Therefore we may conclude
that

|ξ||α||Dα
ξ k̂R(y, ȳ, λ, ξ)| ≤ Mα

y + ȳ
, y, ȳ > 0,

for each multi-index α, where Mα is independent of y, ȳ, λ, and ξ. Mikhlin’s the-
orem implies that there is a family of operators kR(y, ȳ, λ) from Lp(R

n−1; Cn) to
Lp(R

n−1; C2n+1) with norms bounded by

||kR(y, ȳ, λ)|| ≤ c

y + ȳ
, y, ȳ > 0, λ ∈ Σφ.

Because of uniformity of the “Mikhlin bounds,” Theorem 3.2 of Girardi and Weis [10]
implies that the family {(y + ȳ)k(y, ȳ, λ) : y, ȳ > 0, λ ∈ Σφ} is also R-bounded in
B(Lp(J × R

n; C(2n+1)×n)).

(v) Now we deal with the other part of k̂. Since we have enough information about

the small eigenvalue z1(ξ) we may use residue calculus to decompose k̂S = k̂S0 + k̂S1,
where

k̂S1(y, ȳ, λ, ξ) =
1

iπ

∫
Γ−

χ(ζ)eρ(yz−ȳ)D(ρ, |ξ|)(zE + A(σ, ζ))−1E(I − P−
1 )M(σ, ζ)dz,

with a fixed contour Γ− contained in the open left half-plane. The part k̂S1 can then
be treated as above.

The essential part is k̂S0, which is given by

k̂S0(y, ȳ, λ, ξ) = χ(ζ)eρ(z
−
1 (σ,ζ)y−ȳ)D(ρ, |ξ|)P−

1 (σ, ζ)M(σ, ζ).

Using the decomposition x0 = y0 + αe−1 as above, this yields

k̂S0(y, ȳ, λ, ξ) = χ(ζ)|ξ|eρ(z
−
1 (σ,ζ)y−ȳ)D(ρ/|ξ|, 1)e−1 (λ, ξ) ⊗ α(λ, ξ).

In the Neumann case α is holomorphic, and

D(ρ/|ξ|, 1)e−1 (λ, ξ) =

[
0, 0,−iξT ρ

λ
,
−|ξ|ρ
λ

, 1

]T

is bounded and satisfies the Mikhlin condition. Since z−1 ∼ −|ξ| we obtain as above
an estimate of the form

|ξ||α||Dα
ξ k̂S0(y, ȳ, λ, ξ)| ≤

Mα

y + ȳ
,
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where Mα is independent of y, ȳ, ξ and λ. Therefore we may argue as above to obtain

||kS0(y, ȳ, λ)|| ≤ c

y + ȳ
, y, ȳ > 0, λ ∈ Σφ.

The argument is more involved in the case of Dirichlet or slip conditions; it is
here where the extra time regularity of the normal velocity h2 comes in. As shown
above, α decomposes as

α(λ, ξ) = α0(λ, ξ) +
λ

|ξ|

[
0
1

]
,

where α0(λ, ξ) is holomorphic. Since the term containing α0 can be treated as before,
we concentrate on the extra term. This yields the kernel kS00, defined by

k̂S00(y, ȳ, λ, ξ) = χ(ζ)|ξ|eρ(z
−
1 (σ,ζ)y−ȳ)D(ρ/|ξ|, 1)e−1 (λ, ξ)

λ

|ξ|

[
0
1

]
.

Since, by assumption, ĥ2 is the Fourier–Laplace transform of a function of the class

0H
1
p(J ; Ẇ

−1/p
p (Rn−1)), we see that λĥ2/|ξ| is the Fourier–Laplace transform of a

function in Lp(J ; Ẇ
1−1/p
p (Rn−1)). Thus we obtain g ∈ Lp(J × R

n
+) such that

ĝ(ȳ, λ, ξ) = e−|ξ|ȳĥ2(λ, ξ)
λ

|ξ| .

Writing

λ

|ξ| ĥ2 = 2

∫ ∞

0

|ξ|e−2|ξ|ȳ λ

|ξ| ĥ2dȳ = 2

∫ ∞

0

e−|ξ|ȳg(ȳ)dȳ,

we have

|ξ|eρz
−
1 yD(ρ/|ξ|, 1)e−1

λ

|ξ| ĥ2 =

∫ ∞

0

|ξ|eρz
−
1 y−|ξ|ȳD(ρ/|ξ|, 1)e−1 ĝ(ȳ, λ, ξ)dȳ,

and the kernel of this representation can be treated as before.
(vi) Summarizing, we have obtained a family

k(y, ȳ, λ) ⊂ B(Lp(J × R
n−1; C(2n+1)×n))

such that the family {(y + ȳ)k(y, ȳ, λ) : y, ȳ > 0, λ ∈ Σφ} is also R-bounded in

B(Lp(J × R
n−1; C(2n+1)×n)). In addition, k̂ is holomorphic in λ ∈ Σφ, and so the

operator family {k(y, ȳ, λ)}λ∈Σφ
also has this property; i.e.,

k(y, ȳ, ·) ∈ H∞(Σφ;B(Lp(J × R
n−1; C(2n+1)×n))),

with H∞-norm less than c/(y + ȳ).
The operator ∂t in Lp(J ;X) with natural domain 0H

1
p(J ;X) admits a bounded

H∞-calculus with H∞-angle π/2, where X = Lp(R
n−1; C(2n+1)×n). Therefore, by the

Kalton–Weis theorem, K(y, ȳ) := kR(y, ȳ, ∂t) is bounded in Lp(J ;X) with bound

|K(y, ȳ)|B(Lp(J;X)) ≤
M

y + ȳ
, y, ȳ > 0.
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This shows that the integral operator in Lp(R+;Lp(J ;X)) with operator-valued kernel
K(y, ȳ) is dominated pointwise by the kernel κ(y, ȳ) = 1

y+ȳ of the one-sided Hilbert

transform, which is well known to be bounded in Lp(R+;Z), for any Banach space Z,
provided 1 < p < ∞.

This completes the proof of Theorem 6.1.
We can easily extend Theorem 6.1 to the case of variable coefficients with small

deviation from constant ones. To see this, let A(t, x,D) = A0(D)+A1(t, x,D), where

sup{|akl1,ij | : k, l, i, j = 1, . . . , n, t ∈ J, x ∈ R
n} ≤ η

and

akl1,ij ∈ W 1/2−1/2p
s (J ;Lr(Γs ∪ Γn)) ∩ Ls(J ;W 1−1/p

r (Γs ∪ Γn)),

for some r, s ≥ p such that 1
s + n−1

2r < 1 − 1
p . Let S denote the solution operator of

the generalized Stokes problem (4.1) from Theorem 6.1 for A0(D), and T that of the
perturbed problem. Then we obtain the identity

T = S + SBT, where B =

⎡
⎣ −A1(t, x,D) 0

0 0
−B1(t, x,D) 0

⎤
⎦ ,

in the case of slip or Neumann condition. Here B1 has the obvious meaning of the
corresponding boundary operator generated by the perturbation A1. The norm of
the first component of B as an operator from the maximal regularity space Z into
Lp(J ×R

n; Cn) is bounded by Cη, where C > 0 denotes a constant independent of η,
and the norm of its third component in the boundary space X∂ is estimated by

|B3v|X∂
≤ Cη|v|Z + C max

i,j,k,l
|akl1,ij |W 1/2−1/2p

s (Lr)∩Ls(W
1−1/p
r )

|v|αZ |v|1−α
Lp

for some α ∈ (0, 1), due to the Gagliardo–Nirenberg inequality and the restriction on
r and s. Then, as in the previous section, a Neumann series argument shows that
T = (I − SB)−1S in fact exists and is bounded as a map from the data space to the
maximal regularity space as well. Let us state this as follows.

Corollary 6.2. The assertions of Theorem 6.1 remain valid in the case of
variable coefficients A(t, x,D) = A0(D) + A1(t, x,D), provided

sup{|akl1,ij(t, x)| : k, l, i, j = 1, . . . , n, t ∈ J, x ∈ R
n} ≤ η,

for some sufficiently small η > 0, and

akl1,ij ∈ W 1/2−1/2p
s (J ;Lr(Γs ∪ Γn)) ∩ Ls(J ;W 1−1/p

r (Γs ∪ Γn)),

for some r, s ≥ p such that 1
s + n−1

2r < 1 − 1
p .

7. Proof of Theorem 4.1: Localization.
Step 1. We first deal with the case G = R

n, i.e., the problem without boundary
conditions. Note that the generalized Stokes problems with coefficients frozen at any
t ∈ J , x ∈ R

n ∪ {∞} have maximal Lp-regularity according to Theorem 4.1. Because
of uniform continuity of the coefficients on J × (Rn ∪ {∞}) the maximal regularity
constant is uniform as well, as are the norms of the solution operators Sj . Given
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η > 0, cut the interval J = [0, a] into pieces Ji = [iδ, iδ + δ] of equal length δ = a/l
such that the coefficients a(t, x) appearing in A(t, x,D) satisfy

sup{|a(t, x) − a(s, x)| : x ∈ R
n, t, s ∈ J, |t− s| ≤ δ} ≤ η.

We then solve the problem successively on the intervals Ji, i = 0, . . . , l, so w.l.o.g. it
is enough to treat the first interval J0 = [0, δ]. The number δ > 0 will be chosen later.

By Theorem 10.1, we may assume v0 = f = 0. Choose a large ball BR(0) such
that

sup{|a(t, x) − a(0,∞)| : |x| ≥ R, t ∈ J0} ≤ η.

Cover the ball B̄R(0) by finitely many balls Br(xk), k = 1, . . . , N , such that

sup{|a(t, x) − a(0, xk)| : x ∈ Br(xk), t ∈ J0} ≤ η.

Fix a C∞-partition of unity φk, which is subordinate to the covering
⋃N

k=1 Br(xk) ∪
B̄R(0)c of R

n. The index k = 0 corresponds to the chart at infinity. Define local opera-
tors Ak(D) = A(t, x,D) for each chart Br(xk), k = 1, . . . , N , and A0(D) = A(t, x,D);
extend these coefficients to all of J × R

n by, say, reflection at the boundary of the
corresponding ball. Corollary 5.2 shows that each of these operators has maximal
regularity, provided that η > 0 and δ > 0 are sufficiently small.

Suppose (v, q) is a solution of (4.1) with G = R
n. In what follows we normalize

the pressure by
∫
B2R(0)

q(t, x)dx = 0. Setting vk = φkv, qk = φkq, gk = φkg, we

obtain the following problem for the functions vk and qk:

∂tvk + Ak(D)vk + ∇qk = (∇φk)q + [A, φk]v,

div vk = gk + (∇φk|v), t ∈ J0, x ∈ R
n,(7.1)

vk|t=0 = 0,

where [A, φk]v = A(φkv) − φkAv means the commutator of A and φk. Denote the
solution operator of the generalized Stokes problem for Ak by Sk. Then we have the
representation [

vk
qk

]
= Sk

[
(∇φk)q + [A, φk]v

gk + (∇φk|v)

]
.

Summing over all charts k, we deduce

[
v
q

]
=

N∑
k=0

[
vk
qk

]
=

N∑
k=0

Sk

[
(∇φk)q + [A, φk]v

gk + (∇φk|v)

]
.

We decompose this representation of the solution as

[
v
q

]
=

N∑
k=0

Sk

[
0
gk

]
+ T

[
q
v

]
+ Rv,

where

T =
N∑

k=0

Sk∇φk and R =

N∑
k=0

Sk

[
[A, φk]

0

]
.
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We estimate T and R separately. For this purpose, we define the spaces

Z = [H1
p (J0;Lp(R

n; Cn)) ∩ Lp(J0;H
2
p (Rn; Cn))] × Lp(J0; Ḣ

1
p (Rn))

and

X = Lp(J0 × R
n; Cn), Xp = W 2−2/p

p (Rn; Cn),

as well as

Y = H1
p (J0; Ḣ

−1
p (Rn)) ∩ Lp(J0;H

1
p (Rn)).

To begin with T , recall that each Sk splits into Sk = S0 + Sk
1 , with the same S0 for

each k, since the latter does not depend on the coefficients of Ak. Hence

T =

N∑
k=0

Sk∇φk =

N∑
k=0

Sk
1∇φk + S0∇

N∑
k=0

φk =

N∑
k=0

Sk
1∇φk,

since φk forms a partition of unity. Let us decompose T into its components, employ-
ing the factorization of S1 obtained in section 5. We have

T11q = (∂t − Δ)−1
∑
k

Sk
11(−Δ)(∂t − Δ)−1(q∇φk),

T21q = (−Δ)−1/2
∑
k

Sk
21(−Δ)(∂t − Δ)−1(q∇φk),

T12v = (∂t − Δ)−1
∑
k

Sk
12(−Δ)1/2(∇φk|v),

T22v = (−Δ)−1/2
∑
k

Sk
22(−Δ)1/2(∇φk|v).

Since ∇φk has compact support also for k = 0, we see that (∇φk)q belongs to
Lp(J0;H

1
p (Rn)), and

|(−Δ)1/2(q∇φk)|Lp(J0×Rn) ≤ C|∇q|Lp(J0×Rn)

holds with some constant C > 0; recall the normalization of the pressure∫
B2R(0)

q(t, x)dx = 0;

hence Poincaré’s inequality is valid. Therefore

|(−Δ)(∂t − Δ)−1(∇φkq)|H1/2
p (J0;Lp(Rn))

≤ C|∇q|Lp(J0×Rn).

Since H
1/2
p ↪→ L2p, this implies that the norm of (−Δ)(∂t−Δ)−1(∇φkq) in Lp(J0×R

n)
is dominated by Cδ1/2p|∇q|Lp(J0×Rn), and the constant Cδ1/2p can be made small by
choice of δ > 0.

Similarly, ∇φk is a multiplier for the space Hs
p(Rn), and hence there is a constant

C > 0 such that

|(−Δ)1/2(∇φk|v)|H1/2
p (J0;Lp(Rn))

≤ C|(∂t − Δ)v|Lp(J0×Rn).
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By this estimate we may conclude as before that the norm of (−Δ)1/2(∇φkv) in
Lp(J0 × R

n; Cn) is dominated by Cδ1/2p|(∂t − Δ)v|Lp(J0×Rn;Cn). As a consequence,
the operator T satisfies ∣∣∣∣T

[
q
v

]∣∣∣∣
Z

≤ Cδ1/2p

∣∣∣∣
[

v
q

]∣∣∣∣
Z

.

Next, R is given by

R =
∑
k

Sk

[
[A, φk]v

0

]
.

The commutator [A, φk] is a differential operator of first order, and hence we see that

[A, φk]v ∈ H1/2
p (J0;Lp(R

n; Cn)) ∩ Lp(J0;H
1
p (Rn; Cn)).

Therefore, we obtain

|Rv|Z ≤ C max
k

|[A, φk]v|Lp(J0×Rn;Cn)

≤ Cδ1/2p max
k

|[A, φk]v|L2p(J;Lp(Rn;Cn)) ≤ Cδ1/2p|v|Z ;

i.e., the norm of R in Z is also bounded by Cδ1/2p, which becomes small by the
smallness of δ > 0.

The above arguments show that, choosing first η > 0 and then δ > 0 small
enough, there is a constant C > 0 such that the estimate

(7.2) |(v, q)|Z ≤ C[|f |X + |g|Y + |v0|Xp ]

holds for each solution (v, q) on J0 for given data v0 ∈ Xp, f ∈ X, g ∈ Y . Therefore,
the generalized Stokes operator L ∈ B(Z;X × Y × Xp) defined by the first lines of
the left-hand side of (4.1) is injective and has closed range; hence it is semi-Fredholm
for each set of coefficients which are continuous on J0 × R

n, admit uniform limits
as |x| → ∞, and are strongly elliptic, uniformly on J0 × (Rn ∪ {∞}). Define the
family Aτ = τA + (1 − τ)(−Δ); we then may conclude that for each τ ∈ [0, 1], the
corresponding generalized Stokes operator Lτ is injective and has closed range. By
the continuity of the Fredholm index, it must be constant; i.e., the index is zero for
all τ ∈ [0, 1] since L0 is bijective by Theorem 4.1. This shows that L = L1 is also
surjective, and hence the proof is complete in case G = R

n.
Step 2. Next we consider the case of a half-space, i.e., G = R

n
+. We extend the

coefficients aklij (t, x) of A(t, x,D) by symmetry to J × R
n. According to Proposition

4.2 we may assume v0 = g = 0, and also hν = 0 in the case of Dirichlet or slip
conditions. We localize as in Step 1 to obtain

(7.3)

∂tvk + Ak(D)vk + ∇qk = fk + (∇φk)q + [A, φk]v,

div vk = (∇φk|v), t ∈ J0, x ∈ R
n,

vk|t=0 = 0,

for charts which are interior to R
n
+ (according to Step 1 only one such chart is suffi-

cient), and

(7.4)

∂tvk + Ak(D)vk + ∇qk = fk + (∇φk)q + [A, φk]v,

div vk = (∇φk|v), t ∈ J0, x ∈ R
n
+,

vk|t=0 = 0,

Bk(D)(vk, qk) = hk + [B, φk]v
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for charts intersecting the boundary. We concentrate now on the charts intersecting
the boundary; the interior chart is treated as in Step 1. Decompose vk = ∇ψk+v2

k+v3
k,

qk = q2
k + q3

k as follows. For Dirichlet or slip conditions, ψk is taken as the solution of
the problem

Δψk = (∇φk|v), x ∈ R
n
+, ∂νψk = 0, x ∈ ∂R

n
+.

Thus, ψk ∈ 0H
1
p(J ; Ḣ2

p (Rn
+)) ∩ Lp(J ; Ḣ4

p (Rn
+)); hence ∇ψk = R0(∇φjv) belongs to

0H
1
p(J ; Ḣ1

p (Rn
+)) ∩ Lp(J ; Ḣ3

p (Rn
+), and

∑
k ∇ψk = R0

∑
k ∇φkv = 0. On the other

hand, for θ ∈ Ḣ1
p′(Rn

+) we have∫
R

n
+

(∇φk)vθdx = −
∫

R
n
+

φkv∇θdx,

since div v = (v|ν) = 0; hence ∇φkv ∈ 0H
1
p(J ; Ḣ−1

p (Rn
+)), and consequently ∇ψk ∈

0H
1
p(J ;Lp(R

n
+)). Therefore, we see ∇ψk ∈ 0H

1
p(J ;H1

p (Rn
+))∩Lp(J ;H3

p (Rn
+)). In case

of Neumann boundary conditions we use instead

Δψk = (∇φk|v), x ∈ R
n
+, ψk = 0, x ∈ ∂R

n
+.

Next (v2
k, q

2
k) denotes the full-space solution of the problem

(7.5)

∂tv
2
k + Ak(D)v2

k + ∇q2
k = fk + ∇φkq + [A, φk]v − (∂t + Ak(D))∇ψj ,

div vk = 0, t ∈ J0, x ∈ R
n,

vk|t=0 = 0.

With the same notation as in Step 1 we then obtain

[
v2

q2

]
=

N∑
k=0

[
v2
k

q2
k

]
=

N∑
k=0

Sk

[
fk − (∂t + Ak(D))∇ψk + ∇φkq + [A, φk]v

0

]
.

Since (∂t + Ak(D))∇ψk ∈ Lp(J ;H1
p (Rn

+)) we may argue as in Step 1 to estimate
(v2, q2).

Thus it remains to estimate (v3, q3), which is a solution of the problem

(7.6)

∂tv
3
k + Ak(D)v3

k + ∇q3
k = 0,

div v3
k = 0, t ∈ J0, x ∈ R

n
+,

v3
k|t=0 = 0,

Bk(D)(v3
k, q

3
k) = hk + [B, φk]v − Bk(D)(∇ψk + v2

k, q
2
k).

To achieve this, note that the commutator [B, φk] is either zero in the case of Dirichlet
conditions or an operator of order zero and hence gains time regularity. Since ∇ψk

belongs to the space 0H
1
p(J ;H1

p (Rn
+))∩Lp(J ;H3

p (Rn
+)), the term Bk(D)∇ψk has also

more time regularity than required by the boundary space for h. Next (v2
k, q

2
k) splits

into

(v2
k, q

2
k) = Skfk + S0f̄k + Sk

1 f̄k,

where

f̄k = [A, φk]v + (∇φk)q − (∂t + Ak(D))∇ψk
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belongs to Lp(J ;H1
p (Rn

+)). S0 maps this space into 0H
1
p(J ;H1

p (Rn))∩Lp(J ;H3
p (Rn)),

and hence Bk(D)S0fk also gains extra regularity in time. Due to the factorization of
Sj

1, the term Bk(D)Sk
1 fk will be small, as in Step 1.

Thus, as in Step 1, we obtain an a priori estimate of the form

(7.7) |(v, q)|Z ≤ C[|f |X + |g|Y + |v0|Xp
+ |h|Y∂

],

by choosing first η > 0 and then δ > 0 small enough. Here Y∂ denotes the relevant
boundary space. The Fredholm argument at the end of Step 1 again completes the
proof for the half-space case.

Step 3. The localization procedure for general domains with compact boundary
of class C3− follows the lines of Step 2. The only difference concerns that the charts
intersecting the boundary cannot be handled by Theorem 6.1 directly, since they lead
to problems in perturbed half-spaces. Therefore we show in this step how to transfer
Theorem 6.1 to perturbed half spaces.

For this purpose, consider a graph ρ over R
n−1, and let G be the corresponding

epigraph

G = {x = (x′, xn) ∈ R
n : xn > ρ(x′)}.

We may assume that ρ is of class C3− and has compact support, and |∇ρ|L∞ ≤ η,
where η > 0 is sufficiently small. Suppose that (u, π) is a solution in the maximal
regularity class of the generalized Stokes problem (4.1) with given data f , g, h, u0

subject to (D). According to Proposition 4.2 we may assume u0 = g = hν = 0.
Introduce the pull back (v, q) defined on R

n
+ by

v(t, x) = u(t, x + ρ(x′)en), q(t, x) = π(t, x + ρ(x′)en),

where t ∈ J , x = (x′, xn), x′ ∈ R
n−1, and xn > 0. Then (v, q) satisfies the perturbed

problem

(7.8)

∂tv + A(D)v + ∇q = f + Aρ(D)v + (∇ρ)∂nq,

div v = (∇ρ|∂nv), t ∈ J, x ∈ R
n
+,

B(D)(v, q) = Bρ(D)v + h, t ∈ J, x = (x′, 0), x′ ∈ R
n−1,

v|t=0
= 0, x ∈ R

n
+.

Here, f and h also denote the transformed data, which belong to the right regularity
class, since ρ ∈ C3−. The operator Aρ(D) is given by

Aρ(D) = aklij [∂kρDlDn + ∂lρDkDn + ∂kρ∂lρD
2
n + i∂k∂lρDn].

Since the second order derivatives in Aρ(D) carry the factor ∇ρ, they are small by the
condition |∇ρ|L∞ ≤ η, as is (∇ρ)∂nq. Next, for the same reason, the term (∇ρ|∂nv)
in the divergence equation is also small in Lp(J ;H1

p (Rn
+)).

The normal ν at ∂G is given by

ν(x + ρ(x′)en) =

[
∇x′ρ
−1

]
1√

1 + |∇x′ρ|2
;

therefore the condition (u|ν) = 0 transforms to (v|−en) = −(∇ρ|v). Thus we have to
verify that the pair ((∇ρ|∂nv),−(∇ρ|v)|xn=0

) is small in H1
p (J ; Ḣ−1

p (Rn
+)). For this

purpose, let φ ∈ Ḣ1
p′(Rn

+); then∫
R

n
+

φ(∂nv|∇ρ)dx−
∫
∂R

n
+

−φ(∇ρ|v)dx′ = −
∫

R
n
+

(v|∇ρ)∂nφdx,
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and hence

|((∇ρ|∂nv),−(∇ρ|v)|xn=0
)|H1

p(Ḣ−1
p ) ≤ |∇ρ|L∞ |v|H1

p(Lp),

thereby showing the smallness of this term.
Finally, we show smallness of the boundary perturbation Bρ(D). We have

aklijνkDluj =
1√

1 + |∇ρ|2
aklij (∂kρ− δkn)(Dlv − ∂lρDnv);

hence

Bρ(D) =

(
1 − 1√

1 + |∇ρ|2

)
anlijDl +

1√
1 + |∇ρ|2

[anlij ∂lρDn + aklij∂kρ(Dl − ∂lDn)]

in the case of Neumann conditions, and a similar expression in the slip case. Since

1 − 1√
1 + |∇ρ|2

=
|∇ρ|2

(1 +
√

1 + |∇ρ|2)
√

1 + |∇ρ|2
,

each term in Bρ(D) carries a factor ∇ρ; hence, as at the end of section 6, we have an
estimate of the form

|Bρ(D)v|
W

1/2−1/2p
p (Lp)∩Lp(W

1−1/p
p )

≤ C|∇ρ|L∞ |v|Z + C|∇2ρ|L∞ |v|αZ |v|1−α
Lp

,

for some α ∈ (0, 1). This shows that the boundary operator Bρ(D) is also small,
provided that η > 0 is small enough.

Therefore, we may apply once more a Neumann series argument to conclude from
Theorem 6.1 that this result is also valid in perturbed half-spaces. This completes
the proof of Theorem 4.1.

8. The nonlinear problem with homogeneous slip and nonslip condi-
tions. The nonlinear problem with Γn = ∅ will be solved by means of an abstract
result which is essentially due to Clément and Li [3]. This is possible since in this case
the involved boundary conditions are actually linear and homogeneous. We describe
a version of the abstract result proved in Prüss [21].

Let X0, X1 be Banach spaces with norms | · |0, | · |1, X1 ↪→ X0 densely, J = [0, a],
J0 = [0, a0], and let 1 < p < ∞. Consider the quasi-linear problem

(8.1) u̇(t) + A(u(t))u(t) = F (u(t)), t ∈ J, u(0) = u0.

Here u0 ∈ Xp := (X0, X1)1−1/p,p, A : Xp → B(X1, X0) is continuous, and F : Xp →
X0 is continuous. Moreover, we assume the following conditions on the Lipschitz
continuity of A and F :

(A) For each R > 0 there is a constant L(R) > 0 such that

|A(u)v −A(ū)v|0 ≤ L(R)|u− ū|p|v|1, u, ū ∈ Xp, |u|p, |ū|p ≤ R, v ∈ X1.

(F) For each R > 0 there is a constant l(R) such that

|F (u) − F (ū)|0 ≤ l(R)|u− ū|p, u, ū ∈ Xp, |u|p, |ū|p ≤ R.

In the situation described above we have the following theorem.
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Theorem 8.1. Suppose that the assumptions (A) and (F) are satisfied, and
assume that A(u) has the property of maximal Lp-regularity for each u ∈ Xp.

Then (8.1) admits a unique solution u on a maximal time interval J(u0) =
[0, t+(u0)) in the maximal regularity class

u ∈ H1
p (J ;X0) ∩ Lp(J ;X1) for each a < t+(u0).

In case t+(u0) < a0, the maximal time t+(u0) is characterized by the equivalent
conditions ∫

J(u0)

[|u(t)|p1 + |u̇(t)|p0]dt = ∞

and

lim
t→t+(u0)−

u(t) does not exist in Xp.

The map u0 �→ u(t) defines a local semiflow on the natural phase space Xp.
Now we apply this result directly to the problem (2.2) under consideration, for a

proof of Theorem 2.1 in case Γn = ∅. For this purpose we let

X0 = {u ∈ Lp(G,Rn) : div u = 0},

X1 = {u ∈ H2
p (G) ∩X0 : u|Γ0 = (u|ν)|Γs = 0, PE(u)|Γs

= 0}.

The operator family A(u) will be defined by A(u) = PA(u,D) with A(u,D) as in
section 2; here P denotes the standard Helmholtz projection. Theorem 4.1 implies

that for each u ∈ Xp ↪→ W
2−2/p
p (G) the operator A(u) has maximal Lp-regularity.

Note that the involved boundary conditions are actually linear and homogeneous.
This is obvious for the Dirichlet conditions u|Γ0 = (u|ν)|Γs

= 0, but is also true for
the seemingly nonlinear condition Sν − (Sν|ν)ν = 0. In fact, the latter is equivalent
to Eν − (Eν|ν)ν = 0, which is linear.

It is easy to check by Sobolev embedding that condition (A) holds, provided
p > n + 2. Finally, we set F (u) = −P (u · ∇u) and check, once more by Sobolev
embedding, that condition (F) is satisfied as well. Thus we may apply Theorem 8.1
to prove Theorem 2.1 in the case Γn = ∅. We want to emphasize that this approach
works as long as the boundary conditions are homogeneous and linear, so it does not
apply for the Neumann problem since this one involves a truly nonlinear boundary
condition.

9. The nonlinear problem with general boundary conditions. We now
consider the nonlinear problem with general inhomogeneous boundary conditions, i.e.,

∂tu + div (u⊗ u) = div S + f,

S = μ[∇u + (∇u)T] − πI,

div u = g, t > 0, x ∈ G,

u(t, x) = h0, t > 0, x ∈ Γ0,(9.1)

Sν − (Sν|ν)ν = hs, (u|ν) = hν , t > 0, x ∈ Γs,

Sν = hn, x ∈ Γn,

u(0, x) = u0(x), x ∈ G.
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Assume p > n + 2 in what follows, and let μ ∈ C2−(R+) be a function subject to
(2.3). Fix a time interval J0 = [0, a0] and let Ja = [0, a] for a ≤ a0. We define the
maximal regularity spaces

Z(a) := H1
p (Ja;Lp(G; Rn)) ∩ Lp(Ja;H

2
p (G; Rn))

and set Z(0) = Z(a0). We further set

X(a) := Lp(Ja;Lp(G; Rn)), Xp := W 2−2/p
p (G; Rn),

Yj(a) := W 1/2−1/2p
p (Ja;Lp(Γj ; R

n)) ∩ Lp(Ja;W
1−1/p
p (Γj ; R

n)),

and X0 = X(a0), Yj0 = Y (j(a0). Note that we have the embedding

Z(a) ↪→ C(Ja;Xp)

since Xp is the time-trace space of Za. However, the embedding constant blows up as
a → 0+. This unpleasant fact can be removed if one restricts attention to functions
with time trace 0 at t = 0. Therefore we let

0Z(a) = {u ∈ Z(a) : u|t=0 = 0}, 0Y j(a) = {u ∈ Yj(a) : u|t=0 = 0}.

We also have the embedding

Yj(a) ↪→ C(Ja;W
1−3/p
p (Γj ; R

n)), j = s, n,

where the embedding constant is uniform in a if the embedding is restricted to 0Y j(a).
In particular, since p > n + 2 by assumption, we have

Z0 ↪→ C(J0;C
1(G; Rn)).

Now suppose that u0 ∈ Xp, f ∈ X0, g ∈ Lp(J0;H
1
p (G)), hj ∈ Yj0, and (g, hν) ∈

H1
p (J0;H

−1
p,Γn

(G)) are given such that the compatibility conditions

div u0 = g|t=0, u|Γ0 = h0, (u0|ν)|Γs = hν ,

and

(hs|ν) = 0, 2μ(|E(u0)|22)PE(u0)ν = Phj |t=0, j = s, n,

are valid, where as before E(u) = 1
2 (∇u + ∇u)T. To achieve reduction to time traces

0 at t = 0, first choose extensions h∗j of 2(1 − μ(|E(u0)|22))E(u0)ν in Yj0, which is

possible since u0 ∈ W
1−3/p
p (Γ; Rn). Then solve the classical Stokes equation with

μ = 1, with initial value u∗|t=0 = u0, right-hand sides f , div u∗ = g, Dirichlet
conditions u∗|Γ0 = h0 on Γ0, slip conditions (u∗|ν) = hν , 2PE(u∗)ν = hs + Ph∗s on
Γs, and Neumann condition 2E(u∗)ν − π∗ν = hn + h∗n. Note that the map

(u0, f, g, h0, hν , hs, hn) �→ (u∗, π∗)

is bounded linear; i.e., (u∗, π∗) depends continuously on the data in the correct spaces,
by Theorem 4.1.
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Suppose that (u, π) is a solution of (1.1) in the maximal regularity class of type
Lp on an interval Ja. Set u1 = u − u∗ and π1 = π − π∗. Then the time-traces of u1

and π|Γn are zero, and the pair (u1, π1) is a solution of the quasi-linear problem

∂tu + A(t, x,D)u + ∇π = f̄(t, x) + F (u),

div u = 0, t ∈ Ja, x ∈ G,

u|Γ0
= (u|ν)|Γs

= u|t=0 = 0,(9.2)

P[νkAkl(t, x)Dlu] = Ph̄s + PH(u) on Ja × Γs,

νkAkl(t, x)Dlu− πν = h̄n + H(u) on Ja × Γn,

where we have once more used the sum convention and A(t, x,D) = Akl(t, x)DkDl.
Here Akl(t, x) = Akl(u∗(t, x)) = aklij (u∗(t, x)) denote the matrices

Akl(u) = μ(|E(u)|22)(δklδij + δilδjk) + 4μ′(|E(u)|22)εik(u)εjl(u),

as introduced in (2.1). Since ∇u∗ ∈ H
1/2
p (J0;Lp(G; Rn)) ∩ Lp(J0;H

1
p (G; Rn)) and

this space embeds into C(J0 × G), we see that the coefficients are continuous on
J0 × G and strongly normally elliptic; see section 3. Moreover, ∇u∗ ∈ Y0, and since
μ ∈ C2(R+) we also see that the coefficients of the first order boundary operators

belong to W
1/2−1/2p
p (J0;Lp(Γ))∩Lp(J0;W

1−1/p
p (Γ)). Therefore Theorem 4.1 implies

maximal regularity of the linear initial-boundary value problem defined by (4.1).
Next the function f̄ is defined by

f̄ = −Δu∗ −
n∑

k,l=1

AklDkDlu∗ − u∗ · ∇u∗,

which belongs to X0 = Lp(J0 ×G), and F : 0Za → Xa is given by

F (v) = [A(u∗, D) −A(u∗ + v,D)](u∗ + v) − [u∗ · ∇v + v · ∇u∗ + v · ∇v].

We decompose F (v) = F1(v) − F2(v), indicated by the bracketing. The functions h̄j

read

h̄j = hj + p∗ν − 2μ(|E(u∗)|22)E(u∗)ν, j = s, n,

which belong to 0Y j0 by the regularity of u∗ and the choice of h∗. Finally, H(v) is
given by

H(v) = H1(v) −H2(v),

with

H1(v) = 2[μ(|E(u∗)|22) − μ(|E(u∗ + v)|22)]E(v)ν

and

H2(v) = 2[μ(|E(u∗ + v)|22) − μ(|E(u∗)|22) + 2μ′(|E(u∗)|22)((E(u∗)|E(v)))]E(u∗)ν.

As a consequence, by maximal regularity we may rewrite (9.2) as the fixed point
problem in 0Z(a),

(9.3) v = Tv := L(f̄ + F (v)) + Ls(h̄s + PH(v)) + Ln(h̄n + H(v)), v ∈ 0Z(a),
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where L ∈ B(X(a); 0Z(a)) and Lj ∈ B(0Y j(a); 0Z(a)) are causal bounded linear
operators with bounds independent of a ∈ (0, a0]. We denote this common bound by
CM in what follows.

To carry out the contraction argument, fix r ∈ (0, 1] and consider the closed ball
B := Br(0) ⊂ 0Z(a). The numbers a > 0 and r will be chosen later small enough so
that T becomes a contraction in 0Z(a). We have Fk(0) = Hk(0) = 0 by definition.
By uniform embedding, there is a constant CE > 0 such that

|v|∞ + |∇v|∞ ≤ CE |v|Z(a), v ∈ 0Z(a).

Let m := sup{|μ(s)| + |μ′(s)| + |μ′′(s)| : s ∈ [0, R]}. We first choose a > 0 so small
that |Lf̄ + Lsh̄s + Lnh̄n|Za

≤ r/4.
For arbitrary v, w ∈ B we obtain

F1(v) − F1(w) = [A(u∗, D) −A(u∗ + v,D)](v − w)

+ [A(u∗ + v,D) −A(u∗ + w,D)](u∗ + w),

and hence

|F1(v) − F1(w)|Xa ≤ sup
Ja×G

|A(u∗, D) −A(u∗ + v,D)||v − w|Z(a)

+ sup
Ja×G

|A(u∗ + v,D) −A(u∗ + w,D)||u∗ + w|Z(a)

≤ C|v − w|Z(a)[|v|∞ + |∇v|∞]

+ C[|u∗|Z(a) + r][|v − w|∞ + |∇(v − w)|∞]

≤ C|v − w|Z(a)[|u∗|Z(a) + r] ≤ 1

8CM
|v − w|Z(a),

provided that a > 0 and r ∈ (0, 1] are chosen small enough. Here the constants C > 0
differ from line to line but depend only linearly on CE and m.

In a similar, even simpler, way we estimate F2. Since

Z(a) ↪→ Lp(Ja;H
1
2p(G; Rn)),

with embedding constant uniform in a, we obtain

|F2(v) − F2(w)|X(a) ≤ C(|u∗|Z(a) + r)|v − w|Z(a) ≤
1

8CM
|v − w|Z(a),

provided that a > 0 and r ∈ (0, 1] are small enough. This takes care of the nonlinear
term containing F in the definition of T .

The estimates for H are more complicated since they involve fractional Sobolev
spaces, but they are still elementary. While we do not claim that the arguments below
are new, we include them for the sake of completeness. Recall that a norm for W s

p (Σ),
Σ a compact C1-manifold in R

n, is given by

|a|W s
p (Σ) = |a|p +

[∫
Σ

∫
Σ

|a(x) − a(y)|p
|x− y|sp+n

dσ(x)dσ(y)

]1/p

,

where dσ denotes the surface measure on Σ.
There are two fundamental estimates for fractional Sobolev spaces that one should

keep in mind. The first concerns products and reads as

|ab|W s
p
≤ |a|∞|b|W s

p
+ |b|∞|a|W s

p
,
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valid for all functions a, b ∈ W s
p ∩ L∞, s ∈ (0, 1). The second concerns substitution

operators in W s
p of the form φ(a), where φ ∈ C2. Based on the identity

[φ(a(x)) − φ(b(x))] − [φ(a(y)) − φ(b(y))]

=

∫ 1

0

∫ 1

0

∂t∂sφ(s[ta(x) + (1 − t)b(x)] + (1 − s)[ta(y) + (1 − t)b(y)])dsdt

=

∫ 1

0

∫ 1

0

φ′(ξ(t, s))([a(x) − b(x)] − [a(y) − b(y)])dsdt

+

∫ 1

0

∫ 1

0

φ′′(ξ(t, s))([ta(x) + (1 − t)b(x)] − [ta(y) + (1 − t)b(y)])

·(s[a(x) − b(x)] + (1 − s)[a(y) − b(y)])dtds,

we obtain

|[φ(a(x)) − φ(b(x))] − [φ(a(y) − φ(b(y)]| ≤ |φ′|∞|(a(x) − b(x)) − (a(y) − b(y))|
+ |φ′′|∞{|(a(x) − b(x)) − (a(y) − b(y))|

·(3|a− b|∞ + |b(x) − b(y)|) + |a− b|∞|b(x) − b(y)|}.

This implies

|φ(a) − φ(b)|W s
p (Σ) ≤ |φ|BUC2 [|a− b|W s

p (Σ)(1 + 3|a− b|∞ + |b|W s
p
) + |a− b|∞|b|W s

p
].

Using these two inequalities, we obtain for H1 the Lipschitz estimate

|H1(v) −H1(w)|Yj(a) ≤ Cr|v − w|Z(a),

with some constant C which depends only on L and embedding constants that are
uniform in a. In a similar way, skipping the details, we also get

|H2(v) −H2(w)|Yj(a) ≤ C(r + |u∗|Z(a))|v − w|Z(a).

Thus, choosing a > 0 and r ∈ (0, 1] small enough, we obtain

|H(v) −H(w)|Yj(a) ≤
1

8CM
|v − w|Z(a).

Therefore T : B → B is a strict contraction and hence, by the contraction mapping
principle, admits a unique fixed point in Z(a).

Thus we have shown unique solvability of (9.1) on a probably small interval Ja =
[0, a] in the maximal regularity class. Now, we may repeat the above arguments to
obtain successively solutions in the maximal regularity class on intervals [ti, ti+1].
Either after finitely many steps we reach a0, or we have an infinite strictly increasing
sequence which converges to some t∗ = t∗(u0) ≤ a0. In case limi→∞ u(ti) =: u(t∗)
exists in Xp, we may continue the process, which shows that the maximal time is
characterized by the property that this limit does not exist in Xp. The continuous
dependence of the solution on the data is obvious, and therefore the semiflow property
claimed in Theorem 2.1 follows as well. This completes the proof of Theorem 2.1.

10. Appendix: Normally elliptic boundary value problems. Above, we
employed results on maximal regularity of completely inhomogeneous vector-valued
parabolic initial value problems of the form

(10.1)

∂tu + A(t, x,D)u = f(t, x), t ∈ J, x ∈ G,

Bj(t, x,D)u = gj(t, x), t ∈ J, x ∈ ∂G, j = 1, . . . ,m,

u(0, x) = u0(x), x ∈ G.
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Here J = [0, T ] for some T > 0, and G ⊂ R
n is an open connected set with compact

boundary ∂G. The operator A(t, x,D) is a partial differential operator of order 2m,
and Bj(t, x,D) are partial boundary differential operators of order mj < 2m. More
precisely, let E be a Banach space and m,m1, . . . ,mm be natural numbers with mj <
2m for j = 1, . . . ,m, and let

A(t, x,D) =
∑

|α|≤2m

aα(t, x)Dα,

Bj(t, x,D) =
∑

|β|≤mj

bjβ(t, x)Dβ ,

where aα and bjβ are B(E)-valued variable coefficients. Here and in the following, we
use the standard multi-index notation Dα = (−i)|α|∂α1

x1
· · · ∂αn

xn
with ∂xi = ∂

∂xi
and,

later on, ξα = ξα1
1 · · · ξαn

n . Note that the boundary operators have to be interpreted as
Bj(t, x,D)u =

∑
|β|≤mj

bjβ(t, x)γ0D
βu, where γ0v denotes the trace of the function v

on the boundary ∂G (given sufficient smoothness of v and ∂G); we will often omit γ0

in the notation. In particular, the coefficients bjβ are defined on ∂G only.
We are interested in maximal Lp-regularity of (10.1) for 1 < p < ∞, which means

that we are looking for solutions in the class

(10.2) u ∈ H1
p (J ;Lp(G;E)) ∩ Lp(J ;H2m

p (G;E)).

Trace theorems show that, for this regularity of the solution, the given data have to
satisfy the following conditions:

(D) Assumptions on the data.
(i) f ∈ Lp(J ×G;E),

(ii) gj ∈ W
κj
p (J ;Lp(∂G;E)) ∩ Lp(J ;W

2mκj
p (∂G;E)) with κj := (2m − mj −

1/p)/(2m),

(iii) u0 ∈ W
2m(1−1/p)
p (G;E),

(iv) if κj > 1/p, then Bj(0, x)u0(x) = gj(0, x) for x ∈ ∂G.
The assumptions on the coefficients needed are of two types, namely smoothness

of the coefficients and ellipticity. We start with ellipticity. For this, we denote the
principal part of a partial differential operator A by A#. The outer normal of ∂G at
x ∈ ∂G is as before ν(x), and we set C+ := {z ∈ C : �z > 0}.

(E) Ellipticity of the interior symbol. For all t ∈ J , x ∈ G and ξ ∈ R
n, |ξ| = 1 we

have

σ(A#(t, x, ξ)) ⊂ C+;

i.e., A(t, x,D) is normally elliptic.
(LS) Lopatinskii–Shapiro condition. For all t ∈ J , x ∈ ∂G, all ξ ∈ R

n with
(ξ|ν(x)) = 0, all h ∈ Em, and all λ ∈ C+ with |ξ| + |λ| �= 0, the ordinary differential
equation system in R+

(10.3)
λv(y) + A#(t, x, ξ − ν(x)Dy)v(y) = 0, y > 0,

Bj,#(t, x, ξ − ν(x)Dy)v(0) = hj , j = 1, . . . ,m,

admits a unique solution v ∈ C0(R+;E).
Now we turn to smoothness assumptions on the coefficients of A and Bj .
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(SD) There are rk, sk ≥ p with 1
sk

+ n
2mrk

< 1 − k
2m such that

aα ∈ Lsk(J ; (Lrk + L∞)(G;B(E))), |α| = k < 2m,

aα ∈ C(J ×G;B(E)), |α| = 2m.

If G is unbounded, the limits aα(t,∞) := lim|x|→∞,x∈G aα(t, x) exist uniformly in
t ∈ J , |α| = 2m.

(SB) There are sjk, rjk ≥ p with 1
sjk

+ n−1
2mrjk

< κj +
mj−k
2m such that

bjβ ∈ Wκj
sjk

(J ;Lrjk(∂G;B(E))) ∩ Lsjk(J ;W 2mκj
rjk

(∂G;E)), |β| = k ≤ mj .

The main result of this appendix states that, under the assumptions made so far,
the initial boundary value problem (10.1) admits maximal regularity. This result is
taken from Denk, Hieber, and Prüss [5].

Theorem 10.1. Let G ⊂ R
n be open and connected with compact boundary ∂G

of class C2m. Let the Banach space E be of class HT , suppose assumptions (E),
(LS), (SD), and (SB) are satisfied, and let 1 < p < ∞. Then problem (10.1) admits
a unique solution

u ∈ H1
p (J ;Lp(G;E)) ∩ Lp(J ;H2m

p (G;E))

if and only if the data are subject to conditions (D).
It should be observed that, assuming the regularity assumptions (SD) and (SB),

normal ellipticity (E) and the Lopatinskii–Shapiro condition (LS) are necessary for
this result. These facts are also proved in Denk, Hieber, and Prüss [5].

Also important, as used in this paper in the slip case, it is possible to extend this
result to situations where the boundary conditions do not have fixed order. So, for
example, we may split boundary condition j as follows. Suppose E = E1 ⊕ E2, and
let

Bj(t, x,D)u = (Bj1(t, x,D)u,Bj2(t, x,D)u),

where the coefficients are in B(E,Ek), k = 1, 2. Then the same results are valid in
case the orders mjk of Bjk differ; of course, the boundary spaces have to be adjusted
accordingly.
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VORTEX DYNAMICS IN A TWO-DIMENSIONAL DOMAIN WITH
HOLES AND THE SMALL OBSTACLE LIMIT∗

M. C. LOPES FILHO†

Abstract. In this work we examine the asymptotic behavior of solutions of the incompressible
two-dimensional Euler equations on a domain with several holes, when one of the holes becomes
small. We show that the limit flow satisfies a modified Euler system in the domain with the small
hole removed. In vorticity form, the limit system is the usual equation for transport of vorticity,
coupled with a modified Biot–Savart law which includes a point vortex at the point where the small
hole disappears, together with the appropriate correction for the harmonic part of the flow. This
work extends results by Iftimie, Lopes Filho, and Nussenzveig Lopes, obtained in the context of
the exterior of a single small obstacle in the plane; see [Comm. Partial Differential Equations, 28
(2003), pp. 349–379]. The main difficulty in the present situation lies in controlling the behavior of
the harmonic part of the flow, which is not an exact conserved quantity. As part of our analysis we
develop a new description of two-dimensional vortex dynamics in a general domain with holes.

Key words. incompressible flow, Euler equations, vorticity
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DOI. 10.1137/050647967

1. Introduction. In this article we consider incompressible two-dimensional
(2D) ideal flow in a bounded smooth domain with k holes and study its asymptotic
behavior when one of the holes becomes small. This research is a natural outgrowth
of the work done in [3], where the authors studied the asymptotic behavior for ideal
2D flow in the exterior of a single small obstacle in the plane.

Although treating a similar problem, the present work requires an entirely new
approach. In [3], a family of conformal transformations between the exterior of the
small obstacle and the exterior of the unit disk played a crucial role, allowing the
use of explicit formulas for basic harmonic fields and the Biot–Savart law. This
approach makes it convenient to assume that the obstacle is vanishing in a self-similar
fashion. For the present work, it is not possible to work with explicit formulas, and
the conformal mapping technique has to be substituted by qualitative analysis using
elliptic techniques, including variational methods and the maximum principle. One
consequence of this new approach is that the self-similarity hypothesis, used in [3],
could be removed altogether.

One important distinction between 2D ideal flow in the exterior of a single obstacle
and in a bounded domain with several holes is the behavior of the harmonic part of the
flow. In the single obstacle case, the harmonic part is constant in time and determined
by the initial data, so no topological difficulties in reducing 2D ideal flow to vortex
dynamics exist. In contrast, there was no reduction available of flow in domains with
multiple holes to vortex dynamics (see, for example, [5] for an ad hoc formulation
of vortex dynamics in the exterior of two identical disks). Our point of departure is
a new formulation of 2D ideal flow using vorticity alone as the dynamical variable.
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We refer to the system obtained by rewriting the 2D Euler equations using vorticity
as the unknown as the vortex dynamics formulation of the 2D Euler equations. The
main ingredient in this new formulation is an expression for the harmonic part of the
flow in terms of vorticity.

The remainder of this work is divided into five sections. In section 2 we derive an
expression for the harmonic part of 2D ideal flow on a bounded domain with holes in
terms of vorticity, and deduce a vortex dynamics formulation for the incompressible
2D Euler equations. In section 3 we formulate the small obstacle problem and study
limits for quantities that depend on the domain alone. In section 4 we introduce the
dynamical problem and obtain uniform estimates for the solution of the 2D Euler
system on the domain with one small hole. In section 5 we put together the estimates
in sections 3 and 4 to obtain a limit equation. We draw conclusions and discuss some
extensions and open problems in section 6.

2. Vortex dynamics on a domain with holes. Let Ω be a bounded connected
domain in the plane whose boundary ∂Ω is the disjoint union of a finite number of
smooth Jordan curves Γi, i = 0, 1, . . . , k. We assume that Ω is the bounded region
with boundary Γ0, with the regions bounded by Γi, i = 1, . . . , k, removed. We require
basic terminology and results from DeRham cohomology and Hodge theory, in the
particularly easy setting of bounded domains with holes in the plane. We refer the
reader to [11] for this material.

A vector field in Ω is called harmonic if it is both divergence- and curl-free. We
identify one-forms with vector fields by adx1 + bdx2 �→ (a, b). The one-dimensional
(1D) deRham cohomology of Ω is the k-dimensional real vector space H1

DR(Ω). It
is a consequence of Hodge’s theorem that the vector space H1

DR(Ω) has a basis con-
sisting of harmonic vector fields. There is a unique family of harmonic vector fields
{X1, X2, . . . , Xk} satisfying the period conditions

(1)

∮
Γj

Xi · ds = δij , with i = 1, . . . , k and j = 0, 1, . . . , k,

which are a basis for H1
DR(Ω).

Let V (Ω) denote the vector space of smooth divergence-free vector fields tangent
to ∂Ω, and H(Ω) be the subspace of V (Ω) consisting of irrotational vector fields.
For each i = 0, 1, . . . , k, we introduce the function φi as the unique solution to the
Dirichlet problem

(2)

⎧⎨
⎩

Δφi = 0,
φi = 0 on Γj , j �= i,
φi = 1 on Γi.

Given ω ∈ C∞(Ω), let ψ be the solution of the Poisson problem

(3)

{
Δψ = ω,
ψ = 0 on ∂Ω.

Denote (a, b)⊥ = (−b, a). We define the Biot–Savart operator

KΩ[ω] ≡ ∇⊥ψ.

Clearly, KΩ[ω] ∈ V (Ω) for any ω ∈ C∞(Ω). The Biot–Savart operator is an integral
operator with kernel given by ∇⊥

x GΩ(x, y), where GΩ is the Green function of the
Dirichlet Laplacian in Ω.
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Fix u ∈ V (Ω) and let ω ≡ curl u. The Hodge–Kodäıra decomposition theorem
(see [2, section 7]) implies that u can be decomposed in a unique manner in the form
u = ∇⊥ψ +H, with ψ smooth, vanishing on ∂Ω and H ∈ H(Ω). This decomposition
is orthogonal with respect to the L2 inner product.

Taking the curl of this decomposition, using the uniqueness of solutions to (3),
and expanding H, we get

(4) u = KΩ[ω] +

k∑
j=1

αjX
j ,

for some αj ∈ R.
Our first result is an identity that expresses the components of the irrotational

part of u in a useful manner.
Proposition 1. For each i = 1, . . . , k we have

αi =

∫
Ω

φiωdx +

∮
Γi

u · ds.

Proof. First we integrate by parts to get

Ii ≡
∫

Ω

φiωdx =

∫
Ω

φi curl udx = −
∫

Ω

φi div u⊥dx

=

∫
Ω

∇φi · u⊥dx−
∫
∂Ω

φiu
⊥ · n̂ds = −

∫
Ω

∇⊥φi · udx−
∫

Γi

u⊥ · n̂ds.

We note that n̂ is the outward normal of Ω at Γi, and hence∫
Γi

u⊥ · n̂ds = −
∫

Γi

u · n̂⊥ds =

∫
Γi

u · τ̂ ds,

where τ̂ is the unit counterclockwise tangent vector to Γi. Therefore,

(5)

∫
Γi

u⊥ · n̂ds =

∮
Γi

u · ds.

Next we use (4) to obtain

∫
Ω

∇⊥φi · udx =

∫
Ω

∇⊥φi

⎛
⎝KΩ[ω] +

k∑
j=1

αiX
i

⎞
⎠ dx

=

∫
Ω

∇φi · ∇ψdx +

k∑
j=1

αj

∫
Ω

∇⊥φi ·Xjdx

= −
∫

Ω

ψΔφidx +

∫
∂Ω

ψ∇φi · n̂ds +

k∑
j=1

αj

∫
Ω

∇⊥φi ·Xjdx.
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The two first terms above vanish because Δφi = 0 in Ω and ψ = 0 on ∂Ω. Therefore,

(6)

∫
Ω

∇⊥φi · udx =

k∑
j=1

αj

∫
Ω

∇⊥φi ·Xjdx.

Putting together the calculation done on Ii, (5), and (6), we get

(7) Ii = −
k∑

j=1

αj

∫
Ω

∇⊥φi ·Xjdx−
∮

Γi

u · ds.

Next, we use (4) on (7) to isolate and collect terms with αi to obtain

(8)

∫
Ω

φiωdx +

∮
Γi

KΩ[ω] · ds =

k∑
j=1

αj

{
−
∫

Ω

∇⊥φi ·Xjdx−
∮

Γi

Xj

}
.

We note that ω and each αj can be chosen independently when one chooses u.
The left-hand side of (8) and each of the expressions in brackets on the right-hand
side of (8) do not depend on the αj ’s, and therefore identity (8) implies both that

(9)

∫
Ω

φiωdx +

∮
Γi

KΩ[ω] · ds = 0,

and that for each j = 1, . . . , k,

(10)

∫
Ω

∇⊥φi ·Xjdx = −
∮

Γi

Xj = −δij ,

by (1). Using (10) back on (7), we get

Ii = αi −
∮

Γi

u · ds,

which concludes the proof.
The initial-boundary value problem for the incompressible 2D Euler equations in

Ω and in the time interval [0, T ) has the form

(11)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut + u · ∇u = −∇p in Ω × (0, T ),

div u = 0 in Ω × {t}, for 0 ≤ t < T,

u · n̂ = 0 on ∂Ω × [0, T ),

u(x, 0) = u0(x) in Ω × {t = 0},

where the velocity u and the scalar pressure p are unknowns, u0 is the initial data,
and n̂ is the unit exterior normal to ∂Ω. Well-posedness for this problem when u0

is sufficiently smooth is due to Kato (see [6]), and existence of weak solutions for
u0 ∈ L2, with ω0 ≡ curl u0 ∈ L1 + BM+, is part of Delort’s existence result; see
[1, 10]. Vortex dynamics is an approach to the problem above where the dynamic
variables u and p are replaced by the vorticity ω = curl u. Formulating problem (11)
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in terms of vorticity alone becomes complicated by the topology of the domain and
can be accomplished only by using Proposition 1 as follows.

Let u = u(x, t) be a smooth solution of (11) with ω = ω(x, t) ≡ curl u(x, t). We
can write

u = KΩ[ω] +

k∑
j=1

αj(t)Xj ,

and Proposition 1 gives that for each j = 1, . . . , k

αj(t) =

∫
Ω

φj(x)ω(x, t)dx +

∮
Γj

u(x, t) · ds.

By Kelvin’s circulation theorem, the circulations
∮
Γj

u(x, t) ·ds are conserved in time,

so that, if ω0 = curl u0, we have∮
Γj

u(x, t) · ds =

∮
Γj

u(x, 0) · ds = αj(0) −
∫

Ω

φjω0dx.

Therefore, taking the curl of the momentum equations in (11), we can write the
following initial value problem, with only ω as unknown, equivalent to (11) for classical
solutions:

(12)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωt + u · ∇ω = 0 in Ω × (0, T ),

u = KΩ[ω] +
∑k

j=1 αj(t)Xj in Ω × {t}, for 0 ≤ t < T,

αj(t) =
∫
Ω
φjωdx + αj,0 −

∫
Ω
φjω0dx in [0, T ),

ω(x, 0) = ω0(x) and αj(0) = αj,0 in Ω × {t = 0}.

The initial data for problem (12) is the initial vorticity ω0 and the initial coefficients
for the harmonic part of the velocity, αj,0. Clearly, assigning this data is equivalent
to choosing an initial velocity u0. System (12) is the vortex dynamics formulation of
(11).

3. Harmonic fields. Next we introduce the small obstacle problem. Let us
consider a family of bounded connected domains Ωδ, 0 ≤ δ ≤ δ0, which, for each fixed
δ, has its boundary made up of curves Γi, i = 0, 1, . . . , k, arranged as in section 2.
We assume that for each i = 0, 1, . . . , k− 1, Γi is independent of δ, and that Γk = Γδ

k

is contained on a ball of radius δ centered at some fixed point P ∈ Ωδ. We declare Ω
to be the original set Ωδ0 union with the closure of the bounded side of Γδ0

k .
Fix ω0 ∈ C∞

c (Ωδ0), and assume that the support of ω0 does not intercept {|x| ≤
δ0}. This implies that ω0 ∈ C∞

c (Ωδ) for any 0 ≤ δ < δ0. Let X1
δ , . . . , X

k
δ be the basis

of H(Ωδ) satisfying condition (1). Define φi,δ solutions of (2) in Ωδ. Fix α1,0, . . . , αk,0

real numbers and define

uδ,0 ≡ KΩδ
[ω0] +

k∑
j=1

αj,0X
j
δ .

By Proposition 1 we have that

αi,0 =

∫
Ωδ

ω0φi,δ +

∮
Γi

uδ,0 · ds.



VORTEX DYNAMICS IN A 2D DOMAIN WITH HOLES 427

We begin our study of the small obstacle limit by exploring the behavior of φi,δ as
δ → 0. This is an exercise in elementary PDE, which we summarize in the following
result.

Lemma 1. Let φi, i = 1, . . . , k − 1, be the solutions of (2) in the unperturbed
domain Ω. For any i = 1, . . . , k, φi,δ is uniformly bounded. For i = 1, . . . , k − 1, φi,δ

converges uniformly to φi as δ → 0, uniformly outside any neighborhood of P , and φk,δ

converges uniformly to 0 outside any neighborhood of P when δ → 0. Furthermore,
there exists a constant C > 0 such that ‖∇φi,δ‖L2(Ωδ) ≤ C.

Proof. First note that, by the maximum principle, 0 ≤ φi,δ(x) ≤ 1 for all x ∈ Ωδ,
which proves uniform boundedness.

Next, we consider the behavior of φk,δ. Let R > 0 be such that Ωδ0 ⊆ {|x−P | ≤
R}. The function

Ψδ(x) ≡ log(R/|x− P |)
log(R/δ)

is the unique solution of⎧⎨
⎩

ΔΨδ = 0 in δ < |x− P | < R,
Ψδ = 1 on |x− P | = δ,
Ψδ = 0 on |x− P | = R.

We consider the domain Ω̃δ consisting of the domain Ωδ with the disk |x − P | < δ

removed. It is easy to see that φk,δ ≤ Ψδ on ∂Ω̃δ, as this boundary consists of
the union of the curves Γi, i = 0, . . . , k − 1 (where φk,δ vanishes and Ψδ > 0) with
{|x − P | = δ}, where Ψδ = 1 and φk,δ ≤ 1. Therefore, by the maximum principle,

0 ≤ φk,δ ≤ Ψδ in Ω̃δ. Next we observe that if | log δ|−1 ≤ |x− P | ≤ R,

Ψδ(x) ≤ logR + log | log δ|
logR− log δ

→ 0 as δ → 0,

which proves our assertion regarding φk,δ.
Next fix i < k and consider Φδ ≡ φi − φi,δ. The function Φδ is harmonic in Ωδ

and vanishes on all boundary components except Γδ
k, where it is bounded between 0

and 1. Therefore, the same argument used above for φk,δ applies to Φδ as well, which
proves the statement regarding φk,δ.

Finally, to show the L2 estimate on derivatives, we begin with the case j �= k. We
claim that ‖∇φj,δ‖L2(Ωδ) is monotonically decreasing as δ → 0. Indeed, let 0 < δ2 < δ1
and consider Eφj,δ1 the extension of φj,δ1 to Ωδ2 obtained by setting Eφj,δ1(x) = 0 for
x ∈ Ωδ2 \ Ωδ1 . The function Eφj,δ1 is defined in Ωδ2 and satisfies the same Dirichlet
data as φj,δ2 . However, φj,δ2 is harmonic and hence minimizes energy among functions
with the same boundary data. Therefore,

‖φj,δ2‖L2(Ωδ2
) ≤ ‖Eφj,δ1‖L2(Ωδ2

) = ‖φj,δ1‖L2(Ωδ1
).

This estimate implies the L2 bound for j = 1, . . . , k − 1. Next, let φ0,δ be defined
by 2 in Ωδ. The variational argument above applies to this function as well, so that
‖∇φ0,δ‖L2(Ωδ) is also monotonically increasing in δ and therefore bounded as δ → 0.

We observe that
∑k

i=0 φi,δ is a harmonic function in Ωδ which is identically equal to

1 on ∂Ωδ. Therefore,
∑k

i=0 φi,δ ≡ 1 and

∇φk,δ = −
k−1∑
i=0

∇φi,δ,
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and since all summands are uniformly bounded in L2 by the argument above, this
identity concludes the proof.

Remark. Note that the variational argument used in the proof of the L2 estimate
on derivatives given above assumed implicitly that Ωδ1 ⊂ Ωδ2 if δ2 < δ1. It is easy to
modify the argument to remove this implicit assumption, by comparing the L2 norm
of ∇φi,δ with the L2 norm of E∇φδ0 , where φδ0 is harmonic in Ω \ {|x − P | < δ0},
with φδ0 = φi,δ on ∂Ω and φδ0 = 0 on |x − P | = δ0. If the obstacles are not nested,
the quantity ‖∇φδ,j‖L2 may not be monotonic in δ, but the L2 bound is still valid.

Next we study the asymptotic behavior of Xj
δ and δ → 0. For each j = 1, . . . , k,

we denote by EXj
δ the extension of the vector field Xj

δ from Ωδ to Ω, obtained by

setting it to vanish inside Γk
δ . Regarding EXj

δ we have the following result.

Lemma 2. For each j = 1, . . . , k and δ > 0, the vector field EXj
δ is divergence-

free, in the sense of distributions, and its curl μj
δ ≡ curl EXj

δ is a measure supported

on Γk
δ with density given by the tangential component of Xj

δ . Moreover, μj
δ ⇀ 0 for

j = 1, . . . , k − 1 and μk
δ ⇀ δ(x− P ) weak-∗ bounded measures when δ → 0.

Proof. First we observe that EXj
δ is divergence-free, in the sense of distributions.

The vector field EXj
δ is divergence-free both in Ωδ, by construction, and in Ω \ Ωδ

because EXj
δ vanishes there. To show that a vector field is divergence-free as a

distribution it suffices to show that its integral against the gradient of an arbitrary
test function vanishes. Indeed, given that φ ∈ C∞

c (Ω) is a test function, we can
compute ∫

Ω

∇φ · EXj
δdx =

∫
Ωδ

∇φ ·Xj
δdx =

∫
Γk
δ

φ(x)Xj
δ (x) · n̂dS(x) = 0,

since Xj
δ is tangent to Γk

δ .

A similar calculation, integrating EXj
δ against ∇⊥φ and using the divergence

theorem proves that the curl of EXj
δ is a Dirac with smooth density supported on

the curve Γk
δ . More precisely, let μj

δ = curl EXj
δ as a distribution. If zδ = zδ(s) is a

parametrization by arc length of Γk
δ , with 0 ≤ s ≤ Lδ and φ ∈ C∞

c (Ω), we have

〈μδ, φ〉 =

∫ Lδ

0

φ(zδ(s))(X
j
δ · τ̂)(zδ(s)ds,

where τ̂ is the counterclockwise unit tangent vector to Γk
δ . In other words, μj

δ is a

Dirac supported on the curve Γk
δ with smooth density Xj

δ · τ̂ .
Next we use an adaptation of the variational argument used in Proposition 1 to

show that ‖Xj
δ‖L2(Ωδ) is nondecreasing in δ and therefore bounded when δ → 0 for all

j = 1, . . . , k−1. Take 0 < δ2 < δ1, and observe that EXj
δ1

has the same circulation as

Xj
δ2

in all boundary components. By the orthogonality of the Hodge decomposition,
the harmonic vector field minimizes energy in its cohomology class, which implies that

‖Xj
δ2
‖L2(Ωδ2

) ≤ ‖EXj
δ1
‖L2(Ωδ2

)‖Xj
δ1
‖L2(Ωδ1

).

As observed in the remark following the proof of Lemma 1, the argument above
makes the implicit assumption that Ωδ1 ⊂ Ωδ2 , but this assumption may easily be
removed.

Repeating the argument done for EXj
δ in the beginning of the proof, we see

that E∇⊥φi,δ is divergence-free in Ω, and we define curl E∇⊥φi,δ = νiδ, which are
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also smooth measures supported on Γk
δ . The density of these measures is given by

∇⊥φi,δ · τ̂ = −∇φi,δ · n̂, in contrast with EXj
δ . However, there is one important

difference between the μ and the ν measures. We have that 0 ≤ φi,δ ≤ 1 by the
maximum principle, and therefore νiδ ≤ 0 for i = 1, . . . , k − 1 and νkδ ≥ 0. The
distinguished sign obtained above, together with the fact that ∇⊥φi,δ is bounded in
L2 and the fact that the support of νiδ is contained in a ball of radius δ implies that
νiδ converges strongly as a bounded measure to zero for all i = 1, . . . , k; see [1].

For each i, j = 1, . . . , k, let aijδ be defined by

(13) EXj
δ =

k∑
i=1

aijδ E∇⊥φi,δ.

Taking the scalar product with EX l
δ, integrating in Ω, and using (10), it follows

that

aijδ = −
∫

Ωδ

Xi
δ ·X

j
δdx.

By the L2 estimate of Xj
δ for j = 1, . . . , k−1 and using the Cauchy–Schwarz inequality,

we conclude that |aijδ | is bounded if 1 ≤ i, j ≤ k − 1. Fix j = 1, . . . , k − 1 and take
the curl of (13) to obtain

μj
δ =

k−1∑
i=1

aijδ ν
i
δ + akjδ νkδ .

This identity implies that μj
δ is the sum of a measure that converges strongly to zero,

given by the summation above, with a distinguished sign measure, which may be
positive or negative depending on the sign of akjδ . This, together with the fact that

μj
δ(Ω) = 0, implies both that |μj

δ| → 0 and that |akjδ |νkδ → 0. We use the fact that

νkδ = −
∑k−1

i=0 νiδ to conclude that akjδ νjδ = ajkδ νjδ also converges to zero in bounded
measures for all j = 1, . . . , k − 1. Finally, we write

μk
δ =

k−1∑
j=1

ajkδ νjδ + akkδν
k
δ .

As before, the summation converges to zero in bounded measures, so μk
δ is asymptoti-

cally distinguished signed and therefore the total mass converges to the total variation,
which concludes the proof.

For j = 1, . . . , k − 1, we denote by Xj the unique vector field in H(Ω) with
vanishing circulation around Γi, i �= j, and unit circulation around Γj .

Lemma 3. We have that for any 1 ≤ p < 2,

EXj
δ → Xj ,

and

EXk
δ → KΩ[δ(x− P )] +

k−1∑
j=1

φj(P )Xj ,
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strongly in Lp(Ω) as δ → 0.
Proof. We can write

Xj
δ = KΩ[μδ

j ] +

k−1∑
l=1

hlj
δ X

j .

By Lemma 2, we have that μδ
k → δ(x−P ) weak-∗ bounded measures. By Proposi-

tion 1 and the fact that the circulation of Xk
δ vanishes around each Γl, l = 1, . . . , k−1,

we have

hlk
δ =

∫
Ω

φlμ
δ
kdx → φj(P ) as δ → 0.

For each 1 ≤ p < 2, BM ↪→ W−1,p compactly, and therefore, μδ → δ(x−P ) strongly
in W−1,p. Elliptic regularity implies that KΩ[μδ] → KΩ[δ(x − P )] strongly in Lp,
which concludes the proof of the case j = k.

For j = 1, . . . , k−1, we have that μδ
j → 0 weak-∗ bounded measures, and therefore,

using Proposition 1 and repeating the argument above concludes the argument.

4. The time-dependent problem. The results obtained thus far have been ex-
clusively about divergence-free vector fields in a multiply connected domain, without
dynamics. In this section we restrict our attention to solutions of the incompressible
2D Euler equations and derive the required a priori estimates.

For 0 ≤ δ ≤ δ0, let Ωδ be as before, a multiply connected domain with one of the
holes small. Fix ω0 ∈ C∞

c (Ωδ0) and α0 = (α1,0, . . . , αk,0) ∈ R
k and let uδ = uδ(x, t)

be the solution of the problem (11) with initial velocity uδ,0 = KΩδ
[ω0]+

∑k
j=1 αj,0X

j
δ .

As we noted before, existence and uniqueness of the smooth solution uδ is due to Kato
in [6]. Let ωδ = curl uδ be the vorticity, and αδ,j = αδ,j(t) be defined by the identity

(14) uδ = KΩδ
[ωδ] +

∑
αδ,jX

j
δ .

System (12) takes the form

(15)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tωδ + uδ · ∇ωδ = 0 in Ωδ × (0, T ),

uδ = KΩδ
[ωδ] +

∑k
j=1 αδ,j(t)X

j
δ in Ωδ × {t}, for 0 ≤ t < T,

αδ,j(t) =
∫
Ωδ

φδ,jωδdx + αj,0 −
∫
Ωδ

φδ,jω0dx in [0, T ),

ωδ(x, 0) = ω0(x) and αδ,j(0) = αj,0 in Ωδ × {t = 0},

It follows from the transport equation for vorticity in (15) and the fact that uδ is
divergence-free that

(16) ‖ωδ(·, t)‖Lp(Ωδ) = ‖ω0‖Lp(Ωδ) = ‖ω0‖Lp(Ω).

Beyond the a priori estimate given by (16), we require velocity estimates in order
to study the δ → 0 asymptotics. We have the following result.

Lemma 4. There exists a constant C = C(ω0,Ω) such that

‖KΩδ
[ωδ](·, t)‖L2(Ωδ) ≤ C.
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Moreover, for any 1 ≤ p < 2,

‖KΩδ
[ωδ](·, t) −KΩ[ωδ](·, t)‖Lp(Ωδ) → 0,

as δ → 0.
Proof. We write KΩδ

[ωδ] = ∇⊥ψδ, with ψδ the unique solution of{
Δψδ = ωδ in Ωδ,
ψδ = 0 on ∂Ωδ.

Multiply this equation by ψδ and integrate by parts to obtain the energy identity

(17)

∫
Ωδ

|∇ψδ|2dx = −
∫

Ωδ

ψδωδdx.

Next we consider ψ0, the unique solution of{
Δψ0 = |ωδ| in Ω,
ψ0 = 0 on ∂Ω.

We note that ψ0 is nonpositive in Ω, and, in particular, in Ωδ as well. The
functions ψ0 − ψδ and ψ0 + ψδ are both nonpositive on ∂Ωδ and have nonnegative
laplacians in Ωδ. By the maximum principle, they are both nonpositive in Ωδ, which
implies that |ψδ| ≤ −ψ0, which, by elliptic regularity and Sobolev imbeddings, implies
that

(18) ‖ψδ‖L∞(Ωδ) ≤ C‖ω0‖Lp ,

for any p > 2. We go back to (17) using (18) and Hölder’s inequality to conclude the
proof of the first assertion.

For the second assertion, let φδ be the unique solution of{
Δφδ = ωδ in Ω,
φδ = 0 on ∂Ω.

We have that KΩ[ωδ] = ∇⊥φδ. Let Wδ = ψδ − φδ, which satisfies the system

⎧⎨
⎩

ΔWδ = 0 in Ωδ,
Wδ = 0 on ∂Ω,
Wδ = −φδ on Γk

δ .

By elliptic regularity, ‖φδ‖W 2,p ≤ ‖ω0‖Lp , and therefore φδ is bounded in Γk
δ .

Using the argument in Lemma 1, we see that Wδ → 0 uniformly away from P . Let
Φ ∈ C∞(Ω) be such that Φ = 0 in a neighborhood U0 of P and Φ = 1 outside a larger
neighborhood of U1 of P . We can write

div(Φ∇Wδ) = ∇Φ · ∇Wδ in Ωδ,

multiplying this identity by Wδ, integrating in Ωδ, and integrating by parts leads to∫
Ωδ

Φ|∇Wδ|dx = (1/2)

∫
Ωδ

(ΔΦ)|Wδ|2dx,
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which in turn leads to the estimate:

‖∇Wδ‖2
L2(Ωδ\U1

) ≤ C‖Wδ‖L2(Ωδ\U0
) → 0 as δ → 0.

The family {∇Wδ} is bounded in L2(Ω) since KΩ[ωδ] is trivially bounded in L2, and
we have established earlier in this proof that KΩ[ωδ] is bounded in L2 as well. For any
p > 2, given ε > 0, we can choose r > 0 such that ‖∇W δ‖Lp((B(P,r)) < ε/2, by using
the boundedness of ∇W ε in L2 and the Hölder equality. Next we choose δ sufficiently
small so that ‖∇W δ‖Lp(Ω\B(P ;r)) ≤ ε/2, which is possible by the convergence in L2

outside the compacts proved above. This concludes the proof.

Remark. We observe that the proof above also yields the estimate

‖KΩδ
[ω]‖L2 ≤ C‖ω‖2

Lp ,

for any ω ∈ Lp(Ωδ), p > 2.

5. Passage to the limit. We now state and prove the main result of this article.

Theorem 1. Fix 1 ≤ p < 2. There exists a subsequence δk such that ωδk

converges weak-∗ to ω in L∞((0, T );Lp′
(Ω)), which satisfies (in a weak sense) the

system

(19)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωt + v · ∇ω = 0,

v = KΩ[ω + αk,0δ(x− P )] +
∑k−1

j=1 (βj(t) + αk,0φj(P ))Xj ,

βj(t) =
∫
Ω
φj(x)ω(x, t)dx + αj,0 −

∫
Ω
φj(x)ω0(x)dx, j = 1, . . . , k − 1,

ω(x, 0) = ω0(x) and βj(0) = αj,0.

Here, P marks the location where the small obstacle disappeared, αk,0 is the circulation
of the harmonic part of the initial velocity around the small obstacle, and φj is the
harmonic function in Ω such that φj = 1 on the boundary component Γj and φj = 0
on ∂Ω \ Γj.

Proof. Since {ωδ} is bounded in Lp′
(Ω) by (16), we use Alaoglu’s theorem to

extract a subsequence, which we will not rename, which converges weak-∗ to ω ∈
L∞((0, T );Lp′

(Ω)).

The bulk of the proof is to pass to the limit in uδ. We have

uδ = KΩδ
[ωδ] +

k∑
j=1

αδ,j(t)X
j
δ ,

with

αδ,j(t) =

∫
Ωδ

φδ,jωδdx + αj,0 −
∫

Ωδ

φδ,jω0dx.

First, by Lemma 4 we have

‖KΩδ
[ωδ] −KΩ[ω]‖Lp(Ω) ≤ ‖KΩδ

[ωδ] −KΩ[ωδ]‖Lp(Ω) + ‖KΩ[ωδ] −KΩ[ω]‖Lp(Ω)

≤ ‖KΩ[ωδ] −KΩ[ω]‖Lp(Ω) + o(1).
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Next we observe that the operator KΩ maps Lp′
continuously into W 1,p′

, which is
compactly embedded in Lp for any 1 ≤ p < 2. Therefore, KΩ[ωδ] → KΩ[ω] strongly
in Lp, and hence

(20) KΩδ
[ωδ] → KΩ[ω] strongly in Lp(Ω) as δ → 0

Next we need to study the behavior of the harmonic part of uδ. Extending ωδ

and φδ,j to Ω by setting them to vanish in Ω \ Ωδ, we have∫
Ωδ

φδ,jωδdx =

∫
Ω

φδ,jωδdx.

By Lemma 1, φδ,j is uniformly bounded in L∞ and converges to φj uniformly in
compacts which exclude P for j = 1, . . . , k − 1, and converges to zero uniformly in
compacts which exclude P for j = k. For each ε > 0 we have

‖φδ,k‖Lp(B(P,r)) ≤ Cr2/p <
ε

2

if we choose r = r(ε) sufficiently small. By the uniform convergence of φδ,k outside
B(P, r) we may choose δ = δ(ε) such that ‖φδ,k‖Lp(Ω\B(P,r) ≤ ε/2. This implies
that φδ,k → 0 strongly in Lp(Ω). The same argument applied to φδ,j − φj , for j =
1, . . . , k − 1, implies that φδ,j → φj strongly in Lp(Ω). Now, ωδ and φδ,k form a
weak-strong pair, so that we have∫

Ω

φδ,kωδdx → 0 as δ → 0.

Furthermore, ωδ and φδ,j − φj also form a weak-strong pair, so that∫
Ω

φδ,jωδdx →
∫

Ω

φjωdx as δ → 0 for j = 1, . . . , k − 1.

Clearly, the same convergence is true replacing ωδ by ω0, and therefore

(21) αδ,j →
∫

Ω

φjωdx + αj,0 −
∫

Ω

φjω0dx as δ → 0, for j = 1, . . . , k − 1,

and

(22) αδ,k → αk,0 as δ → 0.

For each j = 1, . . . , k − 1 we define

βj = βj(t) ≡
∫

Ω

φjωdx + αj,0 −
∫

Ω

φjω0dx,

so that (21) reads simply αδ,j → βj as δ → 0.
By Lemma 3 and (21) we have

(23)

k−1∑
j=1

αδ,jX
j
δ →

k−1∑
j=1

βjX
j
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strongly in L2, and therefore in Lp, 1 ≤ p < 2.
By Lemma 3 and (22) we have

(24) αδ,kX
k
δ → αk,0

⎛
⎝KΩ[δ(x− P )] +

k−1∑
j=1

φj(P )Xj

⎞
⎠ ,

strongly in Lp, for 1 ≤ p < 2.
Putting together (20), (23), and (24), we conclude that uδ → v strongly in

L∞((0, T );Lp(Ω)), with v given by

v(x, t) = KΩ[ω + αk,0] +

k−1∑
j=1

(βj + φj(P ))Xj .

With v and βj defined above, the initial conditions and the modified Biot–Savart
relation on the limit system (19) are satisfied, pointwise in time. The equation for
the propagation of vorticity is satisfied in a weak sense, because the weak convergence
of the vorticities is enough to pass to the limit in the time-derivative term, whereas,
after integration by parts, the convergence of the nonlinear term is conditioned by the
behavior of the product uδωδ. Our argument above made this product into a weak-
strong pair, which therefore converges to vω in L∞((0, T );L1(Ω)). This concludes the
proof.

Remark. Note that the asymptotic correction due to the presence of the small
obstacle not only adds a point vortex at the limit point, but it also adds a correction
to the remaining harmonic components of the flow. As an illustration, let us look at
the special case ω0 = 0. Harmonic vector fields are stationary solutions of the Euler
equations, and one may look specifically at the asymptotic behavior of the vector field
Xk

δ . Its circulation is 1 around Γk and zero around Γj , j = 1, . . . , k−1. By Lemma 3,

this vector field converges in Lp, 1 ≤ p < 2, to H ≡ KΩ[δ(x− P )] +
∑k−1

j=1 φj(P )Xj .
If we formally apply Proposition 1 to H, we find

φj(P ) =

∫
Ω

δ(x− P )φj(P )dx +

∮
Γj

H · ds,

which implies that ∮
H · ds = 0,

preserving the circulation around Γj of the approximations Xk
δ , as would be desired.

In other words, the correction to the harmonic part of the flow exists to compensate
for an imbalance of circulation around the remaining components of the boundary that
appears when the flow around the small boundary component becomes that induced
by a point vortex.

Remark. Theorem 1 is a compactness result, and it implies convergence for the
full family of approximations only if we have uniqueness for the limit problem. This is
available only in the case αk,0 = 0, because then the limit problem is the standard 2D
Euler equations, and Kato’s theorem includes uniqueness, even at the level of weak
solutions, provided that the initial data is sufficiently smooth. As in [3], uniqueness
for problem (19) with smooth initial data and αk,0 �= 0 is an interesting open problem.
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6. Conclusion. It is natural to ask at this point whether our analysis can be
extended to the exterior domain, i.e., the full plane with k-holes instead of a bounded
domain with k-holes. This is specially desirable if we wish to compare the result
obtained here with that in [3], where we studied the asymptotic behavior of ideal flow
in the exterior of a single small hole in the plane. First, the exterior domain version
of Kato’s well-posedness result is available. It is due to Kikuchi; see [7]. Therefore,
the small obstacle limit for the exterior flow around multiple holes is a reasonable
problem to pose.

We chose to work on a bounded domain because this greatly simplifies the prob-
lem, allowing us to focus the analysis on the small obstacle and not on infinity. Our
analysis relies on the boundedness of the domain in many ways, most notably on
arguments using the maximum principle. To extend our argument to exterior do-
mains would require detailed knowledge of the asymptotic behavior of the velocity at
infinity, something which we had to work hard for in the case of a single obstacle -
by conformally mapping the exterior domain to the exterior of a disk and working
explicitly there. With flows on the exterior of three or more holes there is no con-
venient symmetric domain conformally equivalent to the original one, so the work
would become even more complicated. Exterior flow with two holes is conformally
equivalent to an annulus, a well-known fact (see [9] and references therein), so that
perhaps that case could be done by adapting the argument on [3] more directly, using
the estimates for the conformal map developed in [9] when one of the holes becomes
small. In the end, extending the present work to the exterior domain is an arduous
technical challenge, and it will probably lead to precisely the same result.

Another natural question is what happens if one wishes to make two or more
holes small. This is a trivial extension of our work, because the treatment used here
shows that the asymptotics when two holes become small independently commute
with each other. Therefore, two holes may be taken small in either order or simulta-
neously, leading to the same behavior. Also, this work extends naturally to compactly
supported initial vorticities in Lp, p > 2. Finally, we leave open the formulation of a
viscous version of the present result. A small obstacle result for viscous flow in the
exterior of a single obstacle was obtained in [4], and it is natural to ask whether such
an extension could be obtained for several obstacles as well, since this is the physically
meaningful case.

Finally, one natural extension of the small obstacle problem with many small
obstacles is the homogenization problem, where one looks for an effective equation
obtained from flow outside a large number of small holes. Such a problem has been
recently addressed by Lions and Masmoudi in [8]. The problem itself, as formulated
in [8], has very little to do with the problem we treated here, in large part due to
scaling. In their problem, both the velocity and the viscosity scale in such a way as
to enforce strict two-scale asymptotic behavior. Consequently, there is no limit flow,
but a generalized limit flow depending, independently and simultaneously, on the
slow and fast variables and satisfying an appropriate PDE in this extended domain.
In particular, the topological complications live in the microscopic (fast) scale. It
should be noted, however, that some of the difficulties involved in our analysis also
appear in the homogenization problem studied by Lions and Masmoudi. In their
two-scale analysis, the harmonic part of the flow becomes a new unknown, of the
form

∑
i ai(x, t)Hi(y), where x is the slow (physical) variable, y is the fast variable,

{Hi} is a basis for the harmonic vector fields in a microscopic periodic cell, and ai
are the components of the harmonic part. Part of their problem is to formulate
an appropriate evolution equation for ai and study its limit. The equation for the
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evolution of v̂ in [8], equation (38), is related to the equation for β in (19), with one
important distinction—without Proposition 1, Lions and Masmoudi have an equation
for the temporal evolution of the harmonic part, instead of a formula for it in terms
of present time vorticity. It would be interesting to reformulate the analysis in [8] in
terms of vortex dynamics, using Proposition 1.
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Abstract. This article studies propagating wave fronts in an isothermal chemical reaction
A + 2B → 3B involving two chemical species, a reactant A and an autocatalyst B, whose diffusion
coefficients, DA and DB , are unequal due to different molecular weights and/or sizes. Explicit
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of every speed v ≥ v∗ and there does not exist any travelling wave of speed v < v∗. New to the
literature, it is shown that v∗ ∝ v∗ ∝ DB/DA when DB ≤ DA. Furthermore, when DA ≤ DB , it is
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general isothermal autocatalytic chemical reactions A + nB → (n + 1)B of arbitrary order n ≥ 1.
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1. Introduction. In this paper we consider an isothermal autocatalytic chemical
reaction step governed by the cubic reaction relation

A + 2B → 3B with rate kab2.

Here, k > 0 is the reaction rate, and a and b are the concentrations of reactant A and
autocatalyst B, respectively. Well documented in the literature, the cubic reaction re-
lation has appeared in several important models of real chemical reactions, e.g., almost
isothermal flames in the carbon-sulphide-oxygen reaction (Voronkov and Semenov
[22]), iodate-arsenous acid reactions (Saul and Showwalter [19]), hydroxylamine-
nitrate reactions (Gowland and Stedman [10]), as well as other applications (Aris,
Gray, and Scott [1] and Sel’kov [20]).

Experimental observations demonstrate the existence of propagating chemical
wave fronts in chemical systems for which cubic catalysis forms a key step [11, 12, 13,
24]. These wave fronts, or travelling waves, arise due to the interaction of reaction
and diffusion. Quite often when a quantity of autocatalyst is added locally into an
expanse of reactant which is initially at uniform concentration, the ensuing reaction
is observed to generate wave fronts which propagate outward from the initial reaction
zone, consuming fresh reactant ahead of the wave front as it propagates. This is the
phenomenon to be addressed in this paper.

For this purpose, we consider a one-dimensional slab geometry and the following
partial differential equations (PDEs) that govern mass concentration and molecular
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diffusion for the cubic reaction scheme:

∂a

∂t
= DA

∂2a

∂x2
− kab2,

∂b

∂t
= DB

∂2b

∂x2
+ kab2,

where DA and DB are the constant diffusion rates of A and B, respectively. Initial
conditions, in accordance with the observed experiments, are

a(x, 0) = a0, b(x, 0) = g(x) ∀x ∈ R,

where a0 is a positive constant representing the initial uniform distribution of A and
g(x) is a nonnegative function with compact support. It is not very difficult to derive
from the PDEs that the solution has the following behavior at x = ±∞:

a(x, t) → a0, b(x, t) → 0 as |x| → ∞ ∀ t ≥ 0.

Introducing dimensionless parameters, dependent and independent variables

D =
DB

DA
, ā =

a

a0
, b̄ =

b

a0
, t = ka2

0t, x = x

√
ka2

0

DA
, ḡ :=

g

a0
,

and dropping the bars, the initial value problem takes the dimensionless form⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂a

∂t
=

∂2a

∂x2
− ab2, x ∈ R, t > 0,

∂b

∂t
= D

∂2b

∂x2
+ ab2, x ∈ R, t > 0,

a(x, 0) = 1, b(x, 0) = g(x), x ∈ R, t = 0.

(1.1)

Here D measures the rate of diffusion of the autocatalyst relative to that of the
reactant.

In the special case D = 1, the function a + b satisfies a linear heat equation and
can be solved explicitly; thus the system is reduced to a single nonlinear equation.
For scalar equations, significant results are established and rich theories are available;
see, for example, the works of Aronson and Weinberger [2], Chen and Guo [7], Fife
and McLeod [8], and Sattinger [18] and the excellent review paper by Xin [23] for
detailed information on single equations. The primary concern of the present paper
is the case D �= 1, which arises when the chemical species involved have different
molecular weights and/or sizes. In particular, enzyme reactions may involve large
enzyme molecules and smaller substrate molecules, leading to significantly different
rates of diffusion. The system (1.1) also arises in epidemiology (Bailey [3]), where a
represents the population density of healthy individuals and b the population density
of infected individuals; again, when healthy individuals are significantly more or less
mobile than the infected, D is far away from unity.

The wave front propagating phenomenon corresponds to the following behavior
of solutions to (1.1): After a certain time of initiation, there are two wave fronts
expanding towards x = ±∞ at a certain speed v. In between the two fronts, the
reactant is consumed and thus a ≈ 0; since each unit of reactant consumed produces
exactly one unit of autocatalyst, one can expect that b ≈ 1 inside the wave front.
Outside the wave front, the reactant mixture is basically unstirred; thus a ≈ 1 and b ≈
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0. Focusing on the right-hand front, one expects that (a(x, t), b(x, t)) = (α(z), β(z)),
where z = x− vt and (α, β) solves the following system:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

αzz + vαz = αβ2, α ≥ 0 ∀ z ∈ R,

Dβzz + vβz = −αβ2, β ≥ 0 ∀ z ∈ R,

limz→∞( α(z), β(z) ) = (1, 0),

limz→−∞( α(z), β(z) ) = (0, 1).

(1.2)

Here v > 0 is the constant travelling speed.
The Travelling Wave Problem. Given v > 0, find (α, β) ∈ [C2(R)]2 that satisfies

(1.2).
In this paper we study the existence and nonexistence of the travelling waves,

which can be generated from the initial value problem (1.1) as just described. One
of the most important questions in the study of (1.2) is the existence of a minimum
speed travelling wave and the estimate of the minimum speed vmin. In particular, for
what range of v, in relation to D, does a travelling wave solution exist?

For quadratic autocatalytic (A+B → 2B), namely, for the travelling wave prob-
lem related to the dynamics

∂α

∂t
=

∂2α

∂x2
− αβ,

∂β

∂t
= D

∂2β

∂x2
+ αβ,

Billingham and Needham proved that there is a travelling wave if and only if v ≥ 2
√
D;

namely, the minimum wave speed is exactly 2
√
D (see also the works of Billingham,

Merkin, and Needham [4, 5, 14, 15, 16]). Focant and Gallay [9] investigated the
existence and stability of travelling waves when both the quadratic and cubic nonlin-
earities are present in the system.

For the cubic autocatalysis, i.e., for (1.2), the answer is far from complete. Based
on an invariant region argument, it was shown in [4] that a travelling wave exists if its
speed v ≥ 2

√
D. A more recent work [17] by one of the authors improved the result

of [4] to the following: for (1.2),

(a) there exists a solution if v ≥
{ √

2D − 1 when D ≥ 1,
√
D when D < 1;

(b) no solution exists if v ≤
{ √

D/6 when D ≥ 1,

D/
√

6 when D < 1.

This result, which comes out of a much more delicate analysis than that in [4], supplied
both upper and lower bounds on minimum wave speed; nevertheless, it is still far
from answering the key question of providing a good estimate of minimum speed. In
particular, it falls short of providing an accurate order of vmin in terms of small D.
Numerical simulation by the authors of [4] suggests that vmin ∝ D when D � 1.
Furthermore, it is well known that vmin = 1/

√
2 when D = 1, but neither the results

in [4] nor the results in [17] recover this special case from their results of the general
case. In this paper we shall provide affirmative answers to these questions and fill in
the gap between the general case and the special case of D = 1.

Theorem 1. Suppose D < 1. For the travelling wave problem (1.2),

(i) there exists a unique (up to translation) solution if v ≥ 4D√
1 + 4D

;
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(ii) there does not exist any solution if v <
D√
2
.

Clearly the above result provides a pretty satisfying bound on the range of wave
speeds. In particular, it shows that vmin(D) ∝ D for small D.

One of the important issues in discussing existence and nonexistence of a travelling
wave solution is whether the set of v of the speed for which existence holds is a single
interval. While there are heuristic and numerical arguments in [4] demonstrating that
the set of admissible wave speed is an interval [vmin,∞), for the moment we can only
supply a rigorous proof for the case D ≥ 1.

Theorem 2. Suppose D ≥ 1. There exists a positive constant vmin such that
(1.2) admits a solution if and only if v ≥ vmin. In addition, vmin satisfies the estimate

√
D

2
≤ vmin ≤

√
D

1 + 1/D
.

It is clear from Theorem 2 that in the special case of D = 1, (1.2) admits a
solution if and only if v ≥ 1/

√
2.

The general nth order isothermal autocatalytic chemical reaction step is governed
by the chemical reaction relation

A + nB → (n + 1)B with rate kabn.

We can use the same idea developed in this paper to establish lower bounds for the
existence of a travelling wave solution and upper bounds for nonexistence. For this
general case, the governing equations are, after proper scaling,

∂a

∂t
=

∂2α

∂x2
− abn,

∂b

∂t
= D

∂2b

∂x2
+ abn,

where D = DB/DA and the initial value is the same as that in (1.1). The correspond-
ing travelling wave problem is to solve⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

αzz + vαz = αβn, α ≥ 0 ∀ z ∈ R,

Dβzz + vβz = −αβn, β ≥ 0 ∀ z ∈ R,

limz→∞( α(z), β(z) ) = (1, 0),

limz→−∞( α(z), β(z) ) = (0, 1).

(1.3)

Theorem 3. Suppose D < 1 and n ≥ 2. A unique (up to translation) travelling
wave solution exists for (1.3) if v ≥ 4D/

√
1 + 4D. On the other hand, there exists no

solution for (1.3) if v ≤ D/
√
K(n), where K(n) is a constant which increases with n.

In particular, K(1) = 1/4, K(2) = 2.
Theorem 4. Suppose D ≥ 1 and n ≥ 1. There exists a positive constant vmin

such that (1.3) admits a travelling wave if and only if v ≥ vmin. In addition, vmin is
bounded by √

D

K(n)
≤ vmin ≤

√
D

K(n)

1√
1 − (1 − 1

D )

√
4K(n)+1−1√
4K(n)+1+1

,

where K(n) is the same constant as in Theorem 3.
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We note in passing the recent works to study the spatiotemporal profiles of L1

initial values by Bricmont, Kupiainen, and Xin [6] and the steady-state solutions by
Shi and Wang [21].

The organization of this paper is as follows. Section 2 contains preliminary anal-
ysis and an outline of our approach. The case D ≥ 1 is discussed in section 3, and
the case D < 1 in section 4.

2. Preliminary.

2.1. A scalar equation. First we review the existence of a travelling wave
solution of unit speed to the equation

uzz + uz = ku(1 − u)n, 0 ≤ u ≤ 1 on R, u(−∞) = 0, u(∞) = 1.(2.1)

Here n ≥ 1 is a parameter, and k is a positive constant. We seek upper bounds on k
for the existence of a solution. Since a solution, if it exists, satisfies uz > 0 on R, we
can write u′ = Q(u) and work on the (u,Q) phase plane. The resulting equation on
the phase plane is {

QQ′ + Q = ku(1 − u)n ∀u ∈ [0, 1],

Q(0) = 0, Q > 0 on (0, 1).
(2.2)

There is a one-to-one correspondence between solutions to (2.1) and solutions to (2.2)
satisfying the additional requirement Q(1) = 0.

Lemma 2.1. For each n ≥ 1 and k > 0, there exists a unique solution Q =
Q(n, k; ·) to (2.2). In addition, there exists a positive constant K(n) such that
Q(n, k; 1) = 0 if k ∈ (0,K(n)] and Q(n,K; 1) > 0 if k ∈ (K(n),∞). Consequently,
(2.2) admits a solution if and only if k ∈ (0,K(n)].

In addition, K(n) is a strictly increasing function of n and K(1) = 1
4 ,K(2) = 2.

Proof. The existence of Q and K follows by the comparison principle. The exact
value of K(1) is calculated by a known fact that the function K(1)u(1−u) is concave,
and thus the minimum wave speed v = 1 satisfies 1 = 2

√
K(1); hence K(1) = 1/4.

In the case n = 2, the exact solution is given by Q = u(1 − u); thus K(2) = 2. We
omit details, because it is a standard argument.

2.2. Basic properties of travelling waves. Suppose (v, α, β) solves (1.3).
Then [αz + vα+Dβz + vβ]z = 0, so that αz +Dβz + v(α+ β) is a constant function.
Using the boundary conditions, we find that

αz + Dβz + v(α + β − 1) = 0 on R.

With the new variable w = βz, (1.3) is equivalent to the following third order ODE
system ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

αz = v(1 − α− β) −Dw,

βz = w,

wz = −D−1(αβn + vw),

limz→∞(α(z), β(z), w(z)) = (1, 0, 0),

limz→−∞(α(z), β(z), w(z)) = (0, 1, 0).

(2.3)

It is clear that in the (α, β, w) phase space, there are two equilibrium points: (0, 1, 0)
and (1, 0, 0). The following are a few basic properties of travelling wave solutions.
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Proposition 1. The systems (1.3) and (2.3) are equivalent. Any solution (α, β)
to (1.3) or (α, β, w) to (2.3) has the following properties:

(1) αz > 0 > βz on R.
(2) α + β < 1 on R if D < 1, α + β ≡ 1 if D = 1, and α + β > 0 if D > 1.
(3) v =

∫∞
−∞ α(z)βn(z) dz > 0.

(4) The equilibrium point (0, 1, 0) of (2.3) is a saddle with a two-dimensional
stable manifold and a one-dimensional unstable manifold. The eigenvalues
and associated eigenvectors are

λ1 = −vD−1, eλ1 = (0,−1,−λ1)
T ,

λ2 = − 1
2 (
√
v2 + 4 + v), eλ2 = (λ2(Dλ2 + v),−1,−λ2)

T ,

λ3 = 1
2 (
√
v2 + 4 − v), eλ3

= (λ3(Dλ3 + v),−1,−λ3)
T .

(5) When n > 1, the equilibrium point (1, 0, 0) is degenerate; it has a two-
dimensional stable manifold and a one-dimensional center manifold. The
eigenvalues and associated eigenvectors are

μ1 = −v, eν1
= (1, 0, 0)T ,

μ2 = −vD−1, eν2
= (0,−1,−vD−1)T ,

μ3 = 0, eν3
= (1,−1, 0)T .

All items except (3) were proved in [4]. The equation in property (3) is obtained by
integrating the equation involving αzz in (1.3) with the boundary conditions α(∞) = 1
and α(−∞) = 0.

The third property in the proposition demonstrates that v > 0. The fourth
property clearly tells us that the travelling wave we are looking for is indeed the one-
dimensional unstable manifold associated with the equilibrium (0, 1, 0). Hence, given
v > 0, a travelling wave of speed v, if it exists, is unique up to a translation.

2.3. New setting—A nonautonomous 2×2 system. Unlike in earlier works
[4, 17], here we shall use a transformation to turn the third order autonomous system
(2.3) into a second order nonautonomous system, using u := 1−β as the independent
variable. This is allowed since for the solution of interest, βz < 0, and thus z → 1−β(z)
has an inverse. To make the resulting system as simple as possible, we also scale the
other variables. Hence, we introduce

u = 1 − β, A =
Dα

v2
, y =

vz

D
, κ :=

D

v
.

The system of differential equations (1.3) becomes{
uyy + uy = A(1 − u)n on R,

Ay = κ2(u + uy) −DA on R.

Since uy > 0 for the solution of interest, we can use u as the independent variable.
Introducing P (u) = uy, we have an equivalent system of second order nonautonomous
(singular) ODEs: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

PP ′ = A[1 − u]n − P ∀u ∈ [0, 1],

PA′ = κ2[P + u] −DA ∀u ∈ [0, 1],

P (u) > 0, A(u) > 0 ∀u ∈ (0, 1),

P (0) = 0, A(0) = 0.

(2.4)
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Lemma 2.2. For every D > 0 and κ > 0, (2.4) admits a unique solution. In
addition,

P (u) = λu + O(u2), A(u) = λ(1 + λ)u + O(u2) as u ↘ 0,(2.5)

where

λ := 1
2 (
√

4κ2 + D2 −D) (the only positive root to λ(λ + D) = κ2).

Furthermore, A′(u) > 0 for all u ∈ [0, 1), and there are only two possible cases:
(a) P (1) > 0: there does not exist any travelling wave solution to (1.3).
(b) P (1) = 0: there exists a travelling wave solution to (1.3), unique up to trans-

lation.
Proof. We divide the proof into several steps.
1. A solution to (2.4) corresponds exactly to the part of the one-dimensional

unstable manifold associated with the equilibrium point (0, 1, 0) of the autonomous
system (2.3) that has the property α, β > 0 and w < 0. Hence, for some δ ∈ (0, 1],
(2.4) admits a unique solution in [0, δ). The solution satisfies the asymptotic expansion
(2.5) and can be extended as long as P > 0.

2. It is easy to see that A cannot hit zero before P does, since otherwise, PA′ =
κ2(p + u) > 0 at A = 0 and P > 0, which is impossible. If limu↗δ P (u) = 0 at some
δ ∈ (0, 1), then lim infu↗δ P (u)P ′(u) ≤ 0, and thus A(δ) := limu↗δ A(u) = 0. But
the equation for A gives PA′ > κ2δ/2 > 0 for all u sufficiently close to δ from below,
which contradicts A(δ) = 0. Since the system has at most a linear growth in P and
A, the solution can be uniquely extended to [0, 1) and P > 0, A > 0 in (0, 1).

3. Now we show that A′ > 0 on [0, 1). From the asymptotic behavior (2.5),
A ∈ C1([0, 1)) and A′(0) = λ(λ + 1) > 0. Also a combination of the two equations in
(2.4) yields

P [κ2(P + u) −DA]′ = −D[κ2(P + u) −DA] + κ2A(1 − u)n.

Gronwall’s inequality then gives κ2(P + u) −DA > 0 in (0, 1). Thus,

0 < A < D−1κ2(P + u) in (0, 1), A′ > 0 in [0, 1).

4. Since (P +u)′ = A(1−u)n/P > 0 in (0, 1), P +u is strictly increasing in (0, 1)
so that limu↗1 P (u) exists. To show that it is finite, observe that when P ≥ 1,

[P + u]′ ≤ P [P + u]′ = A(1 − u)n ≤ D−1κ2(P + u)(1 − u)n.

This implies that P + u is bounded uniformly in u ∈ [0, 1); thus P (1) := limu↗1 P (u)
exists and is finite. Consequently, A(1) := limu↗1 A(u) also exists and is finite.

5. If P (1) > 0, we have a classical solution of (2.4) on [0, 1]. Since a travelling
wave is required to have u = 1−β ≤ 1, we see that there is no travelling wave solution
to (1.3).

6. Suppose P (1) = 0. Since [P+u]′ > 0 in (0, 1), we have P (u)+u < P (1)+1 = 1;
i.e., P (u) < 1 − u for all u ∈ [0, 1). Since κ2(P + u) −DA > 0 in (0, 1), we see that

A(1) =

∫ 1

0

κ2[P (u) + u] −DA(u)

P (u)
du

≥
∫ 1

0

κ2[P (u) + u] −DA(u)

1 − u
du ≥

∫ 1

0

κ2[u− 1]

1 − u
du +

∫ 1

0

κ2 −DA(u)

1 − u
du.
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Since DA(u) < DA(1) ≤ κ2(P (1)+1) = κ2 for all u ∈ (0, 1), for the last integral to be
convergent, we must have A(1) = κ2/D. It is then easy to see that α = DA/κ2 → 1
as u → 1. Transferring back to the original variable z, we then obtain a travelling
wave solution to (1.3).

In what follows, we shall estimate upper and lower bounds of A/u; thus Lemma
2.1 can be applied to generate upper and lower bounds of vmin.

3. The case D ≥ 1. In this section we deal with the case of D ≥ 1.
Lemma 3.1. Suppose D ≥ 1. Then DA(u) ≥ κ2u for all u ∈ [0, 1]. Conse-

quently, there is no travelling wave solution to (1.3) when κ2 > DK(n), i.e., when
v <

√
D/K(n).

Proof. If D = 1, A(u) = κ2u for all u ∈ [0, 1]. When D > 1, for every u ∈ (0, 1),

P [DA− κ2u]′ = −D[DA− κ2u] + (D − 1)κ2P > −D[DA− κ2u].

In addition, when u is sufficiently small, DA(u) = D(1+λ)λu+O(u2) > [D+λ]λu =
κ2u. Applying Gronwall’s inequality, we derive that DA > κ2u on (0, 1).

Now suppose κ2 > DK(n). Let k̂ ∈ (K(n), k2/D). Then A(u) ≥ k̂u on [0, 1] so
that

PP ′ + P = A(1 − u)n ≥ k̂u(1 − u)n ∀u ∈ [0, 1].

We compare P (u) and the solution Q(n, k̂;u) given in Lemma 2.1. Using a Taylor

expansion, we can show that P (u) > Q(n, k̂;u) for all u ∈ (0, ε] for some ε > 0. In
the interval [ε, 1] we can use the regular comparison principle to show that P (u) >

Q(n, k̂;u) for all u ∈ [ε, 1). In particular, P (1) ≥ Q(n, k̂; 1) > 0, so that there is no
travelling wave solution to (1.3). Since κ = D/v, the condition κ2 > DK(n) is the
same as v <

√
D/K(n).

Lemma 3.2. Suppose D > 1. Then,

A(u) < λ(1 + λ)u, P (u) < λu ∀u ∈ (0, 1).

Consequently, there exists a travelling wave solution to (1.3) when λ(λ + 1) ≤ K(n),
i.e., when

v ≥
√

D

K(n)

1√
1 − (1 − 1

D )

√
4K(n)+1−1√
4K(n)+1+1

.

Proof. A higher order Taylor expansion near u = 0 shows that A < λ(λ + 1)u
and P < λu for all sufficient small positive u. Set

B̂ = sup{b ∈ (0, 1) | P (u) < λu, A(u) < λ(1 + λ)u ∀u ∈ (0, b)}.

We show that B̂ = 1. Suppose on the contrary that B̂ < 1. Then either P (B̂)−λB̂ = 0
or A(B̂) − λ(1 + λ)B̂ = 0. In (0, B̂],

P [A− λ(1 + λ)u]′ = κ2(P + u) −DA− λ(1 + λ)P

= λ(D + λ)(P + u) −DA− λ(1 + λ)P

= −D[A− λ(1 + λ)u] + λ(D − 1)(P − λu)

≤ −D[A− λ(1 + λ)u].
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Gronwall’s inequality then implies that A < λ(λ + 1)u on (0, B̂]. Similarly, for all
u ∈ (0, B̂],

P [P − λu]′ = −(1 + λ)P + A(1 − u)n

= −(1 + λ)(P − λu) − λ(1 + λ)u + A(1 − u)n

< −(1 + λ)(P − λu).

Gronwall’s inequality shows that P < λu on (0, B̂]. We reach a contradiction. This
proves that B̂ = 1; i.e., P (u) < λu and A(u) < λ(1 + λ)u for all u ∈ (0, 1).

Suppose λ(1+λ) ≤ K(n). We can use comparison to show that P (u) ≤ Q(n,K(n);
u) for all u ∈ [0, 1] so that P (1) = 0. Namely, there exists a travelling wave solution
to (1.3).

Proof of Theorem 2. This is a special case of Theorem 4, by setting n = 2 and
acknowledging that K(2) = 2.

Proof of Theorem 4. The estimate of vmin, when it exists, follows from the above
two lemmas.

We notice that the set of admissible speed is a closed set. Indeed, if there is no
travelling wave of speed v̂ > 0, then the solution (P,A) to (2.4) with v = v̂ has the
property that P (1) > 0. It then follows by continuous dependence that for any v suffi-
ciently close to v̂, the solution to (2.4) also satisfies P (1) > 0. This implies that there
is no travelling wave of speed v for any v sufficiently close to v̂. Thus the complement
of the set of admissible speed is open; that is, the set of admissible speed is closed.

Hence, to show the existence of vmin, it suffices to show that if v1 > v0 and there
exists a travelling wave of speed v0, then there also exists a travelling wave of speed
v1. For this, we denote κi = D/vi and (Pi, Ai) the solution to (2.4) with κ = D/vi,
i = 0, 1. The existence of a travelling wave of speed v0 implies that P0(1) = 0. To
show that there exists a travelling wave of speed v1, it is necessary and sufficient to
show that P1(1) = 0. For this, it suffices to show that P1 < P0 in (0, 1).

Notice that κ1 < κ0. Denote by λi the positive root to λi(λi + D) = κ2
i . Then

λ1 < λ0. The asymptotic expansion for (P,A) then implies that there exists ε > 0
such that for u ∈ (0, ε], P1(u) < P0(u) and A1(u) < A0(u). In addition, for small u,
the functions αi := DAi/κ

2
i satisfy

α0 − α1 =

{
Dλ0(λ0 + 1)

κ2
0

− Dλ1(λ1 + 1)

κ2
1

}
u + O(u2)

= D

{
λ0 + 1

λ0 + D
− λ1 + 1

λ1 + D

}
u + O(u2)

; 6pt] =
D(D − 1)(λ0 − λ1)

(λ0 + D)(λ1 + D)
u + O(u2) > 0

since D > 1 and λ0 > λ1. Now let

B̂ = sup{b ∈ (0, 1) | P1(u) < P0(u) ∀u ∈ (0, b)}.

We claim that B̂ = 1. Suppose the contrary, B̂ < 1. Then P0(B̂) = P1(B̂) > 0.
First we claim that A0 > A1 on (0, B̂]. Suppose it is not true; then there is a

u1 ∈ (0, B̂] at which A0(u1) = A1(u1). Since κ0 > k1, there exists u2 ∈ (0, B1) such
that α0(u2) = α1(u2) and α0(u2)

′ ≤ α1(u2)
′. But, at u = u2,

[α0 − α1]
′ =

D(u− α0)

P0
− D(u− α1)

P1
=

D(α0 − u)(P0 − P1)

P0P1
> 0
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since α0 − u = [DA0 − κ2
0u]/κ2

0 > 0 by Lemma 3.1 and P0 > P1 in (0, B̂) � u2. Thus,

we must have A0 > A1 in [0, B̂]. Consequently, we obtain from the equation for Pi

that

1
2 [P 2

1 − P 2
0 ]′ = [P0 − P1] + (A1 −A0)[1 − u]n < [P0 − P1] =

P 2
0 − P 2

1

P0 + P1
.

Gronwall’s inequality on [ε, B̂] then gives P 2
1 −P 2

0 < 0 on [ε, B̂], contradicting P0(B̂) =
P1(B̂). Hence, B̂ = 1 and P1 < P0 on (0, 1). This completes the proof of Theorem 4.

4. The case of D < 1. In this section, we establish the results on the case of
D < 1.

Lemma 4.1. Suppose D < 1. Then A > κ2u on (0, 1). Consequently, when
κ2 > K(n), i.e., v < D/

√
K(n), there is no travelling wave solution to (1.3).

Proof. Direct calculation shows that

P [A− κ2u]′ = κ2(P + u) −DA− κ2P = κ2(1 −D)u−D(A− κ2u)

> −D(A− κ2u) ∀u ∈ (0, 1).

Since A = λ(1 + λ)u + O(u2) > κ2u, for all sufficiently small positive u, Gronwall’s
inequality gives A > κ2u on [0, 1).

One can show that P (u) > Q(n, k2;u) for all u ∈ (0, 1) by first using an asymptotic
expansion at u = 0 for 0 < u ≤ ε and then a comparison principle for the differential
equation in (ε, 1).

It then follows from Lemma 2.1 that when κ2 > K(n), we must have
P (1) ≥ Q(n, k2; 1) > 0; i.e., there does not exist any solution to the travelling wave
problem.

To establish the existence of a solution, we need to find an upper bound of A.
Although there is the estimate A < κ2(u+P )/D available for use, we are not satisfied
with such an estimate since when D is very small, it is not sufficient to show that
vmin = O(D). Hence, we seek another bound.

Lemma 4.2. Suppose D < 1. Then A(u)(1 − u)n/2 ≤ λ[P (u) + u] ∀u ∈ [0, 1).
Proof. When u = 0, the two sides are equal. Computation shows that, in (0, 1],

P [(1 − u)n/2A− λ(P + u)]′

= (1 − u)n/2[κ2(P + u) −DA] − 1
2nPA(1 − u)n/2−1 − λA(1 − u)n

≤ −[D + λ(1 − u)n/2][A(1 − u)n/2 − λ(P + u)] + (P + u)[(κ2 − λ2)(1 − u)n/2 − λD]

= −[D + λ(1 − u)n/2][A(1 − u)n/2 − λ(P + u)] − λD(P + u)[1 − (1 − u)n/2]

≤ −[D + λ(1 − u)n/2][A(1 − u)n/2 − λ(P + u)].

Here we have dropped the term 1
2nP (1 − u)n/2−1 in the first inequality and used

κ2 = λ(λ+D) in the second inequality. The assertion of the lemma thus follows from
Gronwall’s inequality.

Proof of Theorem 3. The nonexistence follows directly from Lemma 4.1. We now
prove the existence. Simple computation shows that v ≤ 4D/

√
1 + 4D is equivalent

to λ ≤ 1/4. We proceed to show that P −u(1−u)/2 ≤ 0 on (0, 1). It is easy to verify,
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using the result of Lemma 4.2, that

P [2P − u(1 − u)]′ = P (2u− 3) + 2A(1 − u)n

≤ P (2u− 3) + 2λ(P + u)(1 − u)n/2

= [u− 3/2 + λ(1 − u)n/2][2P − u(1 − u)]

+u(1 − u)[2λ(1 − u)n/2−1 + λ(1 − u)n/2 + u− 3/2]

< [u− 3/2 + λ(1 − u)n/2][2P − u(1 − u)],

since λ ≤ 1/4 and n ≥ 2 yield

2λ(1 − u)n/2−1 + λ(1 − u)n/2 + u− 3/2

≤ 2λ + λ(1 − u) + u− 3/2

= 2λ− 1/2 + (λ− 1)(1 − u) ≤ 0.

Because 2P < u(1 + u) for small u, Gronwall’s inequality shows that P < u(1 − u)/2
on (0, 1). Thus P (1) = 0. This proves the existence and completes the proof of the
theorem.

Finally, Theorem 1 is a special case of Theorem 3 with n = 2.

Acknowledgments. The authors thank J. B. McLeod and Yi Li for stimulating
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ELASTIC ENERGY STORED IN A CRYSTAL INDUCED BY SCREW
DISLOCATIONS: FROM DISCRETE TO CONTINUOUS∗

MARCELLO PONSIGLIONE†

Abstract. This paper deals with the passage from discrete to continuous in modeling the static
elastic properties of vertical screw dislocations in a cylindrical crystal, in the setting of antiplanar
linear elasticity. We study, in the framework of Γ-convergence, the asymptotic behavior of the elastic
stored energy induced by dislocations as the atomic scale ε tends to zero, in the regime of dilute
dislocations, i.e., rescaling the energy functionals by 1/ε2| log ε|. First we consider a continuum
model, where the atomic scale is introduced as an internal scale, usually called core radius. Then we
focus on a purely discrete model. In both cases, we prove that the asymptotic elastic energy as ε → 0
is essentially given by the number of dislocations present in the crystal. More precisely the energy
per unit volume is proportional to the length of the dislocation lines, so that our result recovers in
the limit as ε → 0, a line tension model.

Key words. crystals, analysis of microstructure, stress concentration, calculus of variations
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1. Introduction. This paper deals with energy minimization methods to model
static elastic properties of dislocations in crystals. We are interested in the asymptotic
behavior of the elastic energy stored in a crystal, induced by a configuration of dislo-
cations, as the atomic scale tends to zero. Our approach is completely variational and
is based on Γ-convergence. First we consider a continuum model, where the atomic
scale is introduced as an internal scale, usually called the core radius. Then we focus
on a purely discrete model.

We consider the setting of antiplanar linear elasticity, so that all the physical
quantities involved in our model will be defined on a domain Ω ⊂ R

2, which represents
an horizontal section of an infinite cylindrical crystal. The elastic energy associated
with a vertical displacement u : Ω → R, in absence of dislocations, is given by1

E(∇u) :=

∫
Ω

|∇u(x)|2 dx.

Now we assume that vertical screw dislocations are present in the crystal. To
model the presence of dislocations we follow the general theory of eigenstrains,2

namely, to any dislocation corresponds a preexisting strain in the reference config-
uration. In this framework a configuration of screw dislocations in the crystal can
be represented by a measure on Ω which is a finite sum of Dirac masses of the type
μ :=

∑
i zi|b| δxi . Here xi’s represent the intersection of the dislocation lines with Ω,

b is the so-called Burgers vector, which in this antiplanar setting is a vertical fixed
vector whose modulus depends on the specific crystal lattice, and zi ∈ Z represents
the multiplicity of the dislocations. The class of admissible strains associated with a

∗Received by the editors April 12, 2006; accepted for publication (in revised form) October 30,
2006; published electronically June 19, 2007.

http://www.siam.org/journals/sima/39-2/65705.html
†Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, D-04103 Leipzig, Germany

(ponsigli@mat.uniroma1.it).
1For simplicity we will assume the shear modulus of the crystal is equal to 1.
2We refer the reader to [13], [14] for an exhaustive treatment of the subject.
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dislocation μ is given by the fields whose circulation around the dislocations xi are
equal to zi|b|. These fields by definition have a singularity at each xi and are not in
L2(Ω; R2). To set up a variational formulation it is then convenient to introduce an
internal scale ε called the core radius, which is comparable to the atomic scale, and
to remove balls of radius ε around each point of singularity xi. More precisely to any
admissible strain ψ we associate the elastic energy

Eε(ψ) :=

∫
Ωε(μ)

|ψ(x)|2 dx,

where Ωε(μ) := Ω \ ∪iBε(xi). Given a dislocation μ, the elastic energy induced by μ,
in the absence of external forces, is given by minimizing Eε(ψ) among all admissible
strains.

This variational formulation has been recently considered in [4] to study the limit
of the elastic energy induced by a fixed configuration of dislocations as the atomic
scale ε tends to zero. The authors prove in particular that the energy3 is of the order
| log ε|.

In this paper we study the asymptotic behavior of the elastic energy induced by
the dislocations in terms of Γ-convergence, in this regime of energies, i.e., rescaling the
energy functionals by | log ε|, without assuming the dislocations to be fixed, uniformly
bounded in mass, or well separated. Let us describe our continuum model in more
detail.

Given a dislocation μ, the class of admissible strains ASε(μ) associated with μ is
given (we consider for simplicity |b| = 1) by

ASε(μ) :=

{
ψ ∈ L2(Ωε(μ); R2) : curl ψ = 0 in Ωε(μ) in the sense of distributions,

∫
∂A

ψ(s) · τ(s) ds = μ(A)

for every open set A ⊂ Ω with ∂A smooth and with ∂A ⊂ Ωε(μ)

}
.

Here τ(s) is the oriented tangent vector to ∂A at the point s, and the integrand
ψ(s) · τ(s) is intended in the sense of traces (see Theorem 2, p. 204, of [6]). The
(rescaled) elastic energy associated with μ is given by

(1.1) Fε(μ) :=
1

| log ε|

(
min

ψ∈ASε(μ)
Eε(ψ) + |μ|(Ω)

)
.

The first term in the energy represents the elastic energy far from the dislocations,
where the crystal is assumed to have a linear hyperelastic behavior (see Remark
2.6 for a partial justification of the use of linear elasticity in this region far from
dislocations). The second term, |μ|(Ω), is the total variation of μ on Ω and represents
the elastic energy stored in the region surrounding the dislocations (the introduction
of this energy in the continuum model will be fully justified by our discrete model;
see Remarks 2.6 and 3.2 for more details).

3Though the Burgers vector should be rescaled by ε, in this and in the following results the
Burgers vector is kept fixed. The relevant physical case can be recovered simply by introducing a
supplementary rescaling term of the order 1/ε2 in the energy functionals.
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In Theorem 2.4 we prove that the Γ-limit of the functionals Fε, with respect to the
flat convergence of the dislocations (see (2.2)), is given by the functional F defined by

(1.2) F(μ) :=
1

2π
|μ|(Ω).

The asymptotic elastic energy per unit volume is essentially proportional to the num-
ber (and hence to the length) of the screw dislocations. Then we recover in the limit
as ε → 0 a line tension model.

A similar result was obtained in [8], [9], where the authors considered a phase
field model for dislocations proposed by [11]. They study the asymptotic behavior, in
different rescaling regimes, of the elastic energy given by the interaction of a nonlocal
H1/2 elastic energy, a nonlinear Peierls potential, and a pinning condition under the
assumption that only one slip system is active. In particular, in the energy regime
corresponding to a rescaling of the order 1/| log ε|, their Γ-limit is given by the sum of a
bulk term, taking into account the pinning condition, and a surface term concentrated
on the dislocation lines.

More in general, energy concentration phenomena as a result of the logarithmic
rescaling are nowadays classical in the theory of Ginzburg–Landau-type functionals,
to model vortices in superfluidity and superconductivity. We refer the reader to [3],
[15], [10], [1], and to the references therein.

Even if we do not assume the dislocations to be fixed, our analysis shows that,
as εn → 0, the most convenient way to approximate a dislocation μ with multiplicity
zi ≡ 1, is the constant sequence μn ≡ μ. In this respect the main point is that there is
no homogenization process able to approach an energy less than 1/2π lim infεn |μn(Ω)|.
The latter term can be interpreted as the quantity usually referred to as geometrically
necessary dislocations. We conclude that in this energy regime there is no energetic
advantage for the crystal to create micropatterns of dislocations.

These considerations become trivial if one assumes a priori a uniform bound for
the number of dislocations. However, sequences {μn} with uniformly bounded energy
(i.e., such that Fεn(μn) ≤ C) are not in general bounded in mass. The main reason
is that one can easily construct a short dipole μn := δxn − δyn

, with |μn|(Ω) = 2,
|xn − yn| → 0, and whose energetic contribution is vanishing. On the other hand,
it is clear that the flat norm of these dipoles is also vanishing. This is the reason
why we study the Γ-convergence with respect to the flat convergence instead of the
weak convergence of measures. We prove that the equicoercivity property holds with
respect to the flat convergence: sequences μn with uniformly bounded energy, up
to a subsequence, converge with respect to the flat norm. The proof of this result
represents the main difficulty in our analysis.

Our strategy is to divide the dislocations in clusters such that in each cluster the
distance between the dislocations is of order εδn for some 0 < δ < 1. The family of
clusters with zero effective multiplicity, namely, such that the sum of the multiplicities
in the cluster is equal to 0, will play the role of short dipoles. Using the estimate
|μn|(Ω) ≤ E| log εn|, which follows directly from Fεn(μn) ≤ E and from the second
term in (1.1), we deduce that these clusters give a vanishing contribution to the flat
norm, of order | log εn|2εδn → 0. We identify the remaining clusters (with nonzero
effective multiplicity) with Dirac masses, obtaining a sequence of measures μ̃n :=∑

i ziδxi
. Assume for a while that μ̃n is uniformly bounded in mass so that (up to

a subsequence) μ̃n weakly converges to a measure μ. We prove that μn − μ̃n has
vanishing flat norm, and we deduce the convergence of μn to μ with respect to the
flat norm.
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The main point in the previous argument is that μ̃n is uniformly bounded in
mass. This will be a consequence of the key Lemma 2.5, where we prove that each
cluster with nonzero effective multiplicity gives a positive energetic contribution. It is
in this step that we have to prevent the possibility of a homogenization process, able
to approach a vanishing energy through a sequence μn with nonzero geometrically
necessary dislocations. This analysis will be performed through an iterative process,
which will require the introduction of several meso-scales. The choice of the number
of meso-scales involved in this analysis as εn → 0 will play a fundamental role in our
proof.

The last part of this paper is devoted to a purely discrete model. We consider
the illustrative case of a square lattice of size ε with nearest-neighbor interactions,
following along the lines of the more general theory introduced in [2].

In this framework a displacement u is a function defined on the set Ω0
ε of points

of the lattice; the strains β are defined on the bonds of the lattice, i.e., on the class
Ω1

ε of the oriented segments of the square lattice. Finally a dislocation is represented
by an integer function α defined on the class Ω2

ε of the oriented squares of the lattice.
The class of admissible strains associated with a dislocation α is given by the

strains ξ : Ω1
ε → R satisfying

(1.3) d ξ = α,

where the operator d is defined in (3.3). The condition expressed in (1.3) means that,
for every Q ∈ Ω2

ε, the discrete circulation of ξ on ∂Q is equal to α(Q). The rescaled
elastic energy induced by α is given by

(1.4) Fd
ε (α) :=

1

| log ε| min
ξ:Ω1

ε→R:d ξ=α
Ed

ε (ξ),

where the discrete elastic energy Ed
ε (ξ) is defined in (3.2).

Every dislocation α : Ω2
ε → Z is induced by a function β : Ω1

ε → Z defined on the
bonds of the lattice such that dβ = α. The class of admissible strains can then be
written in the equivalent form

{β + du, u : Ω0
ε → R},

where du : Ω1
ε → R is now the discrete gradient of u defined in (3.1). In this respect β

can be interpreted as a discrete eigenstrain inducing the dislocation α. If α = dβ = 0,
then β is a compatible strain, i.e, β = d v for some displacement v, and the associated
stored energy is equal to 0. Therefore α measures the degree of incompatibility of the
eigenstrain β.

In Theorem 3.4 we restate our Γ-convergence result given in Theorem 2.4 in
this discrete setting. The proof can be obtained as an immediate consequence of
the results achieved in the continuum model, introducing an interpolation procedure

with suitable commutative properties with respect to the chains u
d→ ξ

d→ α and

u
∇→ ψ

curl→ μ (see Proposition 3.3).
In the discrete model the behavior of the elastic stored energy is controlled by the

lattice size ε, and it is not necessary (see Remark 3.2) to introduce a supplementary
internal scale, as the core radius in the continuum case, to divide the stored elastic en-
ergy into two contributions, one concentrated in a region surrounding the dislocations
and the other one far away. In this respect the discrete model seems very natural and
provides a theoretical justification of the continuum model.
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2. The continuum model. Here we introduce our continuum model for ver-
tical screw dislocations in an infinite cylindrical crystal, in the setting of antiplanar
elasticty. We will study, in terms of Γ-convergence, the asymptotic behavior of the
elastic stored energy in the crystal induced by the screw dislocations as the atomic in-
ternal scale ε tends to 0. For the definition and the basic properties of Γ-convergence,
we refer the reader to [5].

2.1. Description of the continuum model. In this section we introduce the
space of screw dislocations X and the elastic energy functionals Eε : X → R. We
are in the setting of antiplanar elasticty, so that the physical quantities involved in
the model will be defined on an horizontal section Ω ⊂ R

2 of the infinite cylindrical
crystal.

2.1.1. The space X of screw dislocations. Let Ω be an open bounded subset
of R

2. For any x ∈ Ω we denote by δx the Dirac mass centered at x. Let us denote by
M(Ω) the class of Radon measures on Ω. The space of screw dislocations X is given
by

(2.1) X :=

{
μ ∈ M(Ω) : μ =

M∑
i=1

ziδxi , M ∈ N, xi ∈ Ω, zi ∈ Z

}
.

The support set of μ defined by supp(μ) := {x1, . . . , xM} represents the set where the
dislocations are present, while the leading coefficients zi in (2.1) are the multiplicities
of the dislocations at the points xi’s. We endow X with the flat norm 4 ‖μ‖f defined
by

(2.2) ‖μ‖f = inf{|S|, S ∈ S : ∂S Ω = μ} for every μ ∈ X.

Here S denotes the family of the finite formal sum of oriented segments Li in Ω, with
extreme points pi and qi and with integer multiplicity mi; the mass of S =

∑M
i=1 mi Li

is given by

|S| :=

M∑
i=1

|mi||Li| =

M∑
i=1

|mi||qi − pi|,

and ∂S is defined by

(2.3) ∂S :=
∑

mi(δqi − δpi).

We will denote by μn
f→ μ the convergence of μn to μ with respect to the flat norm.

Remark 2.1. Note that for every μ ∈ X we can find S ∈ S such that ∂S Ω = μ.
By linearity it is enough to consider the case μ = δx for some x ∈ Ω. Let y ∈ ∂Ω be the
point of minimal distance from x, and let S be the segment joining y to x. Clearly we
have S ∈ S, ∂S = δx − δy so that ∂S Ω = δx. Moreover ‖δx‖f = |S| = dist(x, ∂Ω).
In fact by definition ‖μ‖f ≤ |S| = dist(x, ∂Ω). To prove the opposite inequality it
is enough to check that (by triangular inequality) any S ∈ S with ∂S = δx satisfies
|S| ≥ dist(x, ∂Ω).

4Here we are adapting the classical definition of the flat norm to our context of Dirac masses
confined in an open bounded set. For the canonical definition of the flat norm and its main properties,
we refer the reader to [7], [12].
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2.1.2. Admissible strains. Let us fix ε > 0. Given μ ∈ X, we denote

Ωε(μ) := Ω \
⋃

xi∈ supp(μ)

Bε(xi),

where Bε(xi) denotes the open ball of center xi and radius ε.
The class ASε(μ) of admissible strains associated with μ is given by

(2.4)

ASε(μ) :=

{
ψ ∈ L2(Ωε(μ); R2) : curl ψ = 0 in Ωε(μ) in the sense of distributions,

∫
∂A

ψ(s) · τ(s) ds = μ(A)

for every open set A ⊂ Ω with ∂A smooth and with ∂A ⊂ Ωε(μ)

}
.

Here τ(s) is the oriented tangent vector to ∂A at the point s, and the integrand
ψ(s) · τ(s) is intended in the sense of traces (see Theorem 2, p. 204, of [6]).

Remark 2.2. Let ψ ∈ ASε(μ). By the definition (2.4), we have in particular that
the circulation of ψ along ∂A is equal to 0 for every A ⊂ Ωε(μ), which is consistent
with curl ψ = 0 in Ωε(μ) in the sense of distributions. Note also that to define Ωε(μ)
we do not require that the balls Bε(xi) are contained in Ω. However, only the balls
compactly contained in Ω give a contribution to the circulation of the admissible fields
in (2.4).

2.1.3. The elastic energy. The elastic energy associated with a strain ψ ∈
ASε(μ) is given by

Eε(ψ) := ‖ψ(x)‖2
L2(Ωε(μ);R2).

The elastic energy functional Eε : X → R is defined by

(2.5) Eε(μ) := min
ψ∈ASε(μ)

Eε(ψ) + |μ|(Ω) for every μ ∈ X.

The first contribution to the total energy represents the elastic energy stored in
a region far from the dislocations. The second contribution to the total energy is the
total variation of μ on Ω and represents the so-called core energy, namely, the energy
stored in the balls Bε(xi) (see Remarks 2.6 and 3.2 for some comment on the core
energy in this model).

Remark 2.3. Note that the minimum problem in (2.5) is well posed. In fact,
following the direct method of calculus of variations, let ψh be a minimizing sequence.
We have that ‖ψh‖L2(Ωε(μ);R2) ≤ C for some positive constant C. Therefore (up to a
subsequence) ψh ⇀ ψ for some ψ ∈ L2(Ωε(μ); R2). Moreover (see Theorem 2, p. 204,
of [6]) we have ψ ∈ ASε(μ). By the fact that the L2 norm is lower semicontinuous
with respect to the weak convergence, we deduce that ψ is a minimum point.

2.2. The Γ-convergence result. In this section we study the asymptotic be-
havior, as ε → 0, of the elastic energy functionals Eε defined in (2.5) in terms of
Γ-convergence. To this aim let us rescale the functionals Eε setting

(2.6) Fε :=
1

| log ε|Eε,
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and let us introduce the candidate Γ-limit F : X → R defined by

(2.7) F(μ) :=
1

2π
|μ|(Ω) for every μ ∈ X.

Theorem 2.4. The following Γ-convergence result holds.
(i) Equicoercivity: Let εn → 0, and let {μn} be a sequence in X such that

Fεn(μn) ≤ E for some positive constant E independent of n. Then (up to a

subsequence) μn
f→ μ for some μ ∈ X.

(ii) Γ-convergence: The functionals Fεn Γ-converge to F as εn → 0 with respect
to the flat norm, i.e., the following inequalities hold.

Γ-liminf inequality: F(μ) ≤ lim inf Fεn(μn) for every μ ∈ X, μn
f→ μ in

X.

Γ-limsup inequality: Given μ ∈ X, there exists {μn} ⊂ X with μn
f→ μ

such that lim supFεn(μn) ≤ F(μ).

2.2.1. Equicoercivity. The proof of the equicoercivity property is quite tech-
nical and requires some preliminary result. Before giving the rigorous proof, let us
recall the main steps of our strategy.

The first step is to divide the dislocations in clusters of size r = εδn for some
0 < δ < 1. To this aim, let us set

(2.8) Ar(μn) :=
⋃

x∈ supp(μn)

Br(x).

Each connected component of Ar(μn) represents a cluster of dislocations. By con-
struction the distance between the dislocations belonging to the same cluster is of the
order r = εδn. The main point is that the family of clusters of dislocations with zero
effective multiplicity, i.e., such that the sum of the multiplicities of the dislocations
in each of these clusters is equal to 0, gives a vanishing contribution to the flat norm,
while the number of the remaining clusters with nonzero effective multiplicity is uni-
formly bounded. This latter fact is more delicate and will be done in the following
key lemma, which states that each cluster with nonzero effective multiplicity gives a
positive energetic contribution.

Lemma 2.5. Let 0 < δ < 1 be fixed. Let εn → 0, and let {μn} be a sequence
such that Fεn(μn) ≤ E for some positive E independent of n. Moreover assume that
for every n there exists a connected component Cn of Aεδn

(μn) (defined according to
(2.8)) with Cn ⊂ Ω and μn(Cn) �= 0. Then

lim inf
n

1

| log εn|

∫
Cn

|ψn(x)|2 dx ≥ 1

2π
(1 − δ) for every sequence {ψn} ⊂ ASεn(μn).

Before giving the formal proof of the lemma, let us explain its main ideas. Let
Cn be a cluster of dislocations with effective multiplicity equal to λ �= 0, and let
γ be a closed curve surrounding Cn, which does not intersect any other cluster of
dislocations. Then the circulation of every admissible strain ψn ∈ ASεn(μn) on γ is
equal to λ. We get an estimate of the tangential component of ψn on γ and, hence, of
the L2 norm of ψn on γ. Extending this estimate on an annular neighborhood Fn of
the cluster Cn, by means of polar coordinates, we want to obtain an estimate of the
elastic energy stored around Cn independently of εn. However, the rigorous proof will
require some additional effort. The main obstruction to the previous argument is that,
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in general, Fn may intersect other clusters of dislocations. Our strategy is then to
iterate the previous construction in subclusters of Cn. We consider a certain number
of exponents 0 < δ = s0

n < s1
n < · · · sMn

n ≤ 1, where Mn → ∞ as εn → 0. For almost

every scale sin we find a subcluster of Cn of size εs
i
n with nonzero effective multiplicity,

surrounded by some annulus F i
n, such that the sets F i

n are pairwise disjoint and the
elastic energy stored in each F i

n is of the order sin − si−1
n . We deduce that the elastic

energy stored in Cn is at least of the order 1 − δ.
The starting point of our analysis is the following estimate, which easily follows

by the second term in (2.5) and by (2.6):

(2.9) � supp(μn) ≤ E| log εn| for every n ∈ N,

where � supp(μn) denotes the number of elements in supp(μn).
Proof of Lemma 2.5. Let us divide the proof of the lemma into four steps.
Step 1. In this Step we introduce the exponents 0 < δ = s0

n < s1
n < · · · sMn

n ≤ 1,

and we select the meso-scales ε
sin
n which will be involved in our analysis.

For every n, let us set

sin := δ +
i

H log | log(εn)| for every 0 ≤ i ≤ Mn,

where H > 0 is a fixed positive constant and Mn is the integer part of H(1 −
δ) log | log(εn)|. For every n and for every 0 ≤ i ≤ Mn, let us set

Ai
n := A

ε
sin
n

(μn) ∩ Cn =
⋃

x∈supp(μn)∩Cn

B
ε
sin
n

(x).

Let Ci
n be the family of the connected components Ci,j

n of Ai
n with μn(Ci,j

n ) �= 0. Let
us now split the indices i ∈ [0,Mn) into two families Jn and In by setting i ∈ Jn if
every element in Ci

n contains at least two elements of Ci+1
n ; i ∈ In otherwise. Let us

prove that

(2.10) lim inf
n

� In
Mn

= 1 − o(1/H),

where �E denotes the number of elements of a set E and o(1/H) → 0 as H → ∞.
To this aim, note that if i ∈ Jn, then � Ci+1

n ≥ 2� Ci
n, and hence, using that � Ci

n is
nondecreasing with respect to i and recalling that by assumption � C0

n = � {Cn} = 1,
we have

� supp(μn) ≥ � CMn
n ≥ 2� Jn� C0

n = 2� Jn .

By (2.9) we obtain

E| log εn| ≥ � supp(μn) ≥ 2� Jn .

Therefore � Jn ≤ C log | log(εn)| for some positive constant C independent of H. We
deduce that

lim sup
n

� Jn
Mn

≤ lim sup
n

C log | log(εn)|
H(1 − δ) log | log(εn)| − 1

=
C

H(1 − δ)
,

which together with � Jn + � In ≡ Mn gives (2.10).
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Step 2. In this step we define the annular sets F i
n.

Let i ∈ In. By definition there exists Ci,ji
n in Ci

n which contains exactly one

element C
i+1,ki+1
n in Ci+1

n . Let pin ∈ C
i+1,ki+1
n be chosen arbitrarily. Let us define

Ri
1 := E| log εn|εs

i+1
n

n , Ri
2 :=

1

2
ε
sin
n .

Moreover, for every connected component Ci+1,l
n of Ai+1

n different from C
i+1,ki+1
n , let

us set

(2.11) rl1 := min
x∈Ci+1,l

n

|x− pin| − ε
si+1
n

n , rl2 := max
x∈Ci+1,l

n

|x− pin| + ε
si+1
n

n .

Let us set

(2.12) Li
n := (Ri

1, R
i
2) \

⋃
l

(rl1, r
l
2), F i

n := {x ∈ R
2 : |x− pin| ∈ Li

n}.

The set Li
n is a finite union of open intervals, and hence it can be written in the form

(2.13) Li
n =

Ni
n⋃

l=1

(ε
αl

i,n
n , ε

βl
i,n

n ).

Let us claim the following properties concerning Li
n and F i

n.
(a) For every i, n and for every r ∈ Li

n, we have μn(Br(p
i
n)) �= 0.

(b) For every n the sets F i
n are pairwise disjoint.

(c) For every i we have
∑Ni

n

l=1 |αl
i,n−βl

i,n| = (1+o(1/n))/
(
H log | log(εn)|

)
, where

o(1/n) is a function independent of i tending to 0 as n → ∞.
Step 3. Let ψn ∈ ASεn(μn). Using the claim, we are in position to estimate the

L2 norm of ψn on each F i
n using polar coordinates.

By property (a) and by the fact that ψn is an admissible strain (see (2.4)), we
have ∫

(0,2π)

|ψn(r, θ)|rdθ ≥ |μn(Br(p
i
n))| ≥ 1 for every r ∈ Li

n.

Using Jensen’s inequality and property (c) above, we deduce the following estimate:

∫
F i

n

|ψn(x)|2 dx = 2π

Ni
n∑

l=1

∫
(ε

αl
i,n

n ,ε
βl
i,n

n )

r

(
1

2π

∫
(0,2π)

|ψn(r, θ)|2 dθ
)
dr

≥ 2π

Ni
n∑

l=1

∫
(ε

αl
i,n

n ,ε
βl
i,n

n )

r

(
1

2π

∫
(0,2π)

|ψn(r, θ)| dθ
)2

dr ≥ 1

2π

Ni
n∑

l=1

∫
(ε

αl
i,n

n ,ε
βl
i,n

n )

1

r
dr

=
1

2π

Ni
n∑

l=1

|αl
i,n − βl

i,n|| log εn| =
1

2π

1 + o(1/n)

H log | log(εn)| | log εn|.

Summing the previous inequality over all i ∈ In and dividing by | log εn|, in view of
(2.10) and property (b) above, we deduce

lim inf
n

1

| log εn|

∫
Cn

|ψn(x)|2 dx ≥ lim inf
n

1

| log εn|
∑
i∈In

∫
F i

n

|ψn(x)|2 dx

≥ lim inf
n

1

2π

� In(1 + o(1/n))

H log | log(εn)| = lim inf
n

1

2π

Mn(1 − o(1/H))

H log | log(εn)| .
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Letting H → ∞ and recalling that Mn is the integer part of H(1 − δ) log | log(εn)|,
we obtain
(2.14)

lim inf
n

1

| log εn|

∫
Cn

|ψn(x)|2 dx ≥ lim inf
n

1

2π

H(1 − δ) log | log(εn)| − 1

H log | log(εn)| =
1

2π
(1 − δ).

Step 4. In order to conclude the proof, we have to prove the claim.
Property (a) follows directly by the construction of the intervals Li

n. More pre-
cisely one can easily check that by construction every cluster of dislocations Ci+1,l

n ∈
Ai+1

n intersecting Br(p
i
n) is actually contained in Br(p

i
n), and since i ∈ I, then all

these clusters except one have zero effective multiplicity.
Let us pass to the proof of property (b). Let i1, i2 ∈ In, with i1 < i2. We will use

the notation used in the previous constructions, with i replaced by i1, i2, respectively.

In particular let pi1n ∈ C
i1+1,ki1+1
n , pi2n ∈ C

i2+1,ki2+1
n . We divide the proof into two

cases.
In the first case we assume that pi2n ∈ C

i1+1,ki1+1
n . In this case, since |pi1n − pi2n | ≤

ε
si1+1
n

n , we have

Ri2
2 (pi2n ) + |pi1n − pi2n | =

1

2
ε
si2n
n + |pi1n − pi2n | ≤ 2ε

si1+1
n

n < E| log εn|εs
i1+1
n

n = Ri1
1 (pi1n ),

and hence B
R

i2
2

(pi2n ) ⊂ B
R

i1
1

(pi1n ) so that F i1
n and F i2

n are disjoint.

Let us consider now the case pi2n �∈ C
i1+1,ki1+1
n . In this case we have pi2n ∈ Ci1+1,l

n

for some connected component Ci1+1,l
n of Ai1+1

n different from C
i1+1,ki1+1
n . Therefore

by (2.11), (2.12) we deduce that

B
ε
s
i1+1
n

n

(pi2n ) ∩ F i1 = ∅.

On the other hand

Ri2
2 =

1

2
ε
si2n
n ≤ 1

2
ε
si1+1
n

n .

We deduce that

B
R

i2
2

(pi2n ) ∩ F i1 = ∅.

This concludes the proof of (b).
Let us pass to the proof of (c). For every i we have

(2.15)

|Li
n| ≥ (Ri

2 −Ri
1) − C̃| log εn|εs

i+1
n

n ≥ 1

2
ε
sin
n − C| log εn|εs

i+1
n

n

= ε
sin
n

(
1

2
− C| log εn|ε(si+1

n −sin)
n

)
,

where C is a constant depending only on E. On the other hand, fixing the quantity

Ni
n∑

l=1

|εα
l
i,n

n − ε
βl
i,n

n |

in (2.13) and maximizing |Li
n| with respect to the position of the indices αl

i,n, βl
i,n,

we obtain

(2.16) |Li
n| ≤ ε

sin
n

(
1

2
− ε

∑Ni
n

l=1 |αl
i,n−βl

i,n|
n

)
.
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From (2.15) and (2.16) we deduce that

ε
sin
n

(
1

2
− ε

∑Ni
n

l=1 |αl
i,n−βl

i,n|
n

)
≥ ε

sin
n

(
1

2
− C| log εn|ε(si+1

n −sin)
n

)
.

Therefore

ε
∑Ni

n
l=1 |αl

i,n−βl
i,n|

n ≤ C| log εn|ε(si+1
n −sin)

n = C| log εn|ε
1

H log | log(εn)|
n ,

from which (c) easily follows.
We are now in a position to prove the equicoercivity. The idea is to identify the

clusters of dislocations with nonzero effective multiplicity with Dirac masses, obtaining
a sequence of measures μ̃n :=

∑
i ziδxi . By Lemma 2.5 we will deduce that μ̃n is

uniformly bounded in mass so that (up to a subsequence) μ̃n weakly converges to a
measure μ. We prove that μn − μ̃n has a vanishing flat norm, and we deduce the
convergence of μn to μ with respect to the flat norm.

Proof of the equicoercivity property. Let 0 < S < T < 1. For every S < δ < T ,
let us consider the set Aεδn

(μn) defined as in (2.8). Let us denote by Cδ,n the family

of connected components C1
δ,n, . . . , C

Mδ,n

δ,n of Aεδn
(μn) which are contained in Ω and

satisfy μ(Cl
δ,n) �= 0. By Lemma 2.5 we deduce that �Cδ,n = Mδ,n is bounded by a

constant M independent of n and δ. For every n, let us consider the finite family of
indices

In := {t1n, . . . , tMn
n }, S ≤ t1n < t2n < · · · < tMn

n ≤ T, Mn ≤ M,

given by the discontinuity points of the function δ → �Cδ,n. Up to a subsequence, we
have that the set of accumulation points of In is of the type

I∞ := {δ1, . . . , δH}, S ≤ δ1 < δ2 < · · · < δH ≤ T, H ≤ M.

Let

[δ1, δ2] ⊂ (S, T ) \ I∞.

For n big enough we have that the function δ → �Cδ,n is constant on [δ1, δ2]. Since
each element of Cδ1,n contains at least one element of Cδ2,n, we deduce that each
element Cl

δ1,n
∈ Cδ1,n actually contains exactly one element Cl

δ2,n
∈ Cδ2,n.

We want to prove that for every sequence {Hn} ⊂ Cδ1,n we have

(2.17) lim sup
n

|μn(Hn)| ≤ K

for some positive constant K independent of n.
Let Gn be the only element of Cδ2,n contained in Hn. The idea, as in the proof of

Lemma 2.5, is to evaluate the elastic energy of every admissible strain ψn ∈ ASεn(μn)
stored in the region between Gn and Hn using polar coordinates. To this aim, let
pn ∈ Gn, and let us define

R1 := E| log εn|εδ2n , R2 := εδ1n .

Moreover, for every connected component Cl
n of A

ε
δ2
n

(μn) different from Gn, let us
set

rl1 := min
x∈Cl

n

|x− pn| − εδ2n , rl2 := max
x∈Cl

n

|x− pn| + εδ2n .
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Let us set

Ln := (R1, R2) \
⋃
l

(rl1, r
l
2), Fn := {x ∈ R

2 : |x− pn| ∈ Ln}.

The set Ln is a finite union of open intervals, and hence it can be written in the form

(2.18) Ln =

Nn⋃
l=1

(ε
αl

n
n , ε

βl
n

n ).

Arguing as in the proof of properties (a) and (c), in the proof of Lemma 2.5, we
deduce that the following properties hold.

(i) For every n and for every r ∈ Ln, we have μn(Br(pn)) = μn(Gn).

(ii)
∑Nn

l=1 |αl
n − βl

n| = (1 + o(1/n))(δ2 − δ1), where o(1/n) → 0 as n → ∞.
Let ψn ∈ ASεn(μn). By the fact that ψn is an admissible strain and by property (i),
we deduce that ∫

(0,2π)

|ψn(r, θ)|rdθ ≥ |μ(Gn)| for every r ∈ Ln.

Using Jensen’s inequality and property (ii) above we obtain

∫
Fn

|ψn(x)|2 dx = 2π

Nn∑
l=1

∫
(ε

αl
n

n ,ε
βl
n

n )

r

(
1

2π

∫
(0,2π)

|ψn(r, θ)|2 dθ
)
dr

≥ 2π

Nn∑
l=1

∫
(ε

αl
n

n ,ε
βl
n

n )

r

(
1

2π

∫
(0,2π)

|ψn(r, θ)| dθ
)2

dr ≥ 1

2π
|μ(Gn)|2

Nn∑
l=1

∫
(ε

αl
n

n ,ε
βl
n

n )

1

r
dr

=
1

2π
|μ(Gn)|2

Nn∑
l=1

|αl
n − βl

n|| log εn| =
1

2π
|μ(Gn)|2(1 + o(1/n))(δ2 − δ1)| log εn|.

Dividing by | log εn| in the previous inequality and noticing that μn(Gn) = μn(Hn),
we deduce

(2.19)

E ≥ lim sup
n

Fn(μn) ≥ 1

2π
(δ2 − δ1) lim sup

n
(μn(Gn))2 =

1

2π
(δ2 − δ1) lim sup

n
(μn(Hn))2,

and this concludes the proof of (2.17).
Now we construct the sequence {Sn} of oriented segments in S (see (2.2)) of the

form Sn = Fn + Nn such that

(2.20) ∂Sn Ω = μn, |∂Fn| ≤ 2MK, |Nn| → 0,

which is clearly enough to guarantee the compactness of the sequence μn.
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To this aim, in every element H l
n ∈ Cδ1,n fix a point pln, and consider the measure

μ̃n :=

�Cδ1,n∑
l=1

μ(H l
n)δpl

n
.

We have that |μ̃n| ≤ MK, and hence we can find Fn ∈ S satisfying

(2.21) |∂Fn| ≤ 2MK, ∂Fn Ω = μ̃n.

Now let us denote by In the union of the connected components of A
ε
δ1
n

(μn) strictly

contained in Ω and by Kn the union of the connected components of A
ε
δ1
n

(μn) inter-
secting ∂Ω. We clearly have

(2.22) supp(μn) ⊂ In ∪ Kn.

Moreover by construction (μn − μ̃n)(I ln) = 0 for every I ln ∈ In. Therefore, using that
� supp(μn) ≤ E| log εn| and that for every I ln ∈ In we have diam(I ln) ≤ E| log εn|εδin ,
we can easily find Vn ∈ S such that

(2.23) ∂Vn = (μn − μ̃n) In, |Vn| ≤ diam(I ln) � supp(μn) ≤ εδ1n E2| log εn|2.

On the other hand, since for every x ∈ supp(μn)∩Kn we have d(x, ∂Ω) ≤ E| log εn|εδ1n ,
we can also find Wn ∈ S (joining each x ∈ supp(μn) ∩ Kn with a point of ∂Ω) such
that

(2.24) ∂Wn Ω = μn Kn, |Wn| ≤ εδ1n E2| log εn|2.

Setting Nn := Vn + Wn, by (2.21), (2.22), (2.23), and (2.24) we deduce that (2.20)
holds true.

2.2.2. Γ-convergence. Here we prove the Γ-convergence result.
Proof of the Γ-limsup inequality. It is enough to prove the Γ-limsup inequality

assuming that |μ(x)| = 1 for every x ∈ supp(μ). In fact the class of measures
satisfying this assumption is dense in energy, and with respect to the flat convergence
in X (more precisely, given δ > 0 and μ̃ ∈ X), there exists μ ∈ X with ‖μ− μ̃‖f ≤ δ
and F(μ) = F(μ̃), satisfying |μ(x)| = 1 for every x ∈ supp(μ).

The recovering sequence is given by the constant sequence μn ≡ μ. We have to
construct a sequence of admissible strains ψn ∈ ASε(μ) satisfying

(2.25) F(μ) ≥ lim sup
1

| log εn|

∫
Ωεn (μ)

|ψn|2.

To this aim, for every xi ∈ supp(μ) ∩ Ω, we consider the field ψxi , which in polar
coordinates is defined by

ψxi(r, θ) :=
1

2πr
τi(r, θ),

where τi(r, θ) is the unit tangent vector to ∂Br(xi) at the point with coordinates
(r, θ).

The recovering sequence ψn is defined by

(2.26) ψn :=
∑

xi∈ supp(μ)

ψxi Ωεn .
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It can be easily proved that ψn ∈ ASεn(μn), and

lim sup
1

| log εn|

∫
Ωεn (μ)

|ψn|2 = lim sup
∑

xi∈ supp(μ)

1

| log εn|

∫
Ωεn (μ)

|ψxi
|2 = F(μ),

and this concludes the proof of (2.25).

Proof of the Γ-liminf inequality. Let μ ∈ X, and let μn
f→ μ in X. We can

assume that lim inf Fn(μn) ≤ E < ∞. Let us fix 0 < S < T < 1, and let us consider
the set AεTn

(μn) defined as in (2.8). By Lemma 2.5 we deduce that there exists a

finite number of connected component C1
n, . . . , C

Ln
n of AεTn

(μn), with Ln uniformly

bounded by a constant M independent of n such that Cl
n ⊂ Ω and μn(Cl

n) �= 0. Let us
denote by �n : (S, T ) → {1, . . .M} the function that counts the number of connected
components of Aεsn(μn) containing at least one Cl

n. For every n, let us consider the
finite family of indices

In := {t1n, . . . , tMn
n }, S ≤ t1n < t2n < · · · < tMn

n ≤ T, Mn ≤ M,

given by the discontinuity points of �n. Up to a subsequence, we have that the set of
accumulation points of In contained in (S, T ) is of the type

I∞ := {δ1, . . . , δH}, S < δ1 < δ2 < · · · < δH < T, H ≤ M.

Let us set δ0 = S, δH+1 = T , and for every 0 ≤ i ≤ H consider intervals (ai, bi) with
δi < ai < bi < δi+1. For any fixed τ > 0, we can always assume that∑

i

(bi − ai) ≥ T − S − τ.

For every s ∈ (ai, bi), we have exactly �n(bi) connected components Ks,1
n , . . . ,K

s,�n(bi)
n

of Aεsn
(μn) containing at least one Cl

n. For every 1 ≤ j ≤ �n(bi) we arbitrarily fix a

point pi,jn ∈ Kbi,j
n . Let us define

Ri,n
1 := E| log εn|εb

i

n , Ri,n
2 := εa

i

n .

Moreover, for every connected component Ci,l
n of Aεbin

(μn) different from Kbi,j
n , let us

set

ri,j,l1,n := min
x∈Ci,l

n

|x− pi,jn | − εbin , ri,j,l2,n := max
x∈Ci,l

n

|x− pi,jn | + εbin .

Let us set

Li,j
n := (Ri,n

1 , Ri,n
2 ) \

⋃
l

(ri,j,l1,n , ri,j,l2,n ), F i,j
n := {x ∈ R

2 : |x− pi,jn | ∈ Li,j
n }.

The sets Li,j
n are a finite union of open intervals, and hence they can be written in

the form

Li,j
n =

Ni,j
n⋃

l=1

(ε
αi,j,l

n
n , ε

βi,j,l
n

n ).

Let us denote by Hi
n the family of sets F i,j

n which are strictly contained in Ω. The
following properties concerning Li,j

n , F i,j
n , and Hi

n can be readily verified by the reader.



ELASTIC ENERGY INDUCED BY SCREW DISLOCATIONS 463

(a) For every i, j, for n big enough, and for every r ∈ Li,j
n , we have μn(Br(p

i,j
n )) ≡

μ(F i,j
n ).

(b) For n big enough, the sets F i,j
n are pairwise disjoint.

(c) For every i, μn

(
∪F i,j

n ∈Hi
n
F i,j
n

) f→ μ.

(d) For every i, j,
∑Ni,j

n

l=1 |αi,j,l
n −βi,j,l

n | = (1 + o(1/n))(bi − ai), where o(1/n) → 0
as n → ∞.

Arguing as in the proof of (2.19) we obtain that, for every ψn ∈ ASεn(μn) and for
every F i,j

n ∈ Hi
n,

1

| log εn|

∫
F i,j

n

|ψn|2 dx ≥ 1

2π

(
μn(F i,j

n )
)2

(1 + o(1/n))(bi − ai).

Summing the previous inequality over all F i,j
n ∈ Hi

n, we obtain

(2.27)
1

| log εn|
∑

F i,j
n ∈Hi

n

∫
F i,j

n

|ψn|2 dx ≥ 1

2π
(1 + o(1/n))

∑
F i,j

n ∈Hi
n

|μn(F i,j
n )|(bi − ai).

Recalling that the diameter of F i,j
n tends to 0 as n → ∞, by property (c) we easily

deduce that, for every fixed i,

(2.28) lim inf
n

∑
F i,j

n ∈Hi
n

|μn(F i,j
n )| ≥ |μ|(Ω).

Letting n → ∞ in (2.27) and using (2.28), we obtain

lim inf
n

F(μn) ≥ lim inf
n

1

| log εn|

∫
Ωεn (μ)

|ψn|2 dx

≥ lim inf
n

1

| log εn|
∑
i

∑
F i,j

n ∈Hi
n

∫
F i,j

n

|ψn|2 dx

≥ lim inf
n

1

2π

∑
i

∑
F i,j

n ∈Hi
n

|μn(F i,j
n )|(bi − ai) ≥ (T − S − τ)

1

2π
|μ|(Ω).

Letting S → 0, T → 1 and τ → 0, we deduce the Γ-liminf inequality.
Remark 2.6. Let C,C ′ > 0 be fixed positive constants. Here we observe that

nothing changes in our Γ-convergence result if in the definition of Ωε(μ) we remove
balls of radius Cε instead of ε and if we multiply the second term |μ|(Ω) in (2.5) by
C ′. More precisely given μ ∈ X, define

(2.29) ΩC
ε (μ) := Ω \

⋃
xi∈supp(μ)

BCε(xi).

Define consequently the space of admissible strains ASC
ε (μ) associated with μ as

follows:

(2.30)

ASC
ε (μ) :=

{
ψ ∈ L2(ΩC

ε (μ); R2) : curl ψ = 0 in ΩC
ε (μ) in the sense of distributions,

∫
∂A

ψ(s)·τ(s) ds = μ(A)

for every open set A ⊂ Ω with ∂A smooth and with ∂A ⊂ ΩC
ε (μ)

}
.
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Finally let EC,C′

ε (μ) be defined by

(2.31) EC,C′

ε (μ) := min
ψ∈ASC

ε (μ)

∫
ΩC

ε (μ)

|ψ(x)|2 dx + C ′|μ|(Ω),

and let FC,C′

ε := 1/| log ε|EC,C′

ε be the corresponding rescaled functionals. Then
Theorem 2.4 still holds true with Fε replaced by FC,C′

ε .
In this respect the choice of the core radius and of the core energy does not play

an essential role in the asymptotic behavior of the functionals Fε as ε → 0. This fact
also gives a partial justification of the use of linearized elasticity in ΩC

ε (μ). In fact,
the recovering sequence ψn given in (2.26) satisfies

‖ψn‖L∞(ΩC
εn

(μn);R2) ≤
1

2πCεn
+ O(n),

where O(n) is uniformly bounded with respect to n. Recalling that the admissible
strains should be rescaled by εn (because the Burgers vector has to be rescaled by εn),
we deduce that the modulus of the gradient of the rescaled recovering sequence can
be chosen arbitrarily small, choosing C big enough. This is our partial justification
of the use of linear elasticity.

3. The discrete model. Here we give a Γ-convergence result in a discrete model
for the stored energy associated with a configuration of screw dislocations, as the
atomic distance ε tends to 0. The model follows the general theory of eigenstrains
(we refer the reader to [13]): a dislocation in the crystal is associated with a preexisting
plastic strain in the reference lattice. In the next section we will describe our discrete
model, which follows the lines of the more general theory introduced in [2].

3.1. Description of the discrete model. We will consider the illustrative case
of a square lattice, with nearest-neighbor interactions. Let Ω ⊂ R

2 be a horizontal
section of the region occupied by the cylindrical crystal. We will assume for simplicity
Ω to be polygonal. In the reference configuration, the lattice of atoms is given by the
set

Ω0
ε := {x ∈ εZ2 ∩ Ω}.

We denote by Ω1
ε the class of bonds in Ω, i.e., the class of oriented ε-segments [x, x+εei],

where e1, e2 is the canonical basis of R
2 and x, x + εei ∈ Ω0

ε.
Given a function u : Ω0

ε → R, let us introduce the (rescaled) discrete gradient of
u, du : Ω1

ε → R, defined by

(3.1) du([x, x + εei]) := u(x + εei) − u(x) for every [x, x + εei] ∈ Ω1
ε.

Given a strain ξ : Ω1
ε → R, the elastic energy associated with ξ is given by

(3.2) Ed(ξ) :=
∑
v∈Ω1

ε

a(v)(ξ(v))2,

where the function a(v) ∈ {1/2, 1}, introduced only to simplify some interpolation
procedure (see property (b) of Proposition 3.3), is defined by

a([x, x + εei]) :=

{
1
2 if x, x + εei ∈ ∂Ω,

1 otherwise.
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The elastic energy associated with a displacement u : Ω0
ε → R, in absence of disloca-

tions, is given by Ed(du).
To model the presence of dislocations, following [2] we introduce the class Ω2

ε of
oriented ε-squares [x, x+εe2, x+εe1 +εe2] with x, x+εe2, x+εe1 +εe2, x+εe1 ∈ Ω0

ε.
Given Q := [x, x + εe2, x + εe1 + εe2] ∈ Ω2

ε, let us denote by Q̃ ⊂ R
2 the convex

envelope of {x, x + εe1, x + εe2, x + εe1 + εe2}. For simplicity we will always assume
that Ω = ∪Qi∈Ω2

ε
Q̃i.

In this discrete setting, a dislocation is represented by a function α : Ω2
ε → Z.

The squares in the support of α represent the zone where a dislocation is present,
while the value of α on these squares represents the multiplicity of the dislocation.

Given ξ : Ω1
ε → R, the function d ξ : Ω2

ε → R is defined by

(3.3) d ξ([x, x + εe2, x + εe1 + εe2]) := ξ([x, x + εe2]) + ξ([x + εe2, x + εe1 + εe2])

− ξ([x+εe1, x+εe1+εe2])−ξ([x, x+εe1]) for every [x, x+εe2, x+εe1+εe2] ∈ Ω2
ε.

The elastic energy associated with a dislocation α : Ω2
ε → Z is given by

(3.4) Ed
ε (α) := min

ξ:Ω1
ε→R:d ξ=α

Ed
ε (ξ).

Remark 3.1. Note that if α is a dipole of the type

α(Q) :=

⎧⎪⎨
⎪⎩
−1 if Q = [x, x + εe2, x + ε(e1 + e2)],

+1 if Q = [x + εze1, x + ε(e2 + ze1), x + ε(e1 + e2 + ze1)],

0 otherwise

for some x ∈ Ω0
ε, z ∈ Z, then α = dβ, with β defined by

β(v) :=

{
1 if v = [x + εse1, x + ε(se1 + e2)] with s ∈ {1, . . . , z},
0 otherwise.

Actually for every α : Ω2
ε → Z we can find β with dβ = α. By linearity, it is sufficient

to check it in the case

α(Q) :=

{
1 if Q = [x, x + εe1, x + ε(e1 + e2)],

0 otherwise.

We have α = dβ, where

β(v) :=

{
1 if v = [x− εs e1, x− εs e1 + ε e2] with s ∈ {0 ∪ N},
0 otherwise.

Note that there are many β inducing the same α (such that dβ = α). More precisely
if dβ = α, then α is induced exactly by

{β + du, u : Ω0
ε → R}.

This follows by the fact that if ξ : Ω1
ε → R is such that d ξ = 0, then there exists

u : Ω0
ε → R such that ξ = du and ddu(Q) = 0 for every u : Ω0

ε → R and for every
Q ∈ Ω2

ε.
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We deduce that if dβ = α, then

Ed
ε (α) := min

u:Ω0
ε→R

Ed
ε (du− β).

Therefore β can be interpreted as an eigenstrain associated with the dislocation α.
However, we stress that the energy depends on α and not on the particular choice of
the eigenstrain inducing α.

3.2. The Γ-convergence result. To study the asymptotic behavior of the elas-
tic energy functionals Ed

ε as ε → 0 in terms of Γ-convergence, it is convenient to define
a common space of configurations of dislocations independent of ε. To this aim, to
every dislocation α : Ω2

ε → Z we associate the measure

μ̂(α) :=
∑
Q∈Ω2

ε

α(Q)δx(Q),

where x(Q) denotes the center of Q. Therefore, as in the continuum case, the space of
dislocations is the space X defined in (2.1). Moreover we denote by Xε the subspace of
X given by the measures μ such that μ = μ̂(α) for some α ∈ Ω2

ε. Finally, given μ ∈ Xε,
we will denote by α̃(μ) : Ω2

ε → Z the (unique) dislocation satisfying μ̂(α̃(μ)) = μ.
The class of discrete admissible strains associated with ε and μ ∈ Xε is defined

by

ASd
ε (μ) := {ξ : Ω1

ε → R : d ξ = α̃(μ)}.

The rescaled energy functionals take the form

(3.5) Fd
ε (μ) :=

{
1

| log ε| Eε(α̃(μ)) if μ ∈ Xε,

+∞ in X \Xε.

Remark 3.2. Here we notice that in the discrete model we do not need to introduce
the core energy |μ|(Ω) as in the continuum case to obtain an estimate similar to (2.9).
The term |μ|(Ω), in the continuum model, represents the energy stored in a region
surrounding the dislocations, whose diameter is comparable to the atomic distance.
This interpretation is fully justified by the following easy computation: Let μ ∈ Xε,
let x ∈ supp(μ), and let Qε(x) be the ε-square centered at x. For every admissible
strain ξ ∈ ASd

ε (μ), we have by definition∑
v∈∂Qε(x)

ξ(v) = μ(x).

We deduce that

(3.6)
∑

v∈∂Qε(x)

|ξ(v)|2 ≥ C,

where C is a constant independent of ε. Therefore, in the discrete model, the energy
stored in the bonds near the dislocations turns out to be controlled from below by
|μ|(Ω). As observed in Remark 2.6, a sharp computation of this energy becomes
unnecessary in the continuum model in the study of the asymptotic behavior of the
elastic energy as ε → 0.
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By (3.6) we deduce (as in (2.9)) that if εn → 0 and {μn} is a sequence in X such
that, for every n ∈ N, Fd

εn(μn) ≤ E for some positive constant E, then

(3.7) � supp(μn) ≤ CE| log(εn)| for every n ∈ N,

where C is a fixed positive constant independent of ε.
The candidate Γ-limit of the functionals Fd

ε , as in the continuum case (see (2.7)),
is the functional F : X → R defined by

(3.8) F(μ) :=
1

2π
|μ|(Ω) for every μ ∈ X.

Now we provide some interpolation procedures which will be used in the proof of
the Γ-convergence result. Let u : Ω0

ε → R. Let us introduce its extension ũ : Ω → R,
defined in the following way: We divide every Q ∈ Ω2

ε (more precisely, every Q̃ with
Q ∈ Ω2

ε) into two triangles. In each triangle T , ũ is the only affine function coinciding
with u on the vertices of T . In a similar way, given a function ξ : Ω1

ε → R we define
ξ̃ : Ω → R

2 imposing on each triangle

(3.9) ξ̃ ≡ (ξ(v1(T )), ξ(v2(T ))),

where v1(T ) and v2(T ) are the horizontal (parallel to e1) and the vertical (parallel to
e2) edges of T , respectively. We collect in the following proposition some properties
satisfied by the interpolated functions introduced above.

Proposition 3.3. The following facts hold.
(a) For every u : Ω0

ε → R, we have ∇ũ = 1
ε d̃u.

(b) For every ξ : Ω1
ε → R, we have Ed(ξ) = ‖ξ̃‖2

L2(Ω;R2).

(c) The function ξ̃ belongs to the class ASC
ε (μ̂(d ξ)) defined in (2.30) for every

C ≥ 21/2.
Now we are in a position to give our Γ-convergence result in this discrete model,

for the elastic energy functionals Fd
ε as ε → 0.

Theorem 3.4. The following Γ-convergence result holds.
(i) Equicoercivity: Let εn → 0, and let {μn} be a sequence in X such that

Fd
εn(μn) ≤ E for some positive constant E independent of n. Then (up to a

subsequence) μn
f→ μ for some μ ∈ X.

(ii) Γ-convergence: The functionals Fd
εn Γ-converge to F as εn → 0 with respect

to the flat norm; i.e., the following inequalities hold.

Γ-liminf inequality: F(μ) ≤ lim inf Fd
εn(μn) for every μ ∈ X, μn

f→ μ in
X.

Γ-limsup inequality: Given μ ∈ X, there exists {μn} ⊂ X with μn
f→ μ

such that lim supFd
εn(μn) ≤ F(μ).

Proof. We begin by proving the equicoercivity property.
Equicoercivity: Let ξn ∈ ASd

εn(μn) be such that

1

| log εn|
Ed

εn(ξn) ≤ E + 1.

Let C ≥ 21/2. By Proposition 3.3 we have that the functions ξ̃n introduced in (3.9)
are in the class ASC

ε (μn) defined in (2.30). By Proposition 3.3 and by (3.7) we deduce
that FC,1

εn (μn) ≤ K for some positive constant K > 0. Therefore by Theorem 2.4 and
Remark 2.6 we deduce that the equicoercivity property holds.
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Γ-liminf inequality: Let μn
f→ μ in X, and let ξn ∈ ASd

εn(μn) be such that

lim inf
1

| log εn|
Ed

εn(ξn) = lim inf Fd
εn(μn).

By Proposition 3.3 we have that ξ̃n ∈ ASC
ε (μn), with C ≥ 1/2. By the Γ-liminf

inequality of Theorem 2.4 and by Remark 2.6, we deduce that for every positive
constant C ′ > 0 we have

F(μ) ≤ lim inf
1

| log εn|

(∫
ΩC

εn
(μn)

|ξ̃n|2 + C ′|μn|(Ω)

)
.

By the arbitrariness of C ′, by Remark 3.2, and by Proposition 3.3 we deduce

F(μ) ≤ lim inf
n

1

| log εn|

∫
ΩC

εn
(μn)

|ξ̃n|2 ≤ lim inf
n

1

| log εn|
Ed

εn(ξn) = lim inf
n

Fd
εn(μn);

i.e., the Γ-liminf inequality holds true.
Γ-limsup inequality: It is enough to prove the Γ-limsup inequality assuming that

|μ(x)| = 1 for every x ∈ supp(μ). In fact the class of measures satisfying this
assumption is dense in energy and with respect to the flat convergence in X.

The recovering sequence is given by the constant sequence μn ≡ μ. We have to
construct a sequence of admissible strains ξn ∈ ASd

εn(μn) satisfying

(3.10) F(μ) ≥ lim sup
1

| log εn|
Ed

εn(ξn).

Let us fix xi ∈ supp(μ) ∩ Ω. For every v := [v1, v2] ∈ Ω1
ε, let us denote by T (v) the

triangle whose vertices are xi, v1, and v2 and, by θxi(v) ∈ [0, 2π), its angle at the
point xi. We consider the field ξnxi

: Ω1
ε → R defined by

ξnxi
(v) := θxi(v)o(T ) for every v ∈ Ω1

εn ,

where o(T ) ∈ {−1, 1} is equal to 1 if the oriented segments [x, v1], [v1, v2], [v2, x]
induce a clockwise orientation to ∂T ; o(T ) = −1 otherwise.

Let us fix 0 < δ < 1. We set

An
i := {x ∈ Ω : |x− xi| < ε1−δ

n },
Bn

i := Ω \An

i .

Let us consider the function ξ̃nxi
: Ω → R

2 of R
n defined in (3.9). By construction, for

n big enough, ξ̃nxi
satisfies the following.

(i) For every x ∈ An
i ,

|ξ̃nxi
(x)| ≤ C

max{|x− xi|, εn}
,

where C is a positive constant independent of εn.
(ii) For every x ∈ Bn

i ,

|ξ̃nxi
(x)| =

1 + o(εn)

|x− xi|
,

where o(εn) → 0 as εn → 0.
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The recovering sequence ξn is defined by

ξn :=
∑
i

ξnxi
.

It can be easily proved that ξn ∈ ASd
εn(μn). By Proposition 3.3 and by properties (i)

and (ii) above it follows that

lim
εn→0

1

| log εn|
Ed

εn(ξn) = lim
εn→0

1

| log εn|
‖ξ̃n‖2

L2(Ω;R2)

=
1

2π
� supp(μ)(1 + o(δ)) = F(μ)(1 + o(δ)),

where o(δ) → 0 as δ → 0, and this concludes the proof of (3.10) and of the Γ-
convergence result.
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ANALYSIS OF UNIVARIATE NONSTATIONARY SUBDIVISION
SCHEMES WITH APPLICATION TO GAUSSIAN-BASED

INTERPOLATORY SCHEMES∗
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Abstract. This paper is concerned with nonstationary subdivision schemes. First, we derive
new sufficient conditions for Cν smoothness of such schemes. Next, a new class of interpolatory
2m-point nonstationary subdivision schemes based on Gaussian interpolation is presented. These
schemes are shown to be CL+μ with L ∈ Z+ and μ ∈ (0, 1), where L is the integer smoothness order
of the known 2m-point Deslauriers–Dubuc interpolatory schemes.

Key words. nonstationary subdivision, radial basis function, Gaussian, asymptotical equiva-
lence, interpolation
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1. Introduction. Subdivision is a powerful tool for the fast construction of
smooth curves and surfaces from a set of control points by means of iterative re-
finements. In this paper, we consider subdivision schemes for curves. A univariate
binary uniform stationary subdivision scheme defines recursively new sets of points
P k = {pkj : j ∈ Z} at level k > 0 from a given set of control points at level zero

P 0 = {p0
j : j ∈ Z}, formally, by

P k+1 = SP k, k = 0, 1, . . . .

A point of P k is defined by a finite linear combination of points of P k−1 with two
different rules,

pk+1
j =

∑
n∈Z

aj−2np
k
n, k ∈ Z+, j ∈ Z.

Nonstationary subdivision schemes consist of recursive refinements of an initial
sparse sequence with the use of rules that may vary from level to level but are the
same everywhere on the same level. Therefore, in the binary case, starting with the
control points P 0 = {p0

n : n ∈ Z}, we define new sets of points P k = {pkn : n ∈ Z}
generated by the relation

pk+1
j =

∑
n∈Z

a
[k]
j−2np

k
n, k ∈ Z+, j ∈ Z,(1.1)

where the set of coefficients a[k] := {a[k]
n } is termed the mask of the rule at level k. We

denote this rule by Sa[k] and the corresponding nonstationary scheme by {Sa[k]}. It is
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common to assume that for each level k, only a finite number of coefficients a
[k]
n ∈ R

are nonzero so that changes in a control point affect only its local neighborhood.
This property clearly facilitates the practical implementation of (1.1). A subdivision

scheme is said to be stationary when the masks a
[k]
n are independent of the levels; then

we use the notation an := a
[k]
n . We denote this rule by Sa. Nonstationary subdivision

schemes are useful because they can provide design flexibility, and the masks can be
adapted to the geometrical configuration of the given data. Nonstationary subdivision
schemes are studied in [2, 8, 10, 18], while a general treatment of stationary schemes
can be found in [1, 5, 6, 7, 9].

The analysis of a subdivision scheme can be reduced to the case of initial control
points in R since each component of the curve is a scalar function generated by the
same subdivision scheme. Therefore, starting with values f0 = {f0

n ∈ R : n ∈ Z}, we
consider fk = {fk

n ∈ R : n ∈ Z} generated by the relation

fk+1
j =

∑
n∈Z

a
[k]
j−2nf

k
n , k ∈ Z+.(1.2)

Definition 1.1. A binary subdivision scheme is said to be Cν if for the initial
data δ = {f0

n = δn,0 : n ∈ Z} there exists a limit function φ0 ∈ Cν(R), φ0 �≡ 0,
satisfying

lim
k→∞

sup
n∈Z

|fk
n − φ0(2

−kn)| = 0.(1.3)

Natural questions in the analysis of subdivision schemes concern the conditions
for convergence and the conditions for the limit functions to be Cν . In particu-
lar, in this study, we are interested in the class of interpolatory subdivision schemes
which refine data by inserting values corresponding to intermediate points, using lin-
ear combinations of neighboring points. The general form of their refinement rules is
as follows:

fk+1
2j = fk

j ,

fk+1
2j+1 =

∑
n∈Z

a
[k]
2n+1f

k
j−n, j ∈ Z, k ∈ Z+.

Examples of such stationary schemes are the four-point scheme by Dyn, Gregory,
and Levin [7] and the Deslauriers–Dubuc schemes [6], where finer level points are
determined by local polynomial interpolation of the coarse level points. When the
finer level points are determined by 2m-point interpolation from a space of exponential
polynomials, the resulting scheme is nonstationary and has smoothness properties, as
in the 2m-point Deslauriers–Dubuc scheme [10].

An analysis of the smoothness of nonstationary subdivision schemes is discussed
in [8]; however, the conditions given in [8] are too strong. Thus, the first objective of
this paper is to provide a new tool for the regularity analysis, improving the conditions
in [8]. It can be applied to a wide class of nonstationary subdivision schemes, both
interpolatory and noninterpolatory. Further, the results can be used directly for the
smoothness analysis of nonstationary wavelet systems, which is one of the important
issues in wavelet construction. Second, in this paper, we study a new class of non-
stationary interpolatory subdivision schemes, where the value at the inserted point is
obtained by radial basis function (RBF) interpolation to data at 2m points symmetric
to the inserted point. Among the many possible RBFs, we employ the Gaussian
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function G(x) = e−|x|2/λ2

with λ as a shape parameter. We show that the resulting
2m-point subdivision scheme converges and has the smoothness CL+μ with L ∈ Z+

and μ ∈ (0, 1), where L is the integer smoothness order of the 2m-point Deslauriers–
Dubuc scheme. The proof of these results is based on the new sufficient condition for
smoothness of nonstationary schemes. Moreover, we will see that the scheme itself
has its own advantages in view of approximation.

The paper is organized as follows. In section 2, we present known conditions
for the convergence and smoothness of nonstationary schemes and derive new suf-
ficient conditions for the smoothness of such schemes. In section 3, along with the
basic setting of RBF interpolation, we present a new family of interpolatory subdi-
vision schemes based on Gaussian interpolation. Next, we show using the results of
section 2 that the new 2m-point schemes have the same integer smoothness as the
2m-point Deslauriers–Dubuc interpolatory scheme. Finally, in section 4, we illustrate
the performance of the new interpolatory schemes by some numerical examples.

2. Sufficient conditions for smoothness of nonstationary schemes. Non-
stationary subdivision schemes define recursively values fk := {fk

n : n ∈ Z} by rules
depending on the level k, as in (1.2). To simplify the presentation of a subdivision
scheme and its analysis, it is convenient to assign to each rule, defined by a mask

a[k] = {a[k]
n }, the Laurent polynomial

a[k](z) :=
∑
n∈Z

a[k]
n zn.

Assume here that for each level k, supp (a[k]) ⊂ [−N,N ] for some integer N > 0.
This implies that the Laurent polynomials a[k](z) have a finite degree.

A stationary subdivision scheme {Sa} has the formal relation fk = Sk
af

0. The
limit function of a C0 stationary scheme is denoted by S∞

a f0. In particular, for the
given data δ = {δ0,n : n ∈ Z} at level 0, with the Kronecker delta δn,0, the basic limit
function of {Sa} is defined by

φ = S∞
a δ.

For a nonstationary subdivision scheme {Sa[k]}, we have the formal relation

fk = Sa[k−1] · · ·Sa[0]f0.

Further, for a convergent scheme {Sa[k]}, its basic limit function is the function

φ0 := lim
k→∞

Sa[k] · · ·Sa[0]δ.

It clearly follows from the linearity of (1.2) that for any initial data f0 = {f0
n : n ∈

Z} ∈ �∞(Z), the limit function of {Sa[k]} can be written as

f∞ =
∑
n∈Z

f0
nφ0(· − n).

First we cite a basic result about the smoothness of stationary subdivision schemes.
Theorem 2.1 (smoothing factors in stationary schemes [5]). Consider a station-

ary subdivision scheme {Sa} with the Laurent polynomial

a(z) =
1

2
(1 + z)b(z),
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where the subdivision scheme {Sb} corresponding to b(z) is Cγ . Then the scheme
{Sa} is convergent, and its basic limit function φ is in Cγ+1.

Now, for the analysis of the smoothness of nonstationary schemes, we adopt the
notion of asymptotically equivalent schemes [8]: A nonstationary subdivision scheme
{Sa[k]} is asymptotically equivalent to a stationary scheme {Sa}, {Sa[k]} ≈ {Sa}, if∑

k∈Z+

‖Sa[k] − Sa‖∞ < ∞,(2.1)

where

‖Sa[k]‖∞ = max

{∑
n∈Z

|a[k]
2n|,

∑
n∈Z

|a[k]
1+2n|

}
.

Theorem 2.2 (see [8]). Let {Sa} be a C0 stationary subdivision scheme, and let
{Sa[k]} ≈ {Sa} with supp(a) = supp(a[k]) for k ∈ Z+. Then {Sa[k]} is C0, and if

‖Sa[k] − Sa‖∞ ≤ c2−k, k ∈ Z+,

then the basic limit function φ0 of {Sa[k]} is Hölder continuous with some exponent
ν > 0.

An analysis of the smoothness of nonstationary subdivision schemes is also dis-
cussed in [8]; however, the conditions given in [8] are too strong. Thus, the purpose
of this section is to provide less restrictive sufficient conditions for the smoothness
of nonstationary schemes. Specifically, we will show that a factor (1 + rkz) in the
Laurent polynomials a[k](z) is a smoothing factor if |1 − rk| ≤ c2−k, while in [8], rk
is required to satisfy the condition

rk = ec2
−k−1

(1 + εk) with

∞∑
k=K

|εk|2k < ∞.

Furthermore, we infer results on the smoothness of an interpolatory nonstationary
scheme from the smoothness of a stationary scheme, which is asymptotically equiva-
lent to it.

Let a(z) be the Laurent polynomial associated with a stationary scheme {Sa}
with the property a(�)(−1) = 0 for � = 0, . . . ,M − 1 and a(M)(−1) �= 0. Accordingly,
it can be written as

a(z) =
∑
n∈Z

anz
n = 2−M (1 + z)Mb(z)(2.2)

with b(−1) �= 0. When a scheme {Sa[k]} is asymptotically equivalent to {Sa}, by

definition, |a[k]
n − an| = o(1) as k tends to ∞. Hence, the Laurent polynomial a[k](z)

associated with Sa[k] has M -roots in the neighborhood z = −1 in the complex plane,
and it can be written in the form of

a[k](z) = b[k](z)

M∏
n=1

1

2
(1 + rk,nz), b[k](−1) = c + o(1), c �= 0,(2.3)

with rk,n complex numbers such that rk,n → 1 as k tends to ∞. Moreover, since
a(�)(−1) = 0 for � = 0, . . . ,M − 1 (see (2.2)), it is easy to see that D�a[k](−1) = o(1)
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as k → ∞, where D� indicates the differential operator of order �. In this study, we
require D�a[k](−1) to satisfy the following stronger condition.

Condition A. A nonstationary subdivision scheme {Sa[k]} satisfies this condition
if the corresponding Laurent polynomials {a[k](z)} are of the form (2.3) and if

|D�a[k](−1)| ≤ c2−(M−�)k, � = 0, . . . ,M − 1, k ∈ Z+.

In what follows, we show that if

a[k](z) = c[k](z)

L∏
n=1

1

2
(1 + rk,nz)

and if {Sc[k]} is CN+μ with N ∈ Z+ and μ ∈ (0, 1), then {Sa[k]} with Laurent
polynomials of the form (2.3) satisfying Condition A has the smoothness CN+L+ν

with ν ∈ (0, 1). First we show that a factor (1 + rkz) in the Laurent polynomials of
a nonstationary scheme with |1 − rk| ≤ c2−k is a smoothing factor. For this, we cite
the following lemma.

Lemma 2.3 (see [8]). Consider a nonstationary subdivision scheme {Sa[k]} with
Laurent polynomials of the form

a[k](z) =
1

2
(1 + rkz)b

[k](z).

Let φa, φb, and h be the basic limit functions of {Sa[k]}, {Sb[k]}, and {S1+rkz}, re-
spectively. Then

φa =

∫
R

φb(· − t)h(t) dt.

For the following analysis, it is necessary to remark that the basic limit function
h of {S1+rkz} is bounded and satisfies the following properties:

(a) supph = [0, 1),(2.4)

(b) h
(
(j + 2−1)2−k

)
= rkh(j2−k), k ∈ Z+, j = 0, . . . , 2k − 1;

see Example 2 in [8] for the details.
Lemma 2.4. Let φb and h be the basic limit functions of {Sb[k]} and {S1+rkz},

respectively. Suppose that

|1 − rk| ≤ c2−k, k ≥ K ∈ Z+.(2.5)

For each k ∈ Z+, define the sequence of functions

Ik(x) =

∫ x

x−1

φb(t)hk(x− t) dt,(2.6)

where

hk(t) = h(j2−k), j2−k ≤ t < (j + 1)2−k, j = 0, . . . , 2k − 1.(2.7)
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If φb is Hölder continuous with some exponent ν > 0, then Ik satisfies the following
properties:

(a) For any k, � ≥ K ∈ Z+ with � > k,

|I ′�(x) − I ′k(x)| ≤ c2−νk.(2.8)

(b) There exists δ0 > 0 such that for any δ < δ0,

|I ′k(x + δ) − I ′k(x)| ≤ cδμ, k ≥ K ∈ Z+,

for some μ ∈ (0, 1).
Proof. (a) By (2.7), we have

I ′k(x) =

2k−1∑
j=0

h(j2−k)[φb(x− j2−k) − φb(x− (j + 1)2−k)] ∈ C(R),(2.9)

and after some calculations, we get

I ′k+1(x) − I ′k(x) =

2k−1∑
j=0

[h((j + 2−1)2−k) − h(j2−k)]

·[φb(x− (j + 2−1)2−k) − φb(x− (j + 1)2−k)].

Here, since φb is Hölder continuous with exponent ν > 0,

|φb(x− (j + 2−1)2−k) − φb(x− (j + 1)2−k)| ≤ c2−νk(2.10)

with a constant c > 0 independent of j and x. Thus, in view of (2.4), (2.5), and the
boundedness of h, we obtain the expression

|I ′k+1(x) − I ′k(x)| ≤ c2−νk
2k−1∑
j=0

|(rk − 1)h(j2−k)| ≤ c′2−νk.(2.11)

It clearly induces the required result of (a).
(b) For the given Hölder exponent ν > 0 and δ > 0, choose p = 1

ν and an integer
τ > 0 such that

(2−4p)τ ≤ δ ≤ (2−2p)τ .

Note that from this inequality we can also obtain

δ
1
2p ≤ 2−τ ≤ δ

1
4p .(2.12)

Then, by the triangle inequality,

I ′k(x + δ) − I ′k(x)| ≤ |I ′k(x + δ) − I ′τ (x + δ)|
+ |I ′τ (x + δ) − I ′τ (x)| + |I ′τ (x) − I ′k(x)|.(2.13)

Assuming k > τ , we apply (2.8) and (2.12) to obtain

|I ′τ (x) − I ′k(x)| ≤ c2−τν ≤ cδ
ν
4p ≤ cδ

ν2

4 ,(2.14)
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which estimates the first and last terms on the right-hand side of (2.13). Next, recall-
ing that supph = [0, 1), the summation in (2.9) can be rewritten as follows (with k
replaced by τ):

I ′τ (x) =

2τ∑
j=0

[h(j2−τ ) − h((j − 1)2−τ )]φb(x− j2−τ ).

Therefore,

|I ′τ (x+ δ) − I ′τ (x)| ≤
2τ∑
j=0

|h(j2−τ ) − h((j − 1)2−τ )||φb(x+ δ − j2−τ ) − φb(x− j2−τ )|.

Here, h is bounded and φb is Hölder continuous with exponent ν > 0. Thus, due to
(2.12) and the fact that p = 1/ν, we get

|I ′τ (x + δ) − I ′τ (x)| ≤ c2τδν ≤ c2−τ ≤ cδ
ν
4 .

Finally, combining this bound with (2.13) and (2.14), we conclude that

|I ′k(x + δ) − I ′k(x)| ≤ cδ
ν2

4 .

Taking μ := ν2

4 , we finish the proof.
Lemma 2.5. Consider a nonstationary subdivision scheme {Sa[k]} with Laurent

polynomials of the form

a[k](z) =
1

2
(1 + rkz)b

[k](z).

Suppose that

|1 − rk| ≤ c2−k, k ≥ K ∈ Z+,(2.15)

and that the scheme corresponding to {Sb[k]} is CL+ν with L ∈ Z+ and ν ∈ (0, 1).
Then {Sa[k]} is CL+1+μ for some μ ∈ (0, 1).

Proof. Due to Lemma 2.3, we find that

φa =

∫
R

φb(· − t)h(t) dt,

where φa, φb, and h are the basic limit functions of {Sa[k]}, {Sb[k]}, and {S1+rkz},
respectively. Note that h is bounded and supp{h} = [0, 1) [8]. It is sufficient to prove
the lemma for � = 0, since

D�φa =

∫
R

D�φb(· − t)h(t) dt.

To this end, invoking the definition of the function Ik in (2.6), we find that Ik(x) →
φa(x) uniformly as k → ∞. Further, according to Lemma 2.4(a), {I ′k} is uniformly
convergent, which means that the limit of {I ′k} is continuous and that is φ′

a. Using this
fact, we can conclude from Lemma 2.4(b) that φ′

a is Hölder continuous with exponent
μ > 0. It completes the proof.
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We now show that Condition A on {Sa[k]} implies the condition (2.15) for all the
factors in the representation (2.3). To prove this we need the following two lemmas.
Without loss of generality, we rearrange the set rk,n in (2.3) such that

|1 − rk,n| = max{|1 − rk,�| : � = n, . . . ,M}, n = 1, . . . ,M,(2.16)

that is, |1 − rk,n| ≥ |1 − rk,n+1|. The following lemma shows that if Condition A is
satisfied, |1 − rk,n| ≤ c2−k. For this proof, we use the notation

{xk} � {yk}

for two sequences of nonzero reals if there exist some constants c1, c2 > 0 such that
c1 ≤ |xk y

−1
k | ≤ c2 for all k.

Lemma 2.6. Suppose that Condition A holds for the scheme {Sa[k]}. Then

|1 − rk,n| ≤ c2−k, k ≥ K ∈ Z+.(2.17)

Proof. Denote |1 − rk,1| =: ωk. Since |1 − rk,n| ≤ ωk for any n ≤ M , it is
sufficient to show that supk |2kωk| ≤ c for a constant c > 0. Now, suppose that
supk |2kωk| = ∞, which means that there exists a sequence {k�} such that

|2k�ωk�
| ≤ |2k�+1ωk�+1

| → ∞ as k� → ∞.(2.18)

Then, recalling |1− rk,n+1| ≤ |1− rk,n|, we will derive a contradiction by considering
the following two cases.

Case 1. {ωk�
} � {|1 − rk�,n|} for n = 1, . . . ,M .

In this case, it is clear from (2.3) that {ak�
(−1)} � {ωM

k�
}. By Condition A,

|ak�
(−1)| ≤ c2−k�M , we get the bound |2k�ωk�

| ≤ c for any k�, in contradiction to
(2.18).

Case 2. {ωk�
} � {|1 − rk�,n|} for n = 1, . . . , s < M .

That is, there exists a subsequence {kj} ⊂ {k�} such that for any n > s, |1 −
rkj ,n|ω−1

kj
→ 0 as kj → ∞, i.e.,

|1 − rkj ,n| = o(ωkj ), n > s.(2.19)

Then we use the following lemma.
Lemma 2.7. Let

Fkj (z) :=

M∏
n=1

1

2
(1 + rkj ,nz).

Under the condition of Case 2, we have

{F (M−s)
kj

(−1)} � {ωs
kj
} and |F (M−s−�)

kj
(−1)| = o(ωs+�

kj
) ∀� > 0.

Proof. For the given s < M , denote Is := {1, 2, . . . , s} and let Λs be the collection
of all subsets of {1, 2, . . . ,M} = IM with cardinality s, i.e.,

Λs := {I ⊂ IM : #I = s}.

Then,

F
(M−s)
kj

(−1) =

⎛
⎝∏

n∈Is

(1 − rkj ,n) +
∑

I∈Λs\Is

∏
n∈I

(1 − rkj ,n)

⎞
⎠(

1

2M
+ o(1)

)
.(2.20)
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Since |1 − rkj ,n| ≥ |1 − rkj ,n+1|,{∏
n∈Is

|1 − rkj ,n|
}

� {ωs
kj
} and

∏
n∈I

|1 − rkj ,n| = o(ωs
kj

).

Thus,

{F (M−s)
kj

(−1)} � {ωs
kj
}.

In a similar way, we can prove the relation |F (M−s−�)
kj

(−1)| = o(ωs+�
kj

) for all
� > 0.

Now, we turn to the proof of Lemma 2.6 in Case 2. It follows from (2.3) that for
some suitable constants c� with � = 0, . . . ,M − s, we have

a
(M−s)
kj

(−1) =

M−s∑
�=0

(
2m− s

�

)
b
(�)
kj

(−1)F
(M−s−�)
kj

(−1)(2.21)

= bkj (−1)F
(M−s)
kj

(−1) +

M−s∑
�=1

(
2m− s

�

)
b
(�)
kj

(−1)F
(M−s−�)
kj

(−1).

Since bkj (−1) = c+o(1) with a constant c �= 0, identity (2.21) leads to {a(M−s)
kj

(−1)} �
{ωs

kj
} by Lemma 2.7. Also, from Condition A, |a(M−s)

kj
(−1)| ≤ c2−kjs, yielding

|2kjωkj
| ≤ c for any kj , which is a contradiction to (2.18). (Here c is a generic

constant.)
We are now ready to provide the main theorem of this section.
Theorem 2.8 (smoothing factor in nonstationary subdivision schemes). Con-

sider a nonstationary subdivision scheme {Sa[k]} satisfying Condition A. If

a[k](z) =
1

2
(1 + rkz)c

[k](z), k > K ∈ Z+,

where {Sc[k]} is of compact support and CL+ν with L ∈ Z+ and ν ∈ (0, 1), then {Sa[k]}
is CL+1+μ for some μ ∈ (0, 1).

Proof. From Lemmas 2.6 and 2.5, the proof is immediate.
For interpolatory schemes, we have the stronger result.
Theorem 2.9. Let {Sa[k]} be a nonstationary interpolatory subdivision scheme

satisfying Condition A. Assume that {Sa[k]} is asymptotically equivalent to a station-
ary subdivision scheme {Sa}. Then if {Sa} is CL+ν with L ∈ Z+ and ν ∈ (0, 1),
{Sa[k]} is CL+μ for some μ ∈ (0, 1).

Proof. Assume that {Sa} is CL+ν . Since Sa is interpolatory, a(z) = 2−L(1 +
z)Lc(z) with {Sc} a Cν with ν ∈ (0, 1) [5]. From the fact that {Sa} and {Sa[k]} are
asymptotically equivalent, we conclude that L < M , and we can write

a[k](z) =

L∏
n=1

1

2
(1 + rk,nz)c

[k](z)

with {Sc[k]} asymptotically equivalent to {Sc}. By [8], the scheme {Sc[k]} is Hölder
continuous with some positive exponent. From Condition A and Lemmas 2.5 and 2.6,
we conclude that {Sa[k]} is CL+μ with μ ∈ (0, 1).

In what follows, we use the results of this section to analyze a new family of
interpolatory schemes.
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3. Subdivision schemes based on Gaussian interpolation and their
analysis.

3.1. Construction. Radial basis function (RBF) interpolation is a very strong
and convenient tool for interpolation in the multivariate setting [4, 12, 13, 14, 15, 17].
In this section, we apply RBF interpolation in the univariate setting to construct
interpolatory subdivision schemes. Given data (xj , f(xj)), j = 1, . . . , n, where X :=
{x1, . . . , xN} is a subset of R and f : R → R, we consider interpolants to the data of
the form

Rf,X(x) :=

N∑
n=1

αnG(x− xn),(3.1)

where G is the Gaussian function

G(x) = e−|x|2/λ2

,

with λ a parameter (λ can serve as a shape parameter in the resulting subdivision
scheme). The coefficients α1, . . . , αN are determined by the interpolation condition

Rf,X(xj) = f(xj), j = 1, . . . , N.(3.2)

It is well known [13] that the linear system (3.2) is nonsingular for any choice of
X consisting of distinct points. The interpolant Rf,X in (3.1) has a Lagrange-type
representation:

Rf,X(x) :=

N∑
n=1

un(x)f(xn), un(x�) = δn,�,(3.3)

where un are the Lagrange functions from the space GX := span{G(·−x1), . . . , G(·−
xN )}. The coefficients un(x), n = 1, . . . , N , can be obtained as the solution of the
linear system

N∑
n=1

un(x)G(xn − x�) = G(x− x�), � = 1, . . . , N.(3.4)

We study interpolatory subdivision schemes based on interpolation at symmetric
2m-points to the inserted point. By (3.4), and since G(x) = G(−x), the subdivision
schemes considered are nonstationary and uniform in the sense that their refinement
rules depend on the level of refinement but are the same everywhere on the same level.
Let

Xk,j := {(j + n)2−k : n = −m + 1, . . . ,m},

which is the local set of symmetric 2m-points around (j + 2−1)2−k. Then, the value
fk+1
2j+1 is defined by the Gaussian-based interpolation to the data {(j + n)2−k, fk

j+n) :
n = −m + 1, . . . ,m}, denoted by Rk,j . Thus,

fk+1
2j+1 = Rk,j(2

−k(j + 2−1))

=
m∑

n=−m+1

u[k,j]
n (2−k(j + 2−1))fk((j + n)2−k)
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with the Lagrange function u
[k,j]
n as in (3.4). Here and in what follows, we use the

notation

X0 := X0,0 := {−m + 1, . . . ,m}.(3.5)

It is easy to verify from (3.4) that the u
[k,j]
n (2−k(j+2−1)) with n ∈ X0 are independent

of the location j. Thus, we can define

a
[k]
1−2n := u[k,j]

n (2−k(j + 2−1)), j ∈ Z,(3.6)

and the mask at level k of the 2m-point Gaussian-based interpolatory subdivision
scheme by

a
[k]
1−2n := u[k,0]

n (2−k−1), a
[k]
2n = δn,0, n ∈ X0, k ∈ Z+.(3.7)

Note that by construction,∑
n∈X0

a
[k]
1−2nG((n− �)2−k) = G((2−1 − �)2−k), � ∈ X0.(3.8)

We denote the nonstationary scheme with mask defined in (3.7) by {SG
a[k]}. To study

the convergence and smoothness of {SG
a[k]}, we use the results of section 2 and compare

{SG
a[k]} with the 2m-point Deslauriers–Dubuc interpolatory subdivision scheme, which

we denote by {Sa}.
The 2m-point Deslauriers–Dubuc interpolatory subdivision scheme defines the

values at the inserted point by using polynomial interpolation of degree 2m−1 through
the symmetric 2m-points. Define the Lagrange polynomials on the set X0 in (3.5) by

Ln(x) =
∏
� �=n
�∈X0

x− �

n− �
, n ∈ X0.(3.9)

It is obvious that Ln(�) = δn,� with � ∈ X0. Then, the mask of the 2m-point
Deslauriers–Dubuc interpolatory subdivision scheme is given by

a2n = δ0,n, a1−2n := Ln(2−1), n ∈ X0.(3.10)

One should keep in mind that Sa reproduces polynomials of degree ≤ 2m − 1. In
particular, for any k ∈ Z+,

p(2−k−1) =
∑
n∈X0

a1−2np(n2−k), p ∈ Π<2m,(3.11)

where Π<n stands for the space consisting of all univariate algebraic polynomials of
degree less than n.

3.2. Analysis of convergence. The goal of this section is to prove that the
2m-point Gaussian-based interpolatory subdivision scheme {SG

a[k]} is asymptotically
equivalent to the 2m-point Deslauriers–Dubuc interpolatory scheme {Sa}, which im-
plies that {SG

a[k]} is convergent [8].

Theorem 3.1. Let {a[k]
n } be the mask at level k of {SG

a[k]}, and let {an} be the
mask of {Sa}. Then, there exists a constant c2m > 0 such that

max
n∈Z

|a[k]
n − an| ≤ c2m2−2k, k ≥ K ∈ Z+.
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Proof. Since a2n = a
[k]
2n = δn,0, we need to estimate only the difference a1−2n −

a
[k]
1−2n. Recall from (3.7) that a

[k]
1−2n = u

[k,0]
n (2−k−1), n ∈ X0, with u

[k,0]
n the Lagrange

function of the Gaussian-based interpolation on Xk,0 = {�2−k : � ∈ X0}, satisfying

u[k,0]
n (2−k�) = δn,�, � ∈ X0.(3.12)

Further, since u
[k,0]
n (x) ∈ span{G(· − �2−k) : � ∈ X0}, there exist constants α

[k]
� ,

� ∈ X0, such that

uk,n(x) := u[k,0]
n (2−kx) =

∑
�∈X0

α
[k]
� G(2−k(x− �)),(3.13)

yielding uk,n(�) = δn,� for any � ∈ X0. Thus, uk,n(x) can be considered as the RBF
interpolant to the data {δn,� : � ∈ X0} on X0 by G(2−k·). On the other hand, the
mask of Deslauriers–Dubuc scheme is given by a1−2n = Ln(2−1), where the function
Ln(x) is also a polynomial interpolant to the data {δn,� : � ∈ X0} on X0, which means

uk,n(�) = Ln(�) = δn,�, � ∈ X0.

Recently, it was proved in [16] that the Gaussian interpolant of the form uk,n(x) con-
verges uniformly to the polynomial interpolant Ln(x) as k → ∞, with the convergence
rate O(2−2k). In particular,

|uk,n(2−1) − Ln(2−1)| = O(2−2k).

Thus, since a
[k]
1−2n = uk,n(2−1) and a1−2n = Ln(2−1), we arrive at the required

conclusion.
Corollary 3.2. The scheme {SG

a[k]} is convergent and is C0.

3.3. Analysis of smoothness. First, we give a simple proof of C1 smoothness
based on a result from [8].

Result A. The scheme {Sa[k]} is in Cγ if a scheme {Sa} is in Cγ and∑
k∈Z+

2γk‖Sa − Sa[k]‖∞ < ∞.(3.14)

Theorem 3.3. Let {SG
a[k]} be the 2m-point Gaussian-based interpolatory subdi-

vision scheme. Then, if m ≥ 2, {SG
a[k]} is at least C1.

Proof. Let Sa be the 2m-point Deslauriers–Dubuc interpolatory scheme; it is clear
from Theorem 3.1 that ∑

k∈Z+

2k‖Sa − SG
a[k]‖∞ < ∞.

Since Sa is at least C1 for m ≥ 2, the C1 smoothness of {SG
a[k]} is an immediate

consequence of Result A.
Next, we show that if the 2m-point Deslauriers–Dubuc interpolatory scheme {Sa}

is CL+ν with L ∈ Z+ and ν ∈ (0, 1), then the nonstationary 2m-point Gaussian-based
interpolatory subdivision scheme {SG

a[k]} is CL+μ for some μ ∈ (0, 1). It implies
that both 2m-point schemes have the same integer smoothness as the 2m-point
Deslauriers–Dubuc interpolatory scheme. This is proved by Theorem 2.9 and by
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verifying first that {SG
a[k]} satisfies Condition A of section 2. Our proof relies on the

following property of the Gaussian function [11]:

det
(
G(�+n)(0)

)
�= 0, �, n = 0, . . . , 2m− 1,(3.15)

and on the three auxiliary lemmas.
Lemma 3.4. Let TG(�) be the Taylor polynomial of G(�) of degree 2m− 1 around

zero, i.e.,

TG(�)(x) :=

2m−1∑
n=0

xn

n!
G(�+n)(0).(3.16)

Then, TG(�) , � = 0, . . . , 2m− 1, are linearly independent.
Proof. It is sufficient to prove that for any distinct points t0, . . . , t2m−1, the

2m× 2m matrix T with entries

T(�, n) = TG(�)(tn), �, n = 0, . . . , 2m− 1,

is nonsingular. We see that the matrix T can be decomposed as

T = B · V,

where

B(�, n) = G(�+n)(0) and V(�, n) = t�n/�!.

Since both matrices B and V are invertible, the nonsingularity of T is immedi-
ate.

To prove the next lemma, we recall that the (n− 1)th order divided difference of
a function f ∈ Cn−1 at the points (−m + 1), . . . , (−m + n) is given by

(n− 1)!f [−m + 1, . . . ,−m + n] =
n−1∑
α=1

cn,αf(−m + α) = f (n−1)(ξ)(3.17)

with ξ ∈ [−m + 1,−m + n], and where

cn,α := (n− 1)!

n∏
j �=α
j=1

1

α− j
, α = 1, . . . , n.(3.18)

Lemma 3.5. Let Pk be the 2m× 2m matrix with entries

Pk(�, n) := Pk,x(�, n) := G(�)(x− (n−m + 1)2−k),(3.19)

where �, n = 0, . . . , 2m − 1. Then there exist η > 0 and K ∈ Z+ such that for any
x ∈ [−η, η],

detPk = O(2−km(2m−1)) and ‖P−1
k ‖∞ = O(2(2m−1)k), k ≥ K.

Here ‖A‖∞ indicates the ∞-norm of the matrix A.
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Proof. Denote by pn, n = 1, . . . , 2m, the column vectors of the matrix Pk. Since
the determinant of a matrix is invariant under elementary column operations, we
perform the following column operations:

p′
n := pn +

n−1∑
α=1

cn,αpα, n = 2m, 2m− 1, . . . , 1,

with cn,α defined as in (3.17). Defining P′
k to be the matrix with columns (p′

1, . . . ,p
′
2m),

we observe that det(Pk) = det(P′
k). Further, applying (3.17), we get

P′
k(�, n) = 2−nkG(�+n)(x− ξ�,n2−k),(3.20)

with 0 ≤ �, n ≤ 2m− 1, and ξ�,n ∈ [−m + 1,−m + 1 + n]. Thus, from (3.15), we can
deduce that there exist η > 0 and K ∈ Z+ such that detPk = O(2−km(2m−1)) �= 0
for any x ∈ [−η, η] and k ≥ K. Further, a direct calculation from (3.20) easily leads
to the estimate ‖P−1

k ‖∞ = O(2(2m−1)k) as k → ∞.
For any β = 0, . . . , 2m− 1, define the function

Φk,β(x) :=
∑
n∈X0

g[k]
β

(n)G(x− 2−kn)(3.21)

so that the coefficient vector g[k]
β

:= (g[k]
β

(n) : n ∈ X0) is obtained by solving the
linear system

Φ
(�)
k,β(2−k−1) = δβ,�(−1)��!(3.22)

which can be written in the matrix form

Pk · g[k]
β

= c,

where Pk = Pk,2−k−1 with Pk,x as defined in (3.19) and c(�) := δβ,�(−1)��! with
� = 0, . . . , 2m − 1. The following estimates are central to the proof that {SG

a[k]}
satisfies Condition A.

Lemma 3.6. For all β = 0, . . . , 2m− 1,

(i) ‖g
β
‖∞ = O(2k(2m−1)) as k → ∞,(3.23)

(ii) |Φ(�)
k,β(2−k−1)| ≤ c, � = 2m, . . . , 4m− 2.

Proof. Since g[k]
β

= P−1
k · c, the estimate ‖g[k]

β
‖∞ = O(2k(2m−1)) follows imme-

diately from Lemma 3.5. Next, recall that TG(�) indicates the Taylor polynomial of
degree 2m−1 of G(�) around zero with � = 2m, . . . , 4m−2. By Lemma 3.4, there exist
some suitable constants γ

�,0
, . . . , γ

�,2m−1
such that TG(�) =:

∑2m−1
α=0 γ

�,α
TG(α) . Thus,

we get from (3.21),

Φ
(�)
k,β(2−k−1) =

∑
n∈X0

g[k]
β

(n)G(�)(2−k−1 − n2−k)

=
∑
n∈X0

g[k]
β

(n)
(
TG(�)(2−k−1 − n2−k) + O(2−2mk)

)

=

2m−1∑
α=0

γ
�,α

∑
n∈X0

g[k]
β

(n)
[
TG(α)(2−k−1 − n2−k) + O(2−2mk)

]
.
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Note that

TG(α)(2−k−1 − n2−k) = G(α)(2−k−1 − n2−k) + O(2−2mk), α = 0, . . . , 2m− 1.

Applying this identity to (3.21), we get, in view of (3.23),∣∣∣∣∣
∑
n∈X0

g[k]
β

(n)TG(�) , (2−k−1 − n2−k)

∣∣∣∣∣ ≤
∣∣Φ(�)

k,β(2−k−1)
∣∣ + O(2−k)

≤ �! + O(2−k),

as a consequence of (3.22). Also, by (i), the property |Φ(�)
k,β(2−k−1)| ≤ c for � =

2m, . . . , 4m− 2 is obvious.
Now, we are ready to prove that {SG

a[k]} satisfies Condition A with M = 2m.

Theorem 3.7. Let a[k](z) =
∑

n∈Z
a
[k]
n zn be the Laurent polynomial at level k

associated with {SG
a[k]}. Then, for any β = 0, . . . , 2m− 1, we have

|Dβa[k](−1)| ≤ c2−k(2m−β), k ≥ K,

for some K ∈ Z+.
Proof. Since

Dβa[k](−1) =

β∑
�=0

γ
β,�

∑
n∈Z

a[k]
n n�(−1)n

for some constants γ
β,�

, � = 0, . . . , β, it is sufficient to prove that for any β =
0, . . . , 2m− 1,

sβ :=
∑
n∈Z

(−1)nnβa[k]
n = O(2−k(2m−β)), k → ∞,

in order to conclude Condition A. Recalling that a
[k]
2n = δn,0, observe that

2−β(k+1)sβ = δβ,0 −
∑
n∈X0

a
[k]
1−2n

(
(−n + 2−1)2−k

)β
.(3.24)

Invoking (3.8) and (3.22), we get

δβ,0 = Φk,β(2−k−1) =
∑
n∈X0

a
[k]
1−2nΦk,β(n2−k).(3.25)

This together with (3.24) lead to

2−β(k+1)sβ =
∑
n∈X0

a
[k]
1−2n

(
Φk,β(n2−k) − ((−n + 2−1)2−k)β

)
.(3.26)

In the following, we replace Φk,β(n2−k) with its Taylor polynomial of degree 4m− 2
plus the remainder term. The Taylor expansion of Φk,β around 2−k−1 of degree
4m− 2 is

Φk,β(n2−k) =

4m−2∑
�=0

(
(n− 2−1)2−k

)�Φ
(�)
k,β(2−k−1)

�!
+ Rk,β,m,(3.27)
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where the remainder Rk,β,m is given by

RΦβ ,4m−1 =
(
(n− 2−1)2−k

)4m−1 Φ
(4m−1)
k,β (ξ2−k)

(4m− 1)!

with ξ a point between 2−1 and n. Noting that by (3.22)

2m−1∑
�=0

(
(n− 2−1)2−k

)�Φ
(�)
k,β(2−k−1)

�!
=

(
(−n + 2−1)2−k

)β

,

we get from (3.25) and (3.26)

2−β(k+1)sβ =
∑
n∈X0

a
[k]
1−2n

(
4m−2∑
�=2m

(
(n− 2−1)2−k

)�Φ
(�)
k,β(2−k−1)

�!
+ Rk,β,m

)
.

By Lemma 3.6, |Φ(�)
k,β(2−k−1)| ≤ c for any � = 2m, . . . , 4m− 2. Consequently,∣∣∣∣∣

∑
n∈Z

(−1)nnβa[k]
n

∣∣∣∣∣ ≤ c2−k(2m−β)
(
1 + 2−k(2m−1)‖Φ(4m−1)

k,β ‖L∞[−η,η]

)
.(3.28)

Since ‖g
β
‖∞ = O(2k(2m−1)) and G(4m−1) is bounded,

2−k(2m−1)‖Φ(4m−1)
β ‖L∞[−η,η] ≤ c,

which completes the proof of the theorem.
We are now ready to state and prove the main theorem of this section.
Theorem 3.8. If the 2m-point Deslauriers–Dubuc interpolatory scheme {Sa} is

CL+ν with L ∈ Z+ and ν ∈ (0, 1), then the nonstationary 2m-point Gaussian-based
interpolatory subdivision scheme {SG

a[k]} is CL+μ for some μ ∈ (0, 1).

Proof. Due to Theorem 3.1, both 2m-point schemes {SG
a[k]} and {Sa} are asymp-

totically equivalent. As a consequence of Theorems 3.7 and 2.9, this theorem is
immediate.

Corollary 3.9. The nonstationary 2m-point Gaussian-based interpolatory sub-
division scheme has the same integer smoothness as the 2m-point Deslauriers–Dubuc
interpolatory scheme.

Remark. In this section, the Gaussian function has been used. We believe that
the same results can be obtained by using other smooth RBFs such as multiquadrics.

4. Examples. In this section, we illustrate the performance of the 4-point
Gaussian-based interpolatory subdivision schemes with some numerical examples.
Recall that the Gaussian function is of the form

G(x) = e−|x|2/λ2

, λ > 0.

Here λ serves as a shape parameter. Having tried several alternatives for the param-
eter λ, we found out that good choices of λ are in the range 0 < λ−1 ≤ 1.0. The
solid curves in Figure 4.1 are generated by the 4-point Gaussian-based interpolatory
subdivision scheme using the parameter λ−1 = .5. The dotted curves in Figure 4.1
are generated by the 4-point Deslauriers–Dubuc scheme. It is known that the 4-point
Deslauriers–Dubuc scheme has the smoothness C1. Hence, due to Theorem 3.8, the
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Fig. 4.1. Interpolating curves generated by the 4-point Gaussian-based interpolation with λ−1 =
.5 (solid lines) and the 4-point DD scheme (dotted lines).

Fig. 4.2. The effect of the tension parameters in the 4-point Gaussian-based scheme and the
classical 4-point scheme.

4-point Gaussian-based interpolatory subdivision scheme is also C1. Also, Figure
4.2 compares the Gaussian-based 4-point scheme to the classical 4-point scheme to
the mask [−θ, 1/2 + θ, 1/2 + θ,−θ]. In Figure 4.2, the curves, from the closer to
the control polygon and outward, correspond to the values of the tension parameters
θ = 0.03, 1/16, and λ−1 = 0.5, 0.8.

In addition, the Gaussian-based schemes have an advantage over polynomial-
based schemes, especially in signal processing. The following example shows the
superiority of the 4-point Gaussian-based scheme over the 4-point Deslauriers–Dubuc
scheme. We approximate oscillatory signals of the form [3]

f(t) = cos(2πFt + β sin(2πFst)).

We choose F = 0.5, β = 5.75, Fs = 0.0062 and use 311 data samples in the domain
[0, 30] as initial data for the subdivision. The solid curve in Figure 4.3 indicates the
approximation errors by the 4-point Gaussian-based schemes as a function of λ. The
dotted line is the error by the Deslauriers–Dubuc 4-point scheme. We find that by
choosing a suitable parameter λ in the Gaussian g(x) := e−x2/λ2

(around λ = 2π
in this example), the 4-point Gaussian-based scheme provides much better accuracy
than the polynomial-based 4-point scheme. For this reason, a future project would
be to find an algorithm for choosing the appropriate λ for a given signal.

We regard the study of the 4-point Gaussian-based scheme as a first step towards
the design and analysis of interpolatory bivariate Gaussian-based nonstationary
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Fig. 4.3. Approximation errors by the 4-point Gaussian-based scheme as a function of λ. The
dotted line indicates the error by the 4-point Deslauriers–Dubuc scheme.

schemes extending the stationary butterfly scheme. However, this requires much
heavier analysis, especially at extraordinary points.
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Abstract. We prove the unique solvability of second order elliptic equations in nondivergence
form in Sobolev spaces. The coefficients of the second order terms are measurable in one variable
and VMO in other variables. From this result, we obtain the weak uniqueness of the Martingale
problem associated with the elliptic equations.

Key words. second order equations, vanishing mean oscillation, Martingale problem

AMS subject classifications. 35J15, 60J60

DOI. 10.1137/050646913

1. Introduction. We study the Lp-theory of the elliptic differential equation

(1.1) ajk(x)uxjxk(x) + bj(x)uxj (x) + c(x)u(x) = f(x) in R
d,

where ajk(x) are allowed to be only measurable with respect to one coordinate, say
x1 ∈ R, where x = (x1, x′) ∈ R

d, x′ ∈ R
d−1.

It is well known that if the coefficients ajk are only measurable, then there could
not exist a unique solution to the above equation even in a very generalized sense
(see [11, 13]). We are interested in more regular solutions. In 1967 Ural’tseva (see
[7] or the original paper [17]) constructed an example of an equation in R

d for d ≥ 3
with the coefficients depending only on the first two coordinates for which there is no
unique solvability in W 2

p with p ≥ d (for any d ≥ 3 and p ∈ (1, d) this was known
before).

Thus in order to have the unique solvability of the equation in W 2
p , we have to

impose some (regularity) conditions on the coefficients ajk. The most classical case is
when ajk are uniformly continuous. We can also have piecewise continuous or VMO
coefficients. For details, see [1, 2, 4, 6, 9, 10].

In this paper, we show that there exists a unique solution to the above equation
in W 2

p , p ∈ (2,∞), under the assumption that ajk(x1, x′) are measurable in x1 ∈ R

and VMO in x′ ∈ R
d−1; see Assumptions 2.1 and 2.2. If the coefficients ajk are

independent of x′ ∈ R
d−1 (more generally, uniformly continuous in x′ ∈ R

d−1; see
Remark 2.6), then the equation is uniquely solvable in W 2

2 as well. In addition, we
show that one can easily solve the equation with the Dirichlet, Neumann, or oblique
derivative boundary condition in a half space, say R

d
+ = {(x1, x′) : x1 > 0, x′ ∈ R

d−1},
using the results for equations in the whole space.

The class of coefficients we are dealing with is considerably more general than
those previously known, as long as p ∈ [2,∞). It actually contains almost all types of
discontinuous coefficients that have been investigated so far. For example, it contains
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the class of piecewise continuous coefficients investigated in [4, 8, 9]. It also contains
VMO coefficients with which elliptic equations were investigated in [1, 2, 6]; see also
the monograph [10], which treats elliptic and parabolic equations with discontinuous
coefficients including oblique derivative problems with VMO coefficients. Although
we slightly touch on the oblique derivative problem, we do not say anything about
many important issues of equations with VMO coefficients, which are discussed, for
instance, in [14, 15, 12].

The highlight of our assumptions on the coefficients ajk would be the following:
no assumptions on the regularity of the coefficients with respect to one variable as
far as they are uniformly bounded and elliptic. Having only measurable coefficients
(as functions of x1 ∈ R), we obtain the L2-estimate for the equation by using the
usual Fourier transforms. Based upon this estimate, we establish the Lp-estimate,
p ∈ (2,∞), using the approach initiated by the second author of this paper (for
example, see [6]). In this approach we make use of a pointwise estimate of sharp
functions of second order derivatives of the solution. As noted in [6], thanks to this
method, we do not need any integral representations of the solution nor commutators,
which were used, for example, in [1, 2]. Especially, we deal with VMO coefficients in
a rather straightforward manner.

One good motivation to consider the above equation in the whole space is to prove
weak uniqueness of stochastic processes associated with the elliptic equation. As is
shown in [6, 16], we can say that weak uniqueness of the processes holds true once
we find a unique solution of the elliptic equation in W 2

p , p ≥ d. More details are in
[6, 16].

The paper is organized as follows. In section 2 we state our main results. The
unique solvability of the equation in W 2

2 is investigated in section 3. In section 4, we
present some auxiliary results which are used in section 5, where we finally prove the
W 2

p -estimate p ∈ (2,∞) for the equation.

2. Main results. We are considering the elliptic differential equation (1.1),
where the coefficients ajk, bj , and c satisfy the assumptions below.

Assumption 2.1. The coefficients ajk, bj, and c are measurable functions defined
on R

d, ajk = akj. There exist positive constants δ ∈ (0, 1) and K such that

|bj(x)| ≤ K, |c(x)| ≤ K,

δ|ϑ|2 ≤
d∑

j,k=1

ajk(x)ϑjϑk ≤ δ−1|ϑ|2

for any x ∈ R
d and ϑ ∈ R

d.
To state another assumption on the coefficients, especially a = (ajk), we introduce

some notations. Let B′
r(x

′) = {y′ ∈ R
d−1 : |x′ − y′| < r} and Qr(x) = Qr(x

1, x′) =
(x1 − r, x1 + r) ×B′

r(x
′). Denote

osc x′(a,Qr(x)) = r−1|B′
r|−2

∫ x1+r

x1−r

∫
y′,z′∈B′

r(x′)

|a(t, y′) − a(t, z′)| dy′ dz′ dt,

a
#(x′)
R = sup

x∈Rd

sup
r≤R

osc x′(a,Qr(x)),
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where |B′
r| is the d− 1-dimensional volume of B′

r(0). We write a ∈ VMOx′ if

lim
R→0

a
#(x′)
R = 0.

We see that a ∈ VMOx′ if a is independent of x′.
Assumption 2.2. There is a continuous function ω(t) defined on [0,∞) such

that ω(0) = 0 and a
#(x′)
R ≤ ω(R) for all R ∈ [0,∞).

Remark 2.3. It will be seen from our proofs that in Assumption 2.2 the require-
ment that ω(0) = 0 can be replaced with ω(0) ≤ (4N1)

−ν(d+2), where N1 = N1(d, δ, p)
and ν = ν(p) are the constants entering (5.6).

As usual, we mean by W k
p (Rd), k = 0, 1, . . . , the Sobolev spaces on R

d. Set

W k
p = W k

p (Rd), Lp = Lp(R
d), and

Lu(x) = ajk(x)uxjxk(x) + bj(x)uxj (x) + c(x)u(x).

Here are our main results.
Theorem 2.4. Let p ∈ (2,∞). Then there exists a constant λ0 ≥ 0, depending

only on d, δ, K, p, and the function ω, such that, for any λ > λ0 and f ∈ Lp, there
exists a unique u ∈ W 2

p satisfying Lu− λu = f .
Furthermore, there is a constant N , depending only on d, δ, K, p, and the function

ω such that, for any λ ≥ λ0 and u ∈ W 2
p ,

λ‖u‖Lp +
√
λ‖ux‖Lp + ‖uxx‖Lp ≤ N‖Lu− λu‖Lp .

This theorem obviously covers the case in which the coefficients ajk are independent
of x′ ∈ R

d−1. However, in that case we can allow p = 2, which is detailed in the
theorem below. Throughout the paper, we write N = N(d, . . . ) if N is a constant
depending only on d, . . . .

The following theorem can be basically found in [3]. We give it a different proof
that seems to be somewhat shorter and more general.

Theorem 2.5. Let the coefficients ajk be independent of x′ ∈ R
d−1. Then there

exists a constant λ0 = λ0(d, δ,K) ≥ 0 such that, for any λ > λ0 and f ∈ L2, there
exists a unique u ∈ W 2

2 satisfying Lu− λu = f .
In addition, there is a constant N = N(d, δ,K) such that, for any λ ≥ λ0 and

u ∈ W 2
2 ,

(2.1) λ‖u‖L2 +
√
λ‖ux‖L2 + ‖uxx‖L2 ≤ N‖Lu− λu‖L2 .

Remark 2.6. Theorem 2.4 leads to the weak uniqueness of solutions of stochastic
differential equations associated with the operator L. For details, see [16, 6]. The-
orem 2.5 clearly remains true under the assumption that ajk(x1, x′) are uniformly
continuous as functions of x′ ∈ R

d−1 uniformly in x1 ∈ R.
Three more results deal with the equation Lu− λu = f in the half space

R
d
+ = {x ∈ R

d : x1 > 0}.

Their proofs show the advantage of having the solvability in R
d of equations whose

coefficients are only measurable in one direction. In what follows, we denote by
o

W 2
p(R

d
+) the collection of all u ∈ W 2

p (Rd
+) satisfying u(0, x′) ≡ 0.

Theorem 2.7. Let p ∈ [2,∞). If p = 2, then suppose, additionally, that
the assumption in Theorem 2.5 is satisfied. Then there exists a constant λ0 =
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λ0(d, δ,K, p, ω) ≥ 0 such that, for any λ > λ0 and f ∈ Lp(R
d
+), there exists a unique

u ∈
o

W 2
p(R

d
+) satisfying Lu− λu = f .

Furthermore, there is a constant N = N(d, δ,K, p, ω) such that, for any λ ≥ λ0

and u ∈
o

W 2
p(R

d
+),

(2.2) λ‖u‖Lp(Rd
+) +

√
λ‖ux‖Lp(Rd

+) + ‖uxx‖Lp(Rd
+) ≤ N‖Lu− λu‖Lp(Rd

+).

Proof. We introduce a new operator L̂v = âjkvxjxk + b̂jvxj + ĉv, the coefficients
of which are as follows. First, we view the coefficients ajk, bj , and c as functions
defined only on R

d
+. Then we define âjk, b̂j , and ĉ to be the odd or even extensions

of the original coefficients. Specifically, if j = k = 1 or j, k ∈ {2, . . . , d}, then (even
extension)

âjk(x) =

{
ajk(x1, x′) if x1 ≥ 0,
ajk(−x1, x′) if x1 < 0.

If j = 2, . . . , d, then (odd extension)

â1j(x) = âj1(x) =

{
a1j(x1, x′) if x1 ≥ 0,

−a1j(−x1, x′) if x1 < 0.

Similarly, the coefficient b̂1(x) is the odd extension of b1(x), and the coefficients b̂j(x),
j = 2, . . . , d, and ĉ(x) are the even extensions of bj(x) and c(x), respectively.

Now we notice that the coefficients of L̂ satisfy Assumptions 2.1 and 2.2 with 2ω.
Then by Theorems 2.4 and 2.5, we can find a constant λ0 = λ0(d, δ,K, p, ω) such that,

for any λ > λ0, there exists a unique u ∈ W 2
p satisfying L̂u − λu = f̂ , where f̂ ∈ Lp

is the odd extension of f ∈ Lp(R
d
+). Obviously, −u(−x1, x′) ∈ W 2

p also satisfies the
same equation, so by uniqueness we have u(x1, x′) = −u(−x1, x′). This implies that

u, as a function defined on R
d
+, is in the space

o

W 2
p(R

d
+). Since Lu − λu = f in R

d
+,

the function u is a solution to the Dirichlet boundary problem.
To prove uniqueness and the estimate (2.2), we use the estimates in Theorems

2.4 and 2.5 and the fact that the odd extension of an element in
o

W 2
p(R

d
+) is in W 2

p .
The theorem is now proved.

In the same way, only this time taking the even extension of f , one gets the
solvability of the Neumann problem.

Theorem 2.8. Let p ∈ [2,∞). If p = 2, then suppose, additionally, that
the assumption in Theorem 2.5 is satisfied. Then there exists a constant λ0 =
λ0(d, δ,K, p, ω) ≥ 0 such that, for any λ > λ0 and f ∈ Lp(R

d
+), there exists a unique

u ∈ W 2
p (Rd

+) satisfying Lu− λu = f and ux1 = 0 on ∂R
d
+.

Furthermore, there is a constant N = N(d, δ,K, p, ω) such that, for any λ ≥ λ0

and u ∈ W 2
p (Rd

+) satisfying ux1 = 0 on ∂R
d
+,

λ‖u‖Lp(Rd
+) +

√
λ‖ux‖Lp(Rd

+) + ‖uxx‖Lp(Rd
+) ≤ N‖Lu− λu‖Lp(Rd

+).

While the Neumann problem is solved without any effort, oblique derivative prob-
lems need some, still simple, manipulations.

Let � be a constant vector field � = (�1, . . . , �d), where �1 > 0. Set s = 1 − 1/p
and recall that g ∈ W s

p (Rd−1) if

‖g‖W s
p (Rd−1) = ‖g‖Lp(Rd−1) + [g]s < ∞,
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where

[g]ps =

∫
Rd−1

∫
Rd−1

|g(x′) − g(y′)|p
|x′ − y′|d−1+sp

dx′ dy′.

Theorem 2.9. Let p ∈ [2,∞). If p = 2, then suppose, additionally, that
the assumption in Theorem 2.5 is satisfied. Then there exists a constant λ0 =

λ0(d, δ,K, p, ω, �) ≥ 0 such that, for any λ > λ0, f ∈ Lp(R
d
+), and g ∈ W

1−1/p
p (Rd−1),

there exists a unique u ∈ W 2
p (Rd

+) satisfying Lu− λu = f and �j uxj = g on ∂R
d
+.

Furthermore, there is a constant N = N(d, δ,K, p, ω, �) such that, for any λ ≥ λ0

and u ∈ W 2
p (Rd

+),

λ‖u‖Lp(Rd
+) +

√
λ‖ux‖Lp(Rd

+) + ‖uxx‖Lp(Rd
+)

(2.3) ≤ N
(
‖Lu− λu‖Lp(Rd

+) + (λ ∨ 1)s/2‖g‖Lp(Rd−1) + [g]s

)
,

where λ ∨ 1 = max{λ, 1}, s = 1 − 1/p, and g(x′) = �j uxj (0, x′).
Proof. We may assume that �1 = 1. Then introduce new coordinates in R

d
+ by

y1 = x1, y′ = x′ − x1�′. It is easy to check that under this change of variables the
condition �j uxj = g becomes uy1 = g and the operator L will be transformed into
a different one but yet satisfying the same assumptions as L does (with somewhat
different constants δ and K and the same ω). It follows that in the rest of the proof
we may assume that � = (1, 0, . . . , 0) is the first unit basis vector.

Next, we reduce the case of general g to that of g = 0. One knows (see, for
instance, Theorem 2.9.1 of [18]) that the trace operator u(x) → ux1(0, x′) is a bounded
operator from W 2

p (Rd
+) onto W s

p (Rd−1), for each g ∈ W s
p (Rd−1) there is a function v ∈

W 2
p (Rd

+) such that v = 0 and vx1 = g(x′) on ∂R
d
+, and for a constant N independent

of g,

(2.4) ‖v‖W 2
p (Rd

+) ≤ N‖g‖W s
p (Rd−1).

It follows by using dilations (v(x), g(x′) → v(
√
λx),

√
λg(

√
λx′)) that for any

g ∈ W s
p (Rd−1) and λ > 0, we can find v ∈ W 2

p (Rd
+) satisfying v = 0, vx1 = g on ∂R

d
+,

and

(2.5) λ‖v‖Lp(Rd
+) +

√
λ‖vx‖Lp(Rd

+) + ‖vxx‖Lp(Rd
+) ≤ N

(
λs/2‖g‖Lp(Rd−1) + [g]s

)
,

where N depends only on d and p. This implies that if the first assertion of the
theorem is true for g = 0, then by replacing f with f − Lv + λv, finding u, and
introducing w = u + v, we will have w ∈ W 2

p (Rd
+), Lw − λw = f in R

d
+, and wx1 = g

on ∂R
d
+.

Furthermore, if estimate (2.3) holds true provided that ux1 = 0 on ∂R
d
+, then

take an arbitrary u ∈ W 2
p (Rd

+), introduce g := ux1 on ∂R
d
+, find v as above, but

corresponding to λ ∨ 1 in place of λ, and write that by the assumption

‖(u− v)xx‖Lp(Rd
+) ≤ N‖(L− λ)(u− v)‖Lp(Rd

+),

‖uxx‖Lp(Rd
+) ≤ N‖(L− λ)u‖Lp(Rd

+) + N‖vxx‖Lp(Rd
+)
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+N‖vx‖Lp(Rd
+) + N(1 + λ)‖vx‖Lp(Rd

+).

The last expression is majorated by the right-hand side of (2.3) owing to (2.5) (recall
that we take there λ ∨ 1 in place of λ). Similarly, one estimates the remaining terms
on the left-hand side of (2.3). Thus, in the rest of the proof we may assume that
g = 0.

In that case take the operator L̂ from the proof of Theorem 2.7 and consider the
equation

(2.6) L̂w − λw = f̂

in R
d, where f̂(x) := f(|x1|, x′). Using Theorems 2.4 and 2.5, we find a unique

solution w ∈ W 2
p to (2.6) for λ > λ0, where λ0 = λ0(d, δ,K, p, ω, �) is a constant

corresponding to the operator L̂. Obviously, v(x) = u(−x1, x′) is also a solution of
(2.6). By uniqueness, v = u, u(x) = u(−x1, x′) implying that ux1 = 0 on ∂R

d
+, and

since u ∈ W 2
p (Rd

+), we have proved the existence of the desired solution.
To complete the proof, we now prove only (2.3), which implies uniqueness. As

we agreed upon above we need only consider the case that g = ux1 = 0 on ∂R
d
+.

Take such a u ∈ W 2
p (Rd

+) and set v(x) = u(|x1|, x′). Since ux1 = 0 on ∂R
d
+, we have

v ∈ W 2
p and for λ > λ0 = λ0(d, δ,K, p, ω, �), we have

λ‖v‖Lp +
√
λ‖vx‖Lp + ‖vxx‖Lp ≤ N‖f‖Lp ,

where f = L̂v−λv. Obviously, f(x) = f(|x1|, x′) and v = u on R
d
+. Hence, the above

estimate implies (2.3) (recall that g = 0).
We have proved (2.3) for λ > λ0. For λ = λ0 we get (2.3) by continuity.
Remark 2.10. Let �(x′) = (�1(x′), . . . , �d(x′)) be a bounded vector field defined

on R
d−1 such that �(x′) ∈ C1−1/p+ε(Rd−1), ε > 0, and �1(x′) ≥ κ > 0. Then using the

freezing coefficients, partition of unity, and the method of continuity, we can replace
the constant vector field � by �(x′) in the above theorem. Details can be found in
[10].

Remark 2.11. A result similar to Theorem 2.9 holds if we replace the boundary
condition �juxj = g with �juxj+σu = g, where σ is a constant. Indeed, again assuming
that �1 = 1, it is easy to find an infinitely differentiable bounded function h(x1)
having bounded derivatives and bounded away from zero such that h′(0) = −σh(0).
Then for v = u/h we have �jvxj = g/h on ∂R

d
+ and Lu − λu = h(L̄v − λv), where

L̄φ := h−1L(hφ) is an elliptic operator satisfying our hypotheses with a slightly
modified K.

3. Proof of Theorem 2.5. Thanks to the method of continuity and the dense-
ness of C∞

0 (Rd) in W 2
2 , it suffices to prove the a priori estimate (2.1) for u ∈ C∞

0 (Rd)
and ajk that are sufficiently smooth. In addition, on the account of possibly increasing
λ0 one sees that it suffices to prove (2.1) for b ≡ 0, c ≡ 0, and λ0 = 0. In that case set

(3.1) f = Lu− λu.

For functions φ(x1, x′) we denote by φ̃(x1, ξ), ξ ∈ R
d−1, its Fourier transform

with respect to x′. By taking the Fourier transforms of both sides of (3.1), we obtain

aũx1x1 + i2bũx1 − cũ = f̃ ,

(3.2) ũx1x1 + i2b̂ũx1 − ĉũ = g̃,
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where i =
√
−1 and

a(x1) = a11(x1), b(x1, ξ) =

d∑
j=2

a1j(x1)ξj , b̂ = a−1b,

c(x1, ξ) =

d∑
j,k=2

ajk(x1)ξjξk + λ, ĉ = a−1c, g̃ = a−1f̃ .

Lemma 3.1. We have

δ ≤ a = a11 ≤ δ−1, |b(x1, ξ)| ≤ δ−1|ξ|,

(3.3) δ−1(|ξ|2 + λ) ≥ c(x1, ξ) ≥ δ|ξ|2 + λ,

and

a(x1)c(x1, ξ) − b2(x1, ξ) ≥ δ2(|ξ|2 + λ).

Proof. The first and last inequalities in (3.3) are obvious. The second one follows
by Cauchy’s inequality (ajkηjξk)2 ≤ (ajkηjηk)(ajkξjξk), where ξ1 = ηj = 0, j ≥ 2,
η1 = 1. Next, from Assumption 2.1 we have

δ(t2 + |ξ|2) ≤ a(x1) t2 + 2 b(x1, ξ) t + c(x1, ξ) − λ

for all t ∈ R and ξ ∈ R
d−1. In particular,(

a(x1) − δ
)
t2 + 2 b(x1, ξ) t + c(x1, ξ) − δ|ξ|2 − λ ≥ 0.

This implies that

b2(x1, ξ) −
(
a(x1) − δ

) (
c(x1, ξ) − δ|ξ|2 − λ

)
≤ 0.

From this and (3.3) the result follows.
Lemma 3.2. For any ξ ∈ R

d

(3.4) (|ξ|2 + λ)

∫
R

|ũx1 |2 dx1 + (|ξ|4 + λ|ξ|2 + λ2)

∫
R

|ũ|2 dx1 ≤ N(δ)

∫
R

|f̃ |2 dx1,

(3.5)

∫
R

|ũx1x1 |2 dx1 ≤ N(δ)

∫
R

|f̃ |2 dx1.

Proof. Estimate (3.5) is a direct consequence of (3.2) (allowing one to express
ũx1x1 through f̃ , ũx1 , and ũ), (3.3), and (3.4).

While proving (3.4) we define a function φ(x1, ξ) by φ(0, ξ) = 0 and φx1 = b̂ and
set ρ = ũeiφ. Then from (3.2) we see that

ρx1x1 + (b̂2 − iφx1x1 − ĉ)ρ = g̃eiφ.

Multiply both sides by ρ̄ and integrate the result with respect to x1. Integrating by
parts shows that

−
∫

R

|ρx1 |2 dx1 +

∫
R

(b̂2 − iφx1x1 − ĉ)|ũ|2 dx1 =

∫
R

g̃ ¯̃u dx1.
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Taking the real parts of both sides and multiplying by |ξ|2 + λ, we have∫
R

(|ξ|2 + λ)|ρx1 |2 dx1 +

∫
R

(ĉ − b̂2)(|ξ|2 + λ)|ũ|2 dx1

= −
∫

R

(|ξ|2 + λ)�(g̃ ¯̃u) dx1.

Note that for any ε > 0

−(|ξ|2 + λ)�(g̃ ¯̃u) ≤ ε(|ξ|2 + λ)2|ũ|2 + ε−1|g̃|2.

From this and Lemma 3.1 we obtain∫
R

(|ξ|2 + λ)|ρx1 |2 dx1 +

∫
R

(δ4 − ε)(|ξ|2 + λ)2|ũ|2 dx1 ≤ ε−1

∫
R

|g̃|2 dx1.

By choosing an appropriate ε > 0 (e.g., ε = δ4/2), we arrive at∫
R

(|ξ|2 + λ)|ρx1 |2 dx1 +

∫
R

(|ξ|4 + λ|ξ|2 + λ2)|ũ|2 dx1 ≤ N(δ)

∫
R

|f̃ |2 dx1.

It only remains to observe that in light of (3.3)

|ũx1 | = |ρx1 − iba−1ũeiφ| ≤ |ρx1 | + N(δ)|ξ||ũ|.

Now we can finish the proof of Theorem 2.5. As we pointed out in the beginning
of the section, we only need to prove (2.1) for u ∈ C∞

0 (Rd), smooth aij , b ≡ 0, c ≡ 0,
and λ0 = 0.

In that case it suffices to add (3.4) and (3.5), integrate over R
d−1, and use Par-

seval’s identity. The theorem is proved.
Remark 3.3. We have just proved that if bj = c = 0, then

λ‖u‖L2 +
√
λ‖ux‖L2 + ‖uxx‖L2

≤ N‖Lu− λu‖L2

for u ∈ W 2
2 and λ ≥ 0, where N depends only on δ.

4. Auxiliary results. Here we state and prove a series of observations which
are needed in the proof of Theorem 2.4. First, we introduce some notation. As usual,
we set Br(x0) = {x ∈ R

d : |x − x0| < r} and Br = Br(0). By |Br| we mean the
d-dimensional volume of Br. We denote by |u|0 the supremum of |u| over R

d.
Throughout this section, we assume that

Lu(x) = L0u(x) = ajk(x1)uxjxk(x).

Our first auxiliary result is the following lemma.
Lemma 4.1. There exists N = N(d, δ) such that, for any u ∈ W 2

2 (BR) with
u|∂BR

= 0, we have

(4.1) R2

∫
BR

|ux|2 dx +

∫
BR

|u|2 dx ≤ N R4

∫
BR

|Lu|2 dx.

Proof. Assume that (4.1) is true when R = 1. For a given u ∈ W 2
2 (BR) with

u|∂BR
= 0, we set

LR = ajk(Rx)
∂2

∂xj∂xk
and v(x) = R−2u(Rx).
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Then v ∈ W 2
2 (B1) and LRv(x) = (Lu)(Rx) in B1. Since LR satisfies the same

ellipticity condition as L does, we have∫
BR

|u|2 dx = Rd+4

∫
B1

|v|2 dx

≤ NRd+4

∫
B1

|LRv|2 dx = NR4

∫
BR

|Lu|2 dx.

Also ∫
BR

|ux|2 dx = Rd+2

∫
B1

|vx|2 dx

≤ NRd+2

∫
B1

|LRv|2 dx = NR2

∫
BR

|Lu|2 dx.

This shows that we need only prove the lemma for R = 1.
In that case we can divide L by a11 and may assume that a11 ≡ 1. Then we

integrate uLu over B1 using integration by parts to find

δ

∫
B1

|ux|2 dx ≤
∫
B1

ajkuxjuxk dx = −
∫
B1

uLudx

≤
(∫

B1

u2 dx

)1/2 (∫
B1

(Lu)2 dx

)1/2

.

We estimate the integral of u2 through that of |ux|2 by using Poincaré’s inequality
and obtain the needed estimate for ux. This is the only estimate we need to prove
since u is estimated by ux, again owing to Poincaré’s inequality.

The following lemma is almost identical to a theorem in [5]. For completeness,
we also present a proof.

Lemma 4.2. Let 0 < r < R. There exists N = N(d, δ) such that, for w ∈
W 2

2 (BR),

(4.2) ‖w‖W 2
2 (Br) ≤ N

(
‖Lw − w‖L2(BR) + (R− r)−2‖w‖L2(BR)

)
.

Proof. Set

R0 = r, Rm = r + (R− r)

m∑
k=1

1

2k
, m = 1, 2, . . . ,

B(m) = {x ∈ R
d : |x| ≤ Rm}, m = 0, 1, . . . .

Also, let ζm ∈ C∞
0 (Rd) be such that ζm(x) = 1 in B(m), ζm(x) = 0 outside of

B(m + 1), and

|(ζm)x|0 ≤ N
2m+1

R− r
, |(ζm)xx|0 ≤ N

22m+2

(R− r)2
,



498 DOYOON KIM AND N. V. KRYLOV

where N depends only on d. To construct them take an infinitely differentiable func-
tion g(t), t ∈ (−∞,∞), such that g(t) = 1 for t ≤ 1, g(t) = 0 for t ≥ 2, and 0 ≤ g ≤ 1.
After this define

ζm(x) = g(2m+1(R− r)−1(|x| −Rm) + 1).

Now we make use of the L2-estimate of ζmw, which is from Remark 3.3, and
obtain (observe that N22m+2 = N12

2m with N1 = 4N)

Am := ‖ζmw‖W 2
2
≤ N‖(L− 1)(ζmw)‖L2

(4.3) ≤ NB + N‖ζmxwx‖L2 + N
22m

(R− r)2
C,

where N depends only on d and δ and

B := ‖(L− 1)w‖L2(BR) and C := ‖w‖L2(BR).

By interpolation inequalities

‖ζmxwx‖L2 = ‖ζmx(ζm+1w)x‖L2 ≤ N
2m

R− r
‖(ζm+1w)x‖L2

≤ εAm+1 + Nε−1 22m

(R− r)2
C,

where ε > 0 is arbitrary and N depends only on d. Thus, (4.3) yields

Am ≤ NB + εAm+1 + Nε−1 22m

(R− r)2
C

with ε perhaps different from the one above but still arbitrary. We set ε = 1/8 and
get

εmAm ≤ NεmB + εm+1Am+1 + Nεm
22m

(R− r)2
C,

A0 +

∞∑
m=1

εmAm ≤ NB +

∞∑
m=1

εmAm + N
1

(R− r)2
C.

Here the series of εmAm = 8−mAm converges since

Am ≤ N22m(R− r)−2‖w‖W 2
2 (BR).

Therefore, after taking care of similar terms we see that A0 is less than the right-
hand side of (4.2). Since its left-hand side is obviously less than A0, the lemma is
proved.

Remark 4.3. Using the dilation argument as in the proof of Lemma 4.1, we have

λ‖w‖L2(Br) +
√
λ‖wx‖L2(Br) + ‖wxx‖L2(Br)
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≤ N
(
‖Lw − λw‖L2(BR) + (R− r)−2‖w‖L2(BR)

)
for any λ > 0, where N depends only on d and δ. In particular, by letting λ → 0, we
have

(4.4) ‖wxx‖L2(Br) ≤ N
(
‖Lw‖L2(BR) + (R− r)−2‖w‖L2(BR)

)
.

In the next few lemmas, we investigate some properties of a solution h of the
equation Lh = 0. Recall that the coefficients ajk of the operator L do not depend on
x′ ∈ R

d−1.
Lemma 4.4. Let γ = (γ1, . . . , γd) be a multi-index such that γ1 = 0, 1, 2. Also let

0 < r < R ≤ 4. If h is a sufficiently smooth function defined on B4 such that Lh = 0
in B4, then we have ∫

Br

|Dγh|2 dx ≤ N

∫
BR

|h|2 dx,

where N = N(d, δ, γ,R, r).
Proof. Set γ′ = (0, γ2, . . . , γd) and notice that

L(Dγ′
h) = 0, that is (L− 1)Dγ′

h = −Dγ′
h in B4.

Then by Lemma 4.2

‖Dγh‖L2(Br) ≤ N
(
‖Dγ′

h‖L2(Br1
) + (r1 − r)−2‖Dγ′

h‖L2(Br1
)

)
,

where r < r1 < R. If |γ′| = 0, then we are done. Otherwise, we can consider a
multi-index γ′′ having at least one component less by one than the corresponding
component of γ′. Then, L(Dγ′′

h) = 0 and

‖Dγ′
h‖L2(Br1 ) ≤ N

(
‖Dγ′′

h‖L2(Br2 ) + (r2 − r1)
−2‖Dγ′′

h‖L2(Br2 )

)
,

where r < r1 < r2 < R. We repeat this argument as many times as we need. The
lemma is proved.

Denote by hx a generic derivative hxj , j = 1, . . . , d, and hx′ a generic derivative
hxj , j = 2, . . . , d. Thus, for example, hxx′ can be hxjxk , where j ∈ {1, 2, . . . , d} and
k ∈ {2, . . . , d}.

Lemma 4.5. Let h be a sufficiently smooth function h defined on B4 such that
Lh = 0 in B4. Then we have

sup
B1

|hxxx′ |2 ≤ N

∫
B3

|h|2 dx,

where N = N(d, δ).
Proof. Imagine that we have

(4.5) sup
B1

|hxx| ≤ N(d, δ)‖h‖L2(B5/2).

Then, using the fact that Lhx′ = 0, we would obtain

sup
B1

|hx′xx| ≤ N‖hx′‖L2(B5/2)



500 DOYOON KIM AND N. V. KRYLOV

and it would only remain to appeal to Lemma 4.4.
Therefore, it suffices to prove (4.5). To do that, we first fix an integer k such

that k − (d− 1)/2 > 0. Then, due to the Sobolev embedding theorem, we can find a
constant N such that, for each −1 ≤ x1 ≤ 1,

sup
|x′|≤1

|hx′x1x1(x1, x′)| ≤ N‖hx′x1x1(x1, ·)‖Wk
2 (B′

1)

and

sup
|x′|≤1

|hx′x1(x1, x′)| ≤ N‖hx′x1(x1, ·)‖Wk
2 (B′

1)
,

where B′
1 = {x′ ∈ R

d−1 : |x′| ≤ 1}. Set g to be either hx′x1x1 or hx′x1 . Then∫ 1

−1

sup
|x′|≤1

|g(x1, x′)|2 dx1 ≤ N

∫ 1

−1

‖g(x1, ·)‖2
Wk

2 (B′
1)
dx1

≤ N
∑

|γ|≤k+3
1≤γ1≤2

‖Dγh‖2
L2(B2)

.

From this and Lemma 4.4 we have

(4.6)

∫ 1

−1

sup
|x′|≤1

|hx′x1x1 |2 dx1 +

∫ 1

−1

sup
|x′|≤1

|hx′x1 |2 dx1 ≤ N‖h‖2
L2(B5/2)

,

where N depends only on d and δ. Now we notice that, for x1, y1 ∈ [−1, 1],

sup
|x′|≤1

|hx′x1(x1, x′)| − sup
|x′|≤1

|hx′x1(y1, x′)|

≤ sup
|x′|≤1

∣∣hx′x1(x1, x′) − hx′x1(y1, x′)
∣∣ ≤ ∫ y1

x1

sup
|x′|≤1

|hx′x1x1(t, x′)| dt

≤ |x1 − y1|1/2
(∫ 1

−1

sup
|x′|≤1

|hx′x1x1(t, x′)|2 dt
)1/2

.

This and (4.6) imply

sup
|x′|≤1

|hx′x1(x1, x′)| ≤ N‖h‖L2(B5/2) |x
1 − y1|1/2 + sup

|x′|≤1

|hx′x1(y1, x′)|.

Take integrals of both sides with respect to y1, and take a supremum over x1. Then

sup
x∈B1

|hx′x1(x)| ≤ N‖h‖L2(B5/2) +

∫ 1

−1

sup
|x′|≤1

|hx′x1(y1, x′)| dy1 ≤ N‖h‖L2(B5/2),

where the last inequality follows from (4.6), and N depends only on d and δ. Similarly,
we follow the same steps as above with hx′x′x1 and hx′x′ in place of hx′x1x1 and hx′x1 ,
respectively. Therefore, we have

sup
x∈B1

|hx′x(x)| ≤ N(d, δ)‖h‖L2(B5/2).
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Finally, using the fact that a11hx1x1 = −
∑

jk>1 a
jkhxjxk , we finish the proof of

(4.5).
Denote by (u)Br(x0) the average value of a function u over Br(x0), that is,

(u)Br(x0) = –

∫
Br(x0)

u(x) dx =
1

|Br|

∫
Br(x0)

u(x) dx.

Let u ∈ C∞
0 (Rd) and f := Lu. Assume that ajk(x1) are infinitely differentiable

as functions of x1 ∈ R. Then we can find a sufficiently smooth function h defined on
B4 such that

Lh = 0 in B4, h = u on ∂B4.

For this solution h, we establish the following inequality.
Lemma 4.6. There exists a constant N = N(d, δ) such that

sup
B1

|hxxx′ |2 ≤ N

∫
B4

|f |2 dx + N

∫
B4

|uxx|2 dx.

Proof. Define

ũ := u− uB4 − (uxi)B4x
i in B4, h̃ := h− uB4 − (uxi)B4x

i in B4.

Then

Lũ = f, Lh̃ = 0 in B4, and h̃ = ũ on ∂B4.

By Lemma 4.5 we see that

sup
B1

|hxxx′ |2 = sup
B1

|h̃xxx′ |2 ≤ N

∫
B3

|h̃|2 dx.

Let η be a function in C∞
0 (Rd) such that η(x) = 0 in B3 and η(x) = 1 at ∂B4.

Then h̃− ηũ ∈ W 2
2 (B4) and h̃− ηũ = 0 on ∂B4. Therefore, by Lemma 4.1∫

B3

|h̃|2 dx =

∫
B3

|h̃− ηũ|2 dx ≤ N(d, δ)

∫
B4

|L(ηũ)|2 dx.

Note that

L(ηũ) = ηLu + 2aijηxi ũxj + ũLη

= ηf + 2aijηxi(uxj − (uxj )B4) + (u− uB4 − (uxi)B4x
i)Lη.

Hence we have ∫
B4

|L(ηũ)|2 dx ≤ N

∫
B4

(|f |2 + |uxj − (uxj )B4
|2) dx

+N

∫
B4

|u− uB4 − (uxi)B4x
i|2 dx ≤ N

∫
B4

|f |2 dx + N

∫
B4

|uxx|2 dx,
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where the last inequality follows from Lemmas 3.1 and 3.2 in [6], and N depends only
on d and δ. The lemma is now proved.

Lemma 4.7. Let κ ≥ 4 and r > 0. Also let ajk(x1) be infinitely differentiable. For
a given u ∈ C∞

0 (Rd), we find a smooth function h defined on Bκr such that Lh = 0
in Bκr and h = u on ∂Bκr. Then there exists a constant N = N(d, δ) such that

(4.7) –

∫
Br

|hxx′ − (hxx′)Br
|2 dx ≤ Nκ−2

[(
|Lu|2

)
Bκr

+
(
|uxx|2

)
Bκr

]
.

Proof. Using the dilation argument as in the proof of Lemma 4.1, we see that we
need to prove only the case r = 1. In that case we first observe that by using the
same dilation argument and Lemma 4.6, we have

sup
Bκ/4

|hxxx′ |2 ≤ Nκ−2
[(
|Lu|2

)
Bκ

+
(
|uxx|2

)
Bκ

]
,

where N depends only on d and δ. Now we need only observe that κ/4 ≥ 1, r = 1,
and the left-hand side of the inequality (4.7) is not greater than a constant times
supB1

|hxxx′ |2. The lemma is now proved.
Using the results obtained above, we will finally arrive at the following lemma.
Lemma 4.8. There exists a constant N = N(d, δ) such that, for any κ ≥ 4, r > 0,

and u ∈ C∞
0 (Rd), we have

(4.8) –

∫
Br

|uxx′ − (uxx′)Br
|2 dx ≤ Nκd

(
|Lu|2

)
Bκr

+ Nκ−2
(
|uxx|2

)
Bκr

.

Proof. We can assume that ajk(x1) are infinitely differentiable. In that case, we
find a sufficiently smooth h defined on Bκr such that Lh = 0 in Bκr and h = u on
∂Bκr. Note that L(u− h) = Lu in Bκr and u− h = 0 on ∂Bκr. From Lemma 4.7 we
have

(4.9) –

∫
Br

|hxx′ − (hxx′)Br
|2 dx ≤ Nκ−2

[(
|Lu|2

)
Bκr

+
(
|uxx|2

)
Bκr

]
.

On the other hand, from estimate (4.4) we have∫
Br

|uxx′ − hxx′ |2 dx ≤ N

(∫
Bκr

|Lu|2 dx + r−4(κ− 1)−4

∫
Bκr

|u− h|2 dx
)
.

Moreover, by Lemma 4.1∫
Bκr

|u− h|2 dx ≤ N (κr)4
∫
Bκr

|Lu|2 dx.

Hence

–

∫
Br

|uxx′ − hxx′ |2 dx ≤ Nκd
(
|Lu|2

)
Bκr

.

This and (4.9) prove the inequality (4.8) with (hxx′)Br
in place of (uxx′)Br

. Now we
need only notice that

–

∫
Br

|uxx′ − (uxx′)Br
|2 dx ≤ –

∫
Br

|uxx′ − (hxx′)Br
|2 dx.

The lemma is now proved.
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5. Proof of Theorem 2.4. In this section we suppose that all assumptions of
Theorem 2.4 are satisfied. Recall that

Lu(x) = ajk(x)uxjxk(x) + bj(x)uxj (x) + c(x)u(x),

and introduce

L0u(x) = ajk(x)uxjxk(x).

We use the maximal and sharp functions given by

Mg(x) = sup
r>0

–

∫
Br(x)

|g(y)| dy,

g#(x) = sup
r>0

–

∫
Br(x)

|g(y) − (g)Br(x)| dy.

Theorem 5.1. Let μ, ν ∈ (1,∞), 1/μ + 1/ν = 1, and R ∈ (0,∞). Then there
exists a constant N = N(d, δ, μ) such that, for any u ∈ C∞

0 (BR), we have

(uxx′)
# ≤ N

(
a
#(x′)
R

)α [
M(|uxx|2μ)

]β

(5.1) +N
[
M(|L0u|2)

]1/(d+2) [
M(|uxx|2)

]d/(2d+4)
,

where α = ν−1(d + 2)−1, β = 2−1μ−1.
Proof. Fix κ ≥ 4, r ∈ (0,∞), and x0 = (x1

0, x
′
0) ∈ R

d. Introduce

ājk(x1) =
1

|B′
κr|

∫
B′

κr(x′
0)

ajk(x1, y′) dy′ if κr < R,

ājk(x1) =
1

|B′
R|

∫
B′

R

ajk(x1, y′) dy′ if κr ≥ R,

A = M(|L0u|2)(x0), B = M(|uxx|2)(x0), C =
(
M(|uxx|2μ)(x0)

)1/μ
.

Set L̄0u = ājk(x1)uxjxk . Then Lemma 4.8 along with the fact that κ ≥ 4 allows
us to obtain

–

∫
Br(x0)

|uxx′ − (uxx′)Br(x0)
|2 dx

(5.2) ≤ Nκd
(
|L̄0u|2

)
Bκr(x0)

+ Nκ−2
(
|uxx|2

)
Bκr(x0)

for κ ≥ 4, where N depends only on d and δ. Note that

(5.3)

∫
Bκr(x0)

|L̄0u|2 dx ≤ 2

∫
Bκr(x0)

|L̄0u− L0u|2 dx + 2

∫
Bκr(x0)

|L0u|2 dx
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and ∫
Bκr(x0)

|L̄0u− L0u|2 dx =

∫
Bκr(x0)∩BR

|L̄0u− L0u|2 dx

≤
(∫

Bκr(x0)∩BR

|ā− a|2ν dx
)1/ν (∫

Bκr(x0)

|uxx|2μ dx
)1/μ

:= I1/νJ1/μ.

If κr < R, we have

I ≤ N

∫ x1
0+κr

x1
0−κr

∫
B′

κr(x′
0)

|ā(x1) − a(x1, x′)| dx′ dx1

≤ N(κr)da#(x′)
κr ≤ N(κr)da

#(x′)
R .

In case κr ≥ R

I ≤ N

∫ R

−R

∫
B′

R

|ā(x1) − a(x1, x′)| dx′ dx1

≤ NRda
#(x′)
R ≤ N(κr)da

#(x′)
R .

Hence

∫
Bκr(x0)

|L̄0u− L0u|2 dx ≤ N(κr)d/ν
(
a
#(x′)
R

)1/ν
(∫

Bκr(x0)

|uxx|2μ dx
)1/μ

.

From this and (5.3) it follows that

(
|L̄0u|2

)
Bκr(x0)

≤ N

[(
a
#(x′)
R

)1/ν (
|uxx|2μ

)1/μ
Bκr(x0)

+
(
|L0u|2

)
Bκr(x0)

]
.

This and (5.2) allow us to have

–

∫
Br(x0)

|uxx′ − (uxx′)Br(x0)
|2 dx ≤ Nκd

(
a
#(x′)
R

)1/ν (
|uxx|2μ

)1/μ
Bκr(x0)

+Nκd
(
|L0u|2

)
Bκr(x0)

+ Nκ−2
(
|uxx|2

)
Bκr(x0)

≤ Nκd
(
a
#(x′)
R

)1/ν

C + NκdA + Nκ−2B

for all r > 0 and κ ≥ 4. In addition, the above inequality is also true for 0 < κ < 4
since then

–

∫
Br(x0)

|uxx′ − (uxx′)Br(x0)
|2 dx ≤ –

∫
Br(x0)

|uxx′ |2 dx ≤ B ≤ 16κ−2B.
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By taking the supremum with respect to r > 0 and then minimizing with respect to
κ > 0, we have

[
u#
xx′(x0)

]2

≤ N

((
a
#(x′)
R

)1/ν

C + A
) 2

d+2

B d
d+2

≤ N
(
a
#(x′)
R

) 2
ν(d+2) C 2

d+2B d
d+2 + N A 2

d+2 B d
d+2 ,

where N = N(d, δ, μ). Notice that B ≤ C. Thus, by replacing B with C in the first
term on the right-hand side, we finish the proof.

Corollary 5.2. For p > 2, there exist constants R = R(d, δ, p, ω) and N =
N(d, δ, p) such that, for any u ∈ C∞

0 (BR), we have

(5.4) ‖uxx‖Lp
≤ N‖L0u‖Lp

.

Proof. Choose real numbers μ > 1 such that p > 2μ. Then we use the inequality
(5.1) along with the Fefferman–Stein theorem on sharp functions and the Hardy–
Littlewood maximal function theorem. We also use Hölder’s inequality to have (note
that p/2μ > 1 and p/2 > 1)

(5.5) ‖uxx′‖Lp ≤ N
(
a
#(x′)
R

) 1
ν(d+2) ‖uxx‖Lp + N‖L0u‖

2
d+2

Lp
‖uxx‖

d
d+2

Lp
,

where 1/μ + 1/ν = 1, and N depends only on d, δ, and p. Since

ux1x1 =
1

a11
L0u−

∑
jk>1

ajk

a11
uxjxk ,

by using (5.5) we arrive at

(5.6) ‖uxx‖Lp ≤ N1

(
a
#(x′)
R

) 1
ν(d+2) ‖uxx‖Lp + N‖L0u‖Lp + N‖L0u‖

2
d+2

Lp
‖uxx‖

d
d+2

Lp
.

We now invoke Assumption 2.2 by which we can choose a sufficiently small R such
that

N1

(
a
#(x′)
R

) 1
ν(d+2) ≤ 1/2.

Then we have

1

2
‖uxx‖Lp ≤ N‖L0u‖Lp + N‖L0u‖

2
d+2

Lp
‖uxx‖

d
d+2

Lp
,

which implies (5.4).

Proof of Theorem 2.4. Since we have an Lp-estimate for functions with small
compact support, we can just follow the standard argument, which can be found in
[6].
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A NEW CLASS OF ENTROPY SOLUTIONS OF THE
BUCKLEY–LEVERETT EQUATION∗
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Abstract. We discuss an extension of the Buckley–Leverett (BL) equation describing two-phase
flow in porous media. This extension includes a third order mixed derivatives term and models the
dynamic effects in the pressure difference between the two phases. We derive existence conditions for
traveling wave solutions of the extended model. This leads to admissible shocks for the original BL
equation, which violate the Oleinik entropy condition and are therefore called nonclassical. In this
way we obtain nonmonotone weak solutions of the initial-boundary value problem for the BL equation
consisting of constant states separated by shocks, confirming results obtained experimentally.
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waves, pseudoparabolic equations
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1. Introduction. We consider the first order initial-boundary value problem

(1.1)

(BL)

⎧⎪⎪⎨
⎪⎪⎩

∂u

∂t
+

∂f(u)

∂x
= 0 in Q = {(x, t) : x > 0, t > 0},

u(x, 0) = 0 x > 0,

u(0, t) = uB t > 0,

where uB is a constant such that 0 ≤ uB ≤ 1. The nonlinearity f : R → R is given
by

(1.2) f(u) =
u2

u2 + M(1 − u)2
if 0 ≤ u ≤ 1,

whilst f(u) = 0 if u < 0 and f(u) = 1 if u > 1. Here, M > 0 is a fixed constant. The
function f(u) is shown in Figure 1.

Equation (1.1), with the given flux function f , arises in two-phase flow in porous
media, and problem (BL) models oil recovery by water-drive in one-dimensional hor-
izontal flow. In this context, u : Q → [0, 1] denotes water saturation, f the water
fractional flow function, and M the water/oil viscosity ratio. In petroleum engineer-
ing, (1.1) is known as the Buckley–Leverett (BL) equation [5]. It is a prototype for
first order conservation laws with convex-concave flux functions.

It is well known that first order equations such as (1.1) may have solutions with
discontinuities, or shocks. The value (u�) to the left of the shock, the value (ur) to
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Fig. 1. Nonlinear flux function for Buckley–Leverett (M = 2).

the right, and the speed s of the shock with trace x = x(t) are related through the
Rankine–Hugoniot condition,

(1.3) (RH)
dx

dt
= s =

f(u�) − f(ur)

u� − ur
.

We will denote shocks by their values to the left and to the right: {u�, ur}.
If a function u is such that (1.1) is satisfied away from the shock curve, and the

Rankine–Hugoniot condition is satisfied across the curve, then u satisfies the identity

(1.4)

∫
Q

{
u
∂ϕ

∂t
+ f(u)

∂ϕ

∂x

}
= 0 for all ϕ ∈ C∞

0 (Q).

Functions u ∈ L∞(Q) which satisfy (1.4) are called weak solutions of (1.1). Clearly,
for any uB ∈ [0, 1], a weak solution of problem (BL) is given by the shock wave

(1.5) u(x, t) = S(x, t)
def
=

{
uB for x < st

0 for x > st
where s =

f(uB)

uB
.

Experiments of two-phase flow in porous media reveal complex infiltration profiles,
which may involve overshoot; i.e., profiles may not be monotone [13]. Our main
objective is to understand the shape of these profiles and to determine how the shape
depends on the boundary value uB and the flux function f(u).

Equation (1.1) usually arises as the limit of a family of extended equations of the
form

(1.6)
∂u

∂t
+

∂f(u)

∂x
= Aε(u), ε > 0,

in which Aε(u) is a singular regularization term involving higher order derivatives.
It is often referred to as a viscosity term. Weak solutions of problem (BL) are called
admissible when they can be constructed as limits, as ε → 0, of solutions uε of (1.6),
i.e., for which Aε(uε) → 0 as ε → 0 in some weak sense. We return to this limit in
section 6. This raises the question of which of the shock waves S(x, t) defined in (1.5)
are admissible. We shall see that this depends on the operator Aε. To obtain criteria
for admissibility we shall use families of traveling wave solutions.

A classical viscosity term is

Aε(u) = ε
∂2u

∂x2
,
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and with this term, (1.6) becomes

(1.7)
∂u

∂t
+

∂f(u)

∂x
= ε

∂2u

∂x2
.

Seeking a traveling wave solution, we put

(1.8) u = u(η) with η =
x− st

ε
,

and we find that u(η) satisfies the following two-point boundary value problem:

(1.9a)

(1.9b)

{
−su′ +

(
f(u)

)′
= u′′ in R,

u(−∞) = u�, u(∞) = ur,

where primes denote differentiation with respect to η. An elementary analysis shows
that problem (1.9) has a solution if and only if f and the limiting values u� and ur

satisfy (i) the Rankine–Hugoniot condition (1.3), and (ii) the Oleinik entropy condi-
tion [29]:

(1.10) (E)
f(u�) − f(u)

u� − u
≥ f(u�) − f(ur)

u� − ur
for u between u� and ur.

Shocks {u�, ur} which satisfy (E) are called classical shocks.
Note that in the limit as ε → 0+, traveling waves converge to the shock {u�, ur}.
Applying (RH) and (E) to the flux function (1.2) we find that the function S(x, t)

defined in (1.5) is an admissible shock wave if and only if

(1.11) s =
f(uB)

uB
(RH) and uB ≤ α (E),

where α is the unique root of

f ′(u) =
f(u)

u
.

It is found to be given by

α =

√
M

M + 1
∈ (0, 1).

If uB > α, then the weak solution is composed of a rarefaction wave in the region
where u > α and a shock which spans the range 0 < u < α. Thus, for any uB ∈ (0, 1]
the weak solution u(x, t) is, at any given time t, a nonincreasing function of x, in
contrast to the experimental data for infiltration in porous media.

For gaining a better understanding of the data, it is natural to go back to the
origins of (1.1). With Si (i = o, w) being the saturations of the two phases, oil and
water, conservation of mass yields

(1.12) φ
∂Si

∂t
+

∂qi
∂x

= 0, i = o, w,

where qi denotes the specific discharge of oil/water and φ the porosity of the medium.
By Darcy’s law, qi is proportional to the gradient of the phase pressure Pi:

(1.13) qi = −k
kri(Si)

μi

∂Pi

∂x
,
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where k denotes the absolute permeability and kri and μi the relative permeability
and the viscosity of water, respectively, oil. The capillary pressure Pc expresses the
difference in the pressures of the two phases:

(1.14) Pc = Po − Pw.

This quantity is commonly found to depend on one phase saturation, say Sw. In
addition to this, studies like [28] and [30] show that Pc does not only depend on Sw,
but also involves hysteretic and dynamic effects. Hassanizadeh and Gray [19, 20] have
defined the dynamic capillary pressure as

(1.15) Pc = pc(Sw) − φτ
∂Sw

∂t
,

where pc(Sw) is the static capillary pressure and τ a positive constant. Assuming that
the medium is completely saturated,

Sw + So = 1,

and we obtain, upon combining (1.12)–(1.15), the single equation for the water satu-
ration u = Sw:

(1.16)
∂u

∂t
+

∂f(u)

∂x
= − ∂

∂x

{
H(u)

∂

∂x

(
J(u) − τ

∂u

∂t

)}
,

in which the functions f , H, and J are related to kri and pc. Other noneqilibrium
models are considered in [3]. Restricting, for simplicity, to linear terms on the right-
hand side of (1.16), we obtain, after a suitable scaling, the pseudoparabolic equation

(1.17)
∂u

∂t
+

∂f(u)

∂x
= ε

∂2u

∂x2
+ ε2τ

∂3u

∂x2∂t
.

Thus, in addition to the classical second order term εuxx, we find a third order term
ε2τuxxt, its relative importance being determined by the parameter τ . We show that
the value of τ is critical in determining the type of profile the solution of problem (BL)
will have.

The right-hand side of (1.17) resembles the regularization Aε(u) = εuxx+ε2δuxxx,
which has received considerable attention (cf. [23] and the monograph [26] and the
references cited therein). We mention in particular the seminal paper [24] in which
f(u) = u3. There, for δ > 0 an explicit function ϕ(u; δ) is derived such that the shock
{u�, ur} is admissible if and only if ur = ϕ(u�; δ). Properties of this kinetic function
ϕ, such as monotonicity with respect to u�, have been studied in a series of papers
(see [6] and the references cited there).

Other regularizations have been studied in [7] and [8] where a fourth order vis-
cosity term was introduced motivated by thin film flow (Aε(u) = −(u3uxxx)x, and
the flux function is f(u) = u2 − u3) and in [18], where fourth order regularizations
are used, motivated by problems in image processing. Traveling waves for dynamic
capillarity models, but for a convex flux function, are investigated in [11].

In this paper we focus on the relation between u� and the parameter τ . With β
being defined in Proposition 1.1 (see also Figure 2) we establish the existence of a
function τ(u�) defined for α < u� < β such that (1.17) has a traveling wave solution
with ur = 0, if and only if τ = τ(u�). We shall show that this function is monotone,
continuous, and has limits

τ(u�) → τ∗ > 0 as u� ↘ α and τ(u�) → ∞ as u� ↗ β.
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Fig. 2. Critical values of u when M = 2: α ≈ 0.816 and β ≈ 1.147.

Thus τ serves as a bifurcation parameter: for 0 < τ ≤ τ∗ the situation will be much
like in the classical case (E), but for τ > τ∗ the situation changes abruptly and new
types of shock waves become admissible. Note that in the framework of [26] we have
0 = ϕ(u�; τ(u�)).

The properties of the function τ(u�) will be based on three existence, uniqueness,
and nonexistence theorems, Theorems 1.1, 1.2, and 1.3, for traveling waves of (1.17).
Substituting (1.8) into (1.17) we obtain

−su′ +
(
f(u)

)′
= u′′ − sτu′′′ in R.

When we integrate this equation over (η,∞), we obtain the second order boundary
value problem

(1.18a)

(1.18b)
(TW)

{
−s(u− ur) + {f(u) − f(ur)} = u′ − sτu′′ in R,

u(−∞) = u�, u(∞) = ur,

where s = s(u�, ur) is given by the Rankine–Hugoniot condition (1.3).
We consider two cases:

(I) ur = 0, u� > 0 and (II) ur > u� > 0.

Case I. ur = 0. We first establish an upper bound for u�.
Proposition 1.1. Let u be a solution of problem (TW) such that ur = 0. Then,

u� < β, where β is the value of u for which the equal area rule holds:

(1.19)

∫ β

0

{
f(u) − f(β)

β
u

}
du = 0.

In Figure 2 we indicate the different critical values of u in a graph of f(u) when
M = 2.

Proof. When we put ur = 0 into (1.18a), multiply by u′, and integrate over R,
we obtain the inequality∫ u�

0

{
f(u) − f(u�)

u�
u

}
du = −

∫
R

(u′)2(η) dη < 0,
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from which it readily follows that u� < β.
Next, we turn to the questions of existence and uniqueness. Note that if u� ∈

(α, β), then

s = s(u�, 0) =
f(u�)

u�
> f ′(u�) ≥ f ′(0) for u� > α,

and traveling waves, if they exist, lead to an admissibility condition for fast under-
compressive waves. For convenience we write s(u�, 0) = s(u�).

In the theorems below we first show that for each τ > 0, there exists a unique
value of u� ≥ α, denoted by u(τ), for which there exists a solution of problem (TW)
such that ur = 0.

Theorem 1.1. Let M > 0 be given. Then there exists a constant τ∗ > 0 such
that the following hold:

(a) For every 0 ≤ τ ≤ τ∗, problem (TW) has a unique solution with u� = α and
ur = 0.

(b) For each τ > τ∗ there exists a unique constant u�(τ) ∈ (α, β) such that
problem (TW) has a unique solution with u� = u�(τ) and ur = 0.

(c) The function u : [0,∞) → [α, β) defined by

(1.20) u(τ) =

{
α for 0 ≤ τ ≤ τ∗,

u�(τ) for τ > τ∗

is continuous, strictly increasing for τ ≥ τ∗, and u(∞) = β.
The solutions in parts (a) and (b) are strictly decreasing.
We shall refer to u = u(τ) as the plateau value of u. In what follows, we shall

often denote the speed s(u) of the shock {u, 0} by s.
Next, suppose that u� 	= u(τ). To deal with this case we need to introduce another

critical value of u, which we denote by u(τ).
• For τ ∈ [0, τ∗] we put u(τ) = α.
• For τ > τ∗ we define u(τ) as the unique zero in the interval (0, u(τ)) of

f(r) − f(u)

u
r = 0, 0 < r < u.

Plainly, if τ > τ∗, then

0 < u(τ) < α < u(τ) < β for τ > τ∗.

In Figure 3, we show graphs of the functions u(τ) and u(τ). They are computed
numerically for M = 2 by means of a shooting technique that is explained in section 3.
In this case we found

τ∗ ≈ 0.61.

The following theorem states that if ur = 0 and u� ∈ (0, u), then traveling waves
exist if and only if u� < u(τ).

Theorem 1.2. Let M > 0 and τ > 0 be given, and let u = u(τ) and u = u(τ).
(a) For any u� ∈ (0, u), there exists a unique solution of problem (TW) such that

ur = 0. We have s(u�) < s.
(b) Let τ > τ∗. Then for any u� ∈ (u, u), there exists no solution of prob-

lem (TW) such that ur = 0.
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Fig. 3. The functions u(τ) and u(τ) computed for M = 2.

The solution in part (a) may exhibit a damped oscillation as it tends to u�.
Case II. ur > 0. The results of Case I raise the question as to how to deal with

solutions of problem (BL) when uB ∈ (u, u), and by Theorem 1.2 there is no traveling
wave solution with ur = 0. In this situation we use two traveling waves in succession:
one from uB to the plateau value u, and one from u down to u = 0. The existence of
the latter has been established in Theorem 1.1. In the next theorem we deal with the
former, in which ur = u.

Theorem 1.3. Let M > 0 and τ > τ∗ be given, and let u = u(τ) and u = u(τ).
(a) For any u� ∈ (u, u), there exists a unique solution of problem (TW) such that

ur = u. We have s(u�, u) < s.
(b) For any u� ∈ (0, u), there exists no solution of problem (TW) such that

ur = u.
The solution in part (a) may exhibit a damped oscillation as it tends to u�.
In section 2 we show how these theorems can be used to construct weak solutions

of problem (BL), i.e., weak solutions, which are admissible within the context of the
regularization proposed in (1.17), and which involve shocks which may be either clas-
sical or nonclassical. In section 3 we solve the Cauchy problem for (1.17) numerically,
starting from a smoothed step function, i.e., u(x, 0) = uBH̃(−x), where H̃(x) is a
regularized Heaviside function and M = 2. We find that for different values of the
parameters uB , τ , and ε the solution converges to solutions constructed in section 2
as t → ∞. In sections 4 and 5 we prove Theorems 1.1, 1.2, and 1.3. The proofs rely on
phase plane arguments. We conclude this paper with a discussion of the dissipation
of the entropy function u2/2 when u is the solution of the Cauchy problem for (1.17)
(cf. section 6).

In this paper we have seen that nonmonotone traveling waves such as those ob-
served in [13] may be explained by a regularization that takes into account properties
of two-phase flow. It will be interesting to determine to what extent such results as
derived in this paper for the simplified equation (1.17), continue to hold for the full
equation (1.16) when realistic functions H(u) and J(u) are used. Such equations may
be degenerate at u = 0 as well as at u = 1, and singular behavior, as in the porous
media equation [2, 4, 27] may be expected. In this connection it is interesting to men-
tion a numerical study of traveling waves of the original, fully nonlinear equations of
this model in [14, 15].
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2. Entropy solutions of problem (BL). In this section we give a classification
of admissible solutions of problem (BL) based on the “extended viscosity model”
(1.17), using the results about traveling wave solutions formulated in Theorems 1.1,
1.2, and 1.3. Before doing that we make a few preliminary observations, and we recall
the construction based on the classical model (1.7).

Because (1.1) is a first order partial differential equation and uB is a constant,
any solution of problem (BL) depends only on the combination x/t, with shocks, con-
stant states, and rarefaction waves as building blocks [29]. The latter are continuous
solutions of the form

(2.1) u(x, t) = r(ζ) with ζ =
x

t
.

After substitution into (1.1) this yields

(2.2)
dr

dζ

(
−ζ +

df

du

(
r(ζ)

))
= 0.

Hence, the function r(ζ) satisfies

either r = constant or
df

du

(
r(ζ)

)
= ζ.

When solving problem (BL), we will combine solutions of (2.2) with admissible shocks,
i.e., shocks {u�, ur} in which u� and ur are such that (1.6), with the a priori selected
and physically relevant viscous extension Aε, has a traveling wave solution u(η) such
that u(η) → u� as η → −∞ and u(η) → ur as η → +∞. Although in the physical
context in which the viscous extension employed in (1.17) was derived, 0 ≤ uB ≤ 1,
we shall drop this restriction. It will be convenient to first assume that 0 ≤ uB ≤ β.
At the end of this section we discuss the case that uB > β.

All solution graphs shown in this section and the next are numerically obtained
solutions of (1.17). They are expressed in terms of the independent variable ζ and t,
i.e.,

u(x, t) = w(ζ, t),

and considered for fixed ε > 0 (= 1) and for large times t. We return to the compu-
tational aspects in section 3.

Before discussing the implications of the viscous extension in (1.17), we recall the
construction of classical entropy solutions of problem (BL). It uses (RH) and the
entropy condition (E), which was derived for the diffusive viscous extension used in
(1.8). We distinguish two cases:

(a) 0 ≤ uB ≤ α and (b) α < uB ≤ β.

Case (a). 0 ≤ uB ≤ α. This case was discussed in the introduction, where we
found that the entropy solution is given by the shock {uB , 0}.

Case (b). α < uB ≤ β. In the introduction we saw that in this case, the shock
{uB , 0} is no longer a classical entropy solution. Instead, in this case the entropy
solution is a composition of three functions:

(2.3) u(x, t) = v(ζ) =

⎧⎪⎨
⎪⎩

uB for 0 ≤ ζ ≤ ζB ,

r(ζ) for ζB ≤ ζ ≤ ζ∗,

0 for ζ∗ ≤ ζ < ∞,
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where ζB and ζ∗ are determined by

ζB =
df

du
(uB) and ζ∗ =

df

du
(α) =

f(α)

α
= s(α),

and r : [ζB , ζ∗] → [α, uB ] by the relation

(2.4)
df

du

(
r(ζ)

)
= ζ for ζB ≤ ζ ≤ ζ∗.

Since f ′′(u) < 0 for u ∈ [α, uB ], (2.4) has a unique solution, and hence r(ζ) is well
defined. Note that if uB ≥ 1, then ζB = 0, because f ′(u) = 0 if u ≥ 1.

Solutions corresponding to Case (b) are shown in Figure 4.

Fig. 4. Case (b). Solution graph (left) and flux function with transitions from uB to α and
from α to 0 (right).

We now turn to the pseudoparabolic equation (1.17) that arises in the context
of the two-phase flow model of Hassanizadeh and Gray [19, 20]. For this problem,
we define a class of nonclassical entropy solutions in which shocks are admissible if
problem (TW) has a traveling wave solution with the required limit conditions.

For given M > 0 and τ > 0, the relative values of uB and u(τ) and u(τ) are now
important for the type of solution we are going to get. It is easiest to represent them
in the (uB , τ)-plane. Specifically, we distinguish three regions in this plane:

A = {(uB , τ) : τ > 0, u(τ) ≤ uB < β},
B = {(uB , τ) : τ > τ∗, u(τ) < uB < u(τ)},
C = {(uB , τ) : τ > 0, 0 < uB < u(τ)}.

These three regions are shown in Figure 5.
Case I. (uB , τ) ∈ A. If 0 ≤ τ ≤ τ∗, i.e., (uB , τ) ∈ A1, the construction is as in the

classical case described above. After a plateau, where u = uB and 0 ≤ ζ = x/t ≤ ζB ,
we find a rarefaction wave r(ζ) from uB down to α followed by a classical shock
connecting α to the initial state u = 0.

If τ > τ∗, i.e., (uB , τ) ∈ A2, the solution starts out as before, with a plateau
where u = uB and 0 ≤ ζ ≤ ζB and a rarefaction wave r(ζ) which now takes u down
from uB to u > α. This takes place over the interval ζB ≤ ζ ≤ ζ. By (2.2),

ζ =
df

du

(
u(τ)

)
.
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Fig. 5. The regions A, B, and C in the (uB , τ)-plane.

Fig. 6. Case I. Solution graph (left) and flux function (right), with transitions from uB = 1
to u(τ) and from u(τ) to 0.

Subsequently, u drops down to the initial state u = 0 through a shock, {u, 0}, which
is admissible by Theorem 1.1. By (RH) the shock moves with speed

s = s =
f(u)

u
>

df

du

(
u
)

= ζ,

because f is concave on (α,∞). Therefore, the shock outruns the rarefaction wave
and a second plateau develops between the rarefaction wave and the shock in which
u = u. Summarizing, we find that the (nonclassical) entropy solution has the form

(2.5) u(x, t) = v(ζ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

uB for 0 ≤ ζ ≤ ζB ,

r(ζ) for ζB ≤ ζ ≤ ζ,

u(τ) for ζ ≤ ζ ≤ s,

0 for s ≤ ζ < ∞.

A graph of v(ζ) is given in Figure 6.
Note that if uB ≥ 1, then ζB = 0. At this point v shocks to the maximum of u(τ)

and 1. If u(τ) ≥ 1, then the rarefaction wave disappears and for ζ > 0 the solution is
continued by the shock {u(τ), 0}.
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Case II. (uB , τ) ∈ B. It follows from Theorem 1.2 that there are no traveling
wave solutions with u� = uB and ur = 0, so that the shock {uB , 0} is now not
admissible. However, in Theorem 1.3 we have shown that there does exist a traveling
wave solution, and hence an admissible shock, with u� = uB and ur = u(τ), and speed
s = s(uB , u(τ)). This shock is then followed by a second shock from u = u(τ) down
to u = 0, which is admissible because by Theorem 1.1 there does exist a traveling
wave solution which connects u and u = 0 with speed s > s(uB , u(τ)). Thus

(2.6) u(x, t) = v(ζ) =

⎧⎪⎨
⎪⎩

uB for 0 ≤ ζ ≤ s(uB , u),

u(τ) for s(uB , u) ≤ ζ ≤ s,

0 for s ≤ ζ < ∞.

An example of this type of solution is shown in Figure 7. The undershoot in the
solution graph is due to oscillations which are also present in the traveling waves.

Fig. 7. Case II. Solution graph (left) and flux function (right), with transitions from uB = 0.75
to u(τ) and from u(τ) to 0.

Remark 2.1. It is readily seen that

s(uB , u(τ)) ↗ s as uB ↘ u,

while the plateau level u remains the same. Thus, in this limit, the plateau{(
u,

x

t

)
: u = u(τ), s(uB , u(τ)) <

x

t
< s

}
becomes thinner and thinner and eventually disappears when uB = u.

Remark 2.2. If uB = 1 and u(τ) > 1, then the first shock degenerates in the
sense that

s(uB , u(τ)) = 0 and u(x, t) = u(τ) for all 0 <
x

t
< s.

Case III. (uB , τ) ∈ C. We have seen in Theorem 1.2 that in this case there
exists a traveling wave solution with u� = uB and ur = 0. It may exhibit oscillatory
behavior near u = u�, and it leads to the classical entropy shock solution {uB , 0}. An
example of such a solution is shown in Figure 8. Note the overshoot in the solution
graph, reflecting oscillations also present in the traveling waves.

We conclude with a remark about the case when uB > β. It is readily verified that
for such values of uB the situation is completely analogous to the one for (uB , τ) ∈ A.
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Fig. 8. Case III. Solution graph (left) and flux function (right), with transition from uB = 0.55
to 0.

3. Numerical experiments for large times. In this section we report on the
computations carried out for obtaining the numerical results presented in this paper.
All computations are done for M = 2. We start with the calculation of the diagram
in Figure 3. For determining the graphs of u and u as functions of τ we fix ur = 0.
Then, given a τ > 0 and a left state u� ≥ 0, we look for a strictly decreasing solution
u(η) of the problem (1.18a) and (1.18b). If such a solution exists, we can invert the
function u(η) and define the new dependent variable z(u) = −u′(η(u)), which satisfies

sτzz′ + z = su− f(u)

on the open interval (0, u�). Moreover, we have z > 0 on (0, u�), and z(0) = z(u�) = 0.
Following Theorem 1.1, an τ∗ > 0 exists so that solutions z to the given first order

equation and boundary conditions are possible for any τ ≤ τ∗, and with u� = α. To
compute τ∗ we fix u� = α and solve the equation in z with z(0) = 0. We start with
a sufficiently small τ > 0 and increase its value until z(u�) becomes strictly positive.
This gives

τ∗ ≈ 0.61.

Further, for τ > τ∗ there is a unique u� = u(τ) ∈ (α, β) yielding a solution z with
the required properties. Moreover, u is strictly increasing in τ . For finding the cor-
responding u� we solve numerically the equation in z with the initial value z(0) = 0.
We repeat this procedure for different values of τ , starting close to τ∗ and increasing
gradually the difference between two successive values of τ as the corresponding u�

approaches β. Accurate computations with different ODE solvers have led to negli-
gible differences in the resulting diagrams. Finally, the function u(τ) follows from a
simple construction involving f(u).

Nonstandard shock solutions of a hyperbolic conservation are computed numer-
ically in [21] and [22]. The schemes considered there are applied to the hyperbolic
problem, but they actually solve more accurately a regularized problem involving a
∂xxx term. This term vanishes as the discretization parameters are approaching 0.

Here we consider the regularized initial value problem for (1.17) in the domain
S = R × R+:

(3.1a)

(3.1b)

⎧⎨
⎩

∂u

∂t
+

∂f(u)

∂x
= ε

∂2u

∂x2
+ ε2τ

∂3u

∂x2∂t
in S,

u(x, 0) = uBH̃(−x) for x ∈ R.
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Here H̃(x) is a smooth monotone approximation of the Heaviside function H. We
use H̃ instead of H because discontinuities in the initial conditions will persist for
all t > 0, as shown in [12]. This would require an adapted and more complicated
numerical approach for ensuring the continuity in flux and pressure (see, for example,
[10], or [9, Chapter 3]). By the above choice we avoid this unnecessary complication.

Important parameters in this problem are M , ε, τ > 0, and uB ∈ (0, 1]. The
scaling

(3.2) x → x

ε
, t → t

ε

removes the parameter ε from (3.1a). Therefore, we fix ε = 1 and show how for
different values of τ and uB the solution u(x, t) of problem (3.1) converges as t → ∞
to qualitatively different final profiles.

For solving (3.1) numerically we consider a first order time stepping, combined
with the finite difference discretization of the terms involving ∂xx. To deal with the
first order term we apply a minmod slope limiter method that is based on first order
upwinding and Richtmyer’s scheme. Specifically, with k > 0 and h > 0 being the
discretization parameters, we define xi = ih (i ∈ Z) and tn = nk (n ∈ N), and let un

i

stand for the numerical
approximation of u(xi, tn). With

Δh,i(u) :=
1

h2

(
ui+1 − 2ui + ui−1

)
,

the fully discrete counterpart of (3.1a) in (xi, tk) reads

un+1
i − un

i +
k

h

(
Fn
i+ 1

2
− Fn

i− 1
2

)
= kεΔh,i(u

n+1) + ε2τΔh,i(u
n+1 − un),

where Fn
i+ 1

2

is the numerical flux at xi+ 1
2

= xi +
h
2 and tn. As mentioned above, Fn

i+ 1
2

is a convex combination of the first order upwind flux and the second order Richtmyer
flux:

Fn
i+ 1

2
= (1 − Θn

i )Fn,low

i+ 1
2

+ Θn
i F

n,high

i+ 1
2

,

where

Fn,low

i+ 1
2

= f(un
i ),

Fn,high

i+ 1
2

= f(wn
i ), for wn

i =
un
i +un

i+1

2 − k
2h (f(un

i+1) − f(un
i )),

and

Θn
i = max(0,min(1, θni )), for θni =

{
0 if un

i = un
i+1,

un
i −un

i−1

un
i+1−un

i
otherwise.

To compute the numerical solution, we restrict (3.1) to the sufficiently large spatial
interval (−1000, 5000), and define the artificial boundary conditions u(−1000, t) = uB

and u(5000, t) = 0.0. The computations are performed for large times (t > 2000), as
long as the results are not affected by the presence of the boundaries. We apply the
discretization scheme mentioned above, yielding a linear tridiagonal system that is
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solved at each time step. A convergence proof for the numerical scheme is beyond the
scope of the present work. Similar numerical schemes for problems of pseudoparabolic
type are considered, for example, in [1] and [16], where also the convergence is proven.

In the figures below, we show graphs of solutions at various times t, appropriately
scaled in space. Specifically, we show graphs of the function

(3.3) w(ζ, t) = u(x, t), where ζ =
x

t
,

so that a front with speed s will be located at ζ = s.
We recall that the numerical results are obtained for M = 2. In this case τ∗ ≈ 0.61

(see also Figures 3 and 5). We begin with a simulation where (uB , τ) = (1, 0.2) ∈ A1.
In Figure 9 we show the resulting solution w(ζ, t) at time t = 1000. It is evident that
w converges to the classical entropy solution constructed in section 2.

Fig. 9. Graph of w(ζ, t) at t = 1000 when (uB , τ) = (1, 0.2) ∈ A1. In this case u(τ) = α ≈ 0.816
and s ≈ 1.11.

In the simulations that we present in the remainder of this section we take τ to be
fixed above τ∗: τ = 5. Correspondingly, by the ODE method involved in computing
the diagram in Figure 3 we obtained u(τ = 5) ≈ 0.98 and u(τ = 5) ≈ 0.68. In the
first of these experiments, in which we keep uB = 1, we see that for large time the
graph consists of three pieces: one in which w gradually decreases from w = uB = 1
to the “plateau” value w = u, one in which w is constant and equal to u, and one in
which it drops down to u = 0; see Figure 10(a). It is clear from the graph that u > α.
The plateau value u ≈ 0.98 computed here is in excellent agreement with the value
obtained by the ODE method; see also Figures 3 and 5.

In the next experiment we decrease uB to uB = 0.9. We are then in the region
B. For large times the solution w(ζ, t) develops two shocks, one where it jumps up
from uB to the plateau at u ≈ 0.98 (the same value as in the previous experiment),
and one where it jumps down from u to w = 0; see Figure 10(b).

In the next experiments we decrease the value of uB to values around the value
u ≈ 0.68. The results are shown in Figure 11, where we have zoomed into the front.
We see that, as uB decreases and approaches the boundary between the regions B
and C2 in Figure 5, the part of the graph where w ≈ uB grows at the expense of the
part where w ≈ u.

Finally, in Figure 12 we show the graph of w(ζ, t) when τ = 5 and uB is further
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(a) (uB , τ) = (1, 5) ∈ A2 (b) (uB , τ) = (0.9, 5) ∈ B

Fig. 10. Graphs of w(ζ, t) at t = 1000 when (uB , τ) = (1, 5) ∈ A2 (left) and (uB , τ) = (0.9, 5) ∈
B (right). Here u(τ) ≈ 0.98 and s ≈ 1.02, while ζ� ≈ 0.08 (left) and sB ≈ 0.28 (right).

Fig. 11. Graphs of w(ζ, t) with τ = 5 at t = 1000 (dashed) and t = 2000 (solid); zoomed view:
0.9 ≤ ζ ≤ 1.05. Here u(τ) ≈ 0.68 and uB approaches u(τ) from above through 0.70 (left), 0.69 (mid-
dle), and 0.68 (right). Then sB increases from 0.95 (left) to 0.98 (middle) up to 1.02 (right). The
other values are u(τ) ≈ 0.98 and s ≈ 1.02.

Fig. 12. Graphs of w(ζ, t) at t = 1000 (dashed) and t = 2000 (solid) when (uB , τ) = (0.55, 5) ∈
C2; zoomed view: 0.75 ≤ ζ ≤ 0.8. Then s ≈ 0.78.

reduced to 0.55, so that we are now in C2. We find that the solution no longer jumps
up to a higher plateau, but instead jumps right down after a small oscillation.

Note that the oscillations in Figures 11 and 12 contract around the shock as time
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progresses. This is due to the scaling, since we have plotted w(ζ, t) versus ζ = x/t for
different values of time t.

We conclude from these simulations that the entropy solutions constructed in
section 2 emerge as limiting solutions of the Cauchy problem (3.1). This suggests
that these entropy solutions enjoy certain stability properties. It would be interesting
to see whether these same entropy solutions would emerge if the initial value were
chosen differently. We leave this question to a future study.

4. Proof of Theorem 1.1. In Theorem 1.1 we considered traveling wave so-
lutions u(η) of (1.17) in which the limiting conditions had been chosen so that
u(−∞) = u� ≥ α and u(∞) = ur = 0. Putting ur = 0 in (1.18a) and (1.18b)
we find that they are solutions of the problem

(4.1a)

(4.1b)
(TW0)

{
sτu′′ − u′ − su + f(u) = 0 for −∞ < η < ∞,

u(−∞) = u�, u(+∞) = 0,

in which the speed s is a priori determined by u� through

(4.2) s = s(u�)
def
=

f(u�)

u�
.

The proof proceeds in a series of steps.
Step 1. We choose u� ∈ (α, β) and prove that there exists a unique τ > 0 for

which problem (TW0) has a solution, which is also unique. This defines a function
τ = τ(u�) on (α, β). We then show that τ(u�) is increasing, continuous, and that

τ(u) → ∞ if u → β.

Finally, we write

τ∗
def
= lim

u→α+
τ(u).

Step 2. We show that for any τ ∈ (0, τ∗], problem (TW0) has a solution with
u� = α.

The proof is concluded by defining the function u�(τ) on (τ∗,∞) as the inverse
of the function τ(u�) on the interval (α, β). The resulting function u(τ), defined by
(1.17) on R+, then has all the properties required in Theorem 1.1.

4.1. The function τ (u). As a first result we prove that τ(u) is well defined on
the interval (α, β).

Lemma 4.1. For each u� ∈ (α, β) there exists a unique value of τ such that there
exists a solution of problem (TW0). This solution is unique and decreasing.

Proof. It is convenient to write (4.1a) in a more conventional form, and introduce
the variables

ξ = −η/
√
sτ and ũ(ξ) = u(η).

In terms of these variables, problem (TW0) becomes

(4.3a)

(4.3b)

{
u′′ + cu′ − g(u) = 0 in −∞ < ξ < ∞,

u(−∞) = 0, u(+∞) = u�,
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where

(4.4) c =
1√
sτ

and g(u) = su− f(u),

and the tildes have been omitted. Graphs of g(u) for M = 2 and different values of s
are shown in Figure 13.

Fig. 13. The function for g(u) for M = 2, and s = 0.95 (left) and s = s(α) = 1.113 (right).

We study problem (4.3) in the phase plane and write (4.3a) as the first order
system

(4.5a)

(4.5b)
P(c, s)

{
u′ = v,

v′ = −cv + g(u).

For u� ∈ (α, β) the function g(u) has three distinct zeros, which we denote by ui,
i = 0, 1, and 2, where

u0 = 0 and u1 < α < u2 = u�.

Plainly the points (u, v) = (ui, 0), i = 0, 1, 2, are the equilibrium points of (4.5) with
associated eigenvalues

(4.6) λ± = − c

2
± 1

2

√
c2 + 4g′(ui).

Since

g′(u0) > 0, g′(u1) < 0, and g′(u2) > 0,

the outer points, (u0, 0) and (u2, 0), are saddles and (u1, 0) is either a stable node or
a stable spiral.

Since we are interested in a traveling wave with u(−∞) = 0 and u(+∞) = u�, we
need to investigate orbits which connect the points (0, 0) and (u�, 0). The existence
of a unique wave speed c for which there exists such a solution of the system P(c, s),
which is unique and decreasing, has been established in [25]; see also [17]. This allows
us to define the function c = c(u�) for α < u� < β.

By definition, c(u�) only takes on positive values. This is consistent with the
identity, obtained by multiplying (4.3a) by u′ and integrating the result over R:

(4.7) c

∫
R

{u′(ξ)}2 dξ =

∫
R

g(u(ξ))u′(ξ) dξ =

∫ u�

0

g(t) dt
def
= G(u�),
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because G(u�) > 0 when 0 < u� < β.
Finally, by (4.2) and (4.4), we find that τ is uniquely determined by u� through

the relation

(4.8) τ(u�) =
1

s(u�)c2(u�)
.

This completes the proof of Lemma 4.1.
Lemma 4.1 allows us to define a function τ(u) on (α, β), such that if u� ∈ (α, β),

then problem (TW0) has a unique solution u(η) if and only if τ = τ(u�). In the next
lemma we show that the function τ(u) is strictly increasing on (α, β).

Lemma 4.2. Let u�,i = γi for i = 1, 2, where γ1 ∈ (α, β), and let τ(γi) = τi.
Then

γ1 < γ2 =⇒ τ1 < τ2.

Proof. For i = 1, 2 we write

si =
f(γi)

γi
and gi(u) = siu− f(u).

Since

d

du

(
f(u)

u

)
=

1

u

(
f ′(u) − f(u)

u

)
< 0 for α ≤ u < β,

it follows that

(4.9) γ1 < γ2 =⇒ s1 > s2 and g1(u) > g2(u) for u > 0.

To prove Lemma 4.2 we return to the formulation used in the proof of Lemma 4.1.
Traveling waves correspond to heteroclinic orbits in the (u, v)-plane. Those associated
with γ1 and γ2 we denote by Γ1 and Γ2. They connect the origin to (γ1, 0) and (γ2, 0),
respectively.

We shall show that

(4.10) γ1 < γ2 =⇒ c1 = c(γ1) > c(γ2) = c2.

We can then conclude from (4.4) that

τ2s2 > τ1s1 =⇒ τ2 >
s1

s2
τ1 > τ1,

as asserted.
Thus, suppose to the contrary that c1 ≤ c2. We claim that this implies that near

the origin the orbit Γ1 lies below Γ2. Orbits of the system P(c, s) leave the origin
along the unstable manifold under the angle θ given by

(4.11) θ = θ(c, s)
def
=

1

2

{√
c2 + 4s− c

}
.

An elementary computation shows that

(4.12)
∂θ

∂c
< 0 and

∂θ

∂s
> 0.



A NEW CLASS OF ENTROPY SOLUTIONS 525

Hence, since s1 > s2 and we assume that c1 ≤ c2, it follows that

θ1 = θ(c1, s1) > θ(c2, s2) = θ2,

and hence that the orbit Γ1 starts out above Γ2.

Since (γ2, 0) lies to the right of the point (γ1, 0) we conclude that Γ1 and Γ2 must
intersect. Let us denote the first point of intersection by P = (u0, v0). Then at P the
slope of Γ1 cannot exceed the slope of Γ2. The slopes at P are given by

dv

du

∣∣∣
Γi

= −ci +
gi(u0)

v0
, i = 1, 2.

Because g1(u) > g2(u) for u > 0 by (4.9), it follows that

dv

du

∣∣∣
Γ1

>
dv

du

∣∣∣
Γ2

at P,

so that, at P , the slope of Γ1 exceeds the slope of Γ2, a contradiction. Therefore we
find that c1 > c2, as asserted.

In the next lemma we show that the function τ(u) is continuous.

Lemma 4.3. The function τ : (α, β) → R+ is continuous.

Proof. Because the function s(γ) = γ−1f(γ) is continuous, it suffices to show that
the function c(γ) is continuous. Since we have shown in the proof of Lemma 4.1 that
c(γ) is decreasing (cf. (4.10)), we only need to show that it cannot have any jumps.

Suppose to the contrary that it has a jump at γ0, and let us write

lim inf
γ↘γ+

0

c(γ) = c+ and lim sup
γ↗γ−

0

c(γ) = c−.

Then, since c(γ) is decreasing, we may assume that c− > c+.

Thus, there exist sequences {γ−
n } and {γ+

n } with corresponding heteroclinic orbits
(u±

n , v
±
n ) and wave speeds c±n , such that

c+n ↘ c+ and c−n ↗ c− as n → ∞.

Since the unstable manifold at (0, 0) and the stable manifold at (γ, 0) depend con-
tinuously on c, it follows that the corresponding orbits also converge, i.e., that there
exist orbits (u+, v+) and (u−, v−) such that

(u±
n , v

±
n )(ξ) → (u±, v±)(ξ) as n → ∞,

uniformly on R. This argument yields two heteroclinic orbits, one with speed c+

and one with speed c−, which both connect the origin to the point (γ0, 0). Since by
Lemma 4.1 there exists only one such orbit, we have a contradiction.

It follows that c− = c+, and continuity of the function c(γ), and hence of τ(γ),
has been established.

In the following lemma we prove the final assertion made in Step 1, which involves
the behavior of τ(u) as u → β.

Lemma 4.4. We have

τ(γ) → ∞ as γ → β−.
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Proof. In view of the definition (4.7) of τ , it suffices to show that c(γ) → 0 as
γ → β. Proceeding as in the proof of Lemma 4.3, we find that c(γ) and the orbit
Γ(c(γ)) converge to c0 and Γ(c0) = {(u0, v0)(t) : t ∈ R} as γ → β. Note that

c(γ)

∫
R

v2(ξ; γ) dξ =

∫ γ

0

g(t; γ) dt,

where g(t; γ) = s(γ)t− f(t). If we let γ → β in this identity, we obtain

(4.13) c0

∫
R

v2
0(ξ) dξ =

∫ β

0

g(t;β) dt = 0.

Because at the origin the unstable manifold points into the first quadrant when γ = β
(cf. (4.9)), it follows that v0 > 0 on R. Therefore, (4.13) implies that c0 = 0, as
asserted.

4.2. Traveling waves with u� = α. In Lemmas 4.1 and 4.2 we have shown
that τ(u) is an increasing function on (α, β). Since τ(u) > 0 for all u ∈ (α, β), the
limit

τ∗
def
= lim

u→α+
τ(u)

exists. In the following lemmas we show that τ∗ > 0 and that for all τ ∈ (0, τ∗],
problem (TW0) has a unique solution with u� = α.

Let S ∈ R+ denote the set of values of τ for which problem (TW0) has a unique
solution with u� = α.

Lemma 4.5. There exists a constant τ0 > 0 such that (0, τ0) ⊂ S.
Proof. We shall show that there exists a wave speed c0 > 0 such that if c > c0,

then problem (4.5) has a heteroclinic orbit connecting the origin to the point (α, 0).
This then yields Lemma 4.5 when we put

τ0 =
1

c20s(α)
.

In (4.6) we saw that the origin is a saddle and that the slope of the unstable
manifold is given by

θ(c) =
1

2

{√
c2 + 4s− c

}
.

Note that

θ(c) <
1

c
g′(0) =

s

c
.

Hence, near the origin the orbit lies below the isocline Iv = {(u, v) : v = c−1g(u),
u ∈ R}.

Since u′ > 0 and v′ > 0 in the lens shaped region

L = {(u, v) : 0 < u < α, 0 < v < c−1g(u), u ∈ R},

the orbit will leave L again. To see what happens next, we consider the triangular
region Ωm bounded by the positive u- and v-axis and the line

�m
def
= {(u, v) : v = m(α− u)}, m > 0.
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On the axes the vector field points into Ωm, and on the line �m it points inwards if

(4.14)
dv

du

∣∣∣
�m

= −c +
g(u)

m(α− u)
< −m.

Let

m0 = inf {m > 0 : g(u) < m(α− u) on (0, α)} .

Then

−c +
g(u)

m(α− u)
< −c +

m0

m
,

and (4.14) will hold for values of c and m which satisfy the inequality

−c +
m0

m
< −m

or

c > m +
m0

m
.

To obtain the largest range of values of c for which the vector field points into Ωm we
choose m so that the right-hand side of this inequality becomes smallest; i.e., we put
m =

√
m0. We thus find that for

c > c0
def
= 2

√
m0

the region Ω√
m0

is invariant, and hence, that the orbit must tend to the point (α, 0).
This completes the proof of Lemma 4.5.

The next lemma gives the structure of the set S.
Lemma 4.6. If τ0 ∈ S, then (0, τ0] ⊂ S.
Proof. As in earlier lemmas we prove a related result for problem (4.5). Let S∗

be the set of values of c for which there exists a heteroclinic orbit of problem (4.5)
from (0, 0) to (α, 0). We show that if c0 ∈ S∗, then [c0,∞) ⊂ S∗. Plainly this implies
Lemma 4.6 with τ0 = 1/(c0s

2).
As before, we denote the orbit emanating from the origin by Γ(c). Suppose that

c > c0. Then, since θ′(c) < 0 it follows that θ(c0) > θ(c), so that near the origin
Γ(c0) lies above Γ(c). We claim that Γ(c0) and Γ(c) will not intersect for u ∈ (0, α).
Accepting this claim for the moment, we conclude that since Γ(c0) tends to (α, 0),
the orbit Γ(c) must converge to (α, 0) as well.

It remains to prove the claim. Suppose that Γ(c0) and Γ(c) do intersect at some
u ∈ (0, α), and let (u0, v0) be the first point of intersection. Then

(4.15)
dv

du

∣∣∣
Γ(c)

≥ dv

du

∣∣∣
Γ(c0)

at (u0, v0).

But, from the differential equations we deduce that

dv

du

∣∣∣
Γ(c)

= −c +
g(u0)

v0
< −c0 +

g(u0)

v0
=

dv

du

∣∣∣
Γ(c0)

at (u0, v0),

which contradicts (4.15). This proves the claim and so completes the proof of Lemma
4.6.
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We conclude this section by showing that τ∗ ∈ S, and hence that S = (0, τ∗].
Lemma 4.7. We have S = (0, τ∗].
Proof. It follows from Lemmas 4.1 and 4.2 that for every ε ∈ (0, β − α), there

exists a τε = τ(α + ε) > 0 such that problem (TW0) has a unique traveling wave
uε(η) with speed sε = s(α + ε), such that

uε(−∞) = α + ε and uε(∞) = 0.

This wave corresponds to a heteroclinic orbit Γε = {(uε(ξ), vε(ξ)) : ξ ∈ R} of the
system P(cε, sε), where cε = 1/

√
sετε, which connects the points (0, 0) and (α+ ε, 0).

It leaves the origin along the stable manifold under an angle θε = θ(cε, sε) and enters
the point (α + ε, 0) along the stable manifold under the angle

ψε = ψ(cε, sε) =
1

2

{
−cε −

√
c2ε + 4g′(α + ε)

}
→ −c0 = − 1√

s(α)τ∗
as ε → 0.

Reversing time, i.e., replacing ξ by −ξ, we can view Γε as the unique orbit em-
anating from the point (α + ε, 0) into the first quadrant and entering the origin as
ξ → ∞. In the limit, as ε → 0, we find that

uε(ξ) → u0(ξ) and vε(ξ) → v0(ξ) as ε → 0 for −∞ < ξ ≤ ξ0,

where ξ0 is any finite number. We claim that

u0(ξ) → 0 and v0(ξ) → 0 as ξ → ∞;

i.e., Γ0
def
= {(u0(ξ), v0(ξ)) : ξ ∈ R} is a heteroclinic orbit, which connects (α, 0) and

the origin (0, 0).
Suppose to the contrary that Γ0 does not enter the origin as ξ → ∞ and possibly

does not even exist for all ξ ∈ R. Then, since

dv

du
= −c0 +

g(u)

v
> −c0 if 0 < u < α, v > 0,

Γ0 must leave the first quadrant in finite time, either through the u-axis or through
the v-axis. This means by continuity that for ε small enough Γε must also leave the
first quadrant in finite time. Since Γε is known to enter the origin for every ε > 0,
and hence never to leave the first quadrant, we have a contradiction. This proves the
claim that Γ0 is a heteroclinic orbit, which connects (α, 0) and (0, 0).

Remark 4.1. It is evident from Lemmas 4.6 and 4.7 that

(4.16) τ∗ ≥ τ0 =
1

4m0s(α)
,

where m0 was defined in (4.15). For M = 2, we find that s(α) ≈ 1.11, m0 ≈ 0.70 and
hence τ0 ≈ 0.32. Numerically, we find that τ∗ ≈ 0.61.

5. Proof of Theorems 1.2 and 1.3. For the proofs of Theorems 1.2 and 1.3
we turn to the system P(c, s) defined in section 4. For convenience we restate it here,

(5.1a)

(5.1b)
P(c, s)

{
u′ = v,

v′ = −cv + gs(u),
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where

c =
1√
sτ

and gs(u) = su− f(u).

Part (a) of Theorem 1.2 is readily seen to be a consequence of the following lemma.
Lemma 5.1. Let τ > τ∗ be given. Then for every u� ∈ (0, u), there exists a

unique heteroclinic orbit of the system P(c, s) in which

s = s� =
f(u�)

u�
and c = c� =

1
√
s�τ

,

which connects (0, 0) and (u�, 0).
Proof. Let Γ� and Γ denote the orbits of P(c�, s�) and P(c, s), where c = c(u)

and s = s(u), which enter the first quadrant from the origin. They do this under the
angles θ(c�, s�) and θ(c, s), respectively. Since c� > c and s� < s, it follows from (4.12)
that

θ(c�, s�) < θ(c, s).

Hence, near the origin, Γ� lies below Γ. Thus, Γ� enters the region Ω enclosed between
Γ and the u-axis. Since

dv

du

∣∣∣
Γ�

= −c� +
s�u− f(u)

v
< −c +

su− f(u)

v
=

dv

du

∣∣∣
Γ
,

it follows that Γ� cannot leave Ω though its “top” Γ. We define the following subsets
of the bottom of Ω:

S1 = {(u, v) : 0 < u < u�, v = 0},
S2 = {(u, v) : u = u�, v = 0},
S3 = {(u, v) : u� < u < u, v = 0}.

Inspection of the vector field show that orbits can only leave Ω through S3. Note that
the set S2 consists of an equilibrium point.

There are two possibilities: either Γ� never leaves Ω, or Γ� leaves Ω, necessarily
through the set S3. In the first case Γ� is a heteroclinic orbit from (0, 0) to (u�, 0),
and the proof is complete.

Thus, let us assume that Γ� leaves Ω at some point (u, v) = (u0, 0). Consider the
energy function

H(u, v) =
1

2
v2 −Gs�(u),

where Gs� is the primitive of gs� as defined in (4.7), and write H(ξ) = H(u(ξ), v(ξ)),
when (u(ξ), v(ξ)) is an orbit. Then differentiation shows that

H ′(ξ) = −c�v
2(ξ) < 0.

Since H(0, 0) = 0, it follows that

H(u0, 0) = −Gs�(u0) < 0
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and that

H(u(ξ), v(ξ)) =
1

2
v2 −Gs�(u) < −Gs�(u0) for ξ > ξ0.

This means that

Gs�(u) > Gs�(u0) > 0 for ξ > ξ0.

Let

u1 = inf{s ∈ R : Gs�(s) > Gs�(u0) on (s, u0)}.

Since Gs�(u0) > 0 it follows that u1 ∈ (0, u�). Therefore

0 < u1 < u(x) < u0

v2(x) < 2{Gs�(u�) −Gs�(u0)}

}
for x > x0.

From a simple energy argument we conclude that (u(x), v(x)) → (u�, 0) as x → ∞.
This completes the proof of Lemma 5.1.

Part (b) follows from the following result.
Lemma 5.2. Let τ > τ∗ be given. For any u� ∈ (u(τ), u(τ)) there exists no

solution of the system P(c�, s�), with

s� =
f(u�)

u�
and c� =

1
√
s�τ

,

which connects (0, 0) and (u�, 0).
Proof. Let Γ denote the orbit corresponding to c and s, which connects (0, 0) and

the point (u, 0), and let Γ� denote the orbit which corresponds to c� and s�. Observe
that

s� > s and c� < c,

and hence

θ(c�, s�) > θ(c, s).

Therefore, near the origin, Γ� lies above Γ. Hence, to reach the point (u�, 0), the orbit
Γ� has to cross Γ somewhere, and at the first point of crossing we must have

dv

du

∣∣∣
Γ
≥ dv

du

∣∣∣
Γ�

.

However, by the equations, we have

dv

du

∣∣∣
Γ

= −c +
gs(u)

u
< −c� +

gs�(u)

u
=

dv

du

∣∣∣
Γ�

,

so that we have a contradiction.
This completes the proof of Theorem 1.2.
The proof of Theorem 1.3 is entirely analogous to that of Theorem 1.2, and we

omit it.
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6. Entropy dissipation. In this section we study the Cauchy problem

(6.1a)

(6.1b)
(CP)

{
ut + (f(u))x = Aε(u) in S = R × R+,

u(·, 0) = u0(·) on R,

where

(6.2) Aε(u) = εuxx + ε2τuxxt (ε > 0).

With this choice (6.1a) becomes the regularized BL equation (1.17) for which we
obtained traveling wave solutions in the previous sections. In (6.1a) and (6.2) we
introduce subscripts to denote partial derivatives. Without further justification we
assume that problem (CP) has a smooth, nonnegative, and bounded solution uε for
each ε > 0, and that there exists a limit function u : S → [0,∞) such that for each
(x, t) ∈ S,

uε(x, t) → u(x, t) as ε → 0.

In addition we assume the following structural properties:
(i) ‖uε‖∞ < C for some constant C > 0, and for each fixed t > 0,

uε(x, t) → u� ∈ R+ as x → −∞,

uε(x, t) → ur ∈ R+ as x → +∞.

(ii) The partial derivatives of uε vanish as |x| → ∞.
(iii) Let U(s) = 1

2s
2 for s ≥ 0, U� = U(u�), and Ur = U(ur). Then there exists a

smooth function λε : [0,∞) → R which is uniformly bounded with respect to ε > 0
in any bounded interval (0, T ), such that∫

R

{U(uε(x, t)) −Gε(x, t)} dx = 0 for all t > 0,

where Gε is the step function

Gε(x, t) = U� + (Ur − U�)H(x− λε(t)), (x, t) ∈ S

in which H denotes the Heaviside function.
Note that the traveling waves constructed in this paper all have these properties.
Remark 6.1. The question as to which conditions on u0 would generate such a

solution is left open in this paper. Clearly we need that u0 : R → R satisfies (i)
and (ii), and U(u0) −G ∈ L1(R). Further we require that u′

0 ∈ L2(R).
The main purpose of this section is to show that U(uε) is an entropy for (6.1a).

In doing so we borrow arguments and ideas of LeFloch [26]. For completeness we
recall some definitions. We say that the term Aε(u) is conservative if

(6.3) lim
ε→0+

∫
S

Aε(u
ε)ϕ = 0 for all ϕ ∈ C∞

0 (S)

and we say that Aε(u) is entropy dissipative (for an entropy U) if

(6.4) lim sup
ε→0+

∫
S

Aε(u
ε)U ′(uε)ϕ ≤ 0 for all ϕ ∈ C∞

0 (S), ϕ ≥ 0.

We establish the following theorem.
Theorem 6.1. Let uε be the solution of problem (CP), and let uε satisfy (i), (ii),

and (iii). Then, the regularization Aε(u) defined in (6.2) has the following properties:
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(a) Aε(u) is conservative.
(b) Aε(u) is entropy dissipative for the entropy U(u) = 1

2u
2.

Proof. Part (a). For any ϕ ∈ C∞
0 (S) we obtain after partial integration with

respect to x and t,∫
S

Aε(u
ε)ϕ = ε

∫
S

uεϕxx − ε2τ

∫
S

uεϕxxt → 0 as ε → 0.

Part (b). To simplify notation, we drop the superscript ε from uε. When we
multiply (6.1a) by u we obtain

(6.5) ∂tU(u) + ∂xF (u) = uAε(u) = εuuxx + ε2τuuxxt,

where

(6.6) F (u) =

∫ u

0

U ′(s)f ′(s) ds =

∫ u

0

sf ′(s) ds = uf(u) −
∫ u

0

f(s) ds.

An elementary computation shows that

εuuxx = εUxx − εu2
x,

ε2τuuxxt = ε2τ

(
Uxxt −

1

2
(u2

x)t − (uxut)x

)
.

Hence ∫
S

Aε(u)uϕ = ε

∫
S

Uϕxx − ε

∫
S

u2
xϕ

− ε2τ

∫
S

Uϕxxt +
1

2
ε2τ

∫
S

u2
xϕt + ε2τ

∫
S

utuxϕx.

(6.7)

Plainly

ε

∫
S

Uϕxx → 0 and ε2τ

∫
S

Uϕxxt → 0 as ε → 0.

Since ϕ ≥ 0, it remains to estimate the last two terms on the right-hand side of (6.7).
For this purpose we establish the following two estimates.
Lemma 6.1. Let T > 0, and let ST = R × (0, T ]. Then there exists a constant

C > 0 such that for all ε > 0,

(6.8) ε

∫
ST

u2
x ≤ C

and

(6.9) ε

∫
ST

u2
t ≤ C.

Proof of (6.8). We write (6.5) as

(6.10) ∂tU(u) + ∂xF (u) = εUxx − εu2
x + ε2τ

{
Uxxt −

1

2
(u2

x)t − (utux)x

}
.
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Using properties (i)–(iii) and writing F� = F (u�), Fr = F (ur), we find that

d

dt

∫
R

{U(x, t) −Gε(x, t)} dx− dλε

dt
(Ur − U�)

+ (Fr − F�) + ε

∫
R

u2
x +

1

2
ε2τ

d

dt

∫
R

u2
x ≤ 0,

or, when we integrate over (0, T )

−{λε(t) − λε(0)}(Ur − U�) + (Fr − F�)t + ε

∫
ST

u2
x +

1

2
ε2τ

∫
R

u2
x(t) ≤ 1

2
ε2τ

∫
R

(u′
0)

2,

from which (6.8) immediately follows.
Proof of (6.9). We multiply (6.1) by ut. This yields

(6.11) u2
t + (f(u))xut = utAε(u) = εutuxx + ε2τutuxxt.

Using the identities

utuxx = (uxut)x − 1

2
(u2

x)t and utuxxt = (uxtut)x − (uxt)
2,

we find that

u2
t +

ε

2
(u2

x)t ≤ −f ′(u)utux + ε(uxut)x + ε2τ(uxtut)x.

When we integrate over R and use Schwarz’s inequality and properties (i) and (ii),
we obtain ∫

R

u2
t +

ε

2

d

dt

∫
R

u2
x ≤ 1

2

∫
R

u2
t +

K2

2

∫
R

u2
x,

where K = max{|f ′(s)| : s > 0}. Hence, when we integrate over (0, t),∫
St

u2
t ≤ ε

∫
R

(u′
0)

2 + K2

∫
St

u2
x.

In view of the first estimate this establishes (6.9) and completes the proof of Lemma
6.1.

We now return to the proof of Theorem 6.1(b). For each ϕ ∈ C∞
0 (S) we choose

T > 0 so that suppϕ ⊂ ST . Then (6.8) implies that

(6.12) ε2

∫
ST

u2
xϕt ≤ ε2K1

∫
ST

u2
x ≤ εK1C with K1 = sup |ϕt|,

and (6.8) and (6.9) together imply that

(6.13) ε2

∫
ST

utuxϕx ≤ ε2K2

∫
ST

|ut||ux| ≤ εK2C with K2 = sup |ϕx|.

Using (6.12) and (6.13) in (6.7) we conclude that, writing u = uε again,

lim sup
ε↘0

∫
S

Aε(u
ε)uεϕ ≤ 0,
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which is what was claimed in Theorem 6.1.

It now follows from (6.5) that in the limit as ε → 0,

(6.14) ∂tU(u) + ∂xF (u) ≤ 0

holds in a weak or distributional sense. This shows that (U,F ) is an entropy pair for
(1.1).

The inequality in (6.14) indicates entropy dissipation. Across shocks {u�, ur} it
can be computed explicitly. Let

u(x, t) =

{
u� for x < st,

ur for x > st.

Then (6.14) implies that

−s(Ur − U�) + (Fr − F�) ≤ 0.

Hence the entropy dissipation is given by

(6.15) E(u�, ur)
def
= −s(Ur − U�) + (Fr − F�).

We conclude by observing that if u = u(η) is a traveling wave satisfying prob-
lem (TW), then (6.15) can be written as

(6.16) E(u�, ur) =

∫
R

{−s(U(u))′ + (F (u))′} dη.

Applying (6.6) and the definition of U gives

(6.17) E(u�, ur) =

∫
R

u

(
−s +

df

du

)
u′ dη =

∫ ur

u�

u

(
−s +

df

du

)
du.

Rewriting further

−s +
df

du
=

d

du

(
−s(u− u�) + f(u) − f(u�)

)
,

integrating (6.17) by parts, and using the Rankine–Hugoniot condition yields

E(u�, ur) =

∫ u�

ur

{f(u) − f(u�) − s(u− u�)} du.

In the special case when ur = 0 we have s = f(u�)/u� and thus

E(u�, 0) =

∫ u�

0

{f(u) − su} du.

Returning to the proof of Proposition 1.1 we observe that the integral is negative
provided u� < β. Thus this condition acts as an entropy condition in the sense that
E(u�, 0) < 0 only if u� < β.
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Abstract. In this paper, we study the convergence behavior of interpolants by smooth radial
basis functions to polynomial interpolants in R
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1. Introduction. One of the most important issues in many areas of applied
mathematics and applications is to construct an approximation to scattered data:
Given a set X of scattered points in Ω ⊂ R

d and values f |X of some underlying
function f , the goal is to find a function s : Ω → R

d such that s approximates
f in some sense. Radial basis functions (RBFs) provide well-established tools for
solving the scattered data approximation or interpolation problem. In addition, they
are becoming increasingly popular for the numerical solution of partial differential
equations.

A function φ : R
d → R is radial in the sense that φ(x) = Φ(|x|), where |x| :=

(x2
1 + · · · + x2

d)
1/2 stands for the usual Euclidean norm. The common choices of

φ can be divided into two groups, piecewise smooth such as the thin plate spline
φ(x) = |x|2 log |x| and infinitely smooth such as multiquadrics φ(x) = (|x|2 + λ2)1/2.
In this paper, we are interested in the infinitely smooth basis functions φ so that each
function φ can be expanded as

φ(x) = Φ(|x|) =

∞∑
n=0

cn|x|2n,

which actually means φ is analytic. An attractive feature of using an infinitely smooth
function is that it can provide spectral approximation order [10, 11, 13, 16, 17]. Typ-
ical examples of such basis functions are given as follows: For d ∈ N and λ > 0,

• φ(x) := (|x|2 + λ2)m−d/2, d odd, m− d/2 > 0, (multiquadrics),
• φ(x) := (|x|2 + λ2)m−d/2 log(|x|2 + λ2)1/2, m > d/2, d even, (‘shifted’ surface

splines).
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• φ(x) := (|x|2 + λ2)m−d/2, 0 < m < d/2, (inverse multiquadrics),

• φ(x) := e−|x|2/λ2

, (Gaussians),
These functions are considered as tempered distributions and have generalized Fourier
transforms of the form

(1.1) | · |2mφ̂ = F ∈ L∞(Rd), m ≥ 0,

where, indeed, the function F is nonnegative on R
d and positive at least on an open

subset of R
d. We will see in section 3 that it is an important ingredient for the conver-

gence of increasingly flat RBF interpolants to multivariate polynomial interpolants.
Further, the condition (1.1) is the major difference from the Bessel radial function φd

[5], which is defined by

(1.2) φd(x) :=
J d

2−1(|x|)
|x| d2−1

, d = 1, 2, . . . ,

where Jα denotes the first kind Bessel function of order α. The Fourier transform of
φd is proportional to a Dirac distribution, that is, φ̂d ≈ δ(| · | − 1) (see [7, p. 364]).

The RBFs can be scaled in such a way to be wider by a shape parameter ε > 0,
i.e., φε(x) := φ(εx). It has been observed independently during the last decades
that for smooth data, a very small value of ε gives very accurate results for both
interpolation problems and solving elliptic partial differential equations. For this, the
reader is referred to the recent papers [4, 8]; unfortunately, we have been unable to
locate it in any previous references. In this case, the basis function becomes very flat
and the condition number of the interpolation system grows rapidly.

In [3], Driscoll and Fornberg introduced a surprising observation that the limit
of an RBF interpolant often exists and takes the form of a polynomial. Later, Forn-
berg, Wright, and Larsson [6] and, in parallel, Schaback [14] proved that the limiting
RBF interpolant is a (multivariate) finite order polynomial interpolant, if it exists.
In particular, Schaback [14] showed that interpolation with scaled Gaussians always
converges to the de Boor–Ron polynomial interpolation when the Gaussian widths
increase. Subsequent to carrying out this study, we became aware of another recent
paper by Larsson and Fornberg [9]; they generated a matrix in (2.4) (hereafter, de-
noted by Bp,K with 0 ≤ p ≤ d and K ≥ 0) from the Taylor expansion of the given
RBF and proved that the nonsingularity of these matrices guarantees the convergence
of the RBF interpolation to a multivariate polynomial interpolation, if it exists, as
the shape parameter ε → 0. However, the nonsingularity of Bp,K is just conjectured
and yet to be proved. Thus, the first goal of this paper is to prove this conjecture.
Moreover, it is also observed in [9] that this convergence property holds for the com-
monly well known RBF interpolants, but some different behavior was seen for the
Bessel RBF; we will see it also in section 3. There needs to be a clear discussion on
the reason for the deviant behavior of the Bessel RBF interpolant. For this reason,
our next aim is to provide a detailed proof and conditions which address this issue.
The specific contribution of this study is given as follows:

• For any 0 ≤ p ≤ d and K ≥ 0, the matrix Bp,K is proved to be nonsingular for
all positive definite RBFs which satisfy the condition (1.1). It implies that
a positive definite RBF interpolant converges to a multivariate polynomial
interpolant, if it exists, as the shape parameter ε → 0. In fact, the existence of
the limiting interpolant is guaranteed when the set X is unisolvent. However,
if the set X is nonunisolvent, it is still an open problem to describe the
condition under which the limit exists.
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• We provide more detailed discussion on the difference between the commonly
used RBFs and the Bessel RBF. It is verified that the matrix Bp,K for the
Bessel RBF is singular (as is conjectured by Larsson and Fornberg in [9])
whenever K ≥ p + 2.

• The state-of-the-art studies on the limit of increasing flat RBF have consid-
ered the interpolation from the space span{φ(ε(x− xj)) : xj ∈ X} [8, 9, 14].
However, usually, when φ is conditionally positive definite of order m, some
suitable polynomial of degree m − 1 is added for the construction of inter-
polation. Thus, this study is concerned with RBF interpolation from the
augmented space span{φ(ε(x − xj)) : xj ∈ X} + Π<m. Specifically, the ma-
trix Bp,K is modified for conditionally positive definite RBFs of order m > 0
and proved to be nonsingular. Then, we show that the corresponding RBF
interpolant tends to a polynomial interpolant, if it exists, as the shape pa-
rameter ε → 0.

We use the following notation throughout this paper. For α, β ∈ Z
d
+ := {(γ1, . . . , γd) ∈

Z
d : γk ≥ 0}, we set α! := α1! · · ·αd!, |α|1 :=

∑d
k=1 αk, and αβ := αβ1

1 · · ·αβd

d . The
Fourier transform of f ∈ L1(R

d) is defined as

f̂(θ) :=

∫
Rd

f(t) exp(−iθ · t) dt.

Also, for a function f ∈ L1(R
d), we use the notation f∨ for the inverse Fourier

transform. The Fourier transform can be uniquely extended to the space of tempered
distributions on R

d. Let Π<K denote the space of d-variate algebraic polynomials of
degree < K on R

d and denote

(1.3) Kd := dim Π<K+1 =

(
K + d

d

)
.

2. Larsson and Fornberg’s conjectures. In this section, we revisit the work
of Larsson and Fornberg in [9] and introduce their conjectures. For this, the multi-
index definitions from [9] are introduced.

Definition 2.1. Let α =: (α1, . . . , αd) and β =: (β1, . . . , βd) be in Z
d
+. Then we

define the following terminologies:
(a) The multi-indices α, β are said to have the same parity if the components αj

and βj with j = 1, . . . , d have the same parity.
(b) The polynomial ordering of a sequence of multi-indices is determined in the

way that the index α comes before β if |α|1 < |β|1 or if |α|1 = |β|1, αj = βj,
j = 1, . . . , p, and αp+1 < βp+1.

Definition 2.2. Let IK , where K ≥ 0, be the polynomially ordered sequence of
all multi-indices α = (α1, . . . , αd) such that |α|1 ≤ K. For n ∈ N, IK(n) denotes the
nth multi-index in the sequence.

Definition 2.3. Let Ip,K , where 0 ≤ p ≤ d and K ≥ 0, be the polynomi-
ally ordered sequence of all multi-indices α = (α1, . . . , αd) with |α|1 ≤ K such that
α1, . . . , αp are odd numbers, the others are even numbers. For n ∈ N, Ip,K(n) denotes
the nth multi-index in the sequence.

Definition 2.4. Let Iα2n be the polynomially ordered set of all multi-indices β
such that |α + β|1 = 2n, and α and β have the same parity.

Let X = {xj : j = 1, . . . , N} and (K − 1)d < N ≤ Kd with Kd in (1.3). Let
p1, . . . , pN be N independent polynomials in Π<K+1. We say X is unisolvent with
respect to {pj : j = 1, . . . , N} if there is a unique linear combination

∑
βjpj(x)
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such that it interpolates the data over the point set X. If X is nonunisolvent with
respect to any choice of N linearly independent basis functions from Π<K+1, there
is a smallest integer M > K such that we can form a minimal nondegenerate set
{pj : j = 1, . . . , N} chosen from the basis in Π<M+1, that is,

det(pj(x�) : j, � = 1, . . . , N) �= 0.

Then the degree of the minimal nondegenerate basis is said to be M . With this
definition in hand, we introduce the relation between polynomial interpolation and
the distribution of the set X.

Proposition 2.5 (see [9]). Let X = {x1, . . . , xN} and (K − 1)d < N ≤ Kd

with Kd in (1.3). If X is unisolvent with respect to any set of N linearly independent
polynomials in Π<K+1, then

(I) if N = Kd, then there is a unique interpolating polynomial of degree K for
any given data on X;

(II) if N < Kd, then there is an interpolating polynomial of degree K for any
given data on X, for each choice of N linearly independent basis functions.

If X is nonunisolvent and the degree of the minimal nondegenerate basis is M , then
(III) there is an interpolating polynomial of degree M for any given data on X, for

each choice of a minimal nondegenerate basis.
Invoking that the RBFs φ considered in this paper are real analytic, the Taylor

expansion of φ(x− xj) = Φ(|x− xj |) with respect to |x− xj | is given as

(2.1) φ(x− xj) =

∞∑
n=0

cn|x− xj |2n.

Here, the coefficient of xα in the expansion of |x− xj |2n can be written by

|x− xj |2n
∣∣
xα =

∑
β∈Iα

2n

(−1)|α|1
n!

(α+β
2 )!

(α + β)!

α!β!
xβ
j .

For the proof of this identity, the reader is referred to [15]. Combining this with (2.1),
we see that the coefficient of xα in the expansion of φ(x− xj) is

(2.2) φ(x− xj)|xα =

∞∑
n=|�α+

−→
1

2 �|1

cn
∑

β∈Iα
2n

(−1)|α|1
n!

(α+β
2 )!

(α + β)!

α!β!
xβ
j ,

where
−→
1 = (1, . . . , 1) ∈ R

d and for any γ = (γ1, . . . , γd) ∈ Z
d
+, 	γ
 := (	γ1
, . . . , 	γd
)

with 	s
 the greatest integer less than or equal to s. Based on this expansion of φ,
we define the symmetric function Bn(α, β) by

(2.3) Bn(α, β) := cn(−1)|α|1
n!

(α+β
2 )!

(α + β)!

α!β!
, |α + β|1 = 2n,

where α, β ∈ Z
d
+ × Z

d
+ with the same parity. Then the conjectures suggested by

Larsson and Fornberg are given as follows.
Larsson–Fornberg’s Conjecture I. For 0 ≤ p ≤ d and 0 ≤ K, the matrices Bp,K ,

defined by

(2.4) Bp,K :=
(
Bn(α, β) : α, β ∈ Ip,K

)
,
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are nonsingular for all commonly known RBFs such as (inverse) multiquadrics and
Gaussians.

It is necessary to remark that in the above conjecture, the Bessel RBF is not
included. The following theorem is the main result of [9].

Theorem 2.6 (see [9]). Let X = {x1, . . . , xN} and (K − 1)d < N ≤ Kd with
Kd in (1.3). Assume that Larsson–Fornberg conjecture I holds. Then, we have the
following properties:

(a) If the set X is of type (I), then the limit of the RBF interpolant as the shape
parameter ε → 0 is the unique interpolating polynomial of degree K to the
given data.

(b) If the set X is of type (II), then the limit of the RBF interpolant as the shape
parameter ε → 0 is a polynomial of degree K that interpolates the given data.
The exact polynomial depends on the choice of RBF.

(c) If the set X is of type (III), then the limit of the RBF interpolant as the
shape parameter ε → 0, if the limit exists, is a polynomial of degree M that
interpolates the given data.

Remark. It has been proved by Schaback [14] that interpolation by scaled Gauss-
ians always converges to the de Boor–Ron polynomial interpolant when the Gaussian
widths increase. However, in the cases of multiquadrics and inverse multiquadrics,
there occur some cases where the interpolants diverge in the limit; for examples, see
[3] and [9]. Also, for the case of type (II), the reader is referred to the same papers
[3] and [9] for an example of different limit polynomials affected by different RBFs.

In [9, Example 2.4], there occurs a case where all commonly used RBFs except
the Bessel RBF have the same limit which is the unique interpolating polynomial; see
also section 3. Thus, it is conjectured that the expansion coefficients of the Bessel
RBF do not fulfill the nonsingularity condition of Bp,J in (2.4).

Larsson–Fornberg’s Conjecture II. All matrices Bp,K with K > 1 are singular for
the expansion coefficients of the Bessel radial basis function.

In the following section, we will prove that the Larsson–Fornberg conjectures are
true. Also, the difference between the commonly used RBFs and Bessel RBF will be
discussed. Furthermore, we extend Theorem 2.6 up to the case of RBF interpolation
from the augmented space span{φ(x − xj) : xj ∈ X} + Π<m, using conditionally
positive definite φ of order m ≥ 0.

3. The main results.

3.1. Positive definite function. We first prove that Larsson–Fornberg’s con-
jecture I is true for all positive definite functions whose Fourier transforms φ̂ satisfy
the condition (1.1).

Definition 3.1. Let φ : R
d → R be a continuous function and Ω ⊂ R

d. We
say that φ is conditionally positive definite of order m ∈ Z+ := {0, 1, . . . } if for
every finite set of pairwise distinct points X = {x1, . . . , xN} ⊂ Ω and for every
α = (α1, . . . , αN ) ∈ R

N \ 0 satisfying

(3.1)

N∑
j=1

αjp(xj) = 0, p ∈ Π<m,

the quadratic form

N∑
i=1

N∑
j=1

αiαjφ(xi − xj)
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is positive definite. A conditionally positive definite function of order 0 is called a
positive definite function.

Indeed, the condition (3.1) may seem a bit technical and hard to verify in practice.
However, the positive definiteness of continuous and absolutely integrable functions φ
is guaranteed when the Fourier transform φ̂ satisfies the condition (1.1) with m = 0.
We note in passing that this argument is a consequence of the simple identity

(3.2)
N∑
j=1

N∑
k=1

αjαkφ(xj − xk) =
1

(2π)d

∫
Rd

φ̂(θ)

∣∣∣∣∣∣
N∑
j=1

αje
ixj ·θ

∣∣∣∣∣∣
2

dθ

for any (α1, . . . , αN ) ∈ R
N \ 0 and the fact that the map θ �→

∑N
j=1 αje

ixj ·θ, θ ∈ R
d,

has zeros at most on a set of measure zero. This identity is also generalized to the
case of conditionally positive definite functions φ of order m > 0.

Suppose that a continuous function f : R
d → R is known only at a set of discrete

points X := {x1, . . . , xN} in Ω ⊂ R
d. A RBF interpolant to the data (xj , f(xj)),

j = 1, . . . , N , with a positive definite function φ(ε·) is given by

(3.3) s(x, ε) :=

N∑
j=1

ajφ(ε(x− xj)),

where the coefficients aj (j = 1, . . . , N) are obtained by solving the linear system

(3.4) s(xj , ε) = f(xj), j = 1, . . . , N.

Lemma 3.2. Let Bn(·, ·) be the symmetric function defined as in (2.3), and let
α, β ∈ Z

d
+ with the same parity and |α + β|1 = 2n. Then, we have

Bn(α, β) = (−1)|α|1
φ(α+β)(0)

α!β!
.

Proof. Since φ is radially symmetric, φ(· − xj) = φ(xj − ·). Taking the Taylor
expansion of φ(xj − ·) around xj yields the expression

φ(xj − x) =

∞∑
|α|1=0

φ(α)(xj)
(−x)α

α!

=
∞∑

|α|1=0

⎛
⎝ ∞∑

|β|1=0

φ(α+β)(0)
xβ
j

β!

⎞
⎠ (−x)α

α!

=

∞∑
|α|1=0

⎛
⎜⎝ ∞∑

n=|�α+
−→
1

2 �|1

∑
β∈Iα

2n

φ(α+β)(0)
xβ
j

β!

⎞
⎟⎠ (−x)α

α!
;

where the second identity is a consequence of the Taylor expansion of φ(α)(xj) around
the origin. Then the coefficient of xα in this expansion of φ(xj − x) is denoted by

(3.5) φ(x− xj)|xα =

∞∑
n=|�α+

−→
1

2 �|1

∑
β∈Iα

2n

(−1)|α|1
φ(α+β)(0)

α!β!
xβ
j .
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Comparing (3.5) with (2.2), we obtain that

Bn(α, β) = (−1)|α|1
φ(α+β)(0)

α!β!
,

where α, β ∈ Z
d
+ with the same parity and |α + β|1 = 2n.

The following lemma is useful for the proof of the nonsingularity of Bp,K .
Lemma 3.3. Let φ be a positive definite function, and assume that φ satisfies the

condition (1.1) with m = 0, i.e., the Fourier transform φ̂ ≥ 0 is positive on an open
set in R

d. For any integer K > 0, define the matrix Tφ by

(3.6) Tφ := Tφ,p,K :=

(
(−i)|α+β|1 φ

(α+β)(0)

α!β!
: α, β ∈ Ip,K

)
.

Then Tφ is positive definite, and so it is nonsingular.
Proof. Since α, β ∈ Ip,K , both have the same parity and |α + β|1 is always even.

It means that each entry of the matrix Tφ is real. Now, let γ := (γα : α ∈ Ip,K) be an
arbitrary nonzero vector. Then, the nonsingularity of Tφ is guaranteed by showing
that γTφγ

T > 0, i.e.,

(3.7) γTφγ
T =

∑
β∈Ip,K

∑
α∈Ip,K

γαγβ(−i)|α+β|1 φ
(α+β)(0)

α!β!
> 0.

It is easy to see the identity

(3.8)
∑

β∈Ip,K

∑
α∈Ip,K

γαγβ(−i)|α+β|1 φ
(α+β)(0)

α!β!
=

1

(2π)d

∫
Rd

φ̂(θ)

∣∣∣∣∣∣
∑

α∈Ip,K

γα
θα

α!

∣∣∣∣∣∣
2

dθ.

Since the Fourier transform φ̂ ≥ 0 is nonnegative on R
d and positive at least on an

open subset of R
d, the above term in (3.8) is positive, which completes the proof.

Remark. In fact, it is easy to check from the above proof that any symmetric
matrix built from Bn(·, ·) is positive definite and so are all symmetrically chosen
submatrices.

We now prove Larsson–Fornberg’s conjecture I.
Theorem 3.4. Let φ be a positive definite function and assume that φ satisfies

the condition (1.1) with m = 0, i.e., the Fourier transform φ̂ ≥ 0 is positive on
an open set in R

d. Then, for any integers p,K ≥ 0, the matrix Bp,K in (2.4) is
nonsingular.

Proof. Using the form of Bp,K in Lemma 3.2, we see that detTφ = cdetBp,K

with |c| = 1. Thus, by Lemma 3.3, we conclude that Bp,K is nonsingular.
As a conclusion, we can get the following results, which are actually restatements

of Theorem 2.6.
Theorem 3.5. Let X = {x1, . . . , xN} and (K − 1)d < N ≤ Kd with Kd in

(1.3). Assume that φ is a positive definite function and its Fourier transform φ̂ ≥ 0
is positive on an open set in R

d. Then, we have the following properties:
(a) If the set X is of type (I), then the limit of the RBF interpolant s(·, ε) as the

shape parameter ε → 0 is the unique interpolating polynomial of degree K to
the given data.
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Fig. 1. Scattered points X.

(b) If the set X is of type (II), then the limit of the RBF interpolant s(·, ε) as
the shape parameter ε → 0 is a polynomial of degree K that interpolates the
given data. The exact polynomial depends on the choice of RBFs.

(c) If the set X is of type (III), then the limit of the RBF interpolant s(·, ε) as
the shape parameter ε → 0, if the limit exists, is a polynomial of degree M
that interpolates the given data.

An interesting example was observed in [9, Example 2.4] wherein all the well
known RBF interpolants except the Bessel RBF (see (1.2)) interpolant have the same
limit (as ε → 0), which is the unique polynomial interpolant. We revisit this example
as follows.

Example 3.6. Let X = {( 1
10 ,

4
5 ), ( 1

5 ,
1
5 ), ( 3

10 , 1), ( 3
5 ,

1
2 ), ( 4

5 ,
3
5 )} be a set of six

points as in Figure 1 and f(xj) = δ0,j with j = 1, . . . , 6. These six points do not have
any particular pattern. Expanding φ(ε(xi −xj)) in powers of ε2, the RBF interpolant
s(x, ε) to the given data (xj , f(xj)) can be written in the form (see [6])

s(x, ε) =
ε2rp2r(x) + ε2r+2p2r+2(x) + . . .

ε2qc2q + ε2q+2c2q+2 + . . .
, r, q ∈ N,

where c2n, n = q, q + 1, . . . , are some constants and p2�(x), � = r, r + 1, . . . , are
polynomials of degree (at most) 2�. When r = q, the limit exists as ε → 0 and it
will be a polynomial of degree at most 2r. Based on this expansion we programmed
the limit of RBF interpolants and obtained the following results. For all the known
positive definite RBFs (e.g., inverse multiquadrics and Gaussians), the interpolants
converge to the same two-variable polynomial of degree 2, that is,

lim
ε→0

s(x, ε) =
1

28274
(−7711 − 81420x + 132915y + 82300x2 − 55450xy − 91550y2),

which is the unique polynomial interpolant to the given data. However, the Bessel
function interpolant converges to a third order polynomial

lim
ε→0

s(x, ε) =
1

1017250518
(−354545067 − 2047021330x + 4593056085y

+ 255438330x2 − 4166831700xy − 2554383300y2

− 310763000x3 + 1319845500x2y + 932289000xy2 − 439948500y3).
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It is known that the Bessel radial function φd, d > 1, is positive definite (see [5,
Theorem 3.1]). However, its Fourier transform is proportional to a Dirac distribution,

i.e., φ̂d ≈ δ(| · | − 1) (see [7, p. 364]), which does not satisfy the condition (1.1). As
far as we observed, this is the major difference between φd and the well known RBS.
In the next theorem, we prove Larsson–Fornberg’s conjecture II, that is, the matrix
Bp,K of φd is singular whenever p+ 2 ≤ K. It explains the deviant behavior of φd as
in Example 3.6.

Theorem 3.7. Let 0 ≤ p ≤ d and p + 2 ≤ K with p,K ∈ N. Then the matrix
Bp,K of the Bessel RBF φd is singular.

Proof. Recall the following Hankel transform on R
d (see [2, p. 53]):

(3.9) φd(x) =
1

(2π)d/2

∫
|θ|=1

eix·θdθ, x ∈ R
d.

Invoking the definition of Tφd
in (3.6), for an arbitrarily given γ = (γα : α ∈ Ip,K),

we get

γTφd
γT =

∑
β∈Ip,K

∑
α∈Ip,K

γαγβ(−i)|α+β|1 φ
(α+β)
d (0)

α!β!

=
1

(2π)d/2

∫
|θ|=1

∣∣∣∣∣∣
∑

α∈Ip,K

γα
θα

α!

∣∣∣∣∣∣
2

dθ ≥ 0,

which implies that all the eigenvalues of Tφd
are nonnegative real numbers. In fact,

since p + 2 ≤ K, we can choose γα with α ∈ Ip,K such that∣∣∣∣∣∣
∑

α∈Ip,K

γα
θα

α!

∣∣∣∣∣∣
2

=
∣∣∣θIp,K(1)[1 − (θ2

1 + · · · + θ2
d)]

∣∣∣2, θ =: (θ1, . . . , θd),

where Ip,K(1) is the first index in Ip,K . Then γTφd
γT becomes zero, which implies

that the matrix Tφd
is not positive definite but semipositive definite. It leads to

the conclusion that Tφd
has an eigenvalue of zero such that Tφd

is singular. Since
det(Tφd

) = cdet(Bp,K) with |c| = 1, Bp,K is singular.

3.2. Conditionally positive definite function. The RBF interpolant to the
data (xj , f(xj)), j = 1, . . . , N , with a conditionally positive definite function φ of
order m is given by

(3.10) s(x, ε) :=
N∑
j=1

ajφ(ε(x− xj)) +

(m−1)d∑
i=1

bipi(x),

where p1, . . . , p(m−1)d is a basis for the space Π<m. The coefficients aj (j = 1, . . . , N)
and bi (i = 1, . . . , (m − 1)d) are obtained by solving the linear system which can be
written in a matrix form as

(3.11)

(
A P
PT 0

)(
a

b

)
=

(
f

0

)
,

where A and P are the N × N and N × (m − 1)d matrices that have the elements
Aij = φ(ε(xi−xj)) and Pij = pj(xi), respectively. Further, a ∈ R

N and b ∈ R
(m−1)d
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are the vectors of coefficients of s(·, ε), and the components of f are the data f(xj),
j = 1, . . . , N . Here, for m > 0, we require X to have the nondegeneracy property for
Π<m, i.e.,

(3.12) q(xj) = 0, 1 ≤ j ≤ N for q ∈ Π<m implies q = 0.

The unique solution of the previous linear system is guaranteed when the function φ
is conditionally positive definite of order m [12].

Definition 3.8. Let Ip,m,K , where 0 ≤ p ≤ d and m,K ≥ 0, be the polynomially
ordered sequence of all multi-indices α = (α1, . . . , αd) with m ≤ |α|1 ≤ K such that
α1, . . . , αp are odd numbers, and the others are even numbers. For n ∈ N, Ip,m,K(n)
denotes the nth multi-index in the sequence.

Here and in what follows, assume that φ is conditionally positive definite of order
m ≥ 0. Recalling the Taylor expansion of φ, that is,

(3.13) φ(x− xj) =

∞∑
n=0

cn|x− xj |2n,

and using the symmetric function Bn(·, ·) in (2.3), let us define the matrix Bp,m,K

corresponding to the polynomially ordered sequence Ip,m,K by

(3.14) Bp,m,K :=
(
Bn(α, β) : α, β ∈ Ip,m,K

)
.

Then, we will show that the matrix Bp,m,K is nonsingular.
Theorem 3.9. Let φ satisfy the condition (1.1). Then, the matrix Bp,m,K is

nonsingular for any integers p,m,K > 0.
Proof. From Lemma 3.2, we find that

Bp,m,K =

(
(−1)|α|1

φ(α+β)(0)

α!β!
: α, β ∈ Ip,m,K

)
.

Thus, as in Theorem 3.4, it suffices to prove the nonsingularity of the matrix T
[m]
φ

defined by

T
[m]
φ := T

[m]
φ,p,K :=

(
(−i)|α+β|1 φ

(α+β)(0)

α!β!
: α, β ∈ Ip,m,K

)
.

For this, we show γT
[m]
φ γT > 0 for any nonzero vector γ := (γα : α ∈ Ip,m,K). Indeed,

we note that this is a consequence of the following relation:

γT
[m]
φ γT =

∑
β∈Ip,m,K

∑
α∈Ip,m,K

γαγβ(−i)|α+β|1 φ
(α+β)(0)

α!β!
(3.15)

=
1

(2π)d

∫
Rd

φ̂(θ)

∣∣∣∣∣∣
∑

α∈Ip,m,K

γα
θα

α!

∣∣∣∣∣∣
2

dθ.

Since | · |2mφ̂ = F ≥ 0 and φ is real analytic, we deduce that the function F decays
faster than any polynomial degree around ∞. Thus, the last integral in (3.15) makes
sense and is positive (see (1.1)). It completes the proof.

The following theorem treats the case of conditionally positive definiteness RBFs.
The proof will be given in section 4.
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Theorem 3.10. Let φ be a conditionally positive definite RBF of order m ≥ 0
with the condition (1.1). Let X = {x1, . . . , xN} and (K − 1)d < N ≤ Kd, where
Kd = dim Π<K+1 and m < K. Then, we have the following properties:

(a) If the set X is of type (I), then the limit of the RBF interpolant (3.10) as the
shape parameter ε → 0 is the unique interpolating polynomial of degree K to
the given data.

(b) If the set X is of type (II), then the limit of the RBF interpolant (3.10) as
the shape parameter ε → 0 is a polynomial of degree K that interpolates the
given data. The exact polynomial depends on the choice of RBF.

(c) If the set X is of type (III), then the limit of the RBF interpolant (3.10) as the
shape parameter ε → 0, if the limit exists, is a polynomial of degree 2K −m
that interpolates the given data.

Next, we introduce some examples of RBFs which satisfy the condition (1.1).
Example 3.11. Let the RBF φ be chosen to be one of the following:
(a) φ(x) := (|x|2 + λ2)m−d/2, m > d/2, m− d/2 �∈ 2Z (multiquadrics);
(b) φ(x) := (|x|2 +λ2)m−d/2 log(|x|2 +λ2)1/2, m > d/2, d even (“shifted” surface

splines);
(c) φ(x) := (|x|2 + λ2)m−d/2, 0 < m < d/2 (inverse multiquadrics);

(d) φ(x) := e−|x|2/λ2

(Gaussians);
where d ∈ N and λ > 0. In the sense of tempered distributions, the functions φ in
(a), (b), and (c) have generalized Fourier transforms of the form (see [7])

(3.16) φ̂(θ) = cm,λ,d|θ|−2mK̃m(|λθ|),

where cm,λ,d is a positive constant depending on m, λ and d, and where K̃ν(|t|) :=
|t|νKν(|t|) with Kν(|t|) the modified Bessel function of order ν. From [1], we find that

K̃ν(|t|) ∈ C2ν−1(Rd) ∩ C∞(Rd \ {0}),(3.17)

K̃ν(|t|) > 0, and K̃ν(|t|) ≈ e−|t|(1 + |t|(ν−1/2)).

In the case of the Gaussian RBF φ in (d), its Fourier transform is of the form

φ̂(θ) := c0e
−|θ|2/c21 , c0, c1 > 0.

4. A proof of Theorem 3.10. The general technique for the proofs is similar
to the method given in [9], although the interpolant has an additional polynomial
term associated with the order of conditionally positive definiteness of φ.

The RBF φ(ε·) can be written in even powers of |x| as follows:

(4.1) φε(x) := φ(εx) =

∞∑
j=0

cjε
2j |x|2j .

Then the entries of the interpolation matrix A = (φ(ε(xi − xj)) : xi, xj ∈ X) can
be expanded in even powers of ε as above. The coefficients aj , j = 1, . . . , N , and bi,
i = 1, . . . , (m−1)d in (3.10) are obtained by Cramer’s rule, and they must be rational
functions of ε2. That is, there exists an integer q such that we can write

(4.2) aj =: ε−2K
∞∑

n=−q

ε2naj,n, bi =: ε−2K
∞∑

n=−q

ε2nbi,n,
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where at least one of (aj,−q : j = 1, . . . , N) and (bj,−q : j = 1, . . . , (m−1)d) is a nonzero
vector. Now, for each n ≥ −q and β ∈ Z

d
+, the discrete moments of (a1,n, . . . , aN,n)T

are defined by

(4.3) σ[β]
n :=

N∑
j=1

aj,nx
β
j , n = −q,−q + 1, . . . .

Then, for the moments σ
[β]
n with |β|1 ≤ m − 1 and n ≥ −q, we have the following

estimate.

Lemma 4.1. Let β ∈ Z
d
+ with |β|1 ≤ m− 1. Then, σ

[β]
n = 0 for any n ≥ −q.

Proof. Multiplying by ε2n−2K by both sides of (4.3) and summing over n =
−q,−q + 1, . . . , we obtain from (4.2) that for any ε > 0

ε−2K
∞∑

n=−q

ε2nσ[β]
n = ε−2K

N∑
j=1

∞∑
n=−q

ε2naj,nx
β
j

=

N∑
j=1

ajx
β
j = 0,

where the last identity is a simple consequence of (3.11). Thus, from this relation, we

deduce the required result σ
[β]
n = 0 with n ≥ −q.

Let SN indicate an N -set of polynomially ordered multi-indices, i.e., #SN = N .
Define the matrix V by

V = (xβ
j : j = 1, . . . , N, β ∈ SN ).

Then from (4.3), we have

(4.4) sn = Van, n = −q,−q + 1, . . . ,

where sn := (σ
[β]
n : β ∈ SN )T and an := (aj,n : j = 1, . . . , N)T .

Recall that the RBF interpolant with a conditionally positive definite function φ
of order m is given by

(4.5) s(x, ε) :=
N∑
j=1

ajφ(ε(x− xj)) +

(m−1)d∑
i=1

bipi(x),

where p1, . . . , p(m−1)d is a basis for Π<m. Due to [9, page 123], we find that

(4.6)

N∑
j=1

ajφ(ε(x− xj)) = ε−2K
∞∑
s=0

ε2(−q+s)P−q+s(x)

with

(4.7) P−q+s(x) =
∑
α∈I2s

⎛
⎜⎝ s∑

n=|�α+
−→
1

2 �|1

cn
∑

β∈Iα
2n

(−1)|α|
n!

(α+β
2 )!

(α + β)!

α!β!
σ

[β]
−q+s−n

⎞
⎟⎠xα.
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Applying Lemma 4.1, we note that all the coefficients of xα with 2s−m+1 ≤ |α|1 ≤ 2s
become zero. It follows that

(4.8) deg(P−q+s) ≤ 2s−m.

Further, inserting (4.2) into (4.5), we obtain that

(4.9) s(x, ε) = ε−2K
∞∑
s=0

ε2(−q+s)(P−q+s(x) + Q−q+s(x)),

where

(4.10) Q−q+s(x) =

(m−1)d∑
i=1

bi,−q+spi(x).

Let C1 := {1, . . . , p} and Ci = {i1, . . . , ip : i < · · · < ip}, i = 2, . . . ,
(
d
p

)
, be distinct

subsets of {1, . . . , d}. Let τi be a permutation on {1, . . . , d} such that if ij ∈ Ci, then
τi(ij) = j ∈ C1.

Definition 4.2. We define Iip,m,K to be the ordered set of all multi-indices α =

(ατi(1), . . . , ατi(d)) ∈ Z
d
+ with m ≤ |α|1 ≤ K such that Iip,m,K(k) is a rearrangement

of the components of I1
p,m,K(k), where I1

p,m,K = Ip,m,K and Iip,m,K(k) indicates the

kth element in Iip,m,K .
The reader is referred to [9] for an example of such permutation. Now, from this

definition, we decompose the set Ĩm,K := {α ∈ Z
d
+ : m ≤ |α|1 ≤ K} into the disjoint

union of Iip,m,K ’s as follows:

Ĩm,K =
⋃
p,i

{
Iip,m,K : p = 0, . . . , d and i = 1, . . . ,

(
d

p

)}
.

For J ≥ m and 0 ≤ p ≤ d, let α ∈ Iip,m,J be chosen. We investigate the coefficient
of xα in P−q+s(x) (hereafter, denoted by P−q+s[α]) with 2s = J + |α|1. For this,
using the definition of Bn(·, ·) in (2.3), we rewrite the coefficient P−q+s[α] in (4.7) as
follows:

(4.11) P−q+s[α] =

s∑
n=|�α+

−→
1

2 �|1

∑
β∈Iα

2n

Bn(α, β)σ
[β]
−q+s−n.

Note that for any given n with |	α+
−→
1

2 
|1 ≤ n ≤ s, the index β in the second summation
of the right-hand side in (4.11) has the same parity as α ∈ Iip,m,J and satisfies |β|1 ≤ J
because |α + β|1 = 2n ≤ 2s. Also, due to Lemma 4.1, we can set |β|1 ≥ m. As a
consequence, since |α|1 = 2s − J and |α + β|1 = 2n, the set of all such indices β is
exactly the set Iip,m,J so that P−q+s[α] can be given as

(4.12) P−q+s[α] =
∑

β∈Ii
p,m,J

Bn(α, β)σ
[β]
−q+(J−|β|1)/2.

Next, in order to continue our argument, let us define the following two vectors:

sip,m,J := (σ
[β]
−q+n : β ∈ Iip,m,J , n = (J − |β|1)/2),

pi
p,m,J := (P−q+s[α] : α ∈ Iip,m,J , s = (J + |α|1)/2).
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Moreover, from the definition of B(·, ·) in (2.3), we see that Bn(α, β) is independent
of the permutation τi in Definition 4.2, that is,

Bp,m,J =
(
Bn(α, β) : α, β ∈ Iip,m,J

)
, i = 2, . . . ,

(
d

p

)
.

With the matrices from Definition 3.14 and the vectors defined above, we have a
sequence of systems of equations for the discrete moments,

(4.13) Bp,m,J sip,m,J = pi
p,m,J , i = 1, 2, . . . ,

(
d

p

)
, and J = m,m + 1, . . . ,

where p and J have the same parity. By the assumption on φ and Theorem 3.9, the
systems in (4.13) are nonsingular and we have a complete description of the relation
between the discrete moments and the polynomials P−q+s. From the coefficients of the
polynomials, the system in (4.13) can be solved directly for determining the moments
because Bp,m,J is nonsingular for 0 ≤ p ≤ d and J ≥ 0.

There is a range of ε-values for which we get a well defined interpolant s(x, ε)
in (4.5) to the data. If we relate this to the expansion (4.9), we get the following
conditions:

• PK + QK interpolates the data on the set X = {xj : j = 1, . . . , N},(4.14)

• Pj + Qj , j �= K interpolates 0 on the set X.

Note that if Pj +Qj , j �= K is of degree < m, then the nondegeneracy property (3.12)
of X on Π<m implies Pj + Qj = 0.

We now introduce two useful lemmas. First, recall that at least one of (aj,−q :
j = 1, . . . , N) and (bj,−q : j = 1, . . . , (m− 1)d) is a nonzero vector (see the line below
(4.2)). In practice, we will see that (aj,−q : j = 1, . . . , N) should be a nonzero vector.

Lemma 4.3. If aj,−q = 0 for j = 1, . . . , N , then bj,−q = 0 for j = 1, . . . , (m−1)d.
Proof. Assume that aj,−q = 0 for j = 1, . . . , N . It is clear from Lemma 4.1 that

P−q(x) in (4.7) is a zero polynomial. Since P−q +Q−q = Q−q interpolates 0 at X, the
nondegeneracy property (3.12) induces that the polynomial Q−q = 0. The definition
of Q−q in (4.10) leads to the conclusion that bj,−q = 0 with j = 1, . . . , (m− 1)d.

Lemma 4.4. Let {pj(x) : j = 0, . . . ,K} be a finite set of polynomials such that
p0 = 0 and pK �= 0, and denote k := max{� ≥ 0 : pj = 0, j = 0, . . . , �}. Suppose that

(i) pj = 0 or deg(pj) > K for any j = 0, . . . ,K − 1;
(ii) deg(pj) ≤ 2j − k − 1 for any j = k + 1, . . . ,K.

Then k = K − 1 (i.e., pj = 0 ∀j = 0, . . . ,K − 1) and deg(pK) ≤ K.
Proof. Suppose, contrary to our claim, that k < K−1. From (ii), deg(pk+1) ≤ k+

1 < K. Also, applying (i), we see that deg(pk+1) > K, which leads to a contradiction.
Thus, we conclude that k = K − 1 and by (ii), deg(pK) ≤ K.

Now we are ready to prove Theorem 3.10. We consider the case when the set X
is of type (I), i.e., #X = Kd, where Kd = dim Π<K+1 and K > m, and the set X
is unisolvent with respect to any basis for Π<K+1. Then, the relation (4.4) holds for
the basis {xα : α ∈ IK}. Also, due to the unisolvency of X, any polynomial of degree
≤ K that interpolates zero at N points must be identically zero.

Proof (a) of Theorem 3.10. Invoking the fact deg(P−q+s) ≤ 2s −m from (4.8),
the condition (4.14) shows that at least,

P−q+j + Q−q+j = 0 ∀j = 0, . . . ,

⌊
K + m

2

⌋
− 1.
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Let κ (≤ K−1) be a positive integer such that P−q+j+Q−q+j = 0 for any j = m, . . . , κ
and P−q+κ+1 + Q−q+κ+1 �= 0. Then

P−q+j [α] = 0 for j = m, . . . , κ, |α|1 ≥ m,

where P−q+j [α] is the coefficient of xα in P−q+j(x). From the systems (4.13), we
derive that for every J = m, . . . , κ,

(4.15) σ
[β]
−q+n = 0 ∀β ∈ Im,J and 2n = J − |β|1.

Substituting (4.15) into (4.7), we obtain that for every s ≥ κ + 1, deg(P−q+s) ≤
2s− κ− 1, i.e., deg(P−q+s +Q−q+s) ≤ 2s− κ− 1. By applying {P−q+j +Q−q+j}Kj=0

to Lemma 4.4, we have that P−q+j+Q−q+j = 0 for j = 0, . . . ,K−1 and deg(P−q+K +
Q−q+K) ≤ K. It clearly induces that deg(P−q+K) ≤ K and deg(P−q+j) ≤ m− 1 for
j = m, . . . ,K − 1, i.e.,

(4.16) P−q+j [α] = 0 for j = m, . . . ,K − 1, |α|1 ≥ m.

Now, we claim that

P−q+K + Q−q+K = PK + QK (i.e., q = 0).

Assume, on the contrary, that q > 0 so that P−q+K + Q−q+K �= PK + QK . Then,
P−q+K + Q−q+K interpolates zero on X and deg(P−q+K + Q−q+K) ≤ K. Hence,
P−q+K + Q−q+K = 0. Since deg(Q−q+K) < m we deduce that

P−q+K [α] = 0, |α|1 = m, . . . ,K.

Accordingly, together with (4.16), we solve the systems (4.13) for J = m, . . . ,K to
obtain

(4.17) σ
[β]
−q = 0, |β|1 = m, . . . ,K.

Combining (4.17) with Lemma 4.1 and (4.4), we obtain that aj,−q = 0 for j =
1, . . . , N . Further, Lemma 4.3 shows that bj,−q = 0 for j = 1, . . . , (m − 1)d, which
is impossible since not all of a′js and b′is are zeroes. Next, if q < 0, it follows from
(4.16) that PK [α] = 0 for any |α|1 ≥ m, i.e., degPK < m. Since degQK < m,
deg(PK + QK) < m. Since X is unisolvent with respect to any set of N linearly
independent polynomials in Π<K+1, this is contradictory to (4.14). Thus, we arrive
at the conclusion that q = 0 and the interpolant s(x, ε) in (4.9) becomes

s(x, ε) = PK(x) + QK(x) + ε2
∞∑
�=1

ε2(�−1)(PK+�(x) + QK+�(x)).

Unisolvency of X to Π<K+1 ensures that PK + QK is the unique polynomial inter-
polant to the data on X.

In the case of type (II), the set X is unisolvent but the number of points does not
coincide with the dimension of the polynomial space, i.e.,

(K − 1)d < N < Kd.

Thus, the condition that a polynomial p(x) of degree ≤ K interpolates zero on X
does not ensure p(x) to be identically zero any more, unless its degree is less than K.
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The technique for the proof of Theorem 3.10 (b) is almost the same as the method in
[9, Theorem 4.2]; hence it is only sketched here.

Lemma 4.5. Assume that deg(P−q+j) < m for j = 0, . . . ,K−1 and deg(P−q+K) ≤
K. Then P−q+K is a linear combination of N linearly independent polynomials of de-
gree ≤ K.

Proof. This lemma is immediate by applying the same analysis in the proof of
[9, Theorem 4.2]. The only difference is that the matrix Bp,K in [9, Theorem 4.2]
is replaced by Bp,m,K to consider the conditionally positive definite RBF φ of or-
der m.

Proof (b) of Theorem 3.10. By applying {P−q+j +Q−q+j}K−1
j=0 to Lemma 4.4, we

obtain that deg(P−q+K−1) ≤ K − 1 and deg(P−q+j) ≤ m − 1 for j = m, . . . ,K − 2,
i.e.,

(4.18) P−q+j [α] = 0 for j = m, . . . ,K − 2, |α|1 ≥ m.

By unisolvency, we have that P−q+K−1 + Q−q+K−1 = 0. The systems (4.13) with
m ≤ J ≤ K − 1 yield that

(4.19) σ
[β]
−q+n = 0 ∀β ∈ Im,J and 2n = J − |β|1.

Then, by substituting (4.19) into (4.7) with s = K, we show that deg(P−q+K) ≤ K.
Now we are in a position to get P−q+K +Q−q+K = PK +QK , i.e., q = 0. If q < 0,

by the same method as in the proof of Theorem 3.10 (a), we can induce a contradiction.
Suppose that q > 0 such that P−q+K +Q−q+K �= PK +QK . Then, P−q+K +Q−q+K

is a polynomial of degree ≤ K which interpolates zero on X. Using Lemma 4.5,
we find that P−q+K + Q−q+K = 0. It implies that all the coefficients of xα with
|α|1 ≥ m in P−q+i are zero for every i ≤ K because deg(Q−q+K) ≤ m− 1. Applying

(4.13) for m ≤ J ≤ K, we obtain that σ
[β]
−q = 0 for m ≤ |β|1 ≤ K. Combining this

with Lemma 4.1 and (4.4), it follows from Lemma 4.3 that aj,−q = b�,−q = 0, for
j = 1, . . . , N and � = 1, . . . , (m − 1)d, which is a contradiction to the fact that not
all of a′js and b′is are zeroes. Thus, we must have q = 0. Hence, as ε → 0, the RBF
interpolant converges to the polynomial PK + QK .

Proof (c) of Theorem 3.10. In this case, in order that the limit exists as ε → ∞,
the interpolant s(x, ε) in (4.9) must be expressed as

s(x, ε) = PK(x) + QK(x) + ε2(PK+1(x) + QK+1(x)) + · · · .

Then, the limit is PK(x)+QK(x) and by Lemma 4.1, deg(PK +QK) ≤ 2K−m.

Acknowledgment. We are grateful to the anonymous referees for their many
valuable corrections and suggestions.

REFERENCES

[1] M. Abramowitz and I. A. Stegun, A Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics
Series 55, U.S. Government Printing Office, Washington, D.C., 1964.

[2] M. D. Buhmann, Radial Basis Functions: Theory and Implementations, in Cambridge Mono-
graphs on Applied and Computational Mathematics 12, Cambridge University Press, Cam-
bridge, UK, 2003.

[3] T. A. Driscoll and B. Fornberg, Interpolation in the limit of increasingly flat radial basis
functions, Comput. Math. Appl., 43 (2002), pp. 413–422.



CONVERGENCE OF INCREASINGLY FLAT RBF INTERPOLATION 553

[4] B. Fornberg and G. Wright, Stable computation of multiquadric interpolation for all values
of the shape parameter, Comput. Math. Appl., 48 (2004), pp. 853–867.

[5] B. Fornberg, E. Larsson, and G. Wright, A new class of oscillatory radial basis function,
Comput. Math. Appl., 51 (2006), pp. 1209–1222.

[6] B. Fornberg, G. Wright, and E. Larsson, Some observations regarding interpolants in the
limit of flat radial basis functions, Comput. Math. Appl., 47 (2004), pp. 37–55.

[7] I. M. Gelfand and G. E. Shilov, Generalized Functions, Vol. 1, Properties and Operations,
Academic Press, NY, 1964.

[8] E. Larsson and B. Fornberg, A numerical study of some radial basis function based solution
methods for elliptic PDEs, Comput. Math. Appl., 46 (2003), pp. 891–902.

[9] E. Larsson and B. Fornberg, Theoretical and computational aspects of multivariate inter-
polation with increasingly flat radial basis functions, Comput. Math. Appl., 49 (2005), pp.
103–130.

[10] W. R. Madych and S. A. Nelson, Multivariate interpolation and conditionally positive defi-
nite functions, II, Math. Comp., 54 (1990), pp. 211–230.

[11] W. R. Madych and S. A. Nelson, Bounds on multivariate polynomials and exponential error
estimates for multiquadric interpolation, J. Approx. Theory, 70 (1992), pp. 94–114.

[12] C. A. Micchelli, Interpolation of scattered data: Distances matrices and conditionally positive
functions, Constr. Approx., 2 (1986), pp. 11–22.

[13] M. J. D. Powell, The theory of radial basis function approximation in 1990, in Advances in
Numerical Analysis, Vol. II: Wavelets, Subdivision Algorithms and Radial Basis Functions,
W. A. Light, ed., Oxford University Press, New York, 1992, pp. 105–210.

[14] R. Schaback, Multivariate interpolation by polynomials and radial basis functions, Constr.
Approx., 21 (2005), pp. 293–317.

[15] R. Schaback, Limit problems for interpolation by analytic radial basis functions, J. Comp.
Appl. Math., (2006), to appear.

[16] Z.-M. Wu and R. Schaback, Local error estimates for radial basis function interpolation of
scattered data, IMA J. Numer. Anal., 13 (1993), pp. 13–27.

[17] J. Yoon, Spectral approximation orders of radial basis function interpolation on the Sobolev
space, SIAM J. Math. Anal., 33 (2001), pp. 946–958.



SIAM J. MATH. ANAL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 39, No. 2, pp. 554–564

EXTENDING THE RANGE OF ERROR ESTIMATES FOR RADIAL
APPROXIMATION IN EUCLIDEAN SPACE AND ON SPHERES∗
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Abstract. We adapt Schaback’s error doubling trick [R. Schaback, Math. Comp., 68 (1999),
pp. 201–216] to give error estimates for radial interpolation of functions with smoothness lying (in
some sense) between that of the usual native space and the subspace with double the smoothness.
We do this for both bounded subsets of R

d and spheres. As a step on the way to our ultimate goal
we also show convergence of pseudoderivatives of the interpolation error.
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1. Introduction. In this paper we are interested in extending the range of ap-
plicability of error estimates for radial basis function interpolation in Euclidean space
and on spheres. Let Ω be a subset of R

d, or the sphere. Let d(x, y) denote the dis-
tance between two points in Ω. Let Y ⊂ Ω be a finite set of points, and measure the
fill-distance of Y in Ω with

h(Y,Ω) := sup
x∈Ω

min
y∈Y

d(x, y).

Given a univariate function φ defined on either R+ or [0, π], depending on whether
we are in Euclidean space or on the sphere, we form an approximation

SY
φ (x) =

∑
y∈Y

αyφ(d(x, y)).

If the coefficients αy, y ∈ Y , are determined by the interpolation conditions

SY
φ (y) = f(y) for y ∈ Y ,

we refer to SY
φ as the φ-spline interpolant to f on Y .

We will be approximating functions f ∈ Hφ, a Hilbert space of functions which
depends on the function φ—the so-called native space. Later we will be more explicit
about this space of functions. With this Hilbert space we have an inner product
〈 · , · 〉φ, with associated norm ‖ · ‖φ. We will require the following useful orthogonality
and consequent Pythagorean property; see, e.g., [11, 13].

Proposition 1.1. Let SY
φ be the φ-spline interpolant to f on the point set Y ⊂ Ω.

Then, for all f ∈ Hφ,
1. 〈f − SY

φ , SY
φ 〉φ = 0;

2. ‖f‖2
φ = ‖f − SY

φ ‖2
φ + ‖SY

φ ‖2
φ.
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The usual error estimate for φ-spline interpolants is of the form

|f(x) − SY
φ (x)| ≤ P (x, Y, φ)‖f − SY

φ ‖φ,

where estimation of P (x, Y, φ)—the so-called power function—leads to error estimates
for interpolation in terms of the fill-distance h(Y,Ω). For the archetypal function in
Hφ we can say no more than ‖f − SY

φ ‖φ → 0 as h(Y,Ω) → 0. However, if f has
double the smoothness (in some sense to be made clear later) of the typical function,
then Schaback [19] has shown how to double the convergence order of the φ-spline
interpolant.

We show how to get improved orders of convergence when the target function, f ,
has less smoothness than Schaback requires, but more smoothness than the typical
function. We shall be doing this on the sphere (though this can easily be generalized to
other two-point homogeneous spaces) in section 2 and in Sobolev spaces on Euclidean
space in section 3. An intermediate result in both cases is to prove approximation
orders for pseudoderivatives of the interpolant. We will define this notation at the
appropriate place in each of the following sections.

In each case we shall be concerned with the practical scenario in which Y consists
of a finite number of points. Forfeiting this assumption is of theoretical interest. In
particular, in Euclidean space for (perturbed) gridded data, certain improved error
estimates are already known to hold for functions within the native space itself (see,
e.g., [4]).

The goal in this paper is quite different from the desire to establish error estimates
for functions possessing insufficient smoothness for admittance in the native space. In
recent years, contributions in that direction have been provided by several authors,
e.g., [16, 17, 12] for the sphere and [23, 3, 18] for the Euclidean case.

2. The sphere. Let Sd = {x ∈ R
d+1 : |x| = 1}. Then the geodesic distance

between points x, y ∈ Sd is d(x, y) = cos−1 xy, where xy denotes the usual inner
product of vectors in R

d+1. We let ν denote the normalized rotationally invariant
measure on the sphere and define the inner product

〈f, g〉L2(Sd) :=

∫
Sd

f(x)g(x) dν(x).

Let ‖ · ‖L2(Sd) := 〈 · , · 〉1/2
L2(Sd)

, and let L2(S
d) denote the set of functions for which

‖ · ‖L2(Sd) < ∞. Let Pn be the polynomials of degree n in R
d+1 restricted to the

sphere, and let Hn = Pn ∩ P⊥
n be the space of degree n spherical harmonics. Then,

L2(S
d) has the decomposition

L2(S
d) =

⊕
n≥0

Hn.

Let Y n
1 , . . . , Y n

dn
be an orthonormal basis for Hn.

Related to Sd (we will see why shortly), we have the Gegenbauer polynomials

C
(λ)
n (t) which are orthogonal on [−1, 1] with respect to the weight (1− t2)λ−1/2. It is

well known (Müller [15], for instance) that the following addition formula holds:

C(λ)
n (xy) =

dn∑
j=1

Y n
j (x)Y n

j (y),
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with λ = d/2−1. The normalization of the Gegenbauer polynomials is chosen so that

there is no constant in the addition theorem. It is straightforward to see that C
(λ)
n is

the kernel of Tn, the orthogonal projector from L2(S
d) onto Hn. Thus,

(Tnf)(x) =

∫
Sd

f(y)C(λ)
n (xy) dν(y) for all f ∈ L2(S

d).

The following lemma is a specialization of a result in [11] to the sphere.

Lemma 2.1. For n ≥ 0,

‖Tnf‖L∞(Sd) ≤
√
dn‖Tnf‖L2(Sd) for all f ∈ L2(S

d).

We will be considering interpolation using kernels of the form φ(d(x, y)), where
φ : [0, π] → R. We will assume that the function φ has an expansion

φ(d(x, y)) =
∑
n≥0

anC
(λ)
n (xy),

where an > 0, for n = 0, 1, . . . , and

∑
n≥0

dnan < ∞.

The first condition ensures that φ is positive definite, and the second that it is con-
tinuous. Our analysis will take place in the native space for φ, Hφ, defined by

Hφ :=

⎧⎪⎨
⎪⎩f ∈ L2(S

d) : ‖f‖φ :=

⎛
⎝∑

n≥0

a−1
n ‖Tnf‖2

L2(Sd)

⎞
⎠

1
2

< ∞

⎫⎪⎬
⎪⎭ .

A pseudodifferential operator Λ on Sd is an operator which acts via multiplication
by a constant on each eigenspace Hn:

Λpn = λnpn, pn ∈ Hn, n = 0, 1, . . . .

For more information on pseudodifferential operators on spheres, see, e.g., [9, 20].
We call the sequence of numbers {λn}n≥0 the symbol of Λ. Let δx denote the point
evaluation functional at x, and, when it makes sense for the functional μ, let Λμ(f) =
μ(Λf). Let us denote by Y ∗ the span of the point evaluation functionals supported
on Y . Morton and Neamtu [14] give error estimates for the collocation solution of
pseudodifferential equations on spheres. Here we attempt, initially, to find errors in
pseudoderivatives of solutions to the interpolation problem.

Proposition 2.2. Let SY
φ be the φ-spline interpolant to f ∈ Hφ on the point set

Y ⊂ Sd. Let Λ be a pseudodifferential operator. Then, for each x ∈ Sd,

|Λ(f − SY
φ )(x)| ≤ inf

μ∈Y ∗
sup
v∈Hφ

‖v‖φ=1

|Λv(x) − μ(v)|‖f − SY
φ ‖φ.
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Proof. Since f(y) − Sφ(y) = 0, y ∈ Y , we have, for any coefficients cy, y ∈ Y ,

|Λ(f − SY
φ )(x)| =

∣∣∣∣Λ(f − SY
φ )(x) −

∑
y∈Y

cy(f(y) − SY
φ (y))

∣∣∣∣
=

∣∣∣∣Λ(f − SY
φ )(x) −

∑
y∈Y

cy(f(y) − SY
φ (y))

∣∣∣∣‖f − SY
φ ‖φ

‖f − SY
φ ‖φ

≤ sup
v∈Hφ

‖v‖φ=1

∣∣∣∣Λv(x) −
∑
y∈Y

cyv(y)

∣∣∣∣‖f − SY
φ ‖φ.

We now take the infimum over all functionals in Y ∗ to obtain the result.
In what follows we will need the pseudodifferential operator Λ to satisfy the

following assumption.
Assumption 2.3. For all n ≥ 0, λn = (n(d + n− 2))s, for some s > 0.

From Ditzian [6], if Λ satisfies Assumption 2.3, then for p ∈ Pn,

‖Λp‖L∞(Sd) ≤ Eλn‖p‖L∞(Sd),

for some E independent of n.
From [10, Lemma 7] we have the following result.
Lemma 2.4. Let Y be a finite set of points with fill-distance h(Y, Sd) ≤ 1/(2N),

for some fixed N ∈ Z+. Then, for any linear functional γ on PN with

sup
p∈PN

‖p‖
L∞(Sd)

=1

|γp| ≤ 1,

there is a set of real numbers {by}y∈Y , with
∑

y∈Y |by| ≤ 2, such that

γp =
∑
y∈Y

byp(y) for all p ∈ PN .

Now, for a fixed x ∈ Sd, let

γp =
Λp(x)

EλN
for all p ∈ PN .

Then,

sup
0 �=p∈PN

|γp|
‖p‖L∞(Sd)

≤ 1,

so that, by the previous lemma, there is a set of coefficients {by}y∈Y such that

γp =
∑
y∈Y

byp(y),

with
∑

y∈Y |by| ≤ 2. Thus, with cy = EλNby, for y ∈ Y , we have

(2.1) Λp(x) =
∑
y∈Y

cyp(y) for all p ∈ PN ,
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where

(2.2)
∑
y∈Y

|cy| ≤ 2EλN .

We now arrive at the first main result of this section.
Theorem 2.5. Let SY

φ be the φ-spline interpolant to f ∈ Hφ, on the point set Y ⊂
Sd, where h(Y, Sd) ≤ 1/(2N), for some fixed N ∈ Z+. Let Λ be a pseudodifferential
operator with symbol {λn}n≥0 satisfying Assumption 2.3 and∑

n≥0

dnλ
2
nan < ∞.

Then, for x ∈ Sd,

|Λ(f − SY
φ )(x)| ≤ (1 + 2E)

⎛
⎝∑

n≥N

dnλ
2
nan

⎞
⎠

1
2

‖f − SY
φ ‖φ.

Proof. Let us choose {cy}y∈Y to be the coefficients described above. Let v ∈ Hφ

with ‖v‖φ = 1. Then,

inf
μ∈Y ∗

|Λv(x) − μ(v)| ≤

∣∣∣∣∣∣
∑
n≥0

⎛
⎝ΛTnv(x) −

∑
y∈Y

cyTnv(y)

⎞
⎠
∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑
n>N

⎛
⎝λnTnv(x) −

∑
y∈Y

cyTnv(y)

⎞
⎠
∣∣∣∣∣∣ ,

by (2.1). Thus,

inf
μ∈Y ∗

|Λv(x) − μ(v)| ≤
∣∣∣∣∣
∑
n>N

λnTnv(x)

∣∣∣∣∣ +

∣∣∣∣∣∣
∑
n>N

∑
y∈Y

cyTnv(y)

∣∣∣∣∣∣
≤

∑
n>N

⎛
⎝λn +

∑
y∈Y

|cy|

⎞
⎠ ‖Tnv‖L∞(Sd)

≤
∑
n>N

⎛
⎝λn +

∑
y∈Y

|cy|

⎞
⎠√

dn‖Tnv‖L2(Sd),

using Lemma 2.1. Hence, using (2.2) and the Cauchy–Schwarz inequality,

inf
μ∈Y ∗

|Λv(x) − μ(v)| ≤

⎡
⎣(∑

n>N

dnλ
2
nan

) 1
2

+ 2EλN

(∑
n>N

dnan

) 1
2

⎤
⎦ ‖v‖φ,

and the result follows from Proposition 2.2, since ‖v‖φ = 1 and because {λn}n≥0 is
an increasing sequence.
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Integrating the conclusion of the previous theorem over the sphere, we easily
obtain the following result.

Corollary 2.6. Under the hypotheses of Theorem 2.5,

‖Λ(f − SY
φ )‖L2(Sd) ≤ (1 + 2E)

(∑
n>N

dnλ
2
nan

) 1
2

‖f − SY
φ ‖φ.

Before we give our improved error estimate we need to define a new space HΛφ

by

HΛφ :=

⎧⎪⎨
⎪⎩f ∈ Hφ : ‖f‖Λφ :=

⎛
⎝∑

n≥0

(λnan)−2‖Tnf‖2
L2(Sd)

⎞
⎠

1
2

< ∞

⎫⎪⎬
⎪⎭ .

Theorem 2.7. Let SY
φ be the φ-spline interpolant to f ∈ Hφ on the point set Y ⊂

Sd, where h(Y, Sd) ≤ 1/(2N), for some fixed N ∈ Z+. Let Λ be a pseudodifferential
operator with symbol {λn}n≥0 satisfying Assumption 2.3 and∑

n≥0

dnλ
2
nan < ∞.

Then, for f ∈ HΛφ and for all x ∈ Sd,

|f(x) − SY
φ (x)| ≤ (1 + 2E)

(∑
n>N

dnλ
2
nan

) 1
2
(∑

n>N

dnan

) 1
2

‖f‖Λφ.

Proof. First, using Proposition 1.1 and the Cauchy–Schwarz inequality, we have

‖f − SY
φ ‖2

φ = 〈f − SY
φ , f〉φ

=
∑
n≥0

a−1
n 〈Tn(f − SY

φ ), Tnf〉L2(Sd)

≤

⎛
⎝∑

n≥0

λ2
n‖Tn(f − SY

φ )‖2
L2(Sd)

⎞
⎠

1
2
⎛
⎝∑

n≥0

(λnan)−2‖Tnf‖2
L2(Sd)

⎞
⎠

1
2

= ‖Λ(f − SY
φ )‖L2(Sd)‖f‖Λφ

≤ (1 + 2E)

(∑
n>N

dnλ
2
nan

) 1
2

‖f − SY
φ ‖φ‖f‖Λφ,

using Corollary 2.6. Cancelling a factor of ‖f − SY
φ ‖φ from both sides yields

‖f − SY
φ ‖φ ≤ (1 + 2E)

(∑
n>N

dnλ
2
nan

) 1
2

‖f‖Λφ.

We can now employ the standard error estimate taken from Jetter, Stöckler, and
Ward [10] (our Theorem 2.5 with λn = 1 for all n) to give the required result.
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3. The Euclidean case. Our attention now turns to φ-spline interpolants of
the form

SY
φ (x) =

∑
y∈Y

αyφ(|x− y|),

where φ : R+ → R. We will conduct our analysis for positive definite basis functions
φ ∈ L1(R

d) whose Fourier transforms satisfy, for some s > 0,

(3.1) C1(1 + |x|)−2s ≤ φ̂(x) ≤ C2(1 + |x|)−2s,

for some positive constants C1 and C2, for example, the Sobolev splines [7] or piecewise
polynomial compactly supported radial functions of minimal degree [21]. The expo-
sition contained in this section can be readily adapted to include the polyharmonic
splines [8] as well. In that case, the φ-spline interpolant must be augmented by a
polynomial p with the extra degrees of freedom taken up by the side conditions∑

y∈Y

αyq(y) = 0,

where q is polynomial of the same degree (or less) as p.
For a domain Ω ⊂ R

d let L2(Ω) denote the usual space of square-integrable
functions on Ω with inner product 〈 · , · 〉L2(Ω) and norm ‖ · ‖L2(Ω). For k ∈ Z+, the
integer-order Sobolev space is defined by

Hk :=

{
f ∈ L2(R

d) : Dαf ∈ L2(R
d) for all |α| ≤ k

}
,

with Dα understood in the distributional sense, which carries the inner product

〈f, g〉k := 〈f, g〉L2(Rd) + (f, g)k,

where (f, g)k denotes the Sobolev semi-inner product

(f, g)k :=
∑
|α|=k

c(k)
α

∫
Rd

(Dαf)(x)(Dαg)(x) dx,

with associated seminorm | · |k := ( · , · )1/2k . The coefficients c
(k)
α have been chosen so

that ∑
|α|=k

c(k)
α x2α = |x|2k.

We can write the seminorm, using the Fourier transform, in the alternative form

|f |2k =

∫
Rd

|f̂(x)|2|x|2k dx,

which facilitates the definition of fractional-order Sobolev space, Hs, for s > 0, which
has the seminorm

(3.2) |f |2s :=

∫
Rd

|f̂(x)|2|x|2s dx.
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The space Hs is complete with respect to

‖f‖s :=

⎧⎪⎪⎨
⎪⎪⎩

(
‖f‖2

L2(Rd) + |f |2s
) 1

2

if s ∈ Z+,

(
‖f‖2

	s
 + |f |2s
) 1

2

otherwise,

and, whenever we have s > d/2, Hs is continuously embedded in the continuous
functions. The native space for φ satisfying (3.1) is equivalent to Hs.

We now wish to make local definitions of our function spaces, which we shall
denote by Hs(Ω). For s ∈ Z+ the definition should be is clear. In what follows we
also need the local fractional-order Sobolev spaces:

Hs(Ω) :=

{
f ∈ H	s
(Ω) : ‖f‖s,Ω :=

(
‖f‖2

	s
,Ω + |f |2s,Ω
) 1

2

< ∞
}
,

where |f |s,Ω is the local fractional-order Sobolev seminorm obtained by rewriting (3.2)
in an equivalent direct form, i.e., not defined through the Fourier transform of f (see,
e.g., Adams [1, p. 214]). For our analysis we find it more useful to exploit an equivalent
wavelet representation for the local Sobolev norm [5].

To introduce this equivalent norm we stipulate that the bounded domain, Ω,
admits a local multiresolution of closed subspaces {Vn(Ω)}n≥0 of L2(Ω):

V0(Ω) ⊂ V1(Ω) ⊂ · · · ⊂ L2(Ω),
⋃
n≥0

Vn(Ω) = L2(Ω).

Cohen, Dahmen, and DeVore [5] give sufficient conditions on Ω to admit such a local
multiresolution. In particular, for d = 2, those domains whose boundaries have certain
piecewise Lipschitz smoothness are admissible. The following is an incidence of [5,
Theorem 4.2].

Theorem 3.1. Suppose that Ω ⊂ R
d is a bounded domain that admits a lo-

cal multiresolution {Vn(Ω)}n≥0 for L2(Ω). For n ≥ 0, let QΩ
n denote the orthogo-

nal projection from L2(Ω) onto Wn(Ω) = Vn(Ω) � Vn−1(Ω) with the convention that
V−1(Ω) = {0}. For each s ≥ 0, let Λs be the pseudodifferential operator on Ω defined
via

Λs :=
∑
n≥0

2nsQΩ
n .

Then there exist positive constants C1 and C2 such that, for all f ∈ Hs(Ω),

C1‖Λsf‖L2(Ω) ≤ ‖f‖s,Ω ≤ C2‖Λsf‖L2(Ω).

Now, let us return to the task at hand. For φ satisfying (3.1), we will denote the
φ-spline interpolant on the point set Y by SY

φ . The standard error estimate in this
context is

(3.3) |f(x) − SY
φ (x)| ≤ Chs−d/2‖f − SY

φ ‖s;

see [22]. If f is smoother (and satisfies some boundary conditions), we can get a better
rate of convergence.
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We will exploit the fact that Hμ(Ω), for 0 < μ < s, is an interpolation space lying
between L2(Ω) and Hs(Ω) (see Bergh and Löfström [2, p. 131]). We can then use the
standard interpolation theorem concerning the norms of operators bounded on the
extreme spaces to infer a bound on the norm for the interpolation space. For further
information on interpolation spaces the reader can consult, e.g., Bergh and Löfström
[2]. We use the following interpolation theorem.

Proposition 3.2. Let 0 < μ < s. Further suppose that T : Hs(Ω) → L2(Ω) and
that T : Hs(Ω) → Hs(Ω) is a bounded operator. Then,

‖T‖Hs(Ω)→Hμ(Ω) ≤ ‖T‖1−μ/s
Hs(Ω)→L2(Ω)‖T‖

μ/s
Hs(Ω)→Hs(Ω).

Since we can write the Hs-norm in entirely direct form, we are at liberty to uti-
lize Duchon’s localization technique [8] to enhance the standard error estimate (3.3).
Therefore, if Ω is bounded and satisfies an interior cone condition, then, for f ∈ Hs(Ω),
s > d/2, and sufficiently small h = h(Y,Ω),

‖f − SY
φ ‖L2(Ω) ≤ Chs‖f − SY

φ ‖s,Ω.

Writing Tf = f − SY
φ , we see, using the last proposition, that, for 0 < μ < s,

‖f − SY
φ ‖μ,Ω ≤ (Chs‖f − SY

φ ‖s,Ω)1−μ/s‖f − SY
φ ‖μ/ss,Ω

= Chs−μ‖f − SY
φ ‖s,Ω.(3.4)

We can now prove our main result of this section, which is a generalization of
that of Schaback [19].

Theorem 3.3. Suppose that Ω ⊂ R
d is bounded, satisfies an interior cone con-

dition, and admits a local multiresolution. Let s > d/2, and let SY
φ be the φ-spline

interpolant to f ∈ Hs on the point set Y ⊂ Ω. Suppose further that f ∈ Hν , for
s < ν ≤ 2s, and that f is compactly supported in Ω. Then there exists C > 0,
independent of f and h = h(Y,Ω), such that for all x ∈ Ω and sufficiently small h,

|f(x) − SY
φ (x)| ≤ Chν−d/2‖f‖ν,Ω.

Proof. From Proposition 1.1 we know that

〈f − SY
φ , SY

φ 〉s = 0,

so that

‖f − SY
φ ‖2

s = 〈f − SY
φ , f〉s ≤ C〈f − SY

φ , f〉s,Ω,

where we have used the compact support of f in Ω. Now, the equivalent norm from
Theorem 3.1 gives us

‖f − SY
φ ‖2

s ≤ C〈Λs(f − SY
φ ),Λsf〉L2(Ω)

= C
∑
n≥0

4ns〈QΩ
n (f − SY

φ ), QΩ
nf〉L2(Ω),
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and successive applications of the continuous and discrete Cauchy–Schwarz inequality
yield

‖f − SY
φ ‖2

s ≤ C
∑
n≥0

‖2n(2s−ν)QΩ
n (f − SY

φ )‖L2(Ω)‖2nνQΩ
nf‖L2(Ω)

≤ C

⎛
⎝∑

n≥0

‖2n(2s−ν)QΩ
n (f − SY

φ )‖2
L2(Ω)

⎞
⎠

1
2
⎛
⎝∑

n≥0

‖2nνQΩ
nf‖2

L2(Ω)

⎞
⎠

1
2

= C‖Λ2s−ν(f − SY
φ )‖L2(Ω)‖Λνf‖L2(Ω).

Thus, using the norm equivalence from Theorem 3.1 again together with (3.4), we
have

‖f − SY
φ ‖2

s ≤ C‖f − SY
φ ‖2s−ν,Ω‖f‖ν,Ω

≤ Chν−s‖f − SY
φ ‖s,Ω‖f‖ν,Ω

≤ Chν−s‖f − SY
φ ‖s‖f‖ν,Ω,

and cancelling one power of ‖f − SY
φ ‖s gives

‖f − SY
φ ‖s ≤ Chν−s‖f‖ν,Ω.

The result follows by substitution into the standard error estimate (3.3).

Acknowledgments. We are grateful to Professor Mikhail Shubin for useful in-
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Abstract. Let λ∗ > 0 denote the largest possible value of λ such that {Δ2u = λeu in B, u =
∂u
∂n

= 0 on ∂B} has a solution, where B is the unit ball in R
N and n is the exterior unit normal

vector. We show that for λ = λ∗ this problem possesses a unique weak solution u∗. We prove that u∗

is smooth if N ≤ 12 and singular when N ≥ 13, in which case u∗(r) = −4 log r + log(8(N − 2)(N −
4)/λ∗) + o(1) as r → 0. We also consider the problem with general constant Dirichlet boundary
conditions.
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1. Introduction. We study the fourth order problem⎧⎪⎪⎨
⎪⎪⎩

Δ2u = λeu in B,

u = a on ∂B,

∂u

∂n
= b on ∂B,

(1)

where a, b ∈ R, B is the unit ball in R
N , N ≥ 1, n is the exterior unit normal vector,

and λ ≥ 0 is a parameter.
Recently higher order equations have attracted the interest of many researchers.

In particular, fourth order equations with an exponential nonlinearity have been stud-
ied in four dimensions in a setting analogous to Liouville’s equation in [3, 12, 24] and
in higher dimensions by [1, 2, 4, 5, 13].

We shall pay special attention to (1) in the case a = b = 0, as it is the natural
fourth order analogue of the classical Gelfand problem{

−Δu = λeu in Ω,

u = 0 on ∂Ω
(2)
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‡LAMFA CNRS UMR 6140, Université de Picardie Jules Verne, 33 rue Saint-Leu 80039, Amiens
Cedex 1, France (louis.dupaigne@u-picardie.fr). Part of this research was done when this author was
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(Ω is a smooth bounded domain in R
N ) for which a vast literature exists [7, 8, 9, 10,

18, 19, 20, 21].
From the technical point of view, one of the basic tools in the analysis of (2) is the

maximum principle. As pointed out in [2], in general domains the maximum principle
for Δ2 with Dirichlet boundary condition is not valid anymore. One of the reasons to
study (1) in a ball is that a maximum principle holds in this situation; see [6]. In this
simpler setting, though there are some similarities between the two problems, several
tools that are well suited for (2) no longer seem to work for (1).

As a start, let us introduce the class of weak solutions we shall be working with:
we say that u ∈ H2(B) is a weak solution to (1) if eu ∈ L1(B), u = a on ∂B, ∂u

∂n = b
on ∂B, and ∫

B

ΔuΔϕ = λ

∫
B

euϕ ∀ϕ ∈ C∞
0 (B).

The following basic result is a straightforward adaptation of Theorem 3 in [2].
Theorem 1.1 (see [2]). There exists λ∗ such that if 0 ≤ λ < λ∗ then (1) has a

minimal smooth solution uλ and if λ > λ∗ then (1) has no weak solution.
The limit u∗ = limλ↗λ∗ uλ exists pointwise, belongs to H2(B), and is a weak

solution to (1). It is called the extremal solution.
The functions uλ, 0 ≤ λ < λ∗, and u∗ are radially symmetric and radially de-

creasing.
The branch of minimal solutions of (1) has an important property; namely, uλ is

stable in the sense that∫
B

(Δϕ)2 ≥ λ

∫
B

euλϕ2 ∀ϕ ∈ C∞
0 (B);(3)

see [2, Proposition 37].
The authors in [2] pose several questions, some of which we address in this work.

First we show that the extremal solution u∗ is the unique solution to (1) in the class
of weak solutions. Actually the statement is stronger, asserting that for λ = λ∗ there
are no strict supersolutions.

Theorem 1.2. If

v ∈ H2(B), ev ∈ L1(B), v|∂B = a, ∂v
∂n |∂B ≤ b,(4)

and ∫
B

ΔvΔϕ ≥ λ∗
∫
B

evϕ ∀ ϕ ∈ C∞
0 (B), ϕ ≥ 0,(5)

then v = u∗. In particular, for λ = λ∗ problem (1) has a unique weak solution.
This result is analogous to the work of Martel [19] for more general versions of

(2), where the exponential function is replaced by a positive, increasing, convex, and
superlinear function.

Next, we discuss the regularity of the extremal solution u∗. In dimensions N =
5, . . . , 16 the authors of [2] find, with a computer assisted proof, a radial singular
solution Uσ to (1) with a = b = 0 associated to a parameter λσ > 8(N − 2)(N − 4).
They show that λσ < λ∗ if N ≤ 10 and claim to have numerical evidence that this
holds for N ≤ 12. They leave open the question of whether u∗ is singular in dimension
N ≤ 12. We prove the following theorem.
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Theorem 1.3. If N ≤ 12 then the extremal solution u∗ of (1) is smooth.
The method introduced in [10, 20] to prove the boundedness of u∗ in low dimen-

sions for (2) seems not useful for (1), thus requiring a new strategy. A first indication
that the borderline dimension for the boundedness of u∗ is 12 is Rellich’s inequality
[23], which states that if N ≥ 5 then∫

RN

(Δϕ)2 ≥ N2(N − 4)2

16

∫
RN

ϕ2

|x|4 ∀ϕ ∈ C∞
0 (RN ),(6)

where the constant N2(N −4)2/16 is known to be optimal. The proof of Theorem 1.3
is based on the observation that if u∗ is singular then λ∗eu

∗ ∼ 8(N − 2)(N − 4)|x|−4

near the origin. But 8(N − 2)(N − 4) > N2(N − 4)2/16 if N ≤ 12, which would
contradict the stability condition (3).

In view of Theorem 1.3, it is natural to ask whether u∗ is singular in dimension
N ≥ 13. If a = b = 0, we prove the following theorem.

Theorem 1.4. Let N ≥ 13 and a = b = 0. Then the extremal solution u∗ to (1)
is unbounded.

For general boundary values, it seems more difficult to determine the dimensions
for which the extremal solution is singular. We observe first that given any a, b ∈ R,
u∗ is the extremal solution of (1) if and only if u∗ − a is the extremal solution of
the same equation with boundary condition u = 0 on ∂B. In particular, if λ∗(a, b)
denotes the extremal parameter for problem (1), one has that λ∗(a, b) = e−aλ∗(0, b).
So the value of a is irrelevant. But one may ask if Theorem 1.4 still holds for any
N ≥ 13 and any b ∈ R. The situation turns out to be somewhat more complicated.

Proposition 1.5.

(a) Fix N ≥ 13 and take any a ∈ R. Assume b ≥ −4. There exists a critical
parameter bmax > 0, depending only on N , such that the extremal solution
u∗ is singular if and only if b ≤ bmax.

(b) Fix b ≥ −4 and take any a ∈ R. There exists a critical dimension Nmin ≥ 13,
depending only on b, such that the extremal solution u∗ to (1) is singular if
N ≥ Nmin.

Remark 1.6.

• We have not investigated the case b < −4.
• If follows from item (a) that for b ∈ [−4, 0], the extremal solution is singular

if and only if N ≥ 13.
• It also follows from item (a) that there exist values of b for which Nmin > 13.

We do not know whether u∗ remains bounded for 13 ≤ N < Nmin.
Our proof of Theorem 1.4 is related to an idea that Brezis and Vázquez applied

to the Gelfand problem and is based on a characterization of singular energy solutions
through linearized stability (see Theorem 3.1 in [8]). In our context we show the
following.

Proposition 1.7. Assume that u ∈ H2(B) is an unbounded weak solution of
(1) satisfying the stability condition

λ

∫
B

euϕ2 ≤
∫
B

(Δϕ)2 ∀ϕ ∈ C∞
0 (B).(7)

Then λ = λ∗ and u = u∗.
In the proof of Theorem 1.4 we do not use Proposition 1.7 directly but some

variants of it—see Lemma 2.6 and Remark 2.7—because we do not have at our disposal
an explicit solution to (1). Instead, we show that it is enough to find a sufficiently good
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approximation to u∗. When N ≥ 32 we are able to construct such an approximation
by hand. However, for 13 ≤ N ≤ 31 we resort to a computer assisted generation and
verification.

Only in very few situations may one take advantage of Proposition 1.7 directly.
For instance, for problem (1) with a = 0 and b = −4 we have an explicit solution

ū(x) = −4 log |x|

associated to λ̄ = 8(N − 2)(N − 4). Thanks to Rellich’s inequality (6) the solution
ū satisfies condition (7) when N ≥ 13. Therefore, by Theorem 1.3 and a direct
application of Proposition 1.7 we obtain Theorem 1.4 in the case b = −4.

In [2] the authors say that a radial weak solution u to (1) is weakly singular if

lim
r→0

ru′(r) exists.

For example, the singular solutions Uσ of [2] verify this condition.
As a corollary of Theorem 1.2 we show the following.
Proposition 1.8. The extremal solution u∗ to (1) with b ≥ −4 is always weakly

singular.
A weakly singular solution either is smooth or exhibits a log-type singularity at

the origin. More precisely, if u is a nonsmooth weakly singular solution of (1) with
parameter λ, then (see [2])

lim
r→0

u(r) + 4 log r = log
8(N − 2)(N − 4)

λ
,

lim
r→0

ru′(r) = −4.

In section 2 we describe the comparison principles we use later. Section 3 is
devoted to the proof of the uniqueness of u∗ and Propositions 1.7 and 1.8. We prove
Theorem 1.3, the boundedness of u∗ in low dimensions, in section 4. The argument
for Theorem 1.4 is contained in section 5 for the case N ≥ 32 and section 6 for
13 ≤ N ≤ 31. In section 7 we give the proof of Proposition 1.5.

Notation.
• BR is the ball of radius R in R

N centered at the origin. B = B1.
• n is the exterior unit normal vector to BR.
• All inequalities or equalities for functions in Lp spaces are understood to be

a.e.

2. Comparison principles.
Lemma 2.1 (Boggio’s principle [6]). If u ∈ C4(BR) satisfies⎧⎨

⎩
Δ2u ≥ 0 in BR,

u =
∂u

∂n
= 0 on ∂BR,

then u ≥ 0 in BR.
Lemma 2.2. Let u ∈ L1(BR) and suppose that∫

BR

uΔ2ϕ ≥ 0
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for all ϕ ∈ C4(BR) such that ϕ ≥ 0 in BR, ϕ|∂BR
= 0 = ∂ϕ

∂n |∂BR
. Then u ≥ 0 in BR.

Moreover, u ≡ 0 or u > 0 a.e. in BR.
For a proof see Lemma 17 in [2].
Lemma 2.3. If u ∈ H2(BR) is radial, Δ2u ≥ 0 in BR in the weak sense, that is,∫

BR

ΔuΔϕ ≥ 0 ∀ϕ ∈ C∞
0 (BR), ϕ ≥ 0,

and u|∂BR
≥ 0, ∂u

∂n |∂BR
≤ 0, then u ≥ 0 in BR.

Proof. We deal only with the case R = 1 for simplicity. Solve⎧⎨
⎩

Δ2u1 = Δ2u in B1,

u1 =
∂u1

∂n
= 0 on ∂B1

in the sense u1 ∈ H2
0 (B1) and

∫
B1

Δu1Δϕ =
∫
B1

ΔuΔϕ for all ϕ ∈ C∞
0 (B1). Then

u1 ≥ 0 in B1 by Lemma 2.2.
Let u2 = u − u1 so that Δ2u2 = 0 in B1. Define f = Δu2. Then Δf = 0 in B1

and since f is radial we find that f is constant. It follows that u2 = ar2 + b. Using
the boundary conditions we deduce a + b ≥ 0 and a ≤ 0, which imply u2 ≥ 0.

Similarly, we have the following lemma.
Lemma 2.4. If u ∈ H2(BR) and Δ2u ≥ 0 in BR in the weak sense, that is,∫

BR

ΔuΔϕ ≥ 0 ∀ϕ ∈ C∞
0 (BR), ϕ ≥ 0,

and u|∂BR
= 0, ∂u

∂n |∂BR
≤ 0, then u ≥ 0 in BR.

The next lemma is a consequence of a decomposition lemma of Moreau [22]. For
a proof see [14, 15].

Lemma 2.5. Let u ∈ H2
0 (BR). Then there exist unique w, v ∈ H2

0 (BR) such that
u = w + v, w ≥ 0, Δ2v ≤ 0 in BR and

∫
BR

ΔwΔv = 0.
We need the following comparison principle.
Lemma 2.6. Let u1, u2 ∈ H2(BR) with eu1 , eu2 ∈ L1(BR). Assume that

Δ2u1 ≤ λeu1 in BR

in the sense that ∫
BR

Δu1Δϕ ≤ λ

∫
BR

eu1ϕ ∀ϕ ∈ C∞
0 (BR), ϕ ≥ 0,(8)

and Δ2u2 ≥ λeu2 in BR in the similar weak sense. Suppose also

u1|∂BR
= u2|∂BR

and
∂u1

∂n
|∂BR

=
∂u2

∂n
|∂BR

.

Assume, furthermore, that u1 is stable in the sense that

(9) λ

∫
BR

eu1ϕ2 ≤
∫
BR

(Δϕ)2 ∀ϕ ∈ C∞
0 (BR).

Then

u1 ≤ u2 in BR.
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Proof. Let u = u1 − u2. By Lemma 2.5 there exist w, v ∈ H2
0 (BR) such that

u = w + v, w ≥ 0 and Δ2v ≤ 0. Observe that v ≤ 0 so w ≥ u1 − u2.
By hypothesis we have for all ϕ ∈ C∞

0 (BR), ϕ ≥ 0,∫
BR

Δ(u1 − u2)Δϕ ≤ λ

∫
BR

(eu1 − eu2)ϕ ≤ λ

∫
BR∩[u1≥u2]

(eu1 − eu2)ϕ

and by density this holds also for w:

(10)

∫
BR

(Δw)2 =

∫
BR

Δ(u1 − u2)Δw

≤ λ

∫
BR∩[u1≥u2]

(eu1 − eu2)w = λ

∫
BR

(eu1 − eu2)w,

where the first equality holds because
∫
BR

ΔwΔv = 0. By density we deduce from

(9)

(11) λ

∫
BR

eu1w2 ≤
∫
BR

(Δw)2.

Combining (10) and (11), we obtain∫
BR

eu1w2 ≤
∫
BR

(eu1 − eu2)w.

Since u1 − u2 ≤ w the previous inequality implies

(12) 0 ≤
∫
BR

(eu1 − eu2 − eu1(u1 − u2))w.

But by convexity of the exponential function eu1 − eu2 − eu1(u1 − u2) ≤ 0, and we
deduce from (12) that (eu1 − eu2 − eu1(u1 − u2))w = 0. Recalling that u1 − u2 ≤ w
we deduce that u1 ≤ u2.

Remark 2.7. The following variant of Lemma 2.6 also holds.
Let u1, u2 ∈ H2(BR) be radial with eu1 , eu2 ∈ L1(BR). Assume Δ2u1 ≤ λeu1

in BR in the sense of (8) and Δ2u2 ≥ λeu2 in BR. Suppose u1|∂BR
≤ u2|∂BR

and
∂u1

∂n |∂BR
≥ ∂u2

∂n |∂BR
and that the stability condition (9) holds. Then u1 ≤ u2 in BR.

Proof. We solve for ũ ∈ H2
0 (BR) such that∫

BR

ΔũΔϕ =

∫
BR

Δ(u1 − u2)Δϕ ∀ϕ ∈ C∞
0 (BR).

By Lemma 2.3 it follows that ũ ≥ u1 − u2. Next we apply the decomposition of
Lemma 2.5 to ũ, that is, ũ = w + v with w, v ∈ H2

0 (BR), w ≥ 0, Δ2v ≤ 0 in BR, and∫
BR

ΔwΔv = 0. Then the argument follows that of Lemma 2.6.
Finally, in several places we will need the method of sub- and supersolutions in

the context of weak solutions.
Lemma 2.8. Let λ > 0 and assume that there exists ū ∈ H2(BR) such that

eū ∈ L1(BR), ∫
BR

ΔūΔϕ ≥ λ

∫
BR

eūϕ ∀ϕ ∈ C∞
0 (BR), ϕ ≥ 0,
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and

ū = a,
∂ū

∂n
≤ b on ∂B1.

Then there exists a weak solution to (1) such that u ≤ ū.
The proof is similar to that of Lemma 19 in [2].

3. Uniqueness of the extremal solution: Proof of Theorem 1.2.
Proof of Theorem 1.2. Suppose that v ∈ H2(B) satisfies (4), (5), and v �≡ u∗.

Notice that we do not need v to be radial. The idea of the proof is as follows.
Step 1. The function

u0 =
1

2
(u∗ + v)

is a supersolution to the problem

⎧⎪⎪⎨
⎪⎪⎩

Δ2u = λ∗eu + μηeu in B,

u = a on ∂B,

∂u

∂n
= b on ∂B

(13)

for some μ = μ0 > 0, where η ∈ C∞
0 (B), 0 ≤ η ≤ 1, is a fixed radial cut-off

function such that

η(x) = 1 for |x| ≤ 1
2 , η(x) = 0 for |x| ≥ 3

4 .

Step 2. Using a solution to (13) we construct, for some λ > λ∗, a supersolution to
(1). This provides a solution uλ for some λ > λ∗, which is a contradiction.

Proof of Step 1. Observe that given 0 < R < 1 we must have for some c0 =
c0(R) > 0

v(x) ≥ u∗(x) + c0, |x| ≤ R.(14)

To prove this we recall the Green’s function for Δ2 with Dirichlet boundary conditions

⎧⎪⎪⎨
⎪⎪⎩

Δ2
xG(x, y) = δy, x ∈ B,

G(x, y) = 0, x ∈ ∂B,

∂G

∂n
(x, y) = 0, x ∈ ∂B,

where δy is the Dirac mass at y ∈ B. Boggio gave an explicit formula for G(x, y)
which was used in [16] to prove that in dimension N ≥ 5 (the case 1 ≤ N ≤ 4 can be
treated similarly)

G(x, y) ∼ |x− y|4−N min

(
1,

d(x)2d(y)2

|x− y|4

)
,(15)

where

d(x) = dist(x, ∂B) = 1 − |x|
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and a ∼ b means that for some constant C > 0 we have C−1a ≤ b ≤ Ca (uniformly
for x, y ∈ B). Formula (15) yields

G(x, y) ≥ cd(x)2d(y)2(16)

for some c > 0 and this in turn implies that for smooth functions ṽ and ũ such that
ṽ − ũ ∈ H2

0 (B) and Δ2(ṽ − ũ) ≥ 0,

ṽ(y) − ũ(y) =

∫
∂B

(∂ΔxG

∂nx
(x, y)(ṽ − ũ) − ΔxG(x, y)

∂(ṽ − ũ)

∂n

)
dx

+

∫
B

G(x, y)Δ2(ṽ − ũ) dx

≥ cd(y)2
∫
B

(Δ2ṽ − Δ2ũ)d(x)2 dx.

Using a standard approximation procedure, we conclude that

v(y) − u∗(y) ≥ cd(y)2λ∗
∫
B

(ev − eu
∗
)d(x)2 dx.

Since v ≥ u∗, v �≡ u∗ we deduce (14).
Let u0 = (u∗ + v)/2. Then by Taylor’s theorem

ev = eu0 + (v − u0)e
u0 +

1

2
(v − u0)

2eu0 +
1

6
(v − u0)

3eu0 +
1

24
(v − u0)

4eξ2(17)

for some u0 ≤ ξ2 ≤ v and

eu
∗

= eu0 + (u∗ − u0)e
u0 +

1

2
(u∗ − u0)

2eu0 +
1

6
(u∗ − u0)

3eu0 +
1

24
(u∗ − u0)

4eξ1

(18)

for some u∗ ≤ ξ1 ≤ u0. Adding (17) and (18) yields

1

2
(ev + eu

∗
) ≥ eu0 +

1

8
(v − u∗)2eu0 .(19)

From (14) with R = 3/4 and (19) we see that u0 = (u∗ + v)/2 is a supersolution of
(13) with μ0 := c0/8.

Proof of Step 2. Let us show now how to obtain a weak supersolution of (1) for
some λ > λ∗. Given μ > 0, let u denote the minimal solution to (13). Define ϕ1 as
the solution to ⎧⎪⎪⎨

⎪⎪⎩
Δ2ϕ1 = μηeu in B,

ϕ1 = 0 on ∂B,

∂ϕ1

∂n
= 0 on ∂B,

and ϕ2 as the solution to ⎧⎪⎪⎨
⎪⎪⎩

Δ2ϕ2 = 0 in B,

ϕ2 = a on ∂B,

∂ϕ2

∂n
= b on ∂B.
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If N ≥ 5 (the case 1 ≤ N ≤ 4 can be treated similarly), relation (16) yields

ϕ1(x) ≥ c1d(x)2 ∀x ∈ B,(20)

for some c1 > 0. But u is a radial solution of (13) and therefore it is smooth in
B \B1/4. Thus

u(x) ≤ Mϕ1 + ϕ2 ∀x ∈ B1/2,(21)

for some M > 0. Therefore, from (20) and (21), for λ > λ∗ with λ − λ∗ sufficiently
small we have (

λ

λ∗ − 1

)
u ≤ ϕ1 +

(
λ

λ∗ − 1

)
ϕ2 in B.

Let w = λ
λ∗u − ϕ1 − ( λ

λ∗ − 1)ϕ2. The inequality just stated guarantees that w ≤ u.
Moreover,

Δ2w = λeu +
λμ

λ∗ ηe
u − μηeu ≥ λeu ≥ λew in B

and

w = a,
∂w

∂n
= b on ∂B.

Therefore, w is a supersolution to (1) for λ. By the method of sub- and supersolutions
a solution to (1) exists for some λ > λ∗, which is a contradiction.

Proof of Proposition 1.7. Let λ > 0 and u ∈ H2(B) be a weak unbounded
solution of (1). If λ < λ∗ from Lemma 2.6 we find that u ≤ uλ, where uλ is the
minimal solution. This is impossible because uλ is smooth and u is unbounded. If
λ = λ∗ then necessarily u = u∗ by Theorem 1.2.

Proof of Proposition 1.8. Let u denote the extremal solution of (1) with b ≥ −4.
If u is smooth, then the result is trivial. So we restrict our attention to the case
where u is singular. By Theorem 1.3 we have, in particular, that N ≥ 13. We may
also assume that a = 0. If b = −4 by Theorem 1.2 we know that if N ≥ 13, then
u = −4 log |x| so that the desired conclusion holds. Henceforth we assume b > −4 in
this section.

For ρ > 0 define

uρ(r) = u(ρr) + 4 log ρ

so that

Δ2uρ = λ∗euρ in B1/ρ.

Then

duρ

dρ

∣∣∣
ρ=1,r=1

= u′(1) + 4 > 0.

Hence, there is δ > 0 such that

uρ(r) < u(r) ∀1 − δ < r ≤ 1, 1 − δ < ρ ≤ 1.
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This implies

uρ(r) < u(r) ∀0 < r ≤ 1, 1 − δ < ρ ≤ 1.(22)

Otherwise set

r0 = sup { 0 < r < 1 |uρ(r) ≥ u(r) }.

This definition yields

uρ(r0) = u(r0) and u′
ρ(r0) ≤ u′(r0).(23)

Write α = u(r0), β = u′(r0). Then u satisfies⎧⎪⎨
⎪⎩

Δ2u = λeu on Br0 ,

u(r0) = α,

u′(r0) = β.

(24)

Observe that u is an unbounded H2(Br0) solution to (24), which is also stable. Thus
Proposition 1.7 shows that u is the extremal solution to this problem. On the other
hand, uρ is a supersolution to (24), since u′

ρ(r0) ≤ β by (23). We may now use
Theorem 1.2 and we deduce that

u(r) = uρ(r) ∀0 < r ≤ r0,

which in turn implies by standard ODE theory that

u(r) = uρ(r) ∀0 < r ≤ 1,

which is a contradiction to (22). This proves estimate (22).
From (22) we see that

duρ

dρ

∣∣∣
ρ=1

(r) ≥ 0 ∀0 < r ≤ 1.(25)

But

duρ

dρ

∣∣∣
ρ=1

(r) = u′(r)r + 4 ∀0 < r ≤ 1,

and this together with (25) implies

duρ

dρ
(r) =

1

ρ
(u′(ρr)ρr + 4) ≥ 0 ∀0 < r ≤ 1

ρ
, 0 < ρ ≤ 1,(26)

which means that uρ(r) is nondecreasing in ρ. We wish to show that limρ→0 uρ(r)
exists for all 0 < r ≤ 1. For this we shall show

uρ(r) ≥ −4 log(r) + log

(
8(N − 2)(N − 4)

λ∗

)
∀0 < r ≤ 1

ρ
, 0 < ρ ≤ 1.(27)

Set

u0(r) = −4 log(r) + log

(
8(N − 2)(N − 4)

λ∗

)
,
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and suppose that (27) is not true for some 0 < ρ < 1. Let

r1 = sup { 0 < r < 1/ρ |uρ(r) < u0(r) }.

Observe that

λ∗ > 8(N − 2)(N − 4).(28)

Otherwise w = −4 ln r would be a strict supersolution of the equation satisfied by u,
which is not possible by Theorem 1.2. In particular, r1 < 1/ρ and

uρ(r1) = u0(r1) and u′
ρ(r1) ≥ u′

0(r1).

It follows that u0 is a supersolution of

⎧⎪⎪⎨
⎪⎪⎩

Δ2u = λ∗eu in Br1 ,

u = A on ∂Br1 ,

∂u

∂n
= B on ∂Br1 ,

(29)

with A = uρ(r1) and B = u′
ρ(r1). Since uρ is a singular stable solution of (29), it

is the extremal solution of the problem by Proposition 1.7. By Theorem 1.2, there
is no strict supersolution of (29), and we conclude that uρ ≡ u0 first for 0 < r < r1
and then for 0 < r ≤ 1/ρ. This is impossible for ρ > 0 because uρ(1/ρ) = 4 log ρ and

u0(1/ρ) < 4 log ρ + log( 8(N−2)(N−4)
λ∗ ) < uρ(1/ρ) by (28). This proves (27).

By (26) and (27) we see that

v(r) = lim
ρ→0

uρ(r) exists ∀0 < r < +∞,

where the convergence is uniform (even in Ck for any k) on compact sets of R
N \{0}.

Moreover, v satisfies

Δ2v = λ∗ev in R
N \ {0}.(30)

Then for any r > 0

v(r) = lim
ρ→0

uρ(r) = lim
ρ→0

u(ρr) + 4 log(ρr) − 4 log(r) = v(1) − 4 log(r).

Hence, using (30) we obtain

v(r) = −4 log r + log

(
8(N − 2)(N − 4)

λ∗

)
= u0(r).

But then

u′
ρ(r) = u′(ρr)ρ → −4 as ρ → 0,

and therefore, with r = 1

ρu′(ρ) → −4 as ρ → 0.(31)
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4. Proof of Theorem 1.3. First we will show the following lemma.
Lemma 4.1. Suppose that the extremal solution u∗ to (1) is singular. Then for

any σ > 0 there exists 0 < R < 1 such that

u∗(x) ≥ (1 − σ) log

(
1

|x|4

)
∀ |x| < R.(32)

Proof. Assume by contradiction that (32) is false. Then there exist σ > 0 and a
sequence xk ∈ B with xk → 0 such that

u∗(xk) < (1 − σ) log

(
1

|xk|4

)
.(33)

Let sk = |xk| and choose 0 < λk < λ∗ such that

max
B

uλk
= uλk

(0) = log

(
1

s4
k

)
.(34)

Note that λk → λ∗; otherwise uλk
would remain bounded. Let

vk(x) =
uλk

(skx)

log( 1
s4k

)
, x ∈ Bk ≡ 1

sk
B.

Then 0 ≤ vk ≤ 1, vk(0) = 1,

Δ2vk(x) = λk
s4
k

log( 1
s4k

)
euλk

(skx)

≤ λk

log( 1
s4k

)
→ 0 in Bk

by (34). By elliptic regularity vk → v uniformly on compact sets of R
N to a function v

satisfying 0 ≤ v ≤ 1, v(0) = 1, Δ2v = 0 in R
N . By Liouville’s theorem for biharmonic

functions [17] we conclude that v is constant and therefore v ≡ 1.
Since |xk| = sk we deduce that

uλk
(xk)

log( 1
s4k

)
→ 1,

which contradicts (33).
Proof of Theorem 1.3. We write for simplicity u = u∗, λ = λ∗. Assume by

contradiction that u∗ is unbounded and 5 ≤ N ≤ 12. If N ≤ 4 the problem is
subcritical, and the boundedness of u∗ can be proved by other means: no singular
solutions exist for positive λ (see [2]), though in dimension N = 4, a family of solutions
(uλ) can blow up as λ → 0 (see [24]).

For ε > 0 let ψ = |x| 4−N
2 +ε and let η ∈ C∞

0 (RN ) with η ≡ 1 in B1/2 and
supp(η) ⊆ B. Observe that

(Δψ)2 = (HN + O(ε))|x|−N+2ε, where HN =
N2(N − 4)2

16
.
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Using a standard approximation argument as in the proof of Lemma 2.6, we can use
ψη as a test function in (9) and we obtain∫

B

(Δψ)2 + O(1) ≥ λ

∫
B

euψ2,

since the contribution of the integrals outside a fixed ball around the origin remains
bounded as ε → 0 (here O(1) denotes a bounded function as ε → 0).

This implies

λ

∫
B

eu|x|4−N+2ε ≤ (HN + O(ε))

∫
B

|x|−N+2ε = ωN
HN

2ε
+ O(1),(35)

where ωN is the surface area of the unit N−1 dimensional sphere SN−1. In particular,∫
B
eu|x|4−N+2ε < +∞.
For ε > 0 we define ϕ = |x|4−N+2ε. Note that away from the origin

Δ2ϕ = εkN |x|−N+2ε, where kN = 4(N − 2)(N − 4) + O(ε).(36)

Let ϕj solve ⎧⎨
⎩

Δ2ϕj = εkN min(|x|−N+2ε, j) in B,

ϕj =
∂ϕj

∂n
= 0 on ∂B.

(37)

Then ϕj ↑ ϕ as j → +∞. Using (35) and (37)

εkN

∫
B

u min(|x|−N+2ε, j) =

∫
B

uΔ2ϕj = λ

∫
B

euϕj

≤ λ

∫
B

euϕ

≤ ωN
HN

2ε
+ O(1),

where O(1) is bounded as ε → 0 independently of j. Letting j → +∞ yields

εkN

∫
B

u |x|−N+2ε ≤ ωN
HN

2ε
+ O(1),(38)

showing that the integral on the left-hand side is finite. On the other hand, by (32)

εkN

∫
B

u |x|−N+2ε ≥ εkNωN (1 − σ)

∫ 1

0

log

(
1

r4

)
r−1+2ε dr = kNωN (1 − σ)

1

ε
.(39)

Combining (38) and (39), we obtain

(1 − σ)kN ≤ HN

2
+ O(ε).

Letting ε → 0 and then σ → 0, we have

8(N − 2)(N − 4) ≤ HN =
N2(N − 4)2

16
.

This is valid only if N ≥ 13, which is a contradiction.
Remark 4.2. The conclusion of Theorem 1.3 can be obtained also from Proposi-

tion 1.8. However, that proposition depends crucially on the radial symmetry of the
solutions, while the argument in this section can be generalized to other domains.
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5. The extremal solution is singular in large dimensions. In this section
we take a = b = 0 and prove Theorem 1.4 for N ≥ 32.

The idea for the proof of Theorem 1.4 is to estimate accurately from above the
function λ∗eu

∗
, and to deduce that the operator Δ2 − λ∗eu

∗
has a strictly positive

first eigenvalue (in the H2
0 (B) sense). Then, necessarily, u∗ is singular.

Upper bounds for both λ∗ and u∗ are obtained by finding suitable sub- and
supersolutions. For example, if for some λ1 there exists a supersolution, then λ∗ ≥
λ1. If for some λ2 one can exhibit a stable singular subsolution u, then λ∗ ≤ λ2.
Otherwise, λ2 < λ∗, and one can then prove that the minimal solution uλ2

is above
u, which is impossible. The bound for u∗ also requires a stable singular subsolution.

It turns out that in dimension N ≥ 32 we can construct the necessary subsolutions
and verify their stability by hand. For dimensions 13 ≤ N ≤ 31 it seems difficult to
find these subsolutions explicitly. We adopt then an approach that involves a computer
assisted construction of subsolutions and verification of the desired inequalities. We
present this part in the next section.

Lemma 5.1. Assume N ≥ 13. Then u∗ ≤ ū = −4 log |x| in B1.
Proof. Define ū(x) = −4 log |x|. Then ū satisfies

⎧⎪⎪⎨
⎪⎪⎩

Δ2ū = 8(N − 2)(N − 4)eū in R
N ,

ū = 0 on ∂B1,

∂ū

∂n
= −4 on ∂B1.

Observe that since ū is a supersolution to (1) with a = b = 0 we deduce immedi-
ately that λ∗ ≥ 8(N − 2)(N − 4).

In the case λ∗ = 8(N − 2)(N − 4) we have uλ ≤ ū for all 0 ≤ λ < λ∗ because ū is
a supersolution, and therefore u∗ ≤ ū holds. Alternatively, one can invoke Theorem
3 in [2] to conclude that we always have λ∗ > 8(N − 2)(N − 4).

Suppose now that λ∗ > 8(N − 2)(N − 4). We prove that uλ ≤ ū for all 8(N −
2)(N − 4) < λ < λ∗. Fix such λ and assume by contradiction that uλ ≤ ū is not true.
Note that for r < 1 and sufficiently close to 1 we have uλ(r) < ū(r) because u′

λ(1) = 0
while ū′(1) = −4. Let

R1 = inf{ 0 ≤ R ≤ 1 | uλ < ū in (R, 1) }.

Then 0 < R1 < 1, uλ(R1) = ū(R1), and u′
λ(R1) ≤ ū′(R1). So uλ is a supersolution

to the problem

(40)

⎧⎪⎪⎨
⎪⎪⎩

Δ2u = 8(N − 2)(N − 4)eu in BR1
,

u = uλ(R1) on ∂BR1 ,

∂u

∂n
= u′

λ(R1) on ∂BR1 ,

while ū is a subsolution to (40). Moreover it is stable for this problem, since from
Rellich’s inequality (6) and 8(N − 2)(N − 4) ≤ N2(N − 4)2/16 for N ≥ 13, we have

8(N − 2)(N − 4)

∫
BR1

eūϕ2 ≤ N2(N − 4)2

16

∫
RN

ϕ2

|x|4 ≤
∫

RN

(Δϕ)2 ∀ϕ ∈ C∞
0 (BR1).

By Remark 2.7 we deduce that ū ≤ uλ in BR1
, which is impossible.
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An upper bound for λ∗ is obtained by considering again a stable, singular subso-
lution to the problem (with another parameter, though).

Lemma 5.2. For N ≥ 32 we have

λ∗ ≤ 8(N − 2)(N − 4)e2.(41)

Proof. Consider w = 2(1 − r2) and define

u = ū− w,

where ū(x) = −4 log |x|. Then

Δ2u = 8(N − 2)(N − 4)
1

r4
= 8(N − 2)(N − 4)eū = 8(N − 2)(N − 4)eu+w

≤ 8(N − 2)(N − 4)e2eu.

Also u(1) = u′(1) = 0, so u is a subsolution to (1) with parameter λ0 = 8(N −2)(N −
4)e2.

For N ≥ 32 we have λ0 ≤ N2(N − 4)2/16. Then by (6) u is a stable subsolution
of (1) with λ = λ0. If λ∗ > λ0 = 8(N − 2)(N − 4)e2 the minimal solution uλ0 to (1)
with parameter λ0 exists and is smooth. From Lemma 2.6 we find u ≤ uλ0 which is
impossible because u is singular and uλ0

is bounded. Thus we have proved (41) for
N ≥ 32.

Proof of Theorem 1.4 in the case N ≥ 32. Combining Lemmas 5.1 and 5.2, we
have that if N ≥ 32 then λ∗eu

∗ ≤ r−4 8(N − 2)(N − 4)e2 ≤ r−4N2(N − 4)2/16. This
and (6) show that

inf
ϕ∈C∞

0 (B)

∫
B

(Δϕ)2 − λ∗ ∫
B
eu

∗
ϕ2∫

B
ϕ2

> 0,

which is not possible if u∗ is bounded.

6. A computer assisted proof for dimensions 13 ≤ N ≤ 31. Throughout
this section we assume a = b = 0. As was mentioned in the previous section, the
proof of Theorem 1.4 relies on precise estimates for u∗ and λ∗. We present first some
conditions under which it is possible to find these estimates. Later we show how to
meet such conditions with a computer assisted verification.

The first lemma is analogous to Lemma 5.2.
Lemma 6.1. Suppose there exist ε > 0, λ > 0, and a radial function u ∈

H2(B) ∩W 4,∞
loc (B \ {0}) such that

Δ2u ≤ λeu ∀0 < r < 1,

|u(1)| ≤ ε,

∣∣∣∣∂u∂n (1)

∣∣∣∣ ≤ ε,

u �∈ L∞(B),

λeε
∫
B

euϕ2 ≤
∫
B

(Δϕ)2 ∀ϕ ∈ C∞
0 (B).(42)

Then

λ∗ ≤ λe2ε.
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Proof. Let

ψ(r) = εr2 − 2ε(43)

so that

Δ2ψ ≡ 0, ψ(1) = −ε, ψ′(1) = 2ε,

and

−2ε ≤ ψ(r) ≤ −ε ∀0 ≤ r ≤ 1.

It follows that

Δ2(u + ψ) ≤ λeu = λe−ψeu+ψ ≤ λe2εeu+ψ.

On the boundary we have u(1) + ψ(1) ≤ 0, u′(1) + ψ′(1) ≥ 0. Thus u + ψ is a
singular subsolution to the equation with parameter λe2ε. Moreover, since ψ ≤ −ε
we have λe2εeu+ψ ≤ λeεeu, and hence, from (42) we see that u + ψ is stable for the
problem with parameter λe2ε. If λe2ε < λ∗ then the minimal solution associated
to the parameter λe2ε would be above u + ψ, which is impossible because u is
singular.

Lemma 6.2. Suppose we can find ε > 0, λ > 0, and u ∈ H2(B)∩W 4,∞
loc (B \ {0})

such that

Δ2u ≥ λeu ∀0 < r < 1,

|u(1)| ≤ ε,

∣∣∣∣∂u∂n (1)

∣∣∣∣ ≤ ε.

Then

λe−2ε ≤ λ∗.

Proof. Let ψ be given by (43). Then u−ψ is a supersolution to the problem with
parameter λe−2ε.

The next result is the main tool to guarantee that u∗ is singular. The proof, as
in Lemma 5.1, is based on an upper estimate of u∗ by a stable singular subsolution.

Lemma 6.3. Suppose there exist ε0, ε > 0, λa > 0, and a radial function u ∈
H2(B) ∩W 4,∞

loc (B \ {0}) such that

Δ2u ≤ (λa + ε0)e
u ∀0 < r < 1,(44)

Δ2u ≥ (λa − ε0)e
u ∀0 < r < 1,(45)

|u(1)| ≤ ε,

∣∣∣∣∂u∂n (1)

∣∣∣∣ ≤ ε,(46)

u �∈ L∞(B),(47)

β0

∫
B

euϕ2 ≤
∫
B

(Δϕ)2 ∀ϕ ∈ C∞
0 (B),(48)

where

β0 =
(λa + ε0)

3

(λa − ε0)2
e9ε.(49)
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Then u∗ is singular and

(λa − ε0)e
−2ε ≤ λ∗ ≤ (λa + ε0)e

2ε.(50)

Proof. By Lemmas 6.1 and 6.2 we have (50). Let

δ = log

(
λa + ε0

λa − ε0

)
+ 3ε

and define

ϕ(r) = −δ

4
r4 + 2δ.

We claim that

u∗ ≤ u + ϕ in B1.(51)

To prove this, we shall show that for λ < λ∗

uλ ≤ u + ϕ in B1.(52)

Indeed, we have

Δ2ϕ = −δ2N(N + 2),

ϕ(r) ≥ δ ∀0 ≤ r ≤ 1,

ϕ(1) ≥ δ ≥ ε, ϕ′(1) = −δ ≤ −ε,

and therefore

Δ2(u + ϕ) ≤ (λa + ε0)e
u + Δ2ϕ ≤ (λa + ε0)e

u = (λa + ε0)e
−ϕeu+ϕ

≤ (λa + ε0)e
−δeu+ϕ.(53)

By (50) and the choice of δ

(λa + ε0)e
−δ = (λa − ε0)e

−3ε < λ∗.(54)

To prove (52) it suffices to consider λ in the interval (λa − ε0)e
−3ε < λ < λ∗. Fix

such λ and assume that (52) is not true. Write

ū = u + ϕ

and let

R1 = sup{ 0 ≤ R ≤ 1 |uλ(R) = ū(R) }.

Then 0 < R1 < 1 and uλ(R1) = ū(R1). Since u′
λ(1) = 0 and ū′(1) < 0 we must

have u′
λ(R1) ≤ ū′(R1). Then uλ is a solution to the problem

⎧⎪⎪⎨
⎪⎪⎩

Δ2u = λeu in BR1 ,

u = uλ(R1) on ∂BR1 ,

∂u

∂n
= u′

λ(R1) on ∂BR1
,
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while, thanks to (53) and (54), ū is a subsolution to the same problem. Moreover, ū
is stable thanks to (48) since, by Lemma 6.1,

λ < λ∗ ≤ (λa + ε0)e
2ε(55)

and hence

λeū ≤ (λa + ε0)e
2εe2δeu ≤ β0e

u.

We deduce ū ≤ uλ in BR1 which is impossible, since ū is singular while uλ is smooth.
This establishes (51).

From (51) and (55) we have

λ∗eu
∗ ≤ β0e

−εeu

and therefore

inf
ϕ∈C∞

0 (B)

∫
B

(Δϕ)2 − λ∗eu
∗
ϕ2∫

B
ϕ2

> 0.

This is not possible if u∗ is a smooth solution.
For each dimension 13 ≤ N ≤ 31 we construct u satisfying (44)–(48) of the form

u(r) =

{
−4 log r + log

(
8(N−2)(N−4)

λ

)
for 0 < r < r0,

ũ(r) for r0 ≤ r ≤ 1,
(56)

where ũ is explicitly given. Thus u satisfies (47) automatically.
Numerically it is better to work with the change of variables

w(s) = u(es) + 4s, −∞ < s < 0,

which transforms the equation Δ2u = λeu into

Lw + 8(N − 2)(N − 4) = λew, −∞ < s < 0,

where

Lw =
d4w

ds4
+ 2(N − 4)

d3w

ds3
+ (N2 − 10N + 20)

d2w

ds2
− 2(N − 2)(N − 4)

dw

ds
.

The boundary conditions u(1) = 0, u′(1) = 0 then yield

w(0) = 0, w′(0) = 4.

Regarding the behavior of w as s → −∞, observe that

u(r) = −4 log r + log

(
8(N − 2)(N − 4)

λ

)
for r < r0

if and only if

w(s) = log
8(N − 2)(N − 4)

λ
∀s < log r0.

The steps we perform are the following.
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(1) We fix x0 < 0 and using numerical software we follow a branch of solutions to⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Lŵ + 8(N − 2)(N − 4) = λeŵ, x0 < s < 0,

ŵ(0) = 0, ŵ′(0) = t,

ŵ(x0) = log
8(N − 2)(N − 4)

λ
,

d2ŵ

ds2
(x0) = 0,

d3ŵ

ds3
(x0) = 0

as t increases from 0 to 4. The numerical solution (ŵ, λ̂) we are interested in corre-
sponds to the case t = 4. The five boundary conditions are due to the fact that we
are solving a fourth order equation with an unknown parameter λ.

(2) Based on ŵ, λ̂ we construct a C3 function w which is constant for s ≤ x0 and
piecewise polynomial for x0 ≤ s ≤ 0. More precisely, we first divide the interval [x0, 0]
into smaller intervals of length h. Then we generate a cubic spline approximation

gfl with floating point coefficients of d4ŵ
ds4 . From gfl we generate a piecewise cubic

polynomial gra which uses rational coefficients and we integrate it four times to obtain

w, where the constants of integration are such that djw
dsj (x0) = 0, 1 ≤ j ≤ 3, and

w(x0) is a rational approximation of log(8(N − 2)(N − 4)/λ). Thus w is a piecewise
polynomial function that in each interval is of degree 7 with rational coefficients, and
which is globally C3. We also let λ be a rational approximation of λ̂. With these
choices note that Lw + 8(N − 2)(N − 4)− λew is a small constant (not necessarily 0)
for s ≤ x0.

(3) The conditions (44) and (45) we need to check for u are equivalent to the
following inequalities for w:

Lw + 8(N − 2)(N − 4) − (λ + ε0)e
w ≤ 0, −∞ < s < 0,(57)

Lw + 8(N − 2)(N − 4) − (λ− ε0)e
w ≥ 0, −∞ < s < 0.(58)

Using a program in Maple we verify that w satisfies (57) and (58). This is done by
evaluating a second order Taylor approximation of Lw+8(N −2)(N −4)− (λ+ε0)e

w

at sufficiently close mesh points. All arithmetic computations are done with rational
numbers and thus obtain exact results. The exponential function is approximated by
a Taylor polynomial of degree 14, and the difference with the real value is controlled.

More precisely, we write

f(s) = Lw + 8(N − 2)(N − 4) − (λ + ε0)e
w,

f̃(s) = Lw + 8(N − 2)(N − 4) − (λ + ε0)T (w),

where T is the Taylor polynomial of order 14 of the exponential function around 0.
Applying Taylor’s formula to f at yj , we have for s ∈ [yj , yj+h]

f(s) ≤ f(yj) + |f ′(yj)|h +
1

2
Mh2

≤ f̃(yj) + |f̃ ′(yj)|h +
1

2
Mh2 + |f(yj) − f̃(yj)| + |f ′(yj) − f̃ ′(yj)|h

≤ f̃(yj) + |f̃ ′(yj)|h +
1

2
Mh2 + E1 + E2h,

where

M is a bound for |f ′′| in [yj , yj + h],

E1 is such that (λ + ε0)|ew − T (w)| ≤ E1 in [yj , yj + h],

E2 is such that (λ + ε0)|(ew − T ′(w))w′| ≤ E2 in [yj , yj + h].
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So, inequality (57) will be verified on each interval [yj , yj +h] where w is a polynomial
as soon as

f̃(yj) + |f̃ ′(yj)|h +
1

2
Mh2 + E1 + E2h ≤ 0.(59)

When more accuracy is desired, instead of (59) one can verify that

f̃(xi) + |f̃ ′(xi)|
h

m
+

1

2
M

(
h

m

)2

+ E1 + E2
h

m
≤ 0,

where (xi)i=1...m+1 are m + 1 equally spaced points in [yj , yj + h].
We obtain exact values for the upper bounds M,E1, E2 as follows. First note that

f ′′ = Lw′′ − (λ+ ε0)e
w((w′)2 +w′′). On [yj , yj + h], we have w(s) =

∑7
i=0 ai(s− yj)

i

and we estimate |w(s)| ≤
∑7

i=0 |ai|hi for s ∈ [yj , yj + h]. Similarly,

∣∣∣∣d�wds�
(s)

∣∣∣∣ ≤
7∑

i=�

i(i− 1) . . . (i− � + 1)|ai|hi−� ∀s ∈ [yj , yj + h].(60)

The exponential is estimated by ew ≤ e1 ≤ 3, since our numerical data satisfies the
rough bounds −3/2 ≤ w ≤ 1. Using this information and (60) yields a rational upper
bound M . E1 is estimated using Taylor’s formula:

E1 = (λ + ε0)
(3/2)15

15!
.

Similarly, E2 = (λ+ε0)
(3/2)14

14! B1, where B1 is the right-hand side of (60) when � = 1.
(4) We show that the operator Δ2 − βeu where u(r) = w(log r)− 4 log r, satisfies

condition (48) for some β ≥ β0 where β0 is given by (49). In dimension N ≥ 13 the
operator Δ2−βeu has indeed a positive eigenfunction in H2

0 (B) with finite eigenvalue
if β is not too large. The reason is that near the origin

βeu =
c

|x|4 ,

where c is a number close to 8(N − 2)(N − 4)β/λ. If β is not too large compared to
λ, then c < N2(N − 4)2/16, and hence, using (6), Δ2 − βeu is coercive in H2

0 (Br0)
(this holds under even weaker conditions; see [11]). It follows that there exists a first
eigenfunction ϕ1 ∈ H2

0 (B) for the operator Δ2 − βeu with a finite first eigenvalue μ1;
that is,

Δ2ϕ1 − βeuϕ1 = μ1ϕ1 in B,

ϕ1 > 0 in B,

ϕ1 ∈ H2
0 (B).

Moreover, μ1 can be characterized as

μ1 = inf
ϕ∈C∞

0 (B)

∫
B

(Δϕ)2 − βeuϕ2∫
B
ϕ2

and is the smallest number for which a positive eigenfunction in H2
0 (Ω) exists.
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Thus to prove that (48) holds it suffices to verify that μ1 ≥ 0 and for this it is
enough to show the existence of a nonnegative ϕ ∈ H2

0 (B), ϕ �≡ 0, such that⎧⎪⎪⎨
⎪⎪⎩

Δ2ϕ− βeuϕ ≥ 0 in B,

ϕ = 0 on ∂B,

∂ϕ

∂n
≤ 0 on ∂B.

(61)

Indeed, multiplication of (61) by ϕ1 and integration by parts yield

μ1

∫
B

ϕϕ1 +

∫
∂B

∂ϕ

∂n
Δϕ1 ≥ 0.

But Δϕ1 ≥ 0 on ∂B and thus μ1 ≥ 0. To achieve (61) we again change variables and
define

φ(s) = ϕ(es), −∞ < s ≤ 0.

Then we have to find φ ≥ 0, φ �≡ 0, satisfying⎧⎪⎨
⎪⎩

Lφ− βewφ ≥ 0 in −∞ < s ≤ 0,

φ(0) = 0,

φ′(0) ≤ 0.

(62)

Regarding the behavior as s → −∞, we note that w is constant for −∞ < s < x0,
and therefore, if

Lφ− βewφ ≡ 0, −∞ < s ≤ x0,

then φ is a linear combination of exponential functions e−αs, where α must be a
solution to

α4 − 2(N − 4)α3 + (N2 − 10N + 20)α2 + 2(N − 2)(N − 4)α = βew(x0),

where βew(x0) is close to 8(N − 2)(N − 4)β/λ. If N ≥ 13 the polynomial

α4 − 2(N − 4)α3 + (N2 − 10N + 20)α2 + 2(N − 2)(N − 4)α− 8(N − 2)(N − 4)

has four distinct real roots, while if N ≤ 12 there are two real roots and two complex
conjugates. If N ≥ 13 there is exactly one root in the interval (0, (N − 4)/2), two
roots greater than (N − 4)/2, and one negative. We know that ϕ(r) = φ(log r) ∼ r−α

is in H2, which forces α < (N − 4)/2. It follows that for s < x0, φ is a combination
of e−α0s, e−α1s where α0 > 0, α1 < 0 are the two roots smaller than α < (N − 4)/2.
For simplicity, however, we will look for φ such that φ(s) = Ce−α0s for s < x0, where
C > 0 is a constant. This restriction will mean that we will not be able to impose
φ′(0) = 0 at the end. This is not a problem because φ′(0) ≤ 0.

Notice that we need only the inequality in (62), and hence we need to choose
α ∈ (0, N − 4/2) such that

α4 − 2(N − 4)α3 + (N2 − 10N + 20)α2 + 2(N − 2)(N − 4)α ≥ βew(x0).

The precise choice we employed in each dimension is in a summary table at the end
of this section.
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To find a suitable function φ with the behavior φ(s) = Ce−αs for s < x0 we set
φ = ψe−αs and solve the equation

Tαψ − βewψ = f,

where the operator Tα is given by

Tαψ =
d4ψ

ds4
+ (−4α + 2(N − 4))

d3ψ

ds3
+ (6α2 − 6α(N − 4) + N2 − 10N + 20)

d2w

ds2

+ (−4α3 + 6α2(N − 4) − 2α(N2 − 10N + 20) − 2(N − 2)(N − 4))
dψ

ds

+ (α4 − 2α3(N − 4) + α2(N2 − 10N + 20) + 2α(N − 2)(N − 4))ψ

and f is some smooth function such that f ≥ 0, f �≡ 0. Actually we choose β̄ > β0

(where β0 is given in (49)) and find ᾱ satisfying approximately

ᾱ4 − 2(N − 4)ᾱ3 + (N2 − 10N + 20)ᾱ2 + 2(N − 2)(N − 4)ᾱ = β̄ew(x0).

We solve numerically

Tᾱψ̂ − β̄ewψ̂ = f, x0 < s < 0,

ψ̂(x0) = 1, ψ̂′′(x0) = 0, ψ̂′′′(x0) = 0,

ψ̂(0) = 0.

Using the same strategy as in (2) from the numerical approximation of d4ψ̂
ds4 we compute

a piecewise polynomial ψ of degree 7, which is globally C3 and constant for s ≤ x0.
The constant ψ(x0) is chosen so that ψ(0) = 0. We then use Maple to verify the
inequalities

ψ ≥ 0, x0 ≤ s ≤ 0,

Tαψ − βewψ ≥ 0, x0 ≤ s ≤ 0,

ψ′(0) ≤ 0,

where β0 < β < β̄ and 0 < α < (N − 4)/2 are suitably chosen.
At the URLs http://www.lamfa.u-picardie.fr/dupaigne/ and http://www.ime.

unicamp.br/∼msm/ we provide the data of the functions w and ψ defined as piece-
wise polynomials of degree 7 in [x0, 0] with rational coefficients for each dimension in
13 ≤ N ≤ 31. We also give a rational approximation of the constants involved in the
corresponding problems.

We use Maple to verify that w and ψ (with suitable extensions) are C3 global
functions and satisfy the corresponding inequalities, using only its capability to op-
erate on arbitrary rational numbers. These operations are exact and are limited only
by the memory of the computer and clearly slower than floating point operations. We
chose Maple since it is a widely used software, but the reader can check the validity
of our results with any other software (see, e.g., the open-source solution pari/gp).

The tests were conducted using Maple 9. See Table 1 for a summary of parameters
and results.

Remark 6.4. (1) Although we work with λ rational, in Table 1 we prefer to
display a decimal approximation of λ.

(2) In Table 1 we selected a “large” value of ε0 in order to have a fast verifica-
tion with Maple. By requiring more accuracy in the numerical calculations, using a
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Table 1

N λ ε0 ε β̄ β α
13 2438.6 1 5 · 10−7 2550 2500 3.9
14 2911.2 1 3 · 10−6 3100 3000 3.4
15 3423.8 1 3 · 10−6 3600 3500 3.1
16 3976.4 1 1 · 10−5 4100 4000 3.0
17 4568.8 1 2 · 10−4 4800 4600 3.0
18 5201.1 2 2 · 10−4 5400 5300 2.7
19 5873.2 2 2 · 10−4 6100 6000 2.7
20 6585.1 3 7 · 10−4 7000 6800 2.7
21 7336.7 3 7 · 10−4 7700 7500 2.6
22 8128.1 4 1 · 10−3 8600 8400 2.6
23 8959.1 4 1 · 10−3 9400 9200 2.5
24 9829.8 4 1 · 10−3 10400 10200 2.5
25 10740.1 4 1 · 10−3 11400 11200 2.5
26 11690.1 6 2 · 10−3 12400 12200 2.5
27 12679.7 7 2 · 10−3 13400 13200 2.4
28 13709.0 7 2 · 10−3 14500 14300 2.4
29 14777.8 7 2 · 10−3 15400 15200 2.4
30 15886.2 8 2 · 10−3 16600 16400 2.4
31 17034.3 10 2 · 10−3 17600 17500 2.3

Table 2

N λ ε0 ε λ∗
min λ∗

max β̄ β α
13 2438.589 0.003 5 · 10−7 2438.583 2438.595 2550 2510 3.9
14 2911.194 0.003 5 · 10−7 2911.188 2911.200 3100 3000 3.4

smaller value of ε0, and using more subintervals to verify the inequalities in the Maple
program, it is possible to obtain better estimates of λ∗. For instance, using formulas
(50), we obtained the results in Table 2.

The verification above, however, is required to check 1500 subintervals of each of
the 4500 intervals of length 0.002, which amounts to substantial computer time.

7. Proof of Proposition 1.5. Throughout this section, we restrict our atten-
tion, as permitted, to the case a = 0.

(a) Let u denote the extremal solution of (1) with homogeneous Dirichlet bound-
ary condition a = b = 0. We extend u on its maximal interval of existence (0, R̄).

Lemma 7.1. R̄ < ∞ and u(r) ∼ log(R̄− r)−4 for r ∼ R̄.
Proof. The fact that R̄ < ∞ can be readily deduced from section 2 of [1]. We

present an alternative (and more quantitative) argument. We first observe that

(63) u′′ − 1

r
u′ > 0 ∀r ∈ [1, R̄).

Integrate indeed (1) over a ball of radius r to conclude that

(64) 0 < λ

∫
Br

eu =

∫
∂Br

∂

∂r
Δu = ωNrN−1

(
u′′′ +

N − 1

r

(
u′′ − 1

r
u′
))

.

If r = 1, since u is nonnegative in (0, 1) and u(1) = u′(1) = 0, we must have
u′′(1) ≥ 0. In fact, u′′(1) > 0. Otherwise, we would have u′′(1) = 0 and u′′′(1) > 0
by (64), contradicting u > 0 in (0, 1). So, we may define

R = sup

{
r > 1 : u′′(t) − 1

t
u′(t) > 0 ∀t ∈ [1, r)

}
,
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and we just need to prove that R = R̄. Assume this is not the case; then u′′(R) −
1
Ru′(R) = 0 and u′′′(R) =

(
u′′ − 1

Ru′)′ (R) ≤ 0. This contradicts (64) and we have
just proved (63). In particular, we see that u is convex increasing on (1, R̄).

Since u is radial, (1) reduces to

(65) u(4) +
2(N − 1)

r
u′′′ +

(N − 1)(N − 3)

r2
u′′ − (N − 1)(N − 3)

r3
u′ = λeu.

Multiply by u′:

u(4)u′ +
2(N − 1)

r
u′′′u′ +

(N − 1)(N − 3)

r2
u′′u′ − (N − 1)(N − 3)

r3
(u′)2 = λ(eu)′,

which we rewrite as

[(u′′′u′)′ − u′′′u′′] + 2(N − 1)

[(
1

r
u′′u′

)′
− u′′

(
1

r
u′
)′

]

+(N − 1)(N − 3)

(
(u′)2

2r2

)′
= λ(eu)′.

By (63), it follows that for r ∈ [1, R̄),

[(u′′′u′)′ − u′′′u′′] + 2(N − 1)

(
1

r
u′′u′

)′
+ (N − 1)(N − 3)

(
(u′)2

2r2

)′
≥ λ(eu)′.

Integrating, we obtain for some constant A

u′′′u′ − (u′′)2

2
+ 2(N − 1)

1

r
u′′u′ +

(N − 1)(N − 3)

2

(u′)2

r2
≥ λeu −A.

We multiply again by u′:

(66)

[
(u′′(u′)2)′ − u′′ ((u′)2

)′]− 1

2
(u′′)2u′ + 2(N − 1)

1

r
u′′(u′)2

+
(N − 1)(N − 3)

2

1

r2
(u′)3 ≥ (λeu −Au)′.

We deduce from (63) that

1

r
u′′(u′)2 =

1

2

(
1

r
(u′)3

)′
− 1

2
(u′)2

(
1

r
u′
)′

≤ 1

2

(
1

r
(u′)3

)′
and

1

r2
(u′)3 ≤ 1

r
(u′)2u′′ ≤ 1

2

(
1

r
(u′)3

)′
.

Using this information in (66), dropping nonpositive terms, and integrating, we obtain
for some constant B

u′′(u′)2 +
(N2 − 1)

4

1

r
(u′)3 ≥ λeu −Au−B.

Applying (63) again, it follows that for C = N2−1
4 + 1

Cu′′(u′)2 ≥ λeu −Au−B,
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which after multiplication by u′ and integration provides positive constants c, C such
that

(u′)4 ≥ c(eu −Au2 −Bu− C).

At this point, we observe that since u is convex and increasing, u converges to +∞
as r approaches R̄. Hence, for r close enough to R̄ and for c > 0 perhaps smaller,

u′ ≥ c eu/4.

By Gronwall’s lemma, R̄ is finite and

u ≤ −4 log(R̄− r) + C for r close to R̄.

It remains to prove that u ≥ −4 log(R̄− r) − C. This time, we rewrite (1) as[
rN−1(Δu)′

]′
= λrN−1eu.

We multiply by rN−1(Δu)′ and obtain

1

2

[
r2N−2((Δu)′)2

]′
= λr2N−2eu(Δu)′ ≤ Ceu(Δu)′ ≤ C(euΔu)′.

Hence, for r close to R̄ and C perhaps larger,

((Δu)′)2 ≤ CeuΔu,

and so
√

Δu(Δu)′ ≤ Ceu/2Δu ≤ C ′eu/2u′′ ≤ C ′(eu/2u′)′,

where we have used (63). Integrate to conclude that

(Δu)3/2 ≤ Ceu/2u′.

Solving for Δu and multiplying by (u′)1/3, we obtain in particular that

(u′)1/3u′′ ≤ Ceu/3u′.

Integrating again, it follows that (u′)4/3 ≤ Ceu/3, i.e.,

u′ ≤ Ceu/4.

It then follows easily that (for r close to R̄)

u ≥ −4 log(R̄− r) − C.

Proof of Proposition 1.5(a). Given N ≥ 13, let bmax denote the supremum of all
parameters b ≥ −4 such that the corresponding extremal solution is singular. We
first observe that

bmax > 0.

In fact, it follows from sections 5 and 6 that the extremal solution u associated to
parameters a = b = 0 is strictly stable:

inf
ϕ∈C∞

0 (B)

∫
B

(Δϕ)2 − λ∗ ∫
B
euϕ2∫

B
ϕ2

> 0.(67)
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Extend u as before on its maximal interval of existence (0, R̄). Choosing R ∈ (1, R̄)
close to 1, we deduce that (67) still holds on the ball BR. In particular, letting
v(x) = u(Rx) − u(R) for x ∈ B, we conclude that v is a singular stable solution of
(1) with a = 0 and b = Ru′(R) > 0. By Proposition 1.7, we conclude that bmax > 0.
We now prove that

bmax < ∞.

Assume this is not the case and let un denote the (singular) extremal solution asso-
ciated to bn, where bn ↗ ∞. We first observe that there exists ρn ∈ (0, 1) such that
u′
n(ρn) = 0. Otherwise, un would remain monotone increasing on (0, 1) and hence

bounded above by un(1) = 0. It would then follow from (1) and elliptic regularity
that un is bounded. Let vn(x) = un(ρnx) − un(ρn) for x ∈ B and observe that vn
solves (1) with a = b = 0 and some λ = λn. Clearly vn is stable and singular. By
Proposition 1.7, vn coincides with u, the extremal solution of (1) with a = b = 0. By
standard ODE theory, vn = u on (0, R̄). In addition,

bn = u′
n(1) =

1

ρn
v′n

(
1

ρn

)
=

1

ρn
u′

(
1

ρn

)
→ +∞,

which can happen only if 1/ρn → R̄.
Now, since un is stable on B, u = vn is stable on B1/ρn

. Letting n → ∞, we
conclude that u is stable on BR̄. This clearly contradicts Lemma 7.1.

We have just proved that bmax is finite. It remains to prove that u∗ is singular
when −4 ≤ b ≤ bmax. We begin with the case b = bmax. Choose a sequence (bn)
converging to bmax and such that the corresponding extremal solution un is singular.
Using the same notation as above, we find a sequence ρn ∈ (0, 1) such that

1

ρn
u′

(
1

ρn

)
= bn → bmax.

Taking subsequences if necessary and passing to the limit as n → ∞, we obtain for
some ρ ∈ (0, 1)

1

ρ
u′

(
1

ρ

)
= bmax.

Furthermore, by construction of ρn, u is stable in B1/ρn
and hence in B1/ρ. This

implies that v defined for x ∈ B by v(x) = u(xρ ) − u( 1
ρ ) is a stable singular solution

of (1) with b = bmax. By Proposition 1.7, we conclude that the extremal solution is
singular when b = bmax.

When b = −4, as we have already mentioned in the introduction, u∗ is singular
for N ≥ 13 as a direct consequence of Proposition 1.7 and Rellich’s inequality.

So we are left with the case −4 < b < bmax. Let u∗
m denote the extremal

solution when b = bmax, which is singular, and λ∗
m the corresponding parameter.

For 0 < R < 1 set

uR(x) = u∗
m(Rx) − u∗

m(R).

Then

Δ2uR = λRe
uR , where λR = λ∗

0R
4eu

∗
m(R),
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and uR = 0 on ∂B, while

duR

dr
(1) = R

du∗
m

dr
(R).

By (31), note that

R
du∗

m

dr
(R) → bmax as R → 1, and R

du∗
m

dr
(R) → −4 as R → 0.

Thus, for any −4 < b < bmax we have found a singular stable solution to (1) (with
a = 0). By Proposition 1.7 the extremal solution to this problem is singular.

Proof of Proposition 1.5(b). Let b ≥ −4. Lemma 5.1 applies also for b ≥ −4
and yields u∗ ≤ ū, where ū(x) = −4 log |x|. We now modify slightly the proof of
Lemma 5.2. Indeed, consider w = (4 + b)(1 − r2)/2 and define u = ū− w. Then

Δ2u = 8(N − 2)(N − 4)
1

r4
= 8(N − 2)(N − 4)eū = 8(N − 2)(N − 4)eu+w

≤ 8(N − 2)(N − 4)e(4+b)/2eu.

Also u(1) = 0 and u′(1) = b, so u is a subsolution to (1) with parameter λ0 =
8(N − 2)(N − 4)e(4+b)/2.

If N is sufficiently large, depending on b, we have λ0 < N2(N − 4)2/16. Then
by (6) u is a stable subsolution of (1) with λ = λ0. As in Lemma 5.2 this implies
λ∗ ≤ λ0.

Thus for large enough N we have λ∗eu
∗ ≤ r−4 8(N − 2)(N − 4)e(4+b)/2 <

r−4N2(N − 4)2/16. This and (6) show that

inf
ϕ∈C∞

0 (B)

∫
B

(Δϕ)2 − λ∗ ∫
B
eu

∗
ϕ2∫

B
ϕ2

> 0,

which is not possible if u∗ is bounded.
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GENERIC VALIDITY OF THE MULTIFRACTAL FORMALISM∗

A. FRAYSSE†

Abstract. The multifractal formalism is a conjecture which gives the spectrum of singularities
of a signal using numerically computable quantities. We prove its generic validity by showing that
almost every function in a given function space is multifractal and satisfies the multifractal formalism.
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1. Introduction. One motivation of multifractal analysis was the study of fully
developed turbulent flows. Indeed, some experimental results obtained in wind tunnels
showed that the regularity of the velocity of a turbulent fluid changes wildly from point
to point. This quantity is therefore hard to compute. Hence, rather than measure
the exponent at some point, one rather estimates the fractal dimension of sets where
it takes a given value H.

The spectrum of singularities d(H) is the function which gives the Hausdorff
dimension of those sets. From its definition, it is also almost impossible to obtain
numerically the spectrum of singularities.

In [9], physicists Frisch and Parisi proposed an algorithm in order to derive the
spectrum of singularities from quantities that are effectively computable on a signal.
They proposed using the Lp modulus of continuity of the velocity, used in the theory
of turbulent flows; see [17]. This average quantity is called the scaling function, or
scaling exponent, and is denoted by ξf . It is defined by

∫
|f(x+l)−f(x)|pdx ∼ |l|ξf (p),

where ∼ means that
∫
|f(x+l)−f(x)|pdx is of the order of magnitude of |l|ξf (p) when l

tends to 0 (assuming that the limit exists). Numerical estimations and further results
about the scaling function and its wavelet decomposition can be found in [1, 2].

Frisch and Parisi proposed that the spectrum of singularities of a function can be
obtained as follows:

(1) d(H) = inf
p∈R

(pH − ξf (p) + d);

see [9] for a heuristic derivation of this formula.

First, we state the mathematical framework of multifractal analysis. The main
notion we need to define is the Hölder exponent.

Definition 1. Let α ≥ 0; a function f : R
d → R is Cα(x0) if for all x ∈ R

d such
that ‖x − x0‖ ≤ 1 there exist a polynomial P of degree less than [α] and a constant
C > 0 such that

(2) |f(x) − P (x− x0)| ≤ C‖x− x0‖α.
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The Hölder exponent of f at x0 is

hf (x0) = sup{α : f ∈ Cα(x0)}.

It was proved in [14] that for p ≥ 1, the scaling function ξf (p) is closely related to
Sobolev or Besov smoothness. It is thus natural to replace the scaling function ξf (p)
as follows:

(3) If p > 0, ηf (p) = sup{s : f ∈ Bs/p,∞
p }.

So (1) applied to ηf can at most give the increasing part of the spectrum.
Defining, as in [16], an auxiliary function s(1/p) = η(p)/p, the Besov domain of a

function f is the set of (q, t) such that f ∈ B
t,1/q
1/q . The boundary of the Besov domain

of f is then given by the graph of s(q). And by Sobolev embeddings, the Besov domain
of a function is a convex set. Thus, the functions η satisfying (3) are increasing and
concave. Furthermore the auxiliary function s is such that 0 ≤ s′(q) ≤ d. These facts
lead us to the following definition.

Definition 2. A function η is admissible if s(q) = qη(1/q) is concave and
satisfies 0 ≤ s′(q) ≤ d. Furthermore it is strongly admissible if s(0) > 0.

The following important result from [16] allows us to define a metric space using
admissible functions.

Proposition 3. Any concave function s satisfying 0 ≤ s′(q) ≤ d defines the
Besov domain of a distribution f .

Thanks to Proposition 3, a metric space V can be associated to each admissible
function η by taking

V =
⋂

ε>0,0<p<∞
B

(η(p)−ε)/p,p
p,loc .

For the sake of completeness, we also recall the definition of Legendre transforms.
Definition 4. Let f be a lower semicontinuous function defined in a normed

vector space E. Then the Legendre transform of f is

(4) f∗(x) = sup
y∈E

(f(y) − xy).

This function is convex and lower semicontinuous.
In the present paper, we propose to study the validity of (1) for ηf (p). An equiv-

alent form of this heuristic formula is satisfied by a large class of invariant measures;
see [4, 6, 19]. In the context of signal analysis, this conjecture is often satisfied if we
add particular assumptions on f , such as self-similarity. On the other hand, there
exist counterexamples to the general validity of this formula. And then, if it does not
hold for every function, what is its range of validity? Our purpose here is to show that
the validity of formula (1) is not an exceptional phenomenon, but it is satisfied for a
large class of functions, without any additional assumption. More precisely, we study
the validity of this formula for “almost every” function, i.e., in a measure-theoretic
sense.

In a finite-dimensional space, the notion of “almost every” means “for the Lebesgue
measure.” The particular role played by this measure is justified by the fact that this
is the only one which is σ-finite and invariant under translation. In a metric infinite-
dimensional space no measure enjoys these properties. The following definition (see
[5, 7, 11]) can thus replace the notion of the vanishing Haar measure.
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Definition 5. Let V be a complete metric vector space. A Borel set B in V is
called Haar-null if there exists a probability measure μ with compact support such that

(5) μ(B + v) = 0 ∀v ∈ V.

In this case the measure μ is said to be transverse to B.
A subset of V is called Haar-null if it is contained in a Borel Haar-null set.
The complement of a Haar-null set is called a prevalent set.
In a slight abuse of language we will say that a property is satisfied almost every-

where when it holds on a prevalent set.
Let us recall some properties of Haar-null sets; see [7, 11].
Proposition 6.

1. If S is Haar-null, then for all x ∈ V , x + S is Haar-null.
2. If dim(V ) < ∞, S is Haar-null if and only if meas(S) = 0 (where meas

denotes the Lebesgue measure).
3. Prevalent sets are dense.
4. If S is Haar-null and S′ ⊂ S, then S′ is Haar-null.
5. The union of a countable collection of Haar-null sets is Haar-null.
6. If dim(V ) = ∞, compact subsets of V are Haar-null.

Several kinds of measures can be used as transverse measures of a Borel set. Here,
we will use only the following notion.

Definition 7. A finite-dimensional space P is called a probe for a set T ⊂ V if
the Lebesgue measure on P is transverse to the complement of T .

Those measures are not compactly supported probability measures. However, one
immediately checks that Definition 7 is equivalent to the same one stated with the
Lebesgue measure defined on the unit ball of P . Note that in this case, the support
of the measure is included in the unit ball of a finite-dimensional subspace. The
compactness assumption is therefore fulfilled.

The study of generic regularity for a “large” set of functions goes back to Banach
[3], who gave differentiability properties of continuous functions for quasi-all functions
in the Baire’s categories sense. Later Hunt [12] proved the same result in the measure-
theoretic sense of prevalence.

In [16], Jaffard studied properties of generic functions, in the Baire’s categories
sense, in Sobolev spaces. He also proved that in the sense of Baire’s categories quasi-all
functions in V satisfy

(6) d(H) = inf
p≥pc

(pH − η(p) + d),

where pc is the only critical point such that η(p) = d.
In this paper we will study the validity of the Frisch–Parisi conjecture for almost

every function in the prevalence setting. The aim of this paper is to prove the following
theorem.

Theorem 8. Let η be a strongly admissible function, and let V be the space
defined by

(7) V =
⋂

ε>0,0<p<∞
B

(η(p)−ε)/p,p
p,loc ;

then, in the sense of prevalence, almost every function f in V satisfies the following
two conditions:
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1. For all p > 0,

ηf (p) = η(p).

2. The spectrum of singularities is defined on the interval [s(0), d
pc

] and is given
by

(8) df (H) = inf
p≥pc

(pH − ηf (p) + d),

where pc is the only critical point such that η(pc) = d.

Remark 1. We require that η is strongly admissible. Otherwise, according to [8],
almost every function in V is nowhere locally bounded.

In section 2 we will solve a simpler problem. We will prove that almost every
function in a given intersection of a Sobolev or a Besov space and a Hölder space
satisfies a slight modification of the Frisch–Parisi conjecture. We will first establish
their spectrum of singularities.

Theorem 9. If γ > 0 and s − d
p < 0, the spectrum of singularities of almost

every function in Bs,q
p

⋂
Cγ or in Lp,s

⋂
Cγ is given by

d(H) =

{
d+(γ−s)p

γ H if H ∈
[
γ, dγ

d+(γ−s)p

]
,

−∞ otherwise.

Remark 2. Using the Sobolev embeddings Bs,1
p ↪→ Lp,s ↪→ Bs,∞

p , the same result
holds in Sobolev and in Besov spaces. As Besov spaces have a very simple wavelet
characterization, we will prove the result in these spaces only. To obtain the Sobolev
case, we only need to set q = ∞ in the following.

In Theorem 9 we state only the spectrum of singularities of functions in the case
Bs,q

p ∩ Cγ where s − d
p < 0. Other cases are proven in [8]. Moreover we recall the

following result from [8].

Proposition 10.

(i) If s − d/p < 0, then almost every function in Lp,s or in Bs,q
p is nowhere

locally bounded, and therefore its spectrum of singularities is not defined.
(ii) If s− d/p > 0, then the Hölder exponent of almost every function f of Lp,s,

or of Bs,q
p , takes values in [s− d/p, s] and

(9) ∀H ∈ [s− d/p, s] , df (H) = Hp− sp + d;

furthermore, for almost every x, hf (x) = s.

Our purpose here is to expand the result of [8] by taking an intersection of Besov
spaces.

The main tool that we will use in the following is the wavelet expansion of func-
tions. First, it yields a simple characterization of functional spaces and offers a simple
condition for pointwise regularity. Let us recall some properties of the wavelet expan-
sion.

There exist 2d − 1 oscillating functions (ψ(i))i∈{1,...,2d−1} in the Schwartz class
such that the functions

2djψ(i)(2jx− k), j ∈ Z, k ∈ Z
d,
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form an orthonormal basis of L2(Rd); see [18]. Wavelets are indexed by dyadic cubes
λ = ( k

2j ; k+1
2j )d. Thus, any function f ∈ L2 can be written as

f(x) =
∑

c
(i)
j,kψ

(i)(2jx− k),

where

c
(i)
j,k = 2dj

∫
f(x)ψ(i)(2jx− k)dx.

(Note that we use an L∞ normalization instead of an L2 one, which simplifies the for-
mulas.) If p > 1 and s > 0, the Sobolev space has thus the following characterization
(see [18]):

(10) f ∈ Lp,s ⇔
(∑

λ∈Λ

|cλ|2(1 + 4js)χλ(x)

)1/2

∈ Lp(Rd),

where χλ(x) denotes the characteristic function of the cube λ and Λ is the set of
all dyadics cubes. Homogeneous Besov spaces, which will also be considered, are
characterized (for p, q > 0 and s ∈ R) by

(11) f ∈ Bs,q
p ⇐⇒

∑
j

⎛
⎝∑

λ∈Λj

|cλ|p2(sp−d)j

⎞
⎠

q/p

≤ C,

where Λj denotes the set of dyadics cubes at scale j; see [18]. Note that if p ∈ (0, 1),
Besov spaces are not Banach spaces since they are not locally convex but nonetheless
are separable complete metric vector spaces.

Pointwise regularity can also be expressed in terms of a condition on wavelet
coefficients; see [14].

Proposition 11. Let x be in R
d. If f is in Cα(x), then there exists c > 0 such

that for all λ,

(12) |cλ| ≤ c2−αj(1 + |2jx− k|)α.

In the following we will also call the “cone of influence above x0 of width L” the
set of couples (j, k) (or of cubes λ) such that

∣∣k − 2jx0

∣∣ ≤ L

(we use the norm on R
d: |x| = supi=1,...,d |xi|).

2. Multifractal formalism in a given Besov space. The Frisch–Parisi con-
jecture gives the spectrum of singularities as the Legendre transform of the scaling
function. We will determine the validity of this formula for measure-theoretic generic
functions in a given Besov space in two steps. First we will prove Theorem 9, which
gives the spectrum of singularities of almost every function. Afterwards, we will give
the prevalent scaling function. This allows us to compare the spectrum obtained with
the one given by formula (1) applied to the scaling function.
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2.1. Proof of Theorem 9. Proposition 10 states that if s− d
p < 0, almost every

function in Bs,q
p is nowhere locally bounded and the spectrum of singularities is not

defined for any H. To define this spectrum, we need to assume a minimum uniform
regularity. That is why, in the following, we choose s− d

p < 0 and 0 < γ < s and we
study almost every function in Bs,q

p ∩ Cγ .
Theorem 2.1 from [13] yields an upper bound of the spectrum of singularities.
Lemma 12. Let s − d

p < 0. For all functions f ∈ Bs,q
p

⋂
Cγ , the Hausdorff

dimension of the set {x : f /∈ Cα(x)} is bounded by d+(γ−s)p
γ α.

We also need the following definition.
Definition 13. Let α ∈ [1, d

d+(γ−s)p ]. A point x0 belongs to Jα if there exists

an infinite sequence (j, k) ∈ N × {0, . . . , 2j − 1}d, k = (k1, . . . , kd), such that for each
i = 1, . . . , d, ki can be written as li2

j−L and

(13)
1

2j
+

∣∣∣∣x0 −
k

2j

∣∣∣∣ < 1

2αL
,

where L := [ (d+(γ−s)p)j
d ]. We define the exponent of approximation of x as α′(x) =

sup{α : x ∈ Jα}.
In [15], it is proved that the Hausdorff dimension of Jα is d

α .

Let α ∈ [1, d
d+(γ−s)p ], ε > 0, and n ∈ N such that N = 2dn > d

εα + 1 is fixed. We

denote H(α) = dγ
α(d+(γ−s)p) and β(α) = H(α) + ε. Each dyadic cube of size 2−dj can

be split into 2dn subcubes i(λ) with side 2−(j+n). We define the probe P spanned by
N functions gr with the following wavelet coefficients drλ:

(14) drλ =

{
j−2/q2−γj if each ki is a multiple of 2j−L and r = i(λ),

0 elsewhere,

where for each j we denote L = [ (d+(γ−s)p)j
d ].

One can check that these functions gr belong to Bs,q
p ∩ Cγ ; see [16].

Let Jα(i, l) = l
2i + [− 1

2αL ,
1

2αL ]d.
Let us first check that the set of points Sc(α) defined by

Sc(α)=
{
f =

∑
cλψλ ∈ Bs,q

p ∩ Cγ : ∃x ∈ Jα ∀j, k |cλ| ≤ c2−β(α)j(1+|2jx− k|)β(α)
}

is a Borel Haar-null set. Indeed this set can be included in the lim sup on i of the
countable union over l of sets:

Sc(α)i,l =
{
f =

∑
cλψλ ∈ Bs,q

p ∩ Cγ : ∃x ∈ Jα(i, l) ∀j, k |cλ|

≤ c2−β(α)j(1 + |2jx− k|)β(α)
}
.(15)

To prove that the sets Sc(α)i,l are closed, we pick a sequence of functions fn in
Sc(α)i,l. Suppose that fn converges to f in Bs,q

p ∩ Cγ . For each n, there exists xn

in Jα(i, l) such that fn satisfies condition (12) at xn. But Jα(i, l) is a compact set,
so there exists x and a subsequence (xn(i))i∈N such that xn(i) converges to x. As the
mapping that gives wavelet coefficients of a function is continuous, f satisfies also
(12) at x. This means that Sc(α)i,l are closed.

Let f ∈ Bs,q
p ∩Cγ be fixed. Consider the affine subset M = {δ ∈ R

N ; f+
∑

δigi ∈
Sc(α)}. Let δ1 and δ2 be in M . There exists x1 ∈ Jα and x2 ∈ Jα such that for l = 1, 2,

(16)
∣∣∣cλ +

∑
δild

i
λ

∣∣∣ ≤ c2−β(α)j(1 + |2jxl − k|)β(α) ≤ c2−αβ(α)L.
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Furthermore if λ is such that each k is a multiple of 2j−L,

(17) |diλ| >
1

j2/q
2−αH(α)L.

So, by taking (16) and (17) we obtain

‖δ1 − δ2‖RN ≤ 2c2−αβ(α)L2αH(α)Lj2/q = 2cj2/q2−αεL.

When j tends to infinity, the Lebesgue measure of Sc(α) tends to zero.
Now, we take the countable union over c and εn → 0. As Haar-null sets are stable

under inclusion, we obtain

∀α ∈
[
1,

d

d + (γ − s)p

]
a.e. in Bs,q

p ∩ Cγ ∀x ∈ Jα hf (x) ≤ H(α).

Let (αn) be a dense sequence in [1, d
d+(γ−s)p ]. As a countable union of Haar-null

sets is still a Haar-null set, for almost every function in Bs,q
p ∩ Cγ ,

(18) hf (x) ≤ H(αn) ∀n ∀x ∈ Jαn .

Let f be a function satisfying (18) and let α be fixed. There exists a nondecreasing
subsequence (αϕn

) which converges to α, and the intersection of the subsets Jαϕn
(:=

J̃α) contains Jα. Furthermore there exists a measure such that any set of dimension
less than d/α is of measure zero. And the measure of Jα is positive. If GH =
{x : hf (x) ≤ H}, with Lemma 12 we have that the Hausdorff dimension of GH is
d+(γ−s)p

γ H. And the d
α Hausdorff measure of the set {x : hf (x) < H} equals zero.

Thus for almost every function in Bs,q
p ∩ Cγ ,

d(H) =
d + (γ − s)p

γ
H for H ∈

[
γ,

dγ

d + (γ − s)p

]
.

2.2. The scaling function. Let us now determine the scaling function of almost
every function in a given Besov space. We will now show the following result.

Proposition 14. Let s0 and p0 be fixed such that s0 − d
p0

> 0. Outside a
Haar-null set in Bs0,∞

p0
, we have

(19) ηf (p) =

{
ps0 if p ≤ p0,

d + p(s0 − d
p0

) if p ≥ p0.

Let 0 < γ < s0 be fixed. If s0 − d
p0

< 0, then outside a Haar-null set in Bs0,p0
p0

⋂
Cγ ,

(20) ηf (p) =

{
ps0 if p ≤ p0,

γp + p0(s0 − γ) if p ≥ p0.

Proof. In each case, we can find in [20] the lower bound. Indeed, this bound is
given by the Sobolev embedding.

To prove the upper bound, we will first consider the case s0 − d
p0

> 0. Let ε > 0
be fixed and denote

s̃(p) =

{
s0 + ε, p ≤ p0,
d
p + (s0 − d

p0
) + ε, p ≥ p0.
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Let 0 < p0 < ∞ be fixed. We want to show that the set of functions belonging to

B
s̃(p),∞
p for all 0 < p < ∞ is Haar-null. This set is clearly closed and Borel in Bs0,∞

p0
.

Let j ≥ 1 and k ∈ {0, . . . , 2j − 1}d. We define J ≤ j and K ∈ Z
d such that

K

2J
=

k

2j

is an irreducible fraction. Let a > 3
p0

. We define a probe spanned by the function F
with the following wavelet coefficients:

dλ = j−a2( d
p0

−s0)j2−
d
p0

J .

This function belongs to Bs0,p0
p0

.
Let f be in Bs0,p0

p0
and consider the affine subset

M = {α ∈ R; f + αF ∈ Bs̃(p),∞
p }.

Suppose that there exist α1 and α2 in M . We then have three cases, following the
position of p.

(i) If p = p0, then s̃(p) = p0 + ε and

‖f + α1F − (f + α2F )‖
B

s̃(p),∞
p

= sup
j

∑
k∈{0,...,2j−1}d

∣∣∣∣α1 − α2

ja
2(s̃− d

p0
)j2( d

p0
−s0)j2−

d
p0

J

∣∣∣∣
p0

= sup
j

∣∣∣∣∣α1 − α2

ja

∣∣∣∣∣
p0

2p0εj

j∑
J=0

∑
K∈{0,...,2J−1}d

2−dJ

= sup
j

j + 1

2

∣∣∣∣∣α1 − α2

ja

∣∣∣∣∣
p0

2p0εj .

But if α1 and α2 belong to M , this implies that f + α1F − (f + α2F ) belong to

B
s̃(p),∞
p . This is possible only if α1 = α2.

(ii) If p > p0, then s̃(p) = d
p + (s0 − d

p0
) + ε. In this case, f + α1F − (f + α2F )

belong to B
s̃(p),∞
p , implying that there exist c > 0 such that

‖f + α1F − (f + α2F )‖
B

s̃(p),∞
p

≤ ‖f + α1F‖
B

s̃(p),∞
p

+ ‖f + α2F‖
B

s̃(p),∞
p

≤ c.

We then have the following inequalities:

∀j > 0
∑

k∈{0,...,2j−1}d

∣∣∣∣α1 − α2

ja
2(s̃− d

p )j2( d
p0

−s0)j2−
d
p0

J

∣∣∣∣
p

≤ c,(21)

∀j > 0

∣∣∣∣∣α1 − α2

ja

∣∣∣∣∣
p

2(s̃− d
p )pj2( d

p0
−s0)pj

j∑
J=0

∑
K∈{0,...,2J−1}d

2−
dp
p0

J ≤ c,

∀j > 0

∣∣∣∣α1 − α2

ja

∣∣∣∣
p j∑
J=0

2(d− dp
p0

)J ≤ c2(−s̃+ d
p−

d
p0

+s0)pj ,

∀j > 0

∣∣∣∣α1 − α2

ja

∣∣∣∣ ≤ c2(−s̃+ d
p−

d
p0

+s0)j

∣∣∣∣ 1

1 − 2j(d−d p
p0

)

∣∣∣∣
1
p

.
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As p > p0, 1 − 2j(d−d p
p0

) is equivalent to 1 and (21) implies

|α1 − α2| ≤ cja2−εj ,

which tends to zero when j tends to infinity.

(iii) If p < p0, then s̃(p) = s0 + ε and |1 − 2j(d−d p
p0

)| is equivalent to 2j(d−d p
p0

).
Thus in (21), we obtain again

|α1 − α2| ≤ cja2−εj .

In each case we have obtained that M is of Lebesgue measure zero. Taking a
countable union over ε → 0, and over p, we obtain the desired scaling exponent.

The second case, for s0 − d
p0

< 0, can be treated the same way as for p ≤ p0. For
the case p > p0 a modification is made by taking, instead of F , the function G with
wavelet coefficients dj,k given by

dj,k = j−2/q2−γj if each ki is a multiple of 2j−L,

where for each j we take L = [ (d+(γ−s)p)j
d ].

From Theorem 9 and Proposition 14, we obtain the following Legendre transform
of the scaling function of almost every function in a given Besov space.

Proposition 15. Let s0 > 0 and 0 < p0 < ∞.
(i) If s0 − d

p0
> 0, then for almost every function in Bs,q

p ,

(22) ∀H ∈
[
s0 −

d

p0
, s0

]
inf
p>0

(d− η(p) + Hp) = d− p0s0 + Hp0.

(ii) If s0 − d
p0

< 0, then for almost every function in Bs,q
p

⋂
Cγ , we have

(23) ∀H ∈ [γ, s0] inf
p>0

(d− η(p) + Hp) = d− p0s0 + Hp0.

This proposition shows that for s0 − d
p0

> 0, the increasing part of the spectrum
given by Frisch–Parisi conjecture is valid for almost every function. But for s0− d

p0
< 0,

this Legendre transform does not correspond to the spectrum of singularities given
by Theorem 9.

3. The Frisch–Parisi conjecture. We will now prove Theorem 8. Instead of
Bs0,q0

p0
we will now work with

V =
⋂

ε>0,0<p<∞
B

(η(p)−ε)/p,p
p,loc .

This set V can also be written as a countable intersection over B
(η(pn)−εn)/pn,pn

pn,loc
.

Note that V is a topological vector space. For p < 1 Besov spaces are only quasi-
Banach spaces; as the triangle inequality is satisfied only up to a constant, V is not
a Banach space but a complete metric space. Indeed, if p ≥ 1, we take for distance
between two functions f and g in Bs,q

p

d(f, g) =
∑
j≥0

⎛
⎝ ∑

k∈{0,...,2j−1}d

∣∣∣(cj,k − dj,k)2
(s− d

p )j
∣∣∣p
⎞
⎠

q
p

,
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where cj,k are the wavelet coefficients of f , and dj,k are those of g.
If p < 1, Besov spaces are not Banach spaces, but complete metric spaces with

the following distance:

d(f, g) =

⎛
⎜⎝∑

j≥0

⎛
⎝ ∑

k∈{0,...,2j−1}d

|(cj,k − dj,k)2
(s− d

p )j |p
⎞
⎠

q
p

⎞
⎟⎠

min(p,q)
q

.

Thus, we obtain a distance in V by taking

∀f, g ∈ V d(f, g) =
∑
n

2−n dn(f, g)

1 + dn(f, g)
,

where dn denotes the distance in B
(η(pn)−εn)/pn,pn

pn,loc
. With this distance, V is clearly

a complete space. Note that the measure used is the Lebesgue measure on the unit
ball of a probe, so this is a probability measure with compact support.

In the following subsection we prove that the spectrum of singularities of almost
every function in V satisfies

d(H) = inf
p≥pc

(pH − η(p) + d).

3.1. Proof of Theorem 8. Let us now study the spectrum of singularities on
a prevalent set of functions in V .

Proposition 16. For almost every function f ∈ V , the spectrum of singularities
satisfies

(24) ∀H ∈
[
s(0),

d

pc

]
d(H) = inf

p≥pc

(Hp− η(p) + d).

Proof. We will first construct the probe. Denote

a(j, k) = inf
p

(
d(j − J) − η(p)j

p

)

and define g via its wavelet coefficients,

(25) dλ =
1

ja
2a(j,k),

where we define a = aj = log j, and J ≤ j is such that there exists K ∈ Z
d and

k
2j = K

2J is an irreducible form.
First, we check that g belongs to V . Let p > 0 be fixed. Thus we have to show that

g ∈ B
η(p)/p,∞
p . Let s = η(p)

p . Since a(j, k) ≤ d(j−J)
p − sj, pa(j, k) + (η(p)− p)j = −Jd

and g ∈ B
η(p)/p,∞
p . For further details on this function g, the reader is referred to

[16].
Definition 17. Let α be fixed. We denote by Fα the set of α-approximable points

defined by

(26) Fα =

{
x : ∃ a sequence ((kn, jn))n∈N

∣∣∣∣x− kn
2jn

∣∣∣∣ ≤ 1

2αjn

}
.
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The dyadic exponent of x is defined by α(x0) = sup{α : x0 is α-approximable by
dyadics}.

As stated in [16], the Hausdorff dimension of the set Fα is at least d
α .

First, let α ∈ (1,∞) be fixed, and let Fα be the set given by Definition 17. Let
ε > 0 be fixed, and let

H(α) =
1

α
sup
ω≥α

(
ω sup

q>0

(
s(q) − d

(
1 − 1

ω

)
q

))

and γ = γ(α) = H(α) + ε.
Let n ∈ N be such that N = 2dn > d

ε + 1 is fixed. The probe P is spanned by
N functions gi which are deduced from g by taking its wavelet coefficients only over
some subcubes i(λ) with size 2−d(j+n). The aim of this part is to prove that the set
of functions f such that there exists a point in Fα where f is Cγ is a Haar-null set.
This set is included in the countable union over c > 0 of

Sc(α) =
{
f =

∑
cλψλ : ∃x ∈ Fα ∀j, k |cλ| ≤ c2−γ(α)j(1 + |2jx− k|)γ(α)

}
.

And we have already seen that

H(α) =
1

α
sup
ω≥α

(
ω sup

q>0

(
s(q) − d

(
1 − 1

ω

)
q

))
≥ −a(j, k)

for some j and k.
Let x ∈ Fα be fixed and let λ be such that |x − λ| ≤ A. If A > 2N , for all

functions gi, the wavelet coefficients indexed by those λ satisfy

(27) |diλ| ≥
c(A)

ja
2−H(α)j .

We will now prove that the set Sc(α) is a Borel Haar-null set. First, this set is
included in the countable union over (i, l) of

Sc(α)i,l =
{
f =

∑
cλψλ : ∃x ∈ F i,l

α ∀j, k |cλ| ≤ c2−γ(α)j(1 + |2jx− k|)γ(α)
}
,

where F i,l
α = {x :

∣∣x− l
2i

∣∣ ≤ 1
2αi }. This set Sc(α)i,l is a closed set and Sc(α) is a

Borel set. Let f be in V , and let β1 and β2 be such that the functions f +
∑

βi
1g

i

and f +
∑

βi
2g

i are in Sc(α)i,l. There exist two points x1 and x2 in F i,l
α such that in

the cone of influence above x1 and x2,∣∣∣cλ +
∑

βi
1d

i
λ −

(
cλ +

∑
βi

2d
i
λ

)∣∣∣ ≤ 2c2−γ(α)j .

However, ∣∣∣cλ +
∑

βi
1d

i
λ −

(
cλ +

∑
βi

2d
i
λ

)∣∣∣ =
∣∣∣∑βi

1d
i
λ − βi

2d
i
λ

∣∣∣
and with (27),

∣∣∣∑βi
1d

i
λ − βi

2d
i
λ

∣∣∣ ≥ ∣∣∣∑βi
1 − βi

2

∣∣∣ c(A)

ja
2−H(α)j .
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Thus,

‖β1 − β2‖RN ≤ c̃ja2−εj .

So the Lebesgue measure in R
N of the set of β such that f + βg belongs to Sc(α)i,l

is bounded by (c̃ja)N2−Nεj .
The Lebesgue measure of the set of β such that f +

∑
βigi belongs to Sc(α)

vanishes. Therefore Sc(α) is Haar-null.
By taking a countable union over cn > 0 of sets Sc(α), the set of functions in V

with a pointwise Hölder exponent greater than γ(α) in a point of Fα is also Haar-null.
If εn → 0, then by taking the union over εn it follows that for all α ≥ 1 the set
of functions in V with a Hölder exponent greater than H(α) in some point of Fα is
Haar-null.

Let αn be a dense sequence in (1,∞). By a countable intersection

(28) M = {f ∈ V : ∀n ∀x ∈ Fαn hf (x) ≤ H(α)}

is prevalent. Let f ∈ M and let α ≥ 1. There exists a subsequence αφ(n) which is
nondecreasing and tends to α. If we denote by F̃α the intersection of sets Fαn

, then it
follows that F̃α contains Fα. Furthermore, the Hausdorff dimension of F̃α is greater
than d

α and for all x ∈ F̃α, hf (x) ≤ H(α).
To conclude the second point of Theorem 1, we rewrite H(α) in the following

form:

H(α) =
1

α
inf
a≥α

G(a),

where G(a) = supq(a(−qd+s(q))+qd) = a supq(qd(−1+ 1
a )+s(q)) = a s∗

(
d
(
1 − 1

a

))
.

Here s∗ is the Legendre transform of s. By definition of the Legendre transform, this
is a convex function. Furthermore it satisfies

(29)

{
s∗(h) = +∞ if h < s′(+∞),

s∗(h) = s(0) if h > s′(0).

And if s∗ is twice differentiable (we refer to [10] for a general case), G is also twice
differentiable and its derivative is

G′(a) = s∗
(
d

(
1 − 1

a

))
+

d

a
(s∗)′

(
d

(
1 − 1

a

))

and

G′′(a) ≥ 0.

Thus G is also convex and there exists a0 such that G(a0) = infa≥0 G(a), a0 being
such that G′(a0) = 0. We also deduce from (29) that

(30)

{
G(a) = +∞ if a < d

d−s′(+∞) ,

G(a) = as(0) if a > d
d−s′(0) .

By definition of s and with the hypothesis that η is an admissible function we
have 0 ≤ s′(q) ≤ d for all q > 0. It follows from (30) that a0 belongs to the interval
( d
d−s′(+∞) ,

d
d−s′(0) ), which is included in [0,∞).
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Another way to treat G is to write G(a) = supq(s̃(q)), where s̃(q) = a(s(q)−qd)+
qd. And if s is also twice differentiable, s̃′(q) = −da+as′(q)+d and s̃′′(q) = as′′(q) < 0.
Thus s̃ is a concave function, and there exists an upper bound q0 which satisfies
s̃′(q0) = −da + as′(q0) + d = 0, and s′(q0) = da−d

a . The value of q0 also depends on
a, so we can now write q0 = q(a).

We can finally write G(a) = a(−q(a)d + s(q(a))) + q(a)d. This function is twice
differentiable and its derivative satisfies

G′(a) = s(q(a)) − dq(a).

If a = a0 is the lower bound of G, we obtain G′(a0) = s(q(a0)) − dq(a0) = 0, so
that s(q(a0)) = dq(a0), that is, q(a0) = qc = 1/pc. Furthermore, G is decreasing for
a ≤ a0 and increasing for a ≥ a0. The following cases are now possible:

(i) If α ≥ d
d−s′(0) , then for all a ≥ α, G(a) = as(0) and H(α) = s(0). So,

dimH({x : hf (x) ≤ s(0)}) = d− s′(0).

(ii) If 1 ≤ α ≤ a0, then

inf
a≥α

G(a) = G(a0) = (a0(−qcd + s(qc)) + qcd) = dqc.

The corresponding value of H is

H(α) =
1

α
inf
a≥α

G(a) =
dqc
α

.

Thus, the spectrum of singularities is defined on the interval [dqca0
, dqc] and for almost

every function, and for all H ∈ [dqca0
, dqc]

dimH({x : hf (x) ≤ H}) =
H

qc
.

Furthermore, we have already seen that

s′(q(a)) =
da− d

a
,

which is an increasing function. As s′ is decreasing, the application a �→ q(a) is itself
decreasing. So, for α ≤ a0, q ≥ qc = 1

pc
and

dimH({x : hf (x) ≤ H}) ≤ inf
p≥pc

(pH − η(p) + d) .

(iii) If a0 ≤ α ≤ d
d−s′(0) , which is equivalent to

inf
a≥α

G(a) = G(α) = α sup
q

(
−qd + s(q) +

qd

α

)
,

we obtain

H(α) = sup
q

(
−qd + s(q) +

qd

α

)
.

So for almost every function, for all H ∈ [s(0), dqc
a0

],

dimH({x : hf (x) ≤ H}) = inf
p≥pc

(pH − η(p) + d) ≤ inf
p≥pc

(pH − η(p) + d) .
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Furthermore (see [16]), the spectrum of singularities of all functions of V satisfies

(31) d(H) ≤ inf
p≥pc

(pH − η(p) + d).

This implies that the Hausdorff dimension of the set {x : hf (x) < H} is strictly
less than d

α . As proved in [14], there exists a measure mα such that mα({x : hf (x) ≤
H}) > 0. But by definition of the Hausdorff dimension, mα({x : hf (x) < H}) = 0.
Then mα({x : hf (x) = H) > 0 and

d(H) ≥ inf
p≥pc

(pH − η(p) + d).

Proposition 18. For almost every function f in V , the scaling function of f
satisfies

ηf (p) = η(p) ∀0 < p < ∞.

Proof. As we have V =
⋂

ε>0,0<p<∞ B
(η(p)−ε)/p,p
p,loc , for any f ∈ V the scaling

function is greater than η(p) for all p. Let τ > 0 and p > 0 be fixed. We denote

τ(p) = η(p)
p + τ . We first prove that the set

M(p) = {f ∈ V ; f ∈ Bτ(p),∞
p }

is a Haar-null set. Let g be the function with wavelet coefficients given by (25), and

let P be the probe spanned by g. First, we check that g does not belong to B
τ(p),∞
p .

We write βj = d(1 − j
J ), where J is defined as in (25). This term βj takes discrete

values, spaced by d
j and between 0 and d. As s is a concave function and 0 ≤ s′(q) ≤ d

for all q, there exists, for j large enough, a βj close to s′(q) such that the line given
by τ(p) + βj(

1
p̃ − 1

p ) is always above the graph of s. Thus

∀p̃ > 0 τ(p) + βj

(
1

p̃
− 1

p

)
> s(1/p).

But a(j, k) = j infp(
βj

p − s(1/p)), and this infimum is attained for a p0 ∈ (0,∞).
Therefore,

a(j, k) ≥ j

(
βj

p
− τ(p)

)

and

‖g‖
B

τ(p),∞
p

≥ sup
j

j−ap2τjp.

Thus g �∈ B
τ(p),∞
p .

Let f be in V . Suppose that there exist α1 and α2 such that the functions

f1 = f + α1g and f2 = f + α2g belong to B
τ(p),∞
p . Then f1 − f2 also belongs to

B
τ(p),∞
p . But

f1 − f2 = (α1 − α2)g,

which is possible only if α1 = α2. Thus M(p) is Haar-null.
Taking countable unions over τ → 0 and p > 0, we obtain that for almost every

f in V , ηf (p) ≤ η(p) for all p > 0.
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CONTINUITY ESTIMATES FOR THE MONGE–AMPÈRE
EQUATION∗
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Abstract. In this paper, we study the regularity of solutions to the Monge–Ampère equation.
We prove the log-Lipschitz continuity for the gradient under certain assumptions. We also give a
unified treatment for the continuity estimates of the second derivatives. As an application we show
the local existence of continuous solutions to the semigeostrophic equation arising in meteorology.
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1. Introduction. In this paper we study the regularity of solutions to the
Monge–Ampère equation

detD2u = f in B1(0),(1.1)

where B1(0) is the unit ball in the Euclidean space Rn. We are mainly concerned
with the log-Lipschitz continuity of the gradient Du,

|Du(x) −Du(y)| ≤ C|x− y|(1 + | log |x− y||), x, y ∈ B1/2(0),(1.2)

which has applications in the existence of continuous solutions to the semigeostrophic
equation [E, L] or, more generally, in the optimal transportation problems [E, V]. We
also study the continuity estimates of the second derivatives D2u under appropriate
conditions.

For the regularity of the Monge–Ampère equation, Caffarelli [C2] established the
interior W 2,p estimates (for any p > 1) for strictly convex solutions when f is positive
and continuous. He also obtained the C2,α estimate when f > 0, f ∈ Cα, α ∈ (0, 1).
In [C3] he proved the C1,α estimate for strictly convex solutions if C1 ≤ f ≤ C2 for
some positive constants C1, C2. By an example in [W2], the C1,α regularity cannot
be improved to W 2,p for large p if f is not continuous.

For the Laplace equation

Δu = f,(1.3)

the log-Lipschitz continuity of Du was established [Y] for f ∈ L∞; see also Theorem
3.9 in [GT]. The log-Lipschitz continuity plays a key role in the existence and unique-
ness of global solutions to the 2-dimensional Euler equation [Y]. A simple proof of the
log-Lipschitz continuity was recently found by the second author [W3]. Considering
applications to the semigeostrophic equation [BB, C5, CuF, CRD, E, L], one wishes to
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know when a solution to the Monge–Ampère equation (1.1) satisfies the log-Lipschitz
continuity. By an example in [W2], the condition C1 ≤ f ≤ C2 is not enough; a
stronger condition is necessary.

In this paper we first give a unified treatment for the continuity estimates of the
second derivatives of solutions to the Monge–Ampère equation. Before stating our
results, we first introduce the modulus of convexity for a convex function u, which is
given by

m(t) = inf{u(x) − �z(x) : |x− z| > t},(1.4)

where t > 0, �z is the tangent plane of u at z. Obviously m is a nonnegative function
of t > 0. When u is strictly convex, it is a positive function.

We also denote

ωf (r) = sup{|f(x) − f(y)| : |x− y| < r}.(1.5)

We say f is Dini continuous if ∫ 1

0

ωf (r)

r
dr < ∞.(1.6)

Theorem 1. Let u ∈ C2 be a strictly convex solution of (1.1). Assume that f
satisfies (1.6) and

C1 ≤ f ≤ C2(1.7)

for some positive constants C1, C2 > 0. Then for all x, y ∈ B1/2(0), we have the
estimate

|D2u(x) −D2u(y)| ≤ C

[
d +

∫ d

0

ωf (r)

r
+ d

∫ 1

d

ωf (r)

r2

]
,(1.8)

where d = |x− y|, C > 0 depends only on n, m, and C1, C2. It follows that
(i) if f is Dini continuous, then u ∈ C2(B1);
(ii) if f ∈ Cα(B1) and α ∈ (0, 1), then

‖u‖C2,α(B1/2) ≤ C

[
1 +

‖f‖Cα(B1)

α(1 − α)

]
;(1.9)

(iii) if f ∈ C0,1(B1), then

|D2u(x) −D2u(y)| ≤ Cd
[
1 + ‖f‖C0,1 | log d|

]
.(1.10)

Note that in the estimate (1.8), the constant C depends also on supB1
(u − �0),

which is in turn determined by m, C1, and C2. Recall that if u is a convex solution
of (1.1), vanishing in ∂Ω, then u is strictly convex [C1]. The C2 estimate in (i) and
the C2,α estimate in (ii) were proved in [W1] and [C2], respectively. See also section
6 of [TW]. Here we give a unified and shorter proof, using an idea from [W3], where
a short and elementary proof of (1.8) for the Laplace and heat equations was given.
Our argument was also inspired by the original idea of Caffarelli [C2].

The main estimate of the paper is the following log-Lipschitz continuity for the
gradient Du.
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Theorem 2. Let u be a strictly convex solution to the Monge–Ampère equation
(1.1), and suppose f is continuous and satisfies (1.7). Then we have the estimate

|Du(x) −Du(y)| ≤ Cd[1 + e−2θψ(d)](1.11)

for any x, y ∈ B1/2(0), where d = |x − y|, C = C(n,m,C1, C2, ωf ), θ is a positive
constant, and

ψ(d) = −
∫ 1

d

ωlog f (r)

r
dr.(1.12)

In particular, we have θ < 1
2 .

Remarks. (i) In Theorem 2 we relax the Dini continuity of f to continuity. If f is
not continuous, we wouldn’t obtain a log-Lipschitz continuous from (1.11) and (1.12).
But we still have a related estimate; see (3.9) and Remark 3.2 below.

(ii) From (1.11) and (1.12), we see that if ωlog f (r) ≤ c0
| log r| for some constant

c0 ≤ 1/2θ, then Du is log-Lipschitz continuous. Our estimate θ < 1
2 implies that Du

is log-Lipschitz continuous if, for small r > 0,

ωlog f (r) ≤ 1

| log r| .(1.13)

(iii) Our estimate (1.11) should be optimal, that is, the log-Lipschitz continuity
does not hold, if ωlog f (r) ≥ C

| log r| for large C. See section 4 for discussion.

(iv) In the application to the semigeostrophic equation in section 4, it suffices to
establish an estimate

|Du(x) −Du(y)| ≤ Cd[1 + η(d)](1.14)

for some positive function η(t) satisfying

∫ e−2

0

1

tη(t)
= ∞.(1.15)

Examples satisfying (1.15) include the function η(t) = | log t| log | log t|. However,
from our argument one sees that there is not much room for inhomogeneous functions
f such that Du satisfies (1.14) and (1.15) but is not log-Lipschitz continuous. This
situation is similar to the Laplace equation (1.3).

Theorems 1 and 2 will be proved, respectively, in sections 2 and 3. We indicate
an application of Theorem 2 on the local existence of continuous solutions to the
semigeostrophic equation in section 4.

2. Proof of Theorem 1. First we collect some basic properties.
Lemma 2.1. Let Ω be a bounded convex domain in Rn. Then there is a unique

minimum ellipsoid containing Ω, which attains the minimum volume among all ellip-
soids containing Ω.

We refer the reader to [G] for a proof. We say a convex set Ω is normalized if
its minimum ellipsoid is a ball. When Ω is normalized, one has Br/n ⊂ Ω ⊂ Br for
concentric balls Br/n and Br [G].

Therefore for any bounded convex domain Ω, there is a unique unimodular linear
transformation T (namely, detT = 1) such that T (Ω) is normalized. Choose an
appropriate coordinate system such that the minimum ellipsoid of Ω is given by E =



CONTINUITY ESTIMATES FOR MONGE–AMPÈRE EQUATION 611

{Σx2
i

a2
i

< 1}, with a1 ≥ · · · ≥ an. Then T is determined by the matrix diag(λ1, . . . , λn),

with

λi =
1

ai
(a1 . . . an)1/n, 1, 2, . . . , n.

Note that λ1 and λn are the least and largest eigenvalues of T , respectively. For
convenience we say in this paper that Ω has a good shape if

λn ≤ c∗λ1(2.1)

for some constant c∗ under control. If Ω has a good shape, then there exist two
concentric balls Br and BR, with R ≤ nc∗r, such that Br ⊂ Ω ⊂ BR.

Let u be a convex function defined in a bounded domain Ω. Following Caffarelli
[C2], we denote, for any y ∈ Ω, h > 0,

S0
h,u(y) = {x ∈ Ω : u(x) < �y(x) + h}(2.2)

the level set of u and denote Sh,u(y) = ∂S0
h,u(y) its boundary, where �y is the tangent

plane of u at y. When no confusion arises we will drop the subscript u, and when y
is the minimum point of u, we will simply write the level set as S0

h.
Lemma 2.2. Let ui, i = 1, 2, be two convex solutions of det D2u = 1 in B1(0).

Suppose ‖ui‖C4 ≤ C0. Then if |u1 − u2| ≤ δ in B1(0) for some constant δ > 0, we
have, for 1 ≤ k ≤ 3,

|Dk(u1 − u2)| ≤ Cδ in B1/2(0).(2.3)

Proof. We have

detD2u2 − detD2u1 =

∫ 1

0

d

dt
det[D2u1 + t(D2u2 −D2u1)]dt

= aij(x)∂i∂j(u2 − u1) = 0.

Since ui satisfies the equation det D2u = 1, it is uniformly convex by the assumption
‖ui‖C4 ≤ C0. Hence the operator L = aij(x)∂i∂j is linear and uniformly elliptic,
with C2 coefficients. By the Schauder estimates of linear elliptic equations, we ob-
tain (2.3).

We also need the following regularity for the Monge–Ampère equation [GT, P].
Lemma 2.3. Let Ω be a bounded convex domain in Rn. Let u be a convex solution

of det D2u = 1 in Ω, vanishing on ∂Ω. If Br(0) ⊂ Ω ⊂ BR(0), then for any Ω′ ⊂⊂ Ω,
there is a constant C > 0, depending only on n, r,R, and dist(Ω′, ∂Ω), such that

‖u‖C4(Ω′) ≤ C.(2.4)

From Lemma 2.3 we have the following.
Lemma 2.4. Let u be a convex solution of det D2u = 1 in Ω which vanishes on

∂Ω. Suppose u attains its minimum at the origin and D2u(0) is the unit matrix (or
uniformly bounded); then the domain Ω is of good shape.

Indeed, if Ω does not have a good shape, one may make a unimodular linear
transform y = Tx to normalize Ω. Then the ratio of the largest and least eigenvalues
of T will be large. By Lemma 2.3, D2

yu(0) is uniformly bounded. Hence D2
xu(0) =

T ′D2
y(0)T cannot be the unit matrix (or uniformly bounded).
Proof of Theorem 1. By subtracting a linear function we suppose

u(0) = 0, Du(0) = 0,



612 HUAI-YU JIAN AND XU-JIA WANG

so that the origin is the minimum point of u. We consider the solution u in the level
set S0

h, where h > 0 is chosen small such that S0
h is compactly supported in B1(0).

By Lemma 2.1 there is a unique unimodular linear transform Th such that Th(S0
h)

is normalized. Hence by making the change x → Thx/
√
h and u → u/h, we may

suppose h = 1, S0
1 is normalized, and∫ 1

0

ω(r)

r
≤ ε,(2.5)

where ω(r) = ωf (r), and ε can be as small as we want, provided h is sufficiently small.
Note that the Monge–Ampère equation is invariant under the change x → Tx and
u → (detT )2/nu for any nondegenerate linear transform T .

Let uk, k = 0, 1, . . . , be the solution of

detD2uk = f(0) in S0
4−k,u,(2.6)

uk = u (= 4−k) on ∂S0
4−k,u.

Denote

ν(t) = sup
z∈B1

{|f(x) − f(y)| : x, y ∈ S0
t2,u(z)},(2.7)

νk = ν(2−k),

which is invariant under unimodular linear transformation of x. If S0
t2,u has a good

shape, then we have ν(t) ≤ ω(Ct).
Since S0

1,u has a good shape, by Lemma 2.3, ‖u0‖C4(S0
3/4,u

) ≤ C. Note that

detD2(1 − Cν0)u ≤ detD2u0 ≤ detD2(1 + Cν0)u in S0
1,u

for some constant C, and u = u0 = 1 on the boundary. By the comparison principle,
we have

(1 + Cν0)(u− 1) ≤ u0 − 1 ≤ (1 − Cν0)(u− 1).

It follows that |u − u0| ≤ Cν0. Similarly we have |u − u1| ≤ Cν1. Hence we obtain
|u1 − u0| ≤ Cν0. Since S0

1,u has a good shape, so does S0
4−1,u. It follows that

‖u1‖C4(S0
3/16,u1

) ≤ C. Replacing the balls B1 and B1/2 in Lemma 2.2 by the level sets

S0
1/8,u1

and S0
1/16,u1

, we obtain

|Dku0(x) −Dku1(x)| ≤ Cν0(2.8)

for x ∈ S0
4−2,u1

, where 1 ≤ k ≤ 3. By Lemma 2.4, the estimate also implies that

S0
4−2,u1

has a good shape.

By induction we assume that S0
4−k−1,u has a good shape, with the constant c∗

(see (2.1)) independent of k. Hence νk ≤ ω(C2−k) for some C > 0 independent of
k (depending on c∗). Applying the same argument to û0 := 4kuk(

x
2k ) and û1 :=

4kuk+1(
x
2k ), we obtain, for x ∈ S0

4−k−2,uk+1
,

|Duk(x) −Duk+1(x)| ≤ C2−kνk,(2.9a)

|D2uk(x) −D2uk+1(x)| ≤ Cνk,(2.9b)

|D3uk(x) −D3uk+1(x)| ≤ C2kνk,(2.9c)
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where 2k in (2.9) is the scaling constant. Hence

|D2u0(x) −D2uk+1(x)| ≤ C

k∑
i=0

νi ≤ C

∫ 1

2−k

ω(r)

r
dr(2.10)

for x ∈ S0
4−k−2,uk+1

, where C > 0 is independent of k.

Estimate (2.10), together with (2.5) and Lemma 2.4, implies that S0
4−k−2,uk+1

has

a good shape, with the constant c∗ independent of k. Denote

û = 4k+1u
( x

2k+1

)
, ûk+1 = 4k+1uk+1

( x

2k+1

)
.(2.11)

Then û and ûk+1 satisfy the equations detD2û = f(2−k−1x) and detD2û = f(0),
respectively. By the comparison principle,

|û− ûk+1| ≤ Cνk+1.(2.12)

Hence S0
4−1,û has a good shape, and so also S0

4−k−2,u has a good shape.
For any given point z near the origin,

|D2u(z) −D2u(0)| ≤ I1 + I2 + I3 =:(2.13)

|D2uk(z) −D2uk(0)| + |D2uk(0) −D2u(0)| + |D2u(z) −D2uk(z)|.

Let k ≥ 1 such that 4−k−4 ≤ u(z) ≤ 4−k−3. Then by (2.9b) and recalling that
ν(t) ≤ ω(Ct),

I2 ≤ C

∞∑
j=k

νj ≤ C

∫ |z|

0

ω(r)

r
.(2.14)

We remark that in the second inequalities in (2.10) and (2.14), the integrand should
be 1

rω(Cr) for some constant C > 0. But from the definition (1.5), we have ω(Cr) ≤
Cω(r).

Next we estimate I3. Let uz,j be the solution of

detD2uz,j = f(z) in S0
4−j ,u(z),(2.15)

uz,j = u on ∂S0
4−j ,u(z).

Let jk = inf{j : S0
4−j ,u(z) ⊂ S0

4−k,u(0)}. Obviously jk ≥ k. We claim that jk ≤ k+ l0

for some fixed l0 independent of k. Indeed, by making the dilation x → 2kx and
u → 4ku, we may assume that k = 0 and u(z) ≤ 4−3. From Caffarelli’s strict
convexity [C1], there exists a constant l0 > 0 such that the tangent plane � of u at z
satisfies

�(x) ≤ u(x) − 4−l0

for any boundary point x of S0
1,u(0). In other words, we have S0

4−l0 ,u
(z) ⊂ S0

1,u(0).

Scaling back, we obtain jk ≤ k+ l0. Note that |uk−uz,k+l0 | ≤ Cνk. Applying Lemma
2.2 to uk and uz,k+l0 in S0

4−k−l0 ,u
(z), we have

|D2uk(z) −D2uz,k+l0(z)| ≤ Cνk.(2.16)
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Similarly to (2.14) we have

|D2u(z) −D2uz,k+l0(z)| ≤ C

∞∑
j=k+l0

νj ≤ C

∫ |z|

0

ω(r)

r
.(2.17)

Combining (2.16) and (2.17), we obtain an estimate for I3.
To estimate I1, denote hj = uj − uj−1. By (2.9c),

|D2hj(z) −D2hj(0)| ≤ C2jνj |z|.(2.18)

Hence

I1 ≤ |D2uk−1(z) −D2uk−1(0)| + |D2hk(z) −D2hk(0)|(2.19)

≤ |D2u0(z) −D2u0(0)| +
∑k

j=1
|D2hj(z) −D2hj(0)|

≤ C|z|
(

1 +
∑k

j=1
2jνj

)

≤ C|z|
(

1 +

∫ 1

|z|

ω(r)

r2

)
.

Hence we obtain (1.8). Note that (1.9) and (1.10) follow readily from (1.8). This
completes the proof of Theorem 1.

3. Proof of Theorem 2. The proof of Theorem 2 is divided into two parts.
The first part is the proof of (1.11) with a large constant θ, and the second one is an
estimate for θ.

The first part is a modification of the proof of Theorem 1. A difference is that
in the proof of Theorem 1, due to (2.5) the level sets S0

4−k,u have a good shape for
all k > 0, and we don’t need to make linear transforms to normalize them. But in
the proof of Theorem 2, due to the lack of (2.5), the level set will in general not
have a good shape. Therefore we have to make linear transforms for every k to keep
these level sets in good shape and estimate carefully the accumulation of all of the
transforms. We also allow discontinuous f in our argument from (3.1) until (3.9).

3.1. By subtracting a linear function we suppose u(0) = 0, Du(0) = 0. By
making a dilation of the axes, we may assume that f(0) = 1. Consider u in the level
set S0

h for some small h > 0 such that S0
h ⊂⊂ B1(0). By making a linear transform

as in section 2, we may assume that h = 1 and S0
1 is normalized. Let νk = ν(2−k) be

as in (2.7). Let uk, k = 0, 1, . . . , be the solution of

detD2uk = fk in S0
4−k,u,(3.1)

uk = u on ∂S0
4−k,u,

where fk is a constant:

fk =
1

2

[
inf{f(x) : x ∈ S0

4−k,u} + sup{f(x) : x ∈ S0
4−k,u}

]
.

We choose such a special constant fk to get a better (smaller) upper bound for the
constant θ in (1.11). In this subsection we will assume fk = 1 by making a dilation
of the axes.

First we make a unimodular linear transform x(0) = T0x such that D2
x(0)u0(0) = I,

where I denotes the unit matrix. Here and below we use D to denote derivatives in x
and Dx(i) to denote derivatives in the new coordinates x(i). By Lemma 2.4, the level
set S0

1
4 ,u

has a good shape.
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We then make a unimodular linear transform x(1) = T1x
(0) such that D2

x(1)u1(0) =
I. Then the level set S0

4−2,u has a good shape, and estimates (2.9) (for k = 1) hold in

the new coordinates x(1).
By induction we assume that D2

x(k−1)uk−1(0) = I. Then by Lemma 2.4, the
level set S0

4−k+1,uk−1
has a good shape. Hence, from the proof of Theorem 1 (see

(2.11) and (2.12)), S0
4−k+1,u has a good shape. We then make a unimodular linear

transform x(k) = Tkx
(k−1) such that D2

x(k)uk(0) = I. More precisely, assume that,

in the coordinates x(k−1), uk has the expansion (after a rotation of axes such that
D2

x(k)uk(0) is diagonal)

uk(x) = uk(0) + aixi +
1

2
bix

2
i + O(|x|3).

Then the transform x(k) = Tkx
(k−1) is given by

Tkx = (b
1
2
1 x1, . . . , b

1
2
nxn),

so that, in x(k),

uk(x) = uk(0) +
ai

b
1/2
i

xi +
1

2
x2
i + O(|x|3),

and the largest eigenvalue of Tk is

λmax(Tk) = max b
1/2
k .(3.2)

Remark 3.1. Here we assume that the constant fk in (3.1) is equal to 1, so that∏n
i=1 bi = 1. If fk 
= 1, then Tk should be given by

Tkx =
1

f
1/2n
k

(b
1
2
1 x1, . . . , b

1
2
nxn),

so that Tk is unimodular, namely, detTk = 1.
After the transform Tk, the level set S0

4−k,uk
has a good shape, and estimates

(2.9) hold in the new coordinates x(k). That is,

|Dx(k)uk(x) −Dx(k)uk+1(x)| ≤ C2−kνk,(3.3a)

|D2
x(k)uk(x) −D2

x(k)uk+1(x)| ≤ Cνk(3.3b)

for x ∈ S0
4−k−1,uk

.
For any given point z near the origin,

|Du(z) −Du(0)| ≤ I1 + I2 + I3 =:

|Duk(z) −Duk(0)| + |Duk(0) −Du(0)| + |Du(z) −Duk(z)|,

where we choose k = kz ≥ 1 such that 4−k−4 ≤ u(z) ≤ 4−k−3. For the estimate of I2,
we have

I2 = |Duk(0) −Du(0)| ≤
∞∑
i=k

|Dui(0) −Dui+1(0)|.

Denote T (i) = Ti · Ti−1 . . . T1 · T0. Let λi be the largest eigenvalue of T (i). Then

|Dui(0) −Dui+1(0)| ≤ λi|Dx(i)ui(0) −Dx(i)ui+1(0)|.
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By (3.3a),

|Dx(i)ui(0) −Dx(i)ui+1(0)| ≤ C2−iνi.

It follows that

|Dui(0) −Dui+1(0)| ≤ Cλi2
−iνi,

where C is independent of i. Hence we obtain

I2 ≤ C

∞∑
i=k

λi2
−iνi.(3.4)

Similarly we have I3 ≤ C
∑∞

i=k λi2
−iνi. To estimate I1, by (3.3b) we have

|D2
x(i)ui(x

(i)) −D2
x(i)ui+1(x

(i))| ≤ Cνi

for any i = 0, 1, . . . , k and x(i) ∈ T (i)(S0
4−i−2,u). Hence

|D2ui(x) −D2ui+1(x)| ≤ Cλ2
i νi

for any x ∈ S0
4−i−2,u.

Denote hi = ui − ui−1. We have

|Dhi(z) −Dhi(0)| ≤ |D2hi| |z| ≤ Cλ2
i νi|z|.

Hence

I1 ≤ |Duk−1(z) −Duk−1(0)| + |Dhk(z) −Dhk(0)|(3.5)

≤ |Du0(z) −Du0(0)| +
∑k

i=1
|Dhi(z) −Dhi(0)|

≤ |Du0(z) −Du0(0)| + C|z|
k∑

i=0

λ2
i νi

≤ C|z|
[

1 +

k∑
i=0

λ2
i νi

]
.

We obtain

|Du(z) −Du(0)| ≤ C
∞∑
i=k

λi2
−iνi + C|z|

[
1 +

k∑
i=0

λ2
i νi

]
.(3.6)

Next we estimate λi. For a fixed i, denote

û = 4iu

(
x(i)

2i

)
, ûi = 4iui

(
x(i)

2i

)
, u∗

i+1 = 4iui+1

(
x(i)

2i

)
.(3.7)

Then û, ûi, and u∗
i+1 satisfy, respectively, the equation detD2û = f(2−ix(i)), fi,

and fi+1. By definition, νi ≥ sup{|f(2−ix(i)) − f(0)| : x(i) ∈ S0
1,û}. Hence by the

comparison principle,

|û− ûi| ≤ Cνi,

|û− u∗
i+1| ≤ Cνi+1.
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It follows that

|ûi − u∗
i+1| ≤ Cνi.

Note that D2
x(i)ui(0) = I. Hence by Lemma 2.2, |D2

x(i)ui+1(0)− I| ≤ Cνi. We obtain

λmax(Ti) ≤ 1 + θνi(3.8)

for some constant θ independent of i (but later we will give a more precise upper
bound of θ for large i). Hence

λi ≤
∏i

j=0
λmax(Tj)

≤
∏i

j=0
(1 + θνj)

= e

∑i

j=0
log(1+θνj)

≤ e
θ
∑i

j=0
νj .

We have therefore established (recall that Du(0) = 0) that

|Du(z)| ≤ C

∞∑
i=k

2−iνie
θ
∑i

j=0
νj + C|z|

[
1 +

k∑
i=0

νie
2θ
∑i

j=0
νj

]
(3.9)

≤ C

∫ 2−k

0

ν(t)e
θ
∫ 1

t

ν(s)
s ds

dt + C|z|
[
1 +

∫ 1

2−k

ν(t)

t
e
2θ
∫ 1

t

ν(s)
s ds

dt

]
.

Remark 3.2. From (3.9) we see that if limt→0 ν(t) < ε for some small ε >
0, then u ∈ C1,α for some α ∈ (1 − 2θε, 1), which also follows from Caffarelli’s

W 2,p estimate. If, furthermore,
∫ 1

0
ν(t)
t < ∞, the above estimate implies that Du is

Lipschitz continuous; namely, D2u is uniformly bounded. In the following we assume
limt→0 ν(t) = 0.

The right-hand side of (3.9) can be simplified as follows. Denote

ϕ(t) = −
∫ 1

t

ν(s)

s
ds.

Assume that ν(t) → 0 at t → 0, so that ϕ(t) = o(| log t|) as t → 0. The first integral
on the right-hand side of (3.9) is equal to∫ r

0

ν(t)e
θ
∫ 1

t

ν(s)
s ds

dt =

∫ r

0

tϕ′(t)e−θϕ(t)dt

=
−r

θ
e−θϕ(r) +

1

θ

∫ r

0

e−θϕ(t),

where r = 2−k. The second integral on the right-hand side of (3.9) is equal to∫ 1

r

ϕ′(t)e−2θϕ(t)dt =
1

2θ
[e−2θϕ(r) − e−2θϕ(1)].

We claim that if ϕ(0) = −∞,∫ r

0

e−θϕ(t) = O(re−θϕ(r)) as r → 0.
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Indeed, noting that rϕ′(r) = ν(r) = o(1), we have

lim
r→0

∫ r

0
e−θϕ(t)

re−θϕ(r)
= lim

r→0

(
∫ r

0
e−θϕ(t))′

(re−θϕ(r))′

= lim
r→0

e−θϕ(r)

e−θϕ(r)(1 − θrϕ′(r))

= 1.

Therefore from (3.9),

|Du(z)| ≤ C2−k[1 + e−θϕ(2−k)] + C|z|[1 + e−2θϕ(2−k)].(3.10)

Claim.

2−k[1 + e−θϕ(2−k)] ≤ C|z|[1 + e−2θϕ(2−k)].(3.11)

Indeed, (3.11) is obvious if 2−k ≤ |z|. If |z| ≤ 2−k, denote h(t) = u(t z
|z| ), α = 2−k/|z|,

β = e−θϕ(2−k). Since h(0) = h′(0) = 0, by convexity, and since u(z) ≥ 4−k−4, we have

h′(t) ≥ 1

t
[h(t) − h(0)] ≥ 4−k−4

|z| = 2−k−8α at t = |z|.

From (3.10),

h′(t) ≤ C2−k(1 + β) + C|z|(1 + β2).

Combining the above two inequalities, we obtain

α ≤ C(1 + β) +
C

α
(1 + β2).

Hence α ≤ C(1 + β), and so

2−k(1 + β) = |z|α(1 + β) ≤ C|z|(1 + β2).

We also obtain (3.11).
We have therefore proved that

|Du(z) −Du(0)| ≤ C|z|[1 + e−2θϕ(2−k)].(3.12)

Note that estimate (3.12) still holds and Du is Lipschitiz continuous if ϕ(0) > −∞.
This is the case treated in section 2.

To obtain (1.11) from (3.12), note that, by Remark 3.2, u ∈ C1,α for any α close to
1. Hence for any ε > 0, the level set S0

t2,u(y) is contained in the ball Bt1−ε(y) provided

t > 0 is sufficiently small. In particular, we have 2−k ≥ |z|1+ε and ν(t) ≤ ω(t1−ε).
With d = |z| we then obtain

|ϕ(2−k)| ≤
∫ 1

d1+ε

ν(t)

t
dt ≤

∫ 1

d1+ε

ω(t1−ε)

t
dt

=
1

1 − ε

∫ 1

d1+ε

ω(t1−ε)

t1−ε
dt1−ε

≤ 1

1 − ε

∫ 1

d1−ε2

ω(t)

t
dt

=
1

1 − ε
|ψ̂(d1−ε2)| ≤ 1

1 − ε
|ψ̂(d)|,
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where

ψ̂(d) = −
∫ 1

d

ωf (r)

r
dr.

We obtain (1.11) at y = 0 with ωlog f replaced by ωf but under the assumption that
f(0) = 1.

To see that estimate (1.11) is actually determined by ωlog f , consider w = u
f1/n(0)

such that detD2w = f̂ =: f
f(0) . We have

|f̂(x) − f̂(0)| =

∣∣∣∣f(x)

f(0)
− 1

∣∣∣∣
≤ (1 + ε) log

f(x)

f(0)

= (1 + ε)[log f(x) − log f(0)]

for x near 0, namely, ωf̂ ≤ (1 + ε)ωlog f for some constant ε > 0. The constant ε
can be as small as we want, provided x is sufficiently close to 0. Recall that we allow
that the constant C in (1.11) depends on the upper and lower bounds of f and the
modulus of continuity of f .

From (3.12) we see that if

ν(t) ≤ 1

2θ | log t|(3.13)

for t > 0 small, then Du is log-Lipschitz continuous.
3.2. To finish the proof of Theorem 2, it remains to prove that θ < 1

2 .
Lemma 3.1. Assume limx→0 f(x) = 1. For any ε > 0, there exists hε > 0

such that, when 0 < h < hε, Sh,u(0) is in the εh
1
2 -neighborhood of a sphere of radius

(2h)1/2 after normalization.
This was proved in [C2, Lemma 7]. Moreover, the condition limx→0 f(x) = 1 can

be relaxed to

limx→0|f(x) − 1| ≤ δ

for some δ > 0 depending on ε. We note that Lemma 3.1 can also be proved by a
blowup argument, as a convex solution of detD2u = 1 must be a quadratic function
if its graph is complete.

Lemma 3.2. Let f(0) = 1 and ν = oscS0
1,u

f . Let u ∈ C4
loc(S

0
1,u) be the solution

of

detD2v = f in S0
1,u, v = 1 on ∂S0

1,u,(3.14)

where f is a constant, f = 1
2 (fmin + fmax), fmin = inf{f(x) : x ∈ S0

1,u}, and
fmax = sup{f(x) : x ∈ S0

1,u}. Then

|u− u| ≤ 3ν

8n
+ Cν2 on ∂S0

1
4 ,u

.(3.15)

Proof. Let umin (umax, respectively) be the solution of detD2v = fmin (fmax,
respectively) in S0

1,u such that v = 1 on ∂S0
1,u. Then

umax − 1 =

(
fmax

fmin

) 1
n

(umin − 1).



620 HUAI-YU JIAN AND XU-JIA WANG

Observe that fmax

fmin
= 1 + ν + O(ν2). We have

(
fmax

fmin

) 1
n = 1 + ν

n + O(ν2). By the
comparison principle,

umax ≤ u ≤ umin.

Hence on S 1
4 ,u

,

|umax| ≤ |umin| +
3ν

4n
+ Cν2.(3.16)

By our choice, f = 1
2 (fmax + fmin). Hence

u =
1

2

(
umin + umax

)
+ O(ν2).

We obtain (3.15). Alternatively we have

u− 1 =

(
f

fmin

) 1
n

(umin − 1),

and, similarly to (3.16), |u| ≤ |umin| + 3ν
8n + Cν2. We also obtain (3.15).

Denote

βn = sup |D2u(0)|,(3.17)

where |D2u| = max|ξ|=1 uξξ, and the sup is taken among all harmonic functions in
the unit ball B1(0) ⊂ Rn satisfying |u| ≤ 1 on ∂B1.

Let û, ûi, and u∗
i+1 be the functions given in (3.7). Then ûi (u∗

i+1, respectively)
satisfies

detD2u = fi (fi+1, respectively) in S0
1,û (in S0

1
4 ,û

, respectively),

where, by Lemma 3.1, the set S0
r2

2 ,û
is a small perturbation of a ball of radius r. As

fi+1 may differ from fi, we introduce a new function v̂i+1, which is the solution of

detD2v = fi in S0
1
4 ,û

, v = û on S 1
4 ,û

.

Then

v̂i+1 −
1

4
=

(
fi

fi+1

) 1
n

(u∗
i+1 −

1

4
).(3.18)

Let

v =
ûi − v̂i+1

‖ûi − v̂i+1‖L∞(S0
1/4,û

)

.

Then v satisfies a linearized Monge–Ampère equation, that is,

detD2v̂i+1 − detD2ûi =

∫ 1

0

d

dt
det[D2ûi + t(D2v̂i+1 −D2ûi)]dt(3.19)

= aij(x)∂i∂j(v̂i+1 − ûi) = 0.
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Notice that, by Lemma 3.1, both ûi and v̂i+1 converge to 1
2 |x|2 as i → ∞. By the

regularity of the Monge–Ampère equation (Lemma 2.3), the matrix {aij} converges
to the unit matrix. Hence from (3.17),

|D2v(0)| ≤ 2(βn + ε),(3.20)

where ε > 0 can be as small as we want, provided i is large enough. The coefficient 2
is due to the fact that vi+1 is defined in S0

1
4 ,û

, which is a small perturbation of B1/
√

2.

By the homogeneous equation (3.19), sup{|ûi − v̂i+1|(x) : x ∈ S0
1
4 ,û

} is attained

on the boundary S 1
4 ,û

. Hence by Lemma 3.2,

sup{|ûi − v̂i+1|(x) : x ∈ S0
1
4 ,û

} ≤ sup{|ûi − û|(x) : x ∈ S 1
4 ,û

}

≤ 3νi
8n

+ O(ν2
i ).

Recall that D2ûi(0) = I. Hence by (3.20),

|D2v̂i+1(0) − I| ≤ (βn + ε)
3νi
4n

+ O(ν2
i ).(3.21)

Note that, by (3.18),

D2v̂i+1 =

(
fi

fi+1

) 1
n

D2u∗
i+1.

Hence by a dilation x →
(
fi/fi+1

)−1/2n
x, we may cancel the coefficient

(
fi

fi+1

) 1
n . It

is obvious that the dilation does not affect the eigenvalues of the mapping Ti in (3.8)
(because Ti is unimodular). Hence by (3.2) and (3.21),

λmax(Ti) ≤
(

1 + (βn + ε)
3νi
4n

) 1
2

.

Therefore we obtain an upper bound for the constant θ in (3.8) (for large i)

θ ≤ 3βn

8n
+ ε.(3.22)

Next we give an upper bound for βn.
Lemma 3.3. Let βn be given in (3.17). Then we have the estimate

βn =
4(n + 2)ωn−1

ωn
√
n

(
n− 1

n

)n−1
2

,(3.23)

where ωn is the area of the unit sphere Sn−1 ⊂ Rn.
Proof. For any small ε > 0, let u be a harmonic function satisfying

unn(0) ≥ sup |D2v(0)| − ε,

where the sup is taken among all harmonic functions v in the unit ball with |v| ≤ 1,
and |D2v| denotes the largest eigenvalue of the matrix D2v. By a rotation of axes we
assume that D2u(0) is diagonal and |D2u(0)| = unn(0). By Green’s representation,

u(x) =
1 − |x|2

ωn

∫
∂B1

g(y)

|x− y|n dy,
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where g is the boundary value of u on ∂B1. Hence

unn(0) =
n + 2

ωn

[∫
∂B1

ny2
ng −

∫
∂B1

g

]
.(3.24)

To compute the above integrals, we make a rearrangement of the function g,
which keeps the integral

∫
∂B1

g invariant, such that g is rotationally symmetric in

x′ = (x1, . . . , xn−1), even in xn, and is monotone increasing in xn for xn ∈ (0, 1). It
is easy to see that the rearrangement will increase the value unn(0).

After the arrangement, g is a function of xn. There exists a constant t ∈ (0, 1)
such that g > 0 when xn > t and g ≤ 0 when xn ≤ t. If g is strictly positive
or negative, we take t = 0 or 1. Let h be a function on ∂B1 which is rotationally
symmetric in x′, even in xn, increasing in xn for xn ∈ (0, 1), and satisfies

∫
∂B1

h = 0.

Then
∫
∂B1

y2
nh ≥ 0 and∫

∂B1

ny2
n(g + h) −

∫
∂B1

(g + h) ≥
∫
∂B1

ny2
ng −

∫
∂B1

g.

Hence to compute sup |D2v(0)|, we may assume furthermore that

g = 1 when xn ∈ (t, 1],(3.25)

g = −1 when xn ∈ [0, t)

for a different t ∈ (0, 1). We have now the family of functions {g = gt}|t∈(0,1). From
the integrand in (3.24), one easily verifies that, among all of the functions g = gt|t∈(0,1),

the sup is attained when t = 1√
n
. Therefore

unn(0) ≤ n + 2

ωn

{∫
Sn−1∩{|xn|> 1√

n
}
(ny2

n − 1) −
∫
Sn−1∩{|xn|< 1√

n
}
(ny2

n − 1)

}
.(3.26)

Notice that unn(0) is invariant if we add a constant to g. Hence∫
Sn−1

(ny2
n − 1) = 0.

We obtain

unn(0) ≤ 2(n + 2)

ωn

∫
Sn−1∩{|xn|> 1√

n
}
(ny2

n − 1).

Denote r = |x′|, a =
√

1 − 1
n . Then y2

n = 1 − r2 and

∫
Sn−1∩{|xn|> 1√

n
}
(ny2

n − 1) = 2ωn−1

∫ a

0

n(1 − r2) − 1√
1 − r2

rn−2dr.

We have ∫ a

0

rn√
1 − r2

=
n− 1

n

∫ a

0

rn−2

√
1 − r2

− 1

n
an−1

√
1 − a2.

Hence ∫ a

0

n(1 − r2) − 1√
1 − r2

rn−2dr = an−1
√

1 − a2.
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We obtain

unn(0) ≤ 4(n + 2)ωn−1

ωn
an−1

√
1 − a2

=
4(n + 2)ωn−1

ωn
√
n

(
n− 1

n

)n−1
2

.

This completes the proof.
The upper bound in (3.23) can be simplified.

Lemma 3.4. Let βn be given in (3.17). Then β2 = 4
π , β3 = 20

√
3

9 , β4 = 9
√

3
π ,

β5 = 168
25

√
4
5 , and, for n ≥ 6,

βn < n + 2.(3.27)

Proof. Since ω2 = 2π, ω3 = 4π, we have obviously β2 = 4
π , β3 = 20

√
3

9 .
For n ≥ 4, denote

β∗
n :=

βn

n + 2
=

4√
n− 1

ωn−1

ωn

(
n− 1

n

)n
2

.(3.28)

We have

ωn = 2

∫
{|x′|<1}

dx′√
1 − |x′|2

= 2ωn−1

∫ 1

0

rn−2

√
1 − r2

dr,

where x′ = (x1, . . . , xn−1). Integration by parts gives∫ 1

0

rn−2

√
1 − r2

dr =
n− 3

n− 2

∫ 1

0

rn−4

√
1 − r2

dr.

Hence we have ∫ 1

0

rn−2

√
1 − r2

dr =
n− 3

n− 2
· · · 2

3
(3.29)

if n is odd, and ∫ 1

0

rn−2

√
1 − r2

dr =
n− 3

n− 2
· · · 1

2

π

2

if n is even. By direct computation, we obtain β4 = 9
√

3
π , β5 = 168

25

√
4
5 , and (3.27) for

n ≤ 10. When n > 10, by (3.28) we have

β∗
n <

4√
e
√
n− 1

ωn−1

ωn
.

If n = 2k > 10 is even, then

ωn−1

ωn
=

1

π

(n− 2)(n− 4) . . . 2

(n− 3)(n− 5) . . . 1
:=

1

π
In.
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Since k+1
k ≤ k

k−1 for all k,

In <

(
n− 2

n− 3

n− 3

n− 4
· · · 10

9

9

8

)1/2
8

7

6

5

4

3

2

1
=

√
n− 2√

8

8

7

6

5

4

3

2

1
.

We obtain

β∗
n ≤

√
2

e

8

7

6

5

4

3

2

1

1

π
< 1.

If n = 2k + 1 is odd, then similarly

β∗
n ≤ 2

3
√
e

9

8

7

6

5

4

3

2
< 1.

This proves (3.27).
Let ε > 0 be sufficiently small; from (3.22) and Lemma 3.4 we have

θ <
1

2
(3.30)

in all dimensions. From (3.30) and (3.13), we see that Du is log-Lipschitz continuous
when ν(t) ≤ 1

| log t| . This completes the proof of Theorem 2.

4. Remarks. The log-Lipschitz continuity in Theorem 2 can be used to prove the
local existence of continuous solutions to the Cauchy problem of the semigeostrophic
equation, which is the transport equation

∂tρ + ∇(vρ) = 0, v = ∇⊥u,(4.1)

coupled with the Monge–Ampère equation

det(D2u + I) = ρ,(4.2)

where ∇⊥u = (−ux2 , ux1) in R2 or ∇⊥u = (−ux2
, ux1

, 0) in R3 [BB, C5, CRD, CuF, E,
L]. We assume the initial condition ρ(·, 0) = ρ0 ∈ C0(Rn) and the boundary condition
Tu(Rn) = Ω∗, where Tu(x) = Du(x) + x and Ω∗ is a given bounded, convex domain.
As in [L] we consider the periodic case. That is, for any �p ∈ Zn, ρ0(x + �p) = ρ0(x).

As the quasi-geostrophic equation, which is the transport equation (4.1) coupled

with the equation u = (−Δ)−
1
2 ρ [CF], the semigeostrophic equation has also been used

as an approximation to the Euler equation [BB, C5, CRD, CuF, E, L]. Recall that for
the 2-dimensional Euler equation, which can be written as a system of the transport
equation (4.1) and the Poisson equation u = (−Δ)−1ρ, the global existence and
uniqueness of smooth solutions were first derived by using the log-Lipschitz continuity
for the Poisson equation [Y]. For the semigeostrophic equation, since the log-Lipschitz
estimate (1.11) depends on the modulus of continuity of log f , our Theorem 2 implies
the local existence of continuous solutions when the initial data ρ0 satisfies

ωlog ρ0
(r) <

1

| log r|(4.3)

for small r. The proof is similar to that in [L], where it is assumed that f is Dini
continuous. The local existence of continuous solutions was first obtained in [L] when
ρ0 is Dini continuous. We also refer the reader to [Br, C4] for the existence and
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regularity of solutions to the Monge–Ampère equation (4.2) subject to the boundary
condition Tu(Ω) = Ω∗, where Ω is a convex domain in Rn.

Next we remark that the L∞-oscillation ωlog f in the estimate (3.9) can be re-
placed by the L1-oscillation, using the following L∞-estimate for the Monge–Ampère
equation.

Lemma 4.1. Let u (respectively, u) be a solution to the Monge–Ampère equation
detD2u = f ≥ 0 (respectively, f) in Ω. Suppose u = u on ∂Ω. Then we have the
estimate

sup
Ω

|u− u| ≤ C|f − f |1/nL1(Ω),(4.4)

where C depends only on n and diam(Ω).
Proof. Let ϕ be the convex solution to

detD2ϕ = |f1/n − f
1/n|n in Ω,

ϕ = 0 on ∂Ω.

Then we have the estimate

| inf ϕ|n ≤ C

∫
Ω

|f − f |.(4.5)

Estimate (4.5) can be established easily as follows. Suppose inf ϕ is attained at
x0 ∈ Ω. Consider a convex function ψ whose graph is the convex cone with a vertex
at (x0, ϕ(x0)) and a base ∂Ω × {xn+1 = 0}. Then ψ = ϕ on ∂Ω and ψ ≥ ϕ in Ω.
Denote by Nϕ the normal mapping of ϕ [P]. Then Nψ(Ω) ⊂ Nϕ(Ω). It follows that

| inf ϕ|n ≤ C|Nψ(Ω)| ≤ C|Nϕ(Ω)| = C

∫
Ω

|f1/n − f
1/n|n.

Noting that |f1/n − f
1/n|n ≤ |f − f |, we obtain

| inf ϕ|n ≤ C

∫
Ω

|f − f |,

where C depends only on n and diam(Ω).

Next, observing that the Monge–Ampère operator M(u) = det1/n D2u is concave,
we have M(u+v

2 ) ≥ 1
2 (M(u) + M(v)) for any convex function u, v. Hence

det1/nD2(u + ϕ) ≥ det1/nD2u + det1/nD2ϕ ≥ f1/n.

Similarly, det1/n D2(u + ϕ) ≥ f
1/n

. By the comparison principle, |u − u| ≤ |ϕ|. We
obtain the estimate.

Finally we would like to point out that estimate (1.11) should be optimal, in the
sense that the gradient Du may not be log-Lipschitz continuous if ωlog f ≥ C

| log r|
for some large C. Indeed, consider the case when u and f are even functions in
dimension two such that u and ui (solutions of (3.1)) attain their minimum at 0.
Then for an appropriate f , there is a positive constant c0 > 0 independent of i such
that |ûi − u∗

i+1| ≥ c0νi and λmax(Ti) ≥ 1 + c0νi (see (3.8) and the formula before it).
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EQUATIONS∗
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Abstract. For a rather general class of equations of Kadomtsev–Petviashvili type, we prove
that the zero-mass (in x) constraint is satisfied at any nonzero time even if it is not satisfied at initial
time zero. Our results are based on a precise analysis of the fundamental solution of the linear part
and its anti-x-derivative.
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1. Introduction. Kadomtsev–Petviashvili (KP) equations are universal for the
modeling of the propagation of long weakly dispersive waves which propagate essen-
tially in one direction with weak transverse effects. As explained in the pioneering
paper of Kadomtsev and Petviashvili [7], they are (formally) obtained in the follow-
ing way. We start from a one-dimensional long-wave dispersive equation which is of
Korteweg–de Vries (KdV) type, i.e.,

(1.1) ut + ux + uux − Lux = 0, u = u(t, x), x ∈ R, t ≥ 0 .

In (1.1) L is a (possibly nonlocal) operator, defined in a Fourier variable by

(1.2) L̂f(ξ) = c(ξ)f̂(ξ),

where c is a real function which is linked to the phase velocity. For instance, the case
c(ξ) = ±ξ2 (L = ∓∂2

x) corresponds to the classical KdV equation. In the context
of water waves, the sign of c(ξ) depends on the surface tension parameter. The case
c(ξ) = |ξ| (L = H∂x) corresponds to the Benjamin–Ono equation, etc. We will
consider here only the case of homogeneous symbols.

As observed in [7] the correction to (1.1) due to weak transverse effects is indepen-
dent of the dispersion in x and is related only to the finite propagation speed properties
of the transport operator M = ∂t + ∂x. Recall that M gives rise to one-directional
waves moving to the right with speed one; i.e., a profile ϕ(x) evolves under the flow of
M as ϕ(x− t). A weak transverse perturbation of ϕ(x) is a two-dimensional function
ψ(x, y) close to ϕ(x), localized in the frequency region

∣∣η
ξ

∣∣ � 1, where ξ and η are the
Fourier modes corresponding to x and y, respectively. We look for a two-dimensional
perturbation M̃ = ∂t +∂x +ω(Dx, Dy) of M such that, similarly to above, the profile

of ψ(x, y) does not change much when evolving under the flow of M̃ . Here ω(Dx, Dy)
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denotes the Fourier multiplier with symbol the real function ω(ξ, η). Natural gen-
eralizations of the flow of M in two dimensions are the flows of the wave operators
∂t ±

√
−Δ which enjoy the finite propagation speed property. Since

ξ +
1

2
ξ−1η2 ∼ ±

√
ξ2 + η2, when

∣∣∣η
ξ

∣∣∣ � 1,

we deduce that

∂t + ∂x +
1

2
∂−1
x ∂2

y ∼ ∂t ±
√
−Δ,

which leads to the correction ω(Dx, Dy) = 1
2∂

−1
x ∂2

y in (1.1).

Of course when the transverse effects are two-dimensional, the correction is 1
2∂

−1
x Δ⊥,

where Δ⊥ = ∂2
y + ∂2

z .
We are thus led to the following model in two dimensions:

(1.3) ut + ux + uux − Lux + ∂−1
x ∂2

yu = 0.

In (1.3), it is implicitly assumed that the operator ∂−1
x ∂2

y is well defined, which a priori
imposes a constraint on the solution u, which, in some sense, has to be an x-derivative.
This is achieved, for instance, if u ∈ S ′(R2) is such that

(1.4) ξ−1
1 ξ2

2 û(t, ξ1, ξ2) ∈ S ′(R2) ,

thus in particular if ξ−1
1 û(t, ξ1, ξ2) ∈ S ′(R2). Another possibility to fulfill the con-

straint is to write u as

(1.5) u(t, x, y) =
∂

∂x
v(t, x, y),

where v is a continuous function having a classical derivative with respect to x, which,
for any fixed y and t �= 0, vanishes when x → ±∞. Thus one has

(1.6)

∫ ∞

−∞
u(t, x, y)dx = 0, y ∈ R, t �= 0,

in the sense of generalized Riemann integrals. Of course the differentiated version of
(1.3), namely

(1.7) (ut + ux + uux − Lux)x + ∂2
yu = 0,

can make sense without any constraint of type (1.4) or (1.6) on u, and so does the
Duhamel integral representation of (1.3),

(1.8) u(t) = S(t)u0 −
∫ t

0

S(t− s)(u(s)ux(s))ds,

where S(t) denotes the (unitary in all Sobolev spaces Hs(R2)) group associated with
(1.3),

(1.9) S(t) = e−t(∂x−L∂x+∂−1
x ∂2

y) .

Let us notice, at this point, that models alternative to KdV-type equations (1.1)
are the equations of Benjamin–Bona–Mahony (BBM) type

(1.10) ut + ux + uux + Lut = 0
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with corresponding two-dimensional “KP–BBM-type models” (in the case c(ξ) ≥ 0)

(1.11) ut + ux + uux + Lut + ∂−1
x ∂2

yu = 0

or

(1.12) (ut + ux + uux + Lut)x + ∂2
yu = 0

and free group

S(t) = e−t(I+L)−1[∂x+∂−1
x ∂2

y ] .

In view of the above discussion, all the results established for the Duhamel form of
KP-type equations (e.g., those of Bourgain [5] and Saut and Tzvetkov [14]) do not
need any constraint on the initial data u0. It is then possible (see, for instance, [10])
to check that the solution u will satisfy (1.7) or (1.12) in the distributional sense but
not a priori the integrated forms (1.3) or (1.11).

On the other hand, a constraint has to be imposed when using the Hamiltonian
formulation of the equation. In fact, the Hamiltonian for (1.7) is

(1.13)
1

2

∫ [
−uLu + (∂−1

x uy)
2 + u2 +

u3

3

]

and the Hamiltonian associated with (1.12) is

(1.14)
1

2

∫ [
(∂−1

x uy)
2 + u2 +

u3

3

]
.

Therefore, the global well-posedness results for KP-I obtained in [11, 8] do need that
the initial data satisfy (in particular) the constraint ∂−1

x ∂yu0 ∈ L2(R2), and this
constraint is preserved by the flow. Actually, the global results of [11, 8] make use
of the next conservation law of the KP-I equation whose quadratic part contains the
L2-norms of uxx, uy, and ∂−2

x uyy. The constraint ∂−2
x ∂yyu0 ∈ L2(R2) is thus also

clearly needed, and one can prove that it is preserved by the flow.
On the other hand, as noticed in [11] there is a serious drawback with the higher

conservation laws of both KP-I and KP-II equations, starting with that involving
the L2-norm of ∂3

xu in its quadratic part. The problem is that this conservation
law contains the L2-norm of (∂−1

x ∂y)u
2, whereas this expression is meaningless for

u ∈ H3(R2). Indeed, for u ∈ H3(R2), using the Lebesgue theorem it is not to hard to
see that if (∂−1

x ∂y)u
2 ∈ L2(R2), then the integral

∫
R
∂y(u

2)(x, y) dx = ∂y
∫

R
u2(x, y) dx

must vanish for every y ∈ R. Since u ∈ L2(R2) this clearly forces u to be identically
zero.

The goal of this paper is to investigate the behavior of a solution to the gen-
eral KP-type equations (1.7), (1.12) which initially does not satisfy the zero-mass
constraint. We will show that, in fact, the zero-mass constraint is satisfied at any
nonzero time t.

At this point we should mention the papers [1, 3, 4] and especially [6], where
the inverse scattering transform machinery is used to solve the Cauchy problem for
KP-I and KP-II without the constraint. The more complete and rigorous results are
obtained in [6] (see also [17]). In the present work we consider a rather general class
of KP or KP–BBM equations and emphasize the key point which concerns only the
linear part: the fundamental solution of KP-type equations is a x derivative of a C1
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with respect to an x-continuous function which, for fixed t �= 0 and y, tends to zero
as x → ±∞. Thus its generalized Riemann integral in x vanishes for all values of
the transverse variable y and of t �= 0. A similar property can be established for the
solution of the nonlinear problem.

The paper is organized as follows. Section 2 deals with the KP-type equations,
while section 3 focuses on KP–BBM-type equations. Section 4 reviews briefly some
extensions: the three-dimensional case and nonhomogeneous dispersion relations.

In what follows, different harmless numerical constants will be denoted by c.

2. KP-type equations.

2.1. The linear case. We consider two-dimensional linear KP-type equations

(2.1) (ut − Lux)x + uyy = 0, u(0, x, y) = ϕ(x, y) ,

where

(2.2) L̂f(ξ) = ε|ξ|αf̂(ξ), ξ ∈ R,

where ε = 1 (KP-II-type equations) or ε = −1 (KP-I-type equations). We denote by
G the fundamental solution

G(t, x, y) = F−1
(ξ,η)→(x,y)

[
eit(εξ|ξ|

α−η2/ξ)
]
.

A priori, we have only that G(t, ·, ·) ∈ S ′(R2). Actually, for t �= 0, G(t, ·, ·) has a very
particular form which is the main result of this section.

Theorem 2.1. Suppose that α > 1/2 in (2.2). Then for t �= 0,

G(t, ·, ·) ∈ C(R2) ∩ L∞(R2).

Moreover, for t �= 0, there exists

A(t, ·, ·) ∈ C(R2) ∩ L∞(R2) ∩ C1
x(R2)

(C1
x(R2) denotes the space of continuous functions on R

2 which have a continuous
derivative with respect to the first variable) such that

G(t, x, y) =
∂A

∂x
(t, x, y).

In addition, for t �= 0, y ∈ R, ϕ ∈ L1(R2),

lim
|x|→∞

(A 
 ϕ)(t, x, y) = 0.

As a consequence, the solution of (2.1) with data ϕ ∈ L1(R2) is given by

u(t, ·, ·) ≡ S(t)ϕ = G 
 ϕ

and

u(t, ·, ·) =
∂

∂x

(
A 
 ϕ

)
.

One therefore has ∫ ∞

−∞
u(t, x, y) dx = 0 ∀y ∈ R, ∀t �= 0
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in the sense of generalized Riemann integrals.
Remark 2.1. It is worth noticing that the result of Theorem 2.1 is related to

the infinite speed of propagation of the KP free evolutions. Let us also notice that the
assumption α > 1/2 can be relaxed if we assume that a sufficient number of derivatives
of ϕ belong to L1. Such an assumption is, however, not natural in the context of the
KP equations.

Remark 2.2. In the case of the classical KP-II equation (α = 2, ε = +1),
Theorem 2.1 follows from an observation of Redekopp [13]. Namely, one has

G(t, x, y) = − 1

3t
Ai(ζ) Ai′(ζ),

where Ai is the Airy function and

ζ = c1
x

t1/3
+ c2

y2

t4/3

for some real constants c1 > 0 and c2 > 0. Thus G(t, x, y) = ∂
∂xA(t, x, y) with

A(t, x, y) = − 1

6c1t2/3
Ai2

(
c1

x

t1/3
+ c2

y2

t4/3

)
and

u =
∂A

∂x

 ϕ =

∂

∂x

(
A 
 ϕ

)
,

which proves the claim for the KP-II equation (the fact that lim|x|→∞ A(t, x, y) = 0
results from a well-known decay property of the Airy function). A similar explicit
computation does not seem to be valid for the classical KP-I equation or for KP-type
equations with general symbols.

Proof of Theorem 2.1. We will consider only the case ε = 1 in (2.1). The analysis
in the case ε = −1 is analogous. It is plainly sufficient to consider only the case t > 0.
We have

(2.3) G(t, x, y) = (2π)−2

∫
R2

ei(xξ+yη)+it(ξ|ξ|α−η2/ξ)dξdη ,

where the last integral has the usual interpretation of a generalized Riemann integral.
We first check that G(t, x, y) is a continuous function of x and y. By the change of
variables

η′ =
t1/2

|ξ|1/2 η,

we obtain

G(t, x, y) =
c

t1/2

∫
Rξ

|ξ|1/2
(∫

Rη

ei(y/t
1/2)|ξ|1/2η−isgn(ξ)η2

dη

)
eixξ+itξ|ξ|αdξ

=
c

t1/2

∫
R

e−i(sgn(ξ))π
4 |ξ|1/2eiy2ξ/4t eixξ+itξ|ξ|αdξ

=
c

t1/2

∫
R

e−i(sgn(ξ))π
4 |ξ|1/2eiξ(x+y2/4t) eitξ|ξ|

α

dξ

=
c

t
1
2+ 3

2(α+1)

∫
R

e−i(sgn(ξ))π
4 |ξ|1/2 exp

(
iξ

(
x

t
1

α+1

+
y2

4t
α+2
α+1

))
eiξ|ξ|

α

dξ .



632 L. MOLINET, J. C. SAUT, AND N. TZVETKOV

Let us define

H(λ) = c

∫
R

e−i(sgn(ξ))π
4 |ξ|1/2eiλξ eiξ|ξ|αdξ .

Then H is continuous in λ. We will consider only the worst case λ ≤ 0. The phase

ϕ(ξ) = i(λξ + ξ|ξ|α) then has two critical points ±ξα, where ξα =
(

μ
α+1

)1/α
, μ = −λ.

We write, for ε > 0 small enough

H(λ) =

∫ −ξα−ε

−∞
+

∫ ξα+ε

−ξα−ε

+

∫ ∞

ξα+ε

:= I1(λ) + I2(λ) + I3(λ) .

Clearly I2(λ) is a continuous function of λ. We consider only I3(λ),

I3(λ) = c

∫ ∞

ξα+ε

ξ1/2

ϕ′(ξ)

d

dξ

[
eϕ(ξ)

]
dξ

= c

[
ξ1/2eϕ(ξ)

λ + ξα(α + 1)

]∞
ξα+ε

+ c

∫ ∞

ξα+ε

[
1

2(λ + ξα(α + 1))ξ1/2
− α(α + 1)ξα−1/2

(λ + (α + 1)ξα)2

]
eϕ(ξ)dξ,

which for α > 1/2 defines a continuous function of λ. Hence the integral (2.3) is a
continuous function of (x, y) which coincides with the inverse Fourier transform (in
S ′(R2)) of exp(it(ξ|ξ|α − η2/ξ)).

We next set for t > 0

A(t, x, y) ≡ (2π)−2

∫
R2

1

iξ
ei(xξ+yη)+it(ξ|ξ|α−η2/ξ)dξdη .

The last integral is clearly not absolutely convergent not only at infinity but also for
ξ near zero. Nevertheless, the oscillations involved in its definition will allow us to
show that A(t, x, y) is in fact a continuous function. By the change of variables

η′ =
t1/2

|ξ|1/2 η,

we obtain

A(t, x, y) =
c

t1/2

∫
Rξ

sgn(ξ)

|ξ|1/2

(∫
Rη

ei(y/t
1/2)|ξ|1/2η−isgn(ξ)η2

dη

)
eixξ+itξ|ξ|αdξ

=
c

t1/2

∫
R

(sgn(ξ))e−i(sgn(ξ))π
4

|ξ|1/2 eiy
2ξ/4t eixξ+itξ|ξ|αdξ

=
c

t
α+2

2(α+1)

∫
R

(sgn(ξ))e−i(sgn(ξ))π
4

|ξ|1/2 exp

(
iξ

(
x

t
1

α+1

+
y2

4t
α+2
α+1

))
eiξ|ξ|

α

dξ .

We now need the following lemma.
Lemma 2.1. Let for α > 0

F (λ) =

∫
R

(sgn(ξ))e−i(sgn(ξ))π
4

|ξ|1/2 eiλξ+iξ|ξ|αdξ .

Then F is a continuous function which tends to zero as |λ| → +∞.
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Proof. Write F as

F (λ) =

∫
|ξ|≤1

+

∫
|ξ|≥1

:= F1(λ) + F2(λ) .

Since |ξ|−1/2 in integrable near the origin, by the Riemann–Lebesgue lemma F1(λ) is
continuous and

lim
|λ|→∞

F1(λ) = 0 .

We consider two cases in the analysis of F2(λ).
Case 1. λ ≥ −1.
After an integration by parts, we obtain that

(2.4) F2(λ) =
c cos(λ + 1 − π

4 )

λ + α + 1

+ c

∫ ∞

1

cos
(
λξ + ξα+1 − π

4

) λ + (α + 1)(2α + 1)ξα

ξ3/2(λ + (α + 1)ξα)2
dξ .

The first term is clearly a continuous function of λ which tends to zero as λ → ∞.
Observing that

0 ≤ λ + (α + 1)(2α + 1)ξα

ξ3/2(λ + (α + 1)ξα)2
≤ Cαξ

−3/2

uniformly with respect to ξ ≥ 1 and λ ≥ −1, we deduce from the dominated con-
vergence theorem that the right-hand side of (2.4) is a continuous function of λ for
λ ≥ −1. On the other hand, for λ ≥ 1,

λ + (α + 1)(2α + 1)ξα

ξ3/2(λ + (α + 1)ξα)2
≤ 2α + 1

λξ3/2
,

and thus the right-hand side of (2.4) tends to zero as λ → +∞.
Case 2. λ ≤ −1.
Set λ = −μ with μ ≥ 1. In the integral over |ξ| ≥ 1 defining F2(λ), we consider

only the integration over [1,+∞[. The integration over ]−∞,−1] can be treated in a
completely analogous way. We perform the changes of variables

ξ −→ ξ2

and

ξ −→ μ
1
2α ξ

to conclude that

F̃2(λ) := c

∫ ∞

1

1

ξ1/2
eiλξ+iξ|ξ|αdξ = cμ

1
2α

∫ ∞

μ− 1
2α

eiμ
1+ 1

α

[
ξ2(α+1)−ξ2

]
dξ.

Let us set

ϕ(ξ) = ξ2(α+1) − ξ2 .
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Then

ϕ′(ξ) = 2ξ[(α + 1)ξ2α − 1] .

Let us split

F̃2(λ) = cμ
1
2α

∫ 1

μ− 1
2α

+ cμ
1
2α

∫ ∞

1

:= I1(μ) + I2(μ) .

Since ϕ′(ξ) does not vanish for ξ ≥ 1, we can integrate by parts, which gives

I2(μ) =
1

2iμ1+ 1
2α

(
c

α
+ c

∫ ∞

1

eiμ
1+ 1

α

[
ξ2(α+1)−ξ2

]
(α + 1)(2α + 1)ξ2α − 1

ξ2((α + 1)ξ2α − 1)2
dξ

)
,

which is a continuous function of μ ≥ 1 thanks to the dominated convergence theorem.
Moreover, it clearly tends to zero as μ → +∞.

Let us next analyze I1(μ). We first observe that thanks to the dominated conver-
gence theorem, I1(μ) is a continuous function of μ. It remains to prove that I1(μ) → 0

as μ → ∞. For ξ ∈ [μ− 1
2α , 1], the phase ϕ has a critical point, and a slightly more

delicate argument is needed. Compute

ϕ′′(ξ) = 2[(α + 1)(2α + 1)ξ2α − 1] .

Observe that ϕ′(ξ) is vanishing only at zero and

ξ1(α) :=

(
1

α + 1

) 1
2α

.

Next, we notice that ϕ′′(ξ) is vanishing at

ξ2(α) :=

(
1

(α + 1)(2α + 1)

) 1
2α

.

Clearly ξ2(α) < ξ1(α) < 1, and we choose a real number δ such that

ξ2(α) < δ < ξ1(α) < 1 .

For μ � 1, we can split

I1(μ) = cμ
1
2α

∫ δ

μ− 1
2α

+ cμ
1
2α

∫ 1

δ

:= J1(μ) + J2(μ) .

For ξ ∈ [μ− 1
2α , δ], we have the lower bound

|ϕ′(ξ)| ≥ cμ− 1
2α > 0,

and an integration by parts shows that

J1(μ) = μ
1
αO(μ−1− 1

α ) ≤ Cμ−1,

which clearly tends to zero as μ → ∞. For ξ ∈ [δ, 1], we have the minoration

|ϕ′′(ξ)| ≥ c > 0,
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and therefore we can apply the Van der Corput lemma (see [16, Proposition 2]) to
conclude that

J2(μ) = μ
1
2αO(μ− 1

2−
1
2α ) ≤ Cμ− 1

2 ,

which tends to zero as μ → ∞. This completes the proof of Lemma 2.1.
It is now easy to check that ∂xA = G in the sense of distributions. Since both A

and G are continuous, we deduce that A has a classical derivative with respect to x
which is equal to G. Finally, since ϕ ∈ L1(R2), applying Lemma 2.1 and the Lebesgue
theorem completes the proof of Theorem 2.1.

2.2. The nonlinear case. After a change of frame we can eliminate the ux term
and reduce the Cauchy problem for (1.7) to

(2.5) (ut + uux − Lux)x + uyy = 0, u(0, x, y) = ϕ(x, y).

In order to state our result concerning (2.5), for k ∈ N, we denote by Hk,0(R2) the
Sobolev space of L2(R2) functions u(x, y) such that ∂k

xu ∈ L2(R2).
Theorem 2.2. Assume that α > 1/2. Let ϕ ∈ L1(R2) ∩H2,0(R2) and

(2.6) u ∈ C([0, T ] ; H2,0(R2))

be a distributional solution of (2.5). Then, for every t ∈ (0, T ], u(t, ·, ·) is a continuous
function of x and y which satisfies∫ ∞

−∞
u(t, x, y)dx = 0 ∀y ∈ R, ∀t ∈ (0, T ]

in the sense of generalized Riemann integrals. Moreover, u(t, x, y) is the derivative
with respect to x of a C1

x continuous function which vanishes as x → ±∞ for every
fixed y ∈ R and t ∈ [0, T ].

Remark 2.3. The case α = 2 corresponds to the classical KP-I, KP-II equations.
In the case of the KP-II, we have global solutions for data in L1(R2) ∩ H2,0(R2)
(see [5]). Thus Theorem 2.2 displays a striking smoothing effect of the KP-II equation:
u(t, ·, ·) becomes a continuous function of x and y (with zero mean in x) for t �= 0
(note that L1(R2)∩H2,0(R2) is not included in C0(R2)). A similar comment is valid
for the local solutions of the KP-I equation in [10] and more especially in [12].

Remark 2.4. The numerical simulations in [9] display clearly the phenomena
described in Theorem 2.2 in the case of the KP-I equation.

Proof of Theorem 2.2. Under our assumption on u, one has the Duhamel repre-
sentation

(2.7) u(t) = S(t)ϕ−
∫ t

0

S(t− s)
(
u(s)ux(s)

)
ds,

where

∫ t

0

S(t− s)
(
u(s)ux(s)

)
ds

=

∫ t

0

∂x

(∫
R2

A(x− x′, y − y′, t− s)(uux)(x′, y′, s)dx′dy′
)
ds .
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From Theorem 2.1, it suffices to consider only the integral term in the right-hand side
of (2.7). Using the notations of Lemma 2.1,

A(x− x′, y − y′, t− s) =
c

(t− s)
α+2

2(α+1)

F

(
x− x′

(t− s)
1

α+1

+
(y − y′)2

4(t− s)
α+2
α+1

)
.

Recall that F is a continuous and bounded function on R. Next, we set

I(x, y, t− s, s) ≡ ∂x

(∫
R2

A(x− x′, y − y′, t− s)(uux)(x′, y′, s)dx′dy′
)
.

Using the Lebesgue differentiation theorem and the assumption (2.6), we can write

I(x, y, t− s, s) =

∫
R2

A(x− x′, y − y′, t− s)∂x(uux)(x′, y′, s)dx′dy′ .

Moreover, for α > 0,

α + 2

2(α + 1)
< 1,

and therefore I is integrable in s on [0, t]. Therefore, by the Lebesgue differentiation
theorem,

(2.8)

∫ t

0

∫
R2

A(x− x′, y − y′, t− s)(uux)(x′, y′, s)dx′dy′ds

is a C1
x function and

∫ t

0

S(t− s)
(
u(s)ux(s)

)
ds

= ∂x

(∫ t

0

∫
R2

A(x− x′, y − y′, t− s)(uux)(x′, y′, s)dx′dy′ds

)
.

Let us finally show that for fixed y and t the function (2.8) tends to zero as x tends
to ±∞. For that purpose, it suffices to apply the Lebesgue dominated convergence
theorem to the integral in s, x′, y′. Indeed, for fixed s, x′, y′, the function under the
integral tends to zero as x tends to ±∞ thanks to the linear analysis. On the other
hand, using Lemma 2.1, we can write

|A(x− x′, y − y′, t− s)(uux)(x′, y′, s)| ≤ c

(t− s)
α+2

2(α+1)

|(uux)(x′, y′, s)| .

Thanks to the assumptions on u, the right-hand side of the above inequality is inte-
grable in s, x′, y′ and independent of x. Thus we can apply the Lebesgue dominated
convergence theorem to conclude that the function (2.8) tends to zero as x tends to
±∞. This completes the proof of Theorem 2.2.

Remark 2.5. If α > 2, the assumptions can be weakened to ϕ ∈ L1(R2) ∩
H1,0(R2) and u ∈ C([0, T ];H1,0(R2)). This result follows from the fact that the
fundamental solution G writes

G(t, x, y) =
c

t1/2+3/2(α+1)
B(t, x, y),

where B ∈ L∞ and 1/2 + 3/(2(α + 1)) < 1 for α > 2.
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3. KP–BBM-type equations.

3.1. The linear case. We consider the Cauchy problem

(3.1) (ut + ux + Lut)x + uyy = 0, u(0, x, y) = ϕ(x, y) ,

where L is given by (2.2) with ε = 1. A simple computation shows that the funda-
mental solution is given by

G(t, x, y) = F−1
[
e−i t

1+|ξ|α (ξ+η2/ξ)] .
Due to the bad oscillatory properties of the phase, we have to modify slighty the
statement of Theorem 2.1.

Theorem 3.1. Assume that α > 0. Let ϕ be such that (I − ∂2
x)β/2ϕ ∈ L1(R2)

with β > (α + 3)/2. Then

u(t, ·, ·) ≡ S(t)ϕ = G 
 ϕ

can be written as

∂

∂x

(
A 
 (I − ∂2

x)β/2ϕ
)
,

where

A = ∂−1
x (I − ∂2

x)−β/2G

and

A(t, ·, ·) ∈ C(R2) ∩ L∞(R2) ∩ C1
x(R2) .

Moreover, (A 
 (I − ∂2
x)β/2ϕ)(t, x, y) is, for fixed t �= 0, continuous in x and y and

satisfies

lim
|x|→∞

(A 
 (I − ∂2
x)β/2ϕ)(t, x, y) = 0

for any y ∈ R and t �= 0. Thus,∫ ∞

−∞
u(t, x, y) dx = 0 ∀y ∈ R, ∀t �= 0

in the sense of generalized Riemann integrals.
Remark 3.1. The assumption (I − ∂2

x)β/2ϕ ∈ L1(R2) is natural in the context
of KP–BBM problems, in view of the weak dispersive properties of the BBM free
evolution.

Proof. We set

G̃(t, x, y) =

∫
R2

1

(1 + |ξ|2)β/2 e−
it

1+|ξ|α (ξ+η2/ξ)eixξ+iyηdξdη .

Setting

η′ =
t1/2η

|ξ|1/2(1 + |ξ|α)1/2
,
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we obtain

G̃(t, x, y)

=
c

t1/2

∫
Rξ

|ξ|1/2 (1 + |ξ|α)1/2

(1 + |ξ|2)β/2

(∫
Rη

e−isgn(ξ)η2

ei(yη/t
1/2)|ξ|1/2(1+|ξ|α)1/2

dη

)
eixξ−i tξ

1+|ξ|α dξ

=
c

t1/2

∫
R

|ξ|1/2e−i(sgn(ξ))π
4

(1 + |ξ|α)1/2

(1 + |ξ|2)β/2 e
−i tξ

1+|ξ|α eiλξ ei(y
2/4t)ξ|ξ|αdξ ,

where λ = x + y2/4t. Setting

at(ξ) = |ξ|1/2e−i(sgn(ξ))π
4

(1 + |ξ|α)1/2

(1 + |ξ|2)β/2 e
−it ξ

1+|ξ|α ,

we clearly have

G̃(t, x, y) =
c

t1/2

∫
at(ξ)e

iλξ ei(y
2/4t)ξ|ξ|αdξ .

We have the following lemma.
Lemma 3.1. Let us fix y ∈ R and t > 0. Set

F (λ) :=

∫
at(ξ)e

iλξ ei(y
2/4t)ξ|ξ|αdξ .

Then F is a continuous function such that

lim
|λ|→∞

F (λ) = 0 .

Proof. It suffices to apply the Riemann–Lebesgue lemma since a ∈ L1(R) when
β > (α + 3)/2.

Next, we set

Ã(t, x, y) = −i

∫
R2

1

ξ(1 + |ξ|2)β/2 e−
it

1+|ξ|α (ξ+η2/ξ)eixξ+iyηdξdη .

Similarly to above, we set

η′ =
ηt1/2

|ξ|1/2(1 + |ξ|α)1/2
,

and therefore

Ã(t, x, y)

=
c

t1/2

∫
Rξ

sgn(ξ)

|ξ|1/2
(1 + |ξ|α)1/2

(1 + |ξ|2)β/2

(∫
Rη

e−isgn(ξ)η2

eiyη/t
1/2|ξ|1/2(1+|ξ|α)1/2

dη

)
eixξ−i tξ

1+|ξ|α dξ

=
c

t1/2

∫
R

sgn(ξ)

|ξ|1/2 e−i(sgn(ξ))π
4

(1 + |ξ|α)1/2

(1 + |ξ|2)β/2 e
−it ξ

1+|ξ|α eiλξ ei(y
2/4t)ξ|ξ|αdξ ,

where λ = x + y2/4t. Setting

ãt(ξ) =
sgn(ξ)

|ξ|1/2 e−i(sgn(ξ))π
4

(1 + |ξ|α)1/2

(1 + |ξ|2)β/2 e
−i tξ

1+|ξ|α ,



ON KP-TYPE EQUATIONS 639

we clearly have

Ã(t, x, y) =
c

t1/2

∫
ãt(ξ)e

iλξ ei(y
2/4t)ξ|ξ|αdξ .

Lemma 3.2. Let us fix y ∈ R and t > 0. Set

F1(λ) :=

∫
ãt(ξ)e

iλξ ei(y
2/4t)ξ|ξ|αdξ .

Then F1 is a continuous function such that

lim
|λ|→∞

F1(λ) = 0 .

Proof. It suffices to apply the Riemann–Lebesgue lemma since ãt ∈ L1(R).
The proof of Theorem 3.1 is now straightforward.

3.2. The nonlinear case. We investigate the Cauchy problem

(3.2) (ut + ux + uux + Lut)x + uyy = 0, u(0, x, y) = ϕ(x, y) .

Theorem 3.2. Let α > 0, k > α+3
4 . Assume that (I−∂2

x)kϕ ∈ L1(R2)∩L2(R2).
Let u be a solution of (3.2) such that

u ∈ C([0, T ] ; H2k+1,0(R2)) .

Then, for any t ∈ (0, T ], u(t, x, y) is a continuous function in x and y and satisfies∫ ∞

−∞
u(t, x, y)dx = 0 ∀y ∈ R, ∀t ∈ (0, T ]

in the sense of generalized Riemann integrals. In fact u(t, x, y) is the derivative with
respect to x of a C1

x continuous function which vanishes as x → ±∞ for any fixed y
and t ∈ (0, T ].

Proof. Again we use the Duhamel formula

u(t) = S(t)ϕ−
∫ t

0

S(t− s)u(s)ux(s)ds,

where

S(t) = eit(I+L)−1(∂x+∂−1
x ∂2

y) .

By Theorem 3.1, it suffices to consider the integral term in the Duhamel formula. We
have∫ t

0

S(t− s)u(s)ux(s)ds =
1

2

∫ t

0

∂

∂x

(
S(t− s)u2(s)

)
ds =

1

2

∂

∂x

∫ t

0

S(t− s)u2(s)ds.

To justify the last equality, we have to check that S(t− s)u(s)ux(s) is dominated by
a L1(0, t) function uniformly in (x, y). We write

(3.3) S(t− s)(u(s)ux(s)) = Ã(x, y, t− s) 
 (I − ∂2
x)ku(s)ux(s),



640 L. MOLINET, J. C. SAUT, AND N. TZVETKOV

where

Ã(x, y, t− s) =

∫
R2

1

(1 + |ξ|2)k e
− i(t−s)

1+|ξ|α (ξ+η2/ξ)eixξ+iyηdξdη .

Proceeding as in the beginning of the proof of Theorem 3.1, it follows that

Ã(x, y, t− s)

=
c

(t− s)1/2

∫
R

e−i(sgn(ξ))π
4 |ξ|1/2(1 + |ξ|α)1/2

(1 + ξ2)k
e−i ξ(t−s)

1+|ξ|α eiλξei(y
2/4(t−s))ξ|ξ|αdξ ,

where λ = x + y2/4(t − s). Since k > α+3
4 , the integral in ξ defines a continuous

bounded function in x, y, t, s by the Riemann–Lebesgue theorem. It follows that

|S(t− s)u(s)ux(s)| ≤ c

(t− s)1/2
‖(I − ∂2

x)k(uux)‖L1(R2) ≤
c

(t− s)1/2

since u ∈ C([0, T ] ; H2k+1,0(R2)). Since the function

e−i(sgn(ξ))π
4 |ξ|1/2(1 + |ξ|α)1/2

(1 + ξ2)k
e−i ξ(t−s)

1+ξα

belongs to L1(Rξ), we can use the Riemann–Lebesgue lemma to obtain that for fixed

y, t, and s the function Ã(x, y, t− s) tends to zero as x tends to ±∞. Moreover, the
absolute value of Ã(x, y, t − s) is bounded by c|t − s|−1/2. Thus as in the proof of
Theorem 2.2, we can apply the Lebesgue dominated convergence theorem to conclude
that

lim
x→±∞

∫ t

0

S(t− s)u2(s)ds = 0

for any fixed y ∈ R and t ∈ (0, T ]. This achieves the proof of Theorem 3.2.
Remark 3.2. For large values of α, one can relax the assumptions on k in the

hypothesis for u by simply using the Hs unitary property of S(t).

4. Extensions. With the price of some technicalities, one could consider sym-
bols c(ξ) in (1.2) which behave like |ξ|α at infinity but which are not homogeneous.

Let us finally comment briefly on the three-dimensional case. For simplicity, we
consider only the KP-type equations:

(4.1) (ut − Lux)x + uyy + uzz = 0, u(0, x, y, z) = ϕ(x, y, z)

with L given by (2.2). Following the lines of the proof of Theorem 2.1, we find that
the fundamental solution G can be expressed as G = ∂xA, where

A(t, x, y, z) =
c

t1+
2

α+2

∫
R

sgn(ξ) e−i(sgn(ξ))π
4 eiξ(x/t

1/(α+1)+(y2+z2)/4t) eiξ|ξ|
α

dξ .

We first notice that, when α > 1, G is a well-defined continuous function of (x, y, z).
Actually the proof follows the same lines as the two-dimensional case. Let

F (λ) =

∫
R

sgn(ξ)e−i(sgn(ξ))π
4 eiλξ eiξ|ξ|

α

dξ .
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By a result of [15], F (λ) is a continuous function which tends to zero as |λ| → ∞,
provided α > 1, (notice that this excludes the case α = 1 which would correspond to
the three-dimensional generalizations of the Benjamin–Ono equation). We thus obtain
the exact counterpart of Theorem 2.1 in the three-dimensional case when α > 1 (this
includes the three-dimensional usual KP equations).
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TWO-SCALE HOMOGENIZATION FOR EVOLUTIONARY
VARIATIONAL INEQUALITIES VIA THE ENERGETIC

FORMULATION∗
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Abstract. This paper is devoted to two-scale homogenization for a class of rate-independent
systems described by the energetic formulation or equivalently by an evolutionary variational in-
equality. In particular, we treat the classical model of linearized elastoplasticity with hardening.
The associated nonlinear partial differential inclusion has periodically oscillating coefficients, and
the aim is to find a limit problem for the case in which the period tends to 0. Our approach is
based on the notion of energetic solutions, which is phrased in terms of a stability condition and
an energy balance of an energy-storage functional and a dissipation functional. Using the recently
developed method of weak and strong two-scale convergence via periodic unfolding, we show that
these two functionals have a suitable two-scale limit, but now involving the macroscopic variable in
the physical domain as well as the microscopic variable in the periodicity cell. Moreover, relying
on an abstract theory of Γ-convergence for the energetic formulation using so-called joint recovery
sequences, it is possible to show that the solutions of the problem with periodicity converge to the
energetic solution associated with the limit functionals.

Key words. weak two-scale convergence, strong two-scale convergence, two-scale Γ-limit, rate-
independent evolution, energetic formulation, elastoplasticity with hardening
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1. Introduction. Our aim is to provide homogenization results for evolutionary
variational inequalities of the following type:

(1.1) ∀ v ∈ Q : 〈Aq−�(t), v − q̇〉 + R(v) − R(q̇) ≥ 0.

Here Q is a Hilbert space with dual Q∗, and the continuous linear operator A : Q → Q∗

is symmetric and positive definite on the cone on which R is finite. The forcing � lies
in C1([0, T ],Q∗), and the dissipation functional R : Q → [0,∞) is convex, lower
semicontinuous, and positively homogeneous of degree 1, i.e., R(γq) = γR(q) for all
γ ≥ 0 and q ∈ Q. The latter property of R leads to rate independence.

Problem (1.1) has many different equivalent formulations. We have chosen the
energetic formulation for rate-independent hysteresis problems (cf. [MT99, MT04,
Mie05]), since it is more flexible in treating general rate-independent energetic ma-
terial models, including nonconvexities and strong nonlinearities; see [Mie03, Mie04,
MT06, FM06]. We hope that our methods simplify and clarify the theory of two-
scale convergence and thus provide ideas and tools for solving more general prob-
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lems, including nonlinear elastic effects. A similar development was initiated in
[Alb00, Alb03, Nes06, Nes07] based on the theory of monotone operators. This theory
allows for rate-dependent effects, but is restricted to linearized elasticity.

The energetic formulation is based on the storage functional E : [0, T ]×Q → R

defined via E(t, q) = 1
2 〈Aq, q〉 − 〈�(t), q〉 and the dissipation functional R. Thus,

homogenization of an evolutionary problem can be reduced to some extent to the
homogenization of functionals. A function q : [0, T ] → Q is called an energetic solution
associated with the functionals E and R if for all t ∈ [0, T ] it satisfies the global stability
condition (S) and the energy balance (E):

(S) ∀ q ∈ Q : E(t, q(t)) ≤ E(t, q) + R(q−q(t));

(E) E(t, q(t)) +

∫ t

0

R(q̇(s))ds = E(0, q(0)) −
∫ t

0

〈�̇(s), q(s)〉ds.

We also say that q solves the energetic formulation (S) and (E) associated with E and
R.

Note that rate-independent hysteresis phenomena occur in quite general systems
like hyperbolic PDEs for electromagnetism; cf. [Vis94, BS96]. Then hysteresis opera-
tors are seen as constitutive relations and are coupled to general balance equations.
Here, as a first step, we treat only purely rate-independent processes which are rele-
vant in elastoplasticity and other material models.

In this paper we consider a family of energy functionals (Eε)ε and of dissipation
functionals (Rε)ε which are defined as integrals over a domain Ω ⊂ R

d and where the
densities depend periodically on x with a period proportional to ε. More precisely,
for a periodicity lattice Λ we denote by Y = R

d
/
Λ

the periodicity torus. For a tensor-

valued mapping A : Y → Lin(Rd×d
sym×R

m) and a function ρ : Y×R
m → [0,∞] we define

the functionals

Eε(t, u, z) =

∫
Ω

1

2

〈〈
A

(x
ε

)(e(u)

z

)
,

(
e(u)

z

)〉〉
dx− 〈�(t), u〉,

Rε(z) =

∫
Ω

ρ
(x
ε
, z(x)

)
dx

on the space Q = H1
ΓDir

(Ω)d×L2(Ω)m.

The task is now to describe the limiting behavior of the associated energetic
solutions. Because of the nonsmoothness and the hysteretic behavior of the evolution
of the systems, it will not be possible to find a homogenized limit equation in the
classical sense. This would mean finding limiting functionals defined on Ω again.
Instead we will need the so-called two-scale homogenization that decomposes solutions
into macroscopic and microscopic behavior.

The classical notion of two-scale convergence was introduced by Nguetseng in
1989 [Ngu89] and further developed by Allaire in 1992 [All92]. It aimed for a bet-
ter description of sequences of oscillating functions and thus for the derivation of a
new homogenization method. In [LNW02], an overview of the main homogenization
problems which have been studied by this technique is given. This concept is ap-
plied in a variety of quite different applications in continuum mechanics; see, e.g.,
[BM93, HJM94, Vis96, BLM96, Vis97, Alb00, EKK02, MS02]. Moreover, even in
engineering this method is used extensively for numerical simulations. There the unit
periodicity cell is usually called a “representative unit cell.”
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To explain our results in some detail we introduce a few new notions. The two-
scale method relies on a micro-macro-decomposition of points x ∈ R

d via

x = Nε(x) + εRε(x) with Nε(x) = ε
[x
ε

]
Λ

and Rε(x) =
{x

ε

}
Y
,

where [x̃]Λ is the closest lattice point to x̃ and {x̃}Y is the remainder; see section 2.1
for the exact details. The decomposition of functions is then done by the so-called
periodic unfolding introduced in [CDG02, CDD04, CDD06]:

(Tεu)(x, y) = uex(Nε(x)+εy),

where uex is the extension of u : Ω → R by 0 to all of R
d. Thus, functions in

Lp(Ω) are mapped to functions U = Tεu ∈ Lp(Rd×Y). Similar ideas, called “dilation
operators,” were used before in [ADH90]. See also [LSB99] for an application in
electrical networks.

In section 2.2 we discuss this periodic unfolding operator together with a newly
introduced folding operator Fε : Lp(Rd×Y) → Lp(Ω), which is a kind of pseudoinverse
as well as the adjoint operator (when taking the conjugate exponent p). In particular,
we give special care to the complications arising from the mismatch of Ω and a finite
union of small cells of type ε(λ+Y ).

In section 2.3 we introduce our notion of weak and strong two-scale convergences :

uε
w2
⇀ U ⇐⇒ Tεuε ⇀ Uex in Lp(Rd×Y),

uε
s2−→ U ⇐⇒ Tεuε → Uex in Lp(Rd×Y).

This definition is an adaptation of the definitions in [Vis04] to the case that Ω has
a boundary; see also [Vis06b]. Nevertheless, the convergences on the right-hand side
are asked to occur in Lp(Rd×Y), since the support of Tεu is in general not contained
in Ω×Y. We relate our definitions to the ones which are used in [Ngu89, All92, CD99,
LNW02] and show that our strengthening makes many relations more natural. In
particular, the notions of weak and strong two-scale convergences allow us to prove
the convergence of scalar products, namely,

un
w2
⇀ U, vn

s2−→ V =⇒
∫

Ω

unvndx →
∫

Ω

∫
Y
U(x, y)V (x, y)dydx.

Using classical two-scale convergence on bounded domains only allows for a weaker
statement (cf. [LNW02, Thm. 11]), since at the boundary losses may occur. Exactly
this result will be crucial for our limit procedure in section 4.

In section 2.4 we recall known results on the two-scale limits of sequences of gra-
dients and construct a gradient folding operator Gε : H1

0(Ω)×L2(Ω,H1
av(Y)) → H1

0(Ω)
such that for all (u0, U1) we have ∇Gε(u0, U1)

s2−→ ∇xu0 + ∇yU1 and Gε(u0, U1) ⇀ u0

in H1
0(Ω). Based on these results we provide the relevant two-scale Γ-limit results for

the functionals Eε(t, ·) and Rε. Under simple additional assumptions, the two-scale
limits are

E(t, u0, U1, Z) =

∫
Ω×Y

1

2

〈〈
A(y)

(
ex(u0)+ey(U1)

Z

)
,

(
ex(u0)+ey(U1)

Z

)〉〉
dydx−〈�(t), u0〉

R(Z) =

∫
Ω×Y

ρ(y, Z(x, y))dydx.
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The convergence of Eε and Rε to E and R can be seen as a type of two-scale Mosco
convergence, i.e., Γ-convergence in the weak and in the strong topology; see [MRS07].
Recovery sequences (also called realizing sequences in [JKO94]) in the strong two-scale
convergence sense are obtained via our explicit operators Fε and Gε.

In section 3 we formulate our rate-independent evolution systems and provide
existence and uniqueness theorems for energetic formulations associated with Eε and
Rε on the one hand and with E and R on the other hand. We obtain uniform a priori
Lipschitz bounds for the energetic solutions qε = (uε, zε) : [0, T ] → Q. The solutions
Q = (u0, U1, Z) : [0, T ] → Q are defined on the space Q = H×Z with

H = H1
ΓDir

(Ω)d×L2(Ω; H1
av(Y))d, Z = L2(Ω; L2(Y))m = L2(Ω×Y)m,

with H1
av(Y) = {U ∈ H1(Y) |

∫
Y
U(y)dy = 0 }.

The final section, section 4, establishes the relation between the solutions qε and
Q. The main result is Theorem 4.3, which states that if the initial data qε(0) strongly
two-scale cross-converge to Q0, written as qε(0)

s2c−−→ Q0 and defined as

uε ⇀ u0 in H1
ΓDir

(Ω)d, ∇uε
s2−→ ∇xu0+∇yU1 in L2(Ω,H1

av(Y)),

zε
s2−→ Z in L2(Ω×Y),

then for all t ∈ [0, T ] we have qε(t)
s2c−−→ Q(t), where Q is the unique energetic solution

associated with E and R with the initial value Q(0) = Q0. In terms of evolutionary
variational inequalities this means that the solutions qε = (uε, zε) of

〈DEε(t, qε), v−q̇ε〉 + Rε(v) − Rε(q̇ε) ≥ 0 for all v ∈ Q

strongly two-scale cross-converge to the solution Q = (u0, U1, Z) of

〈DE(t, Q), V−Q̇〉 + R(V ) −R(Q̇) ≥ 0 for all V ∈ Q

if the initial conditions satisfy qε(0)
s2c−−→ Q(0) for ε → 0.

The crucial tool for proving this convergence is the abstract Γ-convergence theory
developed in [MRS07]. The main difficulty in the theory is to show that weak (two-
scale) limits of stable states are again stable. In [MRS07, eqn. (2.16)] a sufficient
condition is provided that asks for the existence of a joint recovery sequence (q̃ε)ε
such that

lim sup
ε→0

Eε(t, q̃ε)+Rε(z̃ε−zε)−Eε(t, qε) ≤ E(t, Q̃)+R(Z̃−Z)−E(t, Q) and q̃ε
w2c
⇀ Q̃,

where qε is a given family of stable states with qε
w2c
⇀ Q and Q̃ is an arbitrary test

state; cf. Proposition 4.5. In our situation this condition can be fulfilled by exploiting
the quadratic nature of the energies, which leads to some cancellation of differences
of the energies, namely, Eε(t, q̃ε)− Eε(t, qε) converges to E(t, Q̃)−E(t, Q) if qε

w2c
⇀ Q

and q̃ε−qε
s2c−−→ Q̃−Q strong. Here it is important that our notion of weak and strong

convergences allows us to conclude convergence of scalar products; see Proposition
2.4(d).

As far as we know, this is the first homogenization work for a nonlinear and non-
smooth evolutionary problems except for [Alb03, Nes06, Nes07] and [Vis06a]. The
former works treat more general quasi-static evolution laws and are not restricted to
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the rate-independent setting; however, they are more restrictive in the constitutive
laws and prove the convergence only in an averaged sense over microscopic phase shifts
of the cells. The latter work considers hyperbolic systems coupled with hysteresis
operators. Similar variational inequalities are treated in [BM93, CS04, Yos01], but
with different constraints and without time dependence.

2. Two-scale convergence. We recall here the definition of the two-scale con-
vergence and several important results concerning this notion (see [Ngu89, All92,
CD99, LNW02]). In particular, the presented results are based on [CDG02, Vis04],
where the notions of periodic unfolding (also called “two-scale decomposition” in the
latter work) and periodic folding, which is called “averaging operator” in [CDG02,
sect. 5]. In the following subsections we take special care of the problems that are
associated with the fact that we want to work on a bounded domain Ω and that this
is only approximately compatible with microscopic periodicity. This gives rise to a
certain notational complication but allows us a very precise and efficient definition of
weak and strong two-scale convergences in section 2.3. Note also Example 2.7, which
shows that such special care is necessary to avoid problems at the boundary.

2.1. Basic definitions of the two-scale variables. Let d ∈ N be the space
dimension. The periodicity in R

d is expressed by a d-dimensional periodicity lattice

Λ =

⎧⎨
⎩λ =

d∑
j=1

kjbj

∣∣∣∣∣ k = (k1, k2, . . . , kd) ∈ Z
d

⎫⎬
⎭ ,

where {b1, . . . , bd} is an arbitrary basis in R
d. The associated unit cell is Y = {x =∑d

1 γjbj | γj ∈ [−1/2, 1/2) } ⊂ R
d, such that R

d is the disjoint union of the translated
cells λ+Y if λ runs through all of Λ. Following [Vis04], we distinguish the unit cell
from the periodicity cell Y, which is obtained by identifying the opposite faces of Y , or
we may set Y = R

d/Λ. Thus, Y has the structure of a torus. For most applications one
may assume that Λ = Z

d, Y = [−1/2, 1/2)d, and Y = R
d/Zd = T

d, the d-dimensional
standard torus. However, our theory covers the general case. Yet, we will be slightly
inconsistent and use y to denote elements of Y and Y simultaneously by relying on
the natural identification between y+Λ ∈ Y and y ∈ Y .

On R
d we define the mappings [ · ]Λ and {·}Y such that

[ · ]Λ : R
d → Λ, {·}Y : R

d → Y, x = [x]Λ + {x}Y for all x ∈ R
d.

We also use the notation { · }Y such that {x}Y = xmod Λ ∈ Y. Obviously a function
f defined on Rd is Λ-periodic if f(x) = f({x}Y ) for x ∈ R

d, and we may identify

f with a function f̃ defined on Y. Note that Lp(Y ) and Lp(Y) may be identified in
contrast to Ck(Y ) and Ck(Y) = Ck

per(Y ). Similarly, we use H1(Y) = H1
per(Y ), which

is different from H1(Y ). A nonstandard space, which we will need in what follows, is

(2.1) H1
av(Y) :=

{
f ∈ H1(Y)

∣∣∣∣
∫

Y

f(y)dy = 0

}
.

We now introduce a small length-scale parameter ε > 0 and want to study func-
tions which have fast periodic oscillations on the microscopic periodicity cell εY . We
decompose the points x ∈ Ω ⊂ R

d such that

x = Nε(x) + εRε(x) with Nε(x) = ε
[x
ε

]
Λ

and Rε(x) =
{x

ε

}
Y
.
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Thus, Nε ∈ εΛ denotes the macroscopic center of the small cell Nε(x)+εY that con-
tains x, and Rε denotes the fine-scale part of x. With this we define a decomposition
map Dε and a composition map Sε (cf. [Vis04]) as follows:

Dε :

{
R

d → R
d×Y,

x �→ (Nε(x),Rε(x)),
Sε :

{
R

d×Y → R
d,

(x, y) �→ Nε(x)+εy,

where in the last sum some y ∈ Y is identified with y ∈ Y ⊂ R
d. For the construction

of a periodic unfolding operator and a folding operator in the next subsection, the
following simple properties of Dε and Sε are essential:

(2.2) Dε(Sε(x, y)) = (Nε(x), y) and Sε(Dε(x)) = x for all (x, y) ∈ R
d×Y.

If Ω does not coincide with R
d, then certain technicalities arise from the fact that

the image of Dε is not contained in Ω×Y. Similarly, we note that Sε(Ω×Y) is not
contained in Ω. To handle this, we introduce, for a fixed open domain Ω, the following
subsets of Λ:

Λ−
ε = {λ ∈ Λ | ε(λ+Y ) ⊂ Ω } and Λ+

ε = {λ ∈ Λ | ε(λ+Y ) ∩ Ω �= ∅ }.

Using this, we define the domains Ω−
ε and Ω+

ε via Ω±
ε = int

(
∪λ∈Λ±

ε
ε(λ+Y )

)
. Clearly,

we have Ω−
ε ⊂ Ω ⊂ Ω+

ε . Moreover, we have [Ω±
ε ]±ε = Ω±

ε , Ω ⊂ Nε diam(Y )(Ω
−
ε ), and

Ω+
ε ⊂ Nε diam(Y )(Ω), where diam(Y ) is the diameter of Y and Nδ(A) denotes the

δ-neighborhood of the set A.
Moreover, we set [Ω×Y]ε = S−1

ε (Ω) = { (x, y)|Sε(x, y) ∈ Ω } and note the relations

(2.3) Ω−
ε ×Y ⊂ [Ω×Y]ε ⊂ Ω+

ε ×Y,

which will significantly be used later on. From now on we will assume that Ω satisfies

(2.4) Ω is open and bounded and |∂Ω| = 0.

This guarantees that |Ω\Ω−
ε | + |Ω+

ε \Ω| → 0 for ε → 0, which will be used later.
To see this, denote by φε the characteristic function of the set Nε diam(Y )(∂Ω), then
Ω\Ω−

ε ∪ Ω+
ε \Ω ⊂ Nε diam(Y )(∂Ω), and for all x �∈ ∂Ω we have φε(x) → 0 for ε → 0.

Hence, we conclude |Ω\Ω−
ε | + |Ω+

ε \Ω| ≤ |Nε diam(Y )(∂Ω)| =
∫

Rd φε dx → 0 for ε → 0.
The second condition in (2.4) is certainly satisfied if Ω has a Lipschitz boundary.

2.2. Folding and periodic unfolding operators. The notion of two-scale
convergence is intrinsically linked with a suitable “two-scale embedding” of the func-
tion space Lp(Ω) into the two-scale space Lp(Ω×Y). Such a mapping will be called a
periodic unfolding operator. Moreover, for a two-scale function U defined on Ω×Y it
is desirable to find a function uε defined on Ω that has the corresponding microscopic
behavior. A mapping from the two-scale space into the original function space Lp(Ω)
will be called a folding operator.

The natural candidate for the periodic unfolding operator was introduced in
[CDG02] and reads

(2.5) Tε : Lp(Ω) → Lp(Rd×Y); v �→ vex ◦ Sε,

where vex ∈ Lp(Rd) is obtained from v by extending it by 0 outside of Ω. By definition,
we immediately have the product rule:

(2.6)
1

p
+

1

q
=

1

r
≤ 1, u ∈ Lp(Ω), v ∈ Lq(Ω) =⇒ Tε(uv) = (Tεu) (Tεv) ∈ Lr(Ω×Y).
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In general, the support of Tεv is [Ω×Y]ε, which is not contained in Ω×Y. This
discrepancy in support is the main reason why we repeat the definitions of the opera-
tors and the different versions of two-scale convergence in detail. Most previous work
either deals with Ω = R

d or is not very precise about the supports. However, as was
noted in [LNW02] (see also our Examples 2.3 and 2.7), we need to be careful here.

A variant of Tε that maps continuous functions u into continuous ones can be
found in [Vis04].

For a function space F, to be specified later, simple choices for folding operators
are given in the form

(2.7) F̂ε: F(Ω×Y) → F(Rd); U �→ U ◦ Dε and Fε: F(Ω×Y) → F(Rd); U �→ U ◦Dε,

where Dε is the simple decomposition Dε : x �→ (x,
{

x
ε

}
Y
). Neither of these choices

is suitable if for the function space “F” we choose Lp since the image of Ω under Dε

and Dε, respectively, is a set of measure 0 in R
d×Y. However, the folding operator Fε

is well-defined as a mapping from Ck(Rd×Y) into Ck(Rd) and has the big advantage
that the image of Ω×Y under Dε is equal to Ω. In fact, this is the basis of the classical
definition of two-scale convergence; see (2.9).

The main point in this subsection is that we use a very particular folding operator
Fε that is well adapted to the classical Lp-spaces, namely,

Lp(Ω×Y) = Lp(Ω; Lp(Y)) = Lp(Y; Lp(Ω)) for p ∈ [1,∞).

These are the relevant ones for elliptic PDEs and our aim is to avoid spaces involving
continuous functions like Lp(Ω,C(Y)) (on which F̂ε is well-defined). Our folding op-
erator is a variant of the averaging operator Uε defined in [CDG02, sect. 5], since we
take special care on the domain Ω.

On Lp(Rd×Y) we first define the classical projector to piecewise constant functions
on each ε(λ+Y ) via

(PεU)(x, y) = −
∫
Nε(x)+εY

U(ξ, y)dξ,

where −
∫
A

denotes the average over A, i.e., −
∫
A
g(a)da = 1

|A|
∫
A
g(a)da. Clearly (Pε)

2 =

Pε, ‖PεU‖p ≤ ‖U‖p, and PεU → U in Lp(Ω×Y) for all U ∈ Lp(Ω×Y).
Our folding operator Fε is now defined as follows:

(2.8) Fε : Lp(Rd×Y) → Lp(Ω); U �→
(
Pε(χεU) ◦ Dε

)
|Ω with χε = χ[Ω×Y]ε .

Note that the folding operator is defined for functions on the full space R
d×Y and

takes values in the functions on Ω. The construction with the characteristic function
χε : R

d×Y → {0, 1} guarantees that χε = Pεχε and sppt(χε ◦Dε) = Ω, which follows
from the definition of [Ω×Y]ε and from (2.2).

The following proposition summarizes the properties of the folding operator and
the periodic unfolding operator. We restrict ourselves to the case p ∈ (1,∞) and leave
the generalizations for p = 1 and p = ∞ to the reader. In fact, in our application we
will only use p = p′ = 2, which is especially nice.

Proposition 2.1. Let p ∈ (1,∞) and p′ = p/(p−1). Then the folding operator
Fε : Lp(Rd×Y) → Lp(Ω) and the periodic unfolding operators Tε : Lp(Ω) → Lp(Rd×Y)

and T̃ε : Lp′
(Ω) → Lp′

(Rd×Y) satisfy
(a) ‖Tεu‖Lp′ (Rd×Y) = ‖u‖Lp′ (Ω) and sppt(Tεu) ⊂ [Ω×Y]ε for all u ∈ Lp′

(Ω);
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(b) ‖FεU‖Lp(Ω) ≤ ‖U‖Lp(Rd×Y) for all U ∈ Lp(Rd×Y);

(c) Fε is the adjoint of T̂ε, i.e., Fε =
(
T̂ε
)′

;
(d) Fε ◦ Tε = idLp(Ω) and (Tε ◦ Fε)

2 = Tε ◦ Fε = χεPε.
All these identities can be obtained by elementary calculations via decomposing

R
d into ∪λ∈Λε(λ+Y ).

2.3. Weak and strong two-scale convergences. Following [Ngu89, All92,
CD99, LNW02], a family (uε)ε in Lp(Ω) is called two-scale convergent to a function

U ∈ Lp(Ω×Y) and write uε
2
⇀ U if for all test functions ψ : Ω×Y → R we have

(2.9) lim
ε→0

∫
Ω

uε(x)ψ
(
x,
{x

ε

}
Y

)
dx =

∫
Ω

∫
Y

U(x, y)ψ(x, y)dydx for all ψ ∈ Ψ.

The choice of the set of test functions Ψ is important here; cf. [LNW02]. The weakest
notion occurs if we take Ψ = C∞

c (Ω×Y), which corresponds to a kind of distributional
convergence. If p′ = p/(p−1) denotes the dual exponent to p ∈ (1,∞), the choice
Ψ = Lp′

(Ω,C(Y)) is advocated in [LNW02], since it guarantees weak convergence of
(uε)ε to

∫
Y
U(·, y) dy in Lp(Ω). Note that two-scale convergence can also be defined

using the folding operator Fε defined in (2.7):

uε
2
⇀ U ⇐⇒ 〈uε, Fεψ〉Ω = 〈uε, ψ◦Dε〉Ω → 〈U,ψ〉Ω×Y.

Here we follow some notions from [Vis04], but modify them to fit the case Ω �

R
d, for defining weak and strong two-scale convergences via the periodic unfolding

operators Tε.
Definition 2.2. Let (uε)ε∈(0,ε0) be a family in Lp(Ω) with p ∈ (1,∞).
(a) We say that uε weakly two-scale converges to U ∈ Lp(Ω×Y) and write “uε

w2
⇀ U

in Lp(Ω×Y)” if Tεuε ⇀ Uex in Lp(Rd×Y).
(b) We say that uε strongly two-scale converges to U ∈ Lp(Ω×Y) and write

“uε
s2−→ U in Lp(Ω×Y)” if Tεuε → Uex (strongly) in Lp(Rd×Y).

As the supports of Tεuε are contained in [Ω×Y]ε ⊂ Ω+
ε ×Y, it is clear that any

possible accumulation point U of (Tε)ε has its support in Ω×Y. Because of |∂Ω| = 0 we
have Lp(Ω×Y) = Lp(Ω×Y), and hence accumulation points of (Tεuε)ε can be uniquely
described by elements in Lp(Ω×Y). Nevertheless, it is important that our definition
involves a convergence statement in Lp(Rd×Y); i.e., we need to consider functions
outside of Ω×Y. If the convergence was asked only for the restrictions on Ω×Y, then
different notions would occur.

Example 2.3. We choose Ω = (0, 1) and Y = [0, 1). Along the sequence εk =
(k3−1)/k4 → 0 we consider the functions

uεk(x) = ak for x ∈ (1−1/k2, 1) and 0 otherwise,

which satisfy ‖uεk‖L2(Ω) = |ak|/k. The periodic unfolding Uk = Tεkuεk ∈ L2(R×Y)
reads

Uk(x, y) = ak if
(
x ∈ (1−1/k2, 1+(k−1)/k2) and y ∈ (0, 1/k)

)
and 0 otherwise.

The support of Uk has only a small part in Ω×Y, while the main part is in (Ω+
εk
\Ω)×Y.

Hence, Uk

∣∣
Ω×Y

has a much smaller norm, namely, ‖Uk

∣∣
Ω×Y

‖L2(Ω×Y) = |ak|/k3/2.

Thus, for ak = o(k3/2) we have Uk

∣∣
Ω×Y

→ 0 strongly in L2(Ω×Y), which implies

uk
2
⇀ 0 in L2(Ω×Y).
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However, uεk
w2
⇀ U holds if and only if ak = O(k) and then U ≡ 0. Moreover,

uεk
s2−→ U if and only if ak = o(k) and U ≡ 0 then. (A similar example is given in

[Gri05, p. 15].)
Using the fact that the folding operator is the adjoint of the periodic unfolding

operator, we may equivalently define weak two-scale convergence in a way similar to
the classical definition (2.9), namely,

uε
w2
⇀ U in Lp(Ω×Y)(2.10)

⇐⇒ ∀V ∈ Lp′
(Ω×Y) :

∫
Ω

uε FεV dx →
∫

Ω

∫
Y

U V dydx.

Note that we have simply replaced the folding operator Fε : U �→ U◦Dε by the more
sophisticated version Fε, which allows us to take general Lp functions. Moreover, the
test functions V are allowed to have a support bigger than Ω×Y. As we are interested
in ε → 0, it suffices to consider V ∈ Lp′

(Nδ(Ω)×Y) for any δ > 0, whereas δ = 0 will
lead to a strictly weaker notion of convergence.

The definitions of weak and strong two-scale convergences are obtained by trans-
ferring convergence to the classical weak and strong convergences in the classical space
Lp(Ω×Y).

Proposition 2.4. Let p ∈ (1,∞) and p′ = p/(p−1) and assume that Ω satisfies
(2.4).

(a) If uε
w2
⇀ U in Lp(Ω×Y), then ‖uε‖Lp(Ω) is bounded for ε → 0.

(b) If uε
w2
⇀ U in Lp(Ω×Y), then uε

2
⇀ U . (The reverse implication is in general

not true.)

(c)
(
uε

w2
⇀ U and ‖uε‖Lp(Ω) → ‖U‖Lp(Ω×Y)

)
⇐⇒ uε

s2−→ U .

(d) If uε
w2
⇀ U in Lp(Ω×Y) and vε

s2−→ V in Lp′
(Ω×Y), then 〈uε, vε〉Ω → 〈U, V 〉Ω×Y.

(e) For each U ∈ Lp(Ω×Y) there exists a family (uε)ε such that uε
s2−→ U in

Lp(Ω×Y) (simply take uε = FεUex).

(f) For each w ∈ Lp(Ω) we have Tεw
s2−→ Ew in Lp(Ω×Y), where E : Lp(Ω) →

Lp(Ω×Y) is defined via Ev(x, y) = v(x).

(g) For p ∈ (1,∞), q ∈ (1,∞], and 1
p + 1

q = 1
r ≤ 1, let uε

w2
⇀ U in Lp(Ω×Y) and

vε
s2−→ V in Lq(Ω×Y); then uεvε

w2
⇀ UV in Lr(Ω×Y). If additionally uε

s2−→ U

in Lp(Ω×Y), then uεvε
s2−→ UV in Lr(Ω×Y).

Note that our definition of weak and strong convergences implies an equivalence
in part (c). The corresponding result in [Gri05, Prop. 1.8] using convergence of Tεuε in
Lp(Ω×Y) (instead of convergence in Lp(Rd×Y)) only allows for the implication “⇒”;
see the counterexample [Gri05, p. 15].

Proof. Parts (a), (c), (d), and (g) are immediate consequences of the correspond-
ing results of weak and strong convergences in Lp(Ω×Y).

Property (b) will be a consequence of Proposition 2.5 below.
Property (e) follows as the projector Pε on Lp(Ω×Y) satisfies PεU → U and the

characteristic function χε (cf. (2.8)) converges pointwise a.e. to χΩ×Y.
For property (f) we use that the unfolding operators Tε have norm 1 and that for

w ∈ C1(Ω) some calculation gives ‖Tεw − Ew‖Lp(Ω×Y) ≤ 2 diamY ε |Ω|1/p‖∇w‖L∞ .
Because of (2.4) the smooth functions are dense and the assertion follows.

In fact, the difference between
2
⇀ and

w2
⇀ disappears if we a priori impose bound-

edness of the sequence.
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Proposition 2.5. Let (uε)ε be a bounded family in Lp(Ω) with p ∈ (1,∞). Then
the following statements are equivalent:

(i) uε
2
⇀ U in Lp(Ω×Y), (ii) Tεuε

∣∣
Ω×Y

⇀ U in Lp(Ω×Y),

(iii) uε
w2
⇀ U in Lp(Ω×Y).

Proof. For the equivalence between (i) and (ii) see [CDG02]. The definition of
w2
⇀

shows that (iii) implies (ii). Moreover, using (2.10) and the boundedness of (uε)ε, it is
sufficient to show

∫
Ω
uεFεV dx →

∫
Ω

∫
Y
UV dydx on the dense subset Ψ = C∞

c (Ω×Y).
However, on Ψ we have ‖Fεψ−Fεψ‖Lp(Ω) = O(ε), and thus (i) implies (iii).

The next result provides an improvement of part (g) in Proposition 2.4.

Proposition 2.6. Let p ∈ [1,∞) and let (uε)ε
s2−→ U in Lp(Ω×Y). Moreover,

consider a bounded sequence (mε)ε in L∞(Ω) such that Tεmε(x, y) → M(x, y) for a.e.

x ∈ Ω×Y. Then mεuε
s2−→ MU in Lp(Ω×Y).

Proof. By the assumption, Uε = Tεuε is bounded in Lp(Ω×Y), and hence there
is a subsequence and a majorant g ∈ Lp(Ω×Y) such that |Uεk(x, y)| ≤ g(x, y) and
Uεk(x, y) → U(x, y) a.e. in Ω×Y. Because of the assumptions on mε we find that
Tεk(mεkUεk) = Tεkmεk TεkUεk also has a joint majorant and converges pointwise
a.e. From this we conclude TεkmεkUεk ⇀ MU in Lp(Ω×Y). Since the limit of all
subsequences is the same, the usual contradiction argument provides the convergence
of the whole family.

The following example shows that the statement in Proposition 2.4(d) is not true
if we do not insist on the convergence of Tεuε and Tεvε in Lp(Rd×Y). In [LNW02,
Thm. 11] a related result to (c) is proved, namely,

∫
Ω
τuεvεdx →

∫
Ω
τ
∫

Y
UV dydx for

all τ ∈ C∞
c (Ω), where the cut-off function τ that is 0 near the boundary ∂Ω is needed

to compensate for the usage of the weaker notion of two-scale convergence
2
⇀ defined

in (2.9). In [LNW02, Thm. 11] strong two-scale convergence is implicitly defined by
two-scale convergence

2
⇀ and additional norm convergence; see Proposition 2.4(c).

Example 2.7. We take Ω = (0, 1), Y = [0, 1), εk, and uεk as in Exam-
ple 2.3. Moreover, we let ak = k and vεk = uεk . Obviously, we have

∫
uεkvεk dx =

‖uεk‖2
L2(Ω) = 1. However, as shown above we have Tεkuεk

∣∣
Ω×Y

→ UΩ ≡ 0 in L2(Ω×Y).

Hence, Proposition 2.4(d) does not hold for the limits UΩ and VΩ defined in Lp(Ω×Y)
only.

2.4. Two-scale convergence of gradients. We now deal with bounded se-
quences in W1,p(Ω). The two-scale convergence for the associated gradients provides
an additional structure. To formulate the result we define

W1,p
av (Y) =

{
w ∈ W1,p(Y)

∣∣∣∣
∫

Y

w(y)dy = 0

}

and note that Lp(Ω; W1,p
av (Y)) is the set of functions V in Lp(Ω×Y) = Lp(Ω; Lp(Ω))

such that
∫

Y
V (x, y)dy = 0 for a.a. x ∈ Ω and that ∇yV (in the sense of distributions)

lies again in Lp(Ω×Y).
Theorem 2.8. Let (vε)ε be a sequence in W1,p(Ω) such that vε ⇀ v0 weakly in

W1,p(Ω), where p ∈ (1,∞). Then vε
s2−→ Ev0 in Lp(Ω×Y), and there exist a subse-

quence (vε′)ε′ and a function V1 ∈ Lp(Ω; W1,p
av (Y)) such that

∇vε′
w2
⇀ E∇xv0 + ∇yV1.
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Proof. Using vε ⇀ v0 weakly in W1,p(Ω) gives by the compact embedding that
vε → v0 (strongly) in Lp(Ω). Employing by Propositions 2.1(a) and 2.4 we now have

‖Tεvε−Ev0‖p ≤ ‖Tε(vε−v0)‖p + ‖Tεv0 −Ev0‖p → 0. Thus, vε
s2−→ Ev0 is established.

The weak two-scale convergence of the gradients along a subsequence can be de-
duced by exploiting the corresponding result from the classical two-scale convergence;
see [Ngu89, All92]. Since weak convergence in W1,p(Ω) implies boundedness of the
gradients, the desired result follows using Proposition 2.5.

As for the strong two-scale convergence for functions, we also need a density result
for gradients converging in the two-scale sense. These results will be used to construct
recovery sequences for the Γ-limits below. We first provide an explicit construction
that is based on a smoothing procedure using the heat kernels for R

d and Y. After
that we provide a second construction based on ideas in [Vis04] involving the solutions
of elliptic problems.

Proposition 2.9. Let p ∈ (1,∞) and Ω ⊂ R
d as above. Then for every function

(u0, U1) ∈ W1,p(Ω)×Lp(Ω; W1,p
av (Y)) there exists a family (uε)ε in W1,p(Ω) such that

uε ⇀ u0 in W1,p(Ω) and that ∇uε
s2−→ E∇u0 + ∇yU1.

Proof. It is sufficient to prove the result for u0 ≡ 0, since we may shift any

sequence by u0. Note that by Proposition 2.4(f) we have Tε∇u0
s2−→ E∇u0.

Hence it suffices to find for each V1 ∈ Lp(Ω; W1,p
av (Y)) a family (vε)ε such that

vε ⇀ 0 in W1,p(Ω) and ∇vε
s2−→ ∇yV1 in Lp(Ω×Y).

For this we use the heat kernels HRd and HY defined via

HRd(t, ξ) =
1

(4πt)d/2
exp

(
|ξ|2/(4t)

)
and HY(t, η) =

∑
λ∈Λ

HRd(t, η+λ).

For t > 0 we now define the functions

(2.11) V (t, x, y) =

∫
Rd

∫
Y

HRd(t, x−ξ)HY(t, y−η)(V1)ex(ξ, η)dηdξ.

The classical semigroup theory for the parabolic equation ∂tV = ΔRdV +ΔYV implies
V (t, ·) ∈ C∞(Rd×Y) for t > 0 and

∀α, β ∈ N
d
0 ∃Cα,β > 0 ∀ t > 0 : ‖Dα

xDβ
yV (t, ·)‖Lp(Rd×Y) ≤ C / t(|α|+|β|)/2,

δ(t) = ‖∇yV (t, ·) −∇yV1‖Lp(Rd×Y) → 0 for t ↘ 0.

We define the two-scale function v(ε, t, ·) ∈ W1,p(Ω) via v(ε, t, x) = ε V (t, x,
{

x
ε

}
Y
).

We will choose t = tε suitably to define vε = v(ε, tε, ·). As a first result we obtain

‖vε‖Lp(Ω) ≤ ε|Ω|1/p‖V (tε, ·)‖C0(Ω×Y) ≤ εCSob‖V (tε, ·)‖Wk,p(Ω×Y) ≤ Cεt−k/2
ε ,

where k > (d+d)/p and CSob is the corresponding embedding constant for Wk,p(Ω×Y)

into C0(Ω×Y). Below we will choose tε such that ε t
−k/2
ε → 0 for ε → 0, and thus we

conclude vε → 0 in Lp(Ω).

For the gradients we obtain ∇vε(ε, x) = ε∇xV (tε, x,
{

x
ε

}
Y
) + ∇yV (tε, x,

{
x
ε

}
Y
).

Using ‖Tε∇vε − ∇yV1‖Lp(Ω×Y) ≤ ‖Tεvε − ∇yV (tε, ·)‖Lp(Ω×Y) + δ(tε) with δ(tε) → 0
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and recalling Tεu(x, y) = (u ◦ Sε)(x, y) = u(Nε(x)+εy), it suffices to estimate

|(Tε∇vε)(x, y) − V (tε, x, y)|
≤ ε|∇xV (tε,Nε(x), y)| + |∇yV (tε,Nε(x), y) −∇yV (tε, x, y)|
≤ ε‖∇xV (tε, ·)‖C0(Ω×Y) + εdiam(Y )‖∇x∇yV (tε, ·)‖C0(Ω×Y)

≤ C1εCSob‖V (tε, ·)‖Wk+2,p(Ω×Y) ≤ C2ε t
−(k+2)/2
ε .

Letting tε = εγ with γ ∈ (0, 2/(2+k)) we obtain Tεvε ⇀ V1 in Lp(Ω×Y), and the
result is proved.

The second construction is more direct and allows us to do unfolding and folding as
well. It is based on [Vis04, Thm. 6.1], but we take care of the problems with the bound-
ary ∂Ω. For simplicity, we restrict ourselves to the case p = 2 and assume Dirichlet
boundary conditions. We define the intermediate space L = L2(Ω)×L2(Rd×Y)d, the
two-scale Hilbert space H = H1

0(Ω)×L2(Rd,H1
av(Y)), and the two norm-preserving

linear operators

Tε :

{
H1

0(Ω) → L,
u �→ (u, Tε∇u),

Fε :

{
H → L,

(u0, U1) �→ (u0, (E∇xu0+∇yU1)ex).

For norm-preservation of Fε we choose the norm ‖U1‖2
H1

av(Y) = ‖∇yU1‖L2(Y).

In particular the images X ε
T

:= TεH
1(Ω) and X ε

F
= FεH are closed subspaces of

L2
av(Y). We let Q

ε
T

and Q
ε
F

be the orthogonal projections onto X ε
T

and X ε
F
, respectively.

Then we are able to define a gradient unfolding operator T (1)
ε = F

−1
ε Q

ε
F
Tε : H1

0(Ω) →
H and a gradient folding operator Gε via

(2.12) Gε :

{
H → H1

0(Ω),

(u0, U1) �→ T
−1
ε

(
Q

ε
T

(
Fε(u0, U1)

))
.

As the operators T (1)
ε and Gε are compositions of norm-preserving operators and

orthogonal projections, they have a norm not exceeding 1. The following result shows
that the definition of Gε is such that it relates to solving an auxiliary elliptic problem
and that it provides a recovery sequence with strongly two-scale convergent gradients.

Proposition 2.10. For given (u0, U1) ∈ H the function Gε(u0, U1) is uniquely
characterized as the solution v ∈ H1

0(Ω) of the weak elliptic problem

(2.13)

∫
Ω

(v − u0)w +
(
∇v −Fε(E∇xu0+∇yU1)

)
· ∇wdx = 0 for all w ∈ H1

0(Ω).

Moreover, for ε → 0, we have the convergences

Gε(u0, U1) ⇀ u0 in H1
0(Ω),

(2.14)

∇Gε(u0, U1)
s2−→ E∇xu0 + ∇yU1 in L2(Ω×Y).

Proof. At first, we fix ε and let v = Gε(u0, U1) such that Tεv is the orthogonal
projection of Fε(u0, U1) onto X ε

T
= TεH

1(Ω). Denoting by 〈·, ·〉L the scalar product
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in L, this means that for all w ∈ H1
0(Ω) we have

0 = 〈 Tεv − Fε(u0, U1) ,Tεw〉L

=

∫
Ω

(v − u0)wdx +

∫
Rd×Y

(Tε(∇v) −∇xu0 −∇yU1) · Tε(∇w)dydx

=

∫
Ω

(v − u0)wdx +

∫
Ω

(∇v) · (∇w)dx−
∫

Ω

Fε(∇xu0+∇yU1) · ∇wdx.

Here we use the definitions of Tε and Fε as well as the properties of Tε in Proposition
2.1(a) and (c). Clearly the last line gives (2.13).

To show the desired convergence we recall that the operators Gε : H → H1(Ω) have
a norm bounded by 1. Hence, it suffices to prove the desired convergence on a dense
subset, namely, C = C2

c(Ω)×C2
c(Ω×Y). For (u0, U1) ∈ C we write uε = (Gε(u0, U1)) in

the form

uε(x) = vε(x) + gε(x) with vε(x) = u0(x) + εU1

(
x,
{x

ε

}
Y

)
,

where gε is the solution of the weak elliptic problem

(2.15)

∫
Ω

gεw + ∇gε · ∇wdx = �ε(w) for all w ∈ H1
0(Ω),

where �ε(w) =

∫
Ω

(u0−vε)w +
(
Fε(E∇xu0+∇yU1) −∇vε

)
· ∇wdx.

Clearly, the family (vε)ε∈(0,1) is bounded in H1
0(Ω). Moreover, we have ‖u0−vε‖L∞ ≤

C1ε, which implies vε ⇀ u0 in H1
0(Ω). Using ∇vε(x) = ∇u0(x) + ∇yU1(x,

{
x
ε

}
Y
) +

ε∇xU1(x,
{

x
ε

}
Y
) and (u0, U1) ∈ C, we have ‖Tε∇vε − (E∇xu0−∇yU1)ex‖L2(Rd×Y) ≤

C2ε, i.e., ∇vε
s2−→ E∇xu0−∇yU1 in L2(Ω×Y).

Hence, it suffices to show ‖gε‖H1(Ω) → 0, as this implies ∇gε
s2−→ 0 in L2(Ω×Y).

From (2.15) we have

‖gε‖2
H1(Ω) ≤ ‖(u0−vε,Fε(E∇xu0+∇yU1) −∇vε)‖2

L

= ‖u0−vε‖2
L2(Ω) + ‖E∇xu0+∇yU1) − Tε∇‖2

L2(Rd×Y) ≤ C3ε
2.

This finishes the proof of the convergence result (2.14).
Finally, let us note that we may extend the construction to functions u, u0 ∈

H1(Ω), namely, without Dirichlet boundary conditions. In fact, for u0 ∈ H1(Ω) we
obtain a recovery sequence uε = u0 + Gε(0, U1) by simply employing the above result
and Proposition 2.4(f).

2.5. Two-scale Γ-limits. We now discuss the question of how functionals be-
have under two-scale convergence. This relates strongly to the question of homoge-
nization. The two-scale convergence results we present here are well known in the
literature, but often they are not easily accessible. Thus, we repeat here some
simple versions which can be easily deduced by our theory and which are suffi-
cient for our application in the next section. For more advanced results we refer
to [All92, CD99, CDD06, Vis07].

Let W : Y×R
m → R∞ := R∪{∞} be a normal integrand, which means that for

each u ∈ R
m the function y �→ W (y, u) is measurable and that for a.e. y ∈ Y the
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function u �→ W (y, u) is lower semicontinuous. Recalling our definitions of Tε, Fε,
and [Ω×Y]ε (cf. the line above (2.3)), we obtain the following central formulas:

(2.16)

∫
Ω

W
({x

ε

}
Y
, u(x)

)
dx =

∫
[Ω×Y]ε

W (y, Tεu (x, y))dydx for all u ∈ Lp(Ω).

This identity follows by a simple decomposition of Ω+
ε into small cells Nε(ξ)+εY and

using the definition of Tε.
The next two lemmas are the basis of the two-scale Γ-convergence for the func-

tionals

Wε :

{
Lp(Ω) → R∞,

u �→
∫
Ω
W (

{
x
ε

}
Y
, u(x))dx

and W :

{
Lp(Ω×Y) → R∞,

U �→
∫
Ω×Y

W (y, U(x, y))dydx.

Lemma 2.11. Assume that p ∈ (1,∞), that Ω is as above, and that W : Y×R
m →

R∞ is a convex normal integrand, i.e., W (y, ·) : R
m → R∞ is convex for a.e. y ∈ Y.

Moreover, let W be bounded from below by W (y, u) ≥ −h(y) for a.e. y ∈ Y with
h ∈ L1(Ω). Then

uε
w2
⇀ U in Lp(Ω×Y) =⇒ W (U) ≤ lim inf

ε→0
Wε(uε).

Proof. We choose an increasing sequence Ak, k ∈ N, of open subsets of Ω such
that Ak ⊂ Ak+1 � Ω and |Ω\Ak| → 0 for k → ∞. Then for each k there exists ε0

such that Ak×Y ⊂ Ω−
ε ×Y ⊂ [Ω×Y]ε for ε ∈ (0, ε0).

Now consider a family with uε
w2
⇀ U . Using (2.16) and W ≥ 0 we find

Wε(uε) =

∫
[Ω×Y]ε

W (y, Tεuε(x, y))dydx ≥
∫
Ak×Y

W (y, Tεuε(x, y))dydx−
∫

Ω\Ak

h(y)dy.

On the right-hand side we may pass to the limit inferior for ε → 0, as Tεuε ⇀ U in
Lp(Ω×Y) and as W is a convex normal integrand. We obtain

lim inf
ε→0

Wε(uε) ≥
∫
Ak×Y

W (y, U(x, y))dydx −
∫

Ω\Ak

h(y)dy.

Since k was arbitrary, we may consider now the limit k → ∞. The second term tends
to 0 as |Ω\Ak| → 0, whereas the first term converges to W (U).

Lemma 2.12. Assume that p ∈ (1,∞) and that Ω is as above.
(a) Let W : Y×R

m → R be a Carathéodory function, i.e., W (y, ·) is continuous
for a.e. y ∈ Y and W (·, u) is measurable for each u ∈ R

d. Moreover, assume
that there is a function h ∈ L1(Y) and a constant C > 0 such that |W (y, u)| ≤
h(y) + C(1+|u|)p for all u ∈ R

m and a.e. y ∈ Y. Then

uε
s2−→ U in Lp(Ω×Y) =⇒ W (U) = lim

ε→0
Wε(uε).

In particular, this implies that Wε(FεUex) → W (U).
(b) Let W : Y×R

m → R∞ be a normal integrand such that for a.e. y ∈ Y the
function W (y, ·) is convex and that |W (y, 0)| ≤ h(y) for some h ∈ L1(Y).
Then

W (U) = lim
ε→0

Wε(FεUex) for all U ∈ Lp(Ω×Y).
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Proof. (a) We let Uε = Tεuε; then formula (2.16) gives

Wε(uε) =

∫
[Ω×Y]ε

W (y, Uε(x, y))dydx = W (U) + Iε1 + I2
ε

with

Iε1 =

∫
Ω×Y

[
W (y, Uε(x, y))−W (y, U(x, y))

]
dydx = W (Uε) −W (U),

Iε2 =

∫
[Ω×Y]ε

W (y, Uε(x, y))dydx−
∫

Ω×Y

W (y, Uε(x, y))dydx.

We have Iε1 → 0 because of Uε → Uex in Lp(Rd×Y) and the strong continuity of the
functional R. For the later property we use the continuity of W (y, ·) and the growth
restrictions; cf. [Dac89, Val88].

For Iε2 → 0 we note that both integrals have the same integrand. Moreover, the

difference of the domains Ω×Y and [Ω×Y]ε is contained in Bε =
(
Ω+

ε \Ω−
ε

)
×Y. By

condition (2.4) the Lebesgue measure of this set tends to 0, whence Iε2 → 0 and we
conclude

|Iε2 | ≤
∫
Bε

h(y) + C(1+|Uε(x, y)|)pdydx → 0,

where again Uε → U is used to obtain the equi-integrability of |Uε|p.
(b) We again use (2.16) for u = FεUex and note that TεFεUex = χεPεUex by

Proposition 2.1(d). With this we find

Wε(FεUex) =

∫
[Ω×Y]ε

W (y,PεUex(x, y))dydx =

∫
Rd×Y

χε(x, y)W (y,PεUex(x, y))dydx

≤(1)

∫
Rd×Y

χε(x, y)−
∫

Nε(x)+εY

W (y, Uex(y, ξ))dξ dydx

=(2)

∫
Rd×Y

χε(ξ, y)W (y, Uex(y, ξ))dydξ ≤(3) W (U) +

∫
(Ω+

ε \Ω)×Y

h(y)dydx.

For ≤(1) we have used the convexity of W (y, ·) and Jensen’s inequality. The equality
=(2) uses the fact that the integrand is piecewise constant in x on each Nε(x)+εY .
For ≤(3) we use χε ≤ χΩ×Y + χ(Ω+

ε \Ω)×Y and Uex = 0 outside of Ω×Y. Using

h ∈ L1(Y) and (2.4) we find lim supε Wε(FεUex) ≤ W (U). The opposite inequal-
ity lim infε Wε(FεUex) ≥ W (U) was established in Lemma 2.11.

The following result states that the two-scale functional W can be considered
as the two-scale Γ-limit of the functionals Wε in the sense of Mosco; i.e., it is the
two-scale Γ-limit in the weak as well as in the strong topology.

Corollary 2.13. Let p ∈ (1,∞) and let Ω be as above. Moreover, let W :
Y×R

m → R be a convex, normal integrand satisfying the bounds W (y, u) ≥ −h(y)
and W (y, 0) ≤ h(y) for all u ∈ R

m and a.a. y ∈ Y with h ∈ L1(Y). Then we have the
following:

(i) Lower estimate: uε
w2
⇀ U in Lp(Ω×Y) =⇒ W (U) ≤ lim infε→0 Wε(uε).

(ii) Recovery sequence: ∀U ∈ Lp(Ω×Y) ∃ (uε)ε : uε
s2−→ U and W (U) =

limε→0 Wε(uε).
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Remark 2.14. It is possible to generalize the above results to the case that the
density W also depends on the macroscopic variable x ∈ Ω. The central identity
(2.16) is easily generalized to∫

Ω

Wε(x, u(x))dx =

∫
[Ω×Y]ε

Wε(Sε(x, y), Tεu(x, y))dydx for all u ∈ Lp(Ω).

Thus, if we want to realize a general Carathéodory function W : Ω×Y×R
m → R∞ in

the two-scale limit functional W , we define Wε via the approximate energy density,

Wε(x, u) = Ŵε

(
x,
{x

ε

}
Y
, u
)

with Ŵε(x, y, u) = −
∫
Nε(x)+εY

W (ξ, y, u)dξ,

instead of the traditionally used W (x,
{

x
ε

}
Y
, u). Note that Wε satisfies Wε(Sε(x, y), u)

= Ŵε(x, y, u) → W (x, y, u) a.e. for ε → 0.
Under some mild additional conditions it is then possible to pass to the limit as

in Lemmas 2.11 and 2.12; see also Proposition 2.6. This also resolves the difficulties
addressed in [CDG02, Thm. 2]. This will be the subject of future research.

2.6. Two-scale cross-convergence. Finally we present a result concerning a
functional involving gradients. For families ((uε, zε))ε in W1,p(Ω)×Lp(Ω) we define
the notions of weak and strong two-scale cross-convergences as follows:

(uε, zε)
w2c
⇀ (u0, U1, Z) in Xp ⇐⇒

⎧⎪⎨
⎪⎩

uε ⇀ u0 in W1,p(Ω),

∇uε
w2
⇀ E∇u0 + ∇yU1 in Lp(Ω×Y),

zε
w2
⇀ Z in Lp(Ω×Y),

(uε, zε)
s2c−−→ (u0, U1, Z) in Xp ⇐⇒

⎧⎪⎨
⎪⎩

uε ⇀ u0 in W1,p(Ω),

∇uε
s2−→ E∇u0 + ∇yU1 in Lp(Ω×Y),

zε
s2−→ Z in Lp(Ω×Y),

where Xp = W1,p(Ω)×Lp(Ω; W1,p
av (Y))×Lp(Ω×Y). The final result on two-scale Γ-

convergence now provides relations between the functionals

Φε(u, z) =

∫
Ω

φ
({x

ε

}
Y
, u(x),∇u(x), z(x)

)
dx,

Φε(u0, U1, Z) =

∫
Ω×Y

φ(y, u0(x),∇u0(x)+∇yU1(x, y), Z(x, y))dx.

Proposition 2.15. Let p ∈ (1,∞) and let Ω ⊂ R
d be a bounded domain with Lip-

schitz boundary. Assume that φ : Y×R
k×R

k×d×R
m → R is a Carathéodory function

(measurable in y ∈ Y and continuous in (u, F, z) ∈ R
k×R

k×d×R
m → R) satisfying

the bound |φ(y, u,A, z)| ≤ h(y) + C(1+|u|+|A|+|z|)p for h ∈ L1(Y). Then we have

(uε, zε)
s2c−−→ (u0, U1, Z) in Xp =⇒ Φε(uε, zε) → Φ(u0, U1, Z).

Moreover, if φ(y, ·) is convex for a.a. y ∈ Y, we also have

(uε, zε)
w2c
⇀ (u0, U1, Z) in Xp =⇒ Φ(u0, U1, Z) ≤ lim inf

ε→0
Φε(uε, zε).

The proof is a direct consequence of combining Lemmas 2.11 and 2.12(a).
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3. Existence and uniqueness of solution.

3.1. Abstract result. For the convenience of the reader we recall the standard
existence and uniqueness results for evolutionary variational inequalities; see, e.g.,
[BS96, Vis94, Mie05]. We start with a Hilbert space Q with dual Q∗ and dual pairing
〈·, ·〉 : Q∗×Q → R and a positive semidefinite operator A ∈ Lin(Q,Q∗), i.e., A = A∗

and 〈Aq, q〉 ≥ 0 for all q ∈ Q. For a function � ∈ C1([0, T ],Q∗) we define the energy
functional

E(t, q) =
1

2
〈Aq, q〉 − 〈�(t), q〉.

Moreover, let a dissipation functional R : Q → [0,∞] be given that is convex, lower
semicontinuous, and positively homogeneous of degree 1, viz.,

R(γq) = γR(q) for all γ ≥ 0 and q ∈ Q.

The energetic formulation (S) and (E) of the rate-independent hysteresis problem
associated with E and R is based on the global stability condition (S) and the energy
balance (E):

(S) E(t, q(t)) ≤ E(t, q̃) + R(q̃−q(t)) for every q̃ ∈ Q,

(E) E(t, q(t)) + DissR(q; [0, t]) = E(0, q(0)) +

∫ t

0

∂sE(s, q(s))ds,

where DissR(q; [r, s]) =
∫ s

r
R(q̇(t)) dt and ∂sE(s, q(s)) = −〈�̇(s), q(s)〉. We call q :

[0, T ] → Q satisfying (S) and (E) for all t ∈ [0, T ] an energetic solution associated
with (E,R).

The stability condition can be formulated in terms of the sets of stable states

S(t) = { q ∈ Q | E(t, q) ≤ E(t, q̂) + R(q̂ − q) for every q̂ ∈ Q }.

Now, (S) just means q(t) ∈ S(t).
There are several equivalent formulation for (S) and (E), for instance, the subdif-

ferential inclusion 0 ∈ ∂R(q̇(t)) + DqE(t, q(t)) or the variational inequality

(3.1) 〈Aq(t)−�(t), v−q̇(t)〉 + R(v) − R(q̇(t)) ≥ 0 for every v ∈ Q.

For these equivalences, we refer to [MT04, Mie05], where also a proof of the following
existence and uniqueness result can be found.

Theorem 3.1. Let � ∈ C1([0, T ],Q∗) and q0 ∈ S(0). Moreover, assume that the
following coercivity condition holds:

(3.2) ∃α > 0 ∀ v ∈ Q with R(v) < ∞ : 〈Av, v〉 ≥ α‖v‖2.

Then the energetic problem (S) and (E) has a unique solution q ∈ CLip([0, T ],Q) with

‖q(t) − q(s)‖Q ≤ LipQ∗(�)

α
|t− s| for all s, t ∈ [0, T ].

For the reader’s convenience we repeat the main argument for the a priori esti-
mate. Assume that for t the derivative q̇(t) exists. Using (3.1) with v = 0 we find
〈Aq(t) − �(t),−q̇(t)〉 − R(q̇(t)) ≤ 0. For a sequence tn → t where (3.1) holds we test
with v = μq̇(t), divide by μ, and consider the limit μ → ∞. Using 1-homogeneity of
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R we obtain 〈Aq(tn) − �(tn), q̇(t)〉 + R(q̇(t)) ≤ 0. Adding this to the above estimate
gives

〈
(
Aq(tn)−�(tn)

)
−
(
Aq(t)−�(t)

)
, q̇(t)〉 ≤ 0.

Assuming tn > t we may divide the above inequality and pass to the limit to find
〈Aq̇(t) − �̇(t), q̇(t)〉 ≤ 0. For tn < t we find the opposite inequality. Since we may
approach t by sequences from both sides, this implies 〈Aq̇(t), q̇(t)〉 = 〈�̇(t), q̇(t)〉. Now,
(3.2) leads to the desired result α‖q̇(t)‖ ≤ ‖�(t)‖∗.

3.2. Elastoplasticity with periodic coefficients. In this section we formulate
the continuum mechanics that describes the rate-independent evolution of an elasto-
plastic body under prescribed loading. This model is the classical one introduced by
Moreau and is still used in many engineering applications; cf. [Mor76, HR99].

The body occupies a domain Ω ⊂ R
d, which is assumed to be a nonempty con-

nected bounded open set with Lipschitz boundary ∂Ω. As above we have a length
scale parameter ε and a periodicity lattice Λ with unit cell Y ⊂ R

d. With u : Ω → R
d

we denote the displacement of the body, and z : Ω → R
m denotes a vector of inter-

nal variables which will account for inelastic effects due to plastic strains and plastic
hardening.

The material properties are assumed to be periodic with respect to the microscopic
lattice εΛ, which leads to the dependence on

{
x
ε

}
Y
. The energy functional Eε is based

on a stored-energy density W : Y×R
d×d
sym×R

m → R; (y, e, z) �→ W (y, e, z), where

R
d×d
sym = {A ∈ R

d×d | A = AT } and e = e(u) = 1
2 (∇u+∇uT) ∈ R

d×d
sym is the linearized

strain tensor. With this, Eε takes the form

Eε(t, u, z) =

∫
Ω

W
({x

ε

}
Y
, e(u)(x), z(x)

)
dx− 〈�(t), u〉

with 〈�(t), u〉 =

∫
Ω

u(x) · fap(t, x)dx +

∫
∂Ω

u(ξ) · gap(t, ξ)dξ,

where fap and gap are the applied, time-dependent loading in the volume and on the
surface, respectively. We assume that they satisfy fap ∈ C1([0, T ],L2(Ω; Rd)) and
gap ∈ C1([0, T ],L2(∂Ω; Rd)), such that � ∈ C1([0, T ],H1(Ω; Rd)∗).

For the stored energy W we assume that it is a quadratic form in (e, z), namely,

W (y, e, z) =
1

2

〈〈
A(y)

(
e

z

)
,

(
e

z

)〉〉
,

where A(y) : R
d×d
sym×R

m → R
d×d
sym×R

m is a positive semidefinite linear operator and〈〈(
e
z

)
,
(
ẽ
z̃

)〉〉
=
∑d

i,j=1 eij ẽij +
∑m

k=1 zkz̃k is the scalar product on R
d×d
sym×R

m.

The dissipation potential Rε is defined via a dissipation density ρ : Y×R
m →

[0,∞], i.e., Rε(ż) =
∫
Ω
ρ(
( {

x
ε

}
Y

)
, ż(x)) dx. Rate-independence is imposed by as-

suming that ρ(y, ·) is positively homogeneous of degree 1 (for short, 1-homogeneous).
Note that ρ is not assumed to be symmetric (i.e., ρ(y,−ż) �= ρ(y, ż) is allowed), since
this freedom is necessary to model hardening.
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Our precise assumptions on the material data A and ρ are

A ∈ L∞(Y,Lin(Rd×d
sym×R

m)) with A(y) = A(y)T ≥ 0,(3.3a)

ρ : Y → [0,∞] is a convex, normal integrand and ρ(y, ·) is 1-homogeneous,(3.3b)

∃ α̂ > 0 ∀a.a.y ∈ Y ∀
(
e

z

)
∈ R

d×d
sym×R

m with ρ(y, z) < ∞ :〈〈
A(y)

(
e

z

)
,

(
e

z

)〉〉
≥ α̂

∣∣∣∣
(
e

z

)∣∣∣∣
2

.

(3.3c)

Remark 3.2. Here we describe the exact setting for the linearized theory of
elastoplasticity which is the motivation of this work. However, in the remainder of
the paper we do not rely on the further specifications given here.

The basis of linearized elastoplasticity is the additive split of the strain into an
elastic part eel = e(u) − p and a plastic part p = B(y)z, where B(y) : R

m → R
d×d
sym is

a linear mapping. Then W is taken in the form

W (y, e, z) =
〈
C(y)(e−B(y)z), e−B(y)z

〉
d×d

+ 〈H(y)z, z〉m,

where C(y) : R
d×d
sym → R

d×d
sym is the symmetric (fourth order) elasticity tensor and H(y)

denotes the hardening tensor. This means A has the block structure
(

C

−B∗C

CB

H+B∗CB

)
.

The typical case of isotropic hardening may be written in the way that z = (p, h),
where p ∈ (Rd×d

sym)0 = {A ∈ R
d×d
sym | trA = 0 } is the (deviatoric) plastic strain (i.e.,

B(y)(p, h) = p), h ∈ R is the isotropic hardening parameter, and H(y) is taken as
κ(y) > 0. Moreover, ρ is assumed to have the form

ρ(y, (ṗ, ḣ)) =

{
r(y)ḣ for ḣ ≥ 0 and ṗ ∈ ḣΣ(y),

∞ otherwise,

where r(y) > 0 and Σ(y) ⊂ (Rd×d
sym)∗0 is the compact and convex elastic domain (with

∂Σ(y) being the yield surface) at the point y ∈ Y for the the initial hardening state
h = 1.

The coercivity assumption (3.3c), which is essential for our analysis, then follows
if we assume that there exist positive constants c and C such that for a.a. y ∈ Y we
have the estimates

κ(y) ≥ c, 〈C(y)e, e〉 ≥ c|e|2 for all e, |σ| ≤ C for all σ ∈ Σ(y).

Note that the restriction ρ(y, (p, h)) < ∞ implies |p| ≤ Ch. Without the coercivity
postulated in (3.3c) the analysis would be significantly more difficult due to strain
localization; see, e.g., [DDM06].

Finally, we fix the function spaces by prescribing Dirichlet boundary conditions
u = 0 along the part ΓDir of ∂Γ. This defines the underlying Hilbert space

Q = H1
ΓDir

(Ω)d×L2(Ω)m with H1
ΓDir

(Ω) = {u ∈ H1(Ω) | uΓDir = 0 }.

The domain Ω and the Dirichlet boundary part ΓDir are specified further in the next
result to guarantee coercivity of the energy Eε.

Proposition 3.3 (Korn’s inequality). Let Ω ⊂ R
d be a connected, open, bounded

set with Lipschitz boundary Γ. Moreover, let ΓDir be a measurable subset of Γ, such
that

∫
ΓDir

1da > 0. Then there exists a constant CKorn > 0, such that

(3.4)

∫
Ω

|e(u)|2 dx ≥ CKorn‖u‖2
H1(Ω) for all u ∈ H1

ΓDir
(Ω)d.
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Clearly, we may write Eε(t, e, z) = 1
2

〈〈
Aε

(
u
z

)
,
(
u
z

)〉〉
−〈�̃(t),

(
e
z

)
〉, where Aε : Q → Q∗

is symmetric and positive semidefinite. Moreover, combining assumption (3.3c) and
Korn’s inequality, we find for all

(
e
z

)
∈ Q with Rε(z) < ∞ the coercivity estimate

(3.5)〈〈
Aε

(
u

z

)
,

(
u

z

)〉〉
≥ α̂

∥∥∥∥
(
e(u)

z

)∥∥∥∥
2

L2(Ω)

≥ α

∥∥∥∥
(
u

z

)∥∥∥∥
2

Q

with α = α̂min{1, CKorn}.

We call qε = (uε, zε) : [0, T ] → Q an energetic solution associated with (Eε,Rε) if
for all t ∈ [0, T ] the stability condition (Sε) and the energy balance (Eε) hold:
(3.6)

(Sε) Eε(t, uε(t), zε(t)) ≤ Eε(t, ũ, z̃) + Rε(z̃−zε(t)) for every (ũ, z̃) ∈ Q,

(Eε) Eε(t, uε(t), zε(t)) +

∫ t

0

Rε(żε(s))ds = Eε(0, uε(0), zε(0))−
∫ t

0

〈�(s), u(s)〉ds.

Applying the abstract Theorem 3.1 we immediately obtain the following existence and
uniqueness result, which contains an a priori Lipschitz bound that is independent of
ε > 0.

Proposition 3.4. Let � ∈ CLip([0, T ], (H1
ΓDir

(Ω)d)∗). Then for all ε > 0 and all

stable (u0
ε, z

0
ε) ∈ Q there exists a unique solution (uε, zε) ∈ CLip([0, T ],Q) of (Sε) and

(Eε) with (uε(0), zε(0)) = (u0
ε, z

0
ε). Moreover, all these solutions satisfy

(3.7) ‖(uε(t), zε(t)) − (uε(s), zε(s))‖Q ≤ LipQ∗((�, 0))

α
|t−s| for all t, s ∈ [0, T ],

where α is defined in (3.5) and is independent of ε.

3.3. The two-scale homogenized problem. Instead of the functionals Eε and
Rε we may consider their two-scale limits. As the energy storage functional depends
on the gradient of u, we use the notion of two-scale cross-convergence introduced in
section 2.6 on the space

Q = H×Z with H = H1
ΓDir

(Ω)d×L2(Ω,H1
av(Y))d and Z = L2(Ω×Y)m.

We use U = (u0, U1) for the elements in H and Z for the internal elements lying in
Z. The functionals E and R are defined via

E(t, U, Z) =

∫
Ω×Y

1

2

〈〈
A(y)

(
ê(U)

Z

)
,

(
ê(U)

Z

)〉〉
− 〈�(t), u0〉,

R(Z) =

∫
Ω×Y

ρ(y, Z(x, y))dydx,

where

ê(U) = ex(u0) + ey(U1) =
1

2
(∇xu0+(∇xu0)

T) +
1

2
(∇yU1+(∇yU1)

T).

Again we define the energetic formulation for E and R on Q via the global
stability condition (S) and the energy balance (E). As above, a mapping (U,Z) :
[0, T ] → H×Z = Q is called an energetic solution associated with E and R if for all
t ∈ [0, T ] we have
(3.8)

(S) E(t, U(t), Z(t)) ≤ E(t, Ũ , Z̃) + R(Z̃−Z(t)) for all (Ũ , Z̃) ∈ H×Z,

(E) E(t, U(t), Z(t)) +

∫ t

0

R(Ż(s))ds = E(0, U(0), Z(0)) −
∫ t

0

〈�(s), u0(s)〉ds.
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Using abstract existence Theorem 3.1 we again obtain the following result as soon
as we have established the coercivity assumption (3.2) for the energy E.

Proposition 3.5. Let � ∈ CLip([0, T ], (H1
ΓDir

(Ω)d)∗). Then for all stable Q0 =

(U0, Z0) ∈ Q, problem (S) and (E) has a unique solution Q = (U,Z) ∈ CLip([0, T ],Q)
with Q(0) = Q0.

Proof. It remains to prove that A : Q → Q∗, which is defined via E(t, U, Z) =
1
2

〈
A
(
U
Z

)
,
(
U
Z

)〉
Q
− 〈�(t), u0〉H1 , satisfies (3.2):

(3.9) ∃α > 0 ∀ (U,Z) ∈ Q with R(Z) < ∞ :

〈
A

(
U

Z

)
,

(
U

Z

)〉
Q

≥ α‖(U,Z)‖2
Q.

By our assumption (3.3c), we immediately obtain the lower estimate

(3.10)

〈
A

(
U

Z

)
,

(
U

Z

)〉
Q

≥ α̂‖(ê(U), Z)‖2
L2(Ω×Y) for all (U,Z) ∈ Q.

Next, we use an orthogonality condition for the two-scale limit of gradients. If

∇uε
w2
⇀ E∇xu0 + ∇yU1 in L2(Ω×Y), then

∫
Ω×Y

|∇xu0(x)+∇yU1(x, y)|2 dydx =

∫
Ω

|∇u0(x)|2 dx +

∫
Ω×Y

|∇yU1(x, y)|2 dydx.

The mixed terms drop out, since E∇u0(x, ·) is constant on Y, while ∇yU1(x, ·) has
average 0 as it is a derivative of a periodic function. For the symmetric strains we
similarly obtain

‖ê((u0, U1))‖2
L2(Ω×Y) = ‖e(u0)‖2

L2(Ω) + ‖ey(U1)‖2
L2(Ω×Y).

With KY = 2π2 min{ |λ|2 | 0 �= λ ∈ Λ } we have the Korn–Poincaré-type inequalities:

∀V ∈ H1
av(Y) : ‖ey(V )‖2

L2(Y) ≥ KY‖V ‖2
L2(Y) and ‖ey(V )‖2

L2(Y) ≥
1

2
‖∇yV ‖2

L2(Y).

This follows easily by writing V (y) =
∑

Λ Vλe2iπλ·y and using Plancherel’s identity.
Inserting these estimates into (3.10) and employing Korn’s inequality for u0 we obtain

〈
A

(
U

Z

)
,

(
U

Z

)〉
Q

≥ α̂

(
CKorn‖u0‖2

H1(Ω)+
KY

1 + 2KY

∫
Ω

‖U1(x, ·)‖2
H1(Y) dx+‖Z‖2

L2(Ω×Y)

)
,

which provides the desired estimate (3.9).

4. Convergence results. This final section addresses the question of under
which conditions the solutions (uε, zε) of (Sε) and (Eε) have a two-scale limit (U,Z)
which is a solution of (S) and (E). The convergence is taken in the sense of two-scale
cross-convergence, and we can build on our theory in section 4.3. In particular, the
results of section 2.5 state that E and R are the Γ-limits of the families (Eε)ε and
(Rε)ε, respectively, in the Mosco sense.

Proposition 4.1. Let Ω ⊂ R
d be bounded with Lipschitz boundary. Moreover, let

Eε, Rε, E, and R be defined as above such that (3.3) and � ∈ C0([0, T ], (H1
ΓDir

(Ω)d)∗)
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hold. Then for each t ∈ [0, T ] we have the convergences

(uε, zε)
w2c
⇀ (u0, U1, Z) ∈ Q =⇒

⎧⎨
⎩

E(t, u0, U1, Z) ≤ lim inf
ε→0

Eε(t, uε, zε),

R(Z) ≤ lim inf
ε→0

Rε(zε);
(4.1a)

∀ (u0, U1, Z) ∈ Q ∃ ((uε, zε))ε :

(uε, zε)
s2c−−→ (u0, U1, Z) in Q and

{
Eε(t, uε, zε) → E(t, u0, U1, Z),

Rε(zε) → R(Z),

(4.1b)

where for the recovery sequence in (4.1b) we may take (uε, zε) = (u0+Gε(0, U1),FεZ)
with Fε and Gε as defined in (2.8) and (2.12), respectively.

Here it is important that Gε maps into H1
0(Ω), such that u0+Gε(0, U1) ∈ H1

ΓDir
(Ω)d.

Our convergence result for the solutions (uε, zε) ∈ CLip([0, T ],Q) of (Sε) and (Eε)
to the solution (U,Z) ∈ CLip([0, T ],Q) will be an adapted and simplified variant of
the two abstract Theorems 3.1 and 3.3 in [MRS07]. The abstract theory is formulated

on one single space Q̂, but in fact the results there are easily generalized to the setting
needed here. The following remark gives the alternative way of embedding everything
into one big function space Q̂.

Remark 4.2. To show that our situation is included exactly in this setting, we
choose

Q̂ = Ĥ×Ẑ with Ĥ = H1
ΓDir

(Ω)d×L2(Rd; H1
av(Y)) and Ẑ = L2(Rd×Y)

and define an ε-dependent embedding (u, z) �→ (Qεu,Uεu, Tεz), where the Qε : H1
ΓDir

(Ω)d

→ H1
ΓDir

(Ω)d and U : H1
ΓDir

(Ω)d → L2(Rd; H1
av(Y)) can be defined as indicated in

[CDG02]. Define Hε as the subspace of H1
ΓDir

(Ω)d containing the functions u such
that −

∫
ε(λ+Y )

u(x) dx = 0 for all λ ∈ Λ−
ε ; see section 2.1. Then let Qε be the or-

thogonal projection to the orthogonal complement of Hε and set Uεu = 1
ε (id−Qε)u.

Finally, we define the functionals in Q̂ via

Êε(t, u0, Û1, Ẑ) =

{
Eε(t, u, z) if (u0, Û1, Ẑ) = (u,Qεu, Tεz),

∞ else,

Ê0(t, u0, Û1, Ẑ) =

{
E(t, u0, U1, Z) if sppt(Û1, Ẑ) ⊂ Ω×Y,

∞ else,

R̂ε(Ẑ) =

{
Rε(z) if Ẑ = Tεz,
∞ else,

R̂0(Z) =

{
R(Z) if sppt(Z) ⊂ Ω×Y,

∞ else.

Hence, under the additional assumption that for all considered functions the cor-
responding functionals have finite values, we have concluded that weak and strong
convergences in Q̂ are equivalent to weak or strong two-scale convergence of families
(uε, zε)ε in Q towards a limit (u0, U1, Z) ∈ Q.

Now we are able to formulate the main result of this paper. It states that the
solutions (uε, zε)ε of the ε-periodic problem (Sε) and (Eε) strongly two-scale cross-
converge to a solution (U,Z) of the two-scale homogenized problem (S) and (E) under
the sole assumption that the initial conditions strongly two-scale cross-converge.

Theorem 4.3. Let (uε, zε) : [0, T ] → Q be the solution for (Sε) and (Eε) as
obtained in Proposition 3.4. Assume that the initial data satisfy

(uε(0), zε(0))
s2c−−→ Q0 = (u0, U0, Z0) in Q.



664 ALEXANDER MIELKE AND AIDA M. TIMOFTE

Then Q0 is stable (i.e., Q0 ∈ S(0)) and

∀ t ∈ [0, T ] : (uε(t), zε(t))
s2c−−→ Q(t) = (u0(t), U1(t), Z(t)) in Q,

where Q : [0, T ] → Q is the unique solution of (S) and (E) with initial condition
Q(0) = Q0 as provided in Proposition 3.5.

Recall the definition of the stable sets

Sε(t) = { (u, z) ∈ Q | for all (ũ, z̃) ∈ Q: Eε(t, ũ, z̃) ≤ Eε(0, ũ, z̃)−Rε(z̃−z) },
S(t) = { (U,Z) ∈ Q | for all (Ũ , Z̃) ∈ Q: E(t, Ũ , Z̃) ≤ E(0, Ũ , Z̃)−R(Z̃−Z) }.

Remark 4.4. In [MRS07] the convergence of the initial condition and of the
solutions is formulated in terms of the underlying topology, which in the present
setting means weak two-scale cross-convergence. However, the abstract theory as-
sumes convergence of the initial energies and proves convergence of the energies
Eε(t, uε(t), zε(t)) → E(t, U(t), Z(t)). Because of uniform convexity (cf. (3.9)) we see
that weak convergence and energy convergence imply strong convergence. The details
of this argument are worked out at the end of the proof of Theorem 4.3. See also
[Vis84] for general arguments of this type.

The main difficulty in the proof of the desired result is proving that the weak limit
of stable states is again stable. In [MRS07] this property is reduced to a property
which postulates the existence of suitable joint recovery sequences for a combination
of Eε and Rε. In our setting this reads as follows.

Proposition 4.5. For t ∈ [0, T ] assume that (uε, zε) ∈ Sε(t) and (uε, zε)
w2c
⇀

(u0, U1, Z) in Q.

(a) Then for each (ũ0, Ũ1, Z̃) ∈ Q there exists a joint recovery family (ũε, z̃ε)ε

with (ũε, z̃ε)
w2c
⇀ (ũ0, Ũ1, Z̃) in Q such that

lim sup
ε→0

[
Eε(t, ũε, z̃ε)+Rε(z̃ε−zε)−Eε(t, uε, zε)

]
(4.2)

≤ E(t, Ũ , Z̃)+R(Z̃−Z)−E(t, U, Z).

(b) As a consequence (u0, U1, Z) ∈ S(t).
Proof. (a) We give the joint recovery sequence explicitly in the form

(ũε, z̃ε) = (uε, zε) + (ũ0−u0 + Gε(0, Ũ1−U1) , Fε(Z̃−Z)).

Note that the arguments for Gε and Fε do not depend on ε. Hence, by Propositions
2.10 and 2.4 we obtain the important relation
(4.3)

(ũε, z̃ε) − (uε, zε) = (ũ0−u0 + Gε(0, Ũ1−U1) , Fε(Z̃−Z))
s2c−−→ (ũ0−u0, Ũ1−U1, Z̃−Z).

In turn, this implies the obvious convergence (ũε, z̃ε)
w2c
⇀ (ũ0, Ũ1, Z̃).

From (4.3) and Lemma 2.12(b) we obtain Rε(z̃ε−zε) → R(Z̃−Z).
For the energies we use the quadratic nature and obtain

Eε(t, ũε, z̃ε)−Eε(t, uε, zε)

=
1

2

∫
Ω

〈〈
A

({x

ε

}
Y

)(e(ũε−uε)

z̃ε+zε

)
,

(
e(ũε−uε)

z̃ε+zε

)〉〉
dx− 〈�(t), ũε−uε〉.
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The last term obviously converges to 〈�(t), ũ0−u0〉 by the usual weak convergence
in H1

ΓDir
(Ω)d. Under the integral we have a quadratic form, where the right factor

weakly two-scale converges to
(ẽ(Ũ+U)

Z̃+Z

)
in L2(Ω×Y). The left-hand factor is a product

of the matrix mε = A(
{ ·

ε

}
Y
) and a strongly two-scale convergent sequence with limit(ẽ(Ũ−U)

Z̃−Z

)
in L2(Ω×Y). As Tεmε(x, y) = A(y) Proposition 2.6 implies

A

({ ·
ε

}
Y

)(e(ũε−uε)

z̃ε+zε

)
s2−→ A

(
ẽ(Ũ−U)

Z̃−Z

)
in L2(Ω×Y).

Since a scalar product of a weakly and a strongly converging sequence converges (see
Proposition 2.4(d)), we conclude

Eε(t, ũε, z̃ε)−Eε(t, uε, zε) → E(t, Ũ , Z̃)−E(t, U, Z).

Thus, we have established (4.2) in the stronger version that the limsup is a limit and
the “≤” is “=”.

(b) This is a direct consequence of part (a). Let (U,Z) be the limit of stable states

and take any test state (Ũ , Z̃) ∈ Q. Now take the joint recovery sequence obtained
in part (a) and insert (ũε, z̃ε) into the stability condition for (uε, zε), namely,

0 ≤ Eε(t, ũε, z̃ε) + Rε(z̃ε−zε) − Eε(t, uε, zε).

As the right-hand side converges we conclude 0 ≤ E(t, Ũ , Z̃)+R(Z̃−Z)−E(t, U, Z)

and stability is established as (Ũ , Z̃) was arbitrary.
Proof of Theorem 4.3. By Proposition 3.4 we know that the family (uε, zε)ε is

uniformly bounded in CLip([0, T ],Q). As closed balls in Q are weakly compact and have
a metrizable topology, the Arzelà–Ascoli theorem can be applied in C0([0, T ],Qweak),
and we find a subsequence (εk)k∈N with 0 < εk → 0 such that

∀ t ∈ [0, T ] : (uεk(t), zεk(t))
w2c
⇀ (U(t), Z(t)) in Q.

By the lower semicontinuity of the norm, we have (U,Z) ∈ CLip([0, T ],Q) and it
remains to show that (U,Z) is a solution of (S) and (E). As the initial condition
(U0, Z0) is known, the solution is unique, and we even conclude that the whole family
converges (by the standard argument via contradiction).

By Proposition 4.5 we know that (U(t), Z(t)) is stable for all t ∈ [0, T ], and
hence (S) is satisfied and we have to establish the energy balance (E) in (3.8). For
this, we pass to the limit ε → 0 in (Eε); cf. (3.6). The first term on the right-
hand side converges, as the energy Eε(0, uε(0), zε(0)) converges applying the strong
two-scale cross-convergence and Proposition 2.15. The second term converges by
Lebesgue’s dominated convergence theorem as the integrands are uniformly bounded
and converge pointwise.

To treat the left-hand side of (Eε) we let eε(t) = Eε(t, uε(t), zε(t)) and dε(t) =∫ t

0
Rε(zε(s)) ds. By the above, we know that rε(t) = eε(t) + dε(t) converges to

r0(t), which is the limit of the right-hand side. We let e∗(t) = lim supε→0 eε(t) and
d∗(t) = lim infε→0 dε(t) and conclude e∗(t) + d∗(t) = r0(t). Now we use the lower
estimates for the functionals. For the stored energy we use (4.1a) to obtain

E(t, U(t), Z(t)) ≤ lim inf
ε→0

eε(t) ≤ lim sup
ε→0

eε(t) = e∗(t).
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For the dissipation integral we use
∫ t

0
R(Ż(s)) ds = sup

∑N
j=1 R(Z(tj)−Z(tj−1)),

where the supremum is taken over all finite partitions of [0, t]. Again by (4.1a) we
find

(4.4)

N∑
j=1

R(Z(tj)−Z(tj−1)) ≤ lim inf
ε→0

N∑
j=1

Rε(zε(tj)−zε(tj−1))

≤ lim inf
ε→0

∫ t

0

Rε(żε(s))ds = d∗(t).

Thus, recalling e∗ + d∗ = r0 we proved the lower energy estimate

E(t, U(t), Z(t))+

∫ T

0

R(Ż(s))ds ≤ e∗(t)+d∗(t) = E(0, U(0), Z(0))−
∫ t

0

〈�(s), u0(s)〉ds.

The upper energy estimate (just replace “≤” by “≥”) follows from the already
established stability of (U,Z); see [MTL02, Thm. 2.5] or [MM05, Thm. 4.4]. Thus, (E)
holds and, moreover, we also conclude that the inequality in (4.4) must be an equality.
This in turn implies that E(t, U(t), Z(t)) = e∗(t) = limε→0 Eε(t, uε(t), zε(t)).

As the value of t ∈ [0, T ] is kept from now on, we omit it in the rest of the
proof. From the above and using the weak two-scale convergence qε = (uε, zε)

w2c
⇀ Q =

(u0, U1, Z), we want to conclude qε
s2c−−→ Q.

For this, we define q̂ε = (u0 + Gε(0, U1),FεZ) ∈ Q, which satisfies q̂ε
s2c−−→ Q. More-

over, we have

α

2
‖q̂ε−qε‖2

Q ≤ 1

2

〈〈
Aε(q̂ε−qε), (q̂ε−qε)

〉〉
= Eε(t, qε) − Eε(t, q̂ε) +

〈〈
Aεq̂ε−�, qε−q̂ε

〉〉
→ e∗(t) −E(t, Q) + 0 = 0.

For the convergence note that the first term was treated above, that the second term
converges because of “

s2c−−→” and Proposition 2.15, and that the third term converges
as a scalar product, since the left-hand term is strongly convergent and while the
right-hand term weakly converges to 0; see Proposition 2.4(d). Finally, we conclude
by noting that

‖(Tε(∇uε), zε) − (E∇xu0+∇yU1, Z)‖L2(Rd×Y)

≤ ‖(Tε(∇uε−∇ûε), zε−ẑε)‖L2(Rd×Y) + δε ≤ ‖(uε, zε)−(ûε, ẑε)‖Q + δε → 0

with δε = ‖(Tε(∇ûε), ẑε) − (E∇xu0+∇yU1, Z)‖L2(Rd×Y) → 0 because of q̂ε
s2c−−→ Q.

This establishes qε
s2c−−→ Q and we are done.
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for a double-porosity model of immiscible two-phase flow, SIAM J. Math. Anal., 27
(1996), pp. 1520–1543.
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[CS04] V. Chiadò Piat and G. V. Sandrakov, Homogenization of some variational inequalities
for elasto-plastic torsion problems, Asymptot. Anal., 40 (2004), pp. 1–23.

[Dac89] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer-Verlag, Berlin,
1989.

[DDM06] G. Dal Maso, A. DeSimone, and M. G. Mora, Quasistatic evolution problems for
linearly elastic-perfectly plastic materials, Arch. Ration. Mech. Anal., 180 (2006),
pp. 237–291.

[EKK02] C. Eck, P. Knabner, and S. Korotov, A two-scale method for the computation of solid-
liquid phase transitions with dendritic microstructure, J. Comput. Phys., 178 (2002),
pp. 58–80.

[FM06] G. Francfort and A. Mielke, Existence results for a class of rate-independent material
models with nonconvex elastic energies, J. Reine Angew. Math., 595 (2006), pp. 55–91.
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[JKO94] V. V. Jikov, S. M. Kozlov, and O. A. Olĕınik, Homogenization of Differential Operators
and Integral Functionals, Springer-Verlag, Berlin, 1994. Translated from the Russian
by G. A. Yosifian.

[LNW02] D. Lukkassen, G. Nguetseng, and P. Wall, Two-scale convergence, Int. J. Pure Appl.
Math., 2 (2002), pp. 35–86.

[LSB99] M. Lenczner and G. Senouci-Bereksi, Homogenization of electrical networks including
voltage-to-voltage amplifiers, Math. Models Methods Appl. Sci., 9 (1999), pp. 899–932.

[Mie03] A. Mielke, Energetic formulation of multiplicative elasto-plasticity using dissipation dis-
tances, Contin. Mech. Thermodyn., 15 (2003), pp. 351–382.

[Mie04] A. Mielke, Existence of minimizers in incremental elasto-plasticity with finite strains,
SIAM J. Math. Anal., 36 (2004), pp. 384–404.

[Mie05] A. Mielke, Evolution in rate-independent systems, in Handbook of Differential Equations,
Evolutionary Equations, Vol. 2, C. Dafermos and E. Feireisl, eds., Elsevier B.V., Am-
sterdam, 2005, Chap. 6, pp. 461–559.

[MM05] A. Mainik and A. Mielke, Existence results for energetic models for rate-independent
systems, Calc. Var. Partial Differential Equations, 22 (2005), pp. 73–99.

[Mor76] J.-J. Moreau, Application of convex analysis to the treatment of elastoplastic systems, in
Applications of Methods of Functional Analysis to Problems in Mechanics, P. Germain
and B. Nayroles, eds., Lecture Notes in Math. 503, Springer-Verlag, Berlin, 1976,
pp. 56–89.



668 ALEXANDER MIELKE AND AIDA M. TIMOFTE

[MRS07] A. Mielke, T. Roub́ıček, and U. Stefanelli, Γ-limits and relaxations for rate-
independent evolutionary problems, Calc. Var. Partial Differential Equations, to ap-
pear. WIAS Preprint 1156.

[MS02] A. Matache and C. Schwab, Two-scale FEM for homogenization problems, M2AN Math.
Model. Numer. Anal., 36 (2002), pp. 537–572.

[MT99] A. Mielke and F. Theil, A mathematical model for rate-independent phase transfor-
mations with hysteresis, in Proceedings of the Workshop on Models of Continuum
Mechanics in Analysis and Engineering, H.-D. Alber, R. Balean, and R. Farwig, eds.,
Shaker-Verlag, Aachen, Germany, 1999, pp. 117–129.

[MT04] A. Mielke and F. Theil, On rate-independent hysteresis models, NoDEA Nonlinear Dif-
ferential Equations Appl., 11 (2004), pp. 151–189.

[MT06] A. Mielke and A. Timofte, An energetic material model for time-dependent ferroelectric
behavior: Existence and uniqueness, Math. Methods Appl. Sci., 29 (2006), pp. 1393–
1410.

[MTL02] A. Mielke, F. Theil, and V. I. Levitas, A variational formulation of rate-independent
phase transformations using an extremum principle, Arch. Ration. Mech. Anal., 162
(2002), pp. 137–177.

[Nes06] S. Nesenenko, Homogenization and Regularity in Viscoplasticity, Ph.D. thesis, Technische
Universtät Darmstadt, Germnay 2006.

[Nes07] S. Nesenenko, Homogenization in viscoplasticity, SIAM J. Math. Anal., 39 (2007), 236–
262.

[Ngu89] G. Nguetseng, A general convergence result for a functional related to the theory of
homogenization, SIAM J. Math. Anal., 20 (1989), pp. 608–623.

[Val88] T. Valent, Boundary Value Problems of Finite Elasticity, Springer Tracts Nat. Philos. 31,
Springer-Verlag, New York, 1988.

[Vis84] A. Visintin, Strong convergence results related to strict convexity, Comm. Partial Differ-
ential Equations, 9 (1984), pp. 439–466.

[Vis94] A. Visintin, Differential Models of Hysteresis, Springer-Verlag, Berlin, 1994.
[Vis96] A. Visintin, Two-scale Stefan problem, in Nonlinear Analysis and Applications (Warsaw,
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Abstract. In the present paper, we prove a sufficient condition of local regularity for suitable
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1. Introduction. In the present paper, we address the problem of regularity for
axisymmetric solutions to the Navier–Stokes equations. In contrast to many others
(see, for example, [7], [21], [9], [11], [12], [22], [23], and [24]), we study this problem
in a local setting.

Our work is motivated by the results of two different papers, [2] and [4]. To
explain that, we need the following simple notation. Let e1, e2, e3 be an orthogonal
basis of the Cartesian coordinates x1, x2, x3, and let e�, eϕ, e3 be an orthogonal basis
of the cylindrical coordinates �, ϕ, x3 chosen so that

e� = cosϕe1 + sinϕe2, eϕ = − sinϕe1 + cosϕe2, e3 = e3.

Then, for any vector-valued field v, we have the representations

v = viei = v1e1 + v2e2 + v3e3 = v�e� + vϕeϕ + v3e3.

The classical Navier–Stokes equations, which are invariant with respect to transfor-
mation of coordinates, have the form

∂tv + v · ∇v − Δv + ∇p = 0, divv = 0(1.1)

and are satisfied in some space-time domain. Here, as usual, v and p stand for the
velocity field and the pressure field, respectively.

In our considerations, we always assume that v�, vϕ, v3, and p are independent of
the polar angle ϕ. In [2], Chae and Lee consider the Cauchy problem for the Navier–
Stokes equations under the above assumption on axial symmetry. In addition to usual
conditions on the initial data, the authors of [2] assume that velocity field v obeys∫ T

0

dt
(∫

R3

|v|γd�dϕdx3

)α
γ

< +∞,(1.2)
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with 1/α + 1/γ ≤ 1/2, 2 < γ < +∞, 2 < α ≤ +∞, and prove the regularity of
solutions to the Cauchy problem for (1.1) on time interval ]0, T [. In fact, they prove

even more: their statement is still true if |v| is replaced with
√
v2
� + v2

ϕ. However, it
remains unclear whether or not the regularity takes place in the marginal case γ = 2
and α = +∞. In our opinion, the case cannot be treated by methods developed in [2]
because, in a sense, it is an analogue of the so-called L3,∞-case studied in [4]. In turn,
the L3,∞-case is marginal to the so-called Ladyzhenskaya–Prodi–Serrin condition; see
[13], [19], [6], [20], [5], [16], and [17]. It seems quite reasonable to interpret the result
of [2] (see [2, Theorem 3]) as the Ladyzhenskaya–Prodi–Serrin condition for axially
symmetric problems. To treat L3,∞-solutions in a generic setting, one needs a new
technique based on backward uniqueness for the heat operator with variable lower
order terms. In this paper, we wish to extend this method to the axially symmetric
case.

To formulate our main result, we introduce the additional notation:

C(x0, R) = {x ∈ R
3 ‖ x = (x′, x3), x′ = (x1, x2),

|x′ − x′
0| < R, |x3 − x03| < R}, C(R) = C(0, R), C = C(1);

z = (x, t), z0 = (x0, t0), Q(z0, R) = C(x0, R)× ]t0 −R2, t0[,

Q(R) = Q(0, R), Q = Q(1).

In local analysis, the most reasonable object to study is so-called suitable weak so-
lutions, introduced by Caffarelli, Kohn, and Nirenberg in their celebrated paper [1].
We are going to use the slightly simpler definition of Lin in [10].

Definition 1.1. The pair v and p is called a suitable weak solution to the
Navier–Stokes equations in Q if the following conditions are satisfied:

v ∈ L2,∞(Q) ∩W 1,0
2 (Q), p ∈ L 3

2
(Q),

where W 1,0
2 (Q) = {v ∈ L2(Q) ‖ ∇v ∈ L2(Q)};

v and p satisfy the Navier–Stokes equations in the sense of distributions;

for a.a. t ∈ ]−1, 0[, the local energy inequality∫
C
ϕ(x, t)|v(x, t)|2dx + 2

∫ t

−1

∫
C
ϕ|∇v|2dxdt′

≤
∫ t

−1

∫
C

{
|v|2(Δϕ + ∂tϕ) + v · ∇ϕ(|v|2 + 2p)

}
dxdt′

holds for all nonnegative cut-off functions ϕ ∈ C∞
0 (R3×R) vanishing in a neighborhood

of the parabolic boundary of Q.
For discussions of the above definition, we refer the reader to [8] and [17].
The following is our main result.
Theorem 1.2. Let v and p be an axially symmetric suitable weak solution to the

Navier–Stokes equations in Q. Assume that

A0 = ess sup
−1≤t≤0

∫
C

1

�
|v(x, t)|2dx < +∞.(1.3)
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Then the point (x, t) = (0, 0) is a regular point of v; i.e., there exists r ∈ ] 0, 1] such
that v is Hölder continuous in the closure of the cylinder Q(r).

By c, we shall denote all generic constants that may vary from one bound to
others.

Our paper is organized as follows. In the second section, we discuss known in-
equalities of the local regularity theory and prove some useful facts about suitable
weak solutions. The proof of the main result is started in the third section with scal-
ing and blowup of our solution at a singular point. We also discuss properties of the
blowup velocity and the blowup pressure in this section. In the fourth section, we
prove some additional differential properties of axially symmetric suitable weak solu-
tions. They are needed to establish a decay of the blowup velocity at infinity. Finally,
we end up with the proof of the main theorem in the fifth section. Here, with the
help of backward uniqueness results for the heat operator with variable lower order
terms, we show that in fact our blowup velocity is trivial.

2. Preliminaries. In what follows, we are going to make use of the following
scaling invariant functionals:

A(z0, r; v) = ess sup
t0−r2<t<t0

1

r

∫
C(x0,r)

|v(x, t)|2dx, C(z0, r; v) =
1

r2

∫
Q(z0,r)

|v|3dz,

E(z0, r; v) =
1

r

∫
Q(z0,r)

|∇v|2dz, D(z0, r; p) =
1

r2

∫
Q(z0,r)

|p| 32 dz.

First, let us recall that, by the Navier–Stokes equations scaling,

vλ(x, t) = λv(λx, λ2t), pλ(x, t) = λ2p(λx, λ2t),

we may define suitable weak solutions to the Navier–Stokes equations in Q(z0, R). So,
if v and p form a suitable weak solution to the Navier–Stokes equations in Q(z0, R),
then, for appropriate choice of the cut-off function in the local energy inequality, we
can reduce it to the following invariant form:

A(z0, R/2; v) + E(z0, R/2; v) ≤ c
(
C

2
3 (z0, R; v)

+ C(z0, R; v) + D(z0, R; p)
)
.(2.1)

We also need the so-called decay estimate for pressure,

D(z0, r; p) ≤ c
[ r

r1
D(z0, r1; p) +

(r1
r

)2

C(z0, r1; v)
]
,(2.2)

which is valid for all 0 < r ≤ r1 ≤ R. The proof of the latter estimate is given in [14].
Repeating the arguments of Lemma 1.8 in [18], we can prove the following.

Lemma 2.1. Let v and p be a suitable weak solution to the Navier–Stokes equa-
tions in Q and let

A0 = sup
0<r<1

A(0, r; v) < +∞.(2.3)

Then, for any r ∈ ]0, 1/2[, we have

C
4
3 (0, r; v) + D(0, r; p) + E(0, r; v) ≤ c

(
(A0 + 1)r

1
2 (D(0, 1; p)

+ E(0, 1; v)) + A4
0 + A2

0 + A0

)
.(2.4)
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Lemma 2.1, together with the invariance of our functionals under the Navier–
Stokes equations scaling and under the shift in the direction of x3, gives us the fol-
lowing.

Lemma 2.2. Under the conditions of Theorem 1.2, we have

A(z0, r; v) + C(z0, r; v) + D(z0, r; p) + E(z0, r; v) ≤ A < +∞(2.5)

for all z0 = (x0, 0), x0 = (0, b), |b| ≤ 1/4, and for all 0 < r ≤ 1/4, where a bound
A depends only on quantities D(0, 1; p) and E(0, 1; v) and the number A0, defined in
Theorem 1.2.

We say that the pair v and p is a suitable weak solution to the Navier–Stokes
equations in the space-time cylinder Ω× ]T1, T2[ if, for any z0 = (x0, t0) with x0 ∈ Ω
and T1 < t ≤ T2, the pair v and p is a suitable weak solution to the Navier–Stokes
equations in Q(z0, R) for some R > 0.

Next, let us introduce the family of sets

P(R1, R2; a) = {x ∈ R
3 ‖ R1 < |x′| < R2, |x3| < a}.

Now, we would like to formulate and prove the following statement.
Lemma 2.3. Let v and p be a suitable weak solution to the Navier–Stokes equa-

tions in the set Q̂ = P(3/4, 9/4; 3/2) × ]−(3/2)2, 0[. Assume that∫
Q̂

|v(z)|6dz ≤ m < +∞.(2.6)

Then there exists a function Φ0 : R+ × R+ → R+, nondecreasing in each variables,
such that

|v(z)| + |∇v(z)| ≤ Φ0(m,A∗) < +∞(2.7)

for any z ∈ P(1, 2; 1) × ]−1, 0[. Here,

A∗ =

∫
Q̂

|p(z)| 32 dz =

∫ 0

−(3/2)2
dt

∫
P(3/4,9/4;3/2)

|p| 32 dx.

Proof. First, we remark that Q(z0, 1/4) ⊂ Q̂ for any z0 ∈ P(1, 2; 1) × ]−1, 0[. It
follows from (2.2), Hölder’s inequality, and (2.6) that

D(z0, r; p) ≤ c
[ r

r1
D(z0, r1; p) +

(r1
r

)2

m
1
2 r

1
2
1

]
,(2.8)

which is valid for all 0 < r ≤ r1 ≤ 1/4. For τ ∈ ]0, 1[, let us take r = τk+1/4 and
r1 = τk/4 in (2.8) and find

D(z0, τ
k+1/4; p) ≤ cτ

[
D(z0, τ

k/4; p) + m
1
2 τ−3τ

k
2

]
for all nonnegative integer numbers k. We can choose τ ∈ ]0, 1[ so small to provide

cτ
3
4 ≤ 1

and conclude

D(z0, τ
k+1/4; p) ≤ τ

1
4

[
D(z0, τ

k/4; p) + m
1
2 τ−3τ

k
2

]
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for all nonnegative integer numbers k. The latter inequality may be easily iterated.
As a result, we have

D(z0, τ
k+1/4; p) ≤ τ

k+1
4

[
D(z0, 1/4; p) + m

1
2 τ−3

k∑
i=0

τ
i
4

]

for all nonnegative integer numbers k. So,

C(z0, τ
k+1/4; v) + D(z0, τ

k+1/4; p) ≤ cm
1
2 τ

k+1
2

+ τ
k+1
4

[
D(z0, 1/4; p) + m

1
2 τ−3(1 − τ

1
4 )−1

]
≤ c

[
m

1
2 τ

k+1
2 + τ

k+1
4

(
A∗ + m

1
2 τ−3(1 − τ

1
4 )−1

)]
for all nonnegative integer numbers k. Given ε > 0, we can find an integer number
k0 so that

c
[
m

1
2 τ

k0+1
2 + τ

k0+1
4

(
A∗ + m

1
2 τ−3(1 − τ

1
4 )−1

)]
≤ ε.

But according to the so-called ε-regularity theory (see, for example, [8], [4], and [17]),
the latter implies two bounds,

|v(z0)| ≤
c

r0
and |∇v(z0)| ≤

c

r2
0

,

where r0 = τ (k0+1)/4. Lemma 2.3 is proved.
The last preliminary statement is as follows.
Lemma 2.4. Assume that all conditions of Theorem 1.2 hold. Then∫

C

1

�
|v(x, t)|2dx ≤ A0(2.9)

for all t ∈ ]−1, 0[.
Proof. It is easy to derive the estimate∫

Q

∂tv · wdz ≤ A1

(∫
Q

|∇w|3dz
) 1

3

for any C∞
0 (Q). Here, a constant A1 depends on C(0, 1; v), E(0, 1; v), and D(0, 1; p)

only. So, v has the first derivative in t in the space

L 3
2
(−1, 0;W−1

3
2

(C)).

In turn, the latter, together with boundedness of the energy, implies weak continuity
in time in the following sense: the function

t →
∫
C
v(x, t) · w(x)dx

is continuous on [−1, 0] for any w ∈ L2(C). Now, the statement of the lemma follows
from the weak lower semicontinuity of the functional

w ∈ L2(C) →
∫
C

1

�
|w(x)|2dx.

Lemma 2.4 is proved.
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3. Scaling and blowup. Here, we begin the proof of Theorem 1.2. Assume
that the statement of this theorem is false. Then, according to the local regularity
theory for the Navier–Stokes equations, there exist an absolute positive constant ε
and a sequence {Rk}∞k=1 such that Rk → 0 as k → +∞ and

1

R2
k

∫
Q(Rk)

|v|3dz ≥ ε > 0(3.1)

for all k ∈ N; see [15, Lemma 3.3] for a similar situation or [17, Proposition 5.7].
Next, we scale v and p in the following way:

uk(y, s) = Rkv(Rky,R
2
ks), qk(y, s) = R2

kp(Rky,R
2
ks),

where e = (y, s) ∈ Q(1/Rk). Functions uk and qk are extended by zero to the whole
space-time R

3 × R.
Now let us fix numbers a and b in R so that a > 0. Let

xb
k = (0, bRk), yb = (0, b), zbk = (xb

k, 0), eb = (yb, 0).

Obviously, for sufficiently large k,

|b|Rk < 1/4, aRk < 1/4;

by Lemma 2.2, the following estimates are valid:

C(zbk, aRk; v) = C(eb, a;uk) ≤ A,

E(zbk, aRk; v) = E(eb, a;uk) ≤ A,

A(zbk, aRk; v) = A(eb, a;uk) ≤ A,(3.2)

D(zbk, aRk; p) = D(eb, a; qk) ≤ A

for all k ≥ k0(a, b).
First, let b be equal to zero. In this particular case, we can produce three es-

timates. The first of them is well known in the Navier–Stokes theory and is but a
consequence of multiplicative inequalities:

1

a
5
2

∫
Q(a)

|uk| 103 de ≤ c(A).(3.3)

The second estimate follows from the Navier–Stokes equations, written for uk and qk

in the weak form, and from (3.2):∫
Q(a)

∂tu
k · wde ≤ c(a,A)

(∫
Q(a)

|∇w|3de
) 1

3

for all w ∈ C∞
0 (Q(a)). Hence,

∂tu
k is bounded inL 3

2
(−a2, 0;W−1

3
2

(C(a))).(3.4)
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The third estimate comes from our main condition (1.3) and has the form

ess sup
−(aRk)2≤t≤0

∫
C(aRk)

|v(x, t)|2
|x′| dx = ess sup

−a2≤s≤0

∫
C(a)

|uk(y, t)|2
|y′| dy ≤ A0.(3.5)

Now, making use of the diagonal process for extending space-time cylinders Q(a)
and known compactness arguments, we can select subsequences (still denoted by uk

and qk) such that, for each a > 0,

uk⇁u in W 1,0
2 (Q(a)),

uk �
⇁ u in L2,∞(Q(a)),

uk → u in L3(Q(a)),(3.6)

qk⇁q in L 3
2
(Q(a)).

The aim of our further considerations is to describe properties of limit functions u
and q called the blowup velocity and blowup pressure, respectively. They are defined
on R

3 × R−, where R− = {s ∈ R ‖ s ≤ 0}. For each a > 0, the pair u and q is a
suitable weak solution to the Navier–Stokes equations in Q(a). From (3.2) and (3.6),
it follows that the limit functions obey the inequalities

C(eb, a;u) ≤ A,

A(eb, a;u) ≤ A,

E(eb, a;u) ≤ A,(3.7)

D(eb, a; q) ≤ A

for all b ∈ R and for all 0 < a ∈ R. Moreover, we can derive from (3.6), (3.5), and
(3.1) two additional estimates:

ess sup
−∞<s≤0

∫
R3

|u(y, t)|2
|y′| dy ≤ A0(3.8)

and

1

R2
k

∫
Q(Rk)

|v|3dz =

∫
Q

|uk|3de →
∫
Q

|u|3de ≥ ε.(3.9)

According to (3.9), the blowup velocity u is a nontrivial solution to the Navier–
Stokes equations in R

3 × R−. But we are going to show that in fact u ≡ 0. This
would contradict (3.9) and prove Theorem 1.2.

Obviously, the blowup velocity field u is axially symmetric and, by Caffarelli–
Kohn–Nirenberg-type results, all points y′ = 0 are regular, which make it possible to
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conclude that all spatial derivatives of u are Hölder continuous in a vicinity of each
point with y′ = 0.

We can also make use of the local regularity theory for the Stokes system; see [16]
and [17]. According to it and by known multiplicative inequality, we have

‖∂tuk‖L 9
8
, 3
2
(Q(a/2)) + ‖∇2uk‖L 9

8
, 3
2
(Q(a/2)) + ‖∇qk‖L 9

8
, 3
2
(Q(a/2))

≤ c(a)
[
‖uk · ∇uk‖L 9

8
, 3
2
(Q(a)) + ‖uk‖W 1,0

2 (Q(a)) + ‖qk‖L 3
2
(Q(a))

]

≤ c(a)
[
‖uk‖

2
3

L2,∞(Q(a))‖u
k‖

1
3

W 1,0
2 (Q(a))

+ · · ·
]
≤ c(a,A).

The latter estimate shows that we can select a subsequence (still denoted by uk) such
that, for any a > 1,

uk → u in C([−1, 0];L 9
8
(C(a))).(3.10)

We can exploit (3.10) in the following way. For any fixed positive numbers r1, r2, and
h, we have

(∫
P(r1,r2;h)

|u(y, 0)| 98 dy
) 8

9 ≤
(∫

P(r1,r2;h)

|uk(y, 0) − u(y, 0)| 98 dy
) 8

9

+
(∫

P(r1,r2;h)

|uk(y, 0)| 98 dy
) 8

9

= αk + βk.

By (3.10),

αk → 0

as k → +∞. To evaluate βk, we make use of inverse scaling and Hölder’s inequality:

βk =
(
R

− 15
8

k

∫
P(Rkr1,Rkr2;Rkh)

|v(x, 0)| 98 dx
) 8

9

≤ c(r1, r2, h)
( 1

Rk

∫
P(Rkr1,Rkr2;Rkh)

|v(x, 0)|2dx
) 1

2

≤ c(r1, r2, h)
(∫

P(Rkr1,Rkr2;Rkh)

|v(x, 0)|2
|x′| dx

) 1
2

.

Now, it remains to apply Lemma 2.4 at t = 0 and absolute continuity of Lebesgue’s
integral and conclude that

βk → 0

as k → +∞. This implies the identity∫
P(r1,r2;h)

|u(y, 0)| 98 dy = 0

for all positive numbers r1, r2, and h. So, we can state that

u(·, 0) = 0 in R
3.(3.11)
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4. Estimates of axially symmetric solutions. The main result of this section
is going to be as follows.

Proposition 4.1. Let V and P be a sufficiently smooth axially symmetric so-
lution to the Navier–Stokes equations in Q̃ = P̃ × ]−22, 0[, where P̃ = P(1/4, 3; 2).
Then there exists a nondecreasing function Φ : R+ → R+ such that

sup
z∈P(1,2;1)×]−1,0[

(
|V (z)| + |∇V (z)|

)
≤ Φ(A2),(4.1)

where

A2 = sup
−22<t<0

∫
P̃
|V (x, t)|2dx +

∫
Q̃

(
|∇V |2 + |V |3 + |P | 32

)
dz.

To prove the above proposition, we need the following.
Lemma 4.2. Under assumptions of Proposition 4.1, there exists a function Φ1 :

R+ × R+ → R+, nondecreasing in each variable, such that

sup
−(7/4)2<t<0

∫
P̃1

|V a(x, t)|qdx ≤ Φ1(q,A2), 1 ≤ q < +∞.(4.2)

Here, V a = (V�, V3), |V a| =
√
|V�|2 + |V3|2, P̃1 = P(5/16, 11/4; 7/4), and Q̃1 =

P̃1 × ]−(7/4)2, 0[.
Proof. Let us denote by ω the vorticity of V , i.e., ω = ∇ ∧ V . For χ = ωϕ, V�,

and V3, we have the following identities:

V�,� + V3,3 = −1

�
V�,(4.3)

V�,3 − V3,� = χ,(4.4)

∂tχ + V�χ,� + V3χ,3 −
1

�
χV� −

(
χ,�� + χ,33 +

1

�
χ,� −

1

�2
χ
)

=
2

�
VϕVϕ,3,(4.5)

where we have used the notation

f,� =
∂f

∂�
, f,3 =

∂f

∂x3
.

Next, we let χ̃ = χψ, Ṽ = V aψ, Ṽ� = V�ψ, and Ṽ3 = V3ψ, where a nonnegative
smooth and axially symmetric cut-off function ψ vanishes in a neighborhood of the
parabolic boundary of Q̃ and is equal to 1 in Q̃1. For χ̃, Ṽ�, and Ṽ3, we have

Ṽ�,� + Ṽ3,3 = −1

�
Ṽ� + V�ψ,� + V3ψ,3,(4.6)

Ṽ�,3 − Ṽ3,� = χ̃ + V�ψ,3 − V3ψ,�,(4.7)

∂tχ̃ + V�χ̃,� + V3χ̃,3 −
1

�
V�χ̃−

(
χ̃,�� + χ̃,33 +

1

�
χ̃,� −

1

�2
χ̃
)

= J1 + J2 + J3,(4.8)
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where

J1 =
2

�
VϕVϕ,3ψ,

J2 = χ
(
∂tψ − ψ,�� − ψ,33 −

1

�
ψ,�

)
− 2

(
χ,�ψ,� + χ,3ψ,3

)
,

J3 = χ
(
V�ψ,� + V3ψ,3

)
.

Now, we multiply (4.8) by χ̃�−2 and integrate the product by parts over P̃:

1

2
∂t

∫
P̃

∣∣∣ χ̃
�

∣∣∣2dx +

∫
P̃

(∣∣∣( χ̃
�

)
,�

∣∣∣2 +
∣∣∣( χ̃

�

)
,3

∣∣∣2)dx
=

∫
P̃
J1

χ̃

�2
dx +

∫
P̃
J2

χ̃

�2
dx +

∫
P̃
J3

χ̃

�2
dx.(4.9)

Our aim is to evaluate the right-hand side of (4.9). We start with the first term there:

∫
P̃
J1

χ̃

�2
dx = −

∫
P̃

V 2
ϕ

�2

( χ̃
�

)
,3
ψdx−

∫
P̃

V 2
ϕ

�2

χ̃

�
ψ,3dx

≤ c
(∫

P̃

|Vϕ|4
�4

dx
) 1

2
(∫

P̃

∣∣∣( χ̃
�

)
,3

∣∣∣2dx +

∫
P̃

∣∣∣ χ̃
�

∣∣∣2dx) 1
2

.

To estimate the first multiplier of the right-hand side of the latter inequality, we are
going to exploit a two-dimensional feature of our axially symmetric problem in the
following way. So, by Ladyzhenskaya’s inequality,

∫
P̃
|Vϕ|4dx ≤ c

∫ 2

−2

∫ 3

1/4

|Vϕ|4d�dx3

≤ c

∫ 2

−2

∫ 3

1/4

|Vϕ|2d�dx3

∫ 2

−2

∫ 3

1/4

(
|Vϕ|2 + |∇aVϕ|2

)
d�dx3

≤ c

∫
P̃
|V |2dx

∫
P̃

(
|V |2 + |∇V |2

)
dx ≤ cA2

∫
P̃

(
|V |2 + |∇V |2

)
dx,

where the notation ∇af = (f,�, f,3) has been used. Thus, we find the first estimate:

∫
P̃
J1

χ̃

�2
dx ≤ cA

1
2
2

(∫
P̃

(
|V |2 + |∇V |2

)
dx

) 1
2

×
(∫

P̃

∣∣∣∇a

( χ̃
�

)∣∣∣2dx +

∫
P̃

∣∣∣ χ̃
�

∣∣∣2dx) 1
2

.(4.10)

For the second term, we have

∫
P̃
J2

χ̃

�2
dx ≤ c

∫
P̃
|χ|2dx.(4.11)
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The third term is estimated in a slightly different way:∫
P̃
J3

χ̃

�2
dx =

∫
P̃

χχ̃

�2

(
V�ψ,� + V3ψ,3

)
dx

≤ c
(∫

P̃
|χ|2dx

) 1
2
(∫

P̃
|V a · ∇aψ|2

∣∣∣ χ̃
�

∣∣∣2dx) 1
2

≤ c

∫
P̃
|χ|2dx + c

(∫
P̃
|V a · ∇aψ|4dx

) 1
2
(∫

P̃

∣∣∣ χ̃
�

∣∣∣4dx) 1
2

,

where we let V a · ∇aψ = V�ψ,� + V3ψ,3. To estimate the last term on the right-hand
side of the latter relation, we exploit Ladyzhenskaya’s inequality once more. So, we
have ∫

P̃

∣∣∣ χ̃
�

∣∣∣4dx ≤ c

∫ 2

−2

∫ 3

1/4

∣∣∣ χ̃
�

∣∣∣4d�dx3

≤ c

∫ 2

−2

∫ 3

1/4

∣∣∣∇a

( χ̃
�

)∣∣∣2d�dx3

∫ 2

−2

∫ 3

1/4

∣∣∣ χ̃
�

∣∣∣2d�dx3

≤ c

∫
P̃

∣∣∣∇a

( χ̃
�

)∣∣∣2dx∫
P̃

∣∣∣ χ̃
�

∣∣∣2dx
and, in the same way,∫

P̃
|V a · ∇aψ|4dx ≤ c

∫
P̃

∣∣∣∇a

(
V a · ∇aψ

)∣∣∣2dx∫
P̃
|V a · ∇aψ|2dx.

As a result, we find∫
P̃
J3

χ̃

�2
dx ≤ c

∫
P̃
|χ|2dx + c

(∫
P̃
|Va|2dx +

∫
P̃
|∇aV

a|2dx
) 1

2

×
(∫

P̃
|Va|2dx

) 1
2
(∫

P̃

∣∣∣∇a

( χ̃
�

)∣∣∣2dx) 1
2
(∫

P̃

∣∣∣ χ̃
�

∣∣∣2dx) 1
2

≤ c

∫
P̃
|∇V |2dx + c

(
A2 + A

1
2
2

(∫
P̃
|∇V |2dx

) 1
2
)

(4.12)

×
(∫

P̃

∣∣∣∇a

( χ̃
�

)∣∣∣2dx) 1
2
(∫

P̃

∣∣∣ χ̃
�

∣∣∣2dx) 1
2

.

Combining estimates (4.9)–(4.12) and applying Young’s inequality, we arrive at the
final inequality:

∂t

∫
P̃

∣∣∣ χ̃
�

∣∣∣2dx +

∫
P̃

∣∣∣∇a

( χ̃
�

)∣∣∣2dx ≤ c

∫
P̃
|∇V |2dx

+
(
A2

2 + A2

∫
P̃
|∇V |2dx

)(∫
P̃

∣∣∣ χ̃
�

∣∣∣2dx + 1
)
.(4.13)

Estimate (4.13) implies

‖χ̃‖L2,∞(Q̃) ≤ Φ3(A2).

According to (4.6) and (4.7), one may conclude∫ 2

−2

∫ 3

1/4

∣∣∣∇aṼ
∣∣∣2d�dx3 ≤ c

∫ 2

−2

∫ 3

1/4

(
|χ̃|2 + |V a|2

)
d�dx3 ≤ Φ3(A2)
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and thus ∫ 2

−2

∫ 3

1/4

∣∣∣Ṽ (x, t)
∣∣∣qd�dx3 ≤ Φ4(q,A2)

for all t ∈ ]−22, 0[. Now, (4.2) immediately follows from the latter inequality. Lemma
4.2 is proved.

The second counterpart of the proof of Proposition 4.1 is the following statement.

Lemma 4.3. Under the assumptions of Proposition 4.1, there exists a nonde-
creasing function Φ5 : R+ → R+ such that

∫
Q̃2

|Vϕ|6dz ≤ Φ5(A2),(4.14)

where Q̃2 = P̃2 × ]−(3/2)2, 0[ and P̃2 = P(3/8, 5/2; 3/2).

Proof. We know that Vϕ satisfies the equation

∂tVϕ + V�Vϕ,� + V3Vϕ,3 +
1

�
V�Vϕ −

(
Vϕ,�� + Vϕ,33 +

1

�
Vϕ,� −

1

�2
Vϕ

)
= 0.(4.15)

We fix a nonnegative smooth and axially symmetric cut-off function ψ vanishing
in a neighborhood of the parabolic boundary of Q̃1 and being equal to 1 in Q̃2. Then,
for α̃ = Vϕψ�, we have the following identity:

∂tα̃ + V�α̃,� + V3α̃,3 −
(
α̃,�� + α̃,33 +

1

�
α̃,�

)
+

2

�
α̃,�

= α
(
∂tψ + V�ψ,� + V3ψ,3

)
−
(
2α,�ψ,� + 2α,3ψ,3 + αψ,�� + αψ,33

)
+

1

�
αψ,�,

where α = Vϕ�.

Then we multiply the latter identity by α̃|α̃|2 and integrate the product by parts

over P̃1,

1

4
∂t

∫
P̃1

|α̃|4dx +
3

4

∫
P̃1

|∇a(|α̃|2)|2dx = J1 + J2,(4.16)

where

J1 =

∫
P̃1

αα̃|α̃|2
(
V�ψ,� + V3ψ,3

)
dx

and

J2 =

∫
P̃1

α̃|α̃|2
(
α∂tψ − 2α,�ψ,� − 2α,3ψ,3 − αψ,�� − αψ,33 +

1

�
αψ,�

)
dx.

We let β = |α̃|2, then |β| 103 = |α̃| 203 and

∫
P̃1

|β| 103 dx ≤ c
(∫

P̃1

|β|2dx
) 2

3

∫
P̃1

|∇β|2dx.(4.17)
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We start with J1, setting A3 = ‖V a‖L4,∞(Q̃1)
. By Hölder’s inequality and by

multiplicative inequality (4.17),

J1 ≤ c
(∫

P̃1

|α̃| 203 dx
) 9

20
(∫

P̃1

|α| 2011 |V a| 2011 dx
) 11

20

≤ c
(∫

P̃1

|β| 103 dx
) 9

20
(∫

P̃1

|α| 103 dx
) 3

10
(∫

P̃1

|V a|4dx
) 1

4

≤ c
(∫

P̃1

|β| 103 dx
) 9

20
(∫

P̃1

|V |2dx
) 1

5
(∫

P̃1

|V |2dx +

∫
P̃1

|∇V |2dx
) 3

10A3

≤ c
(∫

P̃1

|β| 103 dx
) 9

20A
1
5
2

(∫
P̃1

|∇V |2dx + A2

) 3
10A3

≤ c
(∫

P̃1

|β|2dx
) 3

10
(∫

P̃1

|∇β|2dx
) 9

20A
1
5
2

(∫
P̃1

|∇V |2dx + A2

) 3
10A3.

Term J2 is estimated in the same way:

J2 ≤ c
(∫

P̃1

|α̃| 203 dx
) 9

20
(∫

P̃1

(|α| + |α,�| + |α,3|)
20
11 dx

) 11
20

≤ c
(∫

P̃1

|β|2dx
) 3

10
(∫

P̃1

|∇β|2dx
) 9

20
(∫

P̃1

|∇V |2dx + A2

) 1
2

.

Now, making use of Young’s inequality, we derive from (4.17) and from the two latter
estimates the main inequality:

∂t

∫
P̃1

|α̃|4dx +

∫
P̃1

|∇a(|α̃|2)|2dx

≤ c
(∫

P̃1

|β|2dx
) 6

11A
4
11
2

(∫
P̃1

|∇V |2dx + A2

) 6
11A

20
11
3

+ c
(∫

P̃1

|β|2dx
) 6

11
(∫

P̃1

|∇V |2dx + A2

) 10
11

≤ c

∫
P̃1

|β|2dx
(∫

P̃1

|∇V |2dx + A2

)
+ c(A2A5

3)
4
5 + c

(∫
P̃1

|∇V |2dx + A2

) 4
5

.

This, together with the statement of Lemma 4.2 at q = 4, implies

sup
−(7/4)2≤t≤0

∫
P̃1

|β(x, t)|2dx +

∫
Q̃1

|∇β|2dz ≤ Φ5(A2).(4.18)

So, (4.14) follows from (4.17) and (4.18). Lemma 4.3 is proved.
From Lemmas 4.2 and 4.3, we find the following.
Corollary 4.4. Under the assumptions of Proposition 4.1, there exists a non-

decreasing function Φ6 : R+ → R+ such that∫
Q̃2

|V |6dz ≤ Φ6(A2).(4.19)

Proof of Proposition 4.1. Applying Corollary 4.4 and Lemma 2.3, we end up with
the proof of Proposition 4.1.
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5. Proof of Theorem 1.2. Given R > 1, let us consider the space-time cylinder

Q̃b
R = P̃b

R × ]−(2R)2, 0[,

where b ∈ R and

P̃b
R = P̃R + be3, P̃R = P(R/4, 3R; 2R).

Now, we scale our blowup functions u and q in the following way:

uR(x, t) = Ru(Rx + be3, R
2t), qR(x, t) = R2q(Rx + be3, R

2t)

for z = (x, t) ∈ Q̃.
Functions uR and qR are axially symmetric and, as was explained before, suffi-

ciently smooth to apply Proposition 4.1. According to that, we have

sup
z∈Q̃0

{
|uR(z)| + |∇uR(z)|

}
≤ Φ(A2),

where Q̃0 = P(1, 2; 1) × ]−1, 0[ and

A2 = sup
−22≤t≤0

∫
P̃
|uR(x, t)|2dx +

∫
Q̃

(
|∇uR|2 + |uR|3 + |qR| 32

)
dz.

Then we make the inverse change of variables. As a result, we find

sup
(y,s)∈Qb

R

{
R|u(y, s)| + R2|∇u(y, s)|

}
≤ Φ(Ã2R),

where Qb
R = P̃b

0R × ]−R2, 0[, P̃b
0R = be3 + P0R, P0R = P(R, 2R;R), and

Ã2R = sup
−(2R)2≤s≤0

1

R

∫ 2R+b

−2R+b

dy3

∫
R/4<|y′|<3R

|u(y, s)|2dy′

+
1

R

∫ 0

−(2R)2
ds

∫ 2R+b

−2R+b

dy3

∫
R/4<|y′|<3R

|∇u(y, s)|2dy′

+
1

R2

∫ 0

−(2R)2
ds

∫ 2R+b

−2R+b

dy3

∫
R/4<|y′|<3R

(
|u(y, s)|3 + |q(y, s)| 32

)
dy′

≤ c
(
A(eb, 3R;u) + E(eb, 3R;u) + C(eb, 3R;u) + D(eb, 3R; q)

)
≤ cA,

eb = (yb, 0) and yb = (0, b). So, assuming that |y′| > 20, we can derive from the latter
estimates

|y′||u(y′, b, s)| + |y′|2|∇u(y′, b, s)| ≤ Φ(cA)(5.1)

for any b ∈ R, for any |y′| > 20, and for any s ∈ [−20, 0]. It follows directly from (5.1)
that

|u(y, s)| + |∇u(y, s)| ≤ cΦ(cA) = c(A)(5.2)

for any y such that |y′| > 20 and for any s ∈ [−20, 0].
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Now, we consider the vorticity ω(u) = ∇∧ u. It satisfies the vorticity equation

∂tω − Δω = ω · ∇u− u · ∇ω,

which, together with (5.2), implies

|∂tω − Δω| ≤ c(A)(|ω| + |∇ω|)(5.3)

for any y such that |y′| > 20 and for any s ∈ [−20, 0]. Moreover, by (3.11),

ω(·, 0) = 0 in R
3.(5.4)

By the backward uniqueness results for the heat operator with variable lower order
terms in a half-space (see [3], [4], and [15]) and by (5.3) and (5.4), we state

ω(y, s) = 0(5.5)

for any y such that |y′| > 20 and for any s ∈ [−20, 0].
Since our solution is sufficiently smooth in R

3 \ {y′ = 0}× [−10, 0], one can make
use of the unique continuation through spatial boundaries and conclude that

∇∧ u ≡ 0 in R
3 \ {y′ = 0} × [−8, 0].(5.6)

On the other hand, from (3.8), it follows that

A0 ≥ ess sup
−20≤s≤0

∫
|y′|≤40

|u(y, s)|2
|y′| dy.

So, we observe that, for any s ∈ S,∫ +∞

−∞
dy3

∫
|y′|≤40

|u(y, s)|2
|y′| dy′ ≤ A0 < +∞,(5.7)

where S ⊂ [−20, 0] and |S| = 20.
Now, we wish to show

∇∧ u(·, s) ≡ 0 in R
3(5.8)

for any s ∈ S. To this end, we proceed as follows. Let ϕ ∈ C∞
0 (B′) be a nonnegative

cut-off function being equal to 1 in B′(1/2). Here, B′ and B′(1/2) are two-dimensional
balls centered at the origin with radii 1 and 1/2, respectively. Next, let ψ be an
arbitrary smooth, compactly supported in R

3, vector-valued function. Then, by (5.6),
for any s ∈ [−8, 0],∫

R3

u(y, s) · ∇ ∧
(
ψ(y)(1 − ϕ(y′/R))

)
dy = 0

=

∫
R3

u(y, s) · ∇ ∧ ψ(y)dy −
∫

R3

u(y, s) · ∇ ∧
(
ψ(y)ϕ(y′/R)

)
dy = J1(s) + J2(s).

For J2, we have the estimate

|J2(s)| ≤ c
(
1 +

1

R

)∫
sptψ∩{|y′|<R}

|u(y, s)|dy

= c
(
1 +

1

R

)∫
sptψ∩{|y′|<R}

|u(y, s)|
|y′| 12

|y′| 12 dy

≤ c
(
1 +

1

R

)(∫
sptψ∩{|y′|<R}

|u(y, s)|2
|y′| dy

) 1
2
(∫

sptψ∩{|y′|<R}
|y′|dy

) 1
2

≤ c(ψ)
(
1 +

1

R

)
R

3
2

(∫ +∞

−∞
dy3

∫
|y′|<40

|u(y, s)|2
|y′| dy′

) 1
2

.
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By (5.7), the right-hand side of the latter inequality goes to zero as R → 0 for any
s ∈ S. Hence, J1(s) = 0 for any s ∈ S ∩ [−8, 0], which is but a weak form of (5.8).
By the fact that u is divergence-free, we then show

Δu(·, s) = 0 in R
3

for any s ∈ S ∩ [−8, 0].
Now, let B(y0, R) be a ball of radius R with the center at point y0. For any

y0 ∈ {|y′| ≤ 30, y3 ∈ R},

B(y0, 1) ⊂ {|y′| ≤ 40, y3 ∈ R}

and, since u is harmonic,

|u(y0, s)| ≤ c
(∫

B(y0,1)

|u(y, s)|2dy
) 1

2 ≤ c
(∫

|y′|≤40

|u(y, s)|2dy
) 1

2 ≤ c
√

40A0

for any s ∈ S∩ [−8, 0]. So, according to (5.2), the function u(·, s) is bounded in R
3 for

any s ∈ S∩ [−8, 0]. However, by (5.1), in fact, u(·, s) = 0 in R
3 for any s ∈ S∩ [−8, 0].

This contradicts (3.9). Theorem 1.2 is proved.
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EFFECTIVE TRANSMISSION CONDITIONS FOR
REACTION-DIFFUSION PROCESSES IN DOMAINS SEPARATED

BY AN INTERFACE∗

MARIA NEUSS-RADU† AND WILLI JÄGER‡

Abstract. In this paper, we develop multiscale methods appropriate for the homogenization
of processes in domains containing thin heterogeneous layers. Our model problem consists of a
nonlinear reaction-diffusion system defined in such a domain, and properly scaled in the layer region.
Both the period of the heterogeneities and the thickness of the layer are of order ε. By performing
an asymptotic analysis with respect to the scale parameter ε we derive an effective model which
consists of the reaction-diffusion equations on two domains separated by an interface together with
appropriate transmission conditions across this interface. These conditions are determined by solving
local problems on the standard periodicity cell in the layer. Our asymptotic analysis is based on weak
and strong two-scale convergence results for sequences of functions defined on thin heterogeneous
layers. For the derivation of the transmission conditions, we develop a new method based on test
functions of boundary layer type.

Key words. nonlinear reaction-diffusion systems, thin heterogeneous layer, homogenization,
two-scale convergence, transmission conditions
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1. Introduction. In this paper, we will be concerned with a nonlinear system
of reaction-diffusion equations in a domain containing a thin heterogeneous layer.
Such problems often occur in applications like, e.g., transdermal diffusion of drugs,
diffusion of substances through the epithelial monolayer, and transport of ions through
membranes.

We start from a microscopic model defined on a domain containing a thin layer
of thickness ε. The processes are modeled by a system of reaction-diffusion equations
properly scaled inside the layer. Our aim is to study the behavior of the solutions of
the microscopic equations when the thickness ε tends to zero.

In the limit ε → 0 the thin layer reduces to an interface between the two bulk
regions. We derive an effective model which consists of a system of reaction-diffusion
equations on both sides of this interface together with appropriate transmission con-
ditions for the limit concentrations across the interface.

For the derivation of the limit equations in the bulk regions we use standard com-
pactness results based on classical a priori estimates. However, the thin heterogeneous
layer poses additional problems. We have to adapt the concepts of weak and strong
two-scale convergences to functions on thin domains with oscillatory and (for sim-
plicity) periodic structure. Due to the arising nonlinearities, it is necessary to prove
strong two-scale convergence of the solutions to the ε-problems in the thin layer. To
this end, we introduce macroscopic and microscopic coordinates and analyze the reg-
ularity of the solutions with respect to this pair of coordinates. Whereas the gradients
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with respect to the microvariable and the time can be controlled in L2 in a standard
way, the control of the dependence on the macrovariable demands a new approach.
Using the partial differential equation in the layer and the strong compactness of the
traces of the microscopic concentrations on the interfaces between the bulk regions
and the thin layer, we are able to derive L2-equicontinuity also with respect to the
macrovariable. When these results are combined, a Kolmogorov criterion for strong
two-scale convergence in the thin layer is satisfied.

For the derivation of the transmission conditions we introduce a new method
which is based on testing the microscopic equations with test functions of boundary
layer type. The effective transmission conditions consist of relations for the jump of
the concentrations and the normal fluxes across the interface. They are calculated
by solving local problems on the standard periodicity cell in the layer. These local
problems are coupled with the effective equations in the bulk regions through the
boundary values on the upper and lower boundaries of the standard cell.

Our paper is organized as follows: We start with the precise description of the
geometry and of the microscopic equations and the formulation of the main results
(section 2). Then we show a priori estimates (section 3). In section 4, we present the
convergence concepts needed to pass to the limit in the thin layer. Section 5 gives
the proofs for the convergence (up to subsequences) of the microscopic solutions in
the bulk and in the layer. Here, the most challenging part is to show strong two-scale
convergence of the concentration inside the layer. In section 6, we derive the effective
model including the macroscopic equations in the bulk regions, the local problem in
the layer, and the transmission conditions across the interface separating the bulk
regions. In the last section, we show uniqueness for the homogenized solution and
thus the convergence of the whole sequence.

Reducing the computational work is one of the main purposes of the homogeniza-
tion limit. The algorithms for solving the derived transmission problem numerically
will be considered in a forthcoming paper.

The limiting methods developed in this paper are crucial in treating the ion
transport through membrane channels modeled by the Nernst–Planck equations. This
system couples the transport of ions and the electric field in a domain separated by a
thin membrane with periodically distributed channels. In the channels, partially fixed
charges control the permeability of the membrane. Here again, the derivation of the
transmission conditions is the crucial topic. A formulation of the results and a sketch
of the steps necessary in the analysis are given in [14], and the full mathematical
derivation is presented in the forthcoming paper [15].

2. Statement of the problem and the results.

2.1. Setting of the problem. Let ε > 0 be a sequence of strictly positive
numbers tending to zero, with the property that 1

ε ∈ N, and let H > 0 be a fixed real
number.

We consider a bounded domain Ω = ]0, 1[
n−1 × ]−H,H[ ⊂ R

n, n ≥ 2, consisting
of three subdomains: the bulk regions Ω+

ε , Ω−
ε and the thin heterogeneous layer ΩM

ε ,
separated by the interfaces S+

ε and S−
ε ; see Figure 2.1. Thus we have

Ω = Ω+
ε ∪ Ω−

ε ∪ ΩM
ε ∪ S+

ε ∪ S−
ε ,

where Ω+
ε = ]0, 1[

n−1 × ]ε,H[, Ω−
ε = ]0, 1[

n−1 × ]−H,−ε[, ΩM
ε = ]0, 1[

n−1 × ]−ε, ε[,

S+
ε = ]0, 1[

n−1 × {ε}, S−
ε = ]0, 1[

n−1 × {−ε}. We denote

Σ = ]0, 1[
n−1 × {0}.
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Fig. 2.1. The domain Ω including the thin heterogeneous layer ΩM
ε .
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Fig. 2.2. The standard cell Z = Y × [−1, 1] = [0, 1]n−1 × [−1, 1].

The microscopic structure of the layer ΩM
ε is obtained by the periodic repetition of

the standard cell Z (see Figure 2.2), scaled with ε. Here

Z = Y × [−1, 1] = [0, 1]n−1 × [−1, 1],

and we denote by

S± = {y ∈ R
n : ȳ ∈ Y, yn = ±1}

the upper and lower boundaries of Z. The outer unit normal at the boundaries of
the domains Ω and ΩM

ε is denoted by ν. The restrictions of functions defined on Ω
to the subdomains Ω+

ε , Ω−
ε , and ΩM

ε are denoted by the superscripts +, −, and M ,
respectively.

In the domain Ω we consider the following system of reaction-diffusion equations
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for the unknown vector uε = (u1ε, . . . , umε) : (0, T ) × Ω → R
m,

(2.1)

∂tu
+
jε −D+

j Δu+
jε = fj(x, u

+
ε ) in (0, T ) × Ω+

ε ,

∂tu
−
jε −D−

j Δu−
jε = fj(x, u

−
ε ) in (0, T ) × Ω−

ε ,

1

ε
∂tu

M
jε −∇ ·

(
εDM

j

(x
ε

)
∇uM

jε

)
=

1

ε
gj

(x
ε
, uM

ε

)
in (0, T ) × ΩM

ε ,

subjected to the boundary conditions

(2.2)
u±
ε = u±

D on ∂DΩ±,

∇ujε · ν = 0 on ∂NΩ

and initial conditions

(2.3) uε(0, x) =

⎧⎪⎨
⎪⎩

U0(x), x ∈ Ω+
ε ,

UM
0

(
x̄, xn

ε

)
, x ∈ ΩM

ε ,

U0(x), x ∈ Ω−
ε .

Here the boundaries ∂DΩ±, respectively, ∂NΩ, are defined as follows:

∂DΩ± = ∂Ω ∩ {x ∈ R
n, xn = ±H},

∂NΩ = ∂Ω \ {∂DΩ+ ∪ ∂DΩ−}.

On the interfaces S+
ε and S−

ε we require the natural transmission conditions, i.e., the
continuity of the solutions and of the normal fluxes:

(2.4)
u±
ε = uM

ε on S±
ε ,

D±
j ∇u±

jε · ν = εDM
j

(x
ε

)
∇uM

jε · ν on S±
ε .

Assumptions on the data. For the diffusion coefficients Dj : Ω → R, j =
1, . . . ,m, given by

Dj(x) =

⎧⎨
⎩

D+
j , x ∈ Ω+

ε ,

DM
j

(
x
ε

)
, x ∈ ΩM

ε ,

D−
j , x ∈ Ω−

ε ,

we assume the following:
• D+

j > 0, D−
j > 0, j = 1, . . . ,m.

• DM
j is defined on the standard cell Z and belongs to C1

per([0, 1]n−1, C1([−1, 1])).
We also assume that it is strictly positive.

Concerning the reaction terms we suppose the following:
• f = f(x, z) : Ω̄ × R

m → R
m is continuous and Lipschitz continuous with

respect to z, with a Lipschitz constant independent of x.
• g = g(ȳ, yn, z) : [0, 1]n−1 × [−1, 1] × R

m → R
m is continuous, Lipschitz

continuous in z, and periodic in ȳ = (y1, . . . , yn−1).
The assumptions on the reaction terms imply that there exist positive constants c1
and c2 such that for j = 1, . . . ,m

|fj(x, z)| ≤ c1(1 + |z|) for all z ∈ R
m, x ∈ Ω̄,(2.5)

|gj(y, z)| ≤ c2(1 + |z|) for all z ∈ R
m, y ∈ Z.(2.6)
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Additionally, we have to impose on f and g structural conditions which guarantee
L∞-estimates of the solutions uε. A possible choice of such conditions is given in the
following.

Let Mj ∈ R,Mj > 0, j = 1, . . . ,m, be given. We consider

fj(·, z) ≤ Ajzj for zj ≥ Mj ,(2.7)

gj(·, z) ≤ Ajzj for zj ≥ Mj ,(2.8)

where Aj ∈ R, Aj ≥ 0, j = 1, . . . ,m. We also require that

m∑
j=1

fj(·, z)(zj)− ≤ C

m∑
j=1

|(zj)−|2,(2.9)

m∑
j=1

gj(·, z)(zj)− ≤ C

m∑
j=1

|(zj)−|2,(2.10)

where (zj)− = min{zj , 0}. For the initial functions we assume that U0 ∈ H2(Ω+,Rm)∩
H2(Ω−,Rm), UM

0 ∈ H2(Σ × ]−1, 1[,Rm), such that

(2.11)
1√
ε

∥∥∥UM
0

(
·, ·
ε

)∥∥∥
L2(ΩM

ε ,Rm)
+
√
ε
∥∥∥∇UM

0

(
·, ·
ε

)∥∥∥
L2(ΩM

ε ,Rm)
≤ C,

and that they satisfy the compatibility conditions

(2.12)

U0(x) = UM
0

(
x̄,

xn

ε

)
on S±

ε ,

D±
j ∇Uj0 · −→ν = εDM

j

(x
ε

)
∇UM

j0 · −→ν on S±
ε ,

U0(x) = uD(0, x) on ∂DΩ±.

For the Dirichlet boundary data we require

uD ∈ L2((0, T ), H2(Ω,Rm)), supp(uD) ∩ ΩM
ε = ∅,(2.13)

∂tu
±
D ∈ L2((0, T ), H1(Ω,Rm)) ∩ L∞((0, T ) × Ω,Rm).(2.14)

In order to obtain the L∞-estimates for the solution uε, we have to assume that the
initial and boundary functions also satisfy corresponding bounds. For the example of
reaction terms given above, we assume that

(2.15) 0 ≤ Uj0 ≤ Mj , 0 ≤ UM
j0 ≤ Mj , 0 ≤ ujD ≤ Mj , j = 1, . . . ,m.

Variational formulation of the microscopic problem. We denote by X the
function space

X = {u ∈ H1(Ω,Rm) : u = 0 on ∂DΩ+ ∪ ∂DΩ−}.

The variational formulation of problem (2.1)–(2.4) is given as follows: Find uε :
(0, T )×Ω → R

m, such that uε−uD ∈ L2((0, T ), X), ∂t(uε−uD) ∈ L2((0, T ), L2(Ω)),
and for all ϕ ∈ L2((0, T ), X) and a.e. t ∈ (0, T ) we have∫

Ω+
ε

∂tu
+
jεϕj dx +

∫
Ω−

ε

∂tu
−
jεϕj dx +

1

ε

∫
ΩM

ε

∂tu
M
jεϕj dx(2.16)

+ D+
j

∫
Ω+

ε

∇u+
jε∇ϕj dx + D−

j

∫
Ω−

ε

∇u−
jε∇ϕj dx +

∫
ΩM

ε

εDM
j ∇uM

jε∇ϕj dx

=

∫
Ω+

ε

fj(x, u
+
ε )ϕj dx +

∫
Ω−

ε

fj(x, u
−
ε )ϕj dx +

1

ε

∫
ΩM

ε

gj

(x
ε
, uM

ε

)
ϕj dx
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xn

H

x
1

0

H

Ω−

Ω+

Σ

Fig. 2.3. The structure of the domain Ω in the limit ε = 0.

and

uε(0, x) =

⎧⎨
⎩

U0(x), x ∈ Ω+
ε ,

UM
0

(
x̄, xn

ε

)
, x ∈ ΩM

ε ,
U0(x), x ∈ Ω−

ε .

The existence and uniqueness of weak solutions for the problem (2.1)–(2.4) for every
fixed ε > 0 is standard, e.g., by using the Galerkin method based on estimates similar
to those in section 3.

Our aim is now to study the behavior of the solutions uε for small values of the
parameter ε. We will do this by studying the asymptotic behavior of the sequence uε

for ε → 0.
When ε tends to zero, the thin layer ΩM

ε approaches the interface Σ. The domains
Ω+

ε and Ω−
ε tend to the domains Ω+ and Ω−, respectively, defined below:

Ω+ = ]0, 1[
n−1 × ]0, H[,(2.17)

Ω− = ]0, 1[
n−1 × ]−H, 0[.(2.18)

Thus the macroscopic limit of the sequence uε (if it exists) will be defined on the
domain Ω consisting of (see Figure 2.3)

Ω = Ω+ ∪ Ω− ∪ Σ.

2.2. Main results. From the a priori estimates (given in section 3), it is obvious
that different convergence concepts have to be used for studying the asymptotic be-
havior of the solutions uε in the bulk and thin layer regions. Whereas in Ω±

ε classical
compactness results can be used, in ΩM

ε compactness needs to be considered with
respect to the weak and strong two-scale convergences adapted to the thin layer. The
concepts of multiscale convergence in the weak and strong sense, also for thin and
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periodic structures, are crucial for formulating and proving the main results of this pa-
per. For the definition and properties of two-scale convergence for thin heterogeneous
layers, see section 4.

In the following two propositions, we state the convergence results in the bulk
and thin layer regions as well as the convergence of the traces on the interfaces S±

ε .
For the layer region, we obtain in a first step weak two-scale convergence.

Proposition 2.1. There exists a subsequence denoted again uε and limit func-
tions u±

0 ∈ L2((0, T ), H1(Ω±,Rm)), with ∂tu
±
0 ∈ L2((0, T ), L2(Ω±,Rm)), and uM

0 ∈
L2((0, T ) × Σ, H1

per(Y,H
1(]−1, 1[))m, with ∂tu

M
0 ∈ L2((0, T ) × Σ, L2(Z))m, such that

1. χΩ±
ε
ujε → u±

j0 strongly in L2((0, T ), L2(Ω±));

2. χΩ±
ε
∇ujε → ∇u±

j0 weakly in L2((0, T ), L2(Ω±));

3. χΩ±
ε
∂tujε → ∂tu

±
j0 weakly in L2((0, T ), L2(Ω±));

4. uM
jε

t.s.→ uM
j0 (t, x̄, y) weakly in the two-scale sense;

5. ε∇uM
jε

t.s.→ ∇yu
M
j0 (t, x̄, y) weakly in the two-scale sense;

6. ∂tu
M
jε

t.s.→ ∂tu
M
j0 (t, x̄, y) weakly in the two-scale sense.

Furthermore, we have

(2.19) uM
0 (t, x̄, ȳ,±1) = u±

0 (t, x̄, 0) a.e. (t, x̄) ∈ (0, T ) × Σ, ȳ ∈ Y.

Proposition 2.2. There exists a subsequence denoted again by u±
ε , such that

ũ±
jε → u±

j0 strongly inL2((0, T ) × Σ),(2.20)

lim
ε→0

∫ T

0

∫
S±
ε

u±
jε(t, x)ϕj

(
t, x̄,

x

ε

)
dxdt =

∫ T

0

∫
Σ

∫
Y

u±
j0(t, x̄, 0)ϕj(t, x̄, ȳ,±1) dȳ dx̄dt

(2.21)

for all ϕj ∈ C∞([0, T ] × Σ, C∞
per(Y,C

∞([−1, 1]))), where u±
0 are the limit functions

given in Proposition 2.1, and the scaled functions ũ±
jε are defined in (5.2).

A central contribution of this paper is formulated in Theorem 2.3 below, where
a strong two-scale convergence of the solutions uε in the layer ΩM

ε is obtained.
This strong two-scale convergence is not based on extension properties but uses the
reaction-diffusion equations in the layer and the compactness of the traces on S±

ε .
Theorem 2.3. The extension ûM

ε of uM
ε to Ω̂M

ε defined in section 5.4 can be
estimated in terms of its boundary values on Ŝ±

ε and its initial values ÛM
0 in the

following way: Fix h ∈
(
0, 1

4

)
and assume l ∈ Z

n−1 such that |lε| < h. Then there
exists a constant C independent of ε and l, such that

1√
ε
||ûM

ε (t, x + (l, 0)ε) − ûM
ε (t, x)||L2((0,T )×ΩM

ε ,Rm)(2.22)

≤ C

(
||û+

ε (t, x + (l, 0)ε) − û+
ε (t, x)||L2((0,T )×Ŝ+

ε ,Rm)

+ ||û−
ε (t, x + (l, 0)ε) − û−

ε (t, x)||L2((0,T )×Ŝ−
ε ,Rm)

+
1√
ε

∥∥∥ÛM
0

(
x̄ + lε,

xn

ε

)
− ÛM

0

(
x̄,

xn

ε

)∥∥∥
L2(Ω̂M

ε ,Rm)

)

+ C
ε

h
+ Ch

1
2 .
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Thus, up to subsequence, uM
ε converges also strongly in the two-scale sense to the limit

function uM
0 .

The limit functions satisfy the macroscopic problem formulated in the following
theorem.

Theorem 2.4. The limit functions u±
0 given in Proposition 2.1 satisfy in a

distributional sense the initial boundary value problem on Ω+ and Ω−, respectively,

∂tu
+
j0 −D+

j Δu+
j0 = fj(x, u

+
0 ), (t, x) ∈ (0, T ) × Ω+,(2.23)

∂tu
−
j0 −D−

j Δu−
j0 = fj(x, u

−
0 ), (t, x) ∈ (0, T ) × Ω−,(2.24)

u±
0 (t, x) = u±

D, (t, x) ∈ (0, T ) × ∂DΩ±,(2.25)

∂u±
0

∂ν
= 0, (t, x) ∈ (0, T ) × ∂NΩ±,(2.26)

u±
0 (0, x) = U0(x), x ∈ Ω±,(2.27)

together with the effective transmission conditions on the interface Σ,

[uj0]Σ(t, x̄) =

∫
Z

(gj(y, u
M
0 (t, x̄, y)) − ∂tu

M
j0 (t, x̄, y))ηj(y) dy(2.28)

+ D+
j η

+
j ∂nu

+
j0(t, x̄, 0) −D−

j η
−
j ∂nu

−
j0(t, x̄, 0),

(D+
j ∂nu

+
j0 −D−

j ∂nu
−
j0)(t, x̄, 0)(2.29)

=

∫
Z

(∂tu
M
j0 (t, x̄, y) − gj(y, u

M
0 (t, x̄, y))) dy.

The limit function uM
0 , which enters the transmission conditions, is the weak solution

of the local problem

∂tu
M
j0 (t, x̄, y) − ∇y(D

M
j (y)∇yu

M
j0 (t, x̄, y))(2.30)

= gj(y, u
M
0 (t, x̄, y)) in (0, T ) × Z,

uM
0 (t, x̄, y) = u±

0 (t, x̄, 0) on (0, T ) × S±,(2.31)

uM
0 is periodic inY,(2.32)

uM
0 (0, x̄, y) = UM

0 (x̄, yn) in Z(2.33)

for a.e. x̄ ∈ Σ. The constants η± = (η±1 , . . . , η±m) are the constant boundary values on
S± of the solution η = (η1, . . . , ηm) to the following boundary value problem on the
standard cell: Find

η = (η1, . . . , ηm) ∈ V := {ϕ ∈ H1(Z,Rm), ϕ periodic in Y, ϕ ≡ const onS+ ∪ S−}

such that 1
|Z|

∫
Z
η(y) dy = 0 and, for all ϕ ∈ V,

(2.34)

∫
Z

DM
j (y)∇ηj(y)∇ϕj(y) dy =

∫
S+

ϕj(y) ds−
∫
S−

ϕj(y) ds.

In the final step, we prove uniqueness for the macroscopic problem, and there-
fore we obtain that the sequence of solutions to the microscopic problems converges
to the solution of the macroscopic problem in the corresponding topology on every
subdomain.

Theorem 2.5. The solution (u+
0 , u

−
0 , u

M
0 ) of the macroscopic system (2.23)–

(2.33) is unique.
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3. A priori estimates for the microscopic model. In order to get some
information about the compactness properties of the sequence uε, we have to control
the dependence of the solutions on the scale parameter ε.

Lemma 3.1. For the solutions of problem (2.1)–(2.4), the following estimates
hold, with a generic constant C independent of ε:

||u±
jε||L∞((0,T ),H1(Ω±

ε )) ≤ C,(3.1)

1√
ε
||uM

jε ||L∞((0,T ),L2(ΩM
ε )) +

√
ε||∇uM

jε ||L∞((0,T ),L2(ΩM
ε )) ≤ C,(3.2)

||∂t u±
jε||L2((0,T ),L2(Ω±

ε )) ≤ C,
1√
ε
||∂tuM

jε ||L2((0,T ),L2(ΩM
ε )) ≤ C.(3.3)

In the case that the reaction terms satisfy the additional structural conditions (2.7)–
(2.9), we obtain the following pointwise bounds for the solution:

(3.4) 0 ≤ ujε ≤ Mje
Ajt for a.e. (t, x) ∈ (0, T ) × Ω.

Proof. Let us first set

Uε = uε − uD =

{
u±
ε − uD, x ∈ Ω±

ε ,

uM
ε , x ∈ ΩM

ε ,

and use it as a test function in (2.16). We obtain∫
Ω±

ε

∂tU
±
jε(t)U

±
jε(t) dx +

∫
Ω±

ε

∂tujD(t)U±
jε(t) dx

+ D±
j

∫
Ω±

ε

∇U±
jε(t)∇U±

jε(t) dx + D±
j

∫
Ω±

ε

∇ujD(t)∇U±
jε(t) dx

+
1

ε

∫
ΩM

ε

∂tu
M
jε (t)uM

jε (t) dx + ε

∫
ΩM

ε

DM
j

(x
ε

)
∇uM

jε (t)∇uM
jε (t) dx

=

∫
Ω±

ε

fj(x, u
±
ε (t, x))U±

jε(t)dx +
1

ε

∫
ΩM

ε

gj

(x
ε
, uM

ε (t, x)
)
uM
jε (t)dx

≤ C1

∫
Ω±

ε

(1 + |u±
ε |) |U±

jε(t)| dx +
C2

ε

∫
ΩM

ε

(1 + |uM
ε |) |uM

jε (t)| dx(3.5)

a.e. in (0, T ). Here the integrals over Ω±
ε stand for the sum of the integrals over Ω+

ε

and Ω−
ε . For the last inequality we used the growth conditions (2.5) and (2.6) on the

reaction terms. Adding up the estimates in (3.5) for j = 1, . . . ,m and integrating
with respect to time yields

1

2
||U±

ε (t)||2
L2(Ω±

ε ,Rm)
+

1

2ε
||uM

ε (t)||2L2(ΩM
ε ,Rm)(3.6)

+

∫ t

0

∫
Ω±

ε

|∇U±
ε |2dxdt + ε

∫ t

0

∫
ΩM

ε

|∇uM
ε (t)|2dxdt

≤ C

(∫ t

0

∫
Ω±

ε

|∂tuD(t)U±
ε |dxdt +

∫ t

0

∫
Ω±

ε

|∇uD∇U±
ε | dxdt

)

+ C

(
1 +

∫ t

0

∫
Ω±

ε

|U±
ε |2dxdt +

1

ε

∫ t

0

∫
ΩM

ε

|uM
ε |2dxdt

)

+
1

2
||U±

ε (0)||2
L2(Ω±

ε ,Rm)
+

1

2ε
||uM

ε (0)||2L2(ΩM
ε ,Rm).



696 MARIA NEUSS-RADU AND WILLI JÄGER

Here we also used the regularity properties (2.14) of the boundary data uD. To esti-
mate the second term on the right-hand side, we make use of the inequality

2ab ≤ δa2 +
1

δ
b2

to get ∫ t

0

∫
Ω±

ε

|∇uD∇U±
ε | dxdt ≤ C

(
1

δ
+ δ||∇U±

ε ||2
L2((0,T )×Ω±

ε ,Rm)

)
.

If δ is small enough, the term involving ∇U±
ε can be absorbed on the left-hand side.

Now, using Gronwall’s lemma and the assumptions (2.11) on the initial conditions,
we obtain

||U±
ε ||L∞((0,T ),L2(Ω±

ε ,Rm)) +
1√
ε
||uM

ε ||L∞((0,T ),L2(ΩM
ε ,Rm)) ≤ C

and

||∇U±
ε (t)||L2((0,T ),L2(Ω±

ε ,Rm)) +
√
ε||∇uM

ε (t)||L2((0,T ),L2(ΩM
ε ,Rm)) ≤ C.

To obtain the L∞-estimates with respect to time for the gradients and the estimates
for the time derivatives, we take ϕ = ∂tUε as a test function in (2.16). It yields∫

Ω±
ε

∂tU
±
jε(t)∂tU

±
jε(t) dx +

∫
Ω±

ε

∂tujD(t)∂tU
±
jε(t) dx

+ D±
j

∫
Ω±

ε

∇U±
jε(t)∇∂tU

±
jε(t)dx + D±

j

∫
Ω±

ε

∇ujD(t)∇∂tU
±
jε(t) dx

+
1

ε

∫
ΩM

ε

∂tu
M
jε (t)∂tu

M
jε (t) dx + ε

∫
ΩM

ε

DM
j

(x
ε

)
∇uM

jε (t)∇∂tu
M
jε (t) dx

=

∫
Ω±

ε

fj(x, u
±
ε )∂tU

±
jε(t)dx +

1

ε

∫
ΩM

ε

gj

(x
ε
, uM

ε

)
∂tu

M
jε (t)dx

a.e. on (0, T ). First, we have to transform the energy integral on ΩM
ε as follows:

ε

∫
ΩM

ε

DM
j

(x
ε

)
∇uM

jε (t)∇∂tu
M
jε (t) dx =

d

dt

∫
ΩM

ε

εDM
j

(x
ε

)
∇uM

jε (t)∇uM
jε (t) dx

− ε

∫
ΩM

ε

DM
j

(x
ε

)
∇∂tu

M
jε (t)∇uM

jε (t) dx.

Thus,
(3.7)

ε

∫
ΩM

ε

DM
j

(x
ε

)
∇uM

jε (t)∇∂tu
M
jε (t) dx =

1

2

d

dt

∫
ΩM

ε

εDM
j

(x
ε

)
∇uM

jε (t)∇uM
jε (t) dx.

Adding up the equations for j = 1, . . . ,m, taking into account (3.7) and the growth
conditions (2.5), (2.6), and integrating with respect to time, we obtain

||∂tU±
ε ||2

L2((0,T ),L2(Ω±
ε ,Rm))

+
1

ε
||∂tuM

ε ||2L2((0,T ),L2(ΩM
ε ,Rm))(3.8)

+ ||∇U±
ε (t)||2

L2(Ω±
ε ,Rm)

+ ε||∇uM
ε (t)||2L2(ΩM

ε ,Rm)

≤ C

(
1 + ||U±

ε ||2
L2((0,T ),L2(Ω±

ε ,Rm))
+

1

ε
||uM

ε ||2L2((0,T ),L2(ΩM
ε ,Rm))

)
+ C||∇U±

ε ||2
L2((0,T ),L2(Ω±

ε ,Rm))
.
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Using the estimates obtained in the first part of the proof, it follows that the right-hand
side of (3.8) is bounded independently of ε. Thus estimates (3.1)–(3.3) are proved.

Now, it remains to show the L∞-bounds for the solution under the hypothesis
(2.7)–(2.10) on the reaction terms. We first show positivity of the solutions. Let us
test our system (2.16) with the test function ϕ given by

ϕj = (ujε)− = min{ujε, 0} a.e. on [0, T ] × Ω.

Due to the the assumptions (2.15), our test function has zero boundary values on the
parabolic boundary. Thus we obtain

1

2

d

dt

∫
Ω+

ε

|(u+
jε)−|2 dx +

1

2

d

dt

∫
Ω−

ε

|(u−
jε)−|2 dx +

1

2ε

d

dt

∫
ΩM

ε

|(uM
jε )+|2 dx

+ D+
j

∫
Ω+

ε

|∇(u+
jε)−|2 dx + D−

j

∫
Ω−

ε

|∇(u−
jε)−|2 dx +

∫
ΩM

ε

εDM
j |∇(uM

jε )−|2 dx

=

∫
Ω+

ε

fj(x, u
+
ε )(u+

jε)− +

∫
Ω−

ε

fj(x, u
−
ε )(u−

jε)− +
1

ε

∫
ΩM

ε

gj

(x
ε
, uM

ε

)
(uM

jε )−.

Integrating with respect to time, adding up the equations for j = 1, . . . ,m, and using
the assumptions (2.9), (2.10) on the reaction terms leads to∫

Ω+
ε

m∑
j=1

|(u+
jε)−(t)|2dx +

∫
Ω−

ε

m∑
j=1

|(u−
jε)−(t)|2dx +

1

ε

∫
ΩM

ε

m∑
j=1

|(uM
jε )−(t)|2dx

≤ C

∫ t

0

⎧⎨
⎩
∫

Ω+
ε

m∑
j=1

|(u+
jε)−|2dx +

∫
Ω−

ε

m∑
j=1

|(u−
jε)−|2dx +

1

ε

∫
ΩM

ε

m∑
j=1

|(uM
jε )−|2dx

⎫⎬
⎭ dt.

Now, Gronwall’s inequality implies that (ujε)− = 0. Thus the positivity of the solution
is proved. To obtain the upper bound, we first test (2.16) with the test function

ϕj(t, x) = e−Ajtψj(t, x),

where ψ ∈ L2((0, T ), H1(Ω)) and has zero boundary values on the parabolic boundary.
We obtain∫

Ω+
ε

∂tu
+
jεe

−Ajtψjdx +

∫
Ω−

ε

∂tu
−
jεe

−Ajtψjdx +
1

ε

∫
ΩM

ε

∂tu
M
jεe

−Ajtψjdx

+ D+
j

∫
Ω+

ε

e−Ajt∇u+
jε∇ψjdx + D−

j

∫
Ω−

ε

e−Ajt∇u−
jε∇ψjdx

+

∫
ΩM

ε

εDM
j e−Ajt∇uM

jε∇ψjdx =

∫
Ω+

ε

fj(x, u
+
ε )e−Ajtψjdx

+

∫
Ω−

ε

fj(x, u
−
ε )e−Ajtψjdx +

1

ε

∫
ΩM

ε

gj

(x
ε
, uM

ε

)
e−Ajtψjdx.

Now we intend to set

ψj = (e−Ajtujε −Mj)+ = max{e−Ajtujε −Mj , 0} a.e. on [0, T ] × Ω.

Therefore, we write the terms containing the time derivative as∫
Ω+

ε

∂tu
+
jεe

−Ajtψjdx =

∫
Ω+

ε

∂t(e
−Ajtu+

jε −Mj)ψjdx +

∫
Ω+

ε

Aje
−Ajtu+

jεψjdx,
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and analogously the terms on Ω−
ε and ΩM

ε . We obtain

1

2

d

dt

∫
Ω+

ε

|(e−Ajtu+
jε −Mj)+|2 dx +

1

2

d

dt

∫
Ω−

ε

|(e−Ajtu−
jε −Mj)+|2 dx(3.9)

+
1

2ε

d

dt

∫
ΩM

ε

|(e−AjtuM
jε −Mj)+|2 dx +

∫
Ω+

ε

Aje
−Ajtu+

jε(e
−Ajtu+

jε −Mj)+dx

+

∫
Ω−

ε

Aje
−Ajtu−

jε(e
−Ajtu−

jε −Mj)+dx +
1

ε

∫
ΩM

ε

Aje
−AjtuM

jε (e−AjtuM
jε −Mj)+dx

≤
∫

Ω+
ε

fj(x, u
+
ε )e−Ajt(e−Ajtu+

jε −Mj)+dx +

∫
Ω−

ε

fj(x, u
−
ε )e−Ajt(e−Ajtu−

jε −Mj)+dx

+
1

ε

∫
ΩM

ε

gj

(x
ε
, uM

ε

)
e−Ajt(e−AjtuM

jε −Mj)+dx.

Now, due to assumptions (2.7), (2.8) on the reaction terms, the right-hand side in the
above inequality can be estimated from above by∫

Ω+
ε

Aju
+
jεe

−Ajt(e−Ajtu+
jε −Mj)+dx +

∫
Ω−

ε

Aju
−
jεe

−Ajt(e−Ajtu−
jε −Mj)+dx

+
1

ε

∫
ΩM

ε

Aju
M
jεe

−Ajt(e−AjtuM
jε −Mj)+dx.

However, these terms cancel with the corresponding terms on the left-hand side in
(3.9), and thus, after integration with respect to time, we get∫

Ω+
ε

|(e−Ajtu+
jε −Mj)+|2 dx +

∫
Ω−

ε

|(e−Ajtu−
jε −Mj)+|2 dx

+
1

ε

∫
ΩM

ε

|(e−AjtuM
jε −Mj)+|2 dx ≤ 0.

Finally, we have

e−Ajtujε −Mj ≤ 0 a.e. on [0, T ] × Ω.

This completes the proof.

4. Two-scale convergence for thin heterogeneous layers. From the a priori
estimates in Lemma 3.1, we see that on the subdomain ΩM

ε we cannot use the classic
compactness results for passing to the limit when ε → 0. Here, we have to consider
special convergence concepts which are adapted to sequences of functions varying on
different scales.

The so-called two-scale convergence was introduced in [1] and [12] in order to
handle two-scale phenomena with periodic structure in all space dimensions. Then it
was extended to multiple scales [2]; periodic surfaces [13] and measures [17], [4]; thin
domains [11]; and stochastic media [6]. For our problem, we need to generalize the
concept of two-scale convergence to thin heterogeneous domains. Thus let G ⊂ R

n−1

be a bounded domain and let Y = [0, 1]n−1 be the closed unit cube in R
n−1. Let Gε

be a thin domain defined by

Gε = G× ]−ε, ε[.
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Let Σ be the interface

Σ = G× {0}

and, as before, let us denote by Z the standard cell

Z = Y × [−1, 1].

Let Cper(Y ) be the space of continuous functions in R
n−1 which are periodic of period

Y. Let L2
per(Y ) (respectively, H1

per(Y )) be the completion of Cper(Y ) in the norm of
L2(Y ) (respectively, H1(Y )).

Definition 4.1. A sequence of functions uε ∈ L2((0, T )×Gε) is said to two-scale
converge weakly to u0(t, x̄, y) belonging to L2((0, T ) × Σ × Z) if, for any

ψ(t, x̄, ȳ, yn) ∈ C
(
[0, T ] × Σ̄, Cper([0, 1]n−1, C([−1, 1]))

)
,

we have

(4.1) lim
ε→0

1

ε

∫ T

0

∫
Gε

uε(t, x)ψ
(
t, x̄,

x

ε

)
dx dt =

∫ T

0

∫
Σ

∫
Z

u0(t, x̄, y)ψ(t, x̄, y)dy dx̄ dt.

A sequence uε ∈ L2((0, T ) × Gε) which converges weakly to u0 ∈ L2((0, T ) × Σ × Z)
is said to converge strongly in the two-scale sense to the limit u0 if

(4.2) lim
ε→0

1√
ε
||uε||L2((0,T )×Gε) = ||u0||L2((0,T )×Σ×Z).

Remark 1. If u0 in (4.2) has the property that u0(·, ·, ·
ε ) ∈ L2((0, T )×Gε), then

the relation (4.2) is equivalent to

lim
ε→0

1√
ε

∥∥∥uε(t, x) − u0

(
t, x̄,

x

ε

)∥∥∥
L2((0,T )×Gε)

= 0.

A sufficient condition for u0(·, ·, ·
ε ) to be in L2((0, T )×Gε) is, e.g., that u0 ∈ L2((0, T )×

Σ, Cper(Y,C([−1, 1]))). For more details concerning this topic, see [1, Remark 1.10].
The main compactness result obtained for standard two-scale convergence in [12]

and [1] can be generalized for the case of sequences defined on thin domains with
microstructure.

Proposition 4.2. Let uε be a sequence in L2((0, T ) ×Gε), such that

1√
ε
||uε||L2((0,T )×Gε) ≤ C

with a positive constant C, independent of ε. Then there exists a subsequence (which
we still denote by ε) and a limit function u0 ∈ L2((0, T ) × Σ × Z), such that

(4.3) lim
ε→0

1

ε

∫ T

0

∫
Gε

uε(t, x)ϕ
(
t, x̄,

x

ε

)
dx dt =

∫ T

0

∫
Σ

∫
Z

u0(t, x̄, y)ϕ(t, x̄, y)dy dx̄ dt

for every test function ϕ ∈ C([0, T ] × Σ̄, Cper([0, 1]n−1, C([−1, 1]))).
Proof. Using Lemma 4.3 below, this result can be proved analogously to Theorem

1.2 in [1]. However, we have to take into account new aspects like time dependence
and domains shrinking to a hypersurface.
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Let us first consider functions uε, which do not vary with respect to time. Let
ϕ ∈ C

(
Σ̄, Cper(Y,C([−1, 1]))

)
and define

με(ϕ) :=
1

ε

∫
Gε

uε(x)ϕ
(
x̄,

x

ε

)
dx.

Since

|με(ϕ)| ≤ 1√
ε
||uε||L2(Gε) ·

{
1

ε

∫
Gε

∣∣∣ϕ(x̄, x
ε

)∣∣∣2 dx}
1
2

≤ C||ϕ||B ,

με is a bounded sequence of functionals on B = C(Σ̄, Cper(Y,C([−1, 1]))). Since this
space is a separable Banach space, one can extract a subsequence of με (denoted με

again) which weak*-converges to a limit functional μ0 ∈ B. Using now the bounded-
ness of uε and Lemma 4.3, we obtain for every ϕ ∈ B

|μ0(ϕ)|2 = lim
ε→0

|με(ϕ)|2 ≤ C lim
ε→0

1

ε

∫
Gε

∣∣∣ϕ(x̄, x
ε

)∣∣∣2 dx = C||ϕ||2L2(Σ×Z).

From the density of B in L2(Σ×Z), it follows that μ0 is a bounded functional on the
Hilbert space L2(Σ×Z). Thus the Riesz representation theorem implies the existence
of a function u0 ∈ L2(Σ × Z) such that (4.3) is satisfied.

The proof of the theorem for the case of time-dependent functions can be reduced
to the previous one by considering functions defined on the spatial domain with values
in the separable Banach space L2((0, T )).

Lemma 4.3. Let

B = C
(
[0, T ] × Σ̄, Cper(Y,C([−1, 1]))

)
be the space of continuous functions on [0, T ] × Σ̄ with values in the space
Cper(Y,C([−1, 1])) of continuous functions on Z and Y periodic. B is a separable
Banach space, which is dense in Lp((0, T ) × Σ × Z) for 1 ≤ p < ∞, and for every
ϕ ∈ B the following assertions hold:

(4.4)
1

ε

∫ T

0

∫
Gε

∣∣∣ϕ(t, x̄, x
ε

)∣∣∣p dx dt ≤ C||ϕ||pB

and

(4.5) lim
ε→0

1

ε

∫ T

0

∫
Gε

∣∣∣ϕ(t, x̄, x
ε

)∣∣∣p dx dt =

∫ T

0

∫
Σ

∫
Z

|ϕ(t, x̄, y)|p dy dx̄ dt.

The proof of (4.4) is obvious. To prove (4.5), we consider a paving of Σ with
ε-cells and approximate ϕ by step functions with respect to the variable x̄ ∈ Σ. Using
then the periodicity of ϕ with respect to the variable ȳ ∈ Y and taking the limit for
ε → 0, the assertion follows.

Next we investigate the situation where we also have bounds on the gradients.
Proposition 4.4.

(i) Let uε be a sequence of functions in L2((0, T ), H1(Gε)), such that

1√
ε
||uε||L2((0,T )×Gε) +

1√
ε
||∇uε||L2((0,T )×Gε) ≤ C.
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Then there exist functions u0 ∈ L2((0, T ), H1(Σ)) and u1 ∈ L2((0, T ) × Σ,
H1

per(Y,H
1[−1, 1])/R), such that

uε
t.s.−→ u0(t, x̄) weakly in the two-scale sense,

∇uε
t.s.−→ ∇x̄u0(t, x̄) + ∇yu1(t, x̄, y) weakly in the two-scale sense.

(ii) Let uε be a sequence in L2((0, T ), H1(Gε)), such that

1√
ε
||uε||L2((0,T )×Gε) +

√
ε||∇uε||L2((0,T )×Gε) ≤ C.

Then there exists u0 ∈ L2((0, T ) × Σ, H1
per(Y,H

1[−1, 1])) such that

uε
t.s.−→ u0(t, x̄, y) weakly in the two-scale sense,

ε∇uε
t.s.−→ ∇yu0(t, x̄, y) weakly in the two-scale sense.

The proof of this theorem is given by using Theorem 4.2 and arguments similar
to the ones in Proposition 1.14 in [1].

Equivalent formulation. When we are dealing with nonlinear problems, the
weak two-scale convergence is no longer sufficient for passing to the limit in the non-
linear terms. Here one needs strongly two-scale convergent sequences. However, it is
very difficult to show directly the strong two-scale convergence for sequences defined
on varying domains, e.g., thin heterogeneous layers. In such cases we use an equiva-
lent characterization of the two-scale convergence described below. This reformulation
has the strong advantage that sequences of functions defined on varying domains are
transformed to sequences on fixed domains.

Contributions to the development of this method are given in [3], [5], [8], and
[9]. In our paper we adapt this method to the case of thin heterogeneous layers and
nonlinear problems. Recently, in [16], a proof for the “thick” Neumann sieve was
given using multiscale techniques based on [9].

For each ε > 0, let us consider the lattice

Aε = {x̄ = εi, i ∈ Z
n−1} = εZn−1.

To every x̄ ∈ Σ we can associate a unique lattice point cε(x̄) := ε
[
x̄
ε

]
∈ Aε, such

that x̄ ∈ cε(x̄) + εY. For simplicity, from now on we consider domains Gε of the form

Gε = ]0, 1[
n−1 × ]−ε, ε[.

Definition 4.5. We define the operator Lε, mapping measurable functions uε

on (0, T ) ×Gε to measurable functions Lεuε on (0, T ) × Σ × Z, with

(4.6) (Lεuε)(t, x̄, y) = uε(t, (cε(x̄), 0) + εy)

for a.e. x̄ ∈ cε(x̄) + εY, (t, y) ∈ (0, T ) × Z.
The following properties of the operator Lε can be proved in analogy to Lemma 2

in [3].
Lemma 4.6. For uε, vε ∈ L2((0, T ) ×Gε), we have

(Lεuε, Lεvε)L2((0,T )×Σ×Z) =
1

ε
(uε, vε)L2((0,T )×Gε),

||Lεuε||L2((0,T )×Σ×Z) =
1√
ε
||uε||L2((0,T )×Gε),

∇yLεuε = εLε(∇xuε) a.e. in (0, T ) × Σ × Z.
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The next proposition shows that weak (strong) two-scale convergence for a se-
quence uε ∈ L2((0, T ) × Gε) is equivalent to weak (strong) convergence for the se-
quence Lεuε in L2((0, T ) × Σ × Z).

Proposition 4.7. Let uε ∈ L2((0, T ) ×Gε) be a sequence, such that

1√
ε
||uε||L2((0,T )×Gε) ≤ C.

Then there exists a subsequence (again denoted by uε) and a limit function u0 ∈
L2((0, T ) × Σ × Z), such that the following statements are equivalent:

(i) uε
t.s.−→ u0 weakly (strongly) in the two-scale sense.

(ii) Lεuε −→ u0 weakly (strongly) inL2((0, T ) × Σ × Z).

Proof. Since by Lemma 4.6

||Lεuε||L2((0,T )×Σ×Z) =
1√
ε
||uε||L2((0,T )×Gε) ≤ C

it follows that there exists a subsequence of uε (again denoted by uε), and there exist
u0, u∗ ∈ L2((0, T ) × Σ × Z), such that

uε
t.s.−→ u0 weakly in the two-scale sense,

Lεuε −→ u∗ weakly inL2((0, T ) × Σ × Z).

Then a proof analogous to that of Proposition 4.6 in [5] shows that u0 ≡ u∗. To prove
the equivalence of statements (i) and (ii) with respect to the strong convergences let
us remark that

||Lεuε − u0||2L2((0,T )×Σ×Z) =

∫ T

0

∫
Σ

∫
Z

|Lεuε − u0|2 dy dx̄ dt

= ||Lεuε||2L2((0,T )×Σ×Z) − 2

∫ T

0

∫
Σ

∫
Z

(Lεuε)u0 dy dx̄ dt + ||u0||2L2((0,T )×Σ×Z)

=
1

ε
||uε||2L2((0,T )×Gε)

− 2

∫ T

0

∫
Σ

∫
Z

(Lεuε)u0 dy dx̄ dt + ||u0||2L2((0,T )×Σ×Z).

Taking now the limits ε → 0 on both sides of this equality, the equivalence of (i) and
(ii) is proved.

5. Proofs for the convergence results stated in Propositions 2.1 and
2.2 and Theorem 2.3. From the a priori estimates we see that we have different
compactness properties for the solutions uε on the subdomains Ω±

ε and ΩM
ε . Thus we

have to study the convergence of the sequences u±
ε and uM

ε separately.

5.1. Convergence in the bulk. In this subsection, we give the proof of the
first three convergence results from Proposition 2.1.

Proof. Let us consider the transformations

(5.1) Ω± �→ Ω±
ε , (x̄, x̃n) �→ (x̄, xn) =

(
x̄,

H − ε

H
x̃n ± ε

)
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and define

(5.2) ũ±
ε : [0, T ] × Ω± → R

m, ũ±
ε (t, x̄, x̃n) = u±

ε

(
t, x̄,

H − ε

H
x̃n ± ε

)
.

Using the transformation formula for integrals, we can easily show the estimates for
the functions ũ±

ε ,

(5.3) ||ũ±
jε||L2(0,T ;H1(Ω±)) ≤ C ||u±

jε||L2((0,T ),H1(Ω±
ε )),

(5.4) ||∂tũ±
jε||L2((0,T ),L2(Ω±)) ≤ C ||∂tu±

jε||L2((0,T ),L2(Ω±
ε )),

with a constant C independent of ε. Now, since the functions ũ±
ε are defined on fixed

domains Ω±, standard compactness results together with the estimates (5.3) and (5.4)
imply that there exist u±

0 ∈ L2((0, T ), H1(Ω±,Rm)) with ∂tu
±
0 ∈ L2((0, T ), L2(Ω±,Rm)),

such that up to a subsequence

ũ±
jε → u±

j0 weakly in L2((0, T ), H1(Ω±)),

∂tũjε
± → ∂tu

±
j0 weakly in L2((0, T ), L2(Ω±)),

ũ±
jε → u±

j0 strongly in L2((0, T ), L2(Ω±)).

The strong convergence follows from the estimate

||ũ±
jε||L2(0,T ;H1(Ω±)) + ||∂tũ±

jε||L2(0,T ;L2(Ω±)) ≤ C

and a compactness theorem of Lions; see [10, Theorem 1, p. 58].
Now let ϕ ∈ C∞

0 ([0, T ]×Ω±,Rm). Using the transformations (5.1), (5.2), we have∫ T

0

∫
Ω±

(χΩ±
ε
ujε)(t, x)ϕj(t, x) dx dt =

∫ T

0

∫
Ω±

ε

u±
jε(t, x̄, x3)ϕj(t, x̄, x3)dx̄ dx3 dt

=

∫ T

0

∫
Ω±

u±
jε

(
t, x̄,

H − ε

H
x̃3 ± ε

)
ϕj

(
t, x̄,

H − ε

H
x̃3 ± ε

)
H − ε

H
dx̄ dx̃3 dt

=
H − ε

H

∫ T

0

∫
Ω±

ũ±
jε(t, x̄, x̃3)ϕj(t, x̄, x̃3)dx̄ dx̃3 dt

+
H − ε

H

∫ T

0

∫
Ω±

ũ±
jε(t, x̄, x̃3)

[
ϕj

(
t, x̄,

H − ε

H
x̃3 ± ε

)
− ϕj(t, x̄, x̃3)

]
dx̄ dx̃3 dt

→
∫ T

0

∫
Ω±

u±
j0(t, x̄, x̃)ϕj(t, x̄, x̃) dx̄ dx̃ dt

due to the convergence properties of ũ±
ε and the smoothness of ϕ. Thus

χΩ±
ε
ujε → u±

j0 weakly in L2((0, T ), L2(Ω±)).

Additionally, we have that

||χΩ±
ε
ujε||L2((0,T ),L2(Ω±)) =

√
1 − ε/H||ũ±

jε||L2(0,T ;L2(Ω±)) → ||u±
j0||L2(0,T ;L2(Ω±)),

since ũ±
ε converges to u±

0 strongly in L2((0, T ) × Ω±,Rm). Thus, statement 1 of
Proposition 2.1 is proved. The proofs of statements 2 and 3 follow along the same
line.



704 MARIA NEUSS-RADU AND WILLI JÄGER

5.2. Convergence for the traces on the interfaces bulk/layer. The com-
pactness of the traces of uε on S±

ε is crucial for the control of the solutions in the
layer. In the following, we give the proof of Proposition 2.2.

Proof. Since

||ũ±
jε||L2((0,T ),H1(Ω±)) + ||∂tũ±

jε||L2((0,T ),L2(Ω±)) ≤ C

and the embedding

H1(Ω±) ↪→ Hβ(Ω±)

is compact for every 1
2 < β < 1, it follows from Lions compactness theorem [10,

Theorem 1, p. 58] that there exists a subsequence such that

ũ±
jε → u±

j0 strongly in L2((0, T ), Hβ(Ω±)).

Due to the continuity of the embedding

Hβ(Ω±) ↪→ L2(∂Ω±) for
1

2
< β < 1,

it follows that

||ũ±
jε − u±

j0||L2((0,T )×Σ) ≤ C||ũ±
jε − u±

j0||L2((0,T ),Hβ(Ω±)) → 0 for ε → 0.

Thus the first assertion is proved. To prove the second one, we notice that, since ũε|Σ
is strongly convergent in L2((0, T )×Σ,Rm), it is also weakly two-scale convergent to
the same limit; see [1]. Then, using again (5.1) and (5.2), we obtain for ε → 0

∫ T

0

∫
S±
ε

u±
jε(t, x)ϕj

(
t, x̄,

x

ε

)
dxdt =

H − ε

H

∫ T

0

∫
Σ

ũ±
jε(t, x̄, 0)ϕj

(
t, x̄,

x̄

ε
,±1

)
dx̄dt

→
∫ T

0

∫
Σ

∫
Y

u±
j0(t, x̄, 0)ϕj (t, x̄, ȳ,±1) dȳdx̄dt.

5.3. Weak two-scale convergence in the layer. The compactness results
with respect to the weak two-scale convergence of uM

ε in the layer stated in statements
4–6 of Proposition 2.1 follow directly from Proposition 4.4 and the a priori estimates
for uM

ε . It remains to prove the coupling condition between the effective solutions in
the bulk regions and the local solution in the layer given in (2.19).

Proof. Let us start from the identity

lim
ε→0

1

ε

∫ T

0

∫
ΩM

ε

ε∇uM
jε (t, x)ϕj

(
t, x̄,

x

ε

)
dx dt =

∫ T

0

∫
Σ

∫
Z

∇yu
M
j0 (t, x̄, y)ϕj(t, x̄, y) dy dx̄ dt

for any ϕj ∈ C∞([0, T ] × Σ × Z,Rn) periodic in Y = [0, 1]n−1 and with compact
support with respect to x̄ ∈ Σ. Integrating by parts on the left-hand side and using
the continuity of the solution uε on S+

ε , respectively, S−
ε , and Proposition 2.2, we
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obtain

lim
ε→0

{
−1

ε

∫ T

0

∫
ΩM

ε

uM
jε (t, x)

(
ε∇x̄ ϕj

(
t, x̄,

x

ε

)
+ ∇y ϕj

(
t, x̄,

x

ε

))
dx dt

+

∫ T

0

∫
S+
ε

u+
jε(t, x)ϕj

(
t, x̄,

x

ε

)
· ν dx dt +

∫ T

0

∫
S−
ε

u−
jε(t, x)ϕj

(
t, x̄,

x

ε

)
· ν dx dt

}

= −
∫ T

0

∫
Σ

∫
Z

uM
j0 (t, x̄, y)∇y ϕj(t, x̄, y) dy dx̄ dt

+

∫ T

0

∫
Σ

∫
Y

u+
j0(t, x̄, 0)ϕj(t, x̄, ȳ, 1) · ndy dx̄ dt

−
∫ T

0

∫
Σ

∫
Y

u−
j0(t, x̄, 0)ϕj(t, x̄, ȳ,−1) · ndy dx̄ dt.

Here n = (0, . . . , 0, 1). By equality between the two limits, we obtain statement (2.19)
of the theorem.

5.4. Strong two-scale convergence in the layer. In the following, we prove
strong two-scale convergence for the sequence uM

ε . The method to be used is of general
interest. Here, we are in the situation that the standard estimates of the solutions uM

ε

imply only weak two-scale convergence, and due to the scaling in the diffusion coeffi-
cients we cannot use the method of bounded extensions to get strong convergence for
uM
ε in L2. The best compactness result we get for uM

ε is strong two-scale convergence.
To prove this, we show the strong convergence of the transformed solution Lεu

M
ε in

L2((0, T )×Σ×Z) (see Proposition 4.7). The control of the dependence of Lεu
M
ε on y

and t is standard since we can use the differential equations in the cells. However, the
dependence on x poses more serious problems since the functions Lεu

M
ε are only step

functions with respect to x. To get equicontinuity in L2 also with respect to shifts in
x, we mainly have to compare solutions of the differential equations in different cells.
A similar argument, although in a quite different situation, can be found in [7], which
deals with the Neumann problem for rapidly oscillatory boundaries.

Verifying the compactness criteria requires the extension of uM
ε into a neighbor-

hood of ΩM
ε . We construct the extension

ûM
ε : (0, T ) × R

n−1 × ]−ε, ε[ → R
m

as follows.
First, we extend uM

ε by reflection with respect to the plane {(x1, x2, . . . , xn) :
x1 = 0} to

ûM
ε (t, x) =

{
uM
ε (t, x), (t, x) ∈ (0, T ) × ΩM

ε ,
uM
ε (t,−x1, x2, . . . , xn−1, xn), (t,−x1, x2, . . . , xn−1, xn) ∈ (0, T ) × ΩM

ε .

Then we repeat this extension procedure with respect to the planes {(x1, x2, . . . , xn) :
x2 = 0}, . . . , {(x1, x2, . . . , xn) : xn−1 = 0} and obtain the extension ûM

ε on the domain

(0, T ) × Ω̂M
ε = (0, T ) × ]−1, 1[

n−1 × ]−ε, ε[.

Now, we further extend ûM
ε by periodicity to (0, T ) × R

n−1 × ]−ε, ε[. Due to our
extension procedure, we have that

ûM
ε ∈ L2((0, T ), H1

per(]−1, 1[
n−1

, H1(]−ε, ε[,Rm)))
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and

‖ûM
ε ‖L2((0,T ),H1(Ω̂M

ε ,Rm)) ≤ C‖uM
ε ‖L2((0,T ),H1(ΩM

ε ,Rm)).

In an analogous way, we extend u±
ε to û±

ε , satisfying

û+
ε ∈ L2((0, T ), H1

per(]−1, 1[
n−1

, H1(]ε,H[,Rm))),

û−
ε ∈ L2((0, T ), H1

per(]−1, 1[
n−1

, H1(]−H,−ε[,Rm))).

We also define

Ŝ±
ε = {x = (x̄, xn) : x̄ ∈ ]−1, 1[

n−1
, xn = ±ε}

and remark that the traces û±
ε |Ŝ±

ε
are periodic with respect to x̄ with period ]−1, 1[

n−1
,

and the continuity condition

ûM
ε |Ŝ±

ε
= û±

ε |Ŝ±
ε

holds. Let us now give the proof of Theorem 2.3.
Proof. We denote

δûM
ε (t, x) = ûM

ε (t, x + (l, 0)ε) − ûM
ε (t, x),

δû±
ε (t, x) = û±

ε (t, x + (l, 0)ε) − û±
ε (t, x),

δg(t, x) = g
(x
ε
, uM

ε (t, x + (l, 0)ε)
)
− g

(x
ε
, uM

ε (t, x)
)

δUM
0 (x) = UM

0

(
x̄ + lε,

xn

ε

)
− UM

0

(
x̄,

xn

ε

)
.

Now let δvε = (δv1ε, . . . , δvmε) be the solution to the following problem:

1

ε
∂t(δvjε)(t, x) − ε∇

(
DM

j

(x
ε

)
∇(δvjε)(t, x)

)
= 0 in (0, T ) × Ω̂M

ε ,

δvε(t, x) = δû±
ε (t, x) on (0, T ) × Ŝ±

ε ,

δvε(0, x) = 0 in Ω̂M
ε

δvε is periodic with period ]−1, 1[
n−1

.

The following estimates hold:

1√
ε
||δvε||L∞((0,T ),L2(Ω̂M

ε ,Rm)) +
√
ε||∇(δvε)||L2((0,T )×Ω̂M

ε ,Rm) ≤ C,(5.5)

1√
ε
||δvε||L2((0,T )×Ω̂M

ε ,Rm) ≤ C(||δû+
ε ||L2((0,T )×Ŝ+

ε ,Rm) + ||δû−
ε ||L2((0,T )×Ŝ−

ε ,Rm)).(5.6)

To prove (5.5), we test the equation for δvε with δvε−δûM
ε and use the same techniques

as in the first part the proof of Lemma 3.1, together with the a priori estimates for uM
ε .

For the proof of (5.6), we use the solution h = (h1, . . . , hm) to the adjoint problem

−1

ε
∂thj(t, x) − ε∇(DM

j (
x

ε
)∇hj(t, x)) =

1

ε
δvjε(t, x) in (0, T ) × Ω̂M

ε ,

h(t, x) = 0 on (0, T ) × Ŝ±
ε ,

h(T, x) = 0 in Ω̂M
ε ,

h is periodic with period ]−1, 1[
n−1

.
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Regularity theory for parabolic systems together with a scaling argument implies that
h ∈ L2((0, T ), H2(Ω̂M

ε ,Rm)) and we have

1√
ε
||hj ||L2((0,T )×Ω̂M

ε ) +
√
ε||∇hj ||L2((0,T )×Ω̂M

ε ,Rn)(5.7)

+ ε
√
ε||∇2hj ||L2((0,T )×Ω̂M

ε ,Rn2 ) ≤
C√
ε
||δvjε||L2((0,T )×Ω̂M

ε ,Rm).

Let us now multiply the equation for h by δvjε and integrate. We obtain

1

ε

∫ T

0

∫
Ω̂M

ε

|δvjε|2dxdt

=

∫ T

0

∫
Ω̂M

ε

(
−1

ε
∂thj − ε∇

(
DM

j

(x
ε

)
∇hj

)
(δvjε)

)
dxdt

=

∫ T

0

∫
Ω̂M

ε

1

ε
hj∂t(δvjε) + εDM

j

(x
ε

)
∇hj∇(δvjε)dxdt

− ε

∫ T

0

∫
Ŝ+
ε

DM
j

(x
ε

)
δvjε∇hj · νdxdt− ε

∫ T

0

∫
Ŝ−
ε

DM
j

(x
ε

)
δvjε∇hj · νdxdt.

Now, using the problem for δvε and the fact that h is equal to zero on (0, T ) × Ŝ±
ε ,

we obtain

1

ε
||δvjε||2L2((0,T )×Ω̂M

ε )
≤ Cε||δvjε||L2((0,T )×Ŝ+

ε )||∇hj · ν||L2((0,T )×Ŝ+
ε )

+ Cε||δvjε||L2((0,T )×Ŝ−
ε )||∇hj · ν||L2((0,T )×Ŝ−

ε )

≤ Cε

(
1√
ε
||∇hj · ν||L2((0,T )×Ω̂M

ε ,Rn) +
√
ε||∇(∇hj · ν)||L2((0,T )×Ω̂M

ε ,Rn2 )

)
× (||δvjε||L2((0,T )×Ŝ+

ε ) + ||δvjε||L2((0,T )×Ŝ−
ε )).

For the last inequality, we used the trace estimate for the thin domain Ω̂M
ε given in

Lemma 5.1. The estimate (5.7) and the boundary condition for δvε on Ŝ±
ε imply the

assertion (5.6).

Let us now consider the function δwε = (δw1ε, . . . , δwmε) defined by

δwε(t, x) = δûM
ε (t, x) − δvε(t, x).

In order to avoid the boundary values of δwε on the lateral boundary of ΩM
ε , we will

cut off this part of the boundary and estimate 1√
ε
||δwε||L2((0,T )×ΩM

2h,R
m), where

(5.8) ΩM
2h = {x ∈ ΩM

ε : 2h < xi < 1 − 2h, i = 1, . . . , n− 1}.

Defining ΩM
h and S±

h analogously to (5.8), we have that δwε satisfies

1

ε
∂t(δwjε)(t, x) − ε∇

(
DM

j

(x
ε

)
∇(δwjε)(t, x)

)
=

1

ε
δgj(t, x) in (0, T ) × ΩM

h ,

(δwε)(t, x) = 0 on (0, T ) × S±
h ,

(δwε)(0, x) = δUM
0 (x) in ΩM

h .
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Now, we test the equation for δwε with a function which vanishes on the lateral bound-
ary of ΩM

ε . We consider the following cut-off function ϕ ∈ C∞
0 ((h, 1−h)n−1, C∞(]−ε, ε[,

[0, 1])) with the properties

ϕ ≡ 1 in ΩM
2h, ||∇ϕ||L∞(ΩM

h ) ≤
C

h
.

Multiplying the equation for δwjε by δwjεϕ
2 and integrating over ΩM

h , we obtain

1

ε

∫
ΩM

h

∂t(δwjε)δwjεϕ
2 + ε

∫
ΩM

h

DM
j

(x
ε

)
∇(δwjε)∇(δwjε)ϕ

2(5.9)

+ ε

∫
ΩM

h

DM
j

(x
ε

)
∇(δwjε)δwjε2ϕ∇ϕ =

1

ε

∫
ΩM

h

δgjδwjεϕ
2.(5.10)

Integration with respect to time and the Lipschitz continuity of g in the second argu-
ment imply

1

ε

∫
ΩM

h

|δwjε(t)|2ϕ2 + ε

∫ t

0

∫
ΩM

h

|∇(δwjε)|2ϕ2(5.11)

≤ C

ε

(∫ t

0

∫
ΩM

h

|δuM
jε ||δwjε|ϕ2 +

∫
ΩM

h

|δUM
j0 |2ϕ2

)

+ C

(
ηε

∫ t

0

∫
ΩM

h

|∇(δwjε)ϕ|2 +
1

η
ε

∫ t

0

∫
ΩM

h

|δwjε|2|∇ϕ|2
)
.

Let us now estimate the last term on the right-hand side of (5.11). Since ϕ ≡ 1 in ΩM
2h,

the support of ∇ϕ is contained in the domain

TM
h := ΩM

h \ ΩM
2h.

Using the estimate for ∇ϕ and Poincaré’s inequality (since δwε|S±
ε

= 0), we have

ε

∫ t

0

∫
TM
h

|δwjε|2|∇ϕ|2 ≤ Cε

h2

∫ t

0

∫
TM
h

|δwjε|2(5.12)

≤ Cε3

h2

∫ t

0

∫
TM
h

|∇(δwjε)|2 ≤ Cε3

h2

∫ t

0

∫
TM
h

|∇(δûM
jε )|2 + |∇(δvjε)|2)

≤ Cε2

h2
.

For the last inequality, we used the a priori estimates for uM
ε and the estimate (5.5)

for δvε.
Going back to relation (5.11), taking η small enough, and using the estimate

(5.12) and the fact that δuM
ε = δvε + δwε, we get

1

ε

∫
ΩM

h

|δwjε(t)|2ϕ2 + ε

∫ t

0

∫
ΩM

h

|∇(δwjε)|2ϕ2(5.13)

≤ C

ε

(∫ t

0

∫
ΩM

h

(|δuM
jε |2 + |δwjε|2)ϕ2 +

∫
ΩM

h

|δUM
j0 |2ϕ2

)
+

Cε2

h2

≤ C

ε

(∫ t

0

∫
ΩM

h

(|δvjε|2 + |δwjε|2)ϕ2 +

∫
ΩM

h

|δUM
j0 |2ϕ2

)
+

Cε2

h2
.



EFFECTIVE TRANSMISSION CONDITIONS 709

Finally, Gronwall’s lemma implies the estimate

(5.14)
1

ε
||δwjεϕ||2L2((0,T )×ΩM

h ) ≤
C

ε
||δvjεϕ||2L2((0,T )×ΩM

h ) +
C

ε
||δUM

j0 ϕ||2L2(ΩM
h ) +

Cε2

h2
.

Now, it remains to estimate 1√
ε
||δuM

ε ||L2((0,T )×(ΩM
ε \ΩM

2h),Rm). For this estimate,

we will exploit the fact that the domain ΩM
ε \ΩM

2h can be decomposed in subdomains
which have thickness O(h) at least in one space direction. Using the L∞-estimate
(3.4), we obtain

1√
ε

{∫ T

0

∫
ΩM

ε \ΩM
2h

|uM
jε |2

} 1
2

≤ Mje
AjT

√
ε

{∫ T

0

∫
ΩM

ε \ΩM
2h

dxdt

} 1
2

≤ Ch
1
2 .(5.15)

The estimates (5.6), (5.14), and (5.15) imply the estimate (2.22) from the first part
of the theorem.

To prove the strong two-scale convergence for uM
ε , we will show that

Lεu
M
ε → uM

0 strongly in L2((0, T ) × Σ × Z,Rm).

We first show that for all ρ > 0, there exists δ > 0, such that for all ε ≤ ε0

(5.16) ||Lεû
M
ε (t, x̄ + ξ̄, y) − Lεû

M
ε (t, x̄, y)||2L2((0,T )×Σ×Z,Rm) < ρ

for all ξ̄ ∈ R
n−1, |ξ̄| < δ.

Let I ⊂ Z
n−1, such that

Σ =
∑
i∈I

ε(Y + i) =:
∑
i∈I

εYi.

Obviously, for x̄ ∈ εYi we have that
[
x̄
ε

]
= i. For every i ∈ I we divide the cell εYi

into subsets εY k
i with k ∈ {0, 1}n−1, defined as follows:

εY k
i =

⎧⎨
⎩x̄ ∈ εYi,

⎡
⎣ x̄ +

{
ξ̄
ε

}
ε

ε

⎤
⎦ ε = ε(i + k)

⎫⎬
⎭ .

Then εYi =
⋃

k∈{0,1}n−1 εY k
i . In Figure 5.1, we sketch the subsets εY k

i of εYi in the

case n = 3, Y = [0, 1]2 and the translation ξ̄ is of the form ξ̄ = (ξ1, 0), ξ1 > 0.
Now, let us calculate

||Lεû
M
jε (t, x̄ + ξ̄, y) − Lεû

M
jε (t, x̄, y)||2L2((0,T )×Σ×Z)

=
∑
i∈I

∫ T

0

∫
εYi

∫
Z

∣∣∣∣ûM
jε

(
t, ε

([
x̄ + ξ̄

ε

]
, 0

)
+ εy

)
− ûM

jε

(
t, ε

([ x̄
ε

]
, 0
)

+ εy
)∣∣∣∣

2

dydx̄dt

=
∑
i∈I

∑
k∈{0,1}n−1

∫ T

0

∫
εY k

i

∫
Z

∣∣∣∣ûM
jε

(
t, ε

(
i+

[
ξ̄

ε

]
+ k, 0

)
+εy

)
− ûM

jε (t, ε(i, 0)+εy)

∣∣∣∣
2

dydx̄dt

≤
∑
i∈I

∑
k∈{0,1}n−1

∫ T

0

∫
εYi

∫
Z

∣∣∣∣ûM
jε

(
t, ε

(
i+

[
ξ̄

ε

]
+ k, 0

)
+εy

)
− ûM

jε (t, ε(i, 0)+εy)

∣∣∣∣
2

dydx̄dt

=
∑

k∈{0,1}n−1

1

ε

∫ T

0

∫
ΩM

ε

∣∣∣∣ûM
jε

(
t, x + ε

([
ξ̄

ε

]
+ k, 0

))
− ûM

jε (t, x)

∣∣∣∣
2

dxdt.
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ε

(0,0)

ε_
ε{
ξ

1}

Yi
i

iY

i

ε

ε

Yε
(1,0)

Fig. 5.1. The subsets εY k
i for ξ̄ = (ξ1, 0), ξ1 > 0.

Let us fix h ∈
(
0,min

{
1
4 ,

ρ
3

1
2(n−1)C

})
, where C is the constant in the estimate

(2.22). Let δ1 and ε1 be such that for |ξ̄| < δ1 and ε < ε1 we have∣∣∣∣
[
ξ̄

ε

]
ε + kε

∣∣∣∣ < h.

Then we can apply the first part of the theorem to estimate

∑
k∈{0,1}n−1

1

ε

∫ T

0

∫
ΩM

ε

∣∣∣∣ûM
jε

(
t, x + ε

([
ξ̄

ε

]
+ k, 0

))
− ûM

jε (t, x)

∣∣∣∣
2

dxdt

≤
∑

k∈{0,1}n−1

C

∥∥∥∥û+
ε

(
t, x + ε

([
ξ̄

ε

]
+ k, 0

))
− û+

ε (t, x)

∥∥∥∥
2

L2((0,T )×Ŝ+
ε ,Rm)

+
∑

k∈{0,1}n−1

C

∥∥∥∥û−
ε

(
t, x + ε

([
ξ̄

ε

]
+ k, 0

))
− û−

ε (t, x)

∥∥∥∥
2

L2((0,T )×Ŝ−
ε ,Rm)

+
∑

k∈{0,1}n−1

C

ε

∥∥∥∥ÛM
0

(
x̄ + ε

([
ξ̄

ε

]
+ k

)
,
xn

ε

)
− ÛM

0

(
x̄,

xn

ε

)∥∥∥∥
2

L2(Ω̂M
ε ,Rm)

+
∑

k∈{0,1}n−1

C

{
ε2

h2
+ h

}
.(5.17)

The properties of the initial concentration UM
0 ensure that ÛM

0 is a function in H1 on
the rescaled domain obtained from Ω̂M

ε , and thus it satisfies the Kolmogorov criterion.
This fact and the strong convergence of the traces of u±

ε on S±
ε from Proposition 2.2

imply that there exists δ∗ > 0, such that the sum over the differences of the boundary
values and of the initial values in (5.17) is smaller than ρ

3 for∣∣∣∣
[
ξ̄

ε

]
ε + kε

∣∣∣∣ < δ∗.

This condition is fulfilled for all ξ̄ = (ξ1, . . . , ξn−1) ∈ R
n−1, such that |ξi| < δ∗

2
√
n−1

for
i = 1, . . . , n− 1 and all ε < δ∗

2
√
n−1

.

Now, we set δ2 = min{δ1, δ∗

2
√
n−1

}. Then, for all ξ̄ with |ξ̄| < δ2 and all ε < ε2 =

min{ε0, ε1,
δ∗

2
√
n−1

,
√

ρ
3C·2n−1h}, we have that

(5.18) ||Lεû
M
ε (t, x̄ + ξ̄, y) − Lεû

M
ε (t, x̄, y)||L2((0,T )×Σ×Z,Rm) < ρ.
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For ε ∈ (ε2, ε0), the estimate (5.16) holds for every ε if |ξ̄| < δ(ε) due to the continuity
in the mean of L2-functions. Since we consider sequences ε of the form εk = 1

k , k ∈ N,
there are finitely many elements εk in the interval (ε2, ε0). Thus choosing

δ = min {δ2, δ(εk), εk ∈ (ε2, ε0)} ,

the property (5.16) is proved.
In addition, for Lεu

M
ε the following conditions are satisfied:

||∇yLεu
M
ε ||L2((0,T )×Σ×Z,Rm) =

√
ε||∇uM

ε ||L2((0,T )×ΩM
ε ,Rm) ≤ C,(5.19)

||∂tLεu
M
ε ||L2((0,T )×Σ×Z,Rm) =

1√
ε
||∂tuM

ε ||L2(0,T )×ΩM
ε ,Rm) ≤ C.(5.20)

The conditions (5.16), (5.19), and (5.20) imply that the Kolmogorov criterion for
Lεu

M
ε holds true in L2((0, T ) × Σ × Z,Rm). This concludes the proof of our theo-

rem.
Lemma 5.1. For uε ∈ H1(ΩM

ε ), the following trace estimate holds:

(5.21) ||uε||L2(S+
ε ∪S−

ε ) ≤ C

(
1√
ε
||uε||L2(ΩM

ε ) +
√
ε||∇uε||L2(ΩM

ε )

)
.

Proof. The proof follows by a scaling argument and by the standard trace estimate
for H1-functions.

6. Derivation of the macroscopic model. Using the convergence results
proved in section 5, we are able to pass to the limit in the weak formulation of
the microscopic problem.

6.1. Derivation of the equations in the bulk. First, we derive the macro-
scopic problem satisfied by the limit functions u±

0 .
Proof. Let us consider test functions ϕ± ∈ C∞

0 ((0, T ) × Ω,Rm) with

supp ϕ± ⊂ (0, T ) × Ω±.

Choose ε0 such that

(6.1) min {dist {Σ, supp ϕ+}, dist {Σ, supp ϕ−}} ≥ ε0.

Then for every ε < ε0 we have

supp ϕ± ∩ ΩM
ε = ∅.

Testing now (2.16) with ϕ+ and ϕ−, we obtain∫ T

0

∫
Ω±

ε

∂tu
±
jε(t, x)ϕ±

j (t, x)dx dt + D±
j

∫ T

0

∫
Ω±

ε

∇u±
jε(t, x)∇ϕ±

j (t, x)dx dt

=

∫ T

0

∫
Ω±

ε

fj(x, u
±
ε (t, x))ϕ±

j (t, x)dx dt.(6.2)

For ε → 0 the terms on the left-hand side converge due to the weak compactness
results from Proposition 2.1. The convergence of the right-hand side follows due to
the following argument: By Proposition 2.1

χΩ±
ε
ujε → u±

j0 strongly inL2((0, T ), L2(Ω±)),
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and there exists a subsequence, again denoted by u±
ε , such that

χΩ±
ε
ujε → u±

j0 a.e. in (0, T ) × Ω±.

Then the continuity of f implies

f(·, χΩ±
ε
uε(·, ·)) → f(·, u±

0 (·, ·)) a.e. in (0, T ) × Ω±.

On the other hand, from the growth conditions (2.5) and the a priori estimates on
u±
ε , we have

||fj(·, χΩ±
ε
uε(·, ·))||2L2((0,T )×Ω±) =

∫ T

0

∫
Ω±

|fj(x, χΩ±
ε
uε(t, x))|2dx dt

≤
∫ T

0

∫
Ω±

C(1 + |χΩ±
ε
uε(t, x)|2)dx dt ≤ C.

Thus,

fj(·, χΩ±
ε
uε(·, ·)) → fj(·, u±

0 (·, ·)) weakly inL2((0, T ) × Ω±).

Now, taking the limit ε → 0 in (6.2), we obtain

∫ T

0

∫
Ω±

∂tu
±
j0(t, x)ϕ±

j (t, x)dx dt + D±
j

∫ T

0

∫
Ω±

∇u±
j0(t, x)∇ϕ±

j (t, x)dx dt

=

∫ T

0

∫
Ω±

fj(x, u
±
0 (t, x))ϕ±

j (t, x)dx dt,

which is exactly the variational formulation for equations (2.23) and (2.24). The
Dirichlet boundary condition can be deduced very easily, since u±

ε |∂DΩ± = u±
D|∂DΩ± .

The Neumann boundary conditions are obtained by testing (2.16) with test functions
ϕ± ∈ C∞

0 ((0, T ), C∞(Ω,Rm)) with supp ϕ± ⊂ (0, T )×{Ω±∪∂NΩ±} and by repeating
the arguments from the first part of the proof.

It remains to derive the initial conditions for u±
0 . Thus, let us consider ϕ± ∈

C∞
0 (Ω±,Rm) and again choose ε0 > 0 as in (6.1). Then let ξ ∈ C∞([0, T ]), such that

ξ(T ) = 0. Then for every ε < ε0 we have

∫ T

0

∫
Ω±

ε

∂tu
±
jε(t, x)ϕ±

j (x)ξ(t) dx dt = −
∫

Ω±
ε

Uj0(x)ϕ±
j (x)ξ(0) dx

−
∫ T

0

∫
Ω±

ε

u±
jε(t, x)ϕ±

j (x)∂tξ(t) dx dt.

Proposition 2.1 and the choice of our test function allow us to pass to the limit for
ε → 0 and to obtain∫ T

0

∫
Ω±

∂tu
±
j0ϕ

±
j (x)ξ(t) dx dt = −

∫
Ω±

Uj0(x)ϕ±
j (x)ξ(0) dx

−
∫ T

0

∫
Ω±

u±
j0(t, x)ϕ±

j (x)∂tξ(t) dx dt,

which is equivalent to the initial conditions (2.27).
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6.2. Derivation of the local equations in the layer. We now derive the
local problem for the limit function uM

0 which enters the transmission conditions.
Proof. We start from the weak formulation (2.16) and use as test function

ϕε(t, x) =

{
0, (t, x) ∈ (0, T ) × (Ω+

ε ∪ Ω−
ε ),

ϕ(t, x̄, x
ε ), (t, x) ∈ (0, T ) × ΩM

ε ,

where ϕ ∈
{
C∞

0 ((0, T ) × Σ, C∞
per(Y,C

∞
0 (]−1, 1[)))

}m
. Thus, we obtain

1

ε

∫ T

0

∫
ΩM

ε

∂tu
M
jε ϕj

(
t, x̄,

x

ε

)
dx dt

+
1

ε

∫ T

0

∫
ΩM

ε

DM
j

(x
ε

)
ε∇uM

jε

(
ε∇x̄ϕj

(
t, x̄,

x

ε

)
+ ∇yϕj

(
t, x̄,

x

ε

))
dx dt

=
1

ε

∫ T

0

∫
ΩM

ε

gj

(x
ε
, uM

ε

)
ϕj

(
t, x̄,

x

ε

)
dx dt.(6.3)

Using the weak two-scale convergence properties from Proposition 2.1, we can pass
to the limit for ε → 0 on the left-hand side of the equation above. In order to pass
to the limit in the nonlinear term on the right-hand side, we have to use the strong
two-scale convergence given in Theorem 2.3 to show that

gj

( ·
ε
, uM

ε

)
t.s.→ gj(y, u

M
0 ) weakly in the two-scale sense.

Thus, let us consider

Lε

[
gj

( ·
ε
, uM

ε

)]
(t, x̄, y) = gj

(
(cε(x̄) + εȳ, εyn)

ε
, uM

ε (t, (cε(x̄) + εȳ,εyn))

)
= gj(y, Lεu

M
ε (t, x̄, y)).

Since g is continuous and Lεu
M
ε converges strongly to uM

0 in L2((0, T )×Σ×Z,Rm),
we have that

gj(·, Lεu
M
ε ) −→ gj(·, uM

0 ) a.e. in (0, T ) × Σ × Z.

From the growth conditions (2.6) and the a priori estimates on uM
ε we obtain

||gj(·, Lεu
M
ε )||L2((0,T )×Σ×Z) =

∫ T

0

∫
Σ

∫
Z

|gj(y, uM
ε (t, (cε(x̄) + εȳ, εyn)))|2dydx̄dt

≤ C

∫ T

0

∫
Σ

∫
Z

1 + |uM
ε (t, (cε(x̄) + εȳ, εyn))|2dydx̄dt

≤ C1 +
C2

ε
||uM

ε ||2L2((0,T )×ΩM
ε ,Rm) ≤ C.(6.4)

Thus,

gj(·, Lεu
M
ε ) −→ gj(·, uM

0 ) weakly in L2((0, T ) × Σ × Z).

This now implies that

Lε

[
gj

( ·
ε
, uM

ε

)]
→ gj(·, uM

0 ) weakly in L2((0, T ) × Σ × Z),
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and by Theorem 4.7 it follows that

gj

( ·
ε
, uM

ε

)
t.s.→ gj(y, u

M
0 ) weakly in the two-scale sense.

Thus, we can pass to the limit in (6.3) and obtain∫ T

0

∫
Σ

∫
Z

∂tu
M
j0 (t, x̄, y)ϕj(t, x̄, y) dy dx̄ dt

+

∫ T

0

∫
Σ

∫
Z

DM
j (y)∇yu

M
j0 (t, x̄, y)∇yϕj(t, x̄, y) dy dx̄ dt

=

∫ T

0

∫
Σ

∫
Z

gj(y, u
M
0 (t, x̄, y))ϕj(t, x̄, y) dy dx̄ dt.(6.5)

This is just the weak formulation of (2.30). The boundary conditions have already
been proved in Proposition 2.1; see (2.19). It remains to prove the initial condition
for uM

0 . We will proceed as in section 6.1.
Let ϕ ∈ {C∞

0 (Σ, Cper(Y,C
∞
0 (]−1, 1[)))}m and ξ ∈ C∞([0, T ]) such that ξ(T ) = 0.

Then the following relation holds:

1

ε

∫ T

0

∫
ΩM

ε

∂tu
M
jε (t, x)ϕj

(
x̄,

x

ε

)
ξ(t) dx dt = −1

ε

∫
ΩM

ε

UM
j0

(
x̄,

xn

ε

)
ϕj

(
x̄,

x

ε

)
ξ(0) dx

−1

ε

∫ T

0

∫
ΩM

ε

uM
jε (t, x)ϕj

(
x̄,

x

ε

)
∂tξ(t) dx dt.

Using the convergence results from Proposition 2.1 together with Lemma 4.3, we can
pass to the limit for ε → 0 and obtain∫ T

0

∫
Σ

∫
Z

∂tu
M
j0 (t, x̄, y)ϕ(x̄, y)ξ(t) dy dx̄ dt = −

∫
Σ

∫
Z

UM
j0 (x̄, yn)ϕj(x̄, y)ξ(0) dy dx̄

−
∫ T

0

∫
Σ

∫
Z

uM
j0 (t, x̄, y)ϕj(x̄, y)∂tξ(t) dy dx̄ dt,

which immediately implies the initial conditions (2.33) for the local problem.

6.3. Derivation of the transmission conditions across Σ. Measurements
and experiments indicate jumps of the concentrations and their normal derivatives
across the interface Σ. We derive formulas for these jumps which involve the solutions
of the local cell problems. Thus, the jumps become computable.

Definition 6.1. For u ∈ L2((0, T )×Ω,Rm) with u± ∈ L2((0, T ), H1(Ω±,Rm)),
the jump of u across Σ is defined as

[u]Σ(t, x̄) = u+(t, x̄, 0) − u−(t, x̄, 0), (t, x̄) ∈ (0, T ) × Σ.

To find a relation for the jump in the concentrations, we use the boundary layer
function constructed below.

Consider the Hilbert space

V = {ϕ ∈ H1(Z,Rm), ϕ periodic in Y, ϕ ≡ const onS+ ∪ S−}.

Find η ∈ V such that

(6.6)
1

|Z|

∫
Z

η(y) dy = 0
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j

y
3

−1

1

−1

1

η

Fig. 6.1. The boundary layer ηj(y) for Dj(y) ≡ 1.

and, for all ϕ ∈ V ,

(6.7)

∫
Z

DM
j (y)∇ηj(y)∇ϕj(y) dy =

∫
S+

ϕj(y) ds−
∫
S−

ϕj(y) ds.

Since the right-hand side of (6.7) defines a linear, continuous functional on V, the
Lax–Milgram lemma implies the existence of a unique solution η ∈ V to problem
(6.7) with (6.6). The strong formulation for the problem for η is given as follows:
Find η ∈ V with 1

|Z|
∫
Z
η(y) dy = 0 such that

∇y(D
M
j (y)∇yηj(y)) = 0, y ∈ Z,(6.8) ∫

S+

DM
j (y)∂nηj(y) dy = 1,(6.9)

−
∫
S−

DM
j (y)∂nηj(y) dy = −1.(6.10)

In the case DM
j (y) ≡ 1, the function η is given by (see Figure 6.1)

ηj(y) = yn, j = 1, . . . ,m.

We denote

(6.11) η± ∈ R
m the constant values of η on S±.

The derivation of the transmission condition is now possible by using a test func-
tion of boundary layer type as shown below.

Proof. Consider the function

(6.12) ηε(x) =

⎧⎪⎨
⎪⎩

η+, x ∈ Ω+
ε ,

η
(
x
ε

)
, x ∈ ΩM

ε ,

η−, x ∈ Ω−
ε ,

and let ξ(t, x̄) be a smooth function, ξ ∈ C∞
0 ((0, T ) × Σ,Rm). To get the jump

condition for uj0 across Σ, we evaluate the integral

(6.13) Iε =

∫ T

0

∫
ΩM

ε

εDM
j

(x
ε

)
∇ηjε(x)∇(uM

jε (t, x)ξj(t, x̄))dx dt
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in two different ways and then pass to the limit for ε → 0. First, integrating by parts
and taking into account (6.8) and the continuity of uε across S+

ε and S−
ε , we obtain

Iε =

∫ T

0

∫
S+
ε

εDM
j

(x
ε

) 1

ε
∇yηj

(x
ε

)
· �ν(x)u+

jε(t, x)ξj(t, x̄)dx dt

+

∫ T

0

∫
S−
ε

εDM
j

(x
ε

) 1

ε
∇yηj

(x
ε

)
· �ν(x)u−

jε(t, x)ξj(t, x̄)dx dt.

Now, Proposition 2.2 allows us to pass to the limit for ε → 0 and to obtain

lim
ε→0

Iε =

∫ T

0

∫
Σ

∫
Y

u+
j0(t, x̄, 0)ξj(t, x̄)DM

j (ȳ, 1)∂nηj(ȳ, 1)dȳ dx̄ dt

−
∫ T

0

∫
Σ

∫
Y

u−
j0(t, x̄, 0)ξj(t, x̄)DM

j (ȳ,−1)∂nηj(ȳ,−1)dȳ dx̄ dt

=

∫ T

0

∫
Σ

(u+
j0(t, x̄, 0) − u−

j0(t, x̄, 0))ξj(t, x̄)dx̄ dt,

where the last equality follows from the boundary conditions (6.9) and (6.10) for η.
Second, by differentiation in the second gradient, we have

Iε =

∫ T

0

∫
ΩM

ε

εDM
j

(x
ε

)
∇ηjε(x)∇ξj(t, x̄)uM

jε (t, x)dx dt

+

∫ T

0

∫
ΩM

ε

εDM
j

(x
ε

)
∇(ηjε(x)ξj(t, x̄))∇uM

jε (t, x)dx dt

−
∫ T

0

∫
ΩM

ε

εDM
j

(x
ε

)
ηjε(x)∇ξj(t, x̄)∇uM

jε (t, x)dx dt

= I1
ε + I2

ε + I3
ε .

Since uM
ε and ε∇uM

ε converge weakly in the two-scale sense (see Proposition 2.1), the
integrals I1

ε and I3
ε converge to zero for ε → 0. To calculate limε→0 I

2
ε , we start from

the weak formulation (2.16) where we insert as test function

(6.14) ϕ(t, x) = ηε(x)ξ(t, x̄)ψ(xn)

with ψ ∈ C∞
0 ((−H,H),R), such that ψ(xn) ≡ 1 for |xn| < H

2 . Thus, we have

lim
ε→0

I2
ε = lim

ε→0

∫ T

0

∫
Ω+

ε

(fj(x, u
+
ε ) − ∂tu

+
jε)η

+
j ξj(t, x̄)ψ(xn)dx dt

+ lim
ε→0

∫ T

0

∫
Ω−

ε

(fj(x, u
−
ε ) − ∂tu

−
jε)η

−
j ξj(t, x̄)ψ(xn)dx dt

+ lim
ε→0

1

ε

∫ T

0

∫
ΩM

ε

(
gj

(x
ε
, uM

ε

)
− ∂tu

M
jε

)
ηj

(x
ε

)
ξj(t, x̄)dx dt

− lim
ε→0

∫ T

0

∫
Ω+

ε

D+
j η

+
j ∇u+

jε∇(ξj(t, x̄)ψ(xn))dx dt

− lim
ε→0

∫ T

0

∫
Ω−

ε

D−
j η

−
j ∇u−

jε∇(ξj(t, x̄)ψ(xn))dx dt.
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Using the convergence properties from Proposition 2.1, Theorem 2.3, and the macro-
scopic problem for the limit functions u+

0 and u−
0 , we obtain

lim
ε→0

I2
ε =

∫ T

0

∫
Σ

∫
Z

(gj(y, u
M
0 (t, x̄, y)) − ∂tu

M
j0 (t, x̄, y))ηj(y) dy ξj(t, x̄) dx̄ dt

+

∫ T

0

∫
Σ

(D+
j η

+
j ∂nu

+
j0(t, x̄, 0) −D−

j η
−
j ∂nu

−
j0(t, x̄, 0))ξj(t, x̄) dx̄ dt.

Thus, the first transmission condition is proved. It remains to derive a transmission
condition for the fluxes. We start again from the weak formulation (2.16) and use as
test function

ϕ(t, x) = ξ(t, x̄)ψ(xn),

with ξ and ψ as in (6.14). For ε → 0 we obtain∫ T

0

∫
Ω+

∂tu
+
j0ξjψjdx dt +

∫ T

0

∫
Ω+

D+
j ∇u+

j0∇(ξjψj)dx dt−
∫ T

0

∫
Ω+

fj(x, u
+
0 )ξjψjdx dt

+

∫ T

0

∫
Ω−

∂tu
−
j0ξjψjdx dt +

∫ T

0

∫
Ω−

D−
j ∇u−

j0∇(ξjψj)dx dt−
∫ T

0

∫
Ω−

fj(x, u
−
0 )ξjψjdx dt

+

∫ T

0

∫
Σ

∫
Z

(∂tu
M
j0 (t, x̄, y) − gj(y, u

M
0 (t, x̄, y))) dy ξj(t, x̄) dx̄ dt = 0.

Using again the macroscopic equations for u+
0 and u−

0 , we get the following transmis-
sion condition:∫ T

0

∫
Σ

(D+
j ∂nu

+
j0(t, x̄, 0) −D−

j ∂nu
−
j0(t, x̄, 0))ξj(t, x̄)

=

∫ T

0

∫
Σ

∫
Z

(∂tu
M
j0 (t, x̄, y) − gj(y, u

M
0 (t, x̄, y))) dy ξj(t, x̄) dx̄ dt.

7. Uniqueness for the macroscopic model. In this section, we want to show
uniqueness of the solutions (u+

0 , u
−
0 , u

M
0 ) to the effective model presented in Theorem

2.4. To this end, let us first formulate a corollary which gives an equivalent formulation
of the transmission conditions (2.28), (2.29).

Corollary 7.1. The transmission conditions (2.28), (2.29) are equivalent to

D+
j ∂nu

+
j0(t, x̄, 0) =

∫
S+

DM
j (y)∂nu

M
j0 (t, x̄, y)dy,(7.1)

D−
j ∂nu

−
j0(t, x̄, 0) =

∫
S−

DM
j (y)∂nu

M
j0 (t, x̄, y)dy.(7.2)

These equivalent transmission conditions hold in a distributional sense with respect to
t and x̄.

Remark 2. The physical interpretation of (7.1) and (7.2) is obvious; it states that
the macroscopic flux is given by the microscopic flux averaged over the corresponding
part of the cell surface.

Proof. Using the properties (6.8), (6.9), and (6.10) of the boundary layer η and
the boundary conditions

uM
0 (t, x̄, y) = u±

0 (t, x̄, 0) on (0, T ) × Σ × S±,
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we obtain

[uj0]|Σ(t, x̄) = u+
j0(t, x̄, 0) − u−

j0(t, x̄, 0)

=

∫
S+

uM
j0 (t, x̄, y)dy −

∫
S−

uM
j0 (t, x̄, y)dy

=

∫
Z

DM
j (y)∇ηj(y)∇uM

j0 (t, x̄, y)dy.

Equation (2.30) for uM
0 and the fact that η is constant on S+ and S− with constants

defined in (6.11) yield

[uj0]Σ(t, x̄) =

∫
Z

(gj(y, u
M
0 (t, x̄, y)) − ∂tu

M
j0 (t, x̄, y))ηj(y) dy(7.3)

+

∫
S+

DM
j (y)∂nu

M
j0 (t, x̄, y)η+

j dy −
∫
S−

DM
j (y)∂nu

M
j0 (t, x̄, y)η−j dy.

From (2.28) and (7.3), we then obtain

D+
j ∂nu

+
j0(t, x̄, 0)η+

j −D−
j ∂nu

−
j0(t, x̄, 0)η−j(7.4)

=

∫
S+

DM
j (y)∂nu

M
j0 (t, x̄, y)η+

j dy −
∫
S−

DM
j (y)∂nu

M
j0 (t, x̄, y)η−j dy.

On the other hand, using (2.30) for uM
0 , the transmission condition (2.29) transforms

to

D+
j ∂nu

+
j0(t, x̄, 0) −D−

j ∂nu
−
j0(t, x̄, 0)(7.5)

=

∫
S+

DM
j (y)∂nu

M
j0 (t, x̄, y)dy −

∫
S−

DM
j (y)∂nu

M
j0 (t, x̄, y)dy.

Relations (7.4) and (7.5) are equivalent with the transmission conditions (7.1) and
(7.2) since η+

j − η−j �= 0. This follows from the relations

η+
j > 0 and η−j < 0 for j = 1, . . . n,

which hold by the maximum principle for elliptic equations.
In the following, we prove uniqueness for the macroscopic system by using the

equivalent transmission conditions (7.1) and (7.2).
Proof. Assume that (u+

i , u
−
i , u

M
i ), i = 1, 2, are solutions of the macroscopic system

with the same data. Let δu+, δu−, δuM denote the differences. Now, we consider a
test function ϕ ∈ V, where

V = {(C∞
0 ((0, T ), C∞(Ω+)))m ∩ (C∞

0 ((0, T ), C∞(Ω−)))m, ϕ = 0 on ∂DΩ+ ∪ ∂DΩ−}.

We multiply (2.23) and (2.24) by ϕ and integrate, obtaining∫
Ω+

∂tu
+
j0ϕ

+
j dx +

∫
Ω−

∂tu
−
j0ϕ

−
j dx + D+

j

∫
Ω+

∇u+
j0∇ϕ+

j dx

+D−
j

∫
Ω−

∇u−
j0∇ϕ−

j dx +

∫
Σ

D+
j ∂nu

+
j0ϕ

+
j dΣ(x) −

∫
Σ

D−
j ∂nu

−
j0ϕ

−
j dΣ(x)

=

∫
Ω+

fj(x, u
+
0 )ϕ+

j dx +

∫
Ω−

fj(x, u
−
0 )ϕj dx.(7.6)
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From (7.6) and the transmission conditions (7.1) and (7.2), we obtain the following
equation for the differences δu+, δu−:∫

Ω+

∂t(δu
+
j )ϕ+

j dx +

∫
Ω−

∂t(δu
−
j )ϕ−

j dx + D+
j

∫
Ω+

∇(δu+
j )∇ϕ+

j dx

+ D−
j

∫
Ω−

∇(δu−
j )∇ϕ−

j dx +

∫
Σ

∫
S+

DM
j (y)∂n(δuM

j )dy ϕ+
j dΣ(x)

−
∫

Σ

∫
S−

DM
j ∂n(δuM

j )dy ϕ−
j dΣ(x) =

∫
Ω+

δf+
j ϕ+

j dx +

∫
Ω−

δf−
j ϕj dx,(7.7)

where we denoted

δf+
j = fj(x, u

+
1 ) − fj(x, u

+
2 ), δf−

j = fj(x, u
−
1 ) − fj(x, u

−
2 ).

Now, we insert ϕ+ = δu+ and ϕ− = δu− as test functions. Using the boundary
conditions (2.31), we get for the terms on Σ∫

Σ

∫
S+

DM
j (y)∂n(δuM

j )dy δu+
j dΣ −

∫
Σ

∫
S−

DM
j ∂n(δuM

j )dy δu−
j dΣ

=

∫
Σ

∫
S+

DM
j (y)∂n(δuM

j )δuM
j dydΣ −

∫
Σ

∫
S−

DM
j ∂n(δuM

j ) δuM
j dydΣ

=

∫
Σ

∫
Z

DM
j (y)∇(δuM

j )∇(δuM
j )dydΣ +

∫
Σ

∫
Z

∂t(δu
M
j )δuM

j dydΣ

−
∫

Σ

∫
Z

δgjδu
M
j dydΣ.(7.8)

Here, we used the notation δgj = gj(y, u
M
1 ) − gj(y, u

M
2 ). Inserting (7.8) in (7.7),

summing up for j = 1, . . . ,m, and integrating with respect to t, we obtain

1

2
||δu+(t)||2L2(Ω+) +

1

2
||δu−(t)||2L2(Ω−) +

1

2
||δuM (t)||2L2(Σ×Z)

+ D+
j

∫ t

0

∫
Ω+

|∇(δu+)|2 dxdt + D−
j

∫ t

0

∫
Ω−

|∇(δu−)|2 dxdt

+

∫ t

0

∫
Σ

∫
Z

DM (y)|∇(δuM )|2dydΣdt =

∫ t

0

∫
Σ

∫
Z

δgδuMdydΣdt

+

∫ t

0

∫
Ω+

δf+δu+ dxdt +

∫ t

0

∫
Ω−

δf−δu− dxdt.(7.9)

Using the Lipschitz continuity of the reaction terms, the right-hand side in (7.9) can
be estimated by

C
(
||δuM ||2L2((0,t)×Σ×Z) + ||δu+||2L2((0,t)×Ω+) + ||δu−||2L2((0,t)×Ω−)

)
.

Then Gronwall’s inequality yields

δu+ = δu− = δuM = 0

and the theorem is proved.
Corollary 7.2. The entire sequence (u+

ε , u
−
ε , u

M
ε ) converges to the limit (u+

0 , u
−
0 ,

uM
0 ), solving the macroscopic system.

Remark 3. An important aim of our homogenization procedure is to reduce
the computational complexity. The algorithms for solving the derived transmission
problem numerically will be considered in a forthcoming paper.
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UNIQUENESS THEOREMS FOR STABLE ANISOTROPIC
CAPILLARY SURFACES∗

MIYUKI KOISO† AND BENNETT PALMER‡

Abstract. We consider capillary surfaces for certain rotationally invariant elliptic parametric
functionals supported on two hydrophobically wetted horizontal plates separated by a fixed distance.
It is shown that each such stable capillary surface is uniquely determined by the volume interior to
the surface.

Key words. anisotropic, capillary surface, uniqueness, stability
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1. Introduction. When the temperature of a fluid is gradually lowered, it un-
dergoes a process of crystallization in which its constituent atoms, molecules, or ions
will align themselves in a regular repeating pattern. It is rare that a single crystal will
form, and instead many crystals will form a polycrystal. This is the state in which,
for example, most metals occur.

As the fluid cools, the usual isotropic surface energy (surface tension) will no
longer be appropriate to model the shape of the interface of the fluid with its en-
vironment. Because of the internal structure of the material, the isotropic surface
energy must be replaced by an anisotropic one, i.e., an energy that depends on the
direction of the surface at each point. In this paper, we will treat a class of capillary
problems for the simplest type of anisotropic surface energy: a constant coefficient,
elliptic parametric functional.

Particularly, we consider a variational problem whose solution is a mathematical
model of a drop of a cooled liquid trapped between two horizontal plates. The plates
are hydrophobically wetted and are made of the same material. It is natural to
consider the volume of the drop, the distance between the plates, and the wetting
constant ω which couples the energy of the fluid-plate interface to the free surface
energy as “initial data” and then ask if the shape of the drop is uniquely determined.
In our previous paper [6], we obtained a geometric characterization of such drops.
In this paper, we show (Theorem 2.1) that under certain assumptions on the energy
functional the uniqueness follows if the additional natural condition of stability is
imposed. Not only do we have uniqueness but we are able to determine the shape of
the drop (Theorem 2.3) to the extent that a parameterization can be easily obtained
from our previous work [4].

We wish to emphasize that we have restricted ourselves to the cases of hydrophobic
wetting and equal contact angle. This is not to suggest that the other cases are of
lesser importance. At present we also ignore gravitational and other external forces.
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This paper should be considered as part of a program in which these more general
problems will be considered.

Our assumptions imposed on the energy functional are satisfied by the usual area
functional. In this important special case, solutions are constant mean curvature
(CMC) surfaces which meet each of the supporting planes with constant angle. In the
CMC case without wetting, the uniqueness and characterization of stable solutions
follow from the results in Athanassenas [1] and Vogel [7]. For hydrophobic wetting,
they follow from the results in Vogel [8] and Finn and Vogel [3]. The lower bound for
the volume of a stable spanning drop of height h was shown by Finn and Vogel in [3]
to be h3/π, giving an affirmation of Carter’s conjecture. We will generalize this result
to the anisotropic case with hydrophobic wetting (Theorem 2.4).

The paper is organized as follows. Section 2 contains precise statements of our
main results. Sections 3 and 4 will be devoted to proofs of the results stated in
section 2. In section 5, we will give a strict examination of the uniqueness for
the case without wetting energy. Section 6 contains a summary of results con-
cerning anisotropic Delaunay surfaces (rotationally symmetric surfaces with constant
anisotropic mean curvature). These surfaces were introduced in detail in [4] and play
a fundamental role in our stability and uniqueness analysis.

2. Statements of results. Let F be a smooth, positive function on S2. To
an immersion X : Σ → R3 from a two-dimensional oriented, connected, compact,
smooth manifold Σ (possibly with boundary ∂Σ) to the three-dimensional Euclidean
space R3, we assign the free anisotropic energy

(1) F [X] :=

∫
Σ

F (ν) dΣ ,

where ν = (ν1, ν2, ν3) : Σ → S2 is the Gauss map of X, and dΣ is the area form of
the induced metric. We will assume that F satisfies a “convexity condition” in the
following sense: Denote by DF and D2F the gradient and Hessian of F on S2. We
assume that at each point in S2 the matrix D2F + FI is positive definite, where I is
the identity endomorphism field on TS2. Such an energy functional F is then referred
to as a constant coefficient elliptic parametric functional.

It is known that the energy F possesses a canonical critical point which minimizes
F among closed surfaces enclosing a specific three-dimensional volume (see [2]), and
it is known as the Wulff shape (for F), which we will denote by W . W is a uniformly
convex smooth surface and given by the immersion χ : S2 → R3 defined by χ(ν) =
DF (ν) + F (ν) · ν. In the special case where F ≡ 1, F is the area functional and W
is the round sphere of radius 1 with center at the origin.

The property that X is a critical point of F for all compactly supported volume-
preserving variations is characterized by the property that the anisotropic mean cur-
vature Λ of X is constant, where Λ is given by

Λ := 2HF − divΣDF = −traceΣ(D2F + FI) ◦ dν

(cf. [4]). Here H is the mean curvature of X. This definition is a generalization of
the idea of constant mean curvature which arises from the area functional. Since
D2F + FI is positive definite, the equation Λ = constant is absolutely elliptic, and
hence a maximum principle analogous to that for CMC surfaces holds for surfaces of
constant anisotropic mean curvature.

In this paper, we consider connected, compact surfaces X with nonempty bound-
ary embedded in a region Ω := {z0 ≤ z ≤ z1} whose interiors are included in the
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interior of Ω, whose boundary components are restricted to lie on the two supporting
(horizontal) planes Πi := {z = zi}, i = 0, 1, and which are constrained to enclose a
fixed volume V in Ω. These considerations require that the surface bounds a con-
nected volume so that we preclude some physically important configurations like a
“string of spheres.” Also, for simplicity, we are assuming that each boundary compo-
nent of the considered surface is homeomorphic to a circle. We will call such a surface
an anisotropic capillary surface if it is in equilibrium for a functional

(2) E [X] := F [X] + ω0A0[X] + ω1A1[X] .

Here Ai[X] is the area in the plane Πi which is bounded by the boundary components
of X in Πi (physically, the area which is wetted by the material inside the surface)
and the ωi’s are coupling constants. In practice the ωi’s are determined by the ma-
terials involved. Throughout this paper we use the term “capillary surface” to mean
anisotropic capillary surface. We will use the adjective isotropic when it is needed to
denote the special case when the free energy is the surface area.

For an embedding X : (Σ, ∂Σ) → (Ω,Π0∪Π1) with outward pointing unit normal
ν, the contact angle of X with Πi at X(ζ) ∈ Πi (ζ ∈ ∂Σ) is defined as the angle
ϑ ∈ [0, π], between ν(ζ) and (−1)i(0, 0, 1). The surface X is a capillary surface if and
only if the anisotropic mean curvature Λ of X is constant, and the contact angle ϑ
of X with each Πi is a constant ϑ(ωi) (see [6, Propositions 3.1 and 3.2]). The precise
value ϑ(ωi) will be given below. Now, by the maximum principle and the Alexandrov
reflection methods, X is a surface of revolution with vertical rotation axis, and its
genus is zero (see [6, Corollary 3.2]).

A capillary surface is said to be stable if the second variation of the energy func-
tional E is nonnegative for all volume-preserving variations satisfying the boundary
condition.

A natural question to ask is whether one can uniquely determine the shape of the
(stable) capillary surface from the “initial data” F , V , h := z1 − z0, ω0, and ω1. We
will show that this is possible under certain conditions.

We will first impose conditions on the functional F which will be described via
the corresponding Wulff shape W . We will assume the following:

(W1) W is a uniformly convex surface of revolution with vertical rotation axis.
(W2) W is symmetric with respect to reflection through the horizontal plane z = 0.
(W3) The generating curve of W has nondecreasing curvature (with respect to the

inward pointing normal) as a function of arc length on {z ≥ 0} as one moves
in an upward direction.

In addition, it will be assumed that ω0 = ω1 =: ω ≥ 0 holds in (2). In the isotropic
(liquid) case, the condition ωi > 0 is known as hydrophobic wetting since the material
inside the surface will tend to avoid the supporting planes when minimizing energy.
The case of the ωi’s being equal would occur (physically) if both supporting planes
were made from the same material.

The Wulff shape W can be represented as

(x1, x2, x3) = (u(σ) cos θ, u(σ) sin θ, v(σ)),

where σ is the arc length of the generating curve

ΓW : (u(σ), v(σ))

of W . Denote by ω̄ the maximum height on W , that is, ω̄ = maxσ v(σ). At times we
will also represent the generating curve of W as a graph (u(v), v), −ω̄ ≤ v ≤ ω̄.
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For ω ∈ (−ω̄, ω̄), denote by ϑ(ω) the contact angle between the region W ∩{x3 ≤
ω} of W and the plane {x3 = ω}. Also we define ϑ(−ω̄) := 0, ϑ(ω̄) := π. Then
ϑ(ω) is a continuous strictly increasing function of ω on [0, π] with ϑ(0) = π/2. An
embedding X is a capillary surface for

(3) E := Eω := F + ωA0 + ωA1

if and only if the anisotropic mean curvature of X is constant, and the contact angle
between X and each bounding plane Πi is constant ϑ(ω) along the boundary (see [6,
Propositions 3.1 and 3.2]).

We will call an anisotropic capillary surface spanning if its intersection with both
supporting planes is a circle of positive radius. We denote by V0(h, ω) the infimum
of the volumes of stable spanning anisotropic capillary surfaces having height h and
contact angle ϑ(ω).

In keeping with the classical terminology, we will refer to a compact anisotropic
capillary surface having nonempty boundary components only on the plane z = z0

(resp., z = z1) as a sessile drop (resp., pendent drop). Such a surface is necessarily
rotationally invariant, and therefore homothetic to a part of the Wulff shape (see [6]).

If |ω| > ω̄, then there is no capillary surface for the energy Eω (see [6, Corollary
3.1]). For 0 ≤ ω ≤ ω̄, we will show the following uniqueness theorem.

Theorem 2.1. We assume (W1) through (W3) stated above.
I. Assume 0 ≤ ω < ω̄. Then V0(h, ω) > 0 holds and

(i) for volume V < V0, any stable capillary surface for the energy Eω with
volume V and height h is a sessile or pendent drop;

(ii) for volumes V ≥ V0, there exists a unique stable spanning capillary
surface for the energy Eω with volume V and height h.

II. Assume ω = ω̄. Then any capillary surface for the energy Eω is tangent to
the supporting planes Π0 ∪ Π1. V0(h, ω) > 0 holds, and it coincides with the
volume of the closed surface homothetic to the Wulff shape which is tangent
to both Π0 and Π1. Also,
(i) for volume V ≤ V0, there is no stable capillary surface for the energy Eω

with volume V and height h;
(ii) for volumes V > V0, there exists a unique stable capillary surface for

the energy Eω with volume V and height h. Moreover, this surface is
spanning.

Actually, we will later give analytic and geometric characterizations of each of
the unique solutions for V ≥ V0 in Theorem 2.1. In order to do this, we first recall
the classification of surfaces of revolution with constant anisotropic mean curvature
(see section 6). Such surfaces were studied in detail by the authors in [4] and are
called anisotropic Delaunay surfaces. They are classified into six classes: horizontal
plane, anisotropic catenoid, Wulff shape (up to translation and homothety), cylinder,
anisotropic unduloid, and anisotropic nodoid. Each surface in each of these classes
has similar properties to the corresponding Delaunay surface.

We let μi, i = 1, 2, denote the principal curvatures of the Wulff shape W with
respect to the inward pointing normal. Here we let μ1 denote the curvature of the
generating curve of W .

The following characterization of stable anisotropic capillary surfaces was ob-
tained in our previous papers [5], [6].

Theorem 2.2. Let X be a capillary surface with free boundary on two horizontal
planes for the functional (3) with ω ≥ 0 and with the Wulff shape for the functional
satisfying conditions (W1) through (W3) stated above.
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(i) If ω = 0, then X is stable if and only if the surface is either homothetic to a
half of the Wulff shape or a cylinder which is perpendicular to Π0 ∪ Π1 and
whose height h and radius R satisfy

μ1(0)

μ2(0)
(1/R2) ≤ (π/h)2 ,

where μi(0), i = 1, 2, is the value of μi along the equator of W .
(ii) If ω > 0 holds, then X is stable if and only if X is a portion of an anisotropic

Delaunay surface whose generating curve has no inflection points in its inte-
rior.

Define

V1 := V1(h, ω) := πh3

∫ ω

−ω
u2 dv(∫ ω

−ω
dv

)3 .

V1 is the volume of the capillary surface which is homothetic to the part of the Wulff
shape with contact angle ϑ(ω) on the plane Πi, i = 0, 1.

V2 := V2(h, ω) := πh3

∫ ω̄

−ω
u2 dv(∫ ω̄

−ω
dv

)3 .

V2 is the volume of the surface which is homothetic to the part of the Wulff shape
which is tangent to the plane Π1 and with contact angle ϑ(ω) on the plane Π0.

Theorem 2.3. We assume (W1) through (W3) stated above.
I. Assume 0 < ω < ω̄. Then the following hold:

(i) For volumes V0 ≤ V < V1, there exists a unique stable spanning capillary
surface with volume V , height h, and contact angle ϑ(ω), and the surface
is an anisotropic unduloid. For V = V0, this surface has inflection points
on the boundary, while, for V0 < V < V1, it does not have inflection
points.

(ii) For V = V1, there exists a unique stable capillary surface with volume
V , height h, and contact angle ϑ(ω), and the surface is homothetic to a
part of the Wulff shape.

(iii) For V1 < V , there exists a unique stable capillary surface with volume
V , height h, and contact angle ϑ(ω), and the surface is an anisotropic
nodoid.

II. Assume ω = ω̄. Then, for V0 < V , there exists a unique stable capillary
surface with volume V , height h, and contact angle ϑ(ω), and the surface is
an anisotropic nodoid.

Figure 1 shows the generating curves of examples of Theorem 2.3 (I) (i), (ii), and
(iii) for the isotropic case, while Figure 2 shows examples for the anisotropic case.

For a fixed volume V , height h, and ω̄ ≥ ω > 0, we let U(V, h, ω) (resp.,
N(V, h, ω)) denote the stable anisotropic unduloid (resp., nodoid) with volume V ,
height h := z1 − z0, and contact angle ϑ(ω) which we obtained in Theorem 2.3.

Remark 2.1. In the theorems above “unique” means “unique up to horizontal
translation.”

Remark 2.2. Even in the isotropic case, there is no uniqueness without the
stability assumption. Figure 3 shows the plots of the volumes of two families of
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Fig. 1. The innermost curve generates an (isotropic) unduloid, the middle curve is a sphere,
and the outer curve is a nodoid. The height is 1 and the contact angle is π/4. The values of a are
0.25, 0, and −1.
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Fig. 2. The innermost curve generates an anisotropic unduloid, the middle curve is a part of
the Wulff shape u2 + v4 = 1, and the outer curve is an anisotropic nodoid. The height is 1 and the
contact angle is ω = π/4. The values of a are 0.25, 0, and −1.

capillary surfaces for the area functional. The top curve represents the volumes of
stable capillary unduloids with height 1 and contact angle π/4 with two planes. The
bottom curve shows the volumes of unstable capillary unduloids with the same height
and contact angles. The generating curves of these surfaces have exactly one interior
inflection point, which makes them unstable by Theorem 2.2. This shows that volume
does not uniquely determine the surface without the stability assumption.

Also, there is no positive lower bound for the volume without the assumption
of stability. For any functional satisfying the conditions above, any vertical round
cylinder is a capillary surface for the case ω = 0. However, the volume of the cylinder
can be made arbitrarily small. Also, for 0 < ω < ω̄, there is an unstable unduloid
with contact angle ϑ(ω) and an arbitrarily small volume.

Remark 2.3. For V ≥ V2, the capillary surface is unique. If V0 < V2, then, for



ANISOTROPIC CAPILLARY SURFACES 727

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5

a

Fig. 3. Plot of the volumes of stable (upper) and unstable (lower) unduloids as a function of
a. The height is 1 and the contact angle is π/4. The generating curves of the unstable unduloids
have exactly one inflection point.

V0 ≤ V < V2, there exist exactly two stable capillary surfaces (up to translation) with
volume V , height h, and contact angle ϑ(ω). One of them is a sessile or pendent drop,
while the other has two boundary components. In the isotropic case, these results
follow from Chapter 6 of [10]. It would be interesting to know whether V0 ≤ V < V2

holds in general. This inequality is proved in the case ω = 0 in section 5.
The next result yields a numerical lower bound on the volume of a stable, spanning

capillary surface.
Theorem 2.4. Assume that the Wulff shape satisfies conditions (W1) through

(W3). If 0 < ω ≤ ω̄, then

(4) V0(h, ω) >
h3

π

(
2u(ω)(u(0) − u(ω))

ω2 − (u(0) − u(ω))2

)
> 0

holds. If ω = 0, then

(5) V0(h, 0) ≥ h3

π

(
μ1(0)

μ2(0)

)

holds, and this inequality is sharp in the sense that there is a stable cylinder which
satisfies the equality in (5).

Remark 2.4. For the CMC case, Theorem 2.4 implies that if the contact angle
ϑ = ϑ(ω) satisfies π/2 ≤ ϑ ≤ π, then

V0(h, ω) ≥ h3

π

holds and the equality holds only for the most slender stable cylinder. This is exactly
the result proved by Finn and Vogel in [3] for 0 < ϑ ≤ π. Zhou [9] proved this for the
general case where the contact angle on the lower and upper planes may be different.

Finally, we will show the following.
Theorem 2.5. Assume 0 ≤ ω ≤ ω̄ and that the Wulff shape satisfies conditions

(W1) through (W3). For V ≥ V0, let Σ(V ) = Σ(V, h, ω) denote the unique stable
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capillary surface with volume V , height h, and contact angles ϑ(ω) with two boundary
components. Here, we let Σ(V0, h, ω̄) be the homothety of the Wulff shape with height
h which touches both Π0 and Π1. Then the family of surfaces Σ(V ), V > V0, foliate
the open region of space which lies exterior to the surface Σ(V0) and lies between the
planes z = zi, i = 0, 1.

3. Preliminary results. We introduce the auxiliary quantity

(6) V ∗ := V ∗(h, ω) := πh3

(∫ ω

−ω

1√
u2 − u2(ω)

dv

)−2

,

which will be used to obtain the lower bound for the volume in Theorem 2.4. The
main result of this section is the following technical lemma.

Lemma 3.1. Assume 0 < ω ≤ ω̄ and that the Wulff shape satisfies condi-
tions (W1) through (W3). Let R̂ denote the radius of the circle through the points
(u(ω),±ω), (u(0), 0). Define

(7) A(ω) =

[
u(ω) + (R̂− u(0))

u(ω)

]1/2

.

Then there holds

(8)

∫ ω

−ω

dv√
u2(v) − u2(ω)

< πA(ω) ,

and consequently

(9) V ∗(h, ω) >
h3

π

(
2u(ω)(u(0) − u(ω))

ω2 − (u(0) − u(ω))2

)
> 0

holds.
The generating curve Γ+

W of the Wulff shape is represented as

(u(σ), v(σ)), −L ≤ σ ≤ L,

u0 := maxu = u(0) ≥ u(σ) ≥ 0 = u(−L) = u(L) ∀σ ∈ [−L,L],

ω̄ := max v = v(L) ≥ v(σ) ≥ −ω̄ = v(−L) ∀σ ∈ [−L,L],

where σ is the arc length of (u, v) and 2L is the length of Γ+
W .

(u(σ), v(σ)), −2L ≤ σ ≤ 2L,

gives a convex closed curve ΓW , which is the section of W by the (x1, x3)-plane. For
simplicity, we set

κ := μ1,

which is the curvature of (u(σ), v(σ)) with respect to the inward pointing normal.
Lemma 3.2.

f(σ) := u2(σ) + v2(σ)

is a nondecreasing function of σ in 0 ≤ σ ≤ L.
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In order to prove Lemma 3.2, we need the following.
Lemma 3.3. Consider the eigenvalue problem

(10) ϕ′′ + κ2ϕ = −λϕ in 0 ≤ σ ≤ L, ϕ(0) = ϕ(L) = 0.

Then the first eigenvalue λ1[0, L] of problem (10) is nonnegative.
Proof. Set η := v′. Let φ be a function on [0, L] which satisfies φ(0) = φ(L) = 0.

Since

η > 0 in 0 < σ < L, η(L) = 0, η′(L) �= 0,

the function

ζ := φ/η

is well-defined on 0 ≤ σ ≤ L. Elementary calculations show

η′′ + κ2η = κ′u′.

Using this, we obtain

φ′′ + κ2φ = ζ ′′η + 2ζ ′η′ + ζκ′u′.

Therefore,

−
∫ L

0

φ(φ′′ + κ2φ) dσ = −
∫ L

o

ζη(ζ ′′η + 2ζ ′η′ + ζκ′u′) dσ

= −
∫ L

0

{
(ζζ ′η2)′ − (ζ ′)2η2 + κ′ζ2ηu′

}
dσ

= −[ζ ′ηφ]L0 +

∫ L

0

{
(ζ ′)2η2 − κ′ζ2u′v′

}
dσ

=

∫ L

0

{
(ζ ′)2η2 − κ′ζ2u′v′

}
dσ ≥ 0,

which implies that λ1[0, L] ≥ 0.
Proof of Lemma 3.2. We will prove f ′ ≥ 0. Note that κ′ = 0 on interval [0, L] is

equivalent to f = constant and so f ′ = 0 on [0, L]. Denote by q the support function
of the curve (u, v). Then q = uv′ − u′v > 0. By elementary calculations, we obtain

f ′′′ + κ2f ′ = −2κ′q ≤ 0.

Note that f ′(0) = f ′(L) = 0 holds. Now assume f ′(σ) < 0 at some σ ∈ (0, L).
Then there exist some σ1, σ2 ∈ [0, L] such that 0 ≤ σ1 < σ2 ≤ L and

f ′(σ) < 0 ∀σ ∈ (σ1, σ2), f ′(σ1) = f ′(σ2) = 0

holds. If [σ1, σ2] = [0, L], then

−
∫ L

0

f ′(f ′′′ + κ2f ′) dσ = 2

∫ L

0

κ′qf ′ dσ < 0.

Therefore, λ1[0, L] < 0 holds. This contradicts Lemma 3.3. If [σ1, σ2] �= [0, L], then

(11) −
∫ σ2

σ1

f ′(f ′′′ + κ2f ′) dσ = 2

∫ σ2

σ1

κ′qf ′ dσ ≤ 0.
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W

Fig. 4.

Since the eigenvalues of problem (10) have monotonicity with respect to the region,
(11) implies that λ1[0, L] < λ1[σ1, σ2] ≤ 0. Again this contradicts Lemma 3.3.

We assume 0 < ω ≤ ω̄. ΓW can be regarded as the graph (u(v), v), −ω̄ ≤ v ≤ ω̄,
of a function u(v) of v.

The line segment � through the points (u(ω),±ω) is the limit as R → ∞ of
a family of arcs αR through (u(ω),±ω) of circles CR of radius R having centers
(−zR, 0) on the real axis. Let Γ denote the arc of ΓW with u > 0 and −ω < v < ω.
It is clear that for R  0, αR lies strictly between � and Γ. From now on we will
consider only these values of R. Thus, if αR is given by (UR(v), v) with −ω < v < ω,
then 0 ≤ UR(v) ≤ u(v) holds. It is also clear that 0 ≤ u(ω) ≤ UR holds and so
U2
R − u2(ω) ≥ 0 holds. (See Figure 4.) It follows that

(12)

∫ ω

−ω

1√
u2 − u2(ω)

dv <

∫ ω

−ω

1√
U2
R − u2(ω)

dv .

We will try to obtain a lower bound of U2
R − u2(ω).

The equation of CR is

(13) (U + zR)2 + v2 = R2 ,

and so

(14) (u(ω) + zR)2 + ω2 = R2 .

Subtracting these equations and performing elementary manipulations leads to

(UR − u(ω))(UR + u(ω) + 2zR) = (ω2 − v2) .

Letting ẑR = max(0, zR), we have

U2
R − u2(ω) ≥

[
UR + u(ω)

UR + u(ω) + 2ẑR

]
(ω2 − v2) .

Since the function on the right is a nondecreasing function of UR (≥ u(ω)), we
have

(15) U2
R − u2(ω) ≥

[
2u(ω)

2u(ω) + 2ẑR

]
(ω2 − v2) .

In order to obtain a lower bound of U2
R − u2(ω) from (15), we will need a lower

bound on ẑR.
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Lemma 3.4. We consider circles

C+(a, r) : (U − a)2 + V 2 = r2, U ≥ a.

If a circle C+(a, r) touches the right half

Γ+
W := {(u(σ), v(σ)) | u(σ) ≥ 0}

of ΓW at a point (u0, v0) (v0 �= 0) from the left-hand side, then ΓW is a circle.
Proof. We denote by κ(v) > 0 the curvature of ΓW at (u, v). Then κ(v) is an

even function and

(16) κ′(v) ≥ 0, 0 ≤ ∀v ≤ ω̄.

Set

Γ := {(u, v) ∈ Γ+
W | − |v0| ≤ v ≤ |v0|},

C := {(U, V ) ∈ C+(a, r) | − |v0| ≤ V ≤ |v0|}.

Because of symmetry, C touches Γ on the boundary from the left-hand side.
About the curvatures of these two curves at the point (u0, v0), it holds that

1/r ≥ κ(v0).

Therefore, by assumption (W3),

(17) 1/r ≥ κ(v), −v0 ≤ ∀v ≤ v0,

holds.
We now move Γ in the negative direction of the u axis so that it does not intersect

C. Then we move Γ toward the positive direction of the u axis until it intersects C
for the first time, and we denote by Γ̃ the translated curve at this time. Γ̃ is tangent
to C at an interior point (ũ, ṽ). Because of the symmetry of Γ̃ and C with respect
to the v axis, we may assume that 0 < ṽ ≤ v0. Since Γ̃ lies in the negative side of C
with respect to u,

(18) 1/r ≤ κ(ṽ)

holds. It holds from (16), (17), and (18) that

1/r = κ(v) ∀v ∈ [−v0,−ṽ] ∪ [ṽ, v0].

Therefore, Γ̃ is tangent to C at the point (u0, v0) and lies on the negative side of C
with respect to u. On the other hand, since both Γ̃ and Γ are tangent to C at point
(u0, v0), Γ̃ coincides with Γ. Recall that Γ lies on the positive side of C with respect
to u. Therefore, Γ coincides with C. Again by assumption (W3), ΓW is a circle.

Lemma 3.5. If we decrease the radius of the circle CR, then the inequalities

u(ω) ≤ UR ≤ u

are satisfied until a value R = R̂ is reached, at which the curve (UR̂(v), v) is tangent

to the curve (u, v) at the point (u(0), 0). Moreover, R̂ ≥ u(0) holds. Here, the equality
holds if and only if ΓW is a circle.
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Proof. If the Wulff shape W is a sphere, then the statement clearly holds. Hence
we assume that W is not a sphere.

Now, assume that the circle (UR(v), v) is tangent to the curve (u, v) at a point
(u(v0), v0) (0 < v0 ≤ ω) and

u(ω) ≤ UR(v) ≤ u(v), −ω ≤ ∀v ≤ ω,

holds. Then, by Lemma 3.4, W must be a sphere, which is a contradiction. Therefore,
we have proved the first statement.

Next, we prove R̂ ≥ u(0). We consider circles C(r) with center at the origin. If
r > 0 is small, then C(r) is contained in the domain bounded by ΓW . If we increase
r, then, at a certain r1, C(r) touches ΓW for the first time from the inside of ΓW .
Because of Lemma 3.4, C(r) touches ΓW at (±u(0), v(0)). This implies R̂ ≥ u(0).

If R̂ = u(0), then C(u(0)) = CR̂, and this circle touches ΓW at (u(ω),±ω).
Therefore, by Lemma 3.4, ΓW is a circle.

Proof of Lemma 3.1. Lemma 3.5 supplies a lower bound for zR which we denote by
ẑ(ω); that is, if R̂ is the radius of the circle passing the three points (u(ω),±ω), (u(0), 0),
then

ẑ(ω) = R̂− u(0).

Therefore,

(19) A(ω) :=

[
u(ω) + R̂− u(0)

u(ω)

]1/2

=

[
u(ω) + ẑ(ω)

u(ω)

]1/2

.

We obtain from (12) and (15),

(20)

∫ ω

−ω

1√
u2 − u2(ω)

dv < A(ω)

∫ ω

−ω

1√
ω2 − v2

dv = A(ω)π .

This implies (8). Since the points (u(ω),±ω), (u(0), 0) lie on the circle given by (13)
with center (−ẑ(ω), 0) and radius R̂, we have

(u(ω) + ẑ(ω))2 + ω2 = R̂2 = (u(0) + ẑ(ω))2 .

This leads to

(21) ẑ(ω) =
u2(ω) + ω2 − u2(0)

2(u(0) − u(ω))
> 0 .

The last inequality is because the numerator above is nonnegative by Lemma 3.2. By
substituting (21) into (19), we obtain

(22) A(ω) =

[
ω2 − (u(0) − u(ω))2

2u(ω)(u(0) − u(ω))

]1/2

.

The first inequality in (9) follows from (6), (8), and (22).

4. Proofs of Theorems 2.1, 2.3, 2.4, and 2.5. First, we give a lemma.
Lemma 4.1. V1 > V2 holds.
Proof.

(23) V1 = πh3

∫ ω

−ω
u2 dv

(2ω)3
,
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(24) V2 = πh3

∫ ω̄

−ω
u2 dv

(ω̄ + ω)3
= πh3 1

2ω(ω̄ + ω)2

∫ 2ωω̄
ω̄+ω

−2ω2

ω̄+ω

u2(v(η)) dη , η :=
2ω

ω̄ + ω
v .

Since

v(η) =
ω̄ + ω

2ω
η,

ω̄ + ω

2ω
> 1

holds,

u(v(η)) < u(η)

holds. Hence,

(25)

∫ ω

−2ω2

ω̄+ω

u2(v(η)) dη <

∫ ω

−2ω2

ω̄+ω

u2(v) dv

holds. Set

A :=

∫ 2ωω̄
ω̄+ω

ω

u2(v(η)) dη, B :=

∫ −2ω2

ω̄+ω

−ω

u2(v) dv.

We will show A < B. By the symmetry of u(v) with respect to v, we have

B =

∫ ω

2ω2

ω̄+ω

u2(v) dv.

Set

ξ(η) := η − ω(ω̄ − ω)

ω̄ + ω
.

Then

v(η) =
ω̄ + ω

2ω
ξ +

ω̄ − ω

2
> ξ.

Therefore, we have

(26) A =

∫ ω

2ω2

ω̄+ω

u2(v(η(ξ))) dξ <

∫ ω

2ω2

ω̄+ω

u2(ξ) dξ = B.

Formulas (23)–(26) imply that V2 < V1 holds.
Proof of Theorems 2.1, 2.3, and 2.4. First note that, for V > V2, there is no sessile

or pendent drop. Especially, by Lemma 4.1, for V ≥ V1, there is no sessile or pendent
drop.

Assume 0 < ω ≤ ω̄. Let X(s, θ) = (x(s)eiθ, z(s)) be a stable spanning capillary
surface. Then, by Theorem 2.2 (ii), X is a convex part of an anisotropic Delaunay
surface. From the representation formula (Theorem 6.2) for anisotropic Delaunay
surfaces and Remark 6.1, it follows that for stable capillary surfaces, the height h and
volume V are given as follows: First note that

dz =
zs
xs

dx =
vσ
uσ

dx = xudv
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holds. Therefore,

(27) h =

∫ v=ω

v=−ω

dz =

∫ ω

−ω

xu dv =
1

−Λ

∫ ω

−ω

1 +
u√

u2 + Λc
dv,

V = π

∫ v=ω

v=−ω

x2 dz = π(−Λ)−3

∫ ω

−ω

(u +
√
u2 + Λc)3√

u2 + Λc
dv,

where Λ ≤ 0 is the anisotropic mean curvature of X and c is the flux parameter for
X.

We consider the scale invariant quantity,

a := −Λc.

Then

(28) h =
1

−Λ

∫ ω

−ω

1 +
u√

u2 − a
dv,

(29) V = π(−Λ)−3

∫ ω

−ω

(u +
√
u2 − a)3√

u2 − a
dv,

and we obtain

(30) V = πh3

(∫ ω

−ω

1 +
u√

u2 − a
dv

)−3 ∫ ω

−ω

(u +
√
u2 − a)3√

u2 − a
dv .

By applying Hölder’s inequality for the measure dv/
√
u2 − 1 to the formula for

h, we obtain

h ≤ 1

−Λ

(∫ ω

−ω

(u +
√
u2 − a)3√

u2 − a
dv

)1/3(∫ ω

−ω

1√
u2 − a

dv

)2/3

.

It then follows that

(31) V/h3 ≥ π

(∫ ω

−ω

1√
u2 − a

dv

)−2

≥ π

(∫ ω

−ω

1√
u2 − u2(ω)

dv

)−2

.

If V0(h, ω) is defined as the infimum of the volume of all stable capillary surfaces
with the given height and ω having nonempty boundary components on both planes,
(31) shows that V0(h, ω) ≥ V ∗(h, ω) holds. The first half of Theorem 2.4 then follows
from this inequality and Lemma 3.1. The second half of Theorem 2.4 follows easily
from Theorem 2.2 (i).

Now we prove Theorems 2.1 and 2.3. Define

(32) Γ(a, ω) := π

(∫ ω

−ω

1 +
u√

u2 − a
dv

)−3 ∫ ω

−ω

(u +
√
u2 − a)3√

u2 − a
dv .

It follows from (28) and (29) that a necessary and sufficient condition for there to exist
a spanning, stable capillary surface with prescribed h and V is that V/h3 = Γ(a, ω)
for some real value a.
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Note that

a = −Λc ≤ u2(ω) for 0 < ω ≤ ω̄,

0 = u(ω̄) < u(ω) < u(0) for 0 < ω < ω̄

hold. Also note (see section 6) that for a > 0 the capillary surfaces are anisotropic
unduloids, for a = 0 they are part of the Wulff shape (up to translation and homo-
thety), while for a < 0 they are anisotropic nodoids. The result will then follow by
showing that with the height h fixed, the volume is a strictly decreasing function of
a for a ≤ u2(ω).

First assume a < u2(ω). Differentiating (30) with respect to a, we have

−2(πh3)−1Va

(∫ ω

−ω

1 +
u√

u2 − a
dv

)4

(33)

= 3

∫ ω

−ω

u

(u2 − a)3/2
dv

∫ ω

−ω

(u +
√
u2 − a)3√

u2 − a
dv

−
∫ ω

−ω

u +
√
u2 − a√

u2 − a
dv

∫ ω

−ω

(u +
√
u2 − a)2(u− 2

√
u2 − a)

(u2 − a)3/2
dv.

We will show that the right-hand side of (33) is positive. If

u− 2
√
u2 − a ≤ 0

holds for all u for −ω ≤ v ≤ ω, then it is done. Assume now that

(34) u− 2
√
u2 − a > 0

holds for some u. In particular, a must be positive. Note that

−2(πh3)−1Va

(∫ ω

−ω

1 +
u√

u2 − a
dv

)4

(35)

=
1

a

(
3

∫ ω

−ω

au

(u2 − a)3/2
dv

∫ ω

−ω

(u +
√
u2 − a)3√

u2 − a
dv

−
∫ ω

−ω

a(u +
√
u2 − a)√

u2 − a
dv

∫ ω

−ω

(u +
√
u2 − a)2(u− 2

√
u2 − a)

(u2 − a)3/2
dv

)
.

We will prove that

(36) (u +
√
u2 − a)3 > a(u +

√
u2 − a),

(37) au > (u +
√
u2 − a)2(u− 2

√
u2 − a)

holds for any u satisfying (34). Because a < u2 holds, (36) clearly holds. Inequality
(34) is equivalent to

(38) a < u2 <
4

3
a.
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Set

f(u) := au− (u +
√
u2 − a)2(u− 2

√
u2 − a).

Then

f(u) = 2(u +
√
u2 − a)(u2 − a) > 0

holds. This proves (37). Combining (35) with (36) and (37) gives

Va < 0.

This implies that V is a strictly decreasing function of a.
It remains to show that the monotonicity extends to the point a = u2(ω). This

will follow if we can show that, again with the height fixed, V has an extension to
u2(ω) which is continuous from below.

Both integrals in (32) are of the form∫ ω

−ω

(u +
√
u2 − a)p√

u2 − a
dv

with p = 1, 3. Also, both integrands are bounded by constant · (
√
u2 − a)−1 ≤

constant · (
√
u2 − u2(ω))−1. Therefore, the continuity of V from below follows by

the dominated convergence theorem since it follows from Lemma 3.1 that the integral

I :=

∫ ω

−ω

1√
u2 − u2(ω)

dv

is convergent.
Proof of Theorem 2.5. In the case where ω = 0, because of Theorem 2.2 (i),

the statement clearly holds. So, we will assume 0 < ω ≤ ω̄. For convenience we
will assume that the height is 1. We may assume z0 = −1/2 and z1 = 1/2. For
−ω ≤ v ≤ ω, we write the generating curve of the Wulff shape as (u(v), v). By using
Theorem 6.2 and (28), we can express the coordinates of each capillary surface as
v �→ (x(a, v), z(a, v)), with

x(a, v) =
u(v) +

√
u2(v) − a∫ ω

−ω
1 + u(v)/

√
u2(v) − a dv

.

Then for a < u2(ω),

(∂ax)(a, v) = −(1/2)

(√
u2(v) − a

∫ ω

−ω

1 + u(v)/
√
u2(v) − a dv

)−1

−(1/2)(u(v) +
√
u2(v) − a)

(∫ ω

−ω

u(v)(u2(v) − a)−3/2 dv

)

×
(∫ ω

−ω

(1 + u(v)/
√
u2(v) − a) dv

)−2

< 0 .

Thus, for v fixed, x(a, v) is strictly decreasing as a function of a for a < u2(ω). Note
that the generating curve of each capillary surface can also be represented as a graph
x = x(a, z), −1/2 ≤ z ≤ 1/2.
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We now assume that two generating curves (x(a, v), z(a, v)), (x(b, v), z(b, v)),
a < b < u2(ω), intersect. By the above, it is clear that x(b, 0) < x(a, 0) and equiv-
alently x(b, 0) < x(a, 0). Similarly, x(b,±ω) < x(a,±ω) holds, and so equivalently
x(b,±1/2) < x(a,±1/2).

Note that these two curves cannot have any nontransversal intersections for
−1/2 < z < 1/2. If they did, then at the point of intersection, the values of v (which
depends only on the tangent at each point) for both curves must agree, contradicting
the fact that x(A, v) is strictly decreasing in A for A < u2(ω).

It follows from the inequalities given above that the two curves have at least two
transversal intersections at heights 0 < z = ζ1 < ζ2 < z1. We will assume that ζ1 is
the height of the “first” such intersection and that ζ2 is the next such intersection.

Since x(b, 0) < x(a, 0) holds, we must have

∂zx(a, ζ1) ≤ ∂zx(b, ζ1) < 0 ,

∂zx(b, ζ2) ≤ ∂zx(a, ζ2) < 0 .

By the intermediate value theorem, ∂zx(a, ζ∗) = ∂zx(b, ζ∗) must hold for some ζ∗ ∈
[ζ1, ζ2]. Note that for z ∈ (ζ1, ζ2), x(a, z) < x(b, z) holds. A contradiction is reached
because at the points (x(a, ζ∗), ζ∗) and (x(b, ζ∗), ζ∗), the tangent vectors agree and
hence the values of v at both points agree. Thus x(a, ζ∗) > x(b, ζ∗) must hold by
monotonicity of x(A, v) with respect to A. This shows that distinct generating curves
do not intersect.

By (28), it follows that −Λ → 2ω as a → −∞. It then follows from the formula
for x(a, v) that

x(a, 0) → ∞, x(a,±ω) → ∞, as a → −∞ .

It then follows that since the deformation of the generating curves depends continu-
ously on a, the family of surfaces Σ(V ) fill out the region exterior to Σ(V0).

5. Deflating a cylinder. Theorem 2.1 (I) asserts that for each ω ∈ [0, ω̄) there
is a least volume, stable capillary surface having two boundary components on the
planes z = zi, i = 0, 1. One may ask what will occur if the volume of this surface is
decreased. It is expected that one or both boundary components will detach from the
supporting planes and that the surface of the drop forms into one or more sessile or
pendent drops or rescaled Wulff shapes.

In order for the drop to remain, it must be the case that the sessile drop with
contact angle ϑ(ω) or the entire rescaled Wulff shape with height z1 − z0 has volume
at least as large as V0. We consider here only the case ω = 0. Since, for the fixed
height, the entire rescaled Wulff shape contains one-fourth the volume of half of the
Wulff shape, we consider the first possibility.

We assume for convenience that z1 − z0 = 1. Theorem 2.2 (i) implies that the
radius R of the least volume stable capillary cylinder satisfies

R =
(
μ1(0)/μ2(0)

)1/2
π−1.

Therefore, the minimum volume is

V0(ω = 0) =
μ1(0)

πμ2(0)
.
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Representing, the generating curve of the Wulff shape as u = u(v), we have
μ1(0) = −uvv(0), μ2(0) = 1/u(0), and hence

(39) V0(ω = 0) =
u(0)|uvv(0)|

π
.

Proposition 5.1. Assume (W1)–(W3). Then there holds

V2(ω = 0) > V0(ω = 0) .

Proof. Let u = u(v) be the generating curve of W . We claim that

(40) u(tω̄) ≥ (1 − t)u(0) − (uvv(0)/2)ω̄2t(1 − t)

holds. Assume this for now.
Using the inequality (a + b)2 ≥ 4ab for all a, b ≥ 0, we obtain

u2(tω̄) ≥ 2u(0)|uvv(0)|ω̄2t(1 − t)2 .

Therefore,

∫ ω̄

0

u2 dv = ω̄

∫ 1

0

u2(tω̄) dt

≥ 2u(0)|uvv(0)|ω̄3

∫ 1

0

t(1 − t)2 dt

= (1/6)u(0)|uvv(0)|ω̄3 .

It follows that

V2(ω = 0) = (π/ω̄3)

∫ ω̄

0

u2 dv ≥ (π/6)u(0)|uvv(0)|

> (1/π)u(0)|uvv(0)| = V0(ω = 0) .

We now show (40). Let H(t) = u(tω̄) − (1 − t)u(0) + (uvv(0)/2)ω̄2t(1 − t). Note
that H(0) = H(1) = 0. If (40) doesn’t hold, then H attains a negative minimum at
some point in (0, 1) where H ′′ ≥ 0 holds. A simple calculation shows that H ′′(t) =
ω̄2(uvv(tω̄) − uvv(0)), which is negative since −uvv > −uvv(1 + u2

v)
−3/2 ≥ −uvv(0)

holds on (0, ω̄) by assumption (W3) on the curvature of the Wulff shape.

6. Appendix. Anisotropic Delaunay surfaces. We summarize important
results about surfaces of revolution with constant anisotropic mean curvature for
a rotationally symmetric energy functional (anisotropic Delaunay surfaces). Such
surfaces were studied in detail by the authors in [4] (see also [5] and [6]).

Let

χ(σ, θ) = (u(σ)eiθ, v(σ))

be a parametrization of the Wulff shape W , where (u(σ), v(σ)) is the arc length
parametrization of the generating curve. We have identified R3 with C × R in the
formula above. We may extend (u(σ), v(σ)) so that it is defined for all real numbers
σ. In this case, (u(σ), v(σ)) represents the section of W by (x1, x3)-plane.
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Consider an anisotropic Delaunay surface Σ parameterized by

X(s, θ) = (x(s)eiθ, z(s)) ,

where (x(s), z(s)) is the arc length parameterization of the generating curve, and
x(s) ≥ 0 holds for all s. The Gauss map of the surface X is given by

ν = (z′(s)eiθ,−x′(s)).

We choose the orientation of the generating curve so that ν points “outward” from the
surface. There is a natural map from the surface to the Wulff shape W defined by the
requirement that the oriented tangent planes to both surfaces agree at corresponding
points. Thus, at corresponding points the outward pointing unit normals must agree
and we have

(41) x′ = uσ , z′ = vσ.

In [4], we showed that the profile curve (x, z) satisfies the equation

(42) 2μ2
−1xz′ + Λx2 = c ,

where Λ is the anisotropic mean curvature and c is a real constant called the flux
parameter. Also, −μ2 is the principal curvature of the Wulff shape in the θ direction.
Since W is a surface of revolution, we have μ2 = μ2(ν3) = μ2(−uσ) = μ2(−x′) by
(41). Computing the principal curvature −μ2 = −vσ/u, (42) can be expressed as

(43) 2ux + Λx2 = c .

The orientation of an anisotropic Delaunay surface may be chosen so that Λ ≤ 0
holds and then the anisotropic Delaunay surfaces fall into six cases as follows:

(I-1) Λ = 0 and c = 0: horizontal plane.
(I-2) Λ = 0 and c �= 0: anisotropic catenoid.

(II-1) Λ < 0 and c = 0: Wulff shape (up to vertical translation and homothety).
(II-2) Λ < 0 and c = ((μ2|ν3=0)

2|Λ|)−1: cylinder of radius (μ2|ν3=0|Λ|)−1.
(II-3) Λ < 0 and ((μ2|ν3=0)

2|Λ|)−1 > c > 0: anisotropic unduloid.
(II-4) Λ < 0 and c < 0: anisotropic nodoid.

Any surface in each case above is complete, and it has similar properties to the
corresponding CMC surface in the sense of the following theorem.

Theorem 6.1 (see [4], [5], [6]).
(i) The generating curve C : (x(s), z(s)) of an anisotropic catenoid is a graph

over the whole z axis, and z′(s) �= 0 for all s. C is perpendicular to the
horizontal line at a unique point.

(ii) Let (x(s), z(s)), x ≥ 0, be the generating curve of an anisotropic unduloid or
an anisotropic nodoid. Then there is a unique local maximum B and a unique
local minimum N > 0 of x, which we will call a bulge and a neck, respectively.

(iii) The generating curve C : (x(s), z(s)) of an anisotropic unduloid is a graph
over the z axis, and z′(s) > 0 for all s. C is a periodic curve with respect
to the vertical translation, and the region from one neck to the next neck
(and/or one bulge to the next bulge) gives one period. Therefore, C has a
unique inflection point (x, z) between each neck and the next bulge, which
satisfies x =

√
c/(−Λ).
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(iv) The curvature of the generating curve C of an anisotropic nodoid has a def-
inite sign. C is a nonembedding periodic curve with respect to the vertical
translation. The region from one neck to the next neck (and/or one bulge to
the next bulge) gives one period.

In the previous sections, we needed a representation formula for the profile curves,
which is summarized in the following result from [4].

Theorem 6.2 (see [4]). Let W be the Wulff shape of a rotationally symmetric
anisotropic surface energy F . Let

σ �→ (u(σ), v(σ)), σ ∈ (−∞,∞),

be the profile curve of W , where σ is the arc length. Then

μ−1
2 vσ − u = 0

holds. Let X(s, θ) = (x(s)eiθ, z(s)) be a surface with constant anisotropic mean cur-
vature Λ ≤ 0, and let the Gauss map of X coincide with that of W at s = s(σ). Then
X is given as follows.

(i) When X is an anisotropic catenoid,

x = c/(2u)

for some nonzero constant c.
(ii) When X is an anisotropic unduloid,

x =
u±

√
u2 + Λc

−Λ

for some constants c > 0 and Λ < 0, where x = x(u(σ)) is defined in {σ|u ≥√
−Λc}.

(iii) When X is an anisotropic nodoid,

x =
u +

√
u2 + Λc

−Λ

for some constants c < 0 and Λ < 0, where x = x(u(σ)) is defined in {−∞ <
σ < ∞}.

In all cases above, z is given by

(44) z =

∫ u

vuxu du.

Conversely, for a Wulff shape W defined as above, define x and z as in (i)–(iii)
and (44). Then X(s, θ) = (x(s)eiθ, z(s)) is an anisotropic Delaunay surface which
satisfies

2μ−1
2 zsx + Λx2 = c,

where s is the arc length of (x, z), and Λ is supposed to be zero for case (i). Moreover,
X has the same regularity as that of W .

Remark 6.1. In (ii) of Theorem 6.2, x = (−Λ)−1(u+
√
u2 + Λc) gives the part of

the anisotropic unduloid whose Gaussian curvature is positive (i.e., the convex part),
while x = (−Λ)−1(u −

√
u2 + Λc) gives the part of the anisotropic unduloid whose

Gaussian curvature is negative.
Remark 6.2. In (iii) of Theorem 6.2, u > 0 corresponds to the part of the

anisotropic nodoid whose Gaussian curvature is positive (i.e., the convex part), while
u < 0 gives the part of the anisotropic nodoid whose Gaussian curvature is negative.
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NAVIER–STOKES EQUATIONS INTERACTING WITH A
NONLINEAR ELASTIC BIOFLUID SHELL∗
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Abstract. We study a moving boundary value problem consisting of a viscous incompressible
fluid moving and interacting with a nonlinear elastic fluid shell. The fluid motion is governed by the
Navier–Stokes equations, while the fluid shell is modeled by a bending energy which extremizes the
Willmore functional and a membrane energy with density given by a convex function of the local
area ratio. The fluid flow and shell deformation are coupled together by continuity of displacements
and tractions (stresses) along the moving surface defining the shell. We prove the existence and
uniqueness of solutions in Sobolev spaces for a short time.

Key words. Navier–Stokes equations, free boundary problems, shell theory, biofluids, Willmore
energy
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1. Introduction.

1.1. The problem statement and background. We are concerned with es-
tablishing the existence and uniqueness of solutions to the time-dependent incompress-
ible Navier–Stokes equations interacting with a nonlinear elastic fluid shell (biomem-
brane) for a short time. Recently, there have been many experimental and analytic
studies on the configurations and deformations of elastic biomembranes (see, for ex-
ample, [3], [11], [13], [16], [17], [18], [19], and [21]), but the basic analysis of the coupled
fluid-structure interaction remains open. The fundamental difficulties arise from the
degenerate elliptic operators that arise as the shell tractions. As we detail below, the
bending energy of the shell is the well-known Willmore function, the integral over the
moving surface of the square of the mean curvature. The degenerate elliptic operator
arising from the first variation of this functional is a fourth order nonlinear operator
that smoothes only in the direction which is normal to the moving domain. Our
analysis will provide a well-posedness theorem and explain the interesting interaction
between the shape of the shell and the flow of the fluid.

Fluid-structure interaction problems involving moving material interfaces have
been the focus of active research since the 1990s. The first problem solved in this
area was for the case of a rigid body moving in a viscous fluid (see [9], [14], and
the early works of [22] and [20] for a rigid body moving in a Stokes flow in the
full space). The case of an elastic body moving in a viscous fluid was considerably
more challenging because of some apparent regularity incompatibilities between the
parabolic fluid phase and the hyperbolic solid phase. The first existence results in
this area were for regularized elasticity laws, such as in [10] for a finite number of
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elastic modes, or in [1], [4], and [2] for hyperviscous elasticity laws, or in [15] in which
a phase-field regularization “fattens” the sharp interface via a diffuse-interface model.

The treatment of classical elasticity laws for the solid phase, without any reg-
ularizing term, was considered only recently in [7] for the three-dimensional linear
St. Venant–Kirchhoff constitutive law and in [8] for quasi-linear elastodynamics cou-
pled to the Navier–Stokes equations. Some of the basic new ideas introduced in those
works concerned a functional framework that scales in a hyperbolic fashion (and is
therefore driven by the solid phase), the introduction of approximate problems either
penalized with respect to the divergence-free constraint in the moving fluid domain or
smoothed by an appropriate parabolic artificial viscosity in the solid phase (chosen in
an asymptotically convergent and consistent fashion), and the tracking of the motion
of the interface by difference quotient techniques.

In our companion paper [5], we study the interaction of the Navier–Stokes equa-
tions with an elastic solid shell. Herein, we treat the case of a fluid shell or bio-
membrane. This is a moving boundary problem that models the motion of a viscous
incompressible Newtonian fluid inside of a deformable elastic fluid structure.

Let Ω ⊂ R
3 denote an open bounded domain with boundary Γ := ∂Ω. For

each t ∈ (0, T ], we wish to find the domain Ω(t), a divergence-free velocity field
u(t, ·), a pressure function p(t, ·) on Ω(t), and a volume-preserving transformation
η(t, ·) : Ω → R

3 such that

Ω(t) = η(t,Ω),(1.1a)

ηt(t, x) = u(t, η(t, x)),(1.1b)

ut + ∇uu− νΔu = −∇p + f in Ω(t),(1.1c)

div u = 0 in Ω(t),(1.1d)

(ν Def u− p Id)n = tshell on Γ(t),(1.1e)

u(0, x) = u0(x) ∀ x ∈ Ω,(1.1f)

η(0, x) = x ∀ x ∈ Ω,(1.1g)

where ν is the kinematic viscosity, n(t, ·) is the outward pointing unit normal to Γ(t),
Γ(t) := ∂Ω(t) denotes the boundary of Ω(t), Def u is twice the rate of deformation
tensor of u, given in coordinates by ui

,j + uj
,i, and tshell is the traction imparted onto

the fluid by the elastic shell, which we describe next.

We shall consider a thin elastic shell modeled by the nonlinear Saint Venant–
Kirchhoff constitutive law. With ε denoting the thickness of the shell, the hyperelastic
stored energy function has the asymptotic expansion

Eshell = εEmem + ε3Eben + O(ε4).

The membrane energy satisfies

(1.2) Emem =

∫
Γ

P(J )dS,

where J is the local area ratio and P is a convex function attaining its minimum at
J = 1, while the bending energy Eben is given by

(1.3) Eben =

∫
Γ(t)

(σH2 − σ1K)dS,
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where H and K denote the mean and Gauss curvatures on Γ(t), respectively, and
where σ and σ1 are positive constants. The traction vector

tshell = εtmem + ε3
tben + O(ε4)

is computed from the first variation of the energy function Eshell; the traction vector
associated with the membrane energy is

(1.4) tmem =
[
JP ′′(J ) + 2P ′(J )

]
J,βg

αβη,α +
[
JP ′(J ) + P(J )

]
Hn,

while the traction associated with the bending energy has a simple intrinsic charac-
terization given by

(1.5) tben = σ(ΔgH − 2HK + 2H3)n,

where Δg denotes the Laplacian with respect to the induced metric g on Γ(t):

Δgf =
1√

det(g)

∂

∂xα

(√
det(g)gαβ

∂f

∂xβ

)
.

In this paper, we ignore the inertia of the shell and focus our analysis on the difficulties
associated with the degenerate elliptic operators in tshell.

1.2. Outline of the paper. In section 2, in addition to the use of Lagrangian
variables, we introduce a new coordinate system near the boundary (shell) and three
new maps, ην , ητ , and h, which facilitate the computation of the membrane and
bending tractions tmem and tben. A key observation is the symmetry relation (2.7)
which reduces the derivative count on the tangential reparameterization map ητ .

The space of solutions (to the problem tmem = 0) is introduced in section 3, and
the main theorem is stated in section 4. Section 5 defines our notation, and section 6
provides some useful lemmas.

In section 7, we introduce the linearized and regularized problems. The regular-
ization requires smoothing certain variables as well as the introduction of a certain
artificial viscosity term on the boundary of the fluid domain. Weak solutions of this
linear problem are established via a penalization scheme which approximates the in-
compressibility of the fluid.

In section 8, we establish a regularity theory for our weak solution using energy
estimates for the mollified problem with constants that depend on the mollification
parameters. In section 9, we improve these estimates so that the constants are in-
dependent of the artificial viscosity as well as other regularization parameters. This
requires an elliptic estimate, arising from the boundary condition (1.1e), which pro-
vides additional regularity for the shape of the boundary.

In section 10, the Tychonoff fixed-point theorem is used to prove the existence
of solutions to the original nonlinear problem (1.1). Uniqueness, following required
compatibility conditions, is established in sections 4 and 10.

In section 11, we consider the inclusion of the lower order membrane traction into
the problem formulation so that the full problem is solved.

The inclusion of the inertial term ε1ηtt into the membrane traction tmem will be
studied in a future publication.

2. Lagrangian formulation.

2.1. A new coordinate system near the shell. Consider the isometric im-
mersion η0 : (Γ, g0) → (R3, Id). Let B = Γ × (−ε1, ε1), where ε1 is chosen sufficiently
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small so that the map

B : B → R
3 : (y, z) �→ y + zN(y)

is itself an immersion, defining a tubular neighborhood of Γ in R
3. We can choose

a coordinate system ∂
∂yα , α = 1, 2, and ∂

∂z on B, where ∂
∂yα denotes the tangential

derivative and ∂
∂z denotes the normal derivative.

Let G = B∗(Id) denote the induced metric on B from R
3 so that

G(y, z) = Gz(y) + dz ⊗ dz,

where Gz is the metric on the surface Γ × {z}; note that G0 = g0.

Remark 1. By assumption, g0αβ = ∂
∂yα · ∂

∂yβ , where · denotes the usual Carte-
sian inner product on R

n. Let Cαβ denote the covariant components of the second
fundamental form of the base manifold Γ so that Cαβ = −N,α · ∂

∂yβ . Then Gz is given
by

(Gz)αβ = (g0)αβ − 2zCαβ + z2gγδ0 CαγCβδ.

Let h : Γ → (−ε1, ε1) be a smooth height function and consider the graph of h
in B, parameterized by φ : Γ → B : y �→ (y, h(y)). The tangent space to graph(h),
considered as a submanifold of B, is spanned at a point φ(x) by the vectors

φ∗

(
∂

∂yα

)
=

∂φ

∂yα
=

∂

∂yα
+

∂h

∂yα
∂

∂z
,

and the normal to graph(h) is given by

(2.1) n(y) = J−1
h (y)

(
−Gαβ

h(y)

∂h

∂yα
∂

∂yβ
+

∂

∂z

)
,

where Jh = (1 + h,αG
αβ
h(y)h,β)1/2. The mean curvature H of graph(h) is defined to be

the trace of ∇n, where

(∇n)ij = G

(
∇B

∂
∂wi

n,
∂

∂wj

)
for i, j = 1, 2, 3,

where ∂
∂wα = ∂

∂yα for α = 1, 2 and ∂
∂w3 = ∂

∂z , and ∇B denotes the covariant derivative.

Using (2.1),

(∇n)αβ = G

(
∇B

∂
∂yα

[
−J−1

h Gγδ
h h,γ

∂

∂yδ
+ J−1

h

∂

∂z

]
,

∂

∂yβ

)

= −(Gh)δβ

[
(J−1

h Gγδ
h h,γ),α + J−1

h (−Gγσ
h h,γΓδ

ασ + Γδ
α3)

]
;

(∇n)33 = G

(
∇B

∂
∂z

[
−J−1

h Gγδ
h h,γ

∂

∂yδ
+ J−1

h

∂

∂z

]
,
∂

∂z

)
= J−1

h (−Gγδ
h h,γΓ3

3δ + Γ3
33),

where Γk
ij denotes the Christoffel symbols with respect to the metric G. It follows

that the curvature of graph(h) (in the divergence form) is

(2.2) H = −(J−1
h Gγδ

h h,γ),δ + J−1
h (−Gγδ

h h,γΓj
jδ + Γj

j3),
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y ητ(y,t)

ην(y,t)

η(y,t)

h(y,t)

Γ(t)

Γ
0

Fig. 1. The maps ητ and ην .

or (in the quasi-linear form)

(2.3) H = −J−1
h Gαβ

h

[
δβγ − J−2

h Gγδ
h h,βh,δ

]
h,αγ + Gαβ

h Fαβ(y, h,∇h),

where Fαβ denotes a smooth generic function of y, h, and ∇h.
Remark 2. Note that Gh denotes the metric Gz=h(y) and not the metric on the

submanifold graph(h).
Remark 3. If the initial height function is zero, i.e., h(0) = 0, then H(0) =

Γj
j3(0) which is the mean curvature of the base manifold Γ as required.

2.2. Tangential reparameterization symmetry. Let N denote the normal
bundle to Γ so that for each y ∈ Γ we have the Whitney sum R

3 = TyΓ ⊕Ny.
Given a signed height function h : Γ × [0, T ) → R, for each t ∈ [0, T ), define the

normal map (see Figure 1)

ην : Γ × [0, T ) → Γ(t), (y, t) �→ y + h(y, t)N(y), N(y) ∈ Ny.

Then there exists a unique tangential map ητ : Γ × [0, T ) → Γ (a diffeomorphism as
long as h remains a graph) such that the diffeomorphism η(t) has the decomposition

η(·, t) = ην(·, t) ◦ ητ (·, t), η(y, t) = ητ (y, t) + h(ητ (y, t), t)N(ητ (y, t)).

The tangent vector η,α to Γ(t) can be decomposed with respect to the Whitney sum
as η,α(y, t) = ηκ,α(y, t) ∂

∂yκ + h,κ(ητ (y, t), t)ηκ,α
∂
∂z , and hence the induced metric gαβ =

η,α · η,β may be expressed as

(2.4) gαβ =
[(

(Gh)κσ + h,κh,σ

)
◦ ητ

]
ηκ,αη

σ
,β :=

[
Gκσ ◦ ητ

]
ηκ,αη

σ
,β .

Note that Gκσ is the induced metric with respect to the normal map ην . Furthermore,
we have the following useful relationship between the determinant of the two induced
metrics:

(2.5) det(g) = det(∇0η
τ )2

[
det(Gh)J2

h

]
◦ ητ = det(∇0η

τ )2
[
det(G)

]
◦ ητ ,

where ∇0 denotes the surface gradient.
Remark 4. The identity (2.4) can also be read as (ητ )∗g = G.
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Let y and ỹ = ϕ(y) denote two different coordinate systems on Γ with associated
metrics

gαβ =
∂ηi

∂yα
∂ηi

∂yβ
, g̃αβ =

∂ηi

∂ỹα
∂ηi

∂ỹβ
.

It follows that ϕ∗g̃ = g. Let H, H̃, K, K̃, n, and ñ denote the mean curvature, Gauss
curvature, and the unit normal vector computed with respect to y and ỹ, respectively.
Since H, K, and n depend only on the shape of Γ(t), these geometric quantities are
invariant to tangential reparameterization; thus, we have the identity

(2.6) H̃ = H ◦ ϕ, K̃ = K ◦ ϕ, ñ = n ◦ ϕ.

Similarly, computing the first variation of
∫
Γ(t)

H2dS in our two coordinate sys-

tems yields[(
ΔgH + H(H2 −K)

)
n
]
(y) =

[(
Δg̃H̃ + H̃(H̃2 − K̃)

)
ñ
]
(ỹ) ∀ ỹ = ϕ(y).

By (2.6), we have the following important identity:

(2.7)
[
Δϕ∗g̃H

]
(y) =

[
Δg̃(H ◦ ϕ)

]
(ỹ) ∀ ỹ = ϕ(y),

and hence

(2.8) [ΔG(H ◦ η−τ )] ◦ ητ = ΔgH,

where by (2.3),

(2.9) H ◦ η−τ = −J−1
h Gαβ

h

[
δβγ − J−2

h Gγδ
h h,βh,δ

]
h,αγ + Gαβ

h Fαβ(y, h,∇h).

2.3. Bounds on ητ . Let uτ denote the tangential velocity defined by ητt =
uτ ◦ ητ . Time differentiating the relation η = ην ◦ ητ and using the definition of ην ,
we find that

(2.10) uτ = (∇0η
ν)−1

[
u ◦ ην − ht

∂

∂z

]
.

From the trace theorem, it follows that

(2.11) ‖uτ‖H2.5(Γ) ≤ CP(‖h‖H3.5(Γ), ‖η‖H3(Ω))
[
‖v‖H3(Ω) + ‖ht‖H2.5(Γ)

]
for some polynomial P. Since ητ (y, t) = y +

∫ t

0
(uτ ◦ ητ )(y, s)ds, it follows that

‖∇0η
τ (y, t)‖H1.5(Γ) ≤ C

[
1 +

∫ t

0

‖uτ‖H2.5(Γ)

(
1 + ‖∇0η

τ‖H1.5(Γ)

)4

ds

]
,

and hence by Gronwall’s inequality,

(2.12) ‖∇0η
τ (y, t)‖H1.5(Γ) ≤ C

[
1 +

∫ t

0

‖uτ‖H2.5(Γ)ds

]

for t ∈ [0, T ] sufficiently small. Furthermore, we also have

(2.13) ‖ητt (y, t)‖H2.5(Γ) ≤ C‖uτ‖H2.5(Γ)

[
1 + ‖∇0η

τ‖H1.5(Γ)

]4

.
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2.4. An expression for tben in terms of h and ητ . Now we can compute
tben in terms of h and ητ : the highest order term of ΔgH is{

1√
det(G)

∂

∂yγ

[√
det(G)Gγδ ∂

∂yδ

(
J−1
h (Gαβ

h − J−2
h Gακ

h Gβσ
h h,κh,σ)h,αβ

)]}
◦ ητ .

Since Gαβ = (Gh)αβ + h,αh,β , the inverse of Gγδ is

1

det(G)

[
(Gh)22 + h2

,2 −(Gh)12 − h,1h,2

−(Gh)12 − h,1h,2 (Gh)11 + h2
,1

]
,

which can also be written as

Gαβ = J−2
h

[
Gαβ

h − (−1)κ+σ det(Gh)−1(1 − δακ)(1 − δβσ)h,κh,σ

]
.

Therefore, the highest order term of ΔgH can be written as

1√
det(g0)

[√
det(g0)A

αβγδh,αβ

]
,γδ

◦ ητ ,

where

Aαβγδ = J−3
h

[
Gαγ

h − (−1)κ+σ det(Gh)−1(1 − δακ)(1 − δγσ)h,κh,σ

]
(2.14)

× (Gβδ
h − J−2

h Gβκ
h Gδσ

h h,κh,σ)

is a fourth-rank tensor.

2.5. Lagrangian formulation of the problem. Let η(t, x) = x+
∫ t

0
u(s, x)ds

denote the Lagrangian particle placement field, a volume-preserving embedding of Ω
onto Ω(t) ⊂ R

3, and denote the cofactor matrix of ∇η(x, t) by

(2.15) a(x, t) = [∇η(x, t)]−1.

Let v = u ◦ η denote the Lagrangian or material velocity field, q = p ◦ η the
Lagrangian pressure function, and F = f ◦ η the forcing function in the material
frame. In the following discussion, we also set ε = 1. Then the system (1.1) can be
reformulated as

ηt = v in (0, T ) × Ω,(2.16a)

vit − ν(aj�Dη(v)
i
�),j = −(aki q),k + F i in (0, T ) × Ω,(2.16b)

aki v
i
,k = 0 in (0, T ) × Ω,(2.16c)

(νDη(v)
i
� − qδi�)a

j
�Nj = σΘ

[
L(h)B∗(−Gαβ

h h,α, 1)
]
◦ ητ on (0, T ) × Γ,(2.16d)

ht = B∗((−Gαβ
h h,α, 1)) · (v ◦ η−τ ) on (0, T ) × Γ,(2.16e)

v = u0 on {t = 0} × Ω,(2.16f)

h = 0 on {t = 0} × Γ,(2.16g)

η = Id on {t = 0} × Ω,(2.16h)

where Dη(v)
i
� := (ak� v

i
,k + aki v

�
,k), N denotes the outward-pointing unit normal to Γ,

Θ is defined in Remark 5, and B∗ is the pushforward of B defined as

B∗(γ
′(0)) = (B ◦ γ)′(0) ∀ γ(t) ⊂ Γ.
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L(h) is the representation of tshell · n using the height function h. It is defined as
follows:

L(h) =
1√

det(g0)

[√
det(g0)A

αβγδh,αβ

]
,γδ

+ Lαβγ
1 (y, h,Dh,D2h)h,αβγ

+ L2(y, h,Dh,D2h),

where L1 and L2 are polynomials of their variables with L1(y, 0) = 0, and g0 is the
metric tensor on Γ. Note that tmem is included in L2, since it is a second order
operator of h.

Remark 5. For a point η(y, t) ∈ Γ(t), there are two ways of defining the unit
normal n to Γ(t):

1. Let n =
√
g−1aTN , where N is the unit normal to Γ.

2. Let n = [J−1
h (−Gαβ

h h,α
∂

∂yβ + ∂
∂z )] ◦ ητ (denoted by [J−1

h (−∇0h, 1)] ◦ ητ ).
The function Θ is defined by

Θ(−∇0h ◦ ητ , 1) = aTN.

Equating the modulus of both sides, by (2.5) we must have

Θ =
√

det(g)[(J−1
h ) ◦ ητ ] = det(∇0η

τ )
√

det(Gh) ◦ ητ .

Remark 6. An equivalent form of (2.16e) is given by

ht = −h,α(v ◦ η−τ )α + (v ◦ η−τ )z.

This equation states that the shape of the boundary moves with the normal velocity of
the fluid.

Remark 7. For many of the nonlinear estimates that appear later, it is important
that L(h) is linear in the third derivative h,αβγ .

Remark 8. Without using the symmetry (2.8), we can still compute ΔgH in
terms of h and ητ by using (2.4) and (2.5); however, L1 would then depend on ∇2

0η
τ

and thus lose one derivative of regularity, preventing the closure of our energy esti-
mate.

3. Notation and conventions. For T > 0, we set

V1(T ) =
{
v ∈ L2(0, T ;H1(Ω))

∣∣∣ vt ∈ L2(0, T ;H1(Ω)′)
}

;

V2(T ) =
{
v ∈ L2(0, T ;H2(Ω))

∣∣∣ vt ∈ L2(0, T ;L2(Ω))
}

;

Vk(T ) =
{
v ∈ L2(0, T ;Hk(Ω))

∣∣∣ vt ∈ L2(0, T ;Hk−2(Ω))
}

for k ≥ 3;

H(T ) =
{
h ∈ L2(0, T ;H5.5(Γ))

∣∣∣ ht ∈ L2(0, T ;H2.5(Γ)), htt ∈ L2(0, T ;H0.5(Γ))
}

with norms

‖v‖2
V1(T ) = ‖v‖2

L2(0,T ;H1(Ω)) + ‖vt‖2
L2(0,T ;H1(Ω)′);

‖v‖2
V2(T ) = ‖v‖2

L2(0,T ;H2(Ω)) + ‖vt‖2
L2(0,T ;L2(Ω));

‖v‖2
Vk(T ) = ‖v‖2

L2(0,T ;Hk(Ω)) + ‖vt‖2
L2(0,T ;Hk−2(Ω)) for k ≥ 3;

‖h‖2
H(T ) = ‖h‖2

L2(0,T ;H5.5(Γ)) + ‖ht‖2
L2(0,T ;H2.5(Γ)) + ‖htt‖2

L2(0,T ;H0.5(Γ)).
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We then introduce the space (of “divergence-free” vector fields)

Vv =
{
w ∈ H1(Ω)

∣∣∣ aji (t)wi
,j = 0 ∀ t ∈ [0, T ]

}
and

Vv(T ) =
{
w ∈ L2(0, T ;H1(Ω))

∣∣∣ aji (t)wi
,j = 0 ∀ t ∈ [0, T ]

}
,

where the cofactor matrix a is defined by (2.15). We use XT to denote the space
V3(T ) ×H(T ) with norm

‖(v, h)‖2
XT

= ‖v‖2
V3(T ) + ‖h‖2

H(T )

and use YT , a subspace of XT , to denote the space

YT =
{

(v, h) ∈ V3(T ) ×H(T )
∣∣∣ ht ∈ L∞(0, T ;H2(Γ))

}
with norm

‖(v, h)‖2
YT

= ‖(v, h)‖2
XT

+ ‖v‖2
L∞(0,T ;H2(Ω)) + ‖h‖2

L∞(0,T ;H4(Γ))

+ ‖ht‖2
L∞(0,T ;H2(Γ)).

We will solve (2.16) by a fixed-point method in an appropriate subset of YT .

4. The main theorem. Before stating the main theorem, we define the follow-
ing quantities. Let q0 be defined by

Δq0 = −∇u0 : (∇u0)
T + ν[ak�Dη(u0)

i
�],ki(0) + divF (0) in Ω,(4.1a)

q0 = ν(Def u0 ·N) ·N − σL(0) on Γ(4.1b)

and

(4.2) u1 = νΔu0 −∇q0 + F (0).

We also define the projection operator Pij(x) : R
3 → Tη(x,t)Γ(t) by

Pij(x) = [δij − (J−2
h ◦ ητ )aki a�jNk(x)N�(x)] =

[
δij −

akiNk(x)

|akiNk(x)|
a�jN�(x)

|a�jN�(x)|

]
.

Theorem 4.1. Let ν > 0, σ > 0 be given, and

F ∈ L2(0, T ;H2(Ω)), Ft ∈ L2(0, T ;L2(Ω)), F (0) ∈ H1(Ω).

Suppose that the shell traction satisfies the compatibility condition

(4.3) [Def u0 ·N ]tan = 0.

There exists T > 0 depending on u0 and F such that there exists a solution (v, h) ∈ YT

of problem (2.16). Moreover, if u0 ∈ H5.5(Ω)∩H7.5(Γ) and the associated u1, q0 also
satisfy the compatibility condition

CP :=
[
gki0 uj

0,kNjN� + gk�0 uj
0,kNjNi

][
ν(Def u0)

j
i − q0δ

j
i

]
Nj

+ ν(δi� −NiN�)
[
(Def u1)

j
i −

(
(∇u0∇u0) + (∇u0∇u0)

T
)j

i

]
Nj(4.4)

− (δi� −NiN�)
[
ν(Def u0)

j
i − q0δ

j
i

]
uk

0,jNk = 0,

then the solution (v, h) ∈ YT is unique.
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5. A bounded convex closed set of YT .
Definition 5.1. Given M > 0, let CT (M) denote the subset of YT consisting of

elements of (v, h) in YT such that

(5.1) ‖(v, h)‖2
YT

≤ M

and such that v(0) = u0, h(0) = 0, and ht(0) = (B0)∗((0, 1)) · u0.
Remark 9. For (v, h) ∈ CT (M), define uτ by (2.10) and let ητ be the associated

flow map. Also define vτ as uτ ◦ ητ . By (2.12) and (2.13), we have

(5.2) sup
t∈[0,T ]

‖∇0η
τ (t)‖H1.5(Γ) + ‖vτ‖2

L2(0,T ;H2.5(Γ)) ≤ C(M)

for some constant C(M).
We will make use of the following lemmas (proved in [7]).
Lemma 5.2. There exists T0 ∈ (0, T ) such that for all T ∈ (0, T0) and for all

v ∈ CT (M), the matrix a is well defined (by (2.15)) with the estimate (independent
of v ∈ CT (M))

‖a‖L∞(0,T ;H2(Ω)) + ‖at‖L∞(0,T ;H1(Ω)) + ‖at‖L2(0,T ;H2(Ω))

+ ‖att‖L∞(0,T ;L2(Ω)) + ‖att‖L2(0,T ;H1(Ω)) ≤ C(M).(5.3)

Lemma 5.3. There exist T1 ∈ (0, T ) and a constant C (independent of M) such
that for all T ∈ (0, T1) and v ∈ CT (M), for all φ ∈ H1(Ω) and t ∈ [0, T ]

(5.4) C‖φ‖2
H1(Ω) ≤

∫
Ω

[
|v|2 + |Dη(v)|2

]
dx,

where

|Dη(v)|2 := Dη(v)
i
jDη(v)

i
j = (akj v

i
,k + akj v

i
,k)(a

�
jv

i
,� + a�iv

j
,�).

In the remainder of the paper, we will assume that

0 < T < min{T0, T1, T̄}

for some fixed T̄ where the forcing F is defined on the time interval [0, T̄ ].

6. Preliminary results.

6.1. Pressure as a Lagrange multiplier. In the following discussion, we use
H1;2(Ω; Γ) to denote the space H1(Ω) ∩H2(Γ) with norm

‖u‖2
H1;2(Ω;Γ) = ‖u‖2

H1(Ω) + ‖u‖2
H2(Γ)

and V̄v̄ (V̄v̄(T )) to denote the space{
v ∈ Vv̄

∣∣∣ v ∈ H2(Γ)
}({

v ∈ Vv̄(T )
∣∣∣ v ∈ L2(0, T ;H2(Γ))

})
.

Lemma 6.1. For all p ∈ L2(Ω), t ∈ [0, T ], there exist a constant C > 0 and
φ ∈ H1;2(Ω; Γ) such that aji (t)φ

i
,j = p and

(6.1) ‖φ‖H1;2(Ω;Γ) ≤ C‖p‖L2(Ω).
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Proof. We solve the following problem on the time-dependent domain Ω(t):

div(φ ◦ η(t)−1) = p ◦ η(t)−1 in η(t,Ω) := Ω(t).

The solution to this problem can be written as the sum of the solutions to the following
two problems:

div(φ ◦ η(t)−1) = p ◦ η(t)−1 − p̄(t) in η(t,Ω),(6.2)

div(φ ◦ η(t)−1) = p̄(t) in η(t,Ω),(6.3)

where p̄(t) = 1
|Ω|

∫
Ω
p(t, x)dx. The existence of the solution to problem (6.2) with zero

boundary condition is standard (see, for example, [12, Chapter 3]), and the solution
to problem (6.3) can be chosen as a linear function (linear in x), for example, p̄(t)x1.
The estimate (6.1) follows from the estimates of the solutions to (6.2).

Define the linear functional on H1;2(Ω; Γ) by (p, aji (t)ϕ
i
,j)L2(Ω), where ϕ ∈

H1;2(Ω; Γ). By the Riesz representation theorem, there is a bounded linear opera-
tor Q(t) : L2(Ω) → H1;2(Ω; Γ) such that for all ϕ ∈ H1;2(Ω; Γ),

(p, aji (t)ϕ
i
,j)L2(Ω) = (Q(t)p, ϕ)H1;2(Ω;Γ) := (Q(t)p, ϕ)H1(Ω) + (Q(t)p, ϕ)H2(Γ).

Letting ϕ = Q(t)p shows that

‖Q(t)p‖H1;2(Ω;Γ) ≤ C‖p‖L2(Ω)

for some constant C > 0. By Lemma 6.1,

‖p‖2
L2(Ω) ≤ ‖Q(t)p‖H1;2(Ω;Γ)‖ϕ‖H1;2(Ω;Γ) ≤ C‖Q(t)p‖H1;2(Ω;Γ)‖p‖L2(Ω),

which shows that R(Q(t)) is closed in H1;2(Ω; Γ). Since V̄v(t) ⊂ R(Q(t))⊥ and
R(Q(t))⊥ ⊂ V̄v(t), it follows that

(6.4) H1;2(Ω; Γ)(t) = R(Q(t)) ⊕H1;2(Ω;Γ) V̄v(t).

We can now introduce our Lagrange multiplier.
Lemma 6.2. Let L(t) ∈ H1;2(Ω; Γ)

′
be such that L(t)ϕ = 0 for any ϕ ∈ V̄v(t).

Then there exists a unique q(t) ∈ L2(Ω), which is termed the pressure function, sat-
isfying

∀ ϕ ∈ H1;2(Ω; Γ), L(t)(ϕ) = (q(t), aji (t)ϕ
i
,j)L2(Ω).

Moreover, there is a C > 0 (which does not depend on t ∈ [0, T ] and ε1 and on the
choice of v ∈ CT (M)) such that

‖q(t)‖L2(Ω) ≤ C‖L(t)‖H1;2(Ω;Γ)′ .

Proof. By the decomposition (6.4), for given ã, let ϕ = v1 + v2, where v1 ∈ Vv(t)
and v2 ∈ R(Q(t). It follows that

L(t)(ϕ) = L(t)(v2) = (ψ(t), v2)H1;2(Ω;Γ) = (ψ(t), ϕ)H1;2(Ω;Γ)

for a unique ψ(t) ∈ R(Q(t)).
From the definition of Q(t) we then get the existence of a unique q(t) ∈ L2(Ω)

such that

∀ ϕ ∈ H1;2(Ω; Γ), L(t)(ϕ) = (q(t), aji (t)ϕ
i
,j)L2(Ω).

The estimate stated in the lemma is then a simple consequence of (6.1).
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6.2. Estimates for a and h. We make use of near-identity transformations.
The following lemmas can be found in [7].

Lemma 6.3. There exist K > 0 and T0 > 0 such that if 0 < t ≤ T0, then, for
any (ṽ, h̃) ∈ CT0(M),

‖ãT − Id‖L∞(0,T ;C0(Ω0))
≤ K

√
t,(6.5a)

‖ã− Id‖L∞(0,T ;H2(Ω)) ≤ K
√
t,(6.5b)

‖ãt − ãt(0)‖L∞(0,T ;H1(Ω)) ≤ C(M)t,(6.5c)

‖ãt‖L∞(0,T ;H1(Ω)) ≤ K.(6.5d)

We also need the following lemma.

Lemma 6.4. For any (ṽ, h̃) ∈ CT0
(M),

(6.6) ‖h̃‖H3.5(Γ) ≤ CMt1/4

for all 0 < t ≤ T0.
Proof. For (ṽ, h̃) ∈ CT (M), ‖h̃‖2

H4(Γ) + ‖h̃t‖2
H2(Γ) ≤ M . By h̃(0) = 0,

‖h̃(t)‖H2(Γ) ≤
∫ t

0

‖h̃t‖H2(Γ)ds ≤
√
Mt.

Finally, the interpolation inequality

(6.7) ‖∇2
0f(t)‖H1.5(Γ) ≤ C‖∇4

0f‖
3/4
L2(Γ)‖∇

2
0f‖

1/4
L2(Γ)

implies

‖h̃‖H3.5(Γ) ≤ C‖h̃‖3/4
H4(Γ)‖h̃‖

1/4
H2(Γ) ≤ CMt1/4.

Corollary 6.5. ‖L1(t)‖H1.5(Γ) and ‖L2(t)‖H1.5(Γ) converge to zero as t → 0,
uniformly in (v, h) ∈ CT0(M). Furthermore, for t ≤ 1,

‖L1(t)‖H1.5(Γ) + ‖L2(t)‖H1.5(Γ) ≤ C(M)t1/4.

By the fact that ‖h̃t‖2
H2(Γ) ≤ M and ‖h̃tt‖2

L2(0,T ;H0.5(Γ)) ≤ M if (ṽ, h̃) ∈ CT (M),
similar computations lead to the following lemma.

Lemma 6.6. For all (ṽ, h̃) ∈ CT (M),

(6.8) ‖h̃t(t)‖H1.5(Γ) ≤ CMt1/8

for all 0 < t ≤ T .

7. The linearized problem. Suppose that (ṽ, h̃) ∈ CT (M) is given. Let η̃(t) =

Id +
∫ t

0
ṽ(s)ds and ã = (∇η̃)−1. We are concerned with the following time-dependent

linear problem, whose fixed point v = ṽ provides a solution to (2.16):

vit − ν[ãk�Dη̃(v)
i
�],k = −(ãki q),k + F i in (0, T ) × Ω,(7.1a)

ãjiv
i
,j = 0 in (0, T ) × Ω,(7.1b)

[νDη̃(v)
j
i − qδji ]ã

�
jN� = σΘ̃

[
Lh̃(h)(−∇0h̃, 1)

]
◦ η̃τ on (0, T ) × Γ,(7.1c)

+ σΘ̃
[
[M(h̃)(−∇0h̃, 1)] ◦ η̃τ

]
ht ◦ η̃τ = [h̃,α ◦ η̃τ ]vα − vz on (0, T ) × Γ,(7.1d)

v = u0 on {t = 0} × Ω,(7.1e)

h = 0 on {t = 0} × Γ,(7.1f)
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where Dη̃(v)
j
i = ãki v

j
,k + ãkj v

i
,k, Θ̃ = det(∇0η̃

τ ), and

Lh̃(h) =
1√

det(g0)

[√
det(g0)Ã

αβγδh,αβ

]
,γδ

with

Ãαβγδ = J−3

h̃

√
det(Gh̃)

[
Gαγ

h̃
− (−1)κ+σ det(Gh̃)−1(1 − δακ)(1 − δγσ)h̃,κh̃,σ

]
× (Gβδ

h̃
− J−2

h̃
Gβμ

h̃
Gδν

h̃
h̃,μh̃,ν)

and

M(h̃) =
√

det(Gh̃) ◦ η̃τ
[
Lαβγ

1 (y, h̃,Dh̃,D2h̃)h̃,αβγ + L2(y, h̃,Dh̃,D2h̃)
]
.

Here the thickness ε1 is assumed to be 1.

We will also use Lh̃(h) to denote Lh̃(h) + M(h̃).

Remark 10. Lh̃ is a coercive fourth order operator for small h̃ ≤ δ. Actually,
it is easy to see that Lh̃ is coercive at time t = 0, and the coercivity of Lh̃ for t > 0

(but sufficiently small) follows from the continuity of h̃ in time into the space H2(Γ).
Moreover, by Lemma 6.4, we have the following corollary.

Corollary 7.1. There exist ν1 > 0 and 0 < T ≤ T0 such that for all 0 < t ≤ T ,

ν1‖∇2
0f(t)‖2

L2(Γ) ≤
∫

Γ

Ãαβγδf,αβ(t)f,γδ(t)dS

for all 0 < t ≤ T . Later we will denote the right-hand side quantity of this inequality
by Eh̄(f), where the subscript h̄ indicates that Ā is a function of h̄.

Remark 11. Given (ṽ, h̃) ∈ V3(T ) ×H(T ), for the corresponding η̃τ , we have

‖η̃τ‖2
L∞(0,T ;H2.5(Ω)) + ‖η̃τt ‖2

L2(0,T ;H2.5(Γ)) ≤ C(M),

where (2.13) and (2.12) are used to obtain this estimate.

The solution of (7.1) is found as a weak limit of a sequence of regularized problems.

Definition 7.2 (mollifiers on Γ). For ε1 > 0, let

Kp
ε1 := (1 − ε1Δ0)

− p
2 : Hs(Γ) → Hs+p(Γ)

denote the usual self-adjoint Friedrich mollifier on the compact manifold Γ, where Δ0

is the surface Laplacian defined on Γ.

By the Sobolev extension theorem, there exist bounded extension operators

Es : Hs(Ω) → Hs(Rn), s ≥ 1.

For fixed (but small) ε1 and ε11 > 0, let ρε1 be a (positive) smooth mollifier on R
n. Set

v̄ = ρε1 ∗E1(ṽ), F̃ = ρε1 ∗E2(F ), ũ0 = ρε1 ∗E3(u0), where ∗ denotes the convolution

in space, and h̄ = Km
ε1 (h̃) for large enough m. Define η̄ and ā in the same fashion as

η̃ and ã. Note that v̄ → ṽ ∈ V (T ), F̃ → F in V2(T ), ũ0 → u0 in H2.5(Ω), and h̄ → h̃
in H(T ) as ε1 → 0.

The regularized problem takes the form
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vit − ν[āk�Dη̄(v)
i
�],k = −(āki q),k + F̃ i in (0, T ) × Ω,(7.2a)

ājiv
i
,j = 0 in (0, T ) × Ω,(7.2b)

[νDη̄(v)
j
i − qδji ]ā

�
jN� = σLε2

h̄
(hε2)(−∇0h̄ ◦ η̄τ , 1)

+ σMε2
h̄

(−∇0h̄ ◦ η̄τ , 1) + κΔ2
0v on (0, T ) × Γ,(7.2c)

ht ◦ η̄τ = [(h̄,α) ◦ η̄τ ]vα − vz on (0, T ) × Γ,(7.2d)

v = ũ0 on {t = 0} × Ω,(7.2e)

h = 0 on {t = 0} × Γ,(7.2f)

where

L̄ε2
h̄

(f) =
Θ̄√

det(g0)

[(√
det(g0)Ā

αβγδf,αβ

)
,γδ

]ε2
◦ η̄τ ,

M̄ε2
h̄

= Θ̄
[(

Lαβγ
1 (·, h̄, Dh̄,D2h̄)h̄,αβγ + L2(·, h̄, Dh̄)

)ε2]ε2
◦ η̄τ (y, t).

Note that L̄ε2
h̄

(f) + M̄ε2
h̄

= Θ̄
[
Lh̄(f)

]ε2 ◦ η̄τ .
7.1. Weak solutions.

Definition 7.3. A vector v ∈ V̄v̄(T ) with vt ∈ V̄v̄(T )′ for almost all (a.a.)
t ∈ (0, T ) is a weak solution of (7.2), provided that

(i) 〈vt, ϕ〉 +
ν

2

∫
Ω

Dη̄v : Dη̄ϕdx + σ

∫
Γ

Āαβγδhε2
,αβ

[
−h̄,σ(ϕσ ◦ η̄−τ )(7.3a)

+ (ϕz ◦ η̄−τ )
]ε2
,γδ

dS + κ

∫
Γ

Δ0v · Δ0ϕdS = 〈F̃ , ϕ〉 − σ〈Mε2
h̄
, ϕ〉Γ,

(ii) v(0, ·) = ũ0(7.3b)

for a.a. t ∈ [0, T ], where 〈·, ·〉 denotes the duality product between V̄v(t) and its dual
V̄v(t)

′, and h is given by the evolution equation (7.2d) and the initial condition (7.2f):

(7.4) h(y, t) =

∫ t

0

[
−h̄,α(y, s)vα(η̄−τ (y, s), 0, s) + vz(η̄−τ (y, s), 0, s)

]
ds.

7.2. Penalized problems. Letting θ > 0 denote the penalized parameter, we
define wθ (also with ε1 and ε11 dependence in mind) to be the “unique” solution of
the problem (whose existence can be obtained via a modified Galerkin method which
will be presented in the following sections):

(i) 〈wθt, ϕ〉 +
ν

2

∫
Ω

Dη̄wθ : Dη̄ϕdx + σ

∫
Γ

Āαβγδhε2
,αβ

[
−h̄,σ(ϕσ ◦ η̄−τ )

+ (ϕz ◦ η̄−τ )
]ε2
,γδ

dS + κ

∫
Γ

Δ0v · Δ0ϕdS +

(
1

θ
ājiv

i
,j , ā

�
kϕ

k
,�

)
L2(Ω)

(7.5a)

= 〈F̃ , ϕ〉 − σ〈M̄ε2
h̄

(−∇0h̄ ◦ η̄τ , 1), ϕ〉Γ,
(ii) v(0, ·) = ũ0,(7.5b)

where 〈·, ·〉 denotes the pairing between H1(Ω) and its dual, and h in (7.5a) satisfies
(7.4) with v replaced by wθ.
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7.3. Weak solutions for the penalized problem. The goal of this section is
to establish the existence of v to the problem (7.2) (or the weak formulation (7.3)), as
well as the energy inequality satisfied by v and vt. Before proceeding, we introduce
variables q̃0 and w̃1 as follows: let q̃0 be the solution of the Laplace equation

Δq̃0 = ∇ũ0 : (∇ũ0)
t − div F̃ (0) in Ω,(7.6a)

q̃0 = ν(Def ũ0)
j
iNiNj − σMε2

0 (0) + κΔ2
0ũ0 ·N on Γ(7.6b)

and w̃1 be defined by

(7.7) w̃1 = νΔũ0 −∇q̃0 + F̃ (0).

By elliptic regularity,

‖q̃0‖2
H1(Ω) ≤ C

[
‖ũ0‖2

H2(Ω) + ‖F̃ (0)‖2
L2(Ω) + ‖Mε2

0 (0)‖2
H0.5(Γ) + ‖Δ2

0ũ0‖2
H0.5(Γ)

]
≤ C(M)

[
‖ũ0‖2

H2(Ω) + ‖ũ0‖2
H4.5(Γ) + ‖F̃ (0)‖2

L2(Ω) + 1
]
,

and hence

‖w̃1‖2
L2(Ω) ≤ C(M)

[
‖ũ0‖2

H2(Ω) + ‖ũ0‖2
H4.5(Γ) + ‖F̃ (0)‖2

L2(Ω) + 1
]
.

Remark 12. By (6.6), the constant C(M) in the estimates above can also be
refined as a constant independent of M if T is chosen small enough.

By introducing a (smooth) basis (e�)
∞
�=1 of H1;2(Ω; Γ), taking the approximation

at rank m ≥ 2 under the form w�(t, x) =
∑�

k=1 dk(t)ek(x) with

(7.8) h�(y, t) =

∫ t

0

[
−h̄,α(y, s)wα

� (η̄−τ (y, s), 0, s) + wz
� (η̄

−τ (y, s), 0, s)
]
ds,

and satisfying on [0, T ],

(i) (w�tt, ϕ)L2(Ω) + ν(ājiw�t,j , ā
k
i ϕ,k)L2(Ω) + ν((āji ā

k
i )tw�, ϕ,k)L2(Ω)

(7.9a)

+ ν

∫
Ω

[
ājrā

k
iw

i
�t,j + (ājrā

k
i )tw

i
�,j

]
ϕr
,kdx + κ

∫
Γ

Δ0w�t · Δ0ϕdS − ((āji q�)t, ϕ
i
,j)L2(Ω)

+ σ

∫
Γ

Āαβγδ[−h̄,σ(wσ
� ◦ η̄−τ ) + wz

� ◦ η̄−τ ]ε2,αβ [−h̄,σ(ϕσ ◦ η̄−τ ) + ϕz ◦ η̄−τ ]ε2,γδdS

+ σ

∫
Γ

(Āαβγδ)th
ε2
�,αβ [−h̄,σ(ϕσ ◦ η̄−τ ) + ϕz ◦ η̄−τ ]ε2,γδdS

+ σ

∫
Γ

Āαβγδhε2
�,αβ [−h̄t,σ(ϕσ ◦ η̄−τ ) + h̄,σ v̄

κ(ϕσ
,κ ◦ η̄−τ ) + v̄κ(ϕz

,κ ◦ η̄−τ )]ε2,γδdS

= 〈F̃t, ϕ〉 − σ

∫
Γ

[
Lαβγ

1 h̄,αβγ + L2

]ε2
t

[
h̄,σ(ϕσ ◦ η̄−τ ) − ϕz ◦ η̄−τ

]ε2
dS

− σ

∫
Γ

[
Lαβγ

1 h̄,αβγ + L2

]ε2[
h̄t,σ(ϕσ ◦ η̄−τ ) − h̄,σ v̄

κ(ϕσ
,κ ◦ η̄−τ ) − v̄κ(ϕz

,κ ◦ η̄−τ )
]ε2

dS

∀ ϕ ∈ span(e1, . . . , e�),

(ii) w�t(0) = (w1)�, w�(0) = (u0)� in Ω,
(7.9b)
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where q� = q̃0 − 1
θ ā

j
iw

i
�,j , and (ũ0)� denotes the respective H1;2(Ω; Γ) projections of

u0 on span(e1, e2, . . . , e�).

Remark 13. The existence of wk follows from the solution of

d′′k(t) + d′�(t)Ak�(t) + d�(t)Bk�(t) +

∫ t

0

d�(s)Ck�(s, t)ds = F (t)

for functions A, B, C, and F ; however, the existence of the solution dk does not
immediately follow from the fundamental theorem of ODE due to the presence of
the time integral. A straightforward fixed-point argument can be implemented, whose
details we leave to the interested reader.

The use of the test function ϕ = w�t in this system of ODE gives us, in turn, the
energy law

1

2

d

dt
‖w�t‖2

L2(Ω) +
ν

2
‖Dη̄(w�t)‖2

L2(Ω) +
σ

2

d

dt
Eh̄(hε2

�t,αβ) + θ‖q�t‖2
L2(Ω)

+ ν((āji ā
k
i )tw�,j , w�t,k)L2(Ω) + ν

∫
Ω

(ājrā
k
i )tw

i
�,jw

r
�t,kdx + κ‖Δ0w�t‖2

L2(Γ)

+ (q�t, ā
j
itw

i
�,j)L2(Ω) − (q�, ā

j
itw

i
�t,j)L2(Ω) −

σ

2

∫
Γ

(Āαβγδ)th
ε2
�t,αβh

ε2
�t,γδdS

− σ

∫
Γ

(Āαβγδ)th
ε2
�,αβ

[
h�tt + h̄t,σ(wσ

�t ◦ η̄−τ )
]ε2
,γδ

dS + σ

∫
Γ

Āαβγδhε2
�,αβ(7.10)

×
[
−h̄t,σ(wσ

�t ◦ η̄−τ ) + h̄,σ v̄
κ(wσ

�t,κ ◦ η̄−τ ) + v̄κ(wz
�t,κ ◦ η̄−τ )

]ε2
,γδ

dS

= 〈F̃t, w�t〉 − σ

∫
Γ

[
(Lαβγ

1 h̄,αβγ + L2)(−∇0h̄, 1)
]
t
· (w�t ◦ η̄−τ )dS

− σ

∫
Γ

(Lαβγ
1 h̄,αβγ + L2)v̄

κ
[
−h̄,σ(wσ

�t,κ ◦ η̄−τ ) + (wz
�t,κ ◦ η̄−τ )

]
dS.

For the tenth term (the integral with σ
2 as its coefficient), we have

∣∣∣∣
∫

Γ

(Āαβγδ)th
ε2
�t,αβh

ε2
�t,γδdS

∣∣∣∣ ≤ C(M)‖h̄t‖H2.5(Γ)‖∇2
0h�t‖2

L2(Γ).

By ε2-regularization and the identity∫
Γ

(Āαβγδ)th
ε2
�,αβh

ε2
�tt,γδdS =

∫
Γ

1√
det(g0)

[√
det(g0)(Ā

αβγδ)t

]
,γδ

hε2
�,αβh

ε2
�ttdS

+

∫
Γ

2√
det(g0)

[√
det(g0)(Ā

αβγδ)t

]
,γ
hε2
�,αβδh

ε2
�ttdS

+

∫
Γ

(Āαβγδ)th
ε2
�,αβγδh

ε2
�ttdS,

we find that ∣∣∣∣
∫

Γ

(Āαβγδ)th
ε2
�,αβh

ε2
�tt,γδdS

∣∣∣∣
≤ C(ε2)

[
1 + ‖h̄t‖H2.5(Γ)

]
‖∇2

0h�‖L2(Γ)

[
‖w�‖H1(Ω) + ‖w�t‖H1(Ω)

]
.
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Similarly, the second part of the eleventh term and the last term of the left-hand side
can be bounded by

C(ε2)‖h̄t‖H2.5(Γ)‖∇2
0h�‖L2(Γ)‖w�t‖H1(Ω),

where we also use the ε2-regularization to control ∇3
0w�t. It also follows that the last

two terms on the right-hand side can be bounded by

C(M)
[
1 + ‖h̄t‖H2.5(Γ)

]
‖w�t‖H1(Ω).

With positive θ, the fourth term of the left-hand side involving the square of q�t
acts as a viscous energy term. Integrating (7.10) in time from 0 to t, we then get

‖w�t‖2
L2(Ω) + ‖∇2

0h�t‖2
L2(Γ) +

∫ t

0

[
‖∇w�t‖2

L2(Ω) + κ‖w�t‖2
H2(Γ) + θ‖q�t‖2

L2(Ω)

]
ds

(7.11)

≤ C(M)
[
‖w�t(0)‖2

L2(Ω) + ‖w�(0)‖2
H1(Ω) + ‖q�(0)‖2

H0.5(Ω)

]
+ C(ε2)

∫ t

0

[
1 + ‖h̄t(s)‖2

H2.5(Γ)

]
‖∇2

0h�t(s)‖2
L2(Γ)ds

+ C(θ)

∫ t

0

‖v̄(t′)‖2
H3(Ω)

∫ t′

0

[
‖∇w�t(s)‖2

L2(Ω) + ‖q�t(s)‖2
L2(Ω)

]
dsdt′,

where C(ε2), C(θ) → ∞ as ε2, θ → 0, and we use

‖f(t)‖X ≤ ‖f(0)‖X +

∫ t

0

‖ft(s)‖Xds ≤ ‖f(0)‖X +
√
t

∫ t

0

‖ft(s)‖2
Xds

for f = w�, f = h�, and f = g� to obtain (7.11).
Remark 14. The θ-dependence follows from estimating the terms (q�t, ā

j
itw

i
�,j)L2(Ω):∣∣∣(q�t, ājitwi

�,j)L2(Ω)

∣∣∣ ≤ θ

2
‖q�t‖2

L2(Ω) +
1

2θ
‖ājit‖2

L∞(Ω)‖wi
�,j‖2

L2(Ω)

≤ θ

2
‖q�t‖2

L2(Ω) +
C(M)

θ

[
‖∇w�(0)‖2

L2(Ω) + t

∫ t

0

‖∇w�t‖2
L2(Ω)(s)ds

]
.

By the Gronwall inequality, for 0 ≤ t ≤ T ,

‖w�t(t)‖2
L2(Ω) + ‖∇2

0h�t(t)‖2
L2(Γ)

+

∫ t

0

[
‖∇w�t‖2

L2(Ω) + κ‖w�t‖2
H2(Γ) + θ‖q�t‖2

L2(Ω)

]
ds ≤ C(ε2, θ)N0(u0, F ),(7.12)

where

N0(u0, F ) := ‖u0‖2
H2.5(Ω) + ‖u0‖2

H4.5(Γ) + ‖Ft‖2
L2(0,T ;H1(Ω)′) + ‖F (0)‖2

H0.5(Ω) + 1.

We can then infer that w� is defined on [0, T ], and that there is a subsequence, still
denoted with the subscript �, satisfying

w� ⇀ wθ in L2(0, T ;H1;2(Ω; Γ)),(7.13a)

w�t ⇀ wθt in L2(0, T ;H1;2(Ω; Γ)),(7.13b)

∇2
0h� ⇀ ∇2

0hθ in L2(0, T ;L2(Γ)),(7.13c)

∇2
0h�t ⇀ ∇2

0hθt in L2(0, T ;L2(Γ)),(7.13d)

q�t ⇀ qθt in L2(0, T ;L2(Ω)),(7.13e)
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where

qθ = q̃0 −
1

θ
ājiw

i
θ,j .

From the standard procedure for weak solutions, we can now infer from these weak
convergences and the definition of w� that w�tt ∈ L2(0, T ;H1(Ω)′). In turn, w�t ∈
C0([0, T ];H1(Ω)′), w� ∈ C0([0, T ];L2(Ω)) with wθ(0) = u0, wθt(0) = w1.

Moreover, (7.13) implies that wθ satisfies

(i)

∫ T

0

[
(wθtt, ϕ)L2(Ω) + ν(ājiwθt,j , ā

k
i ϕ,k)L2(Ω) + ν((āji ā

k
i )twθ, ϕ,k)L2(Ω)

]
dt

(7.14a)

+ ν

∫ T

0

[∫
Ω

ājrā
k
iw

i
θt,jϕ

r
,kdx + ν

∫
Ω

(ājrā
k
i )tw

i
θ,jϕ

r
,kdx

]
dt + σ

∫ T

0

∫
Γ

Āαβγδ

× [−h̄,σ(wσ
θ ◦ η̄−τ ) + wz

θ ◦ η̄−τ ]ε2,αβ [−h̄,σ(ϕσ ◦ η̄−τ ) + ϕz ◦ η̄−τ ]ε2,γδdSdt

+ σ

∫ T

0

∫
Γ

(Āαβγδ)th
ε2
θ,αβ [−h̄,σ(ϕσ ◦ η̄−τ ) + ϕz ◦ η̄−τ ]ε2,γδdSdt

+ σ

∫ T

0

∫
Γ

Āαβγδhε2
θ,αβ [−h̄t,σ(ϕσ ◦ η̄−τ ) + h̄,σ v̄

κ(ϕσ
,κ ◦ η̄−τ ) + v̄κ(ϕz

,κ ◦ η̄−τ )]ε2,γδdSdt

+ κ

∫ T

0

∫
Γ

Δ0wθt · Δ0ϕdSdt−
∫ T

0

((āji qθ)t, ϕ
i
,j)L2(Ω)dt

=

∫ T

0

{
〈F̃t, ϕ〉 − σ

∫
Γ

[
Lαβγ

1 h̄,αβγ + L2

]ε2
t

[
h̄,σ(ϕσ ◦ η̄−τ ) − ϕz ◦ η̄−τ

]ε2
dS

− σ

∫
Γ

[
Lαβγ

1 h̄,αβγ + L2

]ε2[
h̄t,σ(ϕσ ◦ η̄−τ ) − h̄,σ v̄

κ(ϕσ
,κ ◦ η̄−τ )

− v̄κ(ϕz
,κ ◦ η̄−τ )

]ε2
dS

}
dt,

(ii) wθt(0) = w̃1, wθ(0) = ũ0 in Ω
(7.14b)

for all ϕ ∈ L2(0, T ;H1;2(Ω; Γ)). Choosing ϕ to be independent of time, we find that
for all t ∈ [0, T ],

(wθt, ϕ)L2(Ω) +
ν

2

∫
Ω

Dη̄(wθ) : Dη̄(ϕ)dx + κ

∫
Γ

Δ0wθ · Δ0ϕdS

+ σ

∫
Γ

Āαβγδhε2
θ,αβ [−h̄,σ(ϕσ ◦ η̄−τ ) + ϕz ◦ η̄−τ ]ε2,γδdS − (āji qθ, ϕ

i
,j)L2(Ω)

= 〈F̃ , ϕ〉 + σ

∫
Γ

[
Lαβγδ

1 h̄,αβγ + L2

]ε2[
−h̄,σϕ

σ ◦ η̄−τ + ϕz ◦ η̄−τ
]ε2

dS + c(ϕ)

for all ϕ ∈ H1;2(Ω; Γ), where c(ϕ) ∈ R is given by

c(ϕ) = (w̃1, ϕ)L2(Ω) +
ν

2

∫
Ω

Def(ũ0) : Def ϕdx−
(
q̃0 −

1

θ
div ũ0,divϕ

)
L2(Ω)

− (F̃ (0), ϕ)L2(Ω) − σ(M̄ε2
0 (0)(0, 1), ϕ)L2(Γ) + κ(Δ0ũ0,Δ0ϕ)L2(Γ).
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By compatibility conditions (7.6) and (7.7), c(ϕ) = 0. Therefore, the weak limit
(wθ, hθ) satisfies, for all t ∈ [0, T ],

(wθt, ϕ)L2(Ω) +
ν

2

∫
Ω

Dη̄(wθ) : Dη̄(ϕ)dx + κ

∫
Γ

Δ0wθ · Δ0ϕdS

− (āji qθ, ϕ
i
,j)L2(Ω) + σ

∫
Γ

Āαβγδhε2
θ,αβ [−h̄,σ(ϕσ ◦ η̄−τ ) + ϕz ◦ η̄−τ ]ε2,γδdS(7.15)

= 〈F̃ , ϕ〉 − σ

∫
Γ

[
Lαβγδ

1 h̄,αβγ + L2

]ε2[
−h̄,σϕ

σ ◦ η̄−τ + ϕz ◦ η̄−τ
]ε2

dS

for all ϕ ∈ H1;2(Ω; Γ).
Since wθ ∈ L2(0, T ;H1;2(Ω; Γ)), we can use it as a test function in (7.15) and

obtain (after time integration)

1

2
‖wθ‖2

L2(Ω) +
σ

2
Eh̄(hε2

θ ) +

∫ t

0

[ν
2
‖Dη̄wθ‖2

L2(Ω) + κ‖Δ0wθ‖2
L2(Γ)

+ θ‖qθ‖2
L2(Ω)

]
ds− θ

∫ t

0

(qθ, q̃0)dt−
σ

2

∫ t

0

∫
Γ

(Āαβγδ)th
ε2
θ,αβh

ε2
θ,γδdSds(7.16)

=
1

2
‖ũ0‖2

L2(Ω) +

∫ t

0

〈F̃ , ϕ〉 + σ〈M̄ε2
h̄

(−∇0h̄ ◦ η̄τ , 1), ϕ〉Γdt.

Consequently,[
‖wθ(t)‖2

L2(Ω) + ‖∇2
0h

ε2
θ (t)‖2

L2(Γ)

]
+

∫ t

0

‖∇wθ‖2
L2(Ω)ds + κ

∫ t

0

‖wθ‖2
H2(Γ)ds

+ θ

∫ t

0

‖qθ‖2
L2(Ω)ds

≤ C(M)
[
‖ũ0‖2

L2(Ω) + θ‖q̃0‖2
L2(Ω) + ‖F̃‖2

H1(Ω)′ + ‖M̄ε2
h̄

(−∇0h̄ ◦ η̄τ , 1)‖2
L2(Γ)

]
+ C(M)

∫ t

0

‖h̄t‖H2.5(Γ)‖∇2
0h

ε2
θ ‖2

L2(Γ)ds

≤ C(M)

[
N1(u0, F ) +

∫ t

0

‖h̄t‖H2.5(Γ)‖∇2
0h

ε2
θ ‖2

L2(Γ)ds

]
,

where

N1(u0, F ) = ‖u0‖2
H2(Ω) + ‖u0‖2

H4.5(Γ) + ‖F‖2
L2(0,T ;H1(Ω)′) + ‖Ft‖2

L2(0,T ;H1(Ω)′)

+ ‖F (0)‖2
H1(Ω) + 1.

By the Gronwall inequality,

sup
0≤t≤T

[
‖wθ(t)‖2

L2(Ω) + ‖∇2
0h

ε2
θ (t)‖2

L2(Γ)

]
+

∫ T

0

[
‖∇wθ‖2

L2(Ω) + θ‖qθ‖2
L2(Ω)

]
ds(7.17)

≤ C(M)N1(u0, F ).

7.4. Improved pressure estimates. By ε2-regularization, we can rewrite (7.15)
as, for a.a. t ∈ [0, T ],

(wθt, ϕ)L2(Ω) +
ν

2

∫
Ω

Dη̄(wθ) : Dη̄(ϕ)dx + κ(Δ0wθ,Δ0ϕ)L2(Γ) − (āji qθ, ϕ
i
,j)L2(Ω)

+ σ

∫
Γ

L̄ε2
h̄

(hε2
θ )

[
−h̄,σ ◦ η̄τϕσ + ϕz

]
dS = 〈F̃ , ϕ〉 + σ〈M̄ε2

h̄
(−∇0h̄ ◦ η̄τ , 1), ϕ〉Γ.
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Therefore, by the Lagrange multiplier lemma, we conclude that

‖qθ‖2
L2(Ω) ≤ C(M)

[
‖wθt‖2

H1(Ω)′ + ‖∇wθ‖2
L2(Ω) + ‖F̃‖2

H1(Ω)′ + κ‖Δ2
0wθ‖2

H−2(Γ)

+ ‖[L̄ε2
h̄

(hε2
θ ) + M̄ε2

h̄
](−∇0h̄ ◦ η̄τ , 1)‖2

H−2(Γ)

]
,

and hence

‖qθ‖2
L2(Ω) ≤ C(M)

[
‖wθt‖2

L2(Ω) + ‖∇wθ‖2
L2(Ω) + κ‖wθ‖2

H2(Γ) + ‖∇2
0hθ‖2

L2(Γ)

+ ‖F‖2
H1(Ω)′ + 1

]
.(7.18)

7.5. Weak limits as θ → 0. Since wθt ∈ L2(0, T ;H1;2(Ω; Γ)), we can use it as
a test function in (7.14). Similar to the way we obtain (7.11), we find that

1

2
‖wθt‖2

L2(Ω) +
ν

2

∫ t

0

‖Dη̄wθt‖2
L2(Ω)ds +

σ

2
Eh̄(hε2

θt) + κ

∫ t

0

‖Δ2
0wθt‖2

L2(Γ)ds

+ θ

∫ t

0

‖qθt‖2
L2(Ω)ds +

∫ t

0

(qθt, ā
j
itw

i
θ,j)L2(Ω)ds−

∫ t

0

(qθ, ā
j
iw

i
θt,j)ds

≤ C(M)N0(u0, F ) + C(M)

∫ t

0

‖v̄(t′)‖2
H3(Ω)

∫ t′

0

‖∇wθt(s)‖2
L2(Ω)dsdt

′

+ C(ε2)

∫ t

0

[
1 + ‖h̄t‖H2.5(Γ)

]
‖∇2

0h
ε2
θt‖2

L2(Γ)ds.

By (7.18),

∣∣∣∣
∫ t

0

(qθ, ā
j
iw

i
θt,j)ds

∣∣∣∣ ≤ C(M, δ)

∫ t

0

‖qθ‖2
L2(Ω)ds + δ

∫ t

0

‖∇wθt‖2
L2(Ω)ds

≤ C(M)

[
N1(u0, F ) +

∫ t

0

(
‖wθt‖2

L2(Ω) + κ‖wθ‖2
H2(Γ) + ‖∇2

0hθ‖2
L2(Γ)

)
ds

]

+ δ

∫ t

0

‖∇wθt‖2
L2(Ω)ds,(7.19)

where (7.17) is used to bound ‖∇wθ‖2
L2(0,T ;L2(Ω)).

Integrating by parts,

∫ t

0

(qθt, ā
j
itw

i
θ,j)L2(Ω)ds = (qθ, ā

j
itw

i
θ,j)L2(Ω)(t) + (q̃0, ũ

j
0,iũ

i
0,j)L2(Ω)

−
∫ t

0

(qθ, ā
j
ittw

i
θ,j)L2(Ω)ds−

∫ t

0

(qθ, ā
j
itw

i
θt,j)L2(Ω)ds.

By ε1-regularization, the last two terms can be bounded by

C(M)

∫ t

0

‖qθ‖L2(Ω)

[
C(ε1)‖∇wθ‖L2(Ω) + ‖∇wθt‖L2(Ω)

]
ds,

and hence
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∣∣∣∣
∫ t

0

(qθ, ā
j
ittw

i
θ,j)L2(Ω)ds

∣∣∣∣ +

∣∣∣∣
∫ t

0

(qθ, ā
j
itw

i
θt,j)L2(Ω)ds

∣∣∣∣
≤ C(M, δ)

∫ t

0

‖qθ‖2
L2(Ω)ds + C(ε1)

∫ t

0

‖∇wθ‖2
L2(Ω)ds + δ

∫ t

0

‖∇wθt‖2
L2(Ω)ds

≤ C(ε1, δ)N1(u0, F ) + C(M, δ)

∫ t

0

‖wθt‖2
L2(Ω)ds + C(ε2)

∫ t

0

‖∇2
0hθ‖2

L2(Γ)ds

+ δ

∫ t

0

‖∇wθt‖2
L2(Ω)ds.(7.20)

For (qθ, ā
j
itw

i
θ,j)L2(Ω)(t), it is easy to see that∣∣∣(qθ, ājitwi
θ,j)L2(Ω)(t)

∣∣∣ ≤ δ1‖wθt‖2
L2(Ω) + C(ε1, δ1)‖∇wθ‖2

L2(Ω)

≤ C(ε1, δ1)‖∇wθ‖2
L2(Ω) + δ1C(ε2)‖∇2

0hθ‖2
L2(Γ) + δ1

[
‖wθt‖2

L2(Ω) + ‖F‖L2(Ω) + 1
]
,

while for (q̃0, ũ
j
0,iũ

i
0,j)L2(Ω), it is bounded by C(M)N1(u0, F ). Combining (7.19),

(7.20), and the estimates above, by choosing δ > 0 and δ1 > 0 small enough,

‖wθt‖2
L2(Ω) + ‖∇2

0hθt‖2
L2(Γ) +

∫ t

0

[
‖∇wθt‖2

L2(Ω) + κ‖wθt‖2
H2(Γ) + θ‖qθt‖2

L2(Ω)

]
ds

≤ C(ε2, ε1)

[
N2(u0, F ) +

∫ t

0

(
‖wθt‖2

L2(Ω) + (1 + ‖h̄t‖H2.5(Γ))‖∇2
0hθt‖2

L2(Γ)

+ ‖v̄‖2
H3(Ω)

∫ s

0

‖∇wθt‖2
L2(Ω)dt

′
)
ds

]
+ C1(ε2, ε1)‖∇wθ‖2

L2(Ω),

where N2(u0, F ) = N1(u0, F ) + ‖F‖2
L∞(0,T ;L2(Ω)). By the Gronwall inequality,

‖wθt‖2
L2(Ω) + ‖∇2

0hθt‖2
L2(Γ) +

∫ t

0

[
‖∇wθt‖2

L2(Ω) + κ‖wθt‖2
H2(Γ)

]
ds

≤ C(ε2, ε1)N2(u0, F ) + C1(ε2, ε1)‖∇wθ‖2
L2(Ω).(7.21)

By using wθ(t) = ũ0 +
∫ t

0
wθtds, we see that

‖wθt‖2
L2(Ω) + ‖∇2

0hθt‖2
L2(Γ) +

∫ t

0

[
‖∇wθt‖2

L2(Ω) + κ‖wθt‖2
H2(Γ)

]
ds

≤ C(ε2, ε1)N2(u0, F ) + C1(ε2, ε1)t

∫ t

0

‖∇wθt‖2
L2(Ω)ds.

Therefore, for any 0 ≤ t ≤ t1 = min
{
T, 1

2C1

}
, we have

‖wθt‖2
L2(Ω) + ‖∇2

0hθt‖2
L2(Γ) +

1

2

∫ t

0

[
‖∇wθt‖2

L2(Ω) + κ‖wθt‖2
H2(Γ)

]
ds

≤ C(ε2, ε1)N2(u0, F ).

By wθ(t1) = ũ0 +
∫ t1
0

wθtds, we also have

(7.22) ‖∇wθ(t1)‖2
L2(Ω) ≤ C(ε2, ε1)N2(u0, F ).
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For t ≥ t1, since wθ(t) = wθ(t1) +
∫ t

t1
wθtds, we have from (7.21) and (7.22) that

‖wθt‖2
L2(Ω) + ‖∇2

0hθt‖2
L2(Γ) +

∫ t

0

[
‖∇wθt‖2

L2(Ω) + κ‖wθt‖2
H2(Γ)

]
ds

≤ C(ε2, ε1)N2(u0, F ) + C1(ε2, ε1)

[
‖wθ(t1)‖2

L2(Ω) + (t− t1)

∫ t

t1

‖∇0wθt‖2
L2(Ω)ds

]

≤ C(ε2, ε1)N2(u0, F ) + C1(ε2, ε1)(t− t1)

∫ t

t1

‖∇0wθt‖2
L2(Ω)ds.

Therefore, for any t1 ≤ t ≤ 2t1, we also have

‖wθt‖2
L2(Ω) + ‖∇2

0hθt‖2
L2(Γ) +

1

2

∫ t

0

[
‖∇wθt‖2

L2(Ω) + κ‖wθt‖2
H2(Γ)

]
ds

≤ C(ε2, ε1)N2(u0, F ),

which with wθ(2t1) = ũ0 +
∫ 2t1
0

wθtds gives

‖∇wθ(2t1)‖2
L2(Ω) ≤ C(ε2, ε1)N2(u0, F ).

By induction, for any t ∈ [0, T ],

‖wθt‖2
L2(Ω) + ‖∇2

0hθt‖2
L2(Γ) +

1

2

∫ t

0

[
‖∇wθt‖2

L2(Ω) + κ‖wθt‖2
H2(Γ)

]
ds

≤ C(ε2, ε1)N2(u0, F ).(7.23)

We also get a θ-independent bound for ‖qθ‖2
L2(0,T ;L2(Ω)) by (7.18):

(7.24) ‖qθ‖2
L2(0,T ;L2(Ω)) ≤ C(ε2, ε1)N2(u0, F ).

Let θ = 1
m . Energy inequalities (7.17), (7.23), and (7.24) show that there exists

a subsequence w 1
m�

such that

w 1
m�

⇀ v in L2(0, T ;H1;2(Ω; Γ)),(7.25a)

w 1
m�

t ⇀ vt in L2(0, T ;H1;2(Ω; Γ)),(7.25b)

∇2
0h 1

m�

⇀ ∇2
0h in L2(0, T ;L2(Ω)),(7.25c)

∇2
0h 1

m�
t ⇀ ∇2

0ht in L2(0, T ;L2(Ω)),(7.25d)

q 1
m�

⇀ q in L2(0, T ;L2(Ω)).(7.25e)

Moreover, (7.17) also shows that ‖ājiwi
1
m ,j

‖L2(0,T ;L2(Ω)) → 0 as m → ∞. Therefore,

the weak limit v satisfies the “divergence-free” condition (7.2b), i.e.,

(7.26) v ∈ Vv̄(T ).

Since (7.17) is independent of θ and ε2, by the property of lower semicontinuity of
norms,

sup
0≤t≤T

[
‖v(t)‖2

L2(Ω) + ‖∇2
0h(t)‖2

L2(Γ)

]
+ ‖∇v‖2

L2(0,T ;L2(Ω)) + κ‖v‖2
H2(Γ)

≤ C(M)N1(u0, F ).(7.27)
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By (7.25) and ε2-regularization, the weak limit (v, h, q) satisfies, for all ϕ ∈
L2(0, T ;H1;2(Ω; Γ)),∫ T

0

(vt, ϕ)L2(Ω)dt +
ν

2

∫ T

0

∫
Ω

Dη̄(v) : Dη̄(ϕ)dxdt + κ

∫ T

0

∫
Γ

Δ0v · Δ0ϕdSdt

−
∫ T

0

(ājiq, ϕ
i
,j)L2(Ω)dt + σ

∫ T

0

∫
Γ

Āαβγδ
h
ε2
,αβ [−h̄,σ(ϕσ ◦ η̄−τ ) + ϕz ◦ η̄−τ ]ε2,γδdSdt

=

∫ T

0

{
〈F̃ , ϕ〉 − σ

∫
Γ

[
Lαβγδ

1 h̄,αβγ + L2

]ε2[
−h̄,σϕ

σ ◦ η̄−τ + ϕz ◦ η̄−τ
]ε2

dS

}
dt.

By the density argument, we find that for a.a. t ∈ [0, T ], ϕ ∈ H1;2(Ω; Γ),

(vt, ϕ)L2(Ω) +
ν

2

∫
Ω

Dη̄(v) : Dη̄(ϕ)dx + κ

∫
Γ

Δ0v · Δ0ϕdS − (ājiq, ϕ
i
,j)L2(Ω)

+ σ

∫
Γ

Āαβγδ
h
ε2
,αβ [−h̄,σ(ϕσ ◦ η̄−τ ) + ϕz ◦ η̄−τ ]ε2,γδdS(7.28)

= 〈F̃ , ϕ〉 − σ

∫
Γ

[
Lαβγδ

1 h̄,αβγ + L2

]ε2[
−h̄,σϕ

σ ◦ η̄−τ + ϕz ◦ η̄−τ
]ε2

dS,

or after a change of variable y′ = η̄τ (y, t),

(vt, ϕ)L2(Ω) +
ν

2
(Dη̄v, Dη̄ϕ)L2(Ω) + κ

∫
Γ

Δ0v · Δ0ϕdS − (ājiq, ϕ
i
,j)L2(Ω)(7.29)

+ σ

∫
Γ

Lε2
h̄

(h)(−∇0h̄ ◦ η̄τ , 1) · ϕdS = 〈F̃ , ϕ〉 − σ

∫
Γ

M̄ε2
h̄

(−∇0h̄ ◦ η̄τ , 1) · ϕdS.

Furthermore, if ϕ ∈ Vv̄, then

(vt, ϕ)L2(Ω) +
ν

2
(Dη̄v, Dη̄ϕ)L2(Ω) + κ

∫
Γ

Δ0v · Δ0ϕdS

+ σ

∫
Γ

Lε2
h̄

(h)(−∇0h̄ ◦ η̄τ , 1) · ϕdS = 〈F̃ , ϕ〉 − σ

∫
Γ

M̄ε2
h̄

(−∇0h̄ ◦ η̄τ , 1) · ϕε2dS

for a.a. t ∈ [0, T ]. In other words, (v, h, q) is a weak solution of (7.2).

8. Estimates independent of ε2.

8.1. Partition of unity. Since Ω is compact, by partition of unity, we can
choose two nonnegative smooth functions ζ0 and ζ1 so that

ζ0 + ζ1 = 1 in Ω,

supp(ζ0) ⊂⊂ Ω,

supp(ζ1) ⊂⊂ Γ × (−ε1, ε1) := Ω1.

We will assume that ζ1 = 1 inside the region Ω′
1 ⊂ Ω1 and ζ0 = 1 inside the region

Ω′ ⊂ Ω. Note that then ζ1 = 1, while ζ0 = 0 on Γ.

8.2. Higher regularity.

8.2.1. ε2-independent bounds for q. Similar to (7.18), we have

‖q‖2
L2(Ω) ≤ C(M)

[
‖vt‖2

L2(Ω) + ‖∇v‖2
L2(Ω) + κ‖v‖2

H2(Γ) + ‖∇2
0h

ε2‖2
L2(Γ)

+ ‖F‖2
L2(Ω) + 1

]
.(8.1)
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8.2.2. Interior regularity. Converting the fluid equation (7.2) into Eulerian
variables by composing with η̄−1, we obtain a Stokes problem in the domain η̄(Ω):

−νΔu + ∇p = F̃ ◦ η̄−1 − vt ◦ η̄−1 + νāj�,j ◦ η̄−1
u,� − pāji,j ◦ η̄−1,(8.2a)

div u = 0,(8.2b)

where u = v ◦ η̄−1 and p = q ◦ η̄−1. By the regularity results for the Stokes problem,

‖u‖2
H2(η̄(Ω)) + ‖p‖2

H1(η̄(Ω))

≤ C
[
‖F̃ ◦ η̄−1‖2

L2(η̄(Ω)) + ‖vt ◦ η̄−1‖2
L2(η̄(Ω)) + ‖∇u‖2

L2(η̄(Ω)) + ‖p‖2
L2(η̄(Ω))

+ ‖u‖2
H1.5(Γ)

]
or

‖v‖2
H2(Ω) + ‖q‖2

H1(Ω) ≤ C
[
‖F‖2

L2(Ω) + ‖vt‖2
L2(Ω) + ‖v‖2

H1.5(Γ)

]
+ C(M)

[
‖∇v‖2

L2(Ω) + ‖q‖2
L2(Ω)

]

for some constant C independent of M and ε1. By (8.1),

‖v‖2
H2(Ω) + ‖q‖2

H1(Ω) ≤ C(M)
[
‖vt‖2

L2(Ω) + ‖∇v‖2
L2(Ω) + ‖v‖2

H2(Γ)

+ ‖∇2
0h

ε2‖2
L2(Γ) + ‖F‖2

L2(Ω) + 1
]
.(8.3)

Similarly,

‖v‖2
H3(Ω) + ‖q‖2

H2(Ω) ≤ C
[
‖F‖2

H1(Ω) + ‖vt‖2
H1(Ω) + ‖v‖2

H2.5(Γ)

]
+ C(M)

[
‖∇v‖2

H1(Ω) + ‖q‖2
H1(Ω)

]
,

and therefore by (8.1) and (8.3),

‖v‖2
H3(Ω) + ‖q‖2

H2(Ω) ≤ C(M)
[
‖vt‖2

H1(Ω) + ‖∇v‖2
L2(Ω) + ‖∇2

0v‖2
H1(Ω1)

+ ‖∇2
0h

ε2‖2
L2(Γ) + ‖F‖2

H1(Ω) + 1
]
.(8.4)

For the regularized problem, because the ε1-regularization ensures that the forcing
and the initial data are smooth, while the ε2-regularization ensures that the right-hand
side of (7.2c) is smooth, by the standard difference quotient technique, it is also easy
to see that

(8.5) ∇k
0v ∈ L2(0, T ;H1(Ω1) ∩H2(Γ)) for k = 1, 2, 3, 4.

Since (7.25b) implies that vt ∈ L2(0, T ;H1(Ω)), by ε2-regularization and (8.4) we
conclude that

(8.6) v ∈ L2(0, T ;H3(Ω)), q ∈ L2(0, T ;H2(Ω)).
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8.3. Estimates for vt(0) and q(0). By (8.6) and ε2-regularization, (v, h, q)
satisfies the strong form (7.2). Taking the “divergence” of (7.2a) and then making
use of condition (7.2b), we find that

(8.7) −ākitv
i
,k − νāki [ā

j
�Dη̄(v)i�],jk = −āki (ā

j
iq),jk + āki F̃

i
,k.

Let t = 0; by the identity ā�kt = −āikv̄
j
,iā

�
j ,

Δq(0) = ∇ũ0 : (∇ũ0)
T − div(F̃ (0)) in Ω

with

q(0) = ν(Def ũ0)
j
iNiNj − σMε2

0 (0) + κΔ2
0ũ0 on Γ,

while (7.2a) gives us

vt(0) = νΔũ0 −∇q(0) + F̃ (0) in Ω.

By standard elliptic regularity result,

(8.8) ‖vt(0)‖2
L2(Ω) + ‖q(0)‖2

H1(Ω) ≤ CN0(u0, F )

for some constant independent of M , ε1, and ε2.

8.4. L2
tL

2
x-estimates for vt. Since vt ∈ L2(0, T ;H1(Ω)), we can use it as a

test function in (7.29). By (7.26), we find that

‖vt‖2
L2(Ω) +

ν

4

d

dt

∫
Ω

|Dη̄v|2dx− ν

2

∫
Ω

(Dη̄v)ji ā
k
jtv

i
,kdx + κ

∫
Γ

Δ0v · Δ0ϕdS

+

∫
Ω

qā�ktv
k
,�dx + σ

∫
Γ

Lε2
h̄

(h)(−∇0h̄ ◦ η̄τ , 1) · vtdS

= 〈F̃ , vt〉 − σ

∫
Γ

Mε2
h̄

(−∇0h̄ ◦ η̄τ , 1) · vtdS.

By (5.3), ∫
Ω

(Dη̄v)ji ā
k
jtv

i
,kdx ≤ C(M)C(δ)‖∇v‖2

L2(Ω) + δ‖v‖2
H2(Ω),

and by (8.1) and the interpolation inequality,∣∣∣∣
∫

Ω

qā�ktv
k
,�dx

∣∣∣∣ ≤ C(M)C(δ)
[
‖∇v‖2

L2(Ω) + ‖∇4
0h

ε2‖2
L2(Γ) + ‖F‖2

L2(Ω) + 1
]

+ δ‖v‖2
H2(Ω) +

1

2
‖vt‖2

L2(Ω)

for some C(δ). Also, the last term on the left-hand side is bounded by

C(M)
[
‖∇4

0h
ε2‖L2(Γ) + 1

]
‖vt‖H1(Ω)

≤ C(M)C(δ1)
[
‖∇4

0h
ε2‖2

L2(Γ) + 1
]

+ δ1‖vt‖2
H1(Ω).
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Combining all the estimates above,

1

2
‖vt‖2

L2(Ω) +
ν

4

d

dt

∫
Ω

|Dη̄v|2dx +
κ

2

d

dt

∫
Γ

|Δ0v|2dS

≤ C
[
‖∇v‖2

L2(Ω) + ‖∇4
0h

ε2‖2
L2(Γ) + ‖F‖2

L2(Ω) + 1
]

+ δ‖v‖2
H2(Ω) + δ1‖vt‖2

H1(Ω)

for some constant C depending on M , δ, and δ1. Therefore, by (7.27),

∫ t

0

‖vt‖2
L2(Ω)ds + ‖∇v(t)‖2

L2(Ω) + κ‖v‖2
H2(Γ)(8.9)

≤ C

[
N2(u0, F ) +

∫ t

0

‖∇4
0h

ε2‖2
L2(Γ)ds

]
+ δ

∫ t

0

‖v‖2
H2(Ω)ds + δ1

∫ t

0

‖vt‖2
H1(Ω)ds.

8.5. Energy estimates for ∇2
0v near the boundary. Because of (8.5),

∇2
0(ζ

2
1∇2

0v) in (7.28) can be used as a test function in (7.29). It follows that∣∣∣∣
∫

Γ

[
L̄ε2
h̄

(hε2) + M̄ε2
h̄

]
(−∇0h̄ ◦ η̄τ , 1) · ∇4

0vdS

∣∣∣∣
≤ C(M)

[
‖∇2

0h
ε2‖H2(Γ) + 1

]
‖v‖H4(Γ)

≤ C(M, δ3)
[
1 + ‖h‖2

H4(Γ)

]
+ δ3‖v‖2

H4(Γ).

By (7.4), we find that

‖h‖2
H4(Γ) ≤ C(ε1)

[∫ t

0

‖h̄‖H5(Γ)‖v‖H4(Γ)ds

]2

≤ C(ε1)

∫ t

0

‖v‖2
H4(Γ)ds,

and hence ∣∣∣∣
∫

Γ

[
L̄ε2
h̄

(hε2) + M̄ε2
h̄

]
(−∇0h̄ ◦ η̄τ , 1) · ∇4

0vdS

∣∣∣∣
≤ C̄

[
1 +

∫ t

0

‖v‖2
H4(Γ)

]
+ δ3‖v‖2

H4(Γ)

for some constant C̄ depending on M , ε1, and δ3. Since

Δ0f =
1√

det(g0)

∂

∂yα

[√
det(g0)g

αβ
0

∂

∂yβ
f

]
,

by the regularity on Γ (and hence on g0),∫
Γ

|Δ0∇2
0v|2dS ≤

∫
Γ

Δ2
0v · (∇4

0v)dS + C‖v‖H3(Γ)‖v‖H4(Γ)

≤
∫

Γ

Δ2
0v · (∇4

0v)dS + C(δ)‖v‖2
H1(Ω) + δ‖v‖2

H4(Γ),

which implies, by choosing δ > 0 small enough, that

ν2‖v‖2
H4(Γ) ≤

∫
Γ

Δ2
0v · (∇4

0v)dS + C‖v‖2
H1(Ω).
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By the identity

(q, ā�k∇2
0(ζ

2
1∇2

0v
k),�)

= (q,∇2
0ā

�
k(ζ

2
1∇2

0v
k),�) + 4(ζ1∇0q,∇0ā

�
kζ1,�∇2

0v
k) + 2(∇0q, ζ

2
1∇0ā

�
k∇2

0v
k
,�)

− 2(ζ1∇0q,∇0(ā
�
kζ1,�∇2

0v
k)) + 2(q,∇0(ā

�
kζ1,�∇0ζ1∇2

0v
k))(8.10)

+ (∇0q,∇0(ζ
2
1∇0ā

�
k∇0v

k
,�)),

(5.3) and (8.3) imply that

(q, ā�k∇′2
0 (ζ2

1∇2
0v

k),�) ≤ C(M)‖q‖H1(Ω)‖v‖H3(Ω)

≤ C(M)C(δ)
[
‖vt‖2

L2(Ω) + ‖∇v‖2
L2(Ω) + ‖∇∇0v‖2

L2(Ω1)
+ κ‖v‖2

H2(Γ)

+ ‖∇2
0h

ε2‖2
L2(Γ) + ‖F‖2

L2(Ω) + 1
]

+ δ‖v‖2
H3(Ω).

For the viscosity term,∫
Ω

Dη̄v : Dη̄(∇2
0(ζ

2
1∇2

0v))dx

= ‖ζ1Dη̄∇2
0v‖2

L2(Ω) +
1

2

∫
Ω

[
∇2

0(ā
k
i ā

�
i)v

j
,� + ∇2

0(ā
k
i ā

�
j)v

i
,�

]
(ζ2

1∇2
0v

j),kdx

+

∫
Ω

[
∇0(ā

k
i ā

�
i)∇0v

j
,� + ∇0(ā

k
i ā

�
j)∇0v

i
,�

]
(ζ2

1∇2
0v

j),kdx

+

∫
Ω

Dη̄(∇2
0v)ji ā

k
i ζ1ζ1,k∇2

0v
jdx,

and hence by interpolation

1

2
‖ζ1Dη̄∇′2

0 v‖2
L2(Ω) ≤

∫
Ω

Dη̄v : Dη̄(∇2
0(ζ

2
1∇2

0v))dx

+ C(M)C(δ)
[
‖∇v‖2

L2(Ω) + ‖∇∇0v‖2
L2(Ω′

1)

]
+ δ‖v‖2

H3(Ω).

Summing all the estimates, by letting δ3 = ν2κ
2 , we conclude that

1

2

d

dt
‖ζ1∇2

0v‖2
L2(Ω) +

ν

4
‖ζ1Dη̄∇2

0v‖2
L2(Ω) +

ν2κ

2
‖v‖2

H4(Γ)

≤ C̄
[
‖vt‖2

L2(Ω) + ‖v‖2
H1(Ω) + ‖∇∇0v‖2

L2(Ω′
1)

+ ‖v‖2
H2(Γ) + ‖∇2

0h
ε2‖2

L2(Γ)

+ ‖F‖2
H1(Ω) + 1

]
+ C̄

∫ t

0

‖v‖2
H4(Γ)ds + δ‖v‖2

H3(Ω)

for some constant C̄ depending on M , κ, ε1, and δ. Integrating the inequality above
in time from 0 to t, by (7.27) we find that

‖∇2
0v(t)‖2

L2(Ω1)
+

∫ t

0

[
‖∇∇2

0v‖2
L2(Ω1)

+ κ‖v‖2
H4(Γ)

]
ds

≤ C̄N2(u0, F ) + C̄

∫ t

0

[
‖vt‖2

L2(Ω) + ‖∇∇0v‖2
L2(Ω′

1)
+ ‖v‖2

H2(Γ)

]
ds(8.11)

+ C̄

∫ t

0

∫ s

0

‖v(r)‖2
H4(Γ)dr + δ

∫ t

0

‖v‖2
H3(Ω)ds.
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By using ∇0(ζ
2
1∇0v) as a testing function in (7.29), similar computations lead to

‖∇0v(t)‖2
L2(Ω1)

+

∫ t

0

[
‖∇∇0v‖2

L2(Ω1)
+ κ‖v‖2

H3(Γ)

]
ds

≤ C(M)N2(u0, F ) + C(M, δ)

∫ t

0

[
‖vt‖2

L2(Ω) + κ‖v‖2
H2(Γ)

]
ds(8.12)

+ C(M)

∫ t

0

∫ s

0

‖v(r)‖2
H4(Γ)drds + δ

∫ t

0

‖v‖2
H3(Ω)ds.

8.6. Energy estimates for vt: L2
tH

1
x-estimates. In this section, we time

differentiate (7.29) and then use vt as a test function to obtain

〈vtt, vt〉 + ν

∫
Ω

[
āk� (Dη̄v)i�,k

]
t
v
i
tdx + σ

∫
Γ

[
L̄ε2
h̄

(hε2)(−∇0h̄ ◦ η̄τ , 1)
]
t
· vtdS

+ κ

∫
Γ

|Δ0vt|2dS −
∫

Ω

(ā�kq)tv
k
t,�dx = 〈Ft, vt〉 − σ

∫
Γ

[
M̄ε2

h̄
(−∇0h̄ ◦ η̄τ , 1)

]
t
· vtdS.

By the chain rule, ∫
Γ

[
(L̄ε2

h̄
(hε2) + M̄ε2

h̄
)(−∇0h̄ ◦ η̄τ , 1)

]
t
· vtdS

=

∫
Γ

Θ̄t

[
Lh̄(hε2)

]ε2
◦ η̄τ (−∇0h̄ ◦ η̄τ , 1) · vtdS

+

∫
Γ

Θ̄η̄τt ·
[
∇0[Lh̄(hε2)]ε2(−∇0h̄, 1)

]
◦ η̄τ · vtdS

+

∫
Γ

Θ̄
[
[Lh̄(hε2)]ε2(∇0h̄,−1)]

]
t
◦ η̄τ · vtdS.

By using the H2(Γ)-H−2(Γ) duality pairing with ε1-regularization on Θ̄ and v̄, it
follows that ∣∣∣∣

∫
Γ

[
(L̄ε2

h̄
(hε2) + M̄ε2

h̄
)(−∇0h̄ ◦ η̄τ , 1)

]
t
· vtdS

∣∣∣∣
≤ C(ε1)

[
‖∇3

0h‖L2(Γ) + ‖∇2
0ht‖L2(Γ) + 1

]
‖vt‖H2(Γ)

≤ C(ε1, δ3)

[∫ t

0

‖v‖2
H4(Γ)ds + ‖v‖2

H2(Γ) + 1

]
+ δ3‖vt‖2

H2(Γ)

≤ C̄

[∫ t

0

‖v‖2
H4(Γ)ds + ‖v‖2

H1(Ω) + 1

]
+ δ‖v‖2

H3(Ω) + δ3‖vt‖2
H2(Γ)

for some constant C̄ depending on M , ε1, δ, and δ3, where we estimate ‖v‖2
H2(Γ) by

interpolation.
Also by interpolation,∫

Ω

|Dη̄vt|2dx = 2

∫
Ω

[
ākiDη̄(v)ji

]
t
v
j
t,kdx− 2

∫
Ω

[
(āki ā

�
i)tv

j
,� + (āki ā

�
j)tv

i
,�

]
v
j
t,kdx

≤ 2

∫
Ω

[
ākiDη̄(v)ji

]
t
v
j
t,kdx + C(M)C(δ, δ1)‖∇v‖2

L2(Ω)

−
∫

Ω

(ā�kq)tv
k
t,�dx + δ‖v‖2

H2(Ω) + δ1‖vt‖2
H1(Ω).
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Note that

〈Ft, vt〉 ≤ C‖Ft‖H1(Ω)′‖vt‖H1(Ω) ≤ C(δ1)‖Ft‖2
H1(Ω)′ + δ1‖vt‖2

H1(Ω).

Summing all the estimates above,

1

2

d

dt
‖vt‖2

L2(Ω) +
ν

4
‖∇vt‖2

L2(Ω) + κ‖Δ0vt‖2
L2(Γ)

≤ C̄

[∫ t

0

‖v‖2
H4(Γ)ds + ‖v‖2

H1(Ω) + 1

]
+ C(δ1)‖Ft‖2

H1(Ω)′(8.13)

+ δ‖v‖2
H3(Ω) + δ1‖vt‖2

H1(Ω) + δ3‖vt‖2
H2(Γ) +

∫
Ω

(ā�kq)tv
k
t,�dx

for some constant C̄ depending on M , κ, δ, and δ1. As in [7] and [8], the integral
involving the pressure q has the following estimate:∫ t

0

∫
Ω

(ā�kq)tv
k
t,�dxds ≤ C(M)C(δ, δ1)N3(u0, F ) + δ

∫ t

0

‖v‖2
H3(Ω)ds

+ δ1

∫ t

0

‖vt‖2
H1(Ω)ds,

where

N3(u0, F ) := ‖u0‖2
H2.5(Ω) + ‖u0‖2

H4.5(Γ) + ‖F‖2
L2(0,T ;H1(Ω))

+ ‖Ft‖2
L2(0,T ;H1(Ω)′) + ‖F (0)‖2

H1(Ω) + 1.

Integrating (8.13) in time from 0 to t and choosing δ1, δ3 > 0 small enough, (7.27)
and (8.9) imply that, for all t ∈ [0, T ],

‖vt(t)‖2
L2(Ω) +

∫ t

0

[
‖∇vt‖2

L2(Ω) + κ‖vt‖2
H2(Γ)

]
ds

≤ C̄N3(u0, F ) + C̄

∫ t

0

∫ s

0

‖v(r)‖2
H4(Γ)drds + δ

∫ t

0

‖v‖2
H3(Ω)ds(8.14)

for some constant C̄ depending on M , κ, δ, and δ2. In (8.14), (8.8) is used to bound
‖vt(0)‖2

L2(Ω).

8.7. ε2-independent estimates. Integrating (8.3) in time from 0 to t, (7.27),
(8.9), and (8.12) imply that∫ t

0

[
‖v‖2

H2(Ω) + ‖q‖2
H1(Ω)

]
ds

≤ C(M)N1(u0, F ) +

∫ t

0

[
‖vt‖2

L2(Ω) + ‖v‖2
H2(Γ)

]
ds

≤ C̄N3(u0, F ) + C̄

∫ t

0

∫ s

0

‖v(r)‖2
H4(Γ)drds + δ

∫ t

0

‖v‖2
H3(Ω)ds(8.15)

for some constant C̄ depending on M , κ, and δ. Integrating (8.4) in time from 0 to t,
making use of (8.11), (8.12), (8.14), and (8.15), and then choosing δ > 0 small enough
and T even smaller, we find that

(8.16)

∫ t

0

[
‖v‖2

H3(Ω) + ‖q‖2
H2(Ω)

]
ds ≤ C̄N3(u0, F ) + C̄

∫ t

0

∫ s

0

‖v(r)‖2
H4(Γ)drds
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for some constant C̄ depending on M , κ, and ε1.
Having (8.16), by choosing δ2 > 0 small enough, the estimates (8.11) can be

rewritten as

‖∇2
0v(t)‖2

L2(Ω1)
+

∫ t

0

[
‖∇∇2

0v‖2
L2(Ω1)

+ κ‖v‖2
H4(Γ)

]
ds

≤ C̄N3(u0, F ) + C̄

∫ t

0

∫ s

0

‖v(r)‖2
H4(Γ)drds(8.17)

for some constant C̄ depending on M , κ, and ε1. Therefore,

X(t) ≤ C̄

[∫ t

0

X(s)ds + N3(u0, F )

]
,

where

X(t) =

∫ t

0

‖v‖2
H4(Γ)ds.

By the Gronwall inequality,

(8.18)

∫ t

0

∫ s

0

‖v(r)‖2
H4(Γ)drds ≤ C̄N3(u0, F )

for all t ∈ [0, T ] for some constant C̄ depending on M , κ, and ε1. Having (8.18),
estimates (8.9), (8.14), (8.16), and (8.17) along with the standard embedding theorem
lead to

sup
0≤t≤T

[
‖v(t)‖2

H2(Ω) + ‖vt(t)‖2
L2(Ω)

]
+ ‖v‖2

V3(T ) + ‖q‖2
L2(0,T ;H2(Ω))

+ κ‖v‖2
L2(0,T ;H4(Γ)) ≤ C̄N3(u0, F )(8.19)

for some constant C̄ depending on M , κ, and ε1.

8.8. Weak limits as ε2 → 0. Since the estimate (8.19) is independent of ε2,
the weak limit as ε2 → 0 of the sequence (v, h, q) exists. We will denote the weak
limit of (v, h, q) by (vκ, hκ, qκ). By lower semicontinuity, (8.8) and thus (8.19) hold
for the weak limit (vκ, hκ, qκ). Furthermore,

〈vκt, ϕ〉 +
ν

2

∫
Ω

Dη̄vκ : Dη̄ϕdx + σ

∫
Γ

Θ̄
[
[Lh̄(hκ)(−∇0h̄, 1)] ◦ η̄τ

]
· ϕdS

+ κ

∫
Γ

Δ0vκ · Δ0ϕdS − (qκ, ā
�
kϕ

k
,�)L2(Ω)(8.20)

= 〈F,ϕ〉 − σ

∫
Γ

Θ̄
[
[M(h̄)(−∇0h̄, 1)] ◦ η̄τ

]
· ϕdS

for all ϕ ∈ H1;2(Ω; Γ) and a.a. t ∈ [0, T ].

9. Estimates independent of κ and ε1.

9.1. Energy estimates which are independent of κ. Although (8.19) does
not imply that hκ ∈ H4(Γ), hκ is indeed in H4(Γ) by (7.4). Therefore, we have that
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(vκ, hκ, qκ) satisfies

vκ
i
t − ν[āk�Dη̄(vκ)i�],k = −(āki qκ),k + F̃ i in (0, T ) × Ω,(9.1a)

ājivκ
i
,j = 0 in (0, T ) × Ω,(9.1b)

[νDη̄(vκ)ji − qκδ
j
i ]ā

�
jN� = σΘ̄[Lh̄(hκ)(−∇0h̄, 1)] ◦ η̄τ on (0, T ) × Γ,(9.1c)

+ σΘ̄[Mh̄(−∇0h̄, 1)] ◦ η̄τ + κΔ2
0vκ

ht ◦ η̄τ = [(h̄,α) ◦ η̄τ ]vα − vz on (0, T ) × Γ,(9.1d)

v = ũ0 on {t = 0} × Ω,(9.1e)

h = 0 on {t = 0} × Γ.(9.1f)

Having (9.1c), (A.7) in Appendix A implies that hκ is in H5(Γ) for a.a. t ∈ [0, T ]
with estimate∫ t

0

‖∇2
0hκ‖2

H3(Γ)ds ≤ C(ε1)

∫ t

0

[
‖∇4

0hκ‖2
L2(Γ) + ‖vκ‖2

H3(Ω) + ‖qκ‖2
H2(Ω) + 1

]
ds,

where the forcing f in (A.7) is given by

[νDη̄(vκ)ji − qκδ
j
i ]ā

�
jN� − σΘ̄[Mh̄(−∇0h̄, 1)] ◦ η̄τ .

By the same argument, (7.18) holds with all θ replaced by κ. Therefore, by (8.4)
(which follows from (7.18)),∫ t

0

‖∇2
0hκ‖2

H3(Γ)ds ≤ C(ε1)

∫ t

0

[
‖vκt‖2

H1(Ω) + ‖∇4
0hκ‖2

L2(Γ) + ‖∇2
0vκ‖2

H1(Ω1)

]
ds

+ C(ε1)N2(u0, F ).(9.2)

With this extra regularity of hκ, the energy estimate (8.19) can be made inde-
pendent of κ. In section B.2 in Appendix B, we prove that

ν1

2
‖∇4

0hκ(t)‖2
L2(Γ) ≤

∫ t

0

∫
Γ

Θ̄
[
[Lh̄(hκ)(−∇0h̄, 1)] ◦ η̄τ

]
· ∇2

0(ζ
2
1∇2

0vκ)dSds

+ C ′
∫ t

0

[
1 + ‖ṽ‖2

H3(Ω) + ‖h̃t‖2
H2.5(Γ) + ‖h̃‖2

H5(Γ)

]
‖∇4

0hκ‖2
L2(Γ)ds

+ C ′
∫ t

0

[
‖h̃‖2

H5(Γ) + 1
]
ds + δ

∫ t

0

‖vκ‖2
H3(Ω)ds + δ1

∫ t

0

‖∇2
0hκ‖2

H3(Γ)ds

for some constant C ′ depending on M , ε1, δ, and δ1. By (9.2),

ν1

2
‖∇4

0hκ(t)‖2
L2(Γ) ≤

∫ t

0

∫
Γ

Θ̄
[
[Lh̄(hκ)(−∇0h̄, 1)] ◦ η̄τ

]
· ∇2

0(ζ
2
1∇2

0vκ)dSds

+ C ′N2(u0, F ) + C ′
∫ t

0

[
‖∇2

0vκ‖2
H1(Ω1)

+ K(s)‖∇4
0hκ‖2

L2(Γ)

]
ds(9.3)

+ δ

∫ t

0

‖vκ‖2
H3(Ω)ds + δ1

∫ t

0

‖vκt‖2
H1(Ω)ds,

where

K(s) := 1 + ‖ṽ‖2
H3(Ω) + ‖h̃t‖2

H2.5(Γ) + ‖h̃‖2
H5(Γ).
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With (9.3), (8.11) now is replaced by

[
‖∇2

0vκ(t)‖2
L2(Ω1)

+ ‖∇4
0hκ(t)‖2

L2(Γ)

]
+

∫ t

0

[
‖∇∇2

0vκ‖2
L2(Ω1)

+ κ‖vκ‖2
H4(Γ)

]
ds

≤ C ′N2(u0, F ) + C ′
∫ t

0

[
‖vκt‖2

L2(Ω) + ‖∇2
0vκ‖2

H1(Ω1)
+ K(s)‖∇4

0hκ‖2
L2(Γ)

]
ds

+ δ

∫ t

0

‖vκ‖2
H3(Ω)ds + δ1

∫ t

0

‖vκt‖2
H1(Ω)ds(9.4)

for some C ′ depending on M , ε1, δ, and δ1, where (A.5) is applied to bound κ‖vκ‖2
H3(Γ)

(this is where ‖vκt‖2
L2(Ω) comes from). Similar computations lead to

[
‖∇0vκ(t)‖2

L2(Ω1)
+ ‖∇3

0hκ(t)‖2
L2(Γ)

]
+

∫ t

0

[
‖∇∇0vκ‖2

L2(Ω1)
+ κ‖vκ‖2

H3(Γ)

]
ds(9.5)

≤ CN2(u0, F ) + C

∫ t

0

‖∇4
0hκ‖2

L2(Γ)ds + δ

∫ t

0

‖vκ‖2
H3(Ω)ds

for some constant C depending on M and δ.
In Appendix C, we establish the following κ- and ε1-independent inequality for

the time-differentiated problem:

∫ t

0

‖∇2
0hκt‖2

L2(Γ)ds ≤
∫ t

0

∫
Γ

[
[Lh̄(hκ)(∇0h̄,−1)] ◦ η̄τ

]
t
· vκtdS

+ CN3(u0, F ) + C

∫ t

0

K(s)
[
‖∇4

0hκ‖2
L2(Γ) + ‖∇2

0hκt‖2
L2(Γ)

]
ds

+ (δ + Ct1/2)

∫ t

0

‖vκ‖2
H3(Ω)ds + (δ1 + Ct1/2)

∫ t

0

‖vκt‖2
H1(Ω)ds + δ2‖∇4

0hκ‖2
L2(Γ)

for some constant C depending on M , δ, δ1, and δ2. Therefore, (8.14) can be replaced
by the following estimate:

[
‖vκt‖2

L2(Ω) + ‖∇2
0hκt‖2

L2(Γ)

]
+

∫ t

0

[
‖∇vκt‖2

L2(Ω) + κ‖Δ0vκt‖2
L2(Γ)

]
ds

(9.6)

≤ CN3(u0, F ) + C

∫ t

0

K(s)
[
‖∇4

0hκ‖2
L2(Γ) + ‖∇2

0hκt‖2
L2(Γ)

]
ds

+ (δ + Ct1/2)

∫ t

0

‖vκ‖2
H3(Ω)ds + (δ1 + Ct1/2)

∫ t

0

‖vκt‖2
H1(Ω)ds + δ2‖∇4

0hκ‖2
L2(Γ).

9.2. κ-independent estimates. Just as in section 8.7, we find that

∫ t

0

[
‖vκ‖2

H3(Ω) + ‖qκ‖2
H2(Ω)

]
ds

≤ C(M)N2(u0, F ) + C(M)

∫ t

0

[
‖vκt‖2

H1(Ω) + ‖∇2
0vκ‖2

H1(Ω1)

]
ds.(9.7)

By choosing δ = δ1 = δ2 = 1/8 and T > 0 so that CT 1/2 < 1/8 in (9.6), we find that
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∫ t

0

[
‖vκ‖2

H3(Ω) + ‖qκ‖2
H2(Ω)

]
ds ≤ CN3(u0, F ) +

1

8
‖∇4

0hκ‖2
L2(Γ)

+ C(M)

∫ t

0

[
‖∇2

0vκ‖2
H1(Ω1)

+ K(s)
(
‖∇4

0hκ‖2
L2(Γ) + ‖∇2

0hκt‖2
L2(Γ)

)]
ds.(9.8)

Combining the estimates (7.27), (8.9), (9.4), and (9.5) with (9.6),[
‖vκ‖2

H1(Ω) + ‖∇2
0vκ‖2

L2(Ω1)
+ ‖∇2

0hκ‖2
H2(Γ) + ‖vκt‖2

L2(Ω) + ‖∇2
0hκt‖2

L2(Γ)

]
(t)

+

∫ t

0

[
‖∇vκ‖2

L2(Ω) + ‖∇∇0vκ‖2
L2(Ω1)

+ ‖∇∇2
0vκ‖2

L2(Ω1)
+ ‖vκt‖2

H1(Ω)

]
ds

≤ C ′N3(u0, F ) + C ′
∫ t

0

[
‖vκt‖2

L2(Ω) + K(s)
(
‖∇4

0hκ‖2
L2(Γ) + ‖∇2

0hκt‖2
L2(Γ)

)]
ds

for some constant C ′ depending on M and ε1. By the Gronwall inequality and (8.4),

sup
0≤t≤T

[
‖vκ‖2

H2(Ω) + ‖vκt‖2
L2(Ω) + ‖∇2

0hκt‖2
L2(Γ) + ‖∇4

0hκ‖2
L2(Γ)

+ ‖qκ‖2
H1(Ω)

]
(t) + ‖vκ‖2

V3(T ) + ‖qκ‖2
L2(0,T ;H2(Ω)) ≤ C(ε1)N3(u0, F ).

9.3. Weak limits as κ → 0. Just as in section 8.8, the weak limit (vε1 , hε1 , qε1)
of (vκ, hκ, qκ) as κ → 0 exists in V (T ) × L2(0, T ;H4(Γ)) × L2(0, T ;H2(Ω)) with
estimate

sup
0≤t≤T

[
‖vε1(t)‖2

H2(Ω) + ‖vε1 t(t)‖2
L2(Ω) + ‖∇2

0hε1 t(t)‖2
L2(Γ) + ‖∇4

0hε1(t)‖2
L2(Γ)

+ ‖qε1(t)‖2
H1(Ω)

]
+ ‖vκ‖2

V3(T ) + ‖qε1‖2
L2(0,T ;H2(Ω)) ≤ C(ε1)N3(u0, F ).(9.9)

Equation (9.9) implies that for a.a. t ∈ [0, T ],

‖vκ(t)‖H2.5(Γ) ≤ C̄(t)

for some C̄(t) independent of κ, and therefore for a.a. t ∈ [0, T ],

κ

∫
Γ

Δ0vκ · Δ0ϕdS → 0

as κ → 0. This observation with (8.20) shows that (vε1 , hε1 , qε1) satisfies, for a.a.
t ∈ [0, T ],

(vκt, ϕ)L2(Ω) +
ν

2

∫
Ω

Dη̄vκ : Dη̄(ϕ)dx + σ

∫
Γ

Θ̄Lh̄(hκ)
[
−h̄,σ ◦ η̄τϕσ + ϕz

]
dS

− (āji qκ, ϕ
i
,j)L2(Ω) = 〈F̃ , ϕ〉 + σ〈Θ̄Mh̄(−∇0h̄ ◦ η̄τ , 1), ϕ〉Γ(9.10)

for all ϕ ∈ H1;2(Ω; Γ). Since (9.10) also defines a linear functional on H1(Ω), by the
density argument, we have that (9.10) holds for all ϕ ∈ H1(Ω). As (vε1 , hε1 , qε1) are
smooth enough, we can integrate by parts and find that (vε1 , hε1 , qε1) satisfies (7.2)
with (7.2c) replaced by
(9.11)

[νDη̄(vε1)
j
i − qε1δ

j
i ]ā

�
jN� = σ

[
Θ̄[(Lh̄(hε1) + M(h̄))(∇0h̄,−1)] ◦ η̄τ

]
on (0, T ) × Γ.
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9.4. H5.5-regularity of hκ. By (9.11), we have the following lemma.
Lemma 9.1. For a.a. t ∈ [0, T ], hε1(t) ∈ H5.5(Γ) with

‖hε1‖2
H5.5(Γ) ≤ C(M)

[
‖vε1 t‖2

H1(Ω) + ‖∇vε1‖2
L2(Ω) + ‖∇2

0vε1‖2
H1(Ω1)

+ ‖∇4
0hε1‖2

L2(Γ)

+ ‖F‖2
H1(Ω) + 1

]
,(9.12)

and hence

(9.13) ‖hε1‖2
L2(0,T ;H5.5(Γ)) ≤ C(M)eC(M)+TN3(u0, F ).

Proof. We write the boundary condition (9.11) as

(9.14) Lh̄(hε1) =
1

σ
J−2
h̄

(−∇0h̄, 1) ·
{

Θ̄−1
[
[νDη̄(vε1)

j
i − qε1δ

j
i ]ā

�
jN�

]}
◦ η̄−τ −M(h̄).

By Corollary 7.1, Lh̄ is uniformly elliptic with the elliptic constant ν1 which is in-
dependent of M which defines our convex subset CT (M). Since h̄ ∈ H(T ), M(h̄) ∈
L2(0, T ;H2.5(Γ))∩L∞(0, T ;H1(Γ)), and hence by (8.19), the right-hand side of (9.14)
is bounded in H1.5(Γ). The important point is that these bounds are independent of
ε1. Thus, elliptic regularity of Lh̄ proves the estimate

‖hε1‖2
H5.5(Γ) ≤ C(M)

[
‖Dη̄(vε1)‖2

H1.5(Γ) + ‖qε1‖2
H1.5(Γ) + 1

]
so that with (8.4), (9.12) is proved.

9.5. Energy estimates which are independent of ε1. Having estimate
(9.12), one can follow exactly the same procedure as in section 9.2 to show that
the constant C ′ appearing in (9.9) is independent of ε1, provided that we have an
ε1-independent version of (9.4). By section B.2, we indeed have such an estimate:

ν1

2
‖∇4

0hε1(t)‖2
L2(Γ) ≤

∫ t

0

∫
Γ

Θ̄
[
[Lh̄(hε1)(−∇0h̄, 1)] ◦ η̄τ

]
· ∇2

0(ζ
2
1∇2

0vε1)dSds

+ CN2(u0, F ) + C

∫ t

0

K(s)‖∇4
0hε1‖2

L2(Γ)ds + (δ + Ct1/2)

∫ t

0

‖vε1‖2
H3(Ω)ds

+ (δ1 + Ct1/2)

∫ t

0

‖vε1 t‖2
H1(Ω)ds

for some constant C depending on M , δ, and δ1. Therefore, we can conclude that

sup
0≤t≤T

[
‖vε1‖2

H2(Ω) + ‖vε1 t‖2
L2(Ω) + ‖∇2

0hε1 t‖2
L2(Γ) + ‖∇4

0hε1‖2
L2(Γ)

(9.15)

+ ‖qε1‖2
H1(Ω)

]
(t) + ‖vε1‖2

V3(T ) + ‖qε1‖2
L2(0,T ;H2(Ω)) ≤ C(M)eC(M)+TN3(u0, F ).

Remark 15. Literally speaking, we cannot use ∇2
0(ζ

2
1∇2

0vε1) as a test function
in (9.10), since it is not a function in H1(Ω). However, since hε1 ∈ H5.5(Γ) for
a.a. t ∈ [0, T ], (9.10) also holds for all ϕ ∈ H1(Ω)′ ∩H−1.5(Γ) and ∇2

0(ζ
2
1∇2

0vε1) is a
function of this kind.

9.6. Weak limits as ε1 → 0. The same argument leads to the fact that weak
limits of (vε1 , hε1 , qε1) (denoted by (v, h, q)) as ε1 → 0 exist and (v, h, q) satisfies (7.1).
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9.7. Uniqueness. In this section, we show that for a given (ṽ, h̃) ∈ YT , the
solution to (7.1) is unique in YT . Suppose (v1, h1) and (v2, h2) are two solutions (in
YT ) to (7.3). Let w = v1 − v2 and g = h1 − h2; then w and g satisfy

〈wt, ϕ〉 +
ν

2

∫
Ω

Dη̃w : Dη̃ϕdx + σ

∫
Γ

Θ̃

[
L̃h̃

(∫ t

0

(h̃,αwα − wz)ds

)]
◦ η̃τ

× (−h̃,α ◦ η̃τϕα + ϕz)dS = 0(9.16)

for all ϕ ∈ Vv(T ) with w(0) = 0, where L̃ equals L, except L1 = L2 = 0. Since w is
in Vv(T ), letting w = ϕ in (9.16) leads to[

‖v‖2
H1(Ω) + ‖∇2

0v‖2
L2(Ω1)

+ ‖∇4
0h‖2

L2(Γ) + ‖vt‖2
L2(Ω) + ‖∇2

0ht‖2
L2(Γ)

]
(t)

+

∫ t

0

[
‖∇v‖2

L2(Ω) + ‖∇∇0v‖2
L2(Ω1)

+ ‖∇∇2
0v‖2

L2(Ω1)
+ ‖vt‖2

H1(Ω)

]
ds

≤ C(M)

∫ t

0

K(s)
[
‖∇4

0h‖2
L2(Γ) + ‖∇2

0ht‖2
L2(Γ)

]
ds.

Therefore, by the Gronwall inequality and the zero initial condition (w(0) = 0),
we have that w (and hence g) is identical to zero.

10. Fixed-point argument. From previous sections, we establish a map ΘT

from YT into YT ; i.e., given (ṽ, h̃) ∈ CT (M), there exists a unique ΘT (ṽ, h̃) = (v, h)
satisfying (7.1). Theorem 4.1 is then proved if this mapping ΘT has a fixed point.
We shall make use of the Tychonoff fixed-point theorem which states as follows.

Theorem 10.1. For a reflexive Banach space X, and C ⊂ X a closed, convex,
bounded subset, if F : C → C is weakly sequentially continuous into X, then F has
at least one fixed point.

In order to apply the Tychonoff fixed-point theorem, we need to show that
Θ(ṽ, h̃) ∈ CT (M), and this is the case if T is small enough. In the following dis-
cussion, we will always assume T is smaller than a fixed constant (for example, say
T ≤ 1) so that the right-hand side of (9.15) can be written as C(M)N3(u0, F ).

Remark 16. The space YT is not reflexive. We will treat CT (M) as a convex
subset of XT and apply the Tychonoff fixed-point theorem on the space XT .

Before proceeding with the fixed-point proof, we note that Lemma 6.3 implies
that for a short time, the constant C(M) in (8.1) and (8.4) can be chosen to be
independent of M . To be more precise, for a.a. 0 < t ≤ T1,

‖q‖2
L2(Ω) ≤ C

[
‖vt‖2

L2(Ω) + ‖∇v‖2
L2(Ω) + ‖∇4

0h‖2
L2(Γ) + ‖F‖2

L2(Ω) + 1
]
,(10.1)

‖v‖2
H3(Ω) + ‖q‖2

H2(Ω) ≤ C
[
‖vt‖2

H1(Ω) + ‖∇v‖2
H1(Ω) + ‖∇0v‖2

H1(Ω1)

+ ‖∇2
0v‖2

H1(Ω) + ‖F‖2
H1(Ω) + 1

]
,

(10.2)

and

‖h‖2
H5.5(Γ) ≤ C

[
‖vt‖2

H1(Ω) + ‖∇v‖2
L2(Ω) + ‖∇2

0v‖2
H1(Ω1)

+ ‖∇4
0h‖2

L2(Γ)

+ ‖F‖2
H1(Ω) + 1

]
(10.3)

for some constant C independent of M .
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10.1. Continuity in time of h. By the evolution equation (7.1d) and the fact
that v ∈ V3(T1), ht ∈ L2(0, T1;H

2.5(Γ)). Since h ∈ L2(0, T1;H
5.5(Γ)), we have that

h ∈ C0([0, T1];H
4(Γ)) by the standard interpolation theorem. Although there is no

uniform rate that h converges to zero in H4(Γ), we have the following lemma.
Lemma 10.2. Let (v, h) = ΘT1(ṽ, h̃). Then ‖h(t)‖H2.5(Γ) converges to zero as

t → 0, uniformly for all (ṽ, h̃) ∈ CT1(M).
Proof. By the evolution equation (7.1d),

‖h(t)‖H2.5(Γ) ≤
∫ t

0

‖h̃,αvα − vz‖H2.5(Γ)dS ≤ C(M)N3(u0, F )1/2t1/2.

The lemma follows directly from the inequality.
By Lemma 10.2 and the interpolation inequality, we also have the following

lemma.
Lemma 10.3. ‖∇2

0h(t)‖H1.5(Γ) converges to zero as t → 0, uniformly for all

h̃ ∈ CT1(M) with estimate

(10.4) ‖∇2
0h(t)‖H1.5(Γ) ≤ C(M)N3(u0, F )t1/4

for all 0 < t ≤ T1.

10.2. Improved energy estimates. In order to apply the fixed-point theorem,
we have to use the fact that the forcing F is in V2(T ). We also define a new constant

N(u0, F ) := ‖u0‖2
H2.5(Ω) + ‖F‖2

V2(T1)
+ ‖F‖2

L∞(0,T1;L2(Ω)) + ‖F (0)‖2
H1(Ω) + 1.

Note that N3(u0, F ) ≤ N(u0, F ).
Remark 17. For the linearized problem (7.1), we need only F ∈ V1(T ) to obtain

a unique solution (v, h) ∈ YT .

10.2.1. Estimates for ∇2
0v near the boundary. Note that

1

2

d

dt

[
‖ζ1∇2

0v‖2
L2(Ω) + σ

∫
Γ

Θ̃BÃαβγδ∇2
0h,αβ∇2

0h,γδdS

]
+

ν

2
‖ζ1Dη̃(∇2

0v)‖2
L2(Ω)

= 〈F,∇2
0(ζ

2
1∇2

0v)〉 −
ν

4

∫
Ω

[
∇2

0(ã
k
i ã

�
i)v

j
,� + ∇2

0(ã
k
i ã

�
j)v

i
,�

]
(ζ2

1∇2
0v

j),kdx

− ν

2

∫
Ω

[
∇0(ã

k
i ã

�
i)∇0v

j
,� + ∇0(ã

k
i ã

�
j)∇0v

i
,�

]
(ζ2

1∇2
0v

j),kdx

− ν

2

∫
Ω

Dη̃(∇2
0v)

j
i ã

k
i ζ1ζ1,k∇2

0v
jdx +

∫
Ω

qã�k[∇2
0(ζ

2
1∇2

0v
k)],�dx− σ

(
3∑

k=1

Ik +

8∑
k=1

Jk

)
,

where Ik’s and Jk’s are defined in section B.1 (with ¯ replaced by ,̃ and no ε1 and ε2).
As in [7] and [8], we study the time integral of the right-hand side of the identity

above in order to prove the validity of the requirement of applying the Tychonoff
fixed-point theorem. By interpolation and (9.9),

∫ t

0

∫
Ω

[
∇2

0(ã
k
i ã

�
i)v

j
,� + ∇2

0(ã
k
i ã

�
j)v

i
,�

]
(ζ2

1∇2
0v

j),kdxds

≤ C

∫ t

0

‖ãã‖H2(Ω)‖∇v‖L∞(Ω)‖v‖H3(Ω)ds
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≤ C(M)C(δ)

∫ t

0

‖v‖1/2
H3(Ω)‖v‖

1/2
H1(Ω)ds + δ‖v‖2

L2(0,T ;H3(Ω))

≤ C(M)C(δ)N(u0, F )1/2
∫ t

0

‖v‖1/2
H3(Ω)ds + δC(M)N(u0, F )

≤ C(M)N(u0, F )
[
C(δ)t3/4 + δ

]
.

Similarly,∫ t

0

∫
Ω

[
∇0(ã

k
i ã

�
i)∇0v

j
,� + ∇0(ã

k
i ã

�
j)∇0v

i
,�

]
(ζ2

1∇2
0v

j),kdxds

+

∫ t

0

∫
Ω

Dη̃(∇2
0v)

j
i ã

k
i ζ1ζ1,k∇2

0v
jdxds ≤ C(M)N(u0, F )

[
t1/2 + C(δ)t + δ

]
.

For the pressure term, by interpolation and (8.10),

∫ t

0

∫
Ω

qã�k[∇2
0(ζ

2
1∇2

0v
k)],�dxds

≤ C(M)

∫ t

0

[
‖q‖L∞(Ω) + ‖q‖W 1,4(Ω) + ‖q‖H1(Ω)

]
‖v‖H3(Ω)ds

≤ C(M)C(δ)

∫ t

0

‖q‖2
H1(Ω)ds + δ

[
‖v‖2

L2(0,T ;H3(Ω) + ‖q‖2
L2(0,T ;H2(Ω))

]
≤ C(M)N(u0, F )

[
C(δ)t1/2 + δ

]
.

By the estimates already established in Appendix B, with the help of (6.6), it is also
easy to see that

∫ t

0

(
3∑

k=1

Ik +

8∑
k=1

Jk

)
ds ≤ C(M)N(u0, F )

[
t1/4 + t1/2 + C(δ)t2/3 + δ

]
.

Finally, for the forcing term, by the extra regularity we assume on F ,∫ t

0

〈F,∇2
0(ζ

2
1∇2

0v)〉ds ≤
∫ t

0

‖F‖H2(Ω)‖v‖H2(Ω)ds ≤ N(u0, F ) +

∫ t

0

‖v‖2
H2(Ω)ds

≤ N(u0, F ) + C(M)N(u0, F )t.

Therefore,

[
‖∇2

0v(t)‖2
L2(Ω1)

+ σEh̃(∇2
0h)

]
+ ν

∫ t

0

‖Dη̃(∇2
0v)‖2

L2(Ω1)
ds

≤ ‖u0‖2
H2(Ω) + CN(u0, F ) + C(M)N(u0, F )

[
C(δ)(t3/4 + t2/3 + t1/2 + t) + δ

]
.

By Corollary 7.1,

[
‖∇2

0v(t)‖2
L2(Ω1)

+ ‖∇4
0h(t)‖2

L2(Γ)

]
+

∫ t

0

‖∇2
0v‖2

H1(Ω1)
ds

≤ CN(u0, F ) + C(M)N(u0, F )
[
C(δ)O(t) + δ

]
as t → 0,(10.5)
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where C depends on ν, σ, ν1, and the geometry of Γ.
By similar computations, we can also conclude (the (7.27), (8.9), and (9.5) vari-

ants) that

[
‖v(t)‖2

L2(Ω) + ‖∇2
0h(t)‖2

L2(Γ)

]
+

∫ t

0

‖v‖2
H1(Ω)ds

≤ CN(u0, F ) + C(M)N(u0, F )O(t) as t → 0;(10.6) [
‖∇0v(t)‖2

L2(Ω1)
+ ‖∇3

0h(t)|2L2(Γ)

]
+

∫ t

0

‖∇0v‖2
H1(Ω1)

ds

≤ CN(u0, F ) + C(M)N(u0, F )O(t) as t → 0;(10.7)

‖∇v(t)‖2
L2(Ω) +

∫ t

0

‖vt‖2
L2(Ω)ds

≤ CN(u0, F ) + C(M)N(u0, F )O(t) as t → 0,(10.8)

where C depends on ν, σ, ν1, and the geometry of Γ.

10.2.2. L2
tH

1
x-estimate for vt. For the time-differentiated problem, we are not

able to use estimates such as those in sections 8.6 and 10.2.1, since no ε1-regularization
is present; nevertheless, we can obtain estimates at the ε1-regularization level and then
pass ε1 to the limit once the estimate is found to be ε1-independent. We have that

1

2

d

dt
‖vt‖2

L2(Ω) +
ν

2
‖Dη̄vt‖2

L2(Ω) +
σ

2

d

dt

∫
Γ

Θ̄Āαβγδht,αβht,γδdS

= 〈Ft, vt〉 − ν

∫
Ω

[
(āki ā

�
j)tv

j
,� + (āki ā

�
j)tv

i
,�

]
vjt,kdx +

∫
Ω

qtā
�
ktv

k
,�dx

+
1

2

∫
Γ

(Θ̄Āαβγδ)tht,αβht,γδdS −
∫

Γ

Θ̄√
det(g0)

[√
det(g0)(Ā

αβγδ)th,αβ

]
,γδ

httdS

− 2

∫
Γ

Θ̄,γĀ
αβγδht,αβhtt,δdS −

∫
Γ

Θ̄,γδĀ
αβγδht,αβhttdS

−
∫

Γ

Θ̄
[
Lαβγ

1 h̄,αβγ

]
t
httdS −

∫
Γ

Θ̄(L2)thttdS + K1 + K3 + K4 + K5 + K6,

where Ki’s are defined in Appendix C (without ε2).
As in the previous section, the time integral of the right-hand side of the identity

above is studied. It is easy to see that∫ t

0

[
〈Ft, vt〉 − ν

(
(āki ā

�
j)tv

j
,� + (āki ā

�
j)tv

i
,�

)
vjt,k + K1 + K5 + K6

]
ds

≤ C(M)N(u0, F )
[
t1/4 + t1/2 + C(δ)(t1/2 + t) + δ

]
,

and by Appendix C, particularly Remark 22,∫ t

0

∫
Γ

[
1

2
(Θ̄Āαβγδ)tht,αβht,γδ −

Θ̄√
det(g0)

[√
det(g0)(Ā

αβγδ)th,αβ

]
,γδ

htt

− 2Θ̄,γĀ
αβγδht,αβhtt,δ − Θ̄,γδĀ

αβγδht,αβhtt

]
dSds

≤ C(M)N(u0, F )t1/2.
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Special treatment is needed for the rest of the terms, and we break this procedure
into several steps.

Step 1. Let B1 =
∫ t

0

∫
Ω

(qā�k)tv
k
t,�dxds. By the “divergence-free” condition (7.2b),

B1 =

∫ t

0

∫
Ω

ā�ktqv
k
t,�dxds−

∫ t

0

∫
Ω

ā�ktqtv
k
,�dxds.

By interpolation and (8.1),∣∣∣∣
∫ t

0

∫
Ω

ā�ktqv
k
t,�dxds

∣∣∣∣
≤ C(M)C(δ)

∫ t

0

‖q‖2
L2(Ω)ds + δ

[
‖q‖2

L2(0,T ;H1(Ω)) + ‖vt‖2
L2(0,T ;H1(Ω))

]
≤ C(M)N(u0, F )

[
C(δ)t + δ

]
.

For the second integral, we have the following identity:

∫ t

0

∫
Ω

ā�ktqtv
k
,�dxds =

∫
Ω

(ā�ktqv
k
,�)(t)dx−

∫
Ω

ā�kt(0)q(0)uk
0,�dx

−
∫ t

0

∫
Ω

(ā�ktv
k
,�)tqdxds.

By the identity ā�kt = −āikv̄
j
,iā

�
j ,∣∣∣∣

∫ t

0

∫
Ω

(ā�ktv
k
,�)tqdxds

∣∣∣∣ ≤
∫ t

0

∫
Ω

∣∣∣[ā�kttvk,� + ā�ktv
k
t,�

]
q
∣∣∣dxds

≤ C(M)

∫ t

0

(1 + ‖v̄t‖H1(Ω))‖∇v‖L4(Ω)‖q‖L4(Ω)ds.

Therefore,∣∣∣∣
∫ t

0

∫
Ω

(ā�ktv
k
,�)tqdxds

∣∣∣∣
≤ C(M)C(δ)N(u0, F )

∫ t

0

‖q‖2α
H1(Ω)‖q‖

2(1−α)
L2(Ω) ds + δ

∫ t

0

(1 + ‖v̄t‖2
H1(Ω))ds

≤ C(M)N(u0, F )2
[
C(δ)(t + t

1−α
2 ) + δ

]
,

where α = 3
4 if n = 3 and α = 1

2 if n = 2.

The second integral equals
∫
Ω
∇u0 : (∇u0)

T q(0)dx, which is bounded by CN(u0, F ).

It remains to estimate the first integral. By adding and subtracting
∫
Ω
ā�kt(0)qvk,�dx,

we find, by āt(0) ∈ H2(Ω), that∣∣∣∣
∫

Ω

(ā�ktqv
k
,�)(t)dx

∣∣∣∣ ≤
∫

Ω

∣∣∣(ā�kt − ā�kt(0))(qvk,�)(t)
∣∣∣dx +

∫
Ω

∣∣∣ā�kt(0)qvk,�

∣∣∣dx
≤ C‖āt(t) − āt(0)‖L4(Ω)‖q‖L2(Ω)‖∇v‖L4(Ω)

+ C(δ1)‖∇v‖2
L2(Ω) + δ1‖q‖2

L2(Ω).
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Noting that

‖∇v‖2
L2(Ω) =

∥∥∥∥∇u0 +

∫ t

0

∇vtds

∥∥∥∥
2

L2(Ω)

≤
[
‖∇u0‖L2(Ω) +

∫ t

0

‖∇vt‖L2(Ω)ds

]2

≤ 2
[
‖u0‖2

H1(Ω) + C(M)N(u0, F )t
]
,

(9.9), (6.5c), and (10.1) imply that∣∣∣∣
∫

Ω

ā�ktqv
k
,�(t)dx

∣∣∣∣ ≤ C(M)N(u0, F )t1/2 + C(δ1)N(u0, F )

+ δ1

[
‖vt‖2

L2(Ω) + ‖∇4
0h‖2

L2(Γ)

]
.

Summing all the estimates above, we find that

|B1| ≤ C(δ1)N(u0, F ) + C(M)N(u0, F )2
[
C(δ)(t + t

1−α
2 ) + δ

]
+ δ1

[
‖vt‖2

L2(Ω) + ‖∇4
0h‖2

L2(Γ)

]
.

Remark 18. It may be tempting to use an interpolation inequality to show
that q ∈ C([0, T ];X) for some Banach space X by analyzing qt via Laplace’s equa-
tion. The problem, however, is that the boundary condition for qt has low regularity
L2(0, T ;H−1.5(Γ)) (by the fact that ht ∈ L2(0, T ;H2.5(Γ))), and thus standard elliptic
estimates do not provide the desired conclusion that qt ∈ L2(0, T ;H1(Ω)′) (and hence
by interpolation, q ∈ C([0, T ];H0.5(Ω))). However, suppose that qt ∈ L2(0, T ;H1(Ω)′);

then we can estimate
∫ t

0

∫
Ω
ā�ktqtv

k
,�dxds by the following method:∣∣∣∣

∫ t

0

∫
Ω

ā�ktqtv
k
,�dxds

∣∣∣∣ ≤
∫ t

0

‖āikv̄
j
,iā

�
jv

k
,�‖H1(Ω)‖qt‖H1(Ω)′ds

≤ C(M)N(u0, F )
[
t + t5/8

]
.

Step 2. Let B2 =
∫ t

0

∫
Γ

Θ̃
[
[Lαβγ

1 h̃,αβγ ]thtt + (L2)thtt

]
dSds. It is easy to see that∣∣∣∣

∫ t

0

∫
Γ

Θ̄(L2)thttdSds

∣∣∣∣ ≤ C(M)

∫ t

0

[
‖v‖L∞(Γ) + ‖vt‖L2(Γ)

]
ds

≤ C(M)N(u0, F )1/2(t + t3/4).

For parts involving L1, we have∫ t

0

∫
Γ

Θ̃
[
Lαβγ

1 h̃,αβγ

]
t
httdSds =

∫ t

0

∫
Γ

Θ̃
[
Lαβγ

1

]
t
h̄,αβγhttdSds (≡ B1

2)

+

∫ t

0

∫
Γ

Θ̃Lαβγ
1 h̄t,αβγhttdSds (≡ B2

2).

By interpolation,

|B1
2 | ≤ C(M)

∫ t

0

‖Θ̄‖L∞(Γ)‖h̃‖W 1,4(Γ)‖htt‖L4(Γ)dSds

≤ C(M)

∫ t

0

[
‖v‖H2(Ω) + ‖vt‖H1(Ω)

]
ds

≤ C(M)N(u0, F )1/2t1/2,
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while by (6.6) and Corollary 6.5,

|B2
2 | ≤

∫ t

0

‖Θ̄‖H1.5(Γ)‖h̃t‖H2.5(Γ)‖Lαβγ
1 ‖H1.5(Γ)‖htt‖H0.5(Γ)ds

≤ C(M)‖Lαβγ
1 ‖H1.5(Γ)

∫ t

0

‖h̃‖H2.5(Γ)

[
‖v‖H2(Ω) + ‖vt‖H1(Ω)

]
ds

≤ C(M)N(u0, F )t1/4.

Therefore,

|B2| ≤ C(M)N(u0, F )(t + t3/4 + t1/4).

Step 3. Let B3 =
∫ t

0
K3ds =

∫ t

0

∫
Γ

Θ̄[Lh̄(h)]t[(v̄ ◦ η̄−τ ) · (∇0ht)]dSds. The L1 and
L2 part of B3 is bounded by

C(M)

∫ t

0

‖Θ̄‖H1.5(Γ)‖v̄‖H1.5(Γ)‖h̄‖H3.5(Γ)‖h̄t‖H2(Γ)‖ht‖H2(Ω)ds,

and hence∣∣∣∣
∫ t

0

Θ̄
[
Lαβγ

1 h̄,αβγ + L2

]
t
[(v̄ ◦ η̄−τ ) · (∇0ht)]dSds

∣∣∣∣ ≤ C(M)N(u0, F )t1/4.

By the integration by parts formula, the highest order part of B3 can be expressed as∫ t

0

∫
Γ

Θ̄(v̄ ◦ η̄−τ )√
det(g0)

[√
det(g0)(Ā

αβγδ)th,αβ

]
,γδ

∇0htdSds (≡ B1
3)

+

∫ t

0

∫
Γ

Θ̄(v̄ ◦ η̄−τ )Āαβγδht,αβ∇0ht,γδdSds (≡ B2
3)

+ 2

∫ t

0

∫
Γ

[Θ̄(v̄ ◦ η̄−τ )],γĀ
αβγδht,αβ∇0ht,δdSds (≡ B3

3)

+

∫ t

0

∫
Γ

[Θ̄(v̄ ◦ η̄−τ )],γδĀ
αβγδht,αβ∇0htdSds (≡ B4

3).

It is easy to see that

|B1
3 | ≤ C(M)

∫ t

0

‖Θ̄v̄ ◦ η̄−τ‖H1.5(Γ)‖h̄t‖H2(Γ)‖h‖H4(Γ)‖ht‖H2(Γ)dS

≤ C(M)N(u0, F )t

and

|B3
3 | ≤ C(M)

∫ t

0

‖Θ̄v̄ ◦ η̄−τ‖W 1,4(Γ)‖Ā‖L∞(Γ)‖ht‖H2(Γ)‖ht‖W 2,4(Γ)dS

≤ C(M)N(u0, F )t1/2.

For B2
3 , by the integration by parts formula,

B2
3 =

1

2

∫ t

0

∫
Γ

Θ̄(v̄ ◦ η̄−τ )Āαβγδ∇0

[
ht,αβht,γδ

]
dSds

= −1

2

∫ t

0

∫
Γ

1√
det(g0)

∇0

[√
det(g0)Θ̄(v̄ ◦ η̄−τ )Āαβγδ

]
ht,αβht,γδdSds,
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and hence

|B2
3 | ≤

∫ t

0

[
‖∇0Θ̄‖L4(Γ)‖v̄Ā‖L∞(Γ) + ‖Θ̄‖L∞(Γ)‖v̄Ā‖W 1,4(Γ)

]
× ‖ht‖W 2,4(Γ)‖ht‖H2(Γ)ds

≤ C(M)N(u0, F )1/2
∫ t

0

‖v‖H3(Ω)ds

≤ C(M)N(u0, F )t1/2.

For B4
3 , noting that

Θ̄,γδ = det(∇0η̄
τ ),γδ

√
det(Gh̄) ◦ η̄τ + det(∇0η̄

τ ),γ
√

det(Gh̄) ◦ η̄τ ,δ
+ det(∇0η̄

τ ),δ
√

det(Gh̄) ◦ η̄τ ,γ + det(∇0η̄
τ )
√

det(Gh̄) ◦ η̄τ ,γδ

and ‖∇0 det(∇0η̄
τ )‖H0.5(Γ) ≤ C(M)t1/2, we find that

|B4
3 | ≤ C(M)

∫ t

0

‖∇0 det(∇0η̄
τ )‖H0.5(Γ)‖∇2

0ht‖H0.5(Γ)‖∇0ht‖H1.5(Γ)ds

+ C(M)

∫ t

0

‖det(∇0η̄
τ )‖L∞(Γ)‖∇0η̄

τ‖2
L∞(Γ)‖∇2

0ht‖L2(Γ)‖∇0ht‖L2(Γ)ds

≤ C(M)N(u0, F )t1/2 + C(M)N(u0, F )3/4
∫ t

0

‖v‖1/2
H3(Ω)ds

≤ C(M)N(u0, F )(t1/2 + t3/4).

Combining all the estimates, we find that

|B3| ≤ C(M)N(u0, F )(t + t1/2 + t3/4).

Step 4. Let B4 =
∫ t

0
K4ds =

∫ t

0

∫
Γ

Θ̄[Lh̄(h)]t[(∇0h̄,−1)t · (v ◦ η̄−τ )]dSds. Integrat-
ing by parts,

B4 = −
∫ t

0

∫
Γ

Lh̄(h)
[
Θ̄t(∇0h̄,−1)t · (v ◦ η̄−τ ) + Θ̄(∇0h̄,−1)t · (v ◦ η̄−τ )t

+ Θ̄(∇0h̄,−1)tt · (v ◦ η̄−τ )
]
dSds +

∫
Γ

Θ̄Lh̃(h)[(∇0h̃,−1)t · (v ◦ η̄−τ )]dS.

For the first integral, (6.8) implies that

∣∣∣∣
∫

Γ

Θ̄Lh̃(h)[(∇0h̃,−1)t · (v ◦ η̄−τ )]dS

∣∣∣∣
≤ ‖Θ̄‖L∞(Γ)‖Lh̃(h)‖L2(Γ)‖∇0h̃t‖L4(Γ)‖v ◦ η̄−τ‖L4(Γ)

≤ C(M)N(u0, F )‖h̃t‖H1.5(Γ)

≤ C(M)N(u0, F )t1/8.
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It is also easy to see that

∣∣∣∣
∫ t

0

∫
Γ

Lh̄(h)
[
Θ̄t(∇0h̄,−1)t · (v ◦ η̄−τ ) + Θ̄(∇0h̃,−1)t · (v ◦ η̄−τ )t

]
dSds

∣∣∣∣
≤ C(M)

∫ t

0

[
‖v‖L∞(Γ) + ‖vt‖L4(Γ)

]
‖Lh̃(h)‖L2(Γ)‖∇0h̃t‖L4(Γ)ds

≤ C(M)N(u0, F )1/2
∫ t

0

[
‖v‖H3(Ω) + ‖vt‖H1(Ω)

]
ds

≤ C(M)N(u0, F )t1/2.

For the remaining terms, the H0.5(Γ)-H−0.5(Γ) duality pairing leads to

∣∣∣∣
∫ t

0

∫
Γ

Θ̄Lh̃(h)(∇0h̃,−1)tt · vdSds
∣∣∣∣

≤
∫ t

0

‖Θ̄‖H1.5(Γ)‖Lh̃(h)‖H0.5(Γ)‖v‖H1.5(Γ)‖h̃tt‖H0.5(Γ)ds.

By interpolation,

‖Lh̃(h)‖H0.5(Γ) ≤ C(M)
[
‖h‖1/2

H5.5(Γ)‖h‖
1/2
H3.5(Γ) + 1

]
,

and hence ∣∣∣∣
∫ t

0

∫
Γ

Θ̃Lh̃(h)(∇0h̃,−1)tt · (v ◦ η̄−τ )dSds

∣∣∣∣
≤ C(M)N(u0, F )

∫ t

0

‖h̃tt‖H0.5(Γ)

[
‖∇5

0h‖
1/2
L2(Γ) + 1

]
ds

≤ C(M)C(δ)N(u0, F )

∫ t

0

[
‖∇5

0h‖L2(Γ) + 1
]
ds + δC(M)N(u0, F )

≤ C(M)N(u0, F )
[
C(δ)(t1/2 + t) + δ

]
.

All the inequalities above give us

|B4| ≤ C(M)N(u0, F )
[
C(δ)(t1/2 + t) + t1/8 + δ

]
.

Summing all the estimates above, we find that

[
‖vt‖2

L2(Ω) + σ

∫
Γ

Θ̄Āαβγδht,αβht,γδ|2dS
]
(t) + ν

∫ t

0

‖Dη̃vt‖2
L2(Ω)ds

≤ ‖vt(0)‖2
L2(Ω) + σ

∫
Γ

|Gαβ
0 ht,αβ(0)|2dS + (C + C(δ1))N(u0, F )

+ C(M)N(u0, F )
[
C(δ)(t + t3/4 + t1/2 + t1/4 + t1/8 + t

1−α
2 ) + δ

]
+ δ1

[
‖vt‖2

L2(Ω) + ‖∇4
0h‖2

L2(Γ)

]
,
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and by Corollary 7.1,[
‖vt(t)‖2

L2(Ω) + ‖∇2
0ht(t)‖2

L2(Γ)

]
+

∫ t

0

‖vt‖2
H1(Ω)ds

≤ (C + C(δ1))N(u0, F ) + C(M)N(u0, F )
[
C(δ)O(t) + δ

]
(10.9)

+ δ1

[
‖vt‖2

L2(Ω) + ‖∇4
0h‖2

L2(Γ)

]
,

where C depends on ν, σ, ν1, and the geometry of Γ. Since this estimate is independent
of ε1, we pass ε1 to zero and conclude that the solution (v, h) to (7.1) also satisfies
(10.9).

10.3. Mapping from CT (M) into CT (M). In this section, we are going to
choose M so that Θ(ṽ, h̃) ∈ CT (M) if (ṽ, h̃) ∈ CT (M).

Summing (10.5), (10.6), (10.7), (10.8), and (10.9), by (6.5) we find that[
‖v(t)‖2

L2(Ω) + ‖∇0v(t)‖2
L2(Ω1)

+ ‖∇2
0v(t)‖2

L2(Ω1)
+ ‖vt(t)‖2

L2(Ω)

+ ‖∇2
0h(t)‖2

L2(Γ) + ‖∇3
0h(t)‖2

L2(Γ) + ‖∇4
0h(t)‖2

L2(Γ) + ‖∇2
0ht(t)‖2

L2(Γ)

]
+

∫ t

0

[
‖v‖2

H1(Ω) + ‖∇0v‖2
H1(Ω1)

+ ‖∇2
0v‖2

H1(Ω1)
+ ‖vt‖2

H1(Ω)

]
ds

≤ (C + C(δ1))N(u0, F ) + C(M)N(u0, F )
[
C(δ)O(t) + δ

]
+ δ1

[
‖vt‖2

L2(Ω) + ‖∇4
0h‖2

L2(Γ)

]
,

where C depends on ν, σ, ν1, and the geometry of Γ. Choosing δ1 = 1
2 ,[

‖v(t)‖2
L2(Ω) + ‖∇0v(t)‖2

L2(Ω1)
+ ‖∇2

0v(t)‖2
L2(Ω1)

+ ‖vt(t)‖2
L2(Ω)

+ ‖∇2
0h(t)‖2

L2(Γ) + ‖∇3
0h(t)‖2

L2(Γ) + ‖∇4
0h(t)‖2

L2(Γ) + ‖∇2
0ht(t)‖2

L2(Γ)

]
+

∫ t

0

[
‖v‖2

H1(Ω) + ‖∇0v‖2
H1(Ω1)

+ ‖∇2
0v‖2

H1(Ω1)
+ ‖vt‖2

H1(Ω)

]
ds

≤ C1N(u0, F ) + C(M)N(u0, F )2
[
C(δ)O(t) + δ

]
,

where C1 depends on ν, σ, μ, and the geometry of Γ. Similar to section 8.7, for
a.a. 0 < t ≤ T ,[

‖v(t)‖2
H2(Ω) + ‖vt(t)‖2

L2(Ω) + ‖∇2
0h(t)‖2

H2(Γ) + ‖∇2
0ht(t)‖2

L2(Γ)

]
+

∫ t

0

[
‖v‖2

H3(Ω) + ‖vt‖2
H1(Ω) + ‖q‖2

H2(Ω)

]
ds(10.10)

≤ C2N(u0, F ) + C(M)N(u0, F )2
[
C(δ)O(t) + δ

]
for some constant C2 depending on C1.

By (6.6), (6.8), and (7.1d),∫ t

0

‖ht‖2
H2.5(Γ)ds ≤

∫ t

0

[
1 + ‖h̃‖2

H3.5(Γ)

]
‖v‖2

H2.5(Γ)ds

≤ C(M)N(u0, F )t1/4(10.11)
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and∫ t

0

‖htt‖2
H0.5(Γ)ds ≤ C(M)

∫ t

0

[
‖h̃t‖2

H1.5(Γ)‖v‖2
H2(Ω) + ‖h̃‖2

H2.5(Γ)‖vt‖2
H1(Ω)

]
ds

≤ C(M)N(u0, F )
[
t1/4 + t1/2

]
.(10.12)

Also, by (10.3) and (10.10),∫ t

0

‖h‖2
H5.5(Γ)ds ≤ C

∫ t

0

[
‖vt‖2

H1(Ω) + ‖∇v‖2
L2(Ω) + ‖∇2

0v‖2
H1(Ω1)

+ ‖∇4
0h‖2

L2(Γ)

+ ‖F‖2
H1(Ω) + 1

]
ds

≤ C3N(u0, F ) + C(M)N(u0, F )2
[
C(δ)O(t) + δ

]
(10.13)

for some constant C3 depending on C2.
Combining (10.10), (10.11), (10.12), and (10.13), we have the following inequality:[

‖v(t)‖2
H2(Ω) + ‖vt(t)‖2

L2(Ω) + ‖h(t)‖2
H4(Γ) + ‖ht(t)‖2

H2(Γ)

]
+

∫ t

0

[
‖v‖2

H3(Ω) + ‖vt‖2
H1(Ω) + ‖h‖2

H5.5(Γ) + ‖ht‖2
H2.5(Γ) + ‖htt‖2

H0.5(Γ)

]
ds

≤ (C2 + C3)N(u0, F ) + C(M)N(u0, F )2
[
C(δ)O(t) + δ

]
.

Let M = 2(C2+C3)N(u0, F )+1 (and hence corresponding T0 and T in Lemma 6.3
and Corollary 7.1 are fixed). Choose δ > 0 small enough (but fixed) so that

C(M)N(u0, F )2δ ≤ 1

4

and then choose T > 0 small enough so that

C(M)N(u0, F )2C(δ)T ≤ 1

4
.

Then for a.a. 0 < t ≤ T ,[
‖v(t)‖2

H2(Ω) + ‖vt(t)‖2
L2(Ω) + ‖h(t)‖2

H4(Γ) + ‖ht(t)‖2
H2(Γ)

]
+

∫ t

0

[
‖v‖2

H3(Ω) + ‖vt‖2
H1(Ω) + ‖ht‖2

H2.5(Γ) + ‖htt‖2
H0.5(Γ)

]
ds

≤ C2N(u0, F ) +
1

2
,

and therefore

sup
0≤t≤T

[
‖v(t)‖2

H2(Ω) + ‖vt(t)‖2
L2(Ω) + ‖h(t)‖2

H4(Γ) + ‖ht(t)‖2
H2(Γ)

]
+ ‖v‖2

V3(T ) + ‖h‖2
H(T ) ≤ 2C2N(u0, F ) + 1,(10.14)

or in other words,

‖(v, h)‖2
Y (T ) ≤ 2C2N(u0, F ) + 1.

Remark 19. Equation (10.14) implies that for (ṽ, h̃) ∈ CT (M) (with M and
T chosen as above), the corresponding solution to the linear problem (7.1) (v, h) =
ΘT (ṽ, h̃) is also in CT (M).
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10.4. Weak continuity of the mapping ΘT .
Lemma 10.4. The mapping ΘT is weakly sequentially continuous from CT (M)

into CT (M) (endowed with the norm of XT ).
Proof. Let (vp, hp)p∈N be a given sequence of elements of CT (M) weakly conver-

gent (in YT ) toward a given element (v, h) ∈ CT (M) (where CT (M) is sequentially
weakly closed as a closed convex set) and let (vσ(p), hσ(p))p∈N be any subsequence of
this sequence.

Since V3(T ) is compactly embedded into L2(0, T ;H2(Ω)), we deduce the following
strong convergence results in L2(0, T ;L2(Ω)) as p → ∞:

(aj�)p(a
k
� )p → aj�a

k
� and (aj�)p(a

�
k)p → aj�a

�
k,(10.15a)

[(aj�)p(a
k
� )p],j → (aj�a

k
� ),j and [(aj�)p(a

�
k)p],j → (aj�a

�
k),j ,(10.15b)

(aki )p → aki .(10.15c)

Now let (wp, gp) = ΘT (vp, hp) and let qp be the associated pressure so that (qp)p∈N is in
a bounded set of V2(T ). Since XT is a reflexive Hilbert space, let (wσ(p), gσ(p), qσ(p))p∈N

be a subsequence weakly converging in XT × V2(T ) toward an element (w, g, q) ∈
XT × V2(T ). Since CT (M) is weakly closed in XT , we also have (w, g) ∈ CT (M).

For each φ ∈ L2(0, T ;H1(Ω)), we deduce from (7.3) (and Remark 6) that∫ T

0

[
(wt, φ)L2(Ω) +

μ

2

∫
Ω

Dηw : Dηφdx + σ

∫
Γ

Lh(g)(g,αφα − φz)dS

+

∫
Ω

qajiφ
i
,jdx

]
dt =

∫ T

0

〈F, φ〉dt,

which with the fact that, from (10.15), for all t ∈ [0, T ], w ∈ Vv, provides that (w, g)
is a solution of (2.16) in CT (M), i.e., (w, g) = ΘT (v, h).

Therefore, we deduce that the whole sequence (ΘT (vn, hn))n∈N weakly converges
in CT (M) toward ΘT (v, h), which concludes the lemma.

10.5. Uniqueness. For the uniqueness result, we assume that u0, F , and Γ are
smooth enough (e.g., u0 ∈ H5.5(Ω), F ∈ V4(T ), Γ is a H8.5 surface) so that u0 and
the associated u1, q0 satisfy compatibility condition (4.4). Therefore, the solution
(v, h, q) is such that v ∈ V6(T ), q ∈ L2(0, T ;H5(Ω)) and h ∈ L∞(0, T ;H7(Γ)) ∩
L2(0, T ;H8.5(Γ)), ht ∈ L∞(0, T ;H5(Γ)) ∩ L2(0, T ;H5.5(Γ)), htt ∈ L∞(0, T ;H2(Γ)) ∩
L2(0, T ;H3.5(Γ)). This implies a ∈ L∞(0, T ;H5(Ω)), and hence by studying the
elliptic equation

(a�ia
k
i qt,k),� =

[
νa�i(a

k
pa

j
pv

i
,j),k� + a�itv

i
,� + a�iF,�

]
t
− [(a�ia

k
i )tq,k],� in Ω,

qt = J−2
h

[(
σLh(h)Ni − νDη(v)

�
ia

j
iNj

)
t
− (ajiNj)tq

]
a�iN� on Γ,

we find that qt ∈ L2(0, T ;H2(Ω)), and this implies vtt ∈ L2(0, T ;H1(Ω)). By the
interpolation theorem, we also conclude that vt ∈ C0([0, T ];H2.5(Ω)).

Suppose (v, h, q) and (ṽ, h̃, q̃) are two sets of solutions of (1.1). Then

(v − ṽ)t − ν[ak�Dη(v − ṽ)i�],k = −aki (q − q̃),k + δF,(10.16a)

aji (v − ṽ)i,j = δa,(10.16b) [
ν[Dη(v − ṽ)]�i − (q − q̃)δ�i

]
aj�Nj = σΘ

[
Lh(h− h̃)(−∇0h, 1)

]
◦ ητ(10.16c)

+ δL1 + δL2 + δL3,
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(h− h̃)t ◦ ητ = [h,α ◦ ητ ](vα − ṽα) − (vz − ṽz)(10.16d)

+ δh1 + δh2 + δh3,

(v − ṽ)(0) = 0,(10.16e)

(h− h̃)(0) = 0,(10.16f)

where

δF = f ◦ η − f ◦ η̃ + ν[(ak�a
j
� − ãk� ã

j
�)ṽ

i
,j ],k + ν[(ak�a

j
i − ãk� ã

j
i )ṽ

�
,j ],k(10.17a)

− (aki − ãki )q̃,k,

δa = (aji − ãji )ṽ
i
,j ,(10.17b)

δL1 = σΘ
[
Lh(h̃)(∇0h−∇0h̃, 0)

]
◦ ητ − ν(aki a

j
� − ãki ã

j
�)ṽ

�
,kNj(10.17c)

− ν(ak�a
j
� − ãk� ã

j
�)ṽ

i
,kNj + (aji − ãji )q̃Nj ,

δL2 = Θ̃[Lh̃(h̃) ◦ ητ ](∇0h̃ ◦ ητ −∇0h̃ ◦ η̃τ , 0)(10.17d)

+
[
ΘLh(h̃) ◦ ητ − Θ̃Lh(h̃) ◦ η̃τ

]
(∇0h̃ ◦ η̃τ ,−1),

δL3 =
[
[Lh(h̃) − Lh̃(h̃)](∇0h̃,−1)

]
◦ η̃τ ,(10.17e)

δh1 = (h,α ◦ ητ − h,α ◦ η̃τ )ṽα,(10.17f)

δh2 =
[
(h,α − h̃,α) ◦ η̃τ

]
ṽα,(10.17g)

δh3 = −(h̃t ◦ ητ − h̃t ◦ η̃τ ).(10.17h)

We will also use δL and δh to denote
∑3

k=1 Lk and
∑3

k=1 δhk, respectively.
Similar to (11.3) in [8], we also have the following estimates.
Lemma 10.5. For f ∈ H2(Ω) and g ∈ H1.5(Γ),

‖f ◦ η − f ◦ η̃‖L2(Ω) ≤ C
√
t‖f‖H2(Ω)

[∫ t

0

‖v − ṽ‖2
H1(Ω)ds

]1/2

,(10.18)

‖g ◦ ητ − g ◦ η̃τ‖L2(Γ) ≤ C
√
t‖g‖H1.5(Γ)

[∫ t

0

‖v − ṽ‖2
H1(Ω)ds

]1/2

(10.19)

for some constant C.
Remark 20. Assuming the regularity of h, ht, and htt given in the beginning of

this section, we have

(10.20) ‖δL2‖H2(Γ) + ‖δh1 + δh3‖H2.5(Γ) ≤ C
√
t

[∫ t

0

‖v − ṽ‖2
H3(Ω)ds

]1/2

and

‖(δL2)t‖L2(Γ) + ‖(δh1 + δh3)t‖H1(Γ)(10.21)

≤ C

[
‖v − ṽ‖H1(Ω) +

√
t

(∫ t

0

‖v − ṽ‖2
H2(Ω)ds

)1/2
]

and
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‖∇2
0(δh3)t‖L2(Γ) ≤ C

[
‖v − ṽ‖H1(Ω) + ‖v − ṽ‖H3(Ω)

+
√
t‖h̃tt‖H3.5(Γ)

(∫ t

0

‖v − ṽ‖2
H3(Ω)ds

)1/2
]
.(10.22)

By using (10.18) to estimate ‖δF‖L2(Ω), we find that

‖∇(v − ṽ)(t)‖2
L2(Ω) +

∫ t

0

‖(v − ṽ)t‖2
L2(Ω)ds

≤ C(δ)

∫ t

0

[
‖v − ṽ‖2

H1(Ω) + ‖h− h̃‖2
H4(Γ)

]
ds + (C(δ)t2 + δ)

∫ t

0

‖v − ṽ‖2
H2(Ω)ds

+ δ

∫ t

0

[
‖(v − ṽ)t‖2

H1(Ω) + ‖q − q̃‖2
H1(Ω)

]
ds.(10.23)

For the L2
tH

3
x-estimate for v − ṽ and the L2

tH
1
x-estimate for (v − ṽ)t, we have

1

2

d

dt

[
‖ζ1∇2

0(v − ṽ)‖2
L2(Ω) + 2σEh(∇2

0(h− h̃))
]

+
ν

4
‖ζ1Dη̄∇2

0(v − ṽ)‖2
L2(Ω)

≤ C
[
‖δF‖2

H1(Ω) + ‖(v − ṽ)t‖2
L2(Ω) + ‖∇(v − ṽ)‖2

L2(Ω) + ‖∇∇0(v − ṽ)‖2
L2(Ω′

1)

+ ‖∇4
0(h− h̃)‖2

L2(Γ)

]
+ δ‖v − ṽ‖2

H3(Ω) + D1 + D2 + D3

and

1

2

d

dt

[
‖(v − ṽ)t‖2

L2(Ω) + 2σEh((h− h̃)t)
]

+
ν

4
‖∇(v − ṽ)t‖2

L2(Ω)

≤ C
[
(‖∇4

0(h− h̃)‖2
L2(Γ) + ‖∇2

0(h− h̃)t‖2
L2(Γ)) + ‖δFt‖2

H1(Ω)′

]
+ δ‖v − ṽ‖2

H3(Ω)

+ E1 + E2 + E3,

where

D1 :=

∫
Ω

ζ2
1∇2

0(q − q̃)∇2
0δadx, D2 :=

∫
Γ

Θ
[
[Lh(h− h̃)] ◦ ητ

]
(∇4

0δh)dS,

D3 :=

∫
Γ

δL · ∇4
0(v − ṽ)dS

and

E1 :=

∫
Ω

(q − q̃)t(δa)tdx, E2 :=

∫
Γ

[
Θ[Lh(h− h̃)] ◦ ητ

]
t
(δh)tdS,

E3 :=

∫
Γ

(δL)t · (v − ṽ)tdS.

By using (10.20) to estimate Di and (10.21), (10.22) to estimate Ei, we obtain[
‖∇2

0(v − ṽ)(t)‖2
L2(Ω1)

+ ‖∇4
0(h− h̃)(t)‖2

L2(Γ)

]
+

∫ t

0

‖∇∇2
0(v − ṽ)‖2

L2(Ω1)
ds

≤ C(δ)

∫ t

0

[
‖(v − ṽ)t‖2

L2(Ω) + ‖∇0(v − ṽ)‖2
L2(Ω) + ‖∇4

0(h− h̃)‖2
L4(Γ)

]
ds

+ (C(δ)t2 + δ)

∫ t

0

‖v − ṽ‖2
H3(Ω)ds + δ

∫ t

0

‖q − q̃‖2
H2(Ω)ds(10.24)
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and [
‖(v − ṽ)t(t)‖2

L2(Ω) + ‖∇2
0(h− h̃)t‖2

L2(Γ)

]
+

∫ t

0

‖∇(v − ṽ)t‖2
L2(Ω)ds

≤ C(δ)

∫ t

0

[
‖v − ṽ‖2

H1(Ω) + ‖∇4
0(h− h̃)‖2

L2(Γ) + (1 + ‖h̃tt‖2
H4.5(Γ))

× ‖∇2
0(h− h̃)t‖2

L2(Γ)

]
ds(10.25)

+ (C(δ)(t + t2) + δ)

∫ t

0

‖v − ṽ‖2
H3(Ω)ds + δ‖q − q̃‖2

L2(Ω)

+ δ

∫ t

0

[
‖(v − ṽ)t‖2

H1(Ω) + ‖q − q̃‖2
H2(Ω)

]
ds.

Summing (10.23), (10.24), and (10.25), we find that

(10.26) Y (t) +

∫ t

0

Z(s)ds ≤ C(δ)

∫ t

0

k(s)Y (s)ds + (C(δ)(t2 + t) + δ)

∫ t

0

Z(s)ds,

where

k(t) = 1 + ‖h̃tt(t)‖2
H3.5(Γ),

Y (t) =
[
‖v − ṽ(t)‖2

H1(Ω) + ‖∇2
0(v − ṽ)(t)‖2

L2(Ω1)
+ ‖(v − ṽ)t(t)‖2

L2(Ω)

+ ‖h− h̃‖2
H4(Γ) + ‖(h− h̃)t‖2

H2(Γ)

]
,

Z(t) = ‖(v − ṽ)t(t)‖2
H1(Ω) + ‖∇∇2

0(v − ṽ)(t)‖2
L2(Ω1)

.

By letting δ = 1/4 and choosing Tu ≤ T so that C(δ)(T 2
u + Tu) ≤ 1/4,

(10.27) Y (t) +

∫ t

0

Z(s)ds ≤ C

∫ t

0

k(s)Y (s)ds

for all 0 < t ≤ Tu. Since Y (0) = 0, the uniqueness of the solution follows from that
Y (t) = 0 for all 0 < t ≤ Tu.

11. The analysis of the membrane traction. The analysis of the membrane
traction consists of four parts: (1) the modified linearized (and regularized) problem;
(2) the κ-independent estimates; (3) the fixed-point argument; and (4) the uniqueness
of the solution.

11.1. The modified linearized and regularized problem. Recall that the
membrane traction is

tmem =
[
JP ′′(J ) + 2P ′(J )

]
J,βg

αβη,α +
[
JP ′(J ) + P(J )

]
Hn.

For given v̄ = ρε1 ∗ ṽ (and hence η̄, ḡ, etc.), we define (for fixed but small ε > 0)

Lε
m̄ =

1

2
J̄−1

[
(∂βρε) ∗

(
ḡ

g0

)][
J̄ P ′′(J̄ ) + 2P ′(J̄ )

]
ḡαβ η̄,α +

[
J̄ P ′(J̄ ) + P(J̄ )

]
H̄n̄.

For the linearized problem, we change the boundary condition (7.1c) to

[νDη̃(v)
j
i − qδji ]ã

�
jN� = (Lε

m̄)i + σΘ̃
[
Lh̃(h)(−∇0h̃, 1)

]
◦ η̃τ on (0, T ) × Γ(11.1)

+ σΘ̃
[
[M(h̃)(−∇0h̃, 1)] ◦ η̃τ

]
,
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where we recall that Θ̄ = det(∇0η̄
τ )
√

det(Gh̄) ◦ η̄τ . Note that here we treat the
membrane traction as a given forcing on the boundary. The regularized problem
consists of adding the artificial viscosity, as introduced in (7.2c), in (11.1). Note that
here we also mollify J̄,β and use the equality (ρε ∗ f),β = ρε,β ∗ f .

Since Lm̄ is given as a forcing, all the estimates are essentially the same as those in
the previous sections. Therefore, we have a unique solution (vκ, hκ) to the regularized
problem (with ε1-, ε-, and κ-dependent estimates).

11.2. The κ-independent estimates. The introduction of the artificial vis-
cosity is to provide enough regularity for the solution to the linearized problem. As
in Appendix A, the κ-independent estimates are obtained by studying the normal
component of (A.1). Note that with the help of the mollification operation in (11.1),
the corresponding f in (A.1) is also a function in L2(0, T ;H1.5(Γ)). Therefore, (A.7)
is still valid. This κ-independent estimate will enable us to take the limit as κ → 0
and obtain the solution (vε1 , hε1). Essentially the same proof as in section 9.4 shows
that (9.12) still holds, and hence taking the limit as ε1 → 0, the weak limit (vε, hε)
solves the linearized problem (7.1), and all the estimates in the previous sections hold
with C(M) replaced by C(M, ε).

Remark 21. The estimate for (vε, hε) still depends on ε, where the extra ε-
regularization is used in the L2

tH
3
x-estimates, which requires estimating the following

boundary integral:∫
Γ

1

2
J̄−1

[
(∂βρε) ∗

(
ḡ

g0

)][
J̄ P ′′(J̄ ) + 2P ′(J̄ )

]
ḡαβ η̄,α∇4

0vdS.

Moreover, even though the estimate for hε1 depends only on the normal component
of Lm̄, in the linearized problem, there are still contributions to the normal direction
made by ḡαβ η̄,α.

11.3. The fixed-point argument. Similar fixed-point arguments as in sec-
tion 10 guarantee the existence of a fixed point (which is still denoted by (vε, hε)) in
the space XTε ; that is, there is a fixed point (vε, hε) ∈ V3(Tε) × H(Tε). This fixed
point satisfies the boundary condition

[νDηε
(vε)

j
i − qεδ

j
i ](aε)

�
jN� = (Lε

m)i + σΘε

[
Lhε

(hε)(−∇0hε, 1)
]
◦ ηετ(11.2)

+ σΘε

[
[M(hε)(−∇0hε, 1)] ◦ ηετ

]
on (0, T ) × Γ, where

Lε
m =

1

2
J−1
ε

[
ρε ∗

(
gε
g0

)]
,β

[
JεP ′′(Jε) + 2P ′(Jε)

]
gαβε ηε,α +

[
JεP ′(Jε) +P(Jε)

]
Hεnε.

By studying the tangential component of (11.2), we find that for γ = 1, 2,

(11.3) J−1
ε

[
ρε ∗

(
gε
g0

)]
,γ

[
JεP ′′(Jε) + 2P ′(Jε)

]
= 2[νDηε(vε)

j
i − qεδ

j
i ](aε)

�
jN�ηε

i
,γ .

Take Tε even smaller so that

1

2
≤ ‖Θε‖H1.5(Γ) ≤

3

2
,

1

2
≤ ‖aε‖H2(Ω) ≤

3

2
,

‖vε‖L2(0,Tε;H3(Ω)) ≤ ‖u0‖2
H3(Ω) + 1, ‖ηε‖H3(Ω) ≤ |Ω| + 1.



792 C. H. A. CHENG, D. COUTAND, AND S. SHKOLLER

With these bounds, (11.3) together with the assumptions that P is strictly convex
and P attains its minimum at J = 1 (that assure that the second bracket of the
left-hand side of (11.3) is bounded away from zero) implies that

(11.4)

∥∥∥∥∇0

[
ρε ∗

(
gε
g0

)]∥∥∥∥
H1.5(Γ)

≤ C(u0,Ω).

Since (11.4) is independent of the ε, we find that

(11.5) ‖gε‖H2.5(Γ) ≤ C(u0, g0,Ω).

Having (11.5), we no longer need ε-regularization to estimate the boundary integral
in Remark 21 and the study of (A.1), and hence all the estimates in the previous
sections are still valid with C(M) replaced by C(u0, g0,Ω). These ε-independent
estimates allow us to construct a solution (vε, hε) in X(T ) (where T is independent
of ε) with the same estimates. The solution of the original problem (1.1) is then the
limit of (vε, hε) as ε → 0.

11.4. The uniqueness of the solution. The uniqueness of the solution follows
from the elliptic estimate

‖g − g̃‖2
H2.5(Γ) ≤ C

[
‖v − ṽ‖2

H3(Ω) + ‖vt − ṽt‖2
H1(Ω)

]
,

which follows from the equation(
g − g̃

g0

)
,γ

Q(η) +

(
g̃

g0

)
,γ

[
Q(η) −Q(η̃)

]
= F (v, q)γ − F (ṽ, q̃)γ ,

where

Q(η) = J−1
[
JP ′′(J ) + 2P ′(J )

]
and F (v, q)γ = 2[νDη(v)

j
i − qδji ]a

�
jN�η

i
,γ .

Appendix A. Elliptic regularity. We establish a κ-independent elliptic esti-
mate for solutions of

(A.1)
Θ̄√

det(g0)

[(√
det(g0)Ā

αβγδhκ,αβ

)
,γδ

(−∇0h̄, 1)
]
◦ η̄τ + κΔ2

0vκ = f,

where hκ and vκ satisfy (7.4) with hκ ∈ H4(Γ), vκ ∈ H4(Γ), and f ∈ H1.5(Γ). Letting
w = vκ ◦ η̄−τ , (A.1) is equivalent to

(A.2)
Θ̄√

det(g0)

[√
det(g0)Ā

αβγδhκ,αβ

]
,γδ

(−∇0h̄, 1) + κΔ2
0w = f ◦ η̄τ ,

which implies that

Θ̄√
det(g0)

[√
det(g0)Ā

αβγδhκ,αβ

]
,γδ

+ κJ−2
h̄

Δ2
0w · (−∇0h̄, 1)

= J−2
h̄

f ◦ η̄τ · (−∇0h̄, 1).

(A.3)

Recall that w · (−∇0h̄, 1) = hκt.
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Let Dh denote the difference quotients (with respect to the surface coordinate
system). Taking the inner product of (A.3) with D−hDh∇4

0hκ, by Corollary 7.1 we
find that

ν1

∫ t

0

‖Dh∇4
0hκ‖2

L2(Γ)ds ≤ C(ε1)

∫ t

0

[
‖hκ‖2

H2(Γ) + ‖f‖2
H1(Γ) + κ‖w‖2

H4(Γ)

]
ds.

Since the right-hand side is independent of difference parameter h, it follows that
hκ ∈ H5(Γ) (as it is already a H4-function) with the estimate

(A.4)

∫ t

0

‖∇5
0hκ‖2

L2(Γ)ds ≤ C(ε1)

∫ t

0

[
‖hκ‖2

H2(Γ) + ‖f‖2
H1(Γ) + κ‖w‖2

H4(Γ)

]
ds.

Next, we obtain a κ-independent estimate of κ‖w‖2
H4(Γ). By taking the inner

product of (A.2) with ∇2
0w and ∇4

0w, we find that

‖∇3
0hκ(t)‖2

L2(Γ) + κ

∫ t

0

‖w‖2
H3(Γ)ds

≤ C(ε1)

∫ t

0

[
‖∇3

0hκ‖2
L2(Γ) + ‖f‖2

L2(Γ) + ‖w‖2
H2.5(Ω)

]
ds(A.5)

and

‖∇4
0hκ(t)‖2

L2(Γ) + κ

∫ t

0

‖w‖2
H4(Γ)ds

(A.6)

≤ C(ε1, δ1)

∫ t

0

[
‖∇4

0hκ‖2
L2(Γ) + ‖f‖2

H1.5(Γ) + ‖w‖2
H3(Ω)

]
ds + δ1

∫ t

0

‖∇5
0hκ‖2

L2(Γ)dS,

where we use (A.5) to estimate κ
∫ t

0
‖w‖H3(Γ)ds. Equation (A.6) provides a κ-inde-

pendent estimate for κ‖w‖2
H4(Γ); hence by choosing δ1 > 0 small enough, (A.4) implies

that for all t ∈ [0, T ],

(A.7)

∫ t

0

‖∇2
0hκ‖2

H3(Γ)ds ≤ C ′
∫ t

0

[
‖∇4

0hκ‖2
L2(Γ) + ‖f‖2

H1.5(Γ) + ‖w‖2
H3(Ω)

]
ds

for some constant C ′ depending on ε1.

Appendix B. Inequalities in the estimates for ∇2
0v near the boundary.

B.1. κ-independent estimates. Since ζ1 ≡ 1 on Γ and

(−∇0h̄ ◦ η̄τ , 1) · ∇4
0vκ = ∇4

0((−∇0h̄ ◦ η̄τ , 1) · vκ) −∇4
0(−∇0h̄ ◦ η̄τ , 1) · vκ

− 4∇3
0(−∇0h̄ ◦ η̄τ , 1) · ∇0vκ − 6∇2

0(−∇0h̄ ◦ η̄τ , 1) · ∇2
0vκ

− 4∇0(−∇0h̄ ◦ η̄τ , 1) · ∇3
0vκ,

we find that
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Γ

Θ̄
[
Lh̄(hκ) ◦ η̄τ

]
((−∇0h̄ ◦ η̄τ , 1) · ∇2

0(ζ
2
1∇2

0vκ))dS

= −
∫

Γ

Θ̄
[
Lh̄(hκ) ◦ η̄τ

][
∇4

0(−∇0h̄ ◦ η̄τ , 1) · vκ + 4∇3
0(−∇0h̄ ◦ η̄τ , 1) · ∇0vκ

+ 6∇2
0(−∇0h̄ ◦ η̄τ , 1) · ∇2

0vκ

]
dS (≡ I1)

− 4

∫
Γ

Θ̄
[
Lh̄(hκ) ◦ η̄τ

]
(∇0(−∇0h̄ ◦ η̄τ , 1) · ∇3

0vκ)dS (≡ I2)

+

∫
Γ

Θ̄√
det(g0)

∇2
0

[√
det(g0)

(
Lαβγ

1 h̃,αβγ + L2

)
◦ η̄τ

]
∇2

0(hκt ◦ η̄τ )dS (≡ I3)

+

∫
Γ

2∇0Θ̄√
det(g0)

∇0

[√
det(g0)

(
Lαβγ

1 h̃,αβγ + L2

)
◦ η̄τ

]
∇2

0(hκt ◦ η̄τ )dS (≡ I4)

+

∫
Γ

(∇2
0Θ̄)

[(
Lαβγ

1 h̃,αβγ + L2

)
◦ η̄τ

]
∇2

0(hκt ◦ η̄τ )dS (≡ I5)

+

∫
Γ

Θ̄√
det(g0)

[
(
√

det(g0)Ā
αβγδhκ,αβ),γδ ◦ η̄τ

]
∇4

0(hκt ◦ η̄τ )dS.

The last term of the identity above, by a change of coordinates, can be written as∫
Γ

Θ̄√
det(g0)

[
(
√

det(g0)Ā
αβγδhκ,αβ),γδ ◦ η̄τ

]
∇4

0(hκt ◦ η̄τ )dS

=

∫
Γ

B√
det(g0)

∇2
0(
√

det(g0)Ā
αβγδhκ,αβ),γδ∇2

0hκtdS + R1

+ 2

∫
Γ

∇0Θ̄√
det(g0)

∇0

[
(
√

det(g0)Ā
αβγδhκ,αβ),γδ ◦ η̄τ

]
∇2

0(hκt ◦ η̄τ )dS (≡ J1)

+

∫
Γ

∇2
0Θ̄√

det(g0)

[
(
√

det(g0)Ā
αβγδhκ,αβ),γδ ◦ η̄τ

]
∇2

0(hκt ◦ η̄τ )dS (≡ J2)

=
1

2

d

dt

∫
Γ

BĀαβγδ∇2
0hκ,αβ∇2

0hκ,γδdS + R′
1,

where B = bt ⊗ bt ⊗ bt ⊗ bt with b = ∇0η̄
τ , and

R1(t) =

∫
Γ

bt ⊗ bt ⊗ (∇0b
t) ⊗ (∇0b

t)∇0(
√

det(g0)Ā
αβγδhκ,αβ),γδ∇0hκtdS (≡ J3)

+

∫
Γ

bt ⊗ bt ⊗ bt ⊗ (∇0b
t)∇0(

√
det(g0)Ā

αβγδhκ,αβ),γδ∇2
0hκtdS (≡ J4)

+

∫
Γ

bt ⊗ bt ⊗ bt ⊗ (∇0b
t)∇2

0(
√

det(g0)Ā
αβγδhκ,αβ),γδ∇0hκtdS (≡ J5)

and

R′
1(t) = R1(t) + J1(t) + J2(t) −

1

2

∫
Γ

(BĀαβγδ)t∇2
0hκ,αβ∇2

0hκ,γδdS (≡ J6)

+ 2

∫
Γ

B√
det(g0)

∇0(
√

det(g0)Ā
αβγδ)∇0hκ,αβ∇2

0hκt,γδdS (≡ J7)

+

∫
Γ

B√
det(g0)

∇2
0(
√

det(g0)Ā
αβγδ)hκ,αβ∇2

0hκt,γδdS (≡ J8)
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+ 2

∫
Γ

B,γ√
det(g0)

∇2
0(
√

det(g0)Ā
αβγδhκ,αβ)∇2

0hκt,δdS (≡ J9)

+

∫
Γ

B,γδ√
det(g0)

∇2
0(
√

det(g0)Ā
αβγδhκ,αβ)∇2

0hκtdS (≡ J10).

It follows that

|I1| ≤ C(ε1)(1 + ‖∇4
0hκ‖L2(Γ))‖∇2

0vκ‖H1(Ω′
1)
,

|I3| + |I4| + |I5| ≤ C(M)(1 + ‖h̃‖H5(Γ))‖∇2
0vκ‖H1(Ω1)

and hence that

|I1| + |I3| + |I4| + |I5| ≤ C(ε1)
[
‖∇4

0hκ‖2
L2(Γ) + ‖h̃‖2

H5(Γ) + 1
]

+ δ‖vκ‖2
H3(Ω).

It follows that

|J2| + |J3| + |J5| + |J10| ≤ C(ε1)‖∇4
0hκ‖L2(Γ)‖∇2

0hκt‖L2(Γ),

|J6| ≤ C(M)(‖ṽ‖H3(Ω) + ‖h̃t‖H2.5(Γ))‖∇4
0hκ‖2

L2(Γ).

We need only obtain κ-independent estimates for the terms I2, J1, J4, J7, J8, and J9.
By the H−0.5(Γ)-H0.5(Γ) duality pairing,

|I2| ≤ C(M)
[
‖∇2

0hκ‖H2.5(Γ) + 1
]
‖vκ‖H2.5(Γ).

Therefore, by interpolation and Young’s inequality,

(B.1) |I2| ≤ C
[
‖hκ‖2

H4(Γ) + 1
]

+ δ1‖∇2
0hκ‖2

H3(Γ) + δ‖vκ‖2
H3(Ω)

for some C depending on M , δ, and δ1.
For J1, J4, and J9, we find that

|J1| + |J4| + |J9| ≤ C(ε1)‖hκ‖H4.5(Γ)‖vκ‖H2.5(Γ)

≤ C ′
[
‖∇2

0hκ‖2
H2(Γ) + 1

]
+ δ1‖∇2

0hκ‖2
H3(Γ) + δ‖vκ‖2

H3(Ω)

for some constant C ′ depending on M , ε1, δ, and δ1.
For J7 and J8, by the H−1.5(Γ)-H1.5(Γ) duality pairing,

|J7| + |J8| ≤ C(M)‖B‖H1.5(Γ)‖h̄‖H3.5(Γ)‖hκ‖H4.5(Γ)‖vκ‖H2.5(Γ).

Similarly to the estimate in (B.1), we find that

|J7| + |J8| ≤ C(M)
[
‖hκ‖2

H4(Γ) + 1
]

+ δ1‖∇2
0hκ‖2

H3(Γ) + δ‖vκ‖2
H3(Ω).

Summing all the estimates and then integrating in time from 0 to t, by Corollary 7.1
and the fact that B is close to 1 in the uniform norm for T small,

ν1

2
‖∇4

0hκ(t)‖2
L2(Γ) ≤

∫ t

0

∫
Γ

Θ̄
[
[Lh̄(hκ)(−∇0h̄, 1)] ◦ η̄τ

]
· ∇2

0(ζ
2
1∇2

0vκ)dSds

+ C ′
∫ t

0

K(s)‖∇4
0hκ‖2

L2(Γ)ds + C ′
∫ t

0

[
‖h̃‖2

H5(Γ) + 1
]
ds

+ δ

∫ t

0

‖vκ‖2
H3(Ω)ds + δ1

∫ t

0

‖∇2
0hκ‖2

H3(Γ)ds

for some constant C ′ depending on M , ε1, δ, and δ1, where

K(s) := 1 + ‖ṽ‖2
H3(Ω) + ‖h̃‖2

H5(Γ) + ‖h̃t‖2
H2.5(Γ).



796 C. H. A. CHENG, D. COUTAND, AND S. SHKOLLER

B.2. ε1-independent estimates. We next obtain ε1-independent estimates for
the first two terms of I1, as well as those for I2, J1, J2, J3, J4, J5, J9, and J10 with
hκ replaced by hε1 . Let

I1
1 = −

∫
Γ

Θ̄
[
Lh̃(hε1) ◦ η̄τ

][
∇4

0(−∇0h̄ ◦ η̄τ , 1) · vε1
]
dS,

I2
1 = −4

∫
Γ

Θ̄
[
Lh̃(hε1) ◦ η̄τ

][
∇3

0(−∇0h̄ ◦ η̄τ , 1) · ∇0vε1

]
dS.

By the H−1.5(Γ)-H1.5(Γ) duality pairing,

|I1
1 | + |I2

1 | ≤ C(M)‖Lh̃(hε1)‖H1.5(Γ)‖vε1‖H2.5(Γ)‖(∇0h̃) ◦ η̄τ‖H2.5(Γ).

Therefore, by (6.6) and (9.12),

|I1
1 | + |I2

1 | ≤ C(M)t1/4
[
‖hε1‖2

H5.5(Γ) + 1
]
‖vε1‖H3(Ω)(B.2)

≤ Ct1/2
[
‖vε1 t‖2

H1(Ω) + ‖∇4
0hε1‖2

L2(Γ) + ‖F‖2
H1(Ω) + 1

]
+ (δ + Ct1/2)‖vε1‖2

H3(Ω)

for some constant C depending on M and δ.
For J1, we use an L4-L4-L2-type of Hölder inequality and conclude that

|J1| ≤ C(M)t1/2‖hε1‖H5.5(Γ)‖vε1‖H2.5(Γ),

while for the other J terms, we use the H0.5(Γ)-H−0.5(Γ) duality pairing to obtain

|J2| + |J3| + |J4| + |J5| + |J9| + |J10| ≤ C(M)t1/2‖hε1‖H5.5(Γ)‖vε1‖H2.5(Γ),

and hence all the J terms are bounded by the same right-hand side of the inequality
in (B.2). Therefore,

ν1

2
‖∇4

0hε1(t)‖2
L2(Γ) ≤

∫ t

0

∫
Γ

Θ̄
[
[Lh̄(hε1)(−∇0h̄, 1)] ◦ η̄τ

]
· ∇2

0(ζ
2
1∇2

0vε1)dSds

+ CN2(u0, F ) + C

∫ t

0

K(s)‖∇4
0hε1‖2

L2(Γ)ds + (δ + Ct1/2)

∫ t

0

‖vε1‖2
H3(Ω)ds

+ (δ1 + Ct1/2)

∫ t

0

‖vε1 t‖2
H1(Ω)ds

for some constant C depending on M , δ, and δ1.

Appendix C. L2
tH

1
x-estimates for vt. By the chain rule and integrating by

parts,∫
Γ

[
Θ̄[Lh̄(hκ)(−∇0h̄, 1)]◦η̄τ

]
t
· vκtdS =

∫
Γ

Θ̄t

[
Lh̄(hκ)

]
◦ η̄τ (−∇0h̄ ◦ η̄τ , 1) · vκtdS

+

∫
Γ

Θ̄η̄τt ·
[
∇0[Lh̄(hκ)](−∇0h̄, 1)

]
◦ η̄τ · vκtdS (≡ K1)

+

∫
Γ

Θ̄
[
[Lh̄(hκ)](∇0h̄,−1)]

]
t
◦ η̄τ · vκtdS (≡ K2).

The first term is bounded by

C(M)‖v̄‖H3(Ω)

[
‖∇4

0hκ‖L2(Γ) + 1
]
‖vκt‖L2(Γ).
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After integrating by parts, the most difficult term to estimate in K1 consists of the
integral ∫

Γ

v̄√
det(g0)

[
[
√

det(g0)Ā
αβγδhκ,αβ ],γδ(∇0h̄,−1)

]
◦ η̄τ∇0vκtdS.

Integrating from 0 to t and integrating by parts in time, we find that∫ t

0

∫
Γ

v̄√
det(g0)

[
[
√

det(g0)Ā
αβγδhκ,αβ ],γδ(∇0h̄,−1)

]
◦ η̄τ∇0vκtdSds

= −
∫ t

0

∫
Γ

v̄√
det(g0)

[
[
√

det(g0)Ā
αβγδhκ,αβ ]t,γδ(∇0h̄,−1)

]
◦ η̄τ∇0vκdSds + R3,

where R3 is bounded by

C

∫ t

0

[
1 + ‖ṽt‖2

H1(Ω)

]
‖∇4

0hκ‖2
L2(Γ)ds + δ2‖∇4

0hκ‖2
L2(Γ)

+ δ

∫ t

0

‖vκ‖2
H3(Ω)ds + (δ + Ct1/2)

∫ t

0

‖vκt‖2
H1(Ω)ds

for some constant C depending on M , δ, and δ2. Next, using that

[(−∇0h̄, 1) ◦ η̄τ ] · ∇0vκ = bt(∇0hκt) ◦ η̄τ + bt(∇2
0h̄ ◦ η̄τ , 0) · vκ

and integrating by parts, we find that the integral on the right-hand side is identical
to

1

2

∫ t

0

∫
Γ

1√
det(g0)

∇0

[√
det(g0)Θ̄v̄btĀαβγδ

]
hκt,αβhκt,γδdSds + R4,

where

|R4| ≤ C(M)C(δ)

∫ t

0

‖∇4
0hκ‖2

L2(Γ)ds + δ

∫ t

0

‖vκ‖2
H3(Ω)ds.

By interpolation, the integral part is bounded by

C

[
N(u0, F ) +

∫ t

0

‖∇4
0hκ‖2

L2(Γ)ds

]
+ δ

∫ t

0

‖vκ‖2
H3(Ω)ds + Ct

∫ t

0

‖vκt‖2
H1(Ω)ds

for some constant C depending on M and δ. Therefore, K1 satisfies

∣∣∣∣
∫ t

0

K1ds

∣∣∣∣ ≤ C

∫ t

0

[
K(s)

(
‖∇4

0hκ‖2
L2(Γ) + ‖∇2

0hκt‖2
L2(Γ)

)
+ 1

]
ds + δ2‖∇4

0hκ‖2
L2(Γ)

(C.1)

+ (δ + Ct1/2)

∫ t

0

‖vκ‖2
H3(Ω)ds + (δ + Ct1/2)

∫ t

0

‖vκt‖2
H1(Ω)ds

for some constant C depending on M , δ, and δ2.
For K2, by time differentiating the evolution equation, we find that

(−∇0h̄ ◦ η̄τ , 1)vκt = hκtt ◦ η̄τ + v̄τ · (∇0hκt) ◦ η̄τ − v̄τ · (∇2
0h̄ ◦ η̄τ , 0) · vκ

− (∇0h̄t ◦ η̄τ , 0) · vκ,
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and hence (after a change of coordinates)

K2 =

∫
Γ

[Lh̄(hκ)]thκttdS +

∫
Γ

[Lh̄(hκ)]t[(v̄
τ ◦ η̄−τ ) · (∇0hκt)]dS (≡ K3)

−
∫

Γ

[Lh̄(hκ)]t[(∇0h̄t, 0) · (vκ ◦ η̄−τ )]dS (≡ K4)

−
∫

Γ

[Lh̄(hκ)]t[(v̄
τ ◦ η̄−τ ) · (∇2

0h̄, 0)(vκ ◦ η̄−τ )]dS (≡ K5)

+

∫
Γ

[Lh̄(hκ)][(∇0h̄t, 0) · (vκt ◦ η̄−τ )]dS (≡ K6).

For the first term, we have∫
Γ

[Lh̄(hκ)]thκttdS =
1

2

d

dt

∫
Γ

Āαβγδhκt,αβhκt,γδdS

+

∫
Γ

1√
det(g0)

[√
det(g0)(Ā

αβγδ)t

]
,γδ

hκ,αβhκttdS (≡ K7) + R5,(C.2)

where R5 is bounded by

C
[
1 + ‖h̃t‖2

H2.5(Γ)

][
1 + ‖∇2

0hκt‖2
L2(Γ)

]
+ δ

[
‖vκ‖2

H2(Ω) + ‖∇2
0vκ‖2

H1(Ω′
1)

]
+ δ1‖vκt‖2

H1(Ω)

for some constant C depending on M , δ, and δ1. Also, by the inequality ‖hκtt‖L4(Γ) ≤
C(M)

[
‖vκ‖H2(Ω) + ‖vκt‖H1(Ω)

]
,

|K7| ≤ C‖[
√

det(g0)(Ā
αβγδ)t],γδ‖H−0.5(Γ)

∥∥∥∥ 1√
det(g0)

hκ,αβhκtt

∥∥∥∥
H0.5(Γ)

≤ C(M)C(δ, δ1)‖h̃t‖2
H2.5(Γ)‖∇4

0hκ‖2
L2(Γ) + δ‖vκ‖2

H2(Ω) + δ1‖vκt‖2
H1(Ω).

Remark 22. The bound for K7 can be refined even further as

|K7| ≤ C(M)C(δ)‖h̃t‖2
H1.5(Γ)‖∇2

0hκ‖2
H1.5(Γ) + δ‖vκ‖2

H3(Ω) + δ‖vκt‖2
H1(Ω);

it is this inequality that will be used in the proof of the fixed-point argument.
It remains to estimate K3 to K6. By proper use of Hölder’s inequality,

|K3| + |K5| + |K6| ≤ C
[
1 + ‖h̃t‖2

H2.5(Γ)

][
1 + ‖∇4

0hκ‖2
L2(Γ)

]
+ (δ + Ct1/2)‖vκ‖2

H3(Ω) + δ‖vκt‖2
H1(Ω)

for some constant C depending on M and δ. For K4, most of the terms can be
estimated in the same fashion, except the term∫

Γ

1√
det(g0)

[√
det(g0)Ā

αβγδhκt,αβ

]
[(∇0h̄t,γδ, 0) · (vκ ◦ η̄−τ )]dS,

which is identical to∫
Γ

{
1√

det(g0)

[√
det(g0)Ā

αβγδhκt,αβ

]
[(∇0h̄,γδ, 0) · (vκ ◦ η̄−τ )]

}
t

dS (≡ K8) + R6,
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where

|R6| ≤ C‖h̃‖2
H5.5(Γ)

[
‖vκ‖2

L2(Ω) + ‖∇2
0hκt‖2

L2(Γ)

]
+ δ‖vκ‖2

H3(Ω) + δ1‖vκt‖2
H1(Ω)

for some constant C depending on M , δ, and δ1. Time integrating K8 and using the
interpolation inequality together with Young’s inequality, we find that∣∣∣∣

∫ t

0

K8(s)ds

∣∣∣∣ ≤ C(M)
[
‖u0‖2

H2.5(Ω) + ‖∇2
0hκt‖L2(Ω)‖vκ‖L4(Ω)

]

≤ C(M)C(δ1, δ2)N3(u0, F ) + δ2‖∇2
0hκt‖2

L2(Γ) + δ1

∫ t

0

‖vκt‖2
H1(Ω)ds,(C.3)

where

N3(u0, F ) := ‖u0‖2
H2.5(Ω) + ‖u0‖2

H4.5(Γ) + ‖F‖2
L2(0,T ;H1(Ω))

+ ‖Ft‖2
L2(0,T ;H1(Ω)′) + ‖F (0)‖2

H1(Ω) + 1,

and we use ‖vκ‖2
H1(Ω) ≤ C

[∫ t

0
‖vκt‖2

H1(Ω)ds + ‖u0‖2
H1(Ω)

]
to obtain (C.3), and hence

6∑
i=3

|Ki| ≤ C
[
1 + ‖h̃‖2

H5.5(Γ) + ‖h̃t‖2
H2.5(Γ)

][
1 + ‖vκ‖2

L2(Ω) + ‖∇4
0hκ‖2

L2(Γ)

]
+ (δ + Ct1/2)‖vκ‖2

H3(Ω) + δ1‖vκt‖2
H1(Ω) + K8(C.4)

with K8 satisfying inequality (C.3). Finally, combining all the estimates,

∫ t

0

‖∇2
0hκt‖2

L2(Γ)ds ≤
∫ t

0

∫
Γ

[
[Lh̄(hκ)(∇0h̄,−1)] ◦ η̄τ

]
t
· vκtdS + CN3(u0, F )

(C.5)

+ C

∫ t

0

K(s)
[
‖vκ‖2

L2(Ω) + ‖∇4
0hκ‖2

L2(Γ) + ‖∇2
0hκt‖2

L2(Γ)

]
ds

+ (δ + Ct1/2)

∫ t

0

‖vκ‖2
H3(Ω)ds + (δ1 + Ct1/2)

∫ t

0

‖vκt‖2
H1(Ω)ds + δ2‖∇4

0hκ‖2
L2(Γ)

for some constant C depending on M , δ, δ1, and δ2.
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CLASSICAL SOLUTIONS FOR NONELLIPTIC EULER–LAGRANGE
EQUATIONS VIA CONTINUATION∗

MARKUS LILLI†

Abstract. We consider a higher-gradient model in one-dimensional nonlinear elasticity. There-
fore we consider a physically reasonable stored-energy density W such that W (ν) goes to infinity
for ν ↘ 0 and ν ↗ ∞. We prescribe a parameter-dependent body-forcing. Our main goal is to
show under a certain sign condition for the body-force that global solution branches of the singular
perturbed problem converge to a global branch of weak solutions of vanishing capillarity. Moreover,
the solution satisfies the first and the second Weierstrass–Erdmann corner conditions, and the strain
field is uniformly pointwise positive.

Key words. nonlinear elasticity, singular limits, global continuation
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DOI. 10.1137/060662186

1. Introduction. This paper is motivated to a large extent by results presented
in [10]. There a two-phase model for an elastic solid in the presence of live body-
forcing and interfacial or higher-gradient effects is considered, the latter characterized
by a small capillarity coefficient ε > 0. The existence of families of equilibria is proved
by continuation methods, and the main goal in [10] is the analysis of those solutions in
the limit ε ↘ 0. Assuming that the loading is bounded and everywhere nonnegative,
uniform a priori bounds on solutions via maximum-principle arguments are obtained.
An important by-product of that analysis is a certain monotonicity property for all
solutions. In the end, global weak solutions that satisfy the Maxwell condition are
obtained.

In this work we pursue precisely the same question, but we allow the loading to
change sign exactly one time in a prescribed manner. The latter makes the applica-
tion of maximum principles much more delicate. We impose very general, physically
reasonable growth conditions on both the stored-energy function and the body-force
function. Also, in contrast to [10], we impose the pointwise unilateral constraint
introduced in [4], ensuring that all deformations of the bar are injective (with the
concomitant infinite growth of the stored energy).

The outline of the work is as follows: In the second section we introduce the model,
the variational problem under consideration, and the corresponding Euler–Lagrange
equation. Afterwards we give the assumptions on the potentials. The existence of
solutions of the singular perturbed Euler–Lagrange equation via a global implicit
function theorem is fairly routine, which we summarize in section 3. Uniform a priori
bounds on solutions are given in section 4. There we pay careful attention to the
injectivity constraint and show that the strains are uniformly (pointwise) positive.
Furthermore, we prove the unboundedness of the branch. To prove this for every λ
is another main difference compared to [10], where a similar result is obtained via a
maximum principle which does not apply to the more general body-force considered
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2007; published electronically August 22, 2007. This work was supported by the Graduiertenkolleg
“Nichtlineare Probleme in Analysis, Geometrie und Physik” at the University of Augsburg.
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†Institut für Mathematik, Universität Augsburg, 86135 Augsburg, Germany (lilli@math.uni-
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in this work. Our approach also applies in [10]. Hence all the results given there
remain valid if one replaces the condition that the body-force is bounded by the
more general growth conditions given in Theorem 5. The next section is the core
of the paper. We introduce a further assumption on the body-force, namely, that
it changes sign exactly once. By a careful application of maximum principles and
monotonicity criteria, we prove some properties for all solutions lying on the branch.
These properties enable us to obtain a singular limit in a classical function space (in
contrast to [21], where, under weaker assumptions on the body-force, the existence of
Young-measure solutions was proved). Moreover, we show in section 6 that this limit
is a solution of the Euler–Lagrange equation of the unperturbed problem and satisfies
the Maxwell conditions, forming a global and unbounded continuum. We remark
that the results denoted here, without imposing the pointwise unilateral constraint
ensuring that all deformations of the bar are injective, can also be found in [20].

One of the most powerful tools in nonlinear analysis is the Leray–Schauder de-
gree. It was especially used for semilinear elliptic PDEs of second order to prove
existence and obtain qualitative properties of classical solutions (see [25], or, for a
recent treatment, [17]). Even in quasi-linear equations the degree was used to ob-
tain branches of positive solutions (see, e.g., [19]). In [14], [15], [16] the existence of
classical solutions of a nonelliptic Euler–Lagrange equation was proved also by using
singular perturbation, which in recent years has become a widely used tool to tackle
nonconvex variational problems (see, e.g., [18], [22]).

In three-dimensional elasticity problems, global continuation results were obtained
in [9], [11], [12] by employing generalized degree theoretic methods. In this case, the
resulting solution continua are characterized not only by the usual two alternatives
given in [25], but also by a third concerning the termination of the branch. This
phenomenon can happen due to loss of local injectivity, ellipticity, and/or the com-
plementing condition.

2. Formulation. We briefly discuss the physical model behind our analysis. We
follow the lines of [13]; see also [8], [21].

We consider a one-dimensional elastic solid placed in a soft loading device. Let
[0, 1] be the reference configuration in the undeformed state and let v = v(x) be the
displacement of the material point occupying position x in the undeformed state.
Hence, u(x) = x + v(x) is the placement of the bar, and u′(x) = 1 + v′(x) is the
stretch ratio.

We assume the bar to be homogenous, which means that the stored-energy den-
sity W ∈ C2(R+) is independent of the spatial variable and depends only on u′.
Furthermore, let B(λ, u, x) : R × R

+
0 × [0, 1] �→ R be a potential delivering in general

a live body-force

−∂B

∂u
(λ, u, x) := b(λ, u, x),

where b ∈ C(R × R
+
0 × [0, 1]). The left end of the bar is fixed, which assigns the

boundary condition u(0) = 0. We assume

(2.1) b(0, ·, ·) ≡ 0.

We consider a potential W ≥ 0 and we impose the following assumptions on W ∈
C2(R+): Because we assume the bar to be stable in the undeformed state, we derive

(2.2) W (1) = σ(1) = 0 and W ′′(1) > 0,
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where σ(ν) := W ′(ν) denotes the stress. Moreover,

W (ν) ≥ W (1) = 0 for every ν ∈ R
+,

lim
ν↘0

W (ν) = lim
ν↗∞

W (ν) = ∞.
(2.3)

Condition (2.3)2 reflects the fact that one needs an infinite amount of energy to
compress the bar to volume zero and also that an infinite amount of energy is necessary
to stretch the bar to infinity.

Furthermore, we assume the existence of ν1, ν2 ∈ (1,∞) such that

W ′′(ν)

{
< 0 for ν ∈ (ν1, ν2),

> 0 otherwise.
(2.4)

Let W be a so-called one-well potential, which means

(2.5) σ(ν)

{
< 0 for ν ∈ (0, 1),

> 0 for ν ∈ (1,∞).

We require the following growth conditions for σ and b:
(i) We assume

(2.6) lim
ν→∞

σ(ν)ν

|ν|p+1 ≥ K > 0

and
(ii)

(2.7) sup
λ∈[−λ̂,λ̂]

|b(λ, u, x)| ≤ c3 |u|r + c4

for some r < p, c3 = c3(λ̂), c4 = c4(λ̂) ≥ 0. Moreover, we have c3, c4 < ∞
provided that λ̂ < ∞ and both constants can be chosen independently of x.

The total potential energy of the bar is given by

J(u) :=

∫ 1

0

[W (u′) + B(λ, u, x)] dx,

u(0) = 0.

(2.8)

Here “λ” is a loading parameter. The corresponding Euler–Lagrange equation is

d

dx
[σ(u′)] + b(λ, u, x) = 0,

u(0) = 0 and σ(u′(1)) = 0.

(2.9)

Note that (2.8) has no global minimizer, in general, due to the fact that W is non-
convex. In particular, existence of a solution of (2.9) cannot be guaranteed by the
direct methods of the calculus of variations (see [7] for details). For the same rea-
son, the boundary value problem (2.9) is singular, obviating any systematic solution
strategy.
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Instead we introduce a “relaxed” variational problem by adding an additional
strain gradient-term, intended to model interfacial energy:

Jε(u) :=

∫ 1

0

(ε
2
(u′′)2 + W (u′) + B(λ, u, x)

)
dx,

u(0) = 0,

(2.10)

where ε > 0 is a small parameter. The Euler–Lagrange equation of equilibrium is the
fourth-order equation

(2.11) −εu(4) +
d

dx
[σ(u′)] + b(λ, u, x) = 0

with boundary conditions

(2.12) u(0) = u′′(0) = u′′(1) = 0, εu′′′(1) = σ(u′(1)).

Integration of (2.11) yields the system

u′ = z,

− εz′′ + σ(z) =

∫ 1

x

b(λ, u(η), η)dη,

u(0) = z′(0) = z′(1) = 0.

(2.13)

In contrast to (2.8) and (2.9), (2.10) and (2.13) are amenable to existence methods
for each ε > 0 (see [3], [7], [10] for details).

3. Global analysis. We just sketch the ideas. The details can be found in [10]
and [20]. The only difference is that one has to take care of (2.3)2, which is done by
methods introduced in [9].

We define Y := C2([0, 1]), we let

Y0 := {y ∈ Y | y(0) = 0} , Y1 :=

{
y ∈ Y |

∫ 1

0

ydx = 0

}
,

and, moreover, we define

μ :=

∫ 1

0

u′(s)ds =

∫ 1

0

z(s)ds, v := z − μ.

Finally we define the triple

w := (u, v, μ) ∈ W ≡ Y0 × Y1 × R,

where W is endowed with the norm ||w||W = ||u||C2 + ||v||C2 + |μ| and, in particular,
W is a Banach space. Moreover, let

K := {(y, μ) ∈ Y1 × R | y(x) + μ > 0 for all x ∈ [0, 1]}

and for arbitrary δ > 0

Kδ := {(y, μ) ∈ K | y(x) + μ > δ for all x ∈ [0, 1]} .
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Obviously (λ,w) := (0, w0) ∈ R ×W is a solution of (2.13), where

w0 := (Id, 0, 1).

By an easy calculation one obtains that (2.13) can be written as a compact pertur-
bation of the identity (see [10] for details). Hence the Leray–Schauder degree is well
defined, and a well-known argument proved in [25] and generalized in [9], employing
the homotopy invariance of the degree and taking the restriction u′ > 0 into account,
yields the following proposition.

Proposition 1. Let Cε ⊂ R × W be the connected component of solutions of
(2.13) containing the trivial solution (0, w0). Then Cε is characterized by at least one
of the following alternatives:

(i) Cε is unbounded in R ×W.
(ii) Cε\ {(0, 0)} is connected.
(iii) Cε \ R × Y0 ×Kδ �= ∅ for every δ > 0.
Remark 2. Alternative (ii) means that the branch forms a loop. The third alter-

native means that the branch can terminate and is due to the singularity of W . If
(iii) holds, then there exists a sequence (λn, un, zn)n∈N ∈ Cε and (xn)n∈N ∈ [0, 1] with

(λn)n∈N is bounded and zn(xn) ↘ 0.

4. Properties of the continuum. By a standard phase-plane analysis like the
one in [5] it is easy to show that alternative (ii) in Proposition 1 is impossible (see
[10] for details).

Furthermore, we have the following theorem.
Theorem 3. Let σ and b satisfy the growth conditions (2.6) and (2.7). Fix some

arbitrary λ0 and let (λ, uλ
ε , v

λ
ε , μ

λ
ε ) ∈ Cε for λ ∈ [−λ0, λ0] and zλε := vλε + μλ

ε . Then
there exists some δ > 0, such that for every λ ∈ [−λ0, λ0] and for every ε > 0 we have

zλε (x) > δ

for all x ∈ [0, 1].
We give a sketch of the proof. For a detailed proof we refer to [21].
We prove by contradiction and therefore we assume sequences (εn)n, (xn)n ∈ [0, 1]

and (zεn)n := (zn)n with

εn ↘ 0, zn(xn) ↘ 0.

Step 1. First we prove by virtue of (2.13), (2.3)2, and (2.7) ||zn||Lp+1 → ∞.
Step 2. We define

An := {x ∈ [0, 1] | zn(x) > 1} :=

k(n)⋃
j=1

(xj
1(n), xj

2(n)).

Observe that

(4.1) z′n(xj
1(n)) ≥ 0, z′n(xj

2(n)) ≤ 0

for all j. Multiplying (2.13) by zn and integrating over An yields

(4.2)

∫
An

σ(x, zn)zndx ≤
∫
An

[∫ 1

x

(b(un(η), η)dη + τ) zn

]
dx
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for every n ∈ N.
Step 3. From Step 1 we deduce

(4.3) ||zn||Lp+1(An) → ∞.

Multiplying (4.2) by 1

||zn||p+1

Lp+1(An)

, we obtain for every n ∈ N

1

||zn||p+1
Lp+1(An)

∫
An

σ(x, zn)zn dx

≤ 1

||zn||p+1
Lp+1(An)

∫
An

(∫ 1

x

b(un(η), η)dη + τ

)
zndx.

(4.4)

One can prove the following:
(a) The right side of (4.4) converges to 0 for n → ∞.
(b) We have

(4.5) lim
n→∞

1

||zn||p+1
Lp+1(An)

∫
An

σ(x, zn)zn dx ≥ K > 0

with K given in (2.6).
By virtue of (4.4) we get

0 < K ≤ lim
n→∞

(
1

||zn||p+1
Lp+1(An)

∫
An

σ(x, zn)zn dx

)

≤ lim
n→∞

(
1

||zn||p+1
Lp+1(An)

∫
An

(∫ 1

x

b(un(η), η)dη + τ

)
zn dx

)
= 0,

which is obviously a contradiction.
Remark 4. For fixed λ consider (uε, vε, με) ∈ Cε with associated zε. Then, by

Theorem 3 there exists δ > 0 such that zε > δ for every ε > 0. In particular,
Theorem 3 excludes alternative (iii) for every finite λ0.

Hence the global continuum Cε is unbounded in R ×W, but one can prove more
by the assumed growth conditions on σ and b.

Theorem 5. Let σ and b satisfy (2.6), (2.7) and let ε > 0. Then the projection
of Cε onto the λ-axis is R.

For the proof we refer to [21]; see also [20].
Lemma 6. Let σ and b satisfy the growth conditions as in Theorem 5 and let

(zn)n∈N be a sequence with zn ∈ Cεn for all n as εn ↘ 0. Then we obtain the
following: The sequence (zn)n∈N is uniformly bounded in C0([0, 1]). Furthermore,
there exists a subsequence of (zn)n∈N, which we again denote by (zn)n∈N, such that
the following holds: We have εnz

′′
n ⇀∗ 0 in L∞(0, 1).

One can find the proof of Lemma 6 in [21]. For the reader’s convenience we give
a sketch of the proof.

Let (zn)n∈N be a sequence as in Lemma 6 and assume the existence of xm ∈ [0, 1]
and nm such that znm(xm) > m for every m ∈ N. Without loss of generality, we
assume that x = xm is a maximum of znm

. By properties (2.5) and (2.6) we deduce

(4.6) lim
m→∞

σ(znm
(xm)) = ∞.
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Moreover, we have for every m ∈ N

(4.7) −εnm
z′′nm

(xm) + σ(znm
(xm)) =

∫ 1

xm

b(λ, unm
(η), η)dη.

The growth conditions (2.7) imply that for every m ∈ N∣∣∣∣
∫ 1

xm

b(λ, unm(η), η)dη

∣∣∣∣ ≤ c5,

where c5 is independent of m. Therefore we have by (4.6) and (4.7)

z′′nm
(xm) > 0

for m sufficiently large. On the other hand, we have z′nm
(xm) = 0 for every m ∈ N.

Hence xm cannot be a maximum, which contradicts our assumption.

5. Geometric structure of C+
ε . In order to obtain a priori estimates for

(zn)n∈N to establish strong convergence in some Sobolev space, we consider a body-
force potential b with the following properties.

There exists x0 = x0(λ) ∈ (0, 1) such that for every λ ∈ R
+ and u ∈ R

+
0 we have

(H1) b(λ, u, ·)|[0,x0] ≥ 0,
(H2) b(λ, u, ·)|[x0,1] ≤ 0.
(H3) Furthermore, there exist an open subset Ω2 ⊆ (x0, 1] and b(λ, u, ·)|Ω2

< 0.

(H4) There exists ϑ > 0 such that b(λ, u, ·)|(0,ϑ) > 0 for every λ ∈ R
+ and u ∈ R

+
0 .

Example 7. The above assumptions are valid for the following body-force: Let
W be some “one-well” potential satisfying the growth conditions with some p ∈ N,
and let b(λ, u, x) := c(λ, x)(1 + ur) with r < p, c ∈ C(R × [0, 1],R) and c changing
sign from + to − at x0 = x0(λ) for λ > 0.

Let C+
ε be the unbounded branch obtained by the global implicit function theorem

for fixed ε > 0 and λ > 0, and let (u, v, μ) ∈ C+
ε , z := v + μ. For our convenience

we say z ∈ Cε if z is constructed as above. Our goal is to show that by virtue of
(H1)–(H4) z′ changes sign in (0, 1) at most once.

One can find the following definition in [2].
Definition 8. A function v has exactly k changes of sign in [0, 1] provided that

the following hold:
(i) There are points s1 < s2 < · · · < sk+1 ∈ [0, 1] with v(si)v(si+1) < 0 for all

i = 1, . . . , k.
(ii) We will say that v changes sign at the points x1 < · · · < xk provided v(xi) = 0

and the points in (i) can be chosen so that si < xi < si+1 and v does not
change sign in [xi, xi+1].

Let us further remark that for our forthcoming analysis differentiation of (2.13)
turns out to be very useful:

h = z′,

εh′′ − σ′(z)h = b(λ, u, ·),

h(0) = h(1) = 0.

(5.1)

Remark 9. By the continuation method, (2.4), and z|{λ=0} ≡ 1, there exists λ0

sufficiently small such that σ′(zλ) > 0 for every 0 ≤ λ ≤ λ0.
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Hence we derive the following lemma.
Lemma 10. Let zλ ∈ C+

ε and consider λ0 such that σ′(zλ)|λ∈[0,λ0] > 0. Then z′λ
changes sign at most once for 0 < λ ≤ λ0.

Proof. We prove by contradiction and accordingly we assume that z′λ changes
sign at least two times in [0, 1]. By Definition 8 there exist s1, s2, s3 ∈ (0, 1) with
z′λ(si)z

′
λ(si+1) < 0 and x1, x2 ∈ (0, 1) such that s1 < x1 < s2 < x2 < s3 and

z′λ(x1) = z′λ(x2) = 0. By the boundary condition z′λ(0) = z′λ(1) = 0 we have three
nodal areas of z′λ in [0, 1]. On the other hand, we have just one sign change of b, and
hence, there exists a nodal area Ω′ ⊆ [0, 1] of z′λ such that

(5.2) sign b|Ω′ = sign z′λ|Ω′ .

For every x ∈ Ω′ we have by (5.1)

ε(z′λ)′′ − σ′(zλ)z′λ = b,

z′λ|∂Ω′ = 0.
(5.3)

By the weak maximum principle we conclude sign b|Ω′ �= sign z′λ|Ω′ , which contradicts

(5.2).
First we give a property of an arbitrary solution of (2.13).
Lemma 11. Let z be a solution of (2.13). Then there is no negative minimum of

z′ in (x0, 1).
Proof. Suppose there exists x1 ∈ (x0, 1) with

z′(x1) < 0, z′′(x1) = 0, z′′′(x1) ≥ 0.

With respect to the identity

−σ′(z(x1))z
′(x1) = −εz′′′(x1) + b(λ, u(x1), x1) ≤ 0,

we obtain by (2.4)

(5.4) z(x1) ∈ [ν1, ν2] ⊆ (1,∞).

On the other hand, we have the identity σ(z(x1)) =
∫ 1

x1
b(λ, u(τ), τ)dτ ≤ 0, which

yields z(x1) ≤ 1 by (2.5), and this contradicts (5.4).
Again maximum principles yield for λ sufficiently small the following lemma.
Lemma 12. Let λ0 be defined by Remark 9 and let zλ ∈ C+

ε for λ < λ0 and an
arbitrary ε > 0. Then there exists no interval J ⊆ [0, x0] such that z′λ|J ≡ 0.

Proof. Suppose there exists an interval J := [xα, xβ ] ⊆ [0, x0] with z′λ|J ≡ 0. For

the remainder of the proof we omit λ. Let x̂ ∈ (xα, xβ) and z′|(0,x̂) satisfy the equation

ε(z′)′′ − σ′(z)z′ = b ≥ 0,

z′(0) = z′(x̂) = z′′(x̂) = 0.
(5.5)

The weak maximum principle tells us z′|(0,x̂) ≤ 0, and the strong maximum principle

implies z′|(0,x̂) ≡ 0 and, in particular, z′|(0,xβ) ≡ 0. By virtue of (5.5) we have b|(0,xβ) ≡
0, contradicting (H4).

Lemma 13. Let λ0 be defined by Remark 9 and let λ ∈ (0, λ0) and zλ ∈ C+
ε for

an arbitrary but fixed ε > 0. We assume the existence of an interval J ⊆ (x0, 1) such
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that z′λ|J ≡ 0. Then we obtain z′λ(x) ≤ 0 for every x ∈ [0, 1]. Moreover, there exists

x̄ ∈ (x0, 1] with z′λ|(0,x̄) < 0 and z′λ|(x̄,1) ≡ 0.

Proof. Let J := [xα, xβ ] ⊆ (x0, 1) be an interval with z′λ|J ≡ 0. Similar to the
proof of Lemma 12, one can show that this implies

z′λ|[xα,1] ≡ 0.

Furthermore (H3) excludes z′λ|(x0,1)
≡ 0. Thus there exists an x ∈ (x0, 1) such that

z′λ(x) �= 0, and we let x̄ ∈ (x0, 1) such that z′λ(x̄) = z′′λ(x̄) = 0 and z′λ(x) �= 0 for
x ∈ (x̄− δ, x̄) for some δ > 0. The strong maximum principle applied to (5.1) implies

z′λ|(x̄−δ,x̄) < 0.

The weak maximum principle yields

z′λ|(x0,1)
≤ 0, z′λ|(x0,x̄) < 0.

By a further application of the maximum principle the proof is done.
By virtue of Lemmas 12 and 13 we can refine our possibilities for z′λ for λ small.
Corollary 14. Choose an arbitrary but fixed ε > 0. Furthermore, consider

zλ ∈ C+
ε for λ ∈ (0, λ0) with λ0 such that σ′(zλ) > 0. Then we have the following two

possibilities:
(i) z′λ has exactly one sign change, and, moreover, z′′λ(0) < 0, z′′λ(1) < 0, and the

only zero at x = x1 of z′λ is nondegenerate with z′′λ(x1) > 0. In particular, the
zero of z′λ in (0, 1) is unique, z′λ|(0,x1)

< 0, z′λ|(x1,1)
> 0.

(ii) z′λ does not change sign, and if there exists an interval J ⊆ (0, 1) such that
z′λ|J ≡ 0, then J = (x̄, 1] with x̄ > x0 and z′λ|(0,x̄) < 0.

Proof. We let λ0 be defined as above and we omit λ in the remainder of the proof.
(i) We assume that z′ has exactly one sign change at x1. By virtue of Lemmas 12

and 13 there exists no interval J with z′|J ≡ 0, and the weak maximum

principle applied to (5.1) implies immediately z′|(0,x1)
≤ 0 and z′|(x1,1)

≥ 0.
Hopf’s maximum principle yields the assertion.

(ii) This case is identical to Lemmas 12 and 13.
In the remainder of this section we propose a continuation method to obtain the

following: The function z′λ has at most one sign change in (0, 1) for every λ ∈ R
+.

Remark 15. Because C+
ε is connected in the C2-topology by construction of the

continuum, we deduce that the corresponding z′λ are connected in the C1-topology.
A well-known result is the following proposition.

Proposition 16. There are two (respectively, three) possibilities for creating a
new zero on a C1-component:

1. There exists x2 ∈ (0, 1) such that z′(x2) = z′′(x2) = 0 and, moreover, we
have sign(z′(x2 − γ)) = sign(z′(x2 + γ)) for every γ ∈ (0, κ), κ sufficiently
small.

2. To create a new zero at the boundary we assume either z′′(0) = 0 or z′′(1) = 0.
3. Another possibility in case (i) of Corollary 14 is the following: Let z′ change

sign at x = x1 with z′(x1) = z′′(x1) = 0.
In the forthcoming analysis we will often apply the well-known generalized max-

imum principle to (5.1), where the sign of σ′(z) does not matter. In what follows we
refer to Hopf’s generalized maximum principle by (HGM). For a proof of (HGM) we
refer to [24].



810 MARKUS LILLI

Lemma 17. Let λ1 ∈ R
+ and let x = x1 ∈ (0, 1) be the nondegenerate zero of

z′λ1
such that z′λ1|(0,x1)

< 0 and z′λ1|(x1,1)
> 0. Moreover, we assume z′′λ1

(0) < 0 and

z′′λ1
(1) < 0. Then we have two possibilities:

1. z′λ has the same properties as z′λ1
for every λ > λ1.

2. We obtain existence of λ2 > λ1 with z′λ2
≤ 0. Moreover, we have z′′λ2

(0) < 0,
and if there exists an interval J ⊆ [0, 1] with z′λ2|J ≡ 0, then J = [x2, 1] for
some x2 > x0.

Proof. Let x1 be the nondegenerate zero of z′λ1
, and by assumption we have

z′λ1|(0,x1)
< 0 and z′λ1|(x1,1)

> 0.

Step 1. First we exclude the creation of a new zero if x1 ∈ (x0, 1).
Suppose the existence of λ2 > λ1 and x2 ∈ (0, x0) with z′λ2

(x2) = z′′λ2
(x2) = 0.

Moreover, we have sign(z′λ2
(x2 − γ)) = sign(z′λ2

(x2 + γ)) for every γ ∈ (0, κ), κ
sufficiently small. We know by Corollary 14 and the continuation method that
z′λ2|(0,x2)

< 0, and, furthermore, we have

ε(z′)′′ − σ′(z)z′ = b,

z′(0) = z′(x2) = 0.

(HGM) yields z′λ2|[0,x2]
≡ 0, which is impossible by (H4).

If we assume the existence of x3 ∈ (x0, x1) with z′λ2
(x3) = z′′λ2

(x3) = 0, then we
have two possibilities:

1. There exists x′ ∈ (x3, x1) such that z′λ2
possesses a negative minimum at

x′, which is impossible by Lemma 11.
2. We have z′λ2|(x3,1)

≡ 0 and we obtain z′λ2
≤ 0.

If we consider x4 ∈ (x1, 1) with z′λ2
(x4) = z′′λ2

(x4) = 0, then we obtain z′λ2|(x4,1)
≡ 0

and z′λ2
≤ 0 by virtue of (HGM).

We consider the creation of a new zero at the boundary: First we observe that
z′′λ2

(0) = 0 for some λ2 > λ1 is impossible by (HGM). Moreover, z′′λ2
(1) = 0 predicts

again z′λ2
≤ 0.

Step 2. We consider x1 ∈ (0, x0) such that z′λ1|(0,x1)
< 0 and z′λ1|(x1,1)

> 0.

First we exclude possibility one of Proposition 16: If there exists x2 ∈ (0, x1),
respectively, x3 ∈ (x0, 1) with z′λ2

(xj) = z′′λ2
(xj) = 0 for j = 2, 3 and for some

λ2 > λ1, we obtain again by (HGM)

z′λ2|(0,x1)
≡ 0, respectively, z′λ2|(x0,1)

≡ 0.

Both are impossible by virtue of (5.1) and (H3), (H4).
The case x4 ∈ (x1, x0) with z′λ2

(x4) = z′′λ2
(x4) = 0 for some λ2 > λ1 involves

more difficulties because a maximum principle does not apply. First we observe by
the continuation method the existence of x̄ ∈ (x1, x4) with

z′λ2
(x̄) > 0, z′′λ2

(x̄) = 0, z′′′λ2
(x̄) ≤ 0.

By the identity

−σ′(zλ2(x̄))z′λ2
(x̄) = b(λ2, u(x̄), x̄) − εz′′′λ2

(x̄) ≥ 0,

we deduce σ′(zλ2
(x̄)) ≤ 0 and therefore

zλ2
(x̄) ∈ [ν1, ν2].
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Because of z′λ2|(x1,1)
≥ 0 we know that zλ2

(1) ≥ zλ2
(x̄) ≥ ν1 > 1, and by virtue of

σ(zλ2
(1)) = εz′′λ2

(1) we get z′′λ2
(1) > 0, which yields

z′λ2|(1−
,1) < 0 for � > 0 sufficiently small.

But z′ does not change sign in (x0, 1), hence a contradiction.

Next we exclude the creation of new zeros at the boundary: We assume existence
of λ3 > λ1 with z′′λ3

(0) = 0, respectively, z′′λ3
(1) = 0. Both cases imply by (HGM)

z′λ3|(0,x1)
≡ 0, respectively, z′λ3|(x0,1)

≡ 0, which is again impossible by (H3) and (H4).

Excluding possibility 3 of Proposition 16 is obvious.

Lemma 18. Let λ1 ∈ R
+ be such that z′λ1

≤ 0. Then we have two possibilities:

1. For every λ > λ1 any solution zλ ∈ C+
ε satisfies the property z′λ ≤ 0.

2. There exists λ2 > λ1 such that z′λ2
changes sign exactly once at x = x1,

and we have z′λ2|(0,x1)
< 0 and z′λ2|(x1,1)

> 0. Moreover, all zeros of z′λ2
are

nondegenerate.

Proof. First we treat z′λ1
(x) ≤ 0 for a certain λ1 ∈ R

+ and for every x ∈ [0, 1].
We have to show that z′λ changes sign at most once for arbitrary λ > λ1.

Again by (HGM) applied to (5.1) we exclude existence of a solution zλ ∈ C+
ε

satisfying z′′λ(0) = 0. By the same reason existence of x1 ∈ (0, x0] with z′λ(x1) =
z′′λ(x1) = 0 is impossible.

Oscillation of z′λ|(x0,1)
cannot occur by virtue of Lemma 11. Moreover, if a change

in sign takes place at x = x1, then we obtain by (HGM) z′λ|(x1,1)
> 0, z′λ|(0,x1)

< 0

and every zero of z′λ is nondegenerate.

Lemma 19. Let λ1 ∈ R
+ such that z′λ1

≥ 0. Then we have two possibilities:

1. We have for every λ > λ1 the property z′λ ≥ 0.
2. There exists λ2 > λ1 such that z′λ2

changes sign exactly once. The zeros of
z′λ2

are nondegenerate.

Proof. Let z′λ1|(0,1) ≥ 0 for a certain λ1 > 0. Then we have to show that z′λ
changes sign at most once for every λ > λ1.

We assume for the remainder of the proof the existence of λ2 > λ1 such that z′λ2

changes sign at least twice: Then there exists a local positive maximum at x := xα.
Note that xα ≤ x0 holds due to Lemma 11. By virtue of z′λ2

(xα) > 0 and z′′′λ2
(xα) ≤ 0,

we obtain

−σ′(zλ2
(xα))z′λ2

(xα) ≥ εz′′′(xα) − σ′(zλ2
(xα))z′λ2

(xα) = b(λ2, u(xα), xα) ≥ 0.

In particular, this implies zλ2(xα) ∈ [ν1, ν2]. Hence a necessary condition for the
existence of a local positive maximum and a local negative minimum of z′λ2

is the
existence of x ∈ [0, 1] such that

zλ2(x) ≥ ν1 > 1.

On the other hand, we have

(5.6) 0 > εz′′λ1
(1) = σ(zλ1(1)),

and this implies, due to the assumed monotonicity,

zλ1(x) < 1 for every x ∈ [0, 1].
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Of course, zλ is connected with respect to the C1-topology, and we obtain by virtue
of Lemmas 17 and 18 the existence of λ̂ ∈ (λ1, λ2) such that zλ̂ fulfills

(5.7) z′
λ̂|(0,1)

≥ 0 and there exists x̂ ∈ [0, 1] with zλ̂(x̂) = 1.

Due to z′
λ̂
≥ 0 we obtain z′′

λ̂
(1) < 0 by (HGM). As in (5.6) we conclude that zλ̂(1) < 1,

a contradiction to (5.7).
Now we are in a position to state the main result of this section.
Theorem 20. Let ε > 0 be arbitrary but fixed and consider an arbitrary z ∈ C+

ε .
Then we obtain three possibilities for the shape of z′:

(i) The function z′ has exactly one change in sign at x = x1, and, moreover, we
have z′|(0,x1)

< 0 and z′|(x1,1)
> 0. Furthermore, z′′(0) < 0, z′′(x1) > 0, and

z′′(1) < 0 hold.
(ii) We have z′(x) ≤ 0 for every x ∈ [0, 1], and if there exists an interval J ⊆ [0, 1]

such that z′|J ≡ 0, then J = [xα, 1] for a certain xα > x0.

(iii) For every x ∈ (0, 1) we obtain z′(x) > 0.
Proof. By virtue of Corollary 14, the continuation method, and Lemmas 17, 18,

and 19, we obtain that z′λ changes sign at most once for every λ ∈ R
+
0 , and, moreover,

(i) and (ii) of Theorem 20 are valid.
It remains to show (iii) of Theorem 20, and therefore we assume

z′(x) ≥ 0 for every x ∈ [0, 1]

and, moreover, existence of x̂ ∈ (0, 1) such that z′(x̂) = 0. (HGM) yields that we
have no degenerate zero of z′ in [x0, 1). If we assume x̂ ∈ (0, x0), we obtain by (H4)
and (5.1) that

z′|(0,γ) is not identically zero

for some γ > 0. Hence, by our assumption on z′ we get existence of a local maximum
x2 ∈ (0, x1) with z′(x2) > 0. In a manner analogous to that in the proof of Lemma 19,
we obtain a contradiction, which completes the proof of Theorem 20.

6. Singular limit analysis. Let zεn ∈ C+
εn for every n ∈ N. Our goal here is

to pass to the limit for the sequence (zεn)n∈N as εn ↘ 0. This is essentially done by
Theorem 20 and Helly’s theorem. Afterwards we show some qualitative properties of
this limit.

Lemma 21. Consider for fixed λ ∈ R
+ a sequence (zn)n∈N with zn ∈ C+

εn and
εn ↘ 0. We obtain that (zn)n∈N is uniformly bounded in BV (0, 1), where BV (0, 1)
denotes the space of functions with bounded variation defined on (0, 1).

Proof. By Theorem 20, z′n has at most one sign change, say at x = x(n). Due to
the fundamental theorem of calculus we obtain by Lemma 6

||z′n||L1 =

∫ x(n)

0

−z′n(s)ds +

∫ 1

x(n)

z′n(s)ds ≤ 4 ||zn||C0 ≤ K,

where K is independent of n. The same bound obviously holds for BV (0, 1).
By Helly’s theorem (see [23]) we conclude that the following theorem holds.
Theorem 22. For fixed λ ∈ R

+ we consider a sequence (zn)n∈N as in Lemma 21.
Then there exists a subsequence which we again denote by (zn)n∈N and a function
z ∈ L∞(0, 1) ∩BV (0, 1), such that

(6.1) lim
n→∞

zn(x) = z(x)
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for every x ∈ [0, 1]. In particular, there exists δ > 0 such that

(6.2) z(x) ≥ δ for all x ∈ [0, 1].

Moreover, we have for every x ∈ [0, 1]
(i)

(6.3) lim
n→∞

εnz
′′
n(x) = 0,

(ii)

(6.4) lim
n→∞

σ(zn(x)) = σ(z(x)) =

∫ 1

x

b(λ, u(τ), τ)dτ,

where u =
∫ x

0
z(s)ds is the limit of (un)n∈N in C0(0, 1). In particular, the

first Weierstrass–Erdmann corner condition is fulfilled.
Proof. Let λ ∈ R

+ be fixed and consider (zn)n∈N as in Lemma 21. Then (6.1) is a
consequence of Lemma 21, (6.2) is obvious by Theorem 3, (6.3) is proved by Lemma 6
and (6.1), and (6.4) is obvious by (6.1).

Hence, the continuation method delivers a stress field

σ(x, zn) → σ(x, z) pointwise.

Equation (6.4) expresses force-balance at x ∈ [0, 1]. Observe that (6.4) may even be
differentiated:

d

dx
σ(x, z(x)) = b(λ, u(x), x) in (0, 1).

Moreover, z also satisfies the second Weierstrass–Erdmann corner condition. For the
proof we refer to [10].

Corollary 23. Let z be the limit obtained by Theorem 22. Then

x �→ W (z(x)) − σ(z(x))z(x)

is continuous for every x ∈ [0, 1].
The next goal is to show that z jumps at most once in the unit interval. The first

step in this direction is the observation that the last two cases in Theorem 20 cannot
occur as ε ↘ 0.

Lemma 24. Let (zn)n∈N be as in Lemma 21 for fixed λ > 0. Then we obtain for
n sufficiently large

sign(z′n) �= const.

Proof. We argue by contradiction: By assumption there exists a sequence (zn)n∈N

with sign(z′n) ≡ const . for every n ∈ N, and we assume without loss of generality
sign(z′n) ≥ 0. We obtain by Helly’s theorem

lim
n→∞

zn(x) = z(x)

for every x ∈ [0, 1], and z is monotonically increasing and satisfies the equation

σ(z(x)) =

∫ 1

x

b(λ, u(τ), τ)dτ
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with u(x) =
∫ x

0
z(s)ds. By (H1),

∫ 1

x
b(λ, u(τ), τ)dτ|[0,x0] is monotonically decreasing,

and by (2.4) and the monotonicity of z and b we obtain

z|[0,x0] ∈ [ν1, ν2] ⊆ (1,∞).

On the other hand, we have σ(z(x0)) =
∫ 1

x0
b(λ, u(τ), τ)dτ < 0 which yields

z(x0) < 1,

a contradiction.
In the remainder let λ > 0 be fixed. We consider a sequence (εn)n∈N with εn ↘ 0

and let (un)n∈N = ((uλ)n)n∈N be a sequence of functions on the branch C+
εn with

un → u uniformly in C0(0, 1). Because of (H1) and (H2) on b we define for η > 0
sufficiently small

(6.5) x0 := max
{
x̂ ∈ [0, 1] | b(λ, un(x̂), x̂) = 0 and b(λ, un(x), x)|(x̂−η,x̂) > 0

}
.

Note that by our assumptions x0 is independent from n ∈ N for fixed λ and b changes
sign at x = x0.

Furthermore we define xs = xs(n) by

xs(n) :=

{
x̃ ∈ [0, 1] |

∫ 1

x̃

b(λ, un(τ), τ)dτ = 0 and

∫ 1

x

b(λ, un(τ), τ)dτ > 0 for every x < x̃

}
.

(6.6)

Note that existence of xs = xs(n) is by no means guaranteed. But if xs exists, then
xs < x0 holds. Furthermore we define

x̃s(n) :=

{
xs(n) if xs exists,

0 elsewhere.

Due to the obvious fact that x̃s(n) < x0, there exists �(n) > 0 with x̃s(n)+�(n) = x0.
We define

(6.7) �0 := inf
n∈N

{�n} ,

and it is easy to see that �0 > 0.
Lemma 25. Let zε ∈ C+

ε . We claim the following: For every � ∈ (0, �0) there
exists ε0 = ε0(�) such that for all ε < ε0

z′ε|(0,x0−
) < 0.

Proof. We argue by contradiction and we assume the existence of �1 ∈ (0, �0) such
that for every ε0 > 0 there exist ε < ε0 and xε ∈ (0, x0−�1) such that z′ε(xε) ≥ 0. By
virtue of Theorem 20 and Lemma 24 we obtain (zn)n∈N ∈ C+

εn and x1 = x1(n) with

z′n|(0,x1(n)) < 0 and z′n|(x1(n),1) > 0.

Due to our assumption we deduce z′n|[x0−
1,1]
> 0 for every n ∈ N. Helly’s theorem
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yields zn|[x0−
1,1] → z|[x0−
1,1] pointwise, and, in particular, z|[x0−
1,1] is monotoni-
cally increasing. By virtue of (6.6) and (6.7) we obtain for every x ∈ [x0 − �1, x0]

(6.8) σ(z(x)) =

∫ 1

x

b(λ, u(τ), τ)dτ ≤ 0,

where u(x) =
∫ x

0
z(s)ds, and hence z|[x0−
1,x0] ≤ 1. Furthermore, x �→

∫ 1

x
b(λ, u(τ),

τ)dτ is monotonically decreasing for x ∈ (x0 − �1, x0). This yields either (i)

z|[x0−
1,x0] ∈ (ν1, ν2)

or (ii)

z|[x0−
1,x0] ≡ const.

Then (i) contradicts z|[x0−
1,x0] ≤ 1, and (ii) implies
∫ 1

x
b(λ, u(τ), τ)dτ = const. for

every x ∈ [x0 − �1, x0], contradicting (6.5).
Let (un)n∈N ∈ (C+

εn)n be a sequence for fixed λ > 0 with εn ↘ 0, and by virtue
of Theorem 22 we obtain functions u, z such that limn→∞ un =: u and limn→∞ zn =:
z = u′.

We define

νa := min
{
ν ∈ R

+ | σ(ν) = σ(ν2)
}
,

νb := max
{
ν ∈ R

+ | σ(ν) = σ(ν1)
}
,

(6.9)

and

A :=

{
x ∈ [0, 1] |

∫ 1

x

b(λ, u(τ), τ)dτ ∈ R\[σ(νa), σ(νb)]

}
,

and due to the identity

(6.10) σ(z(x)) =

∫ 1

x

b(λ, u(τ), τ)dτ,

we have A = {x ∈ [0, 1] | z(x) ∈ R\[νa, νb]}. Also by (6.10) we deduce that z|A is
continuously differentiable.

Furthermore, we define

B := [0, 1]\A,

and B ⊆ [0, x0 − �0) is obvious by (6.6), (6.7). We assume the existence of λ ∈ R
+

and u obtained by the limit process such that∫ 1

x2

b(λ, u(τ), τ)dτ ∈ B for a certain x2 ∈ [0, x0].

In particular, we have
∫ 1

0
b(λ, u(τ), τ)dτ > 0. Thus xs(n) ∈ (0, 1) defined in (6.6)

exists for every n ∈ N, and by virtue of Lemma 25 we have

z′n|(0,x0− �0
2 ) < 0
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for all n ∈ N. By Helly’s theorem we obtain that

z|B is monotonically decreasing,

where z denotes the pointwise limit of (zn)n∈N. In particular, z has at most finitely
many jumps in B. Moreover, we have that∫ 1

x

b(λ, u(τ), τ)dτ|B = σ(z)|B is monotonically decreasing.

Let νm, νM ∈ R
+, νm < νM , be the Maxwell points associated with W . Then we

obtain the following theorem.
Theorem 26. Let (zn)n∈N be a sequence with zn ∈ C+

εn for every n ∈ N, εn ↘ 0
and for fixed λ > 0. Let z be the pointwise limit of the sequence. Furthermore, let
u(x) :=

∫ x

0
z(s)ds. Then z has at most one jump in (0, 1) in accordance with the first

and the second Weierstrass–Erdmann corner conditions.
If

∫ 1

0
b(λ, u(τ), τ)dτ < σ(νm), then z has no jump, and if

∫ 1

0
b(λ, u(τ), τ)dτ >

σ(ν1), then z suffers exactly one jump discontinuity at xJ ∈ (0, x0) satisfying

(6.11)

∫ 1

xJ

b(λ, u(τ), τ)dτ = σ(νm).

Moreover, we obtain z(xJ − 0) = νM and z(xJ + 0) = νm.

If
∫ 1

0
b(λ, u(τ), τ)dτ ∈ [σ(νm), σ(ν1)], then z has either no jump or exactly one at

x = xJ such that (6.11) holds.
Proof. The proof is obvious due to the fact that z satisfies the first and the second

Weierstrass–Erdmann corner conditions and, moreover, z is monotonically decreasing
in B. Note that z cannot jump in the region where z is monotonically increasing.

We define for some q < ∞ the set

Σ+
0 =

{
(λ, u) ∈ R ×W 1,q(0, 1) | (λn, un, vn, μn) ∈ C̄+

εn , λn → λ, un → u

in W 1,q(0, 1) as εn ↘ 0
}
.

(6.12)

Then one can prove the following theorem in the same way as in [10] using [1].
Theorem 27. The set Σ+

0 ⊆ R × W 1,q(0, 1) is a continuum having projection
[0,∞) onto the parameter axis.

The question of whether the obtained solution of the Euler–Lagrange equation
(2.13) is also the global minimizer of the nonconvex variational problem (2.8) is an-
swered only in a very special case: We consider a body-force b = b(λ, x) independent
of the placement u and let z∗ be the jump solution obtained by the singular limit

process if
∫ 1

0
b(λ, τ)dτ > σ(νm), and a continuous differentiable solution otherwise.

Then we deduce the following theorem.
Theorem 28. Let (λ, z∗) be as described above. Then J(λ, u) defined by (2.8)

attains its minimum at u∗ :=
∫ x

0
z∗(s)ds; i.e.,

min
u

{
J(λ, u) | u ∈ W 1,p+1(0, 1), u(0) = 0

}
= J(λ, u∗).

We omit the proof because it is completely analogous to the proof of Theorem 6.4
in [10].
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7. Concluding remark. By our continuation method we were not able to prove
that a solution of (2.13) lying on the branch is the global minimizer of (2.10). Hence,
in general, we cannot prove that the limit u obtained in Theorem 22 is a global
minimizer of (2.8). However, our results give some hints in this direction, because u
satisfies the first and second Weierstrass–Erdmann corner conditions, and, moreover,
u′ is strictly bounded away from 0. Note that the existence of a global minimizer of
(2.8) in the live load case is entirely unclear, because [6] cannot be applied to this
problem.
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[7] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer-Verlag, Berlin, 1989.
[8] J. L. Ericksen, Equilibrium of bars, J. Elasticity, 5 (1975), pp. 191–201.
[9] T. J. Healey, Global continuation in displacement problems of nonlinear elastostatics via the

Leray–Schauder degree, Arch. Ration. Mech. Anal., 152 (2000), pp. 273–282.
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OBSTACLE AND BOUNDARY DETERMINATION FROM
SCATTERING DATA∗
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Abstract. In this paper, we are concerned with the identification of complex obstacles from the
scattering data for the acoustic problem. The complex obstacle is characterized by its shape and the
boundary values of the impedance coefficient. We establish pointwise formulas which can be used
to reconstruct the shape of the obstacle and give explicitly the values of the surface impedance as
a function of the far field. In addition, these formulas enable us to distinguish and recognize the
coated and the noncoated parts of the obstacle.
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1. Introduction. Let D be a bounded domain of R
m, m ≥ 3, such that R

m \D
is connected. In addition, we assume that its boundary ∂D is of class C2. Precisely,
for every point a ∈ ∂D, there exists a rigid transformation of coordinates under which
a = 0 and a C2(Bm−1(0, r))-function f such that

(1) f(0) =
∂f

∂xi
(0) = 0, i = 1, 2, . . . ,m,

and

D ∩B(0, r) := {x ∈ B(0, r);xm > f(x1, x2, . . . , xm−1)}

in terms of the new coordinates where Bm−1(0, r) and B(0, r) are the (m − 1)-
dimensional and the m-dimensional balls of centers 0 with some radius r > 0.

The propagation of time-harmonic acoustic fields in a homogeneous media is gov-
erned by the Helmholtz equation

(2) Δu + κ2u = 0 in R
m \D,

where κ is the real positive wave number. At the boundary of the scatterers we assume
that the total field u satisfies the impedance boundary condition

(3)
∂u

∂ν
+ iλu = 0 on ∂DI

with some function λ on ∂D and the Dirichlet condition

(4) u = 0 on ∂DD,

where ∂DD and ∂DI are open surfaces in ∂D such that

∂D = ∂DI ∪ ∂DD and ∂DI ∩ ∂DD = ∅.
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The unit normal ν on ∂D is directed inside D. We assume that λ is a Hölder con-
tinuous function of order β ∈ (0, 1] and λ− < λ(x) on ∂DI , where λ− is a positive
constant. The part ∂DI is referred to by the coated part of ∂D, and ∂DD is the non-
coated part as it is commonly used in the radar detection theory; see [4]. The obstacle
D is characterized by its shape, ∂DD, ∂DI , and the surface impedance distributed on
∂DI . We call such obstacles complex obstacles.

Given an incident field ui which satisfies Δui + κ2ui = 0 we look for a solution
u := ui + us of (2) and (3) where the scattered field us is assumed to satisfy the
Sommerfeld radiation condition

(5) lim
r→∞

r
m−1

2

(
∂us

∂r
− iκus

)
= 0,

where r = |x| and the limit is uniform with respect to all of the directions x̂ := x
|x| .

The mixed problem (2)–(5) is well posed. More generally, for f ∈ H
1
2 (∂DD) and

h ∈ H− 1
2 (∂DI), there exists a unique solution u ∈ H1

loc(R
m\D) of the mixed problem

(6)

⎧⎪⎪⎨
⎪⎪⎩

(Δ + κ2)u = 0 in Rm \D,
u = f on ∂DD,
∂u
∂ν + iλu = h on ∂DI ,

limr→∞ r
m−1

2 (∂u∂r − iκu) = 0,

and the solution satisfies

(7) ‖u‖H1(ΩR∩(Rm\D)) ≤ CR(‖f‖H1/2(∂DD) + ‖h‖
H− 1

2 (∂DI)
),

where ΩR is a disk of radius R; and CR is positive constant depending on R, see [4]
for more details.

It is well known (see [6]) that this reflected field satisfies the following asymptotic
property:

us(x) =
eiκr

r
m−1

2

u∞(x̂) + O(r−
m+1

2 ), r → ∞,(8)

where the function u∞(·) defined on the unit sphere S
m of Rm is called the far field

associated to the incident field ui. Taking particular incident fields given by the
plane waves, ui(x, d) := eiκd·x, d ∈ S

m, we define the far-field pattern u∞(x̂, d) for
(x̂, d) ∈ S

m × S
m. Analogously, for an incident point source Φ(·, z), where

Φ(x, y) :=
1

(m− 2)σm

eiκ|x−y|

|x− y|m−2
, x �= y, x, y ∈ R

m,

is the fundamental solution of Δ + κ2 in R
m and σm is the surface of the unit sphere

in R
m, we denote the scattered field by Φs(·, z) and its far-field pattern by Φ∞(·, z).

The problem we are concerned with is the following.

Complex obstacle reconstruction problem. Given u∞(·, ·) on S
m × S

m for
the scattering problem (2)–(5) reconstruct the shape of the obstacle D, distinguish the
coated part ∂DD from ∂DI , and reconstruct the surface impedance λ(x).

The uniqueness character of this problem is already known; see [4]. The part of
the problem consisting of the effective detection of the shape of the obstacle ∂D can be
justified, for instance, via the linear sampling method, the factorization method, or the
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probing methods (the probe method or, equivalently, the singular sources method); see
[16, 17] for a review of these methods. Our goal in this paper is to show that not only
the shape but the full complex obstacle can be reconstructed. Many efforts have been
made regarding the determination of the surface impedance function λ(x). We refer to
the paper [11] where an optimization method has been proposed by assuming that the
shape of the obstacle is known in advance. A different method is given in [7], where
the authors first reduce the far-field data to the near-field data, and then from these
near-field data they propose a moment method to reconstruct λ. Another work is [5];
see also [4], where the authors computed the L∞-norm of λ. As a consequence, if λ is
known to be constant λ = λ0, then they compute λ0. All of these works use a part of
or the total far field. We mention the work [2], where the authors use only one incident
wave to detect λ(x). Assuming that the whole surface ∂D is coated and known, they
first compute the total field and then use the impedance boundary condition to give
the values of λ(x). By the unique continuation, there is no open subset of ∂D in which
the normal derivative of the total field may vanish. However, there can be infinitely
many points in ∂D at which the total field vanishes. By avoiding these points, it is
possible to reconstruct the value of λ(x), and then by λ ∈ C(∂D), it is possible to know
λ on the whole ∂D. Hence this method cannot sample each point x of ∂D to obtain
the value λ(x). To remedy this difficulty, the authors propose a regularization method.

We want to contribute to this problem by giving pointwise formulas to reconstruct
fully the complex obstacle. Indeed, these formulas simultaneously reconstruct the
shape of the obstacle, distinguish between the coated and the noncoated parts, and
detect λ(x) directly from the far-field pattern defined on any small open part of the
unit sphere S

m.
To justify our formulas, we need to analyze the asymptotic behavior of the Green’s

function, of the mixed boundary problem, near ∂D. The impedance function λ(x)
appears in the asymptotic behavior of the imaginary part of this Green’s function
with respect to the source parameter z; see the proof of Proposition 3.1. In the 2-
dimensional case the imaginary part of the corresponding Green’s function is bounded
with respect to the source parameter z. This is why we consider the m-dimensional
case with m > 2. For the 2-dimensional case, we need to use more singular sources to
capture the values of the surface impedance. This has been analyzed in [13], and the
corresponding formulas have been justified theoretically and tested numerically. We
refer to that paper for more details on how the formulas are used numerically.

Regarding the stability issue for detecting the surface impedance, in case we know
the shape, we cite the results of [12, 18], where the authors use one incident wave and
give interesting and optimal results. Another interesting question is to consider the
stability of the complex obstacle. We leave this for future investigations.

The rest of the paper is organized as follows. In section 2, we present the results
as Theorem 2.1. In section 3, we give the proof of this theorem by splitting it into
two propositions, which we prove in sections 3.1 and 3.2.

2. Presentation of the results. It is well known (see [6]) that the scattered
field associated with the Herglotz incident field vig := vg defined by

(9) vg(x) :=

∫
Sm

eiκx·dg(d) ds(d), x ∈ R
m,

with g ∈ L2(Sm), is given by

vsg(x) :=

∫
Sm

us(x, d)g(d) ds(d), x ∈ R
m \D,(10)
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and its far field is given by

v∞g (x̂) :=

∫
Sm

u∞(x̂, d)g(d) ds(d), x̂ ∈ S
m.(11)

We will need the following identity:

(12) u∞(x̂, d) = − 1

(m− 2)σm

∫
∂D

{
∂us(y, d)

∂ν
e−iκx̂·y − ∂e−iκx̂·y

∂ν
us(y, d)

}
ds(y)

given by using the Green’s formula in R
m \D for us(·, d) and Φ(·, y) and their asymp-

totic behavior at infinity (see [6, Theorem 2.5]). The representation of the scattered
field Φs(x, z) for x, z ∈ R

m \D is given by the Green’s formula

(13) Φs(x, z) = −
∫
∂D

{
∂Φs(y, z)

∂ν(y)
Φ(x, y) − Φs(y, z)

∂Φ(x, y)

∂ν(y)

}
ds(y), x, z ∈ R

3\D.

Let a ∈ ∂D and a sequence of points

(14) (zp)p∈N ⊂ R
m \D

such that zp tends to a. We consider the sequence of point sources Φ(·, zp). We set

Dp
a a C2-regular open set such that D ⊂ Dp

a, zp ∈ R
n \Dp

a for every p ∈ N and that
the Dirichlet interior problem on Dp

a is uniquely solvable. In this case, the Herglotz
wave operator H defined from L2(Sm) to L2(∂Dp

a) by

(15) H(g)(x) := vg(x) =

∫
Sm

eiκx·dg(d) ds(d)

is injective, compact with a dense range; see [6]. Hence by the Tikhonov regularization
method (see [8, 10]) we can construct a sequence gpn in L2(Sm) such that for every p
fixed

(16) ‖vgp
n
− Φ(·, zp)‖L2(∂Dp

a) → 0, n → ∞.

Since both vgp
n

and Φ(·, zp) satisfy the same Helmholtz equation in Dp
a, (16) implies

that

‖vgp
n
− Φ(·, zp)‖

H
1
2 (∂D)

→ 0, n → ∞.

Multiplying (12) by gpn(x̂)gpn(d) and integrating over S
m, we have∫

Sm

∫
Sm

u∞(−x̂, d)gpn(x̂)gpn(d) ds(x̂)ds(d)

= − 1

(m− 2)σm

∫
∂D

{∫
Sm

∂us(y, d)

∂ν
gpn(d) ds(d) ·

∫
Sm

eiκx̂·ygpn(x̂) ds(x̂)

−
∫

Sm

∂eiκx̂·y

∂ν
gpn(x̂) ds(x̂) ·

∫
Sm

us(y, d)gpn(d) ds(d)

}
ds(y)

= − 1

(m− 2)σm

∫
∂D

{
∂vs

gp
n

∂ν
(y)vigp

n
(y) +

∂vi
gp
n

∂ν
(y)vsgp

n
(y)

}
ds(y).(17)
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From (17), we have

lim
n→∞

∫
Sm

∫
Sm

u∞(−x̂, d) gpn(x̂) gpn(d) ds(x̂)ds(d)

= − 1

(m− 2)σm

∫
∂D

∂(Φs)

∂ν(y)
(y, zp)Φ(y, zp) − Φs(y, zp)

∂(Φ)

∂ν(y)
(y, zp) ds(y)(18)

=
1

(m− 2)σm
Φs(zp, zp).(19)

For a point a ∈ ∂D, we choose the sequence (zp)p∈N included in Ca,θ, where Ca,θ is
the cone with center a, angle θ ∈ [0, π

2 ), and axis −ν(a), where ν(a) is the unit normal
of ∂D directed inside D.

Theorem 2.1. The surface of the obstacle can be localized via the formulas:∣∣∣∣32π2 lim
n→∞

Re

∫
Sm

∫
Sm

u∞(−x̂, d)gpn(x̂)gpn(d)ds(x)ds(d)

∣∣∣∣
=

1

|(zp − a) · ν(a)| + O(| ln(|zp − a|)|)(20)

for m = 3 and∣∣∣∣ (m− 2)σm22m−2πm−1

σm−1
lim
n→∞

Re

∫
Sm

∫
Sm

u∞(−x̂, d)gpn(x̂)gpn(d)ds(x)ds(d)

∣∣∣∣
=

1

|(zp − a) · ν(a)|m−2
+ O(|zp − a|3−m)(21)

for m > 3.
In addition, we have the following formulas for distinguishing the coated part from

the noncoated part of the obstacle and for detecting the surface impedance.
I. The case m = 3.

I.1. If a ∈ ∂DI , then we have

lim
p→∞

−8π2 limn→∞ Im
∫

Sm

∫
Sm u∞(−x̂, d)gpn(x̂)gpn(d) ds(x̂)ds(d)

| ln |(zp − a) · ν(a)||s

=

⎧⎨
⎩

∞ if s ∈ [0, 1),
λ(a) if s = 1,
0 if s > 1.

(22)

I.2. If a ∈ ∂DD, then for all s > 0 we have

(23) lim
p→∞

limn→∞ Im
∫

Sm

∫
Sm u∞(−x̂, d)gpn(x̂)gpn(d) ds(x̂)ds(d)

| ln |(zp − a) · ν(a)||s = 0.

II. The case m > 3.
II.1. If a ∈ ∂DI , then we have

(24)

lim
p→∞

(m− 2)σm(2π)m−1

σm−1
(2(zp − a) · ν(a))m−4+s

lim
n→∞

Im

∫
Sm

∫
Sm

u∞(−x̂, d)gpn(x̂)gpn(d) ds(x̂)ds(d) =

⎧⎨
⎩
∞ if s ∈ [0, 1),
λ(a) if s = 1,
0 if s > 1.
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II.2. If a ∈ ∂DD, then for all s > 0 we have

(25)

lim
p→∞

((zp − a) · ν(a))m−3+s

lim
n→∞

Im

∫
Sm

∫
Sm

u∞(−x̂, d)gpn(x̂)gpn(d) ds(x̂)ds(d) = 0.

Remark 2.2. 1. In the case m = 3, from (22) and (23), we can localize the coated
part of the obstacle by taking any s ∈ (0, 1), then taking s = 1 in (22), we obtain the
pointwise values of the surface impedance. Similarly, we have the same conclusions
for m ≥ 4.

2. We stated the results by using the full far-field pattern, i.e., (θ, d) ∈ S
m ×

S
m. We used this information to approximate the point sources Φ(·, zp) by Herglotz

functions defined on the whole unit sphere S
m. However, this approximation is also

justified if we define the Herglotz functions on any subsurface γ ⊂ S
m, and hence the

results of Theorem 2.1 are also valid if we replace S
m by any subsurface γ ⊂ S

m.

3. Proof of Theorem 2.1. Let Γλ(a) be a local Green’s function satisfying

(26)

⎧⎨
⎩

ΔΓλ(a) = −δ(x, z) in R
m
+ ,(

∂Γλ(a)

∂ν + iλ(a)Γλ(a)

)
(x1, x2, . . . , xm−1, 0) = 0

and ΓD defined by

ΓD(x, z) := Γ(x, z) − Γ(x∗, z),

where x = (x1, x2, . . . , xm), x∗ = (x1, x2, . . . ,−xm), and Γ(x, z) = 1
(m−2)σm|x−z|m−2 .

It is clear that ΓD(x, z) satisfies

(27)

{
ΔΓD = −δ(x, z) in R

m
+ ,

ΓD(x1, x2, . . . , xm−1, 0) = 0.

We state the following propositions. Their proofs will be given in sections 3.1 and
3.2, respectively.

Proposition 3.1. The local Green function Γλ(a) is given by
(28)

Γλ(a)(x, z) := Γ(x, z) +
1

2(2π)m−1

∫
Rm−1

ei(x
′−z′)·ξ′e−(xm+zm)|ξ′| |ξ′| + iλ(a)

|ξ′|(|ξ′| − iλ(a))
dξ′,

where x′ = (x1, x2, . . . , xm−1) and ξ′ = (ξ1, ξ2, . . . , ξm−1).
In addition, we have the following asymptotics for the function (Γλ(a) − Γ)(x, z):

Re(Γλ(a) − Γ)(z, z) =
σm−1

2(2π)m−1

1

(2zm)m−2
+ O

(
1

(zm)m−3

)
,

lim
z3→0+

−2π
Im(Γλ(a) − Γ)(z, z)

ln(z3)
= λ(a) for m = 3

and

lim
zm→0+

(2π)m−1

σm−1
(2zm)m−3Im(Γλ(a) − Γ)(z, z) = λ(a) for m > 3.
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Proposition 3.2. If a ∈ ∂DI , then there exist δ(a) > 0 and C > 0 such that
(29)

|Φs(x, z)−(Γλ(a)−Γ)(x, z)| ≤ C

⎧⎨
⎩
| ln |z − a|| if m = 3

1
|z−a|m−3 if m > 3

for (x, z) ∈ B+(a, δ(a))∩Ca,θ,

and

(30)

|Im(Φs(x, z) − (Γλ(a) − Γ)(x, z))| ≤ C

|z − a|m−3−β
+ C

for m ≥ 3 and (x, z) ∈ B+(a, δ(a)) ∩ Ca,θ,

where B+(a, δ(a)) := B(a, δ(a)) ∩ (R3 \D) and B(a, δ(a)) is the ball of center a and
radius δ(a).

Similarly, if a ∈ ∂DD, we obtain (29) and (30) by replacing Γλ(a) by ΓD.
End of the proof of Theorem 2.1.
1. Let a ∈ ∂DI ; i.e., we have the impedance boundary condition around a. By

a rigid transformation of coordinates, we can assume that a = (0, 0, 0, . . . , 0).
Using (19) and Propositions 3.1 and 3.2 we obtain the formulas (20), (21),
(22) and (24).

2. Let a ∈ ∂DD; i.e., we have the Dirichlet boundary condition around a. Sim-
ilarly, we can assume that a = (0, 0, 0). Using (19), Proposition 3.2, and the
fact that ImΓD = 0 = ImΓ we obtain (23) and (25).

The rest of this section is devoted to proving Propositions 3.1 and 3.2.

3.1. Proof of Proposition 3.1. We set Γλ(a)(x, z) := Γ(x, z) + w(x, z), and
then w(x, z) satisfies

(31)

{
Δw(x, z) = 0 in R

m
+ ,

(∂x3
+ iλ(a))w(x, z) = −(∂x3

+ iλ(a))Γ(x, z) on ∂R
m
+ .

The first part of this proposition is to show the following explicit form of w(x, z).
Lemma 3.3.

w(x, z) =
1

2(2π)m−1

∫
Rm−1

ei(x
′−z′)·ξ′e−(xm+zm)|ξ′| |ξ′| + iλ(a)

|ξ′|(|ξ′| − iλ(a))
dξ′.

Proof of Lemma 3.3. We represent w(x, z) using up-going and down-going oper-
ators U±

(32) w(x, z) := (U±(xm)φ)(x′) :=
1

(2π)m−1

∫
Rm−1

eix
′·ξ′∓xm|ξ′|φ̂±(ξ′, z)dξ′,

where φ̂± is the (m− 1)-dimensional Fourier transform of φ±. The goal is to find φ±
or φ̂±. We start by the corresponding representation of Γ(x, z). We write

(33) Γ(x, z) =

{
Γ+(x, z) in xm > zm,
Γ−(x, z) in xm < zm,

and then ΔΓ± = 0 in ±(xm − zm) > 0 with the transmission conditions

(34)

{
Γ+|xm=zm+0 = Γ−|xm=zm−0,
∂xmΓ+|xm=zm+0 − ∂xmΓ−|xm=zm−0 = −δ(x′, z′).
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Now we look for Γ± in the form

Γ±(x, z) = U±(xm − zm)ψ±(x′, z′)

and try to determine the potentials ψ±.
Clearly, from the definition of U±, we have

ΔΓ± = 0 in ± (xm − zm) > 0,

and from the first equation of (34), we get

(35) ψ+ = ψ−.

Let us now consider the second equation of (34). We set

(Bf)(x′) :=

∫
Rm−1

eix
′·ξ′(−|ξ|)f̂(ξ′)d̄ξ′,

and then we deduce that

(36) ∂xm
U±(xm) = ±BU±(xm).

The second point of (34) implies that

Bψ+ + Bψ− = −δ(x′ − z′).

Taking the Fourier transform, we have

(37) −|ξ′|ψ̂+ − |ξ′|ψ̂− = −eiz
′·ξ′ ,

and by combining (35) with (37), we end up with

(38) ψ̂±(ξ′, z′) =
1

2
|ξ′|−1e−iz′·ξ′ .

Now we go back to w(x, z). We set φ± := φ in (32), i.e.,

w(x, z) = (U+(xm)φ)(x′, z),

and then from (36) we have

(39) (∂x3 + iλ(a))w|xm=0 = Bφ + iλ(a)φ,

because U+(0)φ = φ. By Fourier transform, the right-hand side of (39) becomes

(40) −|ξ′|φ̂(ξ′) + iλ(a)φ̂(ξ′).

By similar computations for the fundamental solution Γ(x, z), we have

−(∂xm
Γ− + iλ(a)Γ−) |xm=0= −(−BΓ− + iλ(a)Γ−) |xm=0

(41) = −(−U−(−zm)Bψ− + iλ(a)U−(−zm)ψ−)(x′)

because

BU± = U±B.
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The Fourier transform of (41) is

(42) −e−zm|ξ′|(|ξ′| + iλ(a))ψ̂−(ξ′, z′),

and hence by combining (40) with (42), we obtain

(43) φ̂(ξ′, z) =
|ξ′| + iλ(a)

|ξ′| − iλ(a)
e−zm|ξ′|ψ̂−(ξ′, z′).

Using (35), we have

φ̂(ξ′, z) =
1

2

|ξ′| + iλ(a)

|ξ′|(|ξ′| − iλ(a))
e−zm|ξ′|e−iz′·ξ′ .

Finally (32) becomes

(44) w(x, z) =
1

2(2π)m−1

∫
Rm−1

ei(x
′−z′)·ξ′e−(xm+zm)|ξ′| |ξ′| + iλ(a)

|ξ′|(|ξ′| − iλ(a))
dξ′.

Next we deal with the second part of the proposition. From Lemma 3.3, we have

(45) w(z, z) =
1

(2π)m−1

∫
Rm−1

e−(2zm)|ξ′| 1

2

|ξ′| + iλ(a)

|ξ′|(|ξ′| − iλ(a))
dξ′.

We start with the case m = 3. Using polar coordinates, we write

w(z, z) =
1

4π2

∫ 2π

0

dθ

∫ ∞

0

e−2z3r
1

2r

(
1 +

2iλ(a)

r − iλ(a)

)
rdr

=
1

2π

∫ ∞

0

e−2z3r
1

2r

(
1 +

2iλ(a)

r − iλ(a)

)
rdr.

After some computations, we obtain

(46) Rew(z, z) =
1

8πz3
+ O(1).

Similarly we obtain

(47) 2πImw(z, z) = λ(a)

[
− ln(λ(a)) +

∫ ∞

0

e−2t ln(t2 + z2
3λ(a)2)dt− ln(z3)

]
.

Hence

2π
Imw(z, z)

ln(z3)
= −λ(a) +

λ(a)(− ln(λ(a)) +
∫∞
0

e−2t ln(t2 + z2
3λ

2)dt)

ln(z3)
,

which gives the formula:

(48) lim
z3→0+

−2π
Imw(z, z)

ln(z3)
= λ(a).

For m > 3, we use also the hyperspherical coordinates and get

w(z, z) =
σm−1

2(2π)m−1

∫ ∞

0

e−2zmr 1

2r

(
1 +

2iλ(a)

r − iλ(a)

)
rm−1dr.
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Hence

Rew(z, z) =
σm−1

2(2π)m−1

1

(2zm)m−2
+ O

(
1

(zm)m−3

)

and

Imw(z, z) =
σm−1

(2π)m−1

λ(a)

(2zm)m−3
+ O(1).

This ends the proof of Proposition 3.1.

3.2. Proof of Proposition 3.2. We assume that the point a is on ∂DI . The
case where a is on ∂DD is similar and easier.

Let Φ̃s be the corresponding solution as Φs replacing ∂DI by ∂D (i.e., taking
∂DD = ∅). We set Gλ(x, z) := Φ̃s(x, z)+Φ(x, z), the Green’s function of the problem
(2),(3),(5). We set also Gλ(a)(x, z) to be the Green’s function of (2),(3),(5) when
the function λ(x) is replaced by the constant function λ(a). For both of the Green’s
functions we assumed ∂DD = ∅. Finally, we set G0

λ(a) to be the Green’s function
satisfying

(49)

⎧⎪⎪⎨
⎪⎪⎩

ΔG0
λ = −δ in Ω \D,

∂G0
λ

∂ν (x, z) + iλ(a)G0
λ(x, z) = 0 on ∂D,

G0
λ(a)(·, z) = 0 on ∂Ω,

with an arbitrary fixed C2-regular domain Ω containing D.
We have the following lemma.
Lemma 3.4. For every R > 0, there exists a positive constant C := C(R) such

that
1. |Gλ(x, z)| ≤ C

|x−z|m−2 ,

2. |∇Gλ(x, z)| ≤ C
|x−z|m−1 for (x, z) ∈ (Rm \D) ∩B(0, R).

Proof of Lemma 3.4. These properties are known for general equations and bound-
ary conditions. We refer to [19, 20], where these results are justified for boundary
value problems stated on bounded domains. Since the arguments are local, these
estimates are also justified for exterior problems.

The function Φ̃s − Φs satisfies

(50)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(Δ + κ2)(Φ̃s − Φs) = 0 in R
m \D,

Φ̃s − Φs(x, z) = Φ̃s + Φ on ∂DD,
∂(Φ̃s−Φs)

∂ν (x, z) + iλ(x)(Φ̃s − Φs)(x, z) = 0 on ∂DI ,

(Φ̃s − Φs)(·, z) satisfies Sommerfeld radiation conditions.

For z near a, Lemma 3.4 implies that (Φ̃s + Φ)(·, z) is bounded in H1/2(∂DD). The
well-posedness of (50) (see [5]) implies that (Φ̃s−Φs)(·, z) is bounded in H1

loc(R
m\D).

Introducing a cutoff function around the point a and knowing that Φ̃s(·, z) and Φ(·, z)
and their derivatives are bounded for x near ∂DD and z near a (which is in ∂DI),
we deduce that (Φ̃s − Φs) is bounded for x and z near a. This implies that we can
replace Φs by Φ̃s in Proposition 3.2. In addition, by setting

Φ̃s − (Γλ(a) − Γ) = Gλ − Γλ(a) − (Φ − Γ),
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and knowing that (Φ − Γ)(x, z) is bounded in R
m, then the proof of Proposition 3.2

is reduced to considering the term Gλ − Γλ(a). We split the rest of the proof into the
following three lemmas.

Lemma 3.5. There exist δ(a)> 0 and C(R)> 0 such that |Gλ(x, z)−Gλ(a)(x, z)| ≤
C(R)|z − a|3−m+β + C(R) for z ∈ B(a, δ(a)) ∩ Ca,θ and x ∈ R

m \D.
Lemma 3.6. There exists C > 0 such that |Gλ(a)(x, z) − G0

λ(a)(x, z)| ≤ C|z −
a|4−m + C for z near D and x ∈ Ω \D.

Lemma 3.7. There exist C > 0 and δ(a) > 0 such that
1. |ImG0

λ(a)(x, z)−ImΓλ(a)(x, z)| ≤ C|z−a|4−m+C for (x, z) ∈ B(a, δ(a))∩Ca,θ.

2. |ReG0
λ(a)(x, z) − ReΓλ(a)(x, z)| ≤ C| ln |z − a|| for (x, z) ∈ B(a, δ(a)) ∩ Ca,θ,

if m = 3.
3. |ReG0

λ(a)(x, z) − ReΓλ(a)(x, z)| ≤ C|z − a|3−m for (x, z) ∈ B(a, δ(a)) ∩ Ca,θ,
if m > 3.

In the proofs of these last lemmas we do not, in general, specify the interde-
pendency of the constants appearing in the estimates. However, we distinguish the
constant depending on the angle θ and the ones which do not depend.

Proof of Lemma 3.5. We set R(x, z) := Gλ(x, z) −Gλ(a)(x, z). Then it satisfies

(51)

⎧⎪⎨
⎪⎩

(Δ + κ2)R(x, z) = 0 in R
m \D,

∂R(x,z)
∂ν + iλ(a)R(x, z) = −i(λ− λ(a))Gλ(x, z) on ∂D,

R(·, z) satisfies the Sommerfeld radiation condition.

From (51), we have the representation:

R(x, z) = −
∫
∂D

i(λ(y) − λ(a))Gλ(a)(y, x)Gλ(y, z)ds(y) for (x, z) ∈ R
m \D.

Hence letting x tend to ∂D we have
(52)

R(x, z) = −
∫
∂D

i(λ(y) − λ(a))Gλ(a)(y, x)Gλ(y, z)ds(y) for x ∈ ∂D and z ∈ R
m \D.

From the assumption on the regularity of the surface impedance λ(x), we have

|λ(y) − λ(a)| ≤ C|y − a|β .

It is clear that |y − a| ≤ c(θ)|y − z| for y ∈ ∂DI and z ∈ Ca,θ ∩ B(a, δ(a)) with a
positive constant c(θ) depending on the angle θ. This is due to the fact that ∂DI

and Ca,θ ∩ B(a, δ(a)) are separated, i.e., ∂DI ∩ Ca,θ ∩ B(a, δ(a)) = {a}. From the
inequality

|λ(y) − λ(a)|
|y − z|m−2

≤ c(θ)βC

|y − z|m−2−β

and point 1 of Lemma 3.4, we have

|R(x, z)| ≤
∫
∂D

c(θ)βC

|y − z|m−2−β |y − x|m−2
dy ≤ C

|x− z|m−3−β
+ C

and then

max
x∈∂D

|R(x, z)| ≤ C

|z − a|m−3−β
+ C for z ∈ Ca,θ ∩B(a, δ(a)).
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Now the solvability of the forward problem

(53)

⎧⎨
⎩

(Δ + κ2)R(x, z) = 0 in R
m \D,

|R(·, z)| ≤ C
|z−a|m−3−β + C on ∂D,

R(·, z) satisfies the radiation conditions

implies the desired estimate for R(x, z) for x ∈ R
m \D and z ∈ Ca,θ ∩B(0, R).

Proof of Lemma 3.6. We recall that G0
λ(a) satisfies

(54)

⎧⎪⎨
⎪⎩

ΔG0
λ(x, z) = −δ(x, z) in Ω \D,

∂G0
λ

∂ν (x, z) + iλG0
λ(x, z) = 0 on ∂D,

G0
λ(x, z) = 0 on ∂Ω.

Then Gλ(a) −G0
λ(a) is the solution of the problem

(55)

⎧⎪⎨
⎪⎩

Δ(Gλ(a) −G0
λ(a))(x, z) = κ2Gλ(a)(x, z) in Ω \D,

∂(Gλ(a)−G0
λ(a))

∂ν (x, z) + iλ(a)(Gλ(a) −G0
λ(a))(x, z) = 0 on ∂D,

(Gλ(a) −G0
λ(a))(x, z) = Gλ(a)(x, z) on ∂Ω.

Using integral representation for the solution of (55) and Lemma 3.4 applied for Gλ(a)

and G0
λ(a), we have the desired estimate for (Gλ(a) −G0

λ(a))(x, z) for x in Ω \D and
z near ∂D.

Proof of Lemma 3.7. We can assume without loss of generality that a = (0, 0, 0, . . . ,
0) by using a rigid transformation of coordinates. Let ξ = F (x) be the following local
change of variables:

(56)

{
ξ′ = x′,
ξm = xm − f(x′),

where f is the function defined in the introduction. We have the following properties:

(57)

⎧⎨
⎩

c1|x− z| ≤ |F (x) − F (z)| ≤ c2|x− z|,
|F (x) − x| ≤ c3|x|2,
|DF (x) − I| ≤ c4|x|,

for x, z near the point a, where ci, i = 1, . . . , 4, are positive constants, which is due to
the C2 regularity of ∂D.

Let x, z be near the point a. We set G̃0
λ(a)(ξ, η) := G0

λ(a)(x, y), where ξ = F (x)

and η := F (z). Then G̃0
λ(a)(·, η) satisfies

(58)

{
∇ ·B(ξ)∇G̃0

λ(a) = −δ(ξ − η) near F (a),

|J−T ν|B∇G̃0
λ(a) · ν + iλ(a)G̃0

λ(a) = 0 on ∂R
m
+ near F (a),

where B = JJT and J = ∂ξ
∂x (F−1(ξ)). From the properties (57), we have

|J(ξ) − J(0)| ≤ c|ξ|, |B(ξ) −B(0)| ≤ c|ξ|,

and J(0) = B(0) = I.
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First step. Using similar notations as in the proof of Lemma 3.5, we write
R̃(ξ, η) = G̃0

λ(a)(ξ, η) − Γλ(a)(ξ, η), and hence

(59){
ΔR̃(ξ, η) = ∇ · (I −B)∇G̃0

λ(a) near F (a)

∇R̃ · ν̃ + iλ(a)R̃ = (I −B)∇G̃0
λ(a) · ν̃ + iλ(a)(1 − |J−T |)R̃ on ∂R

m
+ near F (a).

Let B+
r := B(F (a), r) ∩ [F (D)]c for r small enough; then by (59) and using the local

Green’s function Γλ(a), the solution R̃ has the following representation:

−R̃(ξ, η) +

∫
∂B+

r

∂R̃(z, ξ)

∂ν
Γλ(a)(z, η)ds(z) −

∫
∂B+

r

∂Γλ(a)(z, η)

∂ν
R̃(z, ξ)ds(z)

= −
∫
B+

r

(I−B)∇G̃0
λ(a)(z, ξ)·∇Γλ(a)(z, η)dz+

∫
∂B+

r

(I−B)∇G̃0
λ(a)(z, ξ)·νΓλ(a)(z, η)ds(z)

for ξ and η in B+
r . We write ∂B+

r = Sr ∪ Sc
r , where Sr = ∂B+

r ∩ ∂(F (D)). Using the
impedance boundary condition on Sr, the last equation becomes

−R̃(ξ, η) −
∫
Sr

iλ(a)R̃(z, ξ) · Γλ(a)(z, η)ds(z) +

∫
Sr

iλ(a)Γλ(a)(z, η)R̃(z, ξ)ds(z)

= −
∫
B+

r

(I−B)∇G̃0
λ(a)(z, η)·∇Γλ(a)(z, y)dz+

∫
∂B+

r

(I−B)∇G̃0
λ(a)(z, ξ)·νΓλ(a)(z, η)ds(z)

+

∫
Sc
r

∂

∂ν
R̃(z, ξ)Γλ(a)(z, η)ds(z) +

∫
Sc
r

∂

∂ν
Γλ(a)(z, η)R̃(z, ξ)ds(z)

−
∫
Sr

(I−B)∇G̃0
λ(a)(z, ξ)·νΓλ(a)(z, η)ds(z)−iλ(a)

∫
Sr

(1−|J−T ν|)R̃(z, η)Γλ(a)(z, ξ)ds(z).

After simplification we have

(60)

−R̃(ξ, η) = −
∫
B+

r

(I −B)∇G̃0
λ(a)(z, ξ) · ∇Γλ(a)(z, η)dz

+

∫
Sc
r

(I −B)
∂G̃0

λ(a)(z, ξ)

∂ν
Γλ(a)(z, η)ds(z)

+

∫
Sc
r

∂R̃

∂ν
(z, ξ)Γλ(a)(z, η)ds(z) +

∫
Sc
r

∂

∂ν
Γλ(a)(z, η)R̃(z, ξ)ds(z)

−iλ(a)

∫
Sr

(1 − |J−T ν|)R̃(z, η)Γλ(a)(z, ξ)ds(z).
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Taking the imaginary part in the last equality, we have

(61)

−ImR̃(ξ, η) = −
∫
B+

r

(I −B)∇(ImG̃0
λ(a))(z, ξ) · ∇(ReΓλ(a))(z, η)dz

−
∫
B+

r

(I −B)∇(ReG̃0
λ(a))(z, ξ) · ∇(ImΓλ(a))(z, η)dz

+

∫
Sc
r

(I −B)
∂ImG̃0

λ(a)

∂ν
(z, ξ)ReΓλ(a)(z, η)ds(z)

+

∫
Sc
r

(I −B)
∂ReG̃0

λ(a)

∂ν
(z, ξ)ImΓλ(a)(z, η)ds(z)

+

∫
Sc
r

∂ImR̃

∂ν
(z, ξ)ReΓλ(a)(z, η)ds(z)

+

∫
Sc
r

∂ReR̃

∂ν
(z, ξ)ImΓλ(a)(z, η)ds(z)

+

∫
Sc
r

∂

∂ν
ImΓλ(a)(z, η)ReR̃(z, ξ)ds(z)

+

∫
Sc
r

∂

∂ν
ReΓλ(a)(z, η)ImR̃(z, ξ)ds(z)

− λ(a)

∫
Sr

(1 − |J−T ν|)Re[R̃(z, η)Γλ(a)(z, ξ)]ds(z).

We have for Γλ(a) similar estimates as in Lemma 3.4. In particular, we have

|∇(ReΓλ(a))(x, z)| ≤ c|x− z|1−m.

It is of importance to remark that the imaginary parts have fewer singularities. Indeed,
we will prove the following lemma.

Lemma 3.8. For every R > 0, there exists c := c(R) such that

|∇(ImΓλ(a))(x, z)| ≤ c|x− z|2−m+sd−s(x, ∂B+)

and

|∇(ImG̃0
λ(a))(x, z)| ≤ c|x− z|2−m+sd−s(x, ∂B+)

for x, z in B+(0, R) := B(0, R) ∩ R
m
+ .

Proof of Lemma 3.8. From (26), we deduce that ImΓλ(a)(·, z) satisfies

(62)

{
Δ(ImΓλ(a))(·, z) = 0 in R

m
+ ,

∂
∂ν ImΓλ(a)(·, z) = −λ(a)ReΓλ(a)(·, z) on ∂R

m
+ .

Let Ω be a regular domain in R
m symmetric with respect to the plane {xm = 0}. We

state the problem (62) on Ω+ := Ω ∩ R
m
+ . Let G+ be the Neumann Green’s function

of the Laplace on Ω+. From (62) we can write

(63) ImΓλ(a)(x, z) =

∫
∂Ω+

G+(x, y)
∂ImΓλ(a)

∂ν
(z, y)ds(y).

The boundary condition in (62) on ∂Ω+ ∩ ∂R
m
+ gives

ImΓλ(a)(x, z) = −
∫
∂Ω+∩∂R

m
+

λ(a)G+(x, y)ReΓλ(a)(z, y)ds(y)

−
∫
∂Ω+\∂R

m
+

G+(x, y)
∂ImΓλ(a)

∂ν
(z, y)ds(y).
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Taking the derivatives, we have

(64) ∇x(ImΓλ(a))(x, z) = −
∫
∂Ω+∩∂R

m
+

λ(a)∇xG+(x, y)ReΓλ(a)(z, y)ds(y)

−
∫
∂Ω+\∂R

m
+
∇xG+(x, y)

∂ImΓλ(a)

∂ν (z, y)ds(y).

Taking Ω large enough to contain B+(0, R) and using the estimates of G+ and Γλ(a)

given in Lemma 3.4, we deduce that the second term in the right-hand side is bounded
for x, z in B+(0, R) because ∂Ω+ \ ∂R

m
+ is away from B+(0, R). The first term can

be estimated by∣∣∣∣∣
∫
∂Ω+∩∂R

m
+

λ(a)∇xG+(x, y)ReΓλ(a)(z, y)ds(y)

∣∣∣∣∣
≤ c

∫
∂Ω+∩∂R

m
+

|x− y|1−m|y − z|2−mds(y)

≤ c

∫
∂Ω+∩∂R

m
+

|x− y|1−m+s|y − z|2−mds(y)d−s(x, ∂Ω+)

≤ cs|x− z|2−m+sd−s(x, ∂Ω+),

where cs is a positive constant behaving as 1
1−s ; see [14] (or [21] for Lipschitz surfaces).

Similar arguments can be applied for G̃0
λ(a).

Using this lemma and the estimates of G̃0
λ(a) in (61), we have

(65) |ImR̃(ξ, η)| ≤ c

[∫
B+

r

|z|d−s(z, ∂B+
r )|z − ξ|2−m+s|z − η|1−mdz

+

∫
B+

r

|z||z − ξ|1−md−s(z, ∂B+
r )|z − η|2−m+sdz

+

∫
Sc
r

d−s(z, ∂B+
r )|z − ξ|2−m+s|z − η|1−mds(z)

+

∫
Sc
r

|z − ξ|1−md−s(z, ∂B+
r )|z − η|2−m+sds(z)

+

∫
Sr

|z||z − ξ|2−m|z − η|2−mds(z)

]
,

where c is a positive constant independent on ξ and η.
Taking η ∈ CF (a),θ and ξ on Sr away from Sc

r , from (65) we will show the desired

estimate of ImR̃(ξ, η).
The third and the fourth integrals in (65) are bounded because ξ is away from Sc

r .
Let us consider the first integral. For η ∈ CF (a),θ and ξ on Sr, we have the inequality

(66) |ξ| ≤ c(θ)|ξ − η|,

with some positive constant c(θ). We decompose B+
r as B+

r = B+
r1 ∪ B+

r2 , where

B+
r1 := B+

r ∩ CF (a),θ̃, where θ < θ̃ < π
2 and B+

r2 := B+
r \B+

r1 .

Let us consider
∫
B+

r1
|z|d−s(z, ∂B+

r )|z − ξ|2−m+s|z − η|1−mdz. For z ∈ B+
r , we

have |z| ≤ c(θ̃)d(z, ∂B+
r ) for some positive constant c(θ̃). Hence we need to consider

the integral: ∫
B+

r1

|z|1−s|z − ξ|2−m+s|z − η|1−mdz.
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At this point, we make use of an argument from [1, pp. 209–210]. We decompose the
last integral as the sum of

I1(ξ, η) :=

∫
{|z|<4c(θ)h}∩B+

r1

|z|1−s|z − ξ|2−m+s|z − η|1−mdz

and

I2(ξ, η) :=

∫
{|z|>4c(θ)h}∩B+

r1

|z|1−s|z − ξ|2−m+s|z − η|1−mdz,

where h := |ξ − η|. After the change of variables t := z
h , we obtain

I1(ξ, η) ≤ h4−m4c(θ)

∫
|t|<4c(θ)

|t|1−s

∣∣∣∣ ξh − t

∣∣∣∣
2−m+s ∣∣∣η

h
− t

∣∣∣1−m

dt.

Since | ξh − η
h | = 1, then from [14, Chapter 2, section 11], the integral in the left-hand

side is bounded. Hence

(67) I1(ξ, η) ≤ c|ξ − η|4−m.

Let us now consider the term I2(ξ, η). From the inequality (66), we have

|z| ≤ |z − ξ| + |ξ| ≤ |z − ξ| + c(θ)|h| ≤ |z − ξ| + 1

4
|z|,

and hence

(68) |z| ≤ 4

3
|z − ξ|.

Similarly we get |z| ≤ 4c(θ)
3c(θ)−1 |z − η|. In (66), we can always take c(θ) > 1

3 . Hence

(69) I2(ξ, η) ≤ c

∫
r>|z|>4c(θ)h

|z|4−2mdz ≤ C|ξ − η|4−m + C.

Summing up (67) and (69) implies

(70)

∫
B+

r1

|z|d−s(z, ∂B+
r )|z − ξ|2−m+s|z − η|1−mdz ≤ C|ξ − η|4−m + C.

Now we deal with
∫
B+

r2
|z|d−s(z, ∂B+

r )|z−ξ|2−m+s|z−η|1−mdz. In this case d(z, ∂B+
r2)=

|zm|. Since η ∈ CF (a),θ, then |z − η|1−m > c > 0, since CF (a),θ and B+
r2 are separated

sets.
Hence, using this information with the fact that |z| ≤ 4

3 |z − ξ|, we have∫
B+

r2

|z|d−s(z, ∂B+
r )|z − ξ|2−m+s|z − ξ|1−mdz ≤

∫
B+

r2

|z|3−m+s|zm|−sdz.

By using the Holder inequality and choosing s small enough we have
∫
B+

r2
|z|3−m+s|zm−

ξ|sdz < ∞. This means that the first integral of (65) is estimated by C|ξ−η|4−m +C.
Arguing as before for the first terms of (65), we deduce that the second term

has a similar estimate. From the inequality (68), the last integral is bounded by
c
∫
Sr

|z − ξ|3−m|z − η|2−mds(z), which is itself bounded by C|ξ − η|4−m + C. Finally

we deduce that the integral in (65) is also bounded by C|ξ − η|4−m + C.
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Second step. We go back to estimate R(x, z) := G0
λ(a)(x, z) − Γλ(a)(x, z). We

have

R(x, z) = G0
λ(a)(x, z) − Γλ(a)(F (x), F (z)) + Γλ(a)(F (x), F (z)) − Γλ(a)(x, z),

which we write as

(71)
R(x, z) = R̃(F (x), F (z)) + (Γλ(a)(F (x), F (z)) − Γλ(a)(F (x), z))

+(Γλ(a)(F (x), z) − Γλ(a)(x, z)).

Let us show that F (Ca,θ∩B(0, δ(a))) ⊂ CF (a),θ′ for some θ′ ∈ (0, π/2) and θ ≤ θ′ with
δ(a) small enough. Recall that a = (0, 0, 0). We set M := max(z1,z2)∈B2(0,δ(a)) |f(z1,

z2)| and then M = |f(z0
1 , z

0
2)| for some point (z0

1 , z
0
2). We draw the cone with vertex

a, axis (−ν(a)), and having the point (z0
1 , z

0
2 ,M) on its boundary. We denote by

φ the angle between this cone and the plane {z3 = 0}. Since |∇f(0, 0)| = 0 and
f ∈ C1(0, δ(a)), φ = φ(δ(a)) tends to zero if δ(a) tends to zero. Hence taking δ(a)
small enough, if necessary, we can assume that 0 ≤ φ < π/2 − θ. Finally we define
the cone with center a, axis (−ν(a)), and angle θ′ := φ+ θ. Then F (Ca,θ) ⊂ CF (a),θ′ .

Let x be near a such that F (x) ∈ Sr and away from Sc
r and z ∈ Ca,θ ∩B(a, δ(a)).

Then (F (x), F (z)) ∈ Sr × CF (a),θ′ and hence

ImR̃(F (x), F (z)) ≤ C|F (x) − F (z)|4−m + C ≤ C|x− z|4−m + C

as shown in the first step.
In the following we need to estimate the second and the third terms of the right-

hand side of (71). We write

(72) |Γλ(a)(F (x), F (z)) − Γλ(a)(F (x), z)| ≤ |∇zImΓλ(a)(F (x), ·)|L∞(Vz,ε)|F (z) − z|

and

(73) |Γλ(a)(F (x), z) − Γλ(a)(x, z)| ≤ |∇xImΓλ(a)(·, z)|L∞(Vx,ε)|F (x) − x|,

where Vz,ε is an open set containing z and F (z) such that F (x) ∈ V c
z,ε, and Vx,ε is an

open set containing x and F (x) such that z ∈ V c
x,ε.

From the representation (64) in the proof of Lemma 3.8, we have

|∇z(ImΓλ(a)(F (x), ·))|L∞(Vz,ε) < c[d(F (x), ∂Vz,ε)]
2−m,

and similarly, we have

|∇x(ImΓλ(a)(·, z))|L∞(Vx,ε) < c[d(z, ∂Vx,ε)]
2−m,

where c is independent of Vz,ε and Vx,ε.
Hence (72) and (73) become

|Γλ(a)(F (x), F (z)) − Γλ(a)(F (x), z)| ≤ c[d(F (x), ∂Vz,ε)]
2−m|F (z) − z|

and

|Γλ(a)(F (x), z) − Γλ(a)(x, z)| ≤ c[d(z, ∂Vx,ε)]
2−m|F (x) − x|,
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respectively. Since ε > 0 is arbitrary, we deduce, by shrinking Vz,ε to tend to a line
joining the points z and F (z) and similarly Vx,ε to tend to a line joining the points x
and F (x), that there exists c > 0 such that⎧⎨

⎩
|Γλ(a)(F (x), F (z)) − Γλ(a)(F (x), z)| ≤ c|F (x) − F (z)|2−m|F (z) − z|
or
|Γλ(a)(F (x), F (z)) − Γλ(a)(F (x), z)| ≤ c|F (x) − z|2−m|F (z) − z|

(74)

and ⎧⎨
⎩

|Γλ(a)(F (x), z) − Γλ(a)(x, z)| ≤ c|x− z|2−m|F (x) − x|
or
|Γλ(a)(F (x), z) − Γλ(a)(x, z)| ≤ c|F (x) − z|2−m|F (x) − x|.

(75)

Recalling that

|x| ≤ c(θ)|x− z|

for x near a and z ∈ Ca,θ ∩B(a, δ(a)) and using (57), we have

|x− z| ≤ |x− F (x)| + |F (x) − z| ≤ c|x|2 + |F (x) − z| ≤ c(θ)|x− z|2 + |F (x) − z|.

Hence

|x− z|[1 − c(θ)|x− z|] ≤ |F (x) − z|.

Taking δ(a) small enough so that we have (1 − c(θ)|x− z|2) ≥ 1/2,

|x− z| ≤ 2|F (x) − z|.

From (57), we have

(76) |F (x) − x| ≤ c|x|2 ≤ c(θ)|x− z|2

and also

(77) |F (z) − z| ≤ c|z|2 ≤ c(θ)|x− z|2.

Since |x − z| ≤ c|F (x) − F (z)|, using (76) and (77) in (74) and (75), we deduce
that the second and the third terms of (71) are estimated by C|x− z|4−m.

This means that

(78) |ImR(x, z)| ≤ C|x− z|4−m + C

for x ∈ B(a, δ(a)) such that F (x) ∈ Sr and z ∈ Ca,θ ∩B(a, δ(a)).

For z ∈ Ca,θ ∩B(a, δ(a)
2 ) and x ∈ [∂B(a, δ(a))] ∩ R

m \D, we have

(79) |ImR(x, z)| ≤ C

with some positive constant c, because Ca,θ ∩B(a, δ(a)
2 ) and ∂B(a, δ(a)]∩R

3 \D are

separated sets. Since in B(a, δ(a)) ∩ (R3 \D) we have ΔxImR(x, z) = 0, using (78)
and (79), we have, by the maximum principle,

|ImR(x, z)| ≤ c(θ)|z − a|4−m + C

for x ∈ [R3 \D] ∩B(a, δ(a)) and z ∈ Ca,θ ∩B(a, δ(a)
2 ).
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Considering the real part of R(x, z), by similar arguments as for ImR(x, z), we
prove that

|ReR(x, z)| ≤
{

c(θ)| ln |z − a|| if m = 3,
c(θ) 1

|z−a|m−3 if m > 3.

This ends the proof of Lemma 3.7.
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Abstract. We study the existence of solutions to Bolza problems for a special class of one-
dimensional, nonconvex integrals. These integrals describe the possibly singular, radial deformations
of certain rubberlike materials called Blatz–Ko materials.
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1. Introduction. In this paper we investigate the existence of solutions to Bolza
problems for a special class of one-dimensional, nonconvex integrals of the form

(1.1)

∫ 1

0

rN−1Φ

(
v′(r) ,

v(r)

r

)
dr + θ(v(0)),

where Φ: R
2
+ → [0 ,+∞) and θ : [0 ,+∞) → [0 ,+∞) are smooth functions and the

competing functions v > 0 satisfy the unilateral constraint v′ > 0 a.e. and the one-
point boundary condition v(1) = λ for a given λ > 1. We emphasize that Φ need not
be convex with respect to the derivative v′.

This special class of variational problems arises in mathematical models describing
the deformations of some foam rubberlike materials, including the so-called Blatz–Ko
materials.

The variational elasticity problem that motivates the model can be described as
follows. Let the open unit ball B1 be the reference configuration of a hyperelastic,
isotropic material with stored energy density W so that the total energy corresponding
to a smooth deformation u with given displacement u(x) = λx > 1 at the boundary
|x| = 1 is given by

E0(u) =

∫
B1

W (Du(x)) dx.

Physical arguments require that admissible deformations u be orientation preserving,
i.e., detDu > 0, and that W (Du) → +∞ as detDu → +∞ and detDu → 0+. The
first hypothesis means that no interpenetration of matter occurs, and the others mean
that infinite energy is required for unbounded expansion of the body or compression
to a single point.

We restrict our analysis to the special case of radial deformations, i.e., u(x) =
v(|x|)x/|x| with v(r) > 0 for 0 < r < 1 and v(1) = λ > 1. In this case, the total
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†Dipartimento di Matematica, Università degli Studi di Parma, V.le G. P. Usberti 53/A, I-43100

Parma, Italy (pietro.celada@unipr.it).
‡Dipartimento di Matematica Pura ed Applicata, Università degli Studi di Modena e Reggio
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energy, by a change of variables, turns out to be

(1.2) E0(u) = J0(v) = ωN

∫ 1

0

rN−1Φ

(
v′(r) ,

v(r)

r

)
dr,

where ωN is the (N −1)-dimensional measure of the surface of B1 and Φ is associated
with the stored energy density W ; see section 2. We look for those radial deformations
that minimize the total energy among all radial deformations and we emphasize here
that, on the grounds of experimental evidence, we want to include among the feasible
functions those v satisfying v(0) > 0, i.e., corresponding to deformations u which are
singular at the origin. The variational problem thus obtained was considered by Ball in
[1], and it is known as the problem of cavitation. Indeed, the existence of optimal radial
deformations with v(0) > 0 for large enough displacement λ at the boundary can be
interpreted as the occurrence of a spherical fracture—a cavity—inside the body. Ball
in [1] extensively studied this problem with different possible boundary conditions—
displacement and dead load traction—and for both compressible and incompressible
materials. With regard to cavitation, we mention also [31], [19] as well as [21] and
[7], which address the full three-dimensional problem. See also [13] for a description
of cavitation in the language of currents. Among the results of [1], we are especially
interested in those regarding isotropic, compressible materials whose stored energy
density W (Du), as a function of the singular values λ1, . . . , λN of the deformation
gradient Du, takes the form

(1.3) W (Du) =
∑
n

w0(λn) + w(λ1 · · ·λN ).

In Ball’s paper [1], w0 and w are suitable strictly convex functions with superlinear
growth at infinity, and these hypotheses play a crucial role in the analysis. Ball then
shows that minimizers in the restricted class of radial deformations exist and, more-
over, that cavitation occurs for large enough displacements λ. Since Ball’s seminal
paper, the problem of cavitation has been extensively investigated, and several other
aspects, including stability, have been considered. See [23], [25], [26], [27], [28] and
[29], to mention just a few. We refer to [15] and the references therein for a recent
survey of theoretical and experimental results about cavitation. Yet, apart from the
contribution by Müller and Spector [21] mentioned above and related papers, inves-
tigation on cavitation has been carried out so far mostly in the radial case, and little
is known in the unrestricted case, in particular, about the symmetry of possible min-
imizers. As to this question, we mention the uniqueness result by Knops and Stuart
[17] and the existence result by Spector [30], which single out two situations where
minimizers in the unrestricted case are radially symmetric. None of these results,
however, applies to the case considered here.

The hypotheses of [1] do not include the case that w in (1.3) is nonconvex, i.e.,
that the model can possibly exhibit phase transition, and in particular do not include
the case that w is given by

(1.4) wBK(t) =
2α

t
+ (1 − α)

(
2t +

1

t2

)
, t > 0,

with α = −0.19. Indeed, wBK(t) → +∞ as t → 0+ and t → +∞ as expected, but
wBK is at the same time asymptotically linear and concave as t → +∞. This special
choice of w was proposed by Blatz and Ko in [3] on the grounds of experimental
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results; see also [18] and [14]. It is supposed to describe the behavior of some foam
rubberlike materials, now called Blatz–Ko materials.

The problem of cavitation was studied also by Marcellini in [19]. Marcellini’s
approach to the problem is based on the idea that, contrary to Ball’s approach, the
energy corresponding to a singular, radial deformation v featuring cavitation cannot
be taken equal to (1.2) but must be defined elastically by lower semicontinuity or
relaxation, i.e., choosing the energy of the radial deformation associated to v to be

JV (v) = inf

{
lim inf
k→+∞

J0(vk) : vk → v

}
,

where the greatest lower bound is taken among all regular deformations vk with
vk(0) = 0 (no cavitation occurs), and the convergence is in the strong Sobolev sense.
Marcellini’s main result is the derivation of a representation formula for the resulting
relaxed energy JV which turns out to be

(1.5) JV (v) = ωN

∫ 1

0

rN−1Φ

(
v′(r) ,

v(r)

r

)
dr + c

ωN

N
[v(0)]

N
.

It is important to emphasize here that relaxation is made with respect to strong
Sobolev convergence; otherwise the energy density Φ would be replaced by its convex
envelope Φ∗∗ with respect to v′, in contrast with the experimental results of [3] which
suggest for Blatz–Ko materials a nonconvex dependence on the determinant of the
deformation gradient.

The additional term appearing in the relaxed energy JV is thus proportional to the
N -dimensional measure of the cavity and can be interpreted as the contribution to the
total energy of the singular part of the Jacobian determinant of the radial deformation
u(x) = v(|x|)x/|x|. The coefficient c appearing in (1.5) depends on Φ and, when Φ
comes from a stored energy density W as those considered in [1] (see (1.3)), it is
given by the recession w∞ of the convex function w at t = 1 (see (2.4)). Clearly, the
additional term in the definition of JV penalizes the occurrence of cavitation, and,
moreover, according to this model and contrary to Ball’s, singular radial deformations
require infinite energy for superlinear w since w∞ = +∞.

Following Müller and Spector’s full three-dimensional model [21], a further radial
model is considered in [4], where the energy associated with a radial deformation v is
given by

JS(v) = ωN

∫ 1

0

rN−1Φ

(
v′(r) ,

v(r)

r

)
dr + ωNw∞ [v(0)]

N−1
.

In this case, the contribution of the cavity to the total energy is proportional to the
surface of the cavity as in [21], and we refer to [4] for a detailed discussion of the
features of this model and for a comparative analysis with Ball’s and Marcellini’s
models.

All the models considered so far thus lead, in the restricted case of radial defor-
mations, to the problem of minimizing either an energy of the form J0 defined by
(1.2) when W is superlinear with respect to the Jacobian as in Ball’s model [1] or an
energy of the form (1.1) which we rewrite as

J(v) = ωN

∫ 1

0

rN−1Φ

(
v′(r) ,

v(r)

r

)
dr + ωNw∞θ(v(0))
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when W is linear in the Jacobian as in Marcellini’s model [19] and in [4]. In these
latter cases, the function θ : [0 ,+∞) → [0 ,+∞) appearing in the definition of J is
continuous, increasing, and null at zero, and the coefficient 0 < w∞ < +∞ is given
by (2.4). In both cases, minimization is subject to the one-point boundary condition
v(1) = λ > 1.

When the stored energy density W is polyconvex, the resulting Φ is convex with
respect to the derivative v′ so that J0 is lower semicontinuous for the natural conver-
gence and the existence of minimizers for J0 follows from standard arguments as in
Ball [1]. If, in addition, the function

t ∈ [0 ,+∞) �→ tN

N
− θ(t)

is increasing, the same argument applies to J (Theorem 3.4). By contrast, when W
fails to be polyconvex, Φ need not be convex with respect to v′, and minimizers of J
and J0 need not exist. Our aim in this paper is the proof of fairly general attainment
results for the minimum problems for J (Theorem 3.3) and J0 (Theorem 3.5) when
Φ is nonconvex with respect to v′. We show in particular (Theorem 2.1) that the
result for J (linear growth) applies to the special choice of w = wBK corresponding
to Blatz–Ko materials.

Our analysis in this paper mainly deals with the case of nonpolyconvex energy
densities W that grow linearly as the Jacobian detDu → +∞, and this leads to
the one-dimensional integral J which comes from relaxing J0 as in Marcellini [19].
Yet, the very same arguments and proofs apply unchanged to the superlinear case,
which turns out to be even simpler. We thus emphasize that our existence results
apply to elastomers which can possibly exhibit phase transition because of the lack
of polyconvexity in both cases of “soft” elastomers, i.e., having linear growth in the
Jacobian, as well as in the case of “hard” or nearly incompressible elastomers featuring
very fast growth in the Jacobian. However, as a disclaimer, we wish to emphasize also
that we do not address in this paper the issue of the onset of cavitation, i.e., whether
optimal radial deformations for Blatz–Ko materials are singular at the origin or not,
and we refer to [4] for a detailed discussion of this problem in the polyconvex case.

The issue of attainment for one-dimensional, nonconvex variational problems has
been extensively studied in recent years, and we refer to the references in [20] for a
far from exhaustive list of contributions on this subject. See also the references in [5]
for more recent years. In particular, for the radial case we mention [6], [8], and [9].
The existence results we prove here are partially based on the ideas developed in [5].

The rest of the paper is organized as follows. In section 2, we briefly introduce
the notation, we describe with more details the physical model and the variational
problems we end up with, and we state our main result on the existence of optimal,
radially symmetric deformations for Blatz–Ko materials (Theorem 2.1). Then, in
section 3, we study the associated one-dimensional, nonconvex Bolza problem for
J (linear growth) and we state an attainment result for it (Theorem 3.3). In the
same section, we consider also the nonconvex variational problem for J0 (superlinear
growth) and we state an attainment result in this case as well (Theorem 3.5). We
prove both results in section 4. Finally, in section 5, we prove Theorem 2.1 by showing
that the existence result of section 3 applies to the w of Blatz–Ko materials given by
(1.4).

2. Notation and description of the problem. We denote the norm of a
vector x in R

N by |x| and the scalar product of x and y by 〈x, y〉. If A is a subset
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of R
N , we denote the interior, the closure, and the boundary of A by int(A), A, and

∂A, respectively.
As for matrices, let M

N×N be the set of all N×N real matrices A = (Am
n )m,n=1,...,N

endowed with the euclidean norm denoted by |A|. Let IN be the identity matrix and
let AdjA be the N×N matrix defined as the transpose of the cofactors of A so that
Laplace’s formula yields

detA =
∑

1≤n≤N

A1
n (AdjA)

1
n .

The singular values of the matrix A are the eigenvalues λ1(A), . . . , λN (A) of the

positive, symmetric matrix
√
AAT so that

|A|2 = λ2
1(A) + · · · + λ2

N (A) and |detA| = λ1(A) · · ·λN (A).

The standard basis of R
N is denoted by {e1 , . . . , eN}, and the tensor product of two

vectors a = a1e1 + · · ·+ aNeN and b = b1e1 + · · ·+ bNeN is the rank-one matrix a⊗ b
defined by (a ⊗ b)mn = ambn for every m and n. Finally, we denote the group of all
matrices with positive determinant by M

N×N
+ and its special orthogonal subgroup by

SO(N).
With regard to measure and functional theoretic notation, we denote the Lebesgue

measure of a measurable subset E in some euclidean space R
n by |E|. We use standard

notation for the spaces of continuously differentiable functions as well as for Lebesgue
and Sobolev spaces and their norms. In the special case of functions of one variable
on a bounded interval I, we let AC(I) and ACloc(I) be the space of all absolutely
continuous functions on I and on all compact subintervals of I, respectively.

In what follows, we shall consider the Jacobian determinant of Sobolev mappings
u : Ω → R

N , u = (u1, . . . , uN ), where Ω is an open subset of R
N . If u ∈ W 1,p(Ω,RN )

for some p ≥ 1, we denote by detDu the measurable function defined a.e. as the
pointwise Jacobian determinant of u which is in L1(Ω) for p ≥ N . If p < N , detDu
loses its natural meaning, and for p ≥ N2/(N + 1) or when u ∈ W 1,N−1(Ω,RN ) ∩
L∞(Ω,RN ), we consider instead the distributional Jacobian determinant of u defined
as the distributional divergence

DetDu =
∑

1≤n≤N

Dn

(
u1 (AdjDu)

1
n

)
.

In general, DetDu is not a function, and DetDu �= detDu in the sense of distribution.
However, if u is in W 1,p(Ω,RN ) with p ≥ N2/(N+1) and DetDu is a Radon measure,
then detDu is the Radon–Nikodym derivative (density) of the absolutely continuous
part of DetDu with respect to the Lebesgue measure and we denote the singular part
of DetDu by (DetDu)

s
. We refer to [12] for further results on the relation between

det and Det and the structure of the distributional Jacobian determinant.
As motivated in the introduction, we are interested in studying the deformations

of a hyperelastic, homogeneous, solid body whose reference configuration is the open
unit ball B1 of R

N , the physically interesting case being obviously N = 2 and N = 3.
We assume that the stored energy density of the body is a smooth function W ∈
C1(MN×N

+ ), W ≥ 0, which can be written as

W (A) = W0(A) + w(detA), A ∈ M
N×N
+ ,
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where the first term W0 ∈ C1(MN×N
+ ), W0 ≥ 0, is frame indifferent and isotropic; i.e.,

(2.1) W0(QA) = W0(A) = W0(AQ), A ∈ M
N×N
+ , Q ∈ SO(N).

With regard to the behavior of W0 for large |A|, we assume that W0 has superlinear
growth

(2.2) lim
|A|→+∞

W0(A)

|A| = +∞,

but at the same time, as we are interested in possibly discontinuous deformations, we
assume also that W0 has polynomial growth of order strictly less than N , i.e.,

(2.3) 0 ≤ W0(A) ≤ C (1 + |A|p) , A ∈ M
N×N
+ ,

for some C ≥ 0 and 1 < p < N . As for the term w depending on the deformation of
volume elements, we assume that w ∈ C1(R+), w ≥ 0, is such that

(2.4) lim
t→0+

w(t) = +∞ and lim
t→+∞

w(t)

t
= w∞ ∈ (0 ,+∞].

Hence, linear growth corresponds to 0 < w∞ < +∞ and superlinear growth to w∞ =
+∞. We emphasize again that in both cases w need not be convex and that, for
Blatz–Ko materials, (2.4) holds with w∞ = w∞

BK = 2(1 − α) where α = −0.19, i.e.,
w∞

BK = 2.38.
The properties of frame indifference and isotropy (2.1) of the function W0 obvi-

ously hold for the entire energy W as well, and, as is well known, both W0 and W
can then be written as functions of the singular values λ1 = λ1(A), . . . , λN = λN (A)
of the gradient matrix A, i.e.,

(2.5)
W0(A) = Φ0 (λ1 , . . . , λN ) ,

W (A) = Φ (λ1 , . . . , λN ) = Φ0 (λ1 , . . . , λN ) + w (λ1 · · ·λN )

for symmetric functions Φ0, Φ: R
N
+ → [0 ,+∞) satisfying the appropriate growth

properties corresponding to (2.2) and (2.3). Moreover, Φ0 and Φ share the same
smoothness with W0 and W , respectively.

For this energy density W , the total energy associated with a smooth deformation
u is given by the integral

(2.6) E0(u) =

∫
B1

W (Du(x)) dx.

We want to consider bounded deformations which are possibly singular at the origin,
i.e., deformations u : B1 → R

N corresponding to possibly discontinuous Sobolev func-
tions u ∈ L∞(B1,R

N )∩W 1,1(B1,R
N ) satisfying an appropriate notion of invertibility;

see [21] for a general discussion of this issue. For these Sobolev mappings, however,
the pointwise Jacobian determinant detDu loses its natural meaning and has to be re-
placed by the distributional Jacobian determinant DetDu. A general discussion of this
question as in Chapter 2 of [13] or [21]—admissible class of deformations and possible
definitions of the energy when the pointwise Jacobian determinant is meaningless—
goes far beyond the aim of this paper. Indeed, here we shall consider only possibly
singular, radial deformations for which invertibility can be stated in elementary terms
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and for which a reasonable definition of the total energy encompassing the nonregular
part of the distributional Jacobian determinant can be easily given. Accordingly, we
shall assume that the total energy of a deformation u ∈ L∞(B1,R

N )∩W 1,1(B1,R
N )

such that DetDu is a nonnegative Radon measure is given by E0 as in Ball’s case
when W has superlinear growth with respect to the Jacobian; i.e., the energy depends
only on the regular part of the deformation gradient. By contrast, when W is linear
with respect to the Jacobian, the energy is the sum of E0 and a term depending on
the total mass of the singular part of DetDu, i.e.,

(2.7) E(u) = E0(u) + w∞Θ ((DetDu)
s
(B1)) ,

where Θ: [0 ,+∞) → [0 ,+∞) is a continuous, increasing function which vanishes at
zero. This special class of deformations is the class of radial deformations for which
no eversion occurs, i.e., mappings u ∈ L∞(B1,R

N ) such that

(2.8) u(x) = v(|x|) x

|x| for a.e. x ∈ B1

for some v ∈ L∞(0 , 1) satisfying v > 0 a.e. on (0 , 1). It is clear that v is uniquely
associated with u up to a null set by (2.8) and vice versa. It is then easy to check
(see Lemma 4.1 in [1]) that, whenever the two measurable functions u : B1 → R

N and
v : (0 , 1] → [0 ,+∞) are related by (2.8), we have that

(2.9) u ∈ W 1,p(B1,R
N ) ⇐⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v ∈ ACloc((0 , 1])

and∫ 1

0

rN−1

(
|v′(r)|p +

∣∣∣∣v(r)r

∣∣∣∣
p)

dr < +∞

for every index 1 ≤ p < +∞. In this case, the gradient of u and its singular values
are given by

(2.10) Du(x) =
v(|x|)
|x| IN +

(
v′(|x|) − v(|x|)

|x|

)
x⊗ x

|x|2 for a.e. x ∈ B1

and

(2.11)

⎧⎨
⎩

λ1(Du(x)) = v′(|x|),

λn(Du(x)) =
v(|x|)
|x| , n = 2, . . . , N,

for a.e. x ∈ B1.

It follows from (2.9) that a radial deformation u with a cavity v(0) > 0 can be in
W 1,p(B1,R

N ) with at most p < N .
We shall assume throughout the paper that u defined by (2.8) is such that the

corresponding v can be chosen to be strictly increasing. Thus, u is injective and v
is actually defined up to a countable set, and we assume also that it is defined by
continuity at r = 0 and r = 1. With this additional assumption, it follows easily that
the equivalence (2.9) actually holds with v ∈ AC([0 , 1]), and, moreover, for these
mappings u satisfying (2.8) and (2.9) for some p ≥ 1, the distributional Jacobian
determinant is a nonnegative Radon measure whose absolutely continuous part with
respect to the Lebesgue measure has density

(2.12) detDu(x) = v′(|x|)
(
v(|x|)
|x|

)N−1

for a.e. x ∈ B1
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and whose singular part is

(2.13) (DetDu)
s
=

ωN

N
[v(0)]Nδ0,

where δ0 is the Dirac measure at the origin.
For the energies E and E0 defined by (2.7) and (2.6), respectively, we shall con-

sider the radial displacement boundary value problem in the class of radial deforma-
tions, i.e., the variational problem of minimizing E and E0 among all radial defor-
mations u ∈ L∞(B1,R

N ) ∩W 1,1(B1,R
N ) satisfying detDu > 0 a.e. on B1 and the

boundary condition u(x) = λ for |x| = 1 for some λ > 1. The set of all functions v
associated with these radial deformations u by (2.8) is the set

(2.14) A = {v ∈ AC([0 , 1]) : v > 0 on (0 , 1] and v′ > 0 a.e. on (0 , 1]} ,

and we denote by A(λ) those v ∈ A such that v(1) = λ. Note also that

(2.15)

∫ 1

0

rN−1

[
v′(r) +

v(r)

r

]
dr < +∞, v ∈ A(λ),

which is the second condition in (2.9). By a change of variables and by (2.5) and
(2.11), we have

E0(u) = ωN

∫ 1

0

rN−1Φ

(
v′(r) ,

v(r)

r

)
dr,

where

Φ(ξ , η) = Φ0(ξ , η) + w(ξηN−1), η , ξ > 0,

are defined by (2.5) and we have used the shortcuts Φ0(ξ , η) = Φ0(ξ , η , . . . , η) and
Φ(ξ , η) = Φ(ξ , η , . . . , η). Similarly, as the singular part of DetDu for a radial defor-
mation u is a function of v(0) for the corresponding v by (2.13), E defined by (2.7)
becomes

E(u) = ωN

∫ 1

0

rN−1Φ

(
v′(r) ,

v(r)

r

)
dr + ωNw∞θ (v(0)) ,

where θ : [0 ,+∞) → [0 ,+∞) is a continuous and increasing function such that θ(0) =
0. Thus, we are led to consider the variational problem

(P0) min {J0(v) : v ∈ A(λ)} ,

where

(2.16) J0(v) = ωN

∫ 1

0

rN−1Φ

(
v′(r) ,

v(r)

r

)
dr, v ∈ A(λ),

in the case of superlinear growth and the Bolza problem

(P) min {J(v) : v ∈ A(λ)} ,

where

(2.17) J(v) = J0(v) + ωNw∞θ (v(0)) , v ∈ A(λ),
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in the linear case.
In section 3, we shall prove two general existence results for the Bolza problem (P)

(Theorem 3.3) and the variational problem (P0) (Theorem 3.5) which apply to stored
energy densities Φ which fail to be convex with respect to the derivative v′. As a con-
sequence of Theorem 3.3, we shall prove the following existence result (Theorem 2.1)
of optimal, radial solutions for Blatz–Ko materials.

Theorem 2.1. Let

W (A) = |A|2 + wBK(detA), A ∈ M
N×N
+ ,

where wBK : (0 ,+∞) → [0 ,+∞) is given by (1.4), and let Θ: [0 ,+∞) → [0 ,+∞) be
a continuous and increasing function such that

(a) Θ(0) = 0;

(b) s ∈ [0 ,+∞) �→ s− Θ(s) is increasing.
Then, the variational integral

E(u) =

∫
B1

W (Du(x)) dx + w∞
BKΘ ((DetDu)s(B1))

with w∞
BK = 2.38 has a minimizer among all radial deformations u(x) = v(|x|) x

|x|
corresponding to v ∈ A(λ).

The proof is given in section 5. Here, we point out again that this theorem does not
assert that optimal radial deformations for Blatz–Ko materials exhibit cavitation. The
issue of the existence of singular radial solutions is more subtle, even for polyconvex
energies W , and we refer to [4] for a thorough discussion of this issue in the polyconvex
case.

3. The nonconvex, one-dimensional problems. In this section we state two
fairly general attainment results for the one-dimensional, one-point boundary value
problems (P0) and (P) associated with the problem of minimizing, among radial
deformations, the energies E0 and E defined by (2.6) and (2.7), respectively. We shall
prove both results in section 4.

We begin by recalling some elementary results from convex analysis. Consider a
lower semicontinuous function ϕ : R+ → [0 ,+∞) such that ϕ(ξ) → +∞ as ξ → 0+

and ϕ(ξ)/ξ → +∞ as ξ → +∞. The polar function of ϕ is the lower semicontinuous,
convex function ϕ∗ : R → R defined by

ϕ∗(ξ) = sup {ξζ − ϕ(ξ) : ξ > 0} , ζ ∈ R

(see [11] or [24]), and the bipolar function or convex envelope of ϕ is the polar
ϕ∗∗ : R+ → [0 ,+∞) of ϕ∗. Thus, ϕ∗∗ is convex, continuous, and such that

ϕ∗∗(ξ) ≤ ϕ(ξ) for every ξ > 0;(3.1)

the open set {ϕ∗∗ < ϕ} has bounded connected components;(3.2)

the closure of each connected component of {ϕ∗∗ < ϕ} is contained in R+;(3.3)

ϕ∗∗ is affine on each connected component of {ϕ∗∗ < ϕ}.(3.4)

Moreover, it is easy to check that whenever ϕ ∈ C1(R+), then ϕ∗∗ ∈ C1(R+) as well
and that the values of ϕ∗∗ at ξ > 0 and ϕ∗ at d = (ϕ∗∗)

′
(ξ) are related by

(3.5) ϕ∗∗(ξ) + ϕ∗(d) = dξ
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because of the equality ϕ∗∗∗ = ϕ∗ (see [11]). Thus, the convexity inequality

ϕ∗∗(ξ) ≥ ϕ∗∗(ξ0) + d(ξ − ξ0), ξ , ξ0 > 0,

where d = (ϕ∗∗)
′
(ξ0) can be written as

(3.6) ϕ∗∗(ξ) ≥ dξ − ϕ∗(d), ξ > 0,

and −ϕ∗(d) yields the value at the origin of the supporting affine function to the
graph of ϕ∗∗ at the point ξ. Moreover, because of (3.4), whenever an interval (α , β)
is a connected component of {ϕ∗∗ < ϕ}, (3.6) turns into the equality

(3.7) ϕ∗∗(ξ) = dξ − ϕ∗(d), ξ ∈ (α , β),

where d = (ϕ∗∗)
′
(ξ0) and ξ0 ∈ (α , β).

We can now describe the class of one-dimensional integrands that we shall consider
in this section. Recalling the discussion of section 2 on the stored energy W and
the formula (2.11) for the singular values of the gradient of radial deformations, we
consider a function Φ: R

2
+ → [0 ,+∞) which is the sum of two terms, i.e.,

Φ(ξ , η) = Φ0(ξ , η) + w(ξηN−1), ξ , η > 0,(H1)

where Φ0 : R
2
+ → [0 ,+∞) and w : R+ → [0 ,+∞). We assume first that both terms

are smooth; i.e.,

Φ0 ∈ C1(R2
+) and w ∈ C1(R+).(H2)

Then, recalling the meaning of ξ and η and (2.11), we set

‖(ξ , η)‖ =
√
ξ2 + (N − 1)η2, ξ , η > 0,

for the euclidean norm of the matrix corresponding to the singular values given by
(ξ , η, . . . , η) and, in view of the hypotheses (2.2) and (2.3) on W0, we assume that

lim
‖(ξ ,η)‖→+∞

Φ0(ξ , η)

‖(ξ , η)‖ = +∞,(H3)

0 ≤ Φ0(ξ , η) ≤ C (1 + ‖(ξ , η)‖p), ξ, η > 0,(H4)

for some constant C ≥ 0 and some index 1 < p < N . Similarly, in view of (2.4), we
assume that w is such that either

lim
t→0+

w(t) = +∞ and lim
t→+∞

w(t)

t
= w∞ ∈ (0 ,+∞)(H5L)

(linear case) or

lim
t→0+

w(t) = +∞ and lim
t→+∞

w(t)

t
= w∞ = +∞(H5S)
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(superlinear case). We remark again that w need not be convex and we note that
(H4) and either (H5L) or (H5S) imply that

(3.8) lim
ξ→+∞

Φ(ξ , ξ)

ξN
= w∞.

For any such Φ, we consider the variational integrals J0 and J defined by (2.16)
and (2.17), respectively, and the corresponding variational problems (P0) and (P) for
λ > 1. Moreover, we denote the polar of Φ and the convex envelope of Φ with respect
to the first variable ξ by Φ∗ : R×R+ → R and Φ∗∗ : R

2
+ → [0 ,+∞), respectively;

i.e., Φ∗(ξ , η) and Φ∗∗(ξ , η) are the polar and the convex envelope of the function
ξ′ → Φ(ξ′ , η) at the point ξ.

In what follows, a special role is played by the detachment set D defined by

(3.9) D = {(ξ , η) : Φ∗∗(ξ , η) < Φ(ξ , η)} .

For every ξ > 0 and η > 0, its horizontal and vertical sections will be denoted by

Dη = {ξ > 0 : Φ∗∗(ξ , η) < Φ(ξ , η)} and Dξ = {η > 0 : Φ∗∗(ξ , η) < Φ(ξ , η)} ,

respectively. Also, whenever (ξ , η) ∈ D, the connected component of Dξ containing η
will be denoted by Dξ(η), and similarly for Dη(ξ). The main properties of the detach-
ment set D are listed in the following proposition for which we refer to Proposition 3.1
in [5].

Proposition 3.1. Let Φ: R
2
+ → [0 ,+∞) be a continuously differentiable func-

tion such that

lim
ξ→+∞

Φ(ξ , η)

ξ
= +∞ uniformly with respect to η > 0;(3.10)

lim
(ξ ,η)→(ξ0 ,η0)

Φ(ξ , η) = +∞ whenever ξ0η0 = 0.(3.11)

Then,

(a) the detachment set D is open;

(b) for every 0 < a < b, the connected components of D∩(R×(a , b)) are bounded.

Moreover, for every (ξ0 , η0) ∈ D, there exist δ = δ(ξ0 , η0) > 0 and two functions
d± : [η0 − δ , η0 + δ] → R such that

(c) d−(η) < ξ0 < d+(η) for every η ∈ [η0 − δ , η0 + δ];

(d) d+ and d− are bounded, upper and lower semicontinuous functions, respec-
tively;

(e) Dη(ξ0) = (d−(η) , d+(η)) for every η ∈ [η0 − δ , η0 + δ];

(f) Φ∗∗(d±(η) , η) = Φ(d±(η) , η) for every η ∈ [η0 − δ , η0 + δ].
Note that this result applies to every Φ satisfying (H1), . . . , (H4) and either (H5L)

or (H5S). As for the properties of D listed above, note that, with different words,
(b) states that, in the ξη plane, every connected component of every horizontal strip of
D is bounded, and (e) states that, provided that the strip is narrow enough, every such
connected component is the plane set contained between the graphs of two functions
d± satisfying (d).

In the following proposition, we describe the properties of the convex envelope
Φ∗∗ of Φ that will be used in what follows. We refer to [2] and [16] for a more detailed
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discussion of the regularity properties of convex envelopes. We are also indebted to
J. Kristensen for pointing us to the proof of (a) in [2].

Proposition 3.2. Let

Φ(ξ , η) = Φ0(ξ , η) + w(ξηN−1), ξ , η > 0,

satisfy (H1), . . . , (H4) and either (H5L) or (H5S). Then,

(a) Φ∗∗ is continuous;

(b) lim‖(ξ ,η)‖→+∞
Φ∗∗(ξ ,η)
‖(ξ ,η)‖ = +∞;

(c) (w∗∗)
∞

= w∞ and limξ→+∞
Φ∗∗(ξ ,ξ)

ξN
= w∞;

(d) the partial derivative m(ξ , η) = Φ∗∗
ξ (ξ , η) exists at every point (ξ , η) ∈ D

and is continuous on D;

(e) the function q(ξ , η) = −Φ∗(m(ξ , η) , η), (ξ , η) ∈ D, is continuous on D;

(f) the restrictions ξ ∈ Dη �→ m(ξ , η) and ξ ∈ Dη �→ q(ξ , η) are constant on
each connected component of Dη;

(g) if each connected component of D is simply connected, there exists a contin-
uous function M : D → R such that the partial derivative Mη exists in D and

(3.12) Mη(ξ , η) = m(ξ , η), (ξ , η) ∈ D.

Moreover, ξ ∈ Dη �→ M(ξ , η) is locally constant on Dη.
It follows from (b), (d), and (e), that m and q are locally constant with respect

to ξ on D; i.e., for every (ξ0 , η0) ∈ D we have

(3.13)

{
m(ξ , η) = m(ξ0 , η),

q(ξ , η) = q(ξ0 , η),
ξ ∈ Dη(ξ0), η ∈ Dξ0(η0).

Moreover, it follows also from (e) and (3.7) that, on the connected component of Dη

containing ξ0, the convex envelope Φ∗∗ can be written as an affine function of ξ, i.e.,

(3.14) Φ∗∗(ξ , η) = m(ξ0 , η)ξ + q(ξ0 , η), ξ ∈ Dη(ξ0), η ∈ Dξ0(η0).

Finally, as for (g), it is clear that, even if D has multiply connected components, a
continuous function M satisfying (3.12) can be locally defined anyway.

Proof of Proposition 3.2. Property (a) is essentially known (see [2] for instance),
and (b) follows from (H3). As for (c), the first equality is easy, and hence (H4) and

w∗∗(ξηN−1) ≤ Φ∗∗(ξ , η) ≤ C (1 + ‖(ξ , η)‖p) + w(ξηN−1), ξ , η > 0,

yield the conclusion in both cases of (H5L) and (H5S) because 1 < p < N . The
remaining properties (d), (e), and (f) are proved in Proposition 2.1 in [5], and, finally,
(g) is obvious.

After these preliminaries, we can turn to the existence result for the nonconvex
Bolza problem (P). To this aim, we consider the relaxed problem

(P∗∗) min {J∗∗(v) : v ∈ A(λ)} ,

where

J∗∗(v) = ωN

∫ 1

0

rN−1Φ∗∗
(
v′(r) ,

v(r)

r

)
dr + ωNw∞θ (v(0)) , v ∈ A(λ),
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and, for the sake of simplicity, we state the attainment result for (P) with the following
additional hypothesis:

(H6) each connected component of D is simply connected,

so that (g) of Proposition 3.2 holds. As we shall see at point (c) after Theorem 3.3
below, this additional hypothesis gives a simpler statement but does not affect the
scope of application of the existence result.

Theorem 3.3. Let

Φ(ξ , η) = Φ0(ξ , η) + w(ξηN−1), ξ , η > 0,

be such that (H1), . . . , (H5L) and (H6) hold and let θ : [0 ,+∞) → [0 ,+∞) be a con-
tinuous and increasing function such that θ(0) = 0. Set

(3.15) ψ(ξ , η) = −NM(ξ , η) + m(ξ , η)η + q(ξ , η), (ξ , η) ∈ D,

and assume also that the following properties of ψ hold at every point (ξ0 , η0) ∈ D:

there exists δ = δ(ξ0 , η0) > 0 such that [η0 − δ , η0 + δ] ⊂ Dξ0(η0) and such
that the section η ∈ Dξ0 → ψ(ξ0 , η) is monotone on both intervals [η0 − δ , η0]
and [η0 , η0 + δ];

(3.16)

if ξ0 = η0, then the section η ∈ Dξ0 → ψ(ξ0 , η) has no strict local minima at
η = η0.

(3.17)

Then, the minimum problem (P) admits a solution whenever (P∗∗) has a solution.
Before giving sufficient conditions for the existence of solutions to the relaxed

problem (P∗∗) (see Theorem 3.4 below), we want to make a few remarks about the
hypotheses and the proof of Theorem 3.3.

(a) If the detachment set D does not meet the line ξ = η, attainment for the
variational problem (P) holds with (3.16) only, which is a mild assumption on the
behavior of the convex envelope Φ∗∗. As we shall see in detail in section 5, this is the
case of Blatz–Ko materials where w = wBK .

(b) By (3.13), ψ is locally constant with respect to ξ; i.e., ψ(ξ1 , η) = ψ(ξ2 , η)
for every (ξi , η) ∈ [ξ0 − ρ , ξ0 + ρ]× [η0 − δ , η0 + δ] ⊂ D. Moreover, it follows from
(3.12) and (3.14) that in the simplest case when all sections Dξ of D are intervals,
(H6) obviously holds and ψ can be explicitly written as

ψ(ξ , η) = −N

∫
Φ∗∗

ξ (ξ , η) dη + Φ∗∗
ξ (ξ , η)(η − ξ) + Φ∗∗(ξ , η), (ξ , η) ∈ D.

(c) Theorem 3.3 remains valid even if D has multiply connected components.
Indeed, in that case, ψ can be defined only locally by (3.15), on every convex open
subset of D, for instance, and any two such locally defined functions ψ differ only by
a constant on the intersections of their domains. As the other hypotheses (3.16) and
(3.17) on ψ have local nature, the theorem remains true with the very same proof
even if (H6) fails.

(d) The proof of Theorem 3.3 follows a somewhat standard path for this kind of
variational problem. We start with a solution v to the relaxed problem (P∗∗) which
exists by assumption and we show that v can be modified so as to find a new solution
v to (P∗∗) satisfying v(0) = v(0) and the differential relation

(3.18)

(
v′(r) ,

v(r)

r

)
/∈ D for a.e. r ∈ (0 , 1).
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Thus, Φ∗∗(v′(r) , v(r)/r) = Φ(v′(r) , v(r)/r) for a.e. r ∈ (0 , 1), and the minimality
of v for J follows staightforwardly from the corresponding property for J∗∗ and the
convexity inequality Φ∗∗ ≤ Φ on R

2
+. As is to be expected, the most technically

difficult part of this program is the definition of new solutions v to (P∗∗) satisfying
the differential relation (3.18). For this part of the proof, we shall adapt the ideas
developed in [5].

We now proceed to give sufficient conditions for attainment for the relaxed prob-
lem (P∗∗). The proof of the following result is essentially the same as Marcellini’s
relaxation result; see Theorem 1 in [19].

Theorem 3.4. Let

Φ(ξ , η) = Φ0(ξ , η) + w(ξηN−1), ξ , η > 0,

be such that (H1), . . . , (H5L) hold and let θ : [0 ,+∞) → [0 ,+∞) be a continuous and
increasing function such that

(a) θ(0) = 0;

(b) Δ(t) = tN/N − θ(t), t ≥ 0, is increasing.

Then, the minimum problem (P∗∗) admits a solution.

Proof. First, set vλ(r) = λr for every r ∈ (0 , 1] and note that J∗∗ is finite at vλ.
Then, as Φ∗∗ is now convex with respect to ξ, attainment for (P∗∗) can be proved
by Tonelli’s direct method, and the proof follows immediately from the following two
claims.

Claim 1. For every minimizing sequence {vk}k ⊂ A(λ), there exists v ∈ A(λ) and
a subsequence (not relabeled) {vk}k such that vk ⇀ v weakly in A(λ); i.e.,

(3.19)

{
vk → v pointwise on (0 , 1];

v′k ⇀ v′ weakly in L1(ε , 1) for every 0 < ε < 1.

Claim 2. Let vk, v ∈ A(λ) be such that vk ⇀ v as in (3.19). Then,

(3.20) J∗∗(v) ≤ lim inf
k→+∞

J∗∗(vk).

Proof of Claim 1. Set

(3.21) J∗∗
0 (z) = ωN

∫ 1

0

rN−1Φ∗∗
(
z′(r) ,

z(r)

r

)
dr, z ∈ A(λ).

As {vk}k is a minimizing sequence for J∗∗ and θ ≥ 0, we have

(3.22) J∗∗
0 (vk) ≤ J∗∗(vk) ≤ C

for every k and for some C > 0. Thus, the growth assumption (b) of Proposition 3.2
implies that the sequence is sequentially weakly compact in AC([ε , 1]) for every 0 <
ε < 1, and the usual diagonal argument yields a subsequence {vh}h converging to a
function v ∈ ACloc((0 , 1]) in the sense of (3.19). The pointwise convergence implies
that v(1) = λ and that v is increasing on [0 , 1] because every vh enjoys the same
properties. Hence, v′ ≥ 0 a.e. on (0 , 1), and we set v(0) = limr→0+ v(r). To complete
the proof of the claim, we only have to check that v ∈ A(λ), i.e., that (2.14) holds.
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To see this, note that the first assertion of (H5L) implies that Φ∗∗ can be extended
to a lower semicontinuous function defined on R

2 by setting Φ∗∗(ξ , η) = +∞ whenever
either ξ ≤ 0 or η ≤ 0. Therefore, for every 0 < ε < 1, the integral

z ∈ ACloc((0 , 1]) �→ ωN

∫ 1

ε

rN−1Φ∗∗
(
z′(r) ,

z(r)

r

)
dr

is sequentially lower semicontinuous along sequences converging as in (3.19) by clas-
sical results (see [10] or [11]) whence∫ 1

ε

rN−1Φ∗∗
(
v′(r) ,

v(r)

r

)
dr ≤ lim inf

h

∫ 1

ε

rN−1Φ∗∗
(
v′h(r) ,

vh(r)

r

)
dr

follows for every 0 < ε < 1. As φ∗∗ ≥ 0, the right-hand side of the estimate above
is obviously bounded by lim infh J

∗∗
0 (vh) and hence, letting ε → 0+ on the left-hand

side, we conclude that

(3.23) J∗∗
0 (v) ≤ lim inf

h
J∗∗

0 (vh) ≤ C,

where C is as in (3.22). Thus, v′ > 0 a.e. on (0 , 1), and this gives also that v > 0 on
(0 , 1]. Thus, v ∈ A(λ) and the claim is proved.

Proof of Claim 2. First, set

J∗∗
V (z) = J∗∗

0 (z) + w∞ωN

N
[z(0)]

N
, z ∈ A(λ),

and recall that Theorem 1 in [19] shows that

(3.24) J∗∗
V (v) = inf

{
lim inf

k
J∗∗

0 (vk) : vk ∈ A(λ), vk(0) = 0 and vk ⇀ v

}

for every v ∈ A(λ) and that

(3.25) J∗∗
V (v) ≤ lim inf

k
J∗∗
V (vk);

i.e., J∗∗
V is lower semicontinuous along sequences vk ⇀ v as in (3.19). Moreover,

(3.26) J∗∗
0 (v) ≤ J∗∗(v) ≤ J∗∗

V (v), v ∈ A(λ),

because of (a) and (b). Then, without loss of generality, we can assume that both
sequences {J∗∗

0 (vk)}k and {vk(0)}k are convergent so that

lim inf
k

J∗∗(vk) = lim
k

J∗∗
0 (vk) + ωNw∞ lim

k
θ(vk(0)).

If there is a subsequence {vh}h such that vh(0) = 0 for every h, then J∗∗(vh) = J∗∗
0 (vh)

and (3.24) and (3.26) yield that

lim
k

J∗∗(vk) = lim
h

J∗∗
0 (vh) ≥ J∗∗

V (v) ≥ J∗∗(v).

Otherwise, we can assume that vk(0) > 0 for every k and either v(0) ≤ limk vk(0)
or v(0) > limk vk(0). In the former case, the conclusion follows from (3.23) and the
monotonicity of θ. Otherwise, we have

J∗∗(vk) = J∗∗
V (vk) − w∞ωNΔ(vk(0))
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for every k where Δ is defined in (b), and then (3.25) yields

lim inf
k

J∗∗(vk) = lim inf
k

J∗∗
V (vk) − w∞ωN lim

k
Δ(vk(0))

≥ J∗∗
V (v) − w∞ωN lim

k
Δ(vk(0))

= J∗∗(v) + w∞ωN

[
Δ(v(0)) − lim

k
Δ(vk(0))

]
.

As v(0) > limk vk(0) and Δ is increasing by assumption, the conclusion follows.
We conclude this section with the existence result for the nonconvex variational

problem (P0) corresponding to the case of functions w having superlinear growth at
infinity. As already explained, this is the situation of nearly incompressible elastomers
which can possibly exhibit phase transition. In this superlinear case, the existence
result of Theorem 3.3 turns into the following theorem.

Theorem 3.5. Let the hypotheses of Theorem 3.3 hold with (H5L) replaced by
(H5S). Then, the minimum problem (P0) admits a solution.

4. Attainment for the nonconvex, one-dimensional problems. In this
section, we prove Theorems 3.3 and 3.5. Our starting point is the following result
which is proved as Lemma 3.2 in [5]. It describes a procedure to define local, piecewise
linear approximations of absolutely continuous functions subject to the constraint of
using only two given values of the derivative.

Lemma 4.1. Let z ∈ AC([0 , 1]) be differentiable at some point 0 < r0 < 1 with
m = z(r0) and ξ0 = z′(r0) and let α, β ∈ R be such that

α < ξ0 < β.

Then, for every δ > 0, there exist two families of compact subintervals {H±
ε }ε of

(0 , 1) and two families of functions {z±ε }ε in AC([0 , 1]) such that, setting⎧⎪⎪⎨
⎪⎪⎩

I+
ε =

(
r0 −

ε

β − ξ0
, r0 +

ε

ξ0 − α

)
,

I−ε =

(
r0 −

ε

ξ0 − α
, r0 +

ε

β − ξ0

)
,

the following properties hold for every ε > 0 small enough:

I±ε/2 ⊂ H±
ε ⊂ I±2ε ⊂ (0 , 1);(4.1)

z±ε = z on [0 , 1] \ int
(
H±

ε

)
;(4.2)

z(r) < z+
ε (r) ≤ z(r) + δ for every r ∈ int

(
H+

ε

)
;(4.3+)

z(r) − δ ≤ z−ε (r) < z(r) for every r ∈ int
(
H−

ε

)
;(4.3−)

ε ≥ z+
ε (r) − [m + ξ0(r − r0)] ≥ ε/2 for every r ∈ I+

ε/2;(4.4+)

−ε/2 ≥ z−ε (r) − [m + ξ0(r − r0)] ≥ −ε for every r ∈ I−ε/2;(4.4−) (
z±ε (r)

)′ ∈ {α , β} for a.e. r ∈ H±
ε .(4.5)

We can then exploit the construction of the previous lemma to find comparison
functions that decrease the value of the integral∫

I

rN−1f

(
v(r)

r

)
dr
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when v ∈ A(λ) and the compact interval I ⊂ (0 , 1) have the property that v(r)/r
stays on a strict, local maximum point of f on a subset of I of positive measure.

Proposition 4.2. Let 0 < δ < m and let f : [m− δ ,m+ δ] → R be a continuous
function such that

(a) f has a strict, local maximum point at m;

(b) f is increasing on the interval [m− δ ,m] and decreasing on [m,m + δ].

Assume also that there exist a compact interval I ⊂ (0 , 1) and a function v ∈ A(λ)
such that

(c) |v(r)/r −m| ≤ δ/2 for every r ∈ I;

(d) |I ∩ {v(r)/r = m}| > 0.

Then, v′ = m a.e. on I ∩ {v(r)/r = m}, and there exists u ∈ A(λ) such that

{u �= v} ⊂ int(I);(4.6)

|u(r)/r −m| ≤ δ for every r ∈ I;(4.7)

|u′(r) −m| ≤ δ for a.e. r ∈ {u �= v};(4.8) ∫
I

rN−1f

(
u(r)

r

)
dr <

∫
I

rN−1f

(
v(r)

r

)
dr.(4.9)

Proof. The proof is based on the same idea of Step 3 of Theorem 2.2 in [5].
Set z(r) = v(r)/r for 0 < r ≤ 1 and E = {z = m}. Then, z ∈ ACloc((0 , 1]) and
z′ = 0 a.e. on I ∩ E for it is a level set of positive measure; i.e., v′ = m a.e. on
I ∩E. We choose a density point r0 ∈ int(I)∩E where v and z are both differentiable
and z′(r0) = 0 so that v′(r0) = v(r0)/r0 = m. Then, we apply Lemma 4.1 to the
function z choosing α < 0 < β such that max {−α , β} < δ/4 and with δ replaced
by δ/4 in (4.3−) and (4.3+). We thus find compact intervals {H±

ε }ε of (0 , 1) and
functions {z±ε }ε in ACloc((0 , 1]) such that (4.1), . . . , (4.5) hold. Moreover, choosing
0 < γ < min {−α , β}, we can assume that

(4.10) H±
ε ⊂ I±2ε ⊂ [r0 − 2ε/γ , r0 − 2ε/γ] ⊂ int(I)

holds for every ε small enough because of (4.1), z′(r0) = 0, and the choice of α and
β. Then, set

v±ε (r) = rz±ε (r), 0 < r ≤ 1.

We shall prove that either u = v+
ε or u = v−ε has the required properties for ε small

enough.
First, it is clear that v±ε ∈ AC([0 , 1]) and that {v±ε �= v} ⊂ int(H±

ε ) ⊂ int(I)
because of (4.2). Moreover, (c) and either (4.3+) or (4.3−) with δ/4 yield

(4.11)
∣∣v±ε (r)/r −m

∣∣ ≤ ∣∣v±ε (r)/r − v(r)/r
∣∣ + |v(r)/r −m| ≤ δ/4 + δ/2 = 3δ/4 < δ

which will be (4.7), and we claim that∣∣∣(v±ε )′ (r) −m
∣∣∣ ≤ δ for a.e. r ∈ H±

ε

which will be (4.8). In particular, this implies that (v±ε )
′
> 0 a.e. on H±

ε and hence
that v±ε ∈ A(λ). Indeed, we have (z±ε )

′ ∈ {α , β} a.e. on H±
ε by (4.5), and hence∣∣∣(v±ε )′ −m

∣∣∣ ≤ ∣∣∣(z±ε )′∣∣∣ +
∣∣v±ε (r)/r −m

∣∣ ≤ max {−α , β} + 3δ/4 < δ
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for a.e. r ∈ H±
ε by (4.11) and the choice of α and β. At last, we prove that either v+

ε

or v−ε is such that ∫
I

rN−1f

(
v±ε (r)

r

)
dr <

∫
I

rN−1f

(
v(r)

r

)
dr

eventually as ε → 0+ so that also (4.9) holds for u chosen accordingly.
To see this, note first that it is enough to compare the integrals over the intervals

H±
ε only because of (4.2). Then, we choose a sequence εj → 0+ and we set

ηj =
1

εj
sup {|v(r)/r −m| : |r − r0| ≤ 2εj/γ} .

We note that ηjεj ≤ δ/2 by (c) and that ηj → 0+ because z = v/r is differentiable
at r0 with z(r0) = m and z′(r0) = 0. Then, possibly passing to a subsequence still
denoted by εj , we can assume that the minimum between f(m−ηjεj) and f(m+ηjεj)
is actually achieved for every j by terms having always the same sign inside, say
f(m + ηjεj), so that

(4.12) 0 < f(m) − f(m + ηjεj) = max {f(m) − f(m± ηjεj)}

holds for every j. According to this assumption, we choose the + functions and, to
simplify the notation, we set vj = v+

εj and Hj = H+
εj . Finally, set I1

j = I+
εj/2

and
I2
j = I+

2εj
so that (4.1) turns into

(4.13) I1
j ⊂ Hj ⊂ I2

j

and set also

A1
j =

1

|Hj |

∫
Hj

rN−1

[
f(m) − f

(
vj(r)

r

)]
dr,

A2
j =

1

|Hj |

∫
Hj

rN−1

[
f(m) − f

(
v(r)

r

)]
dr.

We shall prove that A1
j −A2

j > 0 eventually. In fact, note first that (4.4+) reduces to

εj/2 ≤ vj(r)/r−m ≤ εj for every r ∈ I1
j . Hence, (4.13) and (a) and (b) of Proposition

4.2 yield that

A1
j ≥ 1

|I2
j |

∫
I1
j

rN−1

[
f(m) − f

(
vj(r)

r

)]
dr

≥ 1

|I2
j |

∫
I1
j

rN−1
[
f(m) − f

(
m +

εj
2

)]
dr ≥ cN−1

4

[
f(m) − f

(
m +

εj
2

)]

because |I2
j |/|I1

j | = 4 with c > 0 such that c < inf I1
j for every j. As for A2

j , we have

A2
j =

1

|Hj |

∫
Hj\E

rN−1

[
f(m) − f

(
v(r)

r

)]
dr

and |v(r)/r − m| ≤ ηjεj for every r ∈ Hj ⊂ I2
j by (4.13), the definition of ηj , and

(4.10). Hence,

0 ≤ f(m) − f(v(r)/r) ≤ max {f(m) − f(m± ηjεj)} = f(m) − f(m + ηjεj)
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for every r ∈ Hj because of (a) and (b) whence

A2
j ≤ 4

∣∣I2
j \ E

∣∣
|I2

j |
[f(m) − f(m + ηjεj)] .

Since ηj → 0+ and f is decreasing on the interval [m,m + δ], we conclude that
f(m) − f(m + εj/2) ≥ f(m) − f(m + ηjεj) > 0 eventually. Finally, as r0 is a density
point of E by assumption, the ratio |I2

j \ E|/|I2
j | goes to zero and the conclusion

follows.
The next step is the construction of a further family of comparison functions

which are obtained as solutions to partial differential relations. This construction is
an instance of the convex integration of partial differential relations developed in this
variational framework by Müller and Šverák in [22]. Again, apart from minor and
obvious changes, this construction is similar to the one described in Proposition 3.3
in [5], and we refer to this paper for the proof.

Proposition 4.3. Let d± : [η0 − δ , η0 + δ] → R be two bounded, upper and lower
semicontinuous functions, respectively, and let u ∈ A(λ) be such that

(a) u is differentiable at 0 < r0 < 1;

(b) d−(η) < u′(r0) < d+(η) for every η ∈ [η0 − δ , η0 + δ], where η0 = u(r0)/r0.

Then, there exist ε0 = ε0(r0 , δ) > 0, two families of compact subintervals K± =
{K±

ε }ε of (0 , 1) such that

each set K±
ε is a neighborhood of r0 and |K±

ε | → 0 as ε → 0+,(4.14)

and two families of functions U± = {u±
ε }ε in A(λ) such that the following properties

hold for every 0 < ε < ε0 :

u±
ε = u on (0 , 1] \ int

(
K±

ε

)
;(4.15)

u(r)/r < u+
ε (r)/r ≤ u(r)/r + ε for every r ∈ int

(
K+

ε

)
;(4.16+)

u(r)/r − ε ≤ u−
ε (r)/r < u(r)/r for every r ∈ int

(
K−

ε

)
;(4.16−)

|u±
ε (r)/r − η0| ≤ δ for every r ∈ K±

ε ;(4.17) (
u±
ε

)′
(r) ∈

{
d−

(
u±
ε (r)

r

)
, d+

(
u±
ε (r)

r

)}
for a.e. r ∈ K±

ε .(4.18)

After these technical preliminaries, we can turn to the proof of Theorem 3.3.
Proof of Theorem 3.3. Let v ∈ A(λ) be a solution to the relaxed Bolza problem

(P∗∗) which exists by assumption and set

(4.19) E(v) =

{
r ∈ (0 , 1) : v is differentiable at r and

(
v′(r) ,

v(r)

r

)
∈ D

}
,

where D is the detachment set defined by (3.9).
We are going to prove the theorem by showing that, among all solutions v ∈ A(λ)

to (P∗∗), there is one such that |E(v)| = 0 so that

Φ∗∗
(
v′(r) ,

v(r)

r

)
= Φ

(
v′(r) ,

v(r)

r

)
for a.e. r ∈ (0 , 1),

which implies immediately that v is a solution to (P) as well.
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To this aim, note first that by Proposition 3.2, the function ξ ∈ Dη �→ ψ(ξ , η)
defined by (3.15) is constant on each connected component of Dη and hence (3.16)
implies the existence of a countable family of subsets {mi}×Li such that every open
interval Li is a connected component of Dmi and, for every ξ ∈ Li, mi is a strict, local
extremum point of the mapping η �→ ψ(ξ , η). Moreover, setting M = ∪i ({mi}×Li),
the set D \M is open, and we emphasize that ψ is locally constant with respect to ξ
and locally monotone with respect to η on the set D \M.

Then, when v is a solution to (P∗∗), we write

E(v) = E0(v) ∪
[⋃

i

Ei(v)

]
,

where

(4.20)

E0(v) =

{
r ∈ E(v) :

(
v′(r) ,

v(r)

r

)
∈ D \M

}
,

Ei(v) =

{
r ∈ E(v) :

v(r)

r
= mi

}
.

We shall prove the theorem by proving the following two claims.
Claim 1. There exists a solution v ∈ A(λ) to (P∗∗) such that |E0(v)| = 0.
Claim 2. For the solution v of Claim 1, we have |Ei(v)| = 0 for every i.
Proof of Claim 1. Let u ∈ A(λ) be a solution to (P∗∗) and assume that the

corresponding set E0(u) defined by (4.20) has positive measure. Choose r0 ∈ E0(u)
and set η0 = u(r0)/r0 and ξ0 = u′(r0) so that (ξ0 , η0) ∈ D \M. Then, we find δ > 0
and two functions d± satisfying (c), (d), (e), and (f) of Proposition 3.1 and we set

D′ =
{
(ξ , η) : |η − η0| < δ and d−(η) < ξ < d+(η)

}
so that, recalling (d), (e), and (f) of Proposition 3.2, we can write the convex envelope
Φ∗∗ (with respect to ξ) of Φ on the set D′ as in (3.14); i.e.,

(4.21) Φ∗∗(ξ , η) = m(η)ξ + q(η), (ξ , η) ∈ D′,

where the continuous functions m, q : [η0 − δ , η0 + δ] → R are defined by m(η) =
m(ξ , η) and q(η) = q(ξ , η) for every (ξ , η) ∈ D′ as in (3.13). Similarly, relying again
on (d), (e), (f), and (g) of the same proposition, we can write

(4.22) ψ(η) = ψ(ξ , η), (ξ , η) ∈ D′,

and, recalling that (ξ0 , η0) ∈ D\M and possibly choosing a smaller value of δ, we can
assume also that (3.16) holds for δ; i.e., ψ is monotone on the interval [η0 − δ , η0 + δ].
Then, going back to the properties of Φ∗∗, we note also that

(4.23) Φ∗∗(ξ , η) ≥ m(η)ξ + q(η), η ∈ [η0 − δ , η0 + δ], ξ ∈ R,

holds because of (3.6) and that the equalities

(4.24) Φ∗∗(d±(η) , η) = Φ(d±(η) , η), η ∈ [η0 − δ , η0 + δ],

follow from (f) of Proposition 3.1.
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Then, we apply Proposition 4.3 and we let K±
r0 = {K±

r0,ε}ε and V±
r0 = {u±

r0,ε}ε be
the corresponding intervals and functions. We assume in addition that ε = ε0(r0) is
small enough so as to have

(4.25)

{
|u(r)/r − η0| ≤ δ,

|u±
r0,ε(r)/r − η0| ≤ δ,

r ∈ K±
r0,ε, 0 < ε ≤ ε0.

Now, we wish to compare J∗∗(u±
r0,ε) and J∗∗(u). Since u(0) = u±

r0,ε(0), we have

J∗∗(u±
r0,ε) − J∗∗(u)

= ωN

∫
K±

r0,ε

rN−1

[
Φ∗∗

(
(u±

r0,ε)
′(r) ,

u±
r0,ε(r)

r

)
− Φ∗∗

(
u′(r) ,

u(r)

r

)]
dr,

and, because of (4.21) and (4.23), the right-hand side is less than or equal to

ωN

∫
K±

r0,ε

rN−1

{[
m

(
u±
r0,ε(r)

r

)
(u±

r0,ε)
′(r) −m

(
u(r)

r

)
u′(r)

]

+

[
q

(
u±
r0,ε(r)

r

)
− q

(
u(r)

r

)]}
dr.

To evaluate this, let z ∈ AC([α , β]) be any function such that |z(r)/r − η0| ≤ δ for
0 < α ≤ r ≤ β. Then, recalling the definition of M in (g) of Proposition 3.2 and (H6)
and integrating by parts, we obtain that

∫ β

α

rN−1m

(
z(r)

r

)
z′(r) dr =

∫ β

α

rN

{[
M

(
z(r)

r

)]′
+ m

(
z(r)

r

)
z(r)

r2

}
dr

= rNM

(
z(r)

r

)∣∣∣∣
β

α

+

∫ β

α

rN−1

[
−NM

(
z(r)

r

)
+ m

(
z(r)

r

)
z(r)

r

]
dr.

We now exploit this equality with both z = u±
r0,ε and z = u. Since (4.25) holds and

u±
r0,ε and u coincide at the endpoints of the interval K±

r0,ε, we finally get

(4.26) J∗∗(u±
r0,ε) − J∗∗(u) ≤ ωN

∫
K±

r0,ε

rN−1

[
ψ

(
u±
r0,ε(r)

r

)
− ψ

(
u(r)

r

)]
dr.

Thus, recalling again (4.25), the fact that ψ is monotone on the interval [η0−δ , η0+δ]
by (3.16), and the assumption that (ξ0 , η0) ∈ D \ M, we conclude that, choosing
σ = σ(r0) to be either + or − according to the monotonicity of ψ on the 2δ long
interval centered at η0, we can make the right-hand side of the previous estimate ≤ 0,
thus showing that all modified functions uσ

r0,ε are solutions to (P∗∗) satisfying

Φ∗∗
((

uσ
r0,ε

)′
(r) ,

uσ
r0,ε(r)

r

)
= Φ

((
uσ
r0,ε

)′
(r) ,

uσ
r0,ε(r)

r

)
for a.e. r ∈ K±

r0,ε

because of (4.18) and (4.24).
At last, a new solution v ∈ A(λ) to (P∗∗) satisfying |E0(v)| = 0 can be easily

defined by exploiting a standard covering argument. In fact, Vitali’s covering theorem
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applies because of (4.14) and yields countably many points rj ∈ E0(u), positive num-
bers εj , and symbols σj ∈ {+ ,−} such that the corresponding sets Kj are pairwise
disjoint and cover E0(u) up to a null set, i.e.,

|E0(u) \ (∪jKj) | = 0,

while the corresponding functions uj are solutions to (P∗∗) satisfying

Φ∗∗
(
u′
j(r) ,

uj(r)

r

)
= Φ

(
u′
j(r) ,

uj(r)

r

)
for a.e. r ∈ Kj .

It is then easy to check that the series v = u +
∑

j(uj − u) (there is only one non-
vanishing summand at every point r) defines a function in A(λ) as required.

Proof of Claim 2. Let v be the solution to (P∗∗) of Claim 1, assume that |Ei(v)| >
0 for some i and, to simplify the notation, write m = mi and E = Ei(v). As E is a
level set of v(r)/r of positive measure, v′(r) = v(r)/r = m for a.e. r ∈ E, and hence we
can choose δ > 0 small enough so that the square Q = [m− δ ,m+ δ]×[m− δ ,m+ δ]
is contained in D and then, arguing again as in Claim 1, we can assume that the
functions m(η) = m(ξ , η), q(η) = q(ξ , η), and ψ(η) = ψ(ξ , η) are well defined and
continuous for every (ξ , η) ∈ Q and that (4.21) and (4.23) hold for every (η , ξ) ∈ Q
and (η , ξ) ∈ [m−δ ,m+δ]×R, respectively. Moreover, the very definition of E implies
that m is a strict, local maximum point of ψ by (3.17), and, finally, we can assume
that δ is small enough to have ψ increasing on the interval [m− δ ,m] and decreasing
on the interval [m,m + δ] by (3.16). Then, we choose a compact interval I ⊂ (0 , 1)
such that (c) and (d) of Proposition 4.2 hold and we exploit this result with f = ψ.
We thus find a function u ∈ A(λ) satisfying (4.6), . . . , (4.9). Relying on (4.6), (4.7),
and (4.8) which says that the derivative of the modified function u′ remains in the
interval where Φ∗∗(ξ , η) is affine with respect to ξ, we can repeat the argument of
Claim 1 leading to (4.26) to find that

J∗∗(u) − J∗∗(v) ≤ ωN

∫
I

rN−1

[
ψ

(
u(r)

r

)
− ψ

(
v(r)

r

)]
dr.

This gives a contradiction to the minimality of v as the right-hand side is negative by
(4.9). Thus, |E| = 0, and this completes the proof.

Finally, the very same proof of Theorem 3.3 provides attainment in the superlinear
case as well.

Proof of Theorem 3.5. The convexified integral J∗∗
0 defined by (3.21) has a mini-

mizer over A(λ), say u, because of Claim 1 of Theorem 3.4 and (3.23). Then, u can be
modified to find a solution v to (P0) by exploiting the very same arguments of Theo-
rem 3.3. In fact, the proofs of Claims 1 and 2 in that theorem are of local nature so
that the behavior of w at infinity is irrelevant and, moreover, the proofs involve only
the absolutely continuous part of J∗∗ because the modified functions out of which v
is constructed in Claim 1 and the comparison functions with which v is compared in
Claim 2 share the same value at r = 0 with the original u so that comparing J∗∗

0 is
the same as comparing J∗∗.

5. The special case of Blatz–Ko materials. In this section we prove the
existence of optimal radial solutions for Blatz–Ko materials (Theorem 2.1) by showing
that the related Lagrangian satisfies all the hypotheses of Theorem 3.3.

Proof of Theorem 2.1. We want to check that the function

Φ(ξ , η) = ξ2 + 2η2 +
2α

ξη2
+ (1 − α)

(
2ξη2 +

1

ξ2η4

)
, ξ, η > 0,
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satisfies all the hypotheses of Theorem 3.3. Indeed, the hypotheses (H1), . . . , (H5L),
(H6), and (3.16) obviously hold and we shall prove that ξ < η for every (ξ , η) ∈ D so
that (3.17) is actually empty. In order to draw the graph of the function Φ, we set
θ = ξη2 and consider the new function Ψ defined by

Ψ(θ , η) = Φ

(
θ

η2
, η

)
=

θ2

η4
+ 2η2 +

2α

θ
+ (1 − α)

(
2θ +

1

θ2

)
, θ, η > 0.

We want to estimate the set Iη = {θ : Ψ∗∗(θ , η) < Ψ(θ , η)} for every η and prove
that θ < η3 for every θ ∈ Iη.

To this aim, consider first the second derivative

Ψ′′
θθ(θ , η) =

2

η4
+

4α

θ3
+ (1 − α)

6

θ4
, θ, η > 0.

Then, Ψ′′
θθ(θ , η) → +∞ as θ → 0+ and Ψ′′

θθ(θ , η) → 2/η4 as θ → +∞, and, moreover,
setting

θ0 =
α− 1

α
> 0,

we find that the minimum of θ �→ Ψ′′
θθ(θ , η) is achieved at 2θ0 and is given by 2/η4 +

(α/8)θ3
0 for every η > 0. Thus, for η > η∗ = 2 4

√
θ3
0/(−α), the set Iη is nonempty and

the set where θ �→ Ψ′′
θθ(θ , η) is ≤ 0 is an interval, say [θ1(η) , θ2(η)]. Since, for every

η > η∗, Ψ′′
θθ(2θ0 , η) < 0 and Ψ′′

θθ(3θ0/2 , η) = 2/η4 > 0, we conclude that

(5.1)
3

2
θ0 < θ1(η) < 2θ0 < θ2(η).

Therefore, the first derivative Ψ′
θ(· , η) has a local maximum at θ = θ1(η) and a local

minimum at θ = θ2(η), and goes to −∞ as θ → 0+ and to +∞ as θ → +∞. Moreover,
it is easy to check that Ψ′

θ(θ2(η) , η) > 0 for η > η∗, so that Ψ′
θ(θ , η) vanishes at one

point only, say θ = θ3(η) < θ1(η).
Finally, the function θ �→ Ψ(θ, η) is decreasing on the interval (0 , θ3(η)], increasing

on [θ3(η) ,+∞), and convex on (0 , θ1(η)] and on [θ2(η) ,+∞). Thus, the set Iη is a
bounded, open interval containing θ1(η) and θ2(η), say Iη = (θ1(η) , θ2(η)).

In order to estimate θ2(η), we note that the tangent lines to the graph of θ �→
Ψ(θ , η) at the points θ1 and θ2 are the same so that the following two equalities hold:

(a) Ψ′
θ(θ1 , η) = Ψ′

θ(θ2 , η);

(b) Ψ(θ1 , η) − θ1Ψ
′
θ(θ1 , η) = Ψ(θ2 , η) − θ2Ψ

′
θ(θ2 , η).

It follows from (b) that, for every η > η∗, the interval Iη is contained in the com-
plement of the set {θ : q(θ̄ , η) �= q(θ , η) for every θ > 0 and θ �= θ̄}, where q is the
function q(θ , η) = Ψ(θ , η)− θΨ′

θ(θ , η). It is then easy to check that, for η > η∗, q has
the following properties:

q(θ , η) → +∞ as θ → 0+ and q(θ , η) → −∞ as θ → +∞;(5.2)

θ �→ q(θ , η) has a local minimum at θ = θ1(η) and a local maximum at
θ = θ2(η);

(5.3)

θ �→ q(θ , η) is decreasing on the intervals (0 , θ1(η)] and [θ2(η) ,+∞) and in-
creasing on the interval [θ1(η) , θ2(η)].

(5.4)
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For η > η∗, the interval Iη is a subset of [θ̃2(η) , θ̃1(η)] where the θ̃i(η)’s are defined
by

θ̃2 < θ2 and q(θ̃2 , η) = q(θ2 , η),

θ̃1 > θ1 and q(θ̃1 , η) = q(θ1 , η).

Therefore, if we show that θ̃1(η) < η3 for every η > η∗, we conclude that θ < η3 for
every θ ∈ Iη.

To see this, note that (5.1), (5.3), and (5.4) yield

q(θ̃1 , η) = q(θ1 , η) = min
1≤s≤2

q(sθ0 , η) ≥ − 4

η4

(1 − α)2

α2
+ 2η2 − 13

4

α2

1 − α
.

Moreover,

q
(
η2θ0 , η

)
= − (1 − α)2

α2
+ 2η2 +

α2

1 − α

(
− 4

η2
+

3

η4

)
.

Thus, for η > η∗, we have

q(θ̃1 , η) − q
(
η2θ0 , η

)
> −7

2

α2

1 − α
− 3

16

α6

(1 − α)4
+

(1 − α)2

α2
> 0.

Since θ �→ q(θ , η) is decreasing on [θ2 ,+∞) and (η∗)2θ0 < (η∗)3, we conclude that
θ̃1(η) < η2θ0 < η3 for every η > η∗. Thus, θ < η3 for every θ ∈ Iη for η > η∗, and
this concludes the proof.
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INCOMPRESSIBLE IONIZED NON-NEWTONIAN
FLUID MIXTURES∗

TOMÁŠ ROUBÍČEK†

Abstract. The model combining Navier–Stokes equations in a non-Newtonian p-power-law
modification for barycentric velocity together with the Nernst–Planck equation for concentrations
of particular mutually reacting constituents, the heat equation, and the Poisson equation for a self-
induced quasi-static electric field is formulated, existence of its (very) weak solutions is proved for
p > 11/5, and its thermodynamics is discussed.
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Nernst–Planck equation, Poisson equation, heat equation
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1. Introduction. Chemically reacting mixtures represent a framework for mod-
eling various complicated processes in biology and chemistry. The research in this
area, resulting in a model [36], was initiated by Nečas who, for many years before
he passed away, spoke about “living fluids,” although he never elaborated on any
concept of such fluids. The model proposed in [36] uses an incompressible Newto-
nian framework with the barycentric impulse balance. This “barycentric” approach is
called the Eckart–Prigogine [13, 29] concept, phenomenologically simplifying the de-
scription by considering only one temperature and one velocity of the whole mixture
and being awarded in the context of nonequilibrium thermodynamics of dissipative
structures the Nobel prize in chemistry in 1977; for the compressible case, see also
[3, 5, 12, 17]. The incompressibility refers here to each particular constituent and,
through a volume-additivity hypothesis (i.e., Amagat’s law) as in, e.g., [22, 31, 40],
also to the overall mixture. To cover biological applications on a cellular or subcel-
lular level where the intensity of the electric field on cell membranes is very high,
the self-induced electrostatic field must be considered; recall that the intracellular
electric potential usually ranges between 60 and 100 mV, while the thickness of cell
membranes is on the order of 10–100 nm, which results in an intensity of the electric
field on the order of 1 MV/m.

In comparison with [33, 34, 36] or [35, sect. 12.6], we consider here a more general
model exploiting the non-Newtonian concept with a (possibly temperature-dependent)
shear-thickening p-power-law stress tensor and admitting diffusive fluxes with differ-
ent mobilities, and we prove existence of its solution in a fully coupled and fully
nonlinear case. The key mathematical tool is a nonvariational technique for the heat
equation based on integrability of temperature gradient observed in [6, 7, 8] combined
with a regularization of the Navier–Stokes equation and a sophisticated limit passage.
Finally, in section 4, thermodynamics of a specific model is discussed.
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2. The model: A general framework. We consider a three-dimensional in-
compressible flow of a mixture of L mutually reacting chemical ionic constituents, the
�th constitutent having a specific charge z�, � = 1, . . . , L. Our model consists in a
system of 4+L+1+1 differential equations combining the non-Newtonian modifica-
tion of the Navier–Stokes equation (balancing the barycentric momentum �v) with
the incompressibility constraint div(v) = 0, the Nernst–Planck equation modified for
moving media (balancing the mass of particular constituents), the heat equation (bal-
ancing the heat part cvθ of the internal energy u; cf. (4.17) below), and the quasi-static
Poisson equation for the electrostatic field (balancing the electric induction ε∇φ):

�
∂v

∂t
− div

(
τ(Dv, c, θ) − �v⊗v

)
+ ∇π = −q∇φ, q = c·z,(2.1a)

div(v) = 0,(2.1b)

∂c

∂t
− div

(
D(c, θ)∇c + m(c, θ) ⊗∇φ− c⊗v

)
= r(c, θ) ,(2.1c)

cv
∂θ

∂t
− div

(
κ∇θ − cvv θ

)
= τ(Dv, c, θ):Dv(2.1d)

+
(
D(c, θ)∇c + m(c, θ) ⊗∇φ

)
: (z ⊗∇φ) + h(c, θ),

− div(ε∇φ) = q.(2.1e)

The variables v, π, c, θ, and φ have the following meanings:
v = (v1, v2, v3): barycenter velocity,
π: pressure,
c = (c1, . . . , cL): the vector of concentrations of particular constituents,
φ: electrostatic potential,
θ: temperature,

where the concentration vector c is to satisfy the constraint

∀� = 1, . . . , L : c�(t, x) ≥ 0 and

L∑
�−1

c�(t, x) = 1 for a.a. (t, x).(2.2)

We will write (2.2) briefly as c(t, x)∈G+
1 for a.a. (t, x), where we denote

G+
1 := {c∈R

L; c · 1 = 1, ∀� = 1, . . . , L: c� ≥ 0}(2.3)

with 1 ∈ R
L denoting the “unit” vector (1, . . . , 1); usually G+

1 is called the Gibbs
simplex. The meaning of the scalar or tensorial products (denoted by “·” and “⊗,”
respectively) is standard, while “:” means [τij ] : [eij ] =

∑n
i=1

∑n
j=1 τijeij ; i.e., (2.1a),

(2.1b) means

�
∂vi
∂t

−
3∑

j=1

∂

∂xj

(
τij(Dv, c, θ)−�vivj

)
+

∂π

∂xi
= −q

∂φ

∂xi
, q =

L∑
�=1

c�z�,(2.4a)

3∑
j=1

∂vj
∂xj

= 0,(2.4b)

while (2.1c) means

∂c�
∂t

−
3∑

i=1

∂

∂xi

(
L∑

k=1

Dk�(c, θ)
∂ck
∂xi

+ m�(c, θ)
∂φ

∂xi
− vic�

)
= r�(c, θ)(2.5)
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for any � = 1, . . . , L, and (2.1d) means

cv
∂θ

∂t
−

3∑
i=1

∂

∂xi

(
κ
∂θ

∂xi
− cvvi θ

)
=

3∑
i=1

3∑
j=1

τij(Dv, c, θ)

(
1

2

∂vj
∂xi

+
1

2

∂vi
∂xj

)
(2.6)

+
L∑

�=1

3∑
i=1

(
L∑

k=1

Dk�(c, θ)
∂ck
∂xi

+ m�(c, θ)
∂φ

∂xi

)
z�

∂φ

∂xi
+ h(c, θ).

We use the following notation:
τ = [τij ]

3
i,j=1: the stress tensor, depending on (Dv, c, θ),

Dv = 1
2 (∇v)�+ 1

2∇v: the symmetrized velocity gradient,
� > 0: mass density (assumed to be equal to 1 in what follows),
z = (z1, . . . , zL): the vector of specific charges of particular constituents,
q = c · z: the total charge, depending on time t and space x,
ε > 0: permitivity,
r = (r1, . . . , rL): the vector of chemical production rates, depending on (c, θ),
h: the heat production rate due to all chemical reactions, depending on (c, θ),
D = [Dkl]

L
k,l=1: the matrix of diffusion coefficients, depending on (c, θ),

m = (m1, . . . ,mL): the vector of effective mobilities, depending on (c, θ),
κ > 0: thermal conductivity, and
cv>0: heat capacity.

The system (2.1) is to be completed by the initial conditions

v(0, ·) = v0 , c(0, ·) = c0 , θ(0, ·) = θ0(2.7)

on a bounded C2-domain under consideration, and by the boundary conditions corre-
sponding, e.g., to a closed container, which, in some simplified version, leads, respec-
tively, to

v = 0,(2.8a) (
D(c, θ)∇c + m(c, θ) ⊗∇φ

)
ν = 0,(2.8b)

ε
∂φ

∂ν
= α(φΣ−φ),(2.8c)

κ
∂θ

∂ν
= 0(2.8d)

on (0, T ) × ∂Ω, where ν is the unit outward normal to the boundary ∂Ω, φΣ is
a prescribed external electric potential, and α > 0 is a “lumped capacity” of the
boundary ∂Ω.

Remark 2.1 (right-hand sides of (2.1)). The right-hand side of (2.1a) represents
the Lorenz force q∇φ due to Coulomb electrostatic interactions. The particular terms
on the right-hand side of (2.1d) represent, respectively, the production rate of the
dissipative heat due to friction in the fluid τ(Dv, c, θ):Dv, the power (D(c, θ)∇c) : (z⊗
∇φ) of the electric current arising by the diffusion flux z�(D(c, θ)∇c) in the electric
field gradient ∇φ (so-called Peltier effect), the power of the Joule heat produced by
the electric current (m ⊗ ∇φ) : (z ⊗ ∇φ) = (z·m)|∇φ|2, and, as already stated, the
heat production rate due to all chemical reactions h; see also Remark 4.6 below.

Remark 2.2 (Fourier’s, Fick’s, Ohm’s laws). The model (2.1) involves various
phenomenological laws. Certainly, (2.1d) relies on the conventional Fourier law in
linear isotropic homogenous medium; i.e., the heat flux −κ∇θ is proportional to the
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negative temperature gradient. Further, (2.1c) involves a certain generalization of
Fick’s law stating that diffusive fluxes are proportional to negative concentration
gradients; here, however, cross-effects make it more complicated, and a nonconstant
diffusivity matrix D occurs instead of a single constant; see also (3.8) below. In view
of Remark 2.1, the effective electric conductivity is σ := z·m, and we can identify
Ohm’s law that the electric current (z·m)∇φ is proportional to the gradient ∇φ of
the electric field just via σ. Naturally, σ now depends through m = m(c, θ) on the ion
concentrations c.

Remark 2.3 (simplifying assumptions). It should be emphasized that many sim-
plifications are adopted in the presented model. In particular, we have considered
small electrical currents (i.e., the magnetic field is neglected), we have adopted the
mentioned volume-additivity and incompressibility assumption, we have further as-
sumed mass densities equal for all constituents and diffusion fluxes independent of the
temperature gradient (i.e., Soret’s effect is neglected), and then, in agreement with
Onsager’s reciprocity principle, we also have considered the heat flux independent of
the concentration gradients (i.e., Dufour’s effect is neglected). Detailed identification
of simplifying assumptions related to (2.1) in comparison with the rational Truesdell
concept [24, 30, 38, 39, 41, 42] was made by Samohýl [40].

3. Analysis of the model: Existence of a solution. We will prove the
existence of a very weak solution, defined in section 3.1, in several steps. First,
in section 3.2 we treat an auxiliary, so-called multipolar regularization of the Navier–
Stokes equation and prove existence of its solution by Schauder’s fixed point technique
in a way similar to how it was done in [33] for the spatial regular case (except that
[33] had thus assumed composition/temperature-independent potential stress-tensor
τ). Then, in section 3.3 we pass this regularization to zero. This two-step approach
allows us to avoid any regularity results for p-power-law non-Newtonian fluids (and
thus any qualifications of data related to them) and to admit a temperature-dependent
stress tensor and rather low exponent p > 11/5; this bound even improves some
particular known results; cf. Remark 3.4. The advantage of the smoothing is that it
avoids difficult (or even unrealistic) requirements of uniqueness or convexity of the
set of solutions of decoupled systems needed for Schauder’s or Kakutani’s fixed point
theorems. It is also particularly important for the multicomponent fluids to have ∂

∂tc in
duality with the negative part of c to get c ≥ 0; cf. (3.57). As a side effect, it simplifies

some other arguments; e.g., it ensures the sum-equals-one property
∑L

�=1 c� = 1 in
(3.47) for smooth velocity field v, and the unique response (see, e.g., (3.50)) for the
fixed-point mapping that is used in Schauder’s fixed point theorem.

3.1. Definition of a very weak solution and data qualification. We con-
sider an evolution of (2.1) on a fixed time interval (0, T ). We use a standard no-
tation C1(·; Rn) of continuously differentiable R

n-valued functions, and Lp(·; Rn) for
Lebesgue Lp-spaces as well as W k,p(·; Rn) for the Sobolev spaces on the domain
indicated. Let us abbreviate I := (0, T ), Q := I × Ω, Σ := I × Γ, Γ := ∂Ω,

and let W k,p
0,DIV

(Ω; R3) denote the space of functions from the zero-trace Sobolev

space W k,p
0 (Ω; R3) but with zero divergence (in the distributional sense), and later

we will also use L2
0,DIV(Ω; R3) to denote the closure of W 1,p

0,DIV
(Ω; R3) in L2(Ω; R3).

Usage of such divergence-free test functions has the usual effect that the pressure
π disappears from the (very) weak formulation. If R

n is replaced by a Banach
space X, then Lp(I;X) refers to the Lp-Bochner space of Banach-space-valued func-
tions, while W k,p(I;X) is a Sobolev–Bochner space. We also denote standardly
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W−k,2(Ω) = W k,2
0 (Ω)∗.

The adjective “very weak” is used to emphasize that, contrary to conventional
weak solutions, the very weak solutions have less regularity than possible test func-
tions, which particularly concerns the temperature.

Definition 3.1 (very weak solution). We will call

v ∈ Lp(I;W 1,p
0,DIV

(Ω; R3)) ∩ W 1,p/(p−1)(I;W 1,p
0,DIV

(Ω; R3)∗),(3.1a)

c ∈ L∞(I;L2(Ω; RL)) ∩ L2(I;W 1,2(Ω; RL)) ∩ W 1,r/(r−1)(I;W 1,r(Ω; RL)∗),(3.1b)

θ ∈ L∞(I;L1(Ω)) ∩ L5/4−ξ(I;W 1,5/4−ξ(Ω)) ∩ W 1,1(I;W−3,2(Ω)),(3.1c)

φ ∈ L∞(I;W 1,2(Ω))(3.1d)

with any ξ > 0 and r = max(2, 10p/(7p−6)) a very weak solution to the system
(2.1)–(2.2) with the initial and boundary conditions (2.7) and (2.8) if

∫
Q

τ(Dv, c, θ):Dw − (v⊗v) :∇w + (z·c)(∇φ·w) − v
∂w

∂t
dxdt =

∫
Ω

v0(x)·w(0, x) dx(3.2)

for any w ∈ C1(Q; R3) with divw = 0, w|Σ = 0, and w(T, ·) = 0,

∫
Q

(
D(c, θ)∇c + m(c, θ)⊗∇φ− c⊗v

)
:∇w + r(c, θ)w − c·∂w

∂t
dxdt(3.3)

=

∫
Ω

c0(x)·w(0, x) dx

with the test-function w ∈ C1(Q; RL) arbitrary with w(T, ·) = 0,

∫
Q

ε∇φ · ∇w − qw dxdt +

∫
Σ

φαw dS dt =

∫
Σ

αφΣw dS dt(3.4)

for any w ∈ C1(Q), and

∫
Q

(
κ∇θ − cvvθ

)
·∇w −

(
τ(Dv, c, θ):Dv +

(
D(c, θ)∇c(3.5)

+ m(c, θ) ⊗∇φ
)

: (z ⊗∇φ) + h
)
w − cvθ

∂w

∂t
dxdt = cv

∫
Ω

θ0(x)w(0, x) dx

for any w ∈ C1(Q) with w(T, ·) = 0 on Ω. Finally, (2.2) is to be satisfied, too.

We naturally assume the mass conservation in all chemical reactions, and the
volume-additivity constraint holding for the initial conditions c0, i.e.,

r(c, θ) · 1 = 0,(3.6a)

c0 · 1 = 1, [c0]� ≥ 0 ∀� = 1, . . . , L.(3.6b)

Other important qualifications concern the diffusion matrix D and the effective-
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mobility vector m:

D : G+
1 × R → R

L×L, m : G+
1 × R → R

L continuous and bounded,(3.7a)

∃η0 > 0 ∀c∈G+
1 , θ∈R, d∈R

L : d�D(c, θ)d :=

L∑
�=1

L∑
k=1

Dk�(c, θ)dkd� ≥ η0|d|2,(3.7b)

∃β ≥ 0 ∀k = 1, . . . , L :

L∑
�=1

Dk�(c, θ) = β,(3.7c)

L∑
�=1

m�(c, θ) = 0,(3.7d)

where G1
+ is from (2.3). Note that, if β = 0, then (3.7c), (3.7d) means that the sum∑L

�=1 j� of the diffusive fluxes

j� :=

L∑
k=1

Dk�(c, θ)∇ck + m�(c, θ)∇φ(3.8)

is identically zero, which is to hold the equality constraint in (2.2). Essentially the
same effect is made by (3.7c), (3.7d) also if β > 0; cf. the arguments around (3.47).

In fact, (3.7b) suffices to hold only for d with
∑L

�=1 d� = 0 if later (3.47) is used
simultaneously when testing (3.18d) by c in the proof of (3.22e), e.g., in an additional
auxiliary Galerkin approximation just for (3.18d) itself. This makes (3.7c) indeed
consistent with (3.7b) even for β = 0.

As for the stress tensor τ : R
3×3
sym ×G+

1 × R → R
3×3
sym, where R

3×3
sym denotes the set

of symmetric 3×3-matrices, we assume that, for some η1 > 0, C ∈ R, it satisfies

τ : R
3×3
sym ×G+

1 × R → R
3×3
sym continuously differentiable,(3.9a)

∀D1, D2∈R
3×3
sym, c∈G+

1 , θ∈R :
(
τ(D1, c, θ)−τ(D2, c, θ)

)
:(D1−D2)(3.9b)

≥ η1

∣∣D1−D2

∣∣p,
∀D ∈ R

3×3
sym, c ∈ G+

1 , θ ∈ R : |τ(D, c, θ)| ≤ C
(
1 + |D|p−1

)
,(3.9c) ∣∣τ ′D(D, c, θ)

∣∣ ≤ C
(
1 + |D|p−2

)
,(3.9d) ∣∣τ ′(c,θ)(D, c, θ)

∣∣ ≤ C,(3.9e)

τ(0, c, θ) = 0.(3.9f)

Note that (3.9b), (3.9f) yields the coercivity τ(D, c, θ) : D ≥ η1|D|p. Other important
assumptions ensure nonnegativity of concentrations during their evolution, namely
by nonnegative production rate and by a natural direction of the flux j� of the �th
constituent from (3.8) if the concentration of this particular constituent vanishes:

Dk�(c1, . . . , c�−1, 0, c�+1, . . . , cL, θ)

{
≥ 0 for k = �,
= 0 for k �= �,

(3.10a)

m�(c1, . . . , c�−1, 0, c�+1, . . . , cL, θ) = 0 ,(3.10b)

r� (c1, . . . , c�−1, 0, c�+1, . . . , cL, θ) ≥ 0(3.10c)

for each � = 1, . . . , L. Eventually, we still assume

r�, h : G+
1 × R → R continuous and bounded.(3.11)
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Remark 3.2 (extension convention). For the purpose of the proof of Proposi-
tion 3.9, we consider D, m, τ , r�, and h extended suitably from the Gibbs’ simplex
G+

1 defined by (2.3) on the affine manifold

G1 :=

{
c∈R

L;

L∑
�=1

c� = 1

}
.(3.12)

We assume continuous and bounded extension so that (3.7b)–(3.7d) and (3.9b)–(3.9e)
hold even for c ∈ G1 \G+

1 . Moreover, (3.10) allows us to consider nonnegative exten-
sions of r� and zero-extension of m� if c� ≤ 0.

Remark 3.3 (data qualification versus reality). The assumption (3.11) repre-
sents a rather drastic mathematical simplification contrasting with the usual feature
that the rate of chemical reactions r and the corresponding heat production h de-
pend rather exponentially on the temperature θ. In fact, making the estimates in
section 3.2 in a still more complicated (and less lucid) way, a certain (although only
sublinear) growth of r(c, ·) and h(c, ·) may be admitted, too; cf. also [36]. The men-
tioned exponential growth would allow for “explosive” blow-ups which we do not have
in mind, especially in the context of usual biological applications. Also, (3.7b) is not
directly relevant and contradicts an Einstein law if θ ↘ 0; cf. also the arguments
in Remark 4.6. Yet, considering D(c, θ) approaching zero if θ ↘ 0 would inevitably
make the analysis of the problem extremely difficult, if possible at all. Anyhow, the
model of fluid mixtures loses its validity much earlier than the absolute temperature
θ approaches zero because of ultimate phase transition to solid state.

Remark 3.4 (special case: single-component fluids). A subsystem (2.1a), (2.1b),
and (2.1d) with D and m vanishing and with a general heat flux j0(θ,∇θ) instead
of κ∇θ together with a fixed right-hand side instead of q∇φ was considered in [9].
Assuming monotonicity and p0-polynomial structure of j0(θ, ·) : R

3 → R
3, existence

of a weak solution was proved for p ≥ 5/2 and p0 ≥ 10p/(5p−1) > 2. Physically,
the heat flux j0 may depend substantially on θ, but the dependence of ∇θ is rather
linear, which corresponds to the case p0 = 2 not covered by [9]. Our results cover,
in particular, the case 11/5 < p < 5/2 and enable us to treat the physically more
relevant case p0 = 2 for such a subsystem (2.1a), (2.1b), (2.1d). Also, [9] assumed

τ(·, θ) to have a potential, even with a special structure
∑L

l=1 μl(θ)Fl(| · |) (which we
do not need at all) but, on the other hand, allowed for a temperature dependence of
cv and κ.

3.2. Auxiliary multipolar regularization. We will regularize (2.1a) by a
2kth-order term (−1)kεΔkv with a regularization parameter ε > 0 and with an integer
k ≥ 5 specified later (see (3.21) with (3.29)) as follows:

∂v

∂t
− div

(
τ(Dv, c, θ) − v ⊗ v

)
+ ∇π + (−1)kεΔkv = −c·z∇φ,(3.13a)

div(v) = 0.(3.13b)

Such a “multipolar” regularization is even physically motivated; cf. [25]. Let us em-
phasize that we distinguish ε (the permitivity) from ε (the regularizing parameter).
The boundary conditions (2.8) are now to be completed by another higher-order con-
dition for the Δk-operator. In fact, its choice is not important as this term has only
an auxiliary character; let us choose, say, the homogeneous Dirichlet condition

∂lv

∂νl
= 0, l = 1, . . . , k − 1.(3.14)
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We modify Definition 3.1 for a weak solution to the system (2.1c)–(2.1e) and (3.13)
with the initial and boundary conditions (2.7) and (2.8) and (3.14).

Definition 3.5 (weak solution to (2.1c)–(2.1e) and (3.13)). We will call (v, c, θ, φ)
satisfying

v ∈ L∞(I;W k,2
0,DIV

(Ω; R3)) ∩ W 1,2(I;L2(Ω; R3)),(3.15a)

c ∈ L2(I;W 1,2(Ω; RL)) ∩ W 1,2(I;W 1,2(Ω; RL)∗),(3.15b)

θ ∈ L∞(I;W 1,2(Ω)) ∩ W 1,2(I;L2(Ω)),(3.15c)

φ ∈ L∞(I;W 1,2(Ω))(3.15d)

a weak solution to the system (2.1c)–(2.1e) and (3.13) with the initial and boundary
conditions (2.7), (2.8), and (3.14) if (3.3), (3.4), (3.5), and (2.2) hold, while, instead of
(3.2), we require the following identity to hold for any w ∈ C1(Q; R3) with div(w) = 0,
∂l

∂νlw|Σ = 0 for l = 0, . . . , k−1, and w(T, ·) = 0:∫
Q

τ(Dv, c, θ) : Dw − (v⊗v) : ∇w + z·c∇φ·w + ε∇kv
...∇kw − v

∂w

∂t
dxdt(3.16)

=

∫
Ω

v0(x) · w(0, x) dx,

where “
... ” denotes the scalar product of kth-order tensors; for k = 1 or k = 2 we

already used “ · ” or “ :,” respectively.
To correct the concentrations that satisfy the constraint

∑L
�=1 c� = 1 but that

may possibly be negative, we define a retract K : G1 → G+
1 by

K�(c) :=
c+�∑L
l=1 c

+
l

, c+� := max(c�, 0),(3.17)

where G1 is from (3.12). Let us note that K is continuous and bounded on G1 and
leaves G+

1 fixed, and even K�(c) = 0 if c� ≤ 0. Further, we consider r, h, D, and m

continuously and boundedly extended on G1. Considering γ = (γ1, . . . , γL) = “old”
concentrations and ϑ = an “old” temperature field, we define the quadruple (v, c, θ, φ)
as the weak solution to the decoupled regularized system:

− div(ε∇φ) = q, q = z·K(γ),(3.18a)

∂v

∂t
− div

(
τ(Dv, γ, ϑ) − v⊗v

)
+ ∇π + (−1)kεΔkv = −q∇φ,(3.18b)

div(v) = 0 ,(3.18c)

∂c

∂t
− div

(
D(γ, ϑ)∇c + m(γ, ϑ) ⊗∇φ− c⊗ v

)
= r(γ, ϑ) ,(3.18d)

cv
∂θ

∂t
− div

(
κ∇θ − cvv θ

)
= τ(Dv, γ, ϑ) : Dv(3.18e)

+
(
D(γ, ϑ)∇c + m(γ, ϑ) ⊗∇φ

)
: (z ⊗∇φ) + h(γ, ϑ),

c · 1 :=

L∑
�=1

c� = 1(3.18f)

with the boundary conditions (2.8) and (3.14) and with the initial conditions

v(0, ·) = v0ε , c(0, ·) = c0 , θ(0, ·) = θ0ε.(3.19)
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Obviously, given (γ, ϑ), we are to solve first (3.18a), and after knowing also φ we can
solve (3.18b), (3.18c) to get v, and then we can solve (3.18d) to obtain c, and finally
(3.18e) to obtain also θ. In (3.19), we have made a regularization of the original initial

conditions v0 ∈ L2
0,DIV(Ω; R3) and θ0 ∈ L1(Ω), respectively, by v0ε ∈ W k,2

0,DIV
(Ω; R3)

and θ0ε ∈ W 1,2(Ω) in such a way that

∥∥v0ε

∥∥
Wk,2

0,DIV(Ω;R3)
≤ C

ε
,

∥∥θ0ε

∥∥
W 1,2(Ω)

≤ C

ε
, and(3.20a) ∥∥v0ε

∥∥
L2(Ω;R3)

≤ C,
∥∥θ0ε

∥∥
L1(Ω)

≤ C.(3.20b)

Proposition 3.6 (a priori estimates for (3.18)). Let the assumptions (3.6), (3.7),

(3.9), (3.10), (3.11) hold, let v0ε ∈ W k,2
0,DIV

(Ω; R3), c0 ∈ L∞(Ω; RL), θ0ε ∈ W 1,2(Ω)

satisfy (3.20), let Ω be a bounded C2-domain, and let p ∈ R and k ∈ N satisfy

p >
11

5
and k ≥ 5p−3

2
.(3.21)

Further, let (γ, ϑ) ∈ L2(I;W 1,2(Ω))L+1 be given such that
∑L

�=1 γ� = 1 a.e. on Q.
Then, (3.18) with the boundary condition (2.8) and the initial condition (3.19) has a
weak solution (which need not satisfy c� ≥ 0, however) which satisfies, for any ξ > 0
and some C0, . . . , C11 < +∞ independent of ε, the following a priori estimates:∥∥φ∥∥

L∞(I;W 2,r(Ω))
≤ C1 with r < +∞,(3.22a) ∥∥v∥∥

L∞(I;L2(Ω;R3))∩L
p
(I;W 1,p

0,DIV(Ω;R3))
≤ C2,(3.22b)

∥∥v∥∥
L∞(I;Wk,2

0,DIV(Ω;R3))∩W 1,2(I;L2(Ω;;R3))
≤ C3e

C0/ε
2

ε
,(3.22c) ∥∥∥∂v

∂t
+ (−1)kεΔkv

∥∥∥
Lp/(p−1)(I;W 1,p

0,DIV(Ω;R3)∗)
≤ C4,(3.22d) ∥∥c∥∥

L∞(I;L2(Ω;RL))∩L2(I;W 1,2(Ω;RL))
≤ C5,(3.22e) ∥∥∥∂c

∂t

∥∥∥
L2(I;W 1,2(Ω;RL)∗)

≤ C6√
ε
,(3.22f)

∥∥∥∂c
∂t

∥∥∥
Lr/(r−1)(I;W 1,r(Ω;RL)∗)

≤ C7 with r = max

(
2,

10p

7p−6

)
,(3.22g)

∥∥θ∥∥
L2(I;W 1,2(Ω))

≤ C8√
ε
,(3.22h)

∥∥θ∥∥
L∞(I;W 1,2(Ω))∩W 1,2(I;L2(Q))

≤ C9e
C0/ε

2

ε
,(3.22i) ∥∥θ∥∥

L∞(I;L1(Ω))∩L5/4−ξ(I;W 1,5/4−ξ(Ω))
≤ C10,(3.22j) ∥∥∥∂θ

∂t

∥∥∥
L1(I;W−3,2(Ω))

≤ C11.(3.22k)

Moreover, except for C0, C3, and C9, the constants C are independent of (γ, ϑ), while
C0, C3, and C9 depend on ‖(∇γ,∇ϑ)‖L2(Q;R3))L+1 due to (3.32) below. The meaning

of ∂v
∂t +(−1)kεΔkv in (3.22d) as a linear continuous functional on Lp(I;W 1,p

0,DIV
(Ω; R3))

is a continuous extension of the weak form of div(τ(Dv, γ, ϑ) − v ⊗ v) − q∇φ, which
has a good sense for smooth functions; cf. (3.26).



872 TOMÁŠ ROUBÍČEK

Proof. First, we realize that the total charge z·K(γ) in (3.18a) is always bounded,
namely, ‖z·K(γ)‖L∞(Q) ≤ max�=1,...,L |z�|, and then (3.22a) follows by usual W 2,r-
regularity of the Δ-operator with (2.8) for any r < +∞; cf. [1, 2]. Then also the
driving force q∇φ = (z ·K(γ))∇φ in (3.18b) is bounded in L∞(Q; R3), and hence
certainly in L1(I;L2(Ω; R3)). Then, by a test of (3.13) by v itself and by using the
Korn inequality

∃η2 > 0 ∀v ∈ W 1,p
0 (Ω; R3) : η2

∥∥v∥∥
W 1,p

0 (Ω;R3)
≤

∥∥Dv
∥∥
Lp(Ω;R3×3)

(3.23)

with η2 > 0 depending on the Lipschitz domain Ω, and by using the usual trick that∫
Ω
∇π · v dx = −

∫
Ω
π div(v) dx = 0 as well as

∫
Ω
(v⊗v):∇v dx = 0, and by using also

(3.9b), we obtain the estimate

1

2

d

dt

∥∥v∥∥2

L2(Ω;R3)
+ η1η

p
2

∥∥v∥∥p

W 1,p
0 (Ω;R3)

+ ε
∥∥∇mv

∥∥2

L2(Ω;R3k+1 )
(3.24)

≤
∫

Ω

∂v

∂t
· v+ τ(Dv, γ, θ):Dv + ε∇mv

...∇mv dx

= −
∫

Ω

q∇φ·v dx ≤ max
�=1,...,L

|z�|
∥∥∇φ

∥∥
L2(Ω;R3)

∥∥v∥∥
L2(Ω;R3)

;

let us recall the convention pronounced in Remark 3.2 so that τ(Dv, γ, θ) behaves
well even if some γ’s are negative. By Young’s and Gronwall’s inequalities, we obtain
(3.22b) and

∥∥v∥∥
L2(I;Wk,2

0,DIV(Ω;R3))
≤ C3√

ε
(3.25)

by a test of (3.13) by v itself and using the usual trick that
∫
Ω
∇π·v dx = −

∫
Ω
π div(v) dx =

0 as well as
∫
Ω
(v⊗v):∇v dx = 0. Note that, because of the retract K used in (3.18a),

the bounds in (3.22b) and (3.25) are completely independent of γ.

The estimate (3.22d) can be obtained by testing (3.18b) by w ∈ Lp(I;W 1,p
0,DIV

(Ω; R3))
as follows:

∥∥∥∂v
∂t

+ (−1)kεΔkv
∥∥∥
Lp/(p−1)(I;W 1,p

0,DIV(Ω;R3)∗)
(3.26)

:= sup
‖w‖

Lp(I;W
1,p
0,DIV(Ω;R3))

≤1

〈
∂v

∂t
+ (−1)kεΔkv, w

〉

= sup
‖w‖

Lp(I;W
1,p
0,DIV(Ω;R3))

≤1

∫
Q

τ(Dv, γ, ϑ):Dw − (v⊗v):∇w + q∇φ·w dxdt.

The boundedness of
∫
Q

(v⊗v):∇w dxdt just requires p ≥ 11/5 because, by interpo-

lation, (3.22b) guarantees v bounded in L11/3(Q; R3) so that (v⊗v):∇w ∈ L1(Q) if
∇w ∈ L11/5(Q; R3); see also, e.g., [21, Chap. 5, Lemma 2.44(iii)].

To get (3.22e), we test (3.18d) by c. We realize that

∫
Ω

c�v·∇c� dx =
1

2

∫
Ω

v·∇c2� dx = −1

2

∫
Ω

(div v)c2� dx = 0(3.27)
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for each � = 1, . . . , L; i.e.,
∫
Ω
(c⊗v):∇c dx = 0. By (3.27), we obtain

1

2

d

dt

∫
Ω

∣∣c∣∣2 dx + η0

∫
Ω

∣∣∇c
∣∣2 dx ≤ 1

2

d

dt

∫
Ω

∣∣c∣∣2 dx +

∫
Ω

∇c�D(γ, ϑ)∇c dx

=

∫
Ω

(c⊗v) :∇c−
(
m(γ, ϑ) ⊗∇φ

)
:∇c + r(γ, ϑ) dx

≤ η0

2

∥∥∇c
∥∥2

L2(Ω;R3×L)
+

1

2η0

∥∥m
∥∥
L∞(R2;RL)

∥∥∇φ
∥∥2

L2(Ω;R3)
+

∥∥r∥∥
L1(R2;RL)

.

Then (3.22e) follows by Young’s and Gronwall’s inequalities when using also (3.11)
and (3.22a). Again, Remark 3.2 applies, of course.

As for (3.22f), let us realize that, by (3.22e), c is bounded in L∞(I;L2(Ω; RL)) and,
by (3.25),

√
εv is bounded in L2(I;L∞(Ω; R3)) so that

√
ε c⊗v is certainly bounded

in L2(Q; R3×L). Then we obtain (3.22f) by testing (3.18d) by an arbitrary w from
L2(I;W 1,2(Ω; RL)) when using (3.11) and (3.22a).

The estimate (3.22g) can be obtained in the same way as (3.22d) by testing
(3.18d) by arbitrary w ∈ Lr(I;W 1,r(Ω; RL)) with a suitable r. The resulting term∫
Q

(c⊗v):∇w dxdt is now to be estimated as

∫
Q

(c⊗ v) : ∇w dxdt ≤ C
∥∥v∥∥

L5p/3(Q;R3)

∥∥c∥∥
L10/3(Q;RL)

∥∥∇w
∥∥
Lr(Q;R3×L)

,(3.28)

provided that r ≥ 10p/(7p − 6). The other resulting term,
∫
Q
∇w�D(γ, ϑ)∇c dxdt,

requires r ≥ 2, which eventually gives the restriction (3.22g) on r.
We now want to show boundedness of ∇v in L2p(Q; R3×3), which will guar-

antee the dissipative heat τ(Dv, γ, ϑ):Dv bounded in L2(Q) to allow for a test of
(3.18e) by ∂θ

∂t . We get it by the Gagliardo–Nirenberg inequality ‖w‖W 1,2p(Ω) ≤
C‖w‖λWk,2(Ω)‖w‖

1−λ
L2(Ω), which holds for 1/(2p) + λk/3 ≥ 5/6. To also have the in-

terpolation ‖w‖L2p(I) ≤ C‖w‖λL2(I)‖w‖
1−λ
L∞(I), which holds for 0 ≤ λ ≤ 1/p, we put

λ = 1/p. Choosing k large enough, namely, as specified in (3.21), we obtain the
desired interpolation

(3.29)∥∥v∥∥
L2p(I;W 1,2p(Ω;R3))

≤
∥∥v∥∥λ

L2(I;Wk,2(Ω;R3))

∥∥v∥∥1−λ

L∞(I;L2(Ω;R3))
= O

(
1

ε
λ
2

)
= O

(
1

ε
1
2p

)
,

where the order with respect to the parameter ε comes from (3.22b) and (3.25). Thus

∥∥τ(Dv, γ, ϑ):Dv
∥∥
L2(Q)

= O
(

1√
ε

)
.(3.30)

The other terms on the right-hand side of (3.18e) are bounded in L2(Q), too; note that
∇c� · ∇φ ∈ L2(Q) because ∇c� ∈ L2(Q; R3) due to (3.22e), while ∇φ ∈ L∞(Q; R3)
due to (3.22a). Hence the total right-hand side of (3.18e), let us denote it by htot, is
bounded in L2(Q). Then the test of (3.18e) by θ gives (3.22h) with the order O(1/

√
ε)

coming from (3.30), the constant C8 being still independent of γ and ϑ.
Now we simultaneously test (3.18b) by ∂v

∂t and (3.18e) by ∂θ
∂t . (Rigorously, this

step is not legal unless we have L2-information about ∂v
∂t and ∂θ

∂t which we want just to
derive, but one can, for a moment, imagine, e.g., a Galerkin approximation of (3.18b)
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and (3.18e) to make these tests and a subsequent limit passage.) We sum them to
obtain, for a.a. t ∈ I,∥∥∥∂v

∂t

∥∥∥2

L2(Ω;R3)
+ cv

∥∥∥∂θ
∂t

∥∥∥2

L2(Ω)
+

d

dt

( ε

2

∥∥∇kv
∥∥2

L2(Ω;R3k+1 )
+

κ

2

∥∥∇θ
∥∥2

L2(Ω;R3)

)
(3.31)

=

∫
Ω

div
(
τ(Dv, γ, ϑ)

)
·∂v
∂t

− (v·∇)v · ∂v
∂t

+ q∇φ · ∂v
∂t

− cv(v·∇)θ
∂θ

∂t
+ htot

∂θ

∂t

≤ 2
∥∥div

(
τ(Dv, γ, ϑ)

)∥∥2

L2(Ω;R3)
+ 2

∥∥(v·∇)v
∥∥2

L2(Ω;R3)

+ 2
∥∥q∇φ

∥∥2

L2(Ω;R3)
+

1

2

∥∥∥∂v
∂t

∥∥∥2

L2(Ω;R3)

+
1

cv

∥∥(v·∇)θ
∥∥2

L2(Ω)
+

1

cv

∥∥htot

∥∥2

L2(Ω)
+

cv
2

∥∥∥∂θ
∂t

∥∥∥2

L2(Ω)
.

The particular right-hand side terms can be estimated as follows. The first one allows
for the estimate∥∥div

(
τ(Dv, γ, ϑ)

)∥∥2

L2(Ω;R3)
≤

∥∥τ ′D(Dv, γ, ϑ)
∥∥2

L2(Ω;R3×3×3)

∥∥∇2v
∥∥2

L∞(Ω;R3k+1 )
(3.32)

+
∥∥τ ′γ(Dv, γ, ϑ)

∥∥2

L∞(Ω;R3×3)

∥∥∇γ
∥∥2

L2(Ω;R3)

+
∥∥τ ′θ(Dv, γ, ϑ)

∥∥2

L∞(Ω;R3×3)

∥∥∇ϑ
∥∥2

L2(Ω;R3)

≤ C̃
(
1+

∥∥∇v
∥∥2p

L2p(Ω;R3×3)

)∥∥∇kv
∥∥2

L2(Ω;R3k+1 )
+ C̃

∥∥∇γ
∥∥2

L2(Ω;R3)
+ C̃

∥∥∇ϑ
∥∥2

L2(Ω;R3)
,

where (3.9e) and the embedding W k,2(Ω) ⊂ W 2,∞(Ω) have been used as well as the
growth condition (3.9d) to estimate

∥∥τ ′D(Dv, γ, ϑ)
∥∥2

L2(Ω;R3×3×3)
≤

∫
Ω

C2
(
1 + |∇v|p−2

)2
dx

≤ 2C2
(
meas(Ω) +

∫
Ω

|∇v|2p−4 dx
)
≤ C̃

(
1 +

∫
Ω

|∇v|2p dx
)

with C from (3.9d). In view of (3.22b), this term can then be handled by Gronwall’s
inequality because, due to (3.29), t �→ ‖∇v(t, ·)‖2p

L2p(Ω;R3×3) is integrable; note that

(3.29) implies that the L1(0, T )-norm of this function is of the order O(1/ε), which
gives the factors eC0/ε in (3.22c), (3.22i). The second term in the right-hand side of
(3.31) can be estimated as

∥∥(v·∇)v
∥∥2

L2(Ω;R3)
≤

∥∥v∥∥2

L2(Ω;R3)

∥∥∇v
∥∥2

L∞(Ω;R3×3)
≤ C2

2N
2
∥∥∇kv

∥∥2

L2(Ω;R3k+1 )
,

where C2 is from (3.22b) and N is the norm of the embedding W k,2(Ω) ⊂ W 1,∞(Ω),
so that this term also can be handled by Gronwall’s inequality. The term q∇φ is
already estimated in (3.22a). The term (v·∇)θ is to be estimated as

∥∥(v·∇)θ
∥∥2

L2(Ω)
≤

∥∥v∥∥2

L∞(Ω;R3)

∥∥∇θ
∥∥2

L2(Ω;R3)
≤ N2

∥∥∇kv
∥∥2

L2(Ω;R3k+1 )

∥∥∇θ
∥∥2

L2(Ω;R3)
,

where N is the norm of the embedding W k,2(Ω) ⊂ L∞(Ω), and again we can treat it by
Gronwall’s inequality if (3.25) is taken into account. The boundedness of htot in L2(Q)
has already been mentioned. Therefore, (3.31) yields both (3.22c) and (3.22i); note
that (3.25) gives ‖∇kv‖2

L2(Ω;R3k+1 )
= O(1/ε) and (3.30) gives ‖htot‖2

L2(Ω) = O(1/ε),
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which (together with the already mentioned factor eC0/ε) eventually determines the
order both in (3.22c) and in (3.22i).

Having ∇v bounded in Lp(Q; R3×3)) (see (3.22b)), τ(Dv, γ, ϑ):Dv is then certainly
bounded in L1(Q) (independently of ε) while the other right-hand side terms of (3.18e)
are bounded in this space, too, because of (3.22a), (3.22e), and (3.11). This allows
us to use fine results about integrability of temperature gradient [6, 7, 8] modified for
the initial-boundary-value problem

cv
∂θ

∂t
− div

(
κ∇θ−cvv θ

)
= htot on Q, κ

∂θ

∂ν
= 0 on Σ, θ(0, ·) = θ0 on Ω;(3.33)

recall that htot ∈ L1(Q) denotes the total right-hand side of (3.18e). First, let us test
(3.33) by sign(θ) or, more rigorously, by a regularization of it, say max(−1,min(1, nθ)),
and then make a limit passage with n → ∞, which gives the first part of the estimate
(3.22j), i.e., a bound for θ in L∞(I;L1(Ω)); for more details about this rather standard
technique, see, e.g., [35, sect. 9.4 with sect. 3.2.3]. The second part of (3.22j) is more
involved. Following [7, 8], we test (3.33) by ψn(θ) with ψn : R → [−1, 1] a bounded
Lipschitz function defined, for n ∈ N, by

ψn(θ) :=

⎧⎨
⎩

0 if |θ| ≤ n,
sign(θ)(|θ| − n) if n ≤ |θ| ≤ n + 1,
sign(θ) if |θ| ≥ n + 1.

(3.34)

We use ∫
Ω

θ v · ∇ψn(θ) dx =

∫
Ω

θ ψ′
n(θ) v · ∇θ dx(3.35)

=

∫
Ω

v · ∇φ̂n(θ) dx = −
∫

Ω

div(v)φ̂n(θ) dx = 0,

where φ̂n : R → R denotes a primitive function of φn : θ �→ θ ψ′
n(θ). Further, we

denote by ψ̂n the primitive function of ψn such that ψ̂n(0) = 0; note that 0 ≤ ψ̂n(θ) ≤
|θ|. Testing (3.33) by ψn(θ) and denoting Bn := {(t, x) ∈ Q : n ≤ |θ(t, x)| ≤ n+1}
then gives

κ

∫
Bn

|∇θ|2 dxdt = κ

∫
Q

ψ′
n(θ)|∇θ|2 dxdt =

∫
Q

κ∇θ·∇ψn(θ) dxdt(3.36)

≤
∫
Q

κ∇θ · ∇ψn(θ) dxdt +

∫
Ω

cvψ̂n(θ(T, ·)) dx

=

∫
Ω

cvψ̂n(θ0ε) dx +

∫
Q

htotψn(θ) dxdt

≤ cv
∥∥θ0ε

∥∥
L1(Ω)

+
∥∥htot

∥∥
L1(Q)

.

For μ > 0 fixed, we get∫
Q

|∇θ|2
(1 + θ)1+μ

dxdt =

∞∑
n=0

∫
Bn

|∇θ|2
(1 + θ)1+μ

dxdt(3.37)

≤
∞∑

n=0

1

(1 + n)1+μ

∫
Bn

|∇θ|2 dxdt

≤
cv

∥∥θ0ε

∥∥
L1(Ω)

+
∥∥htot

∥∥
L1(Q)

κ

∞∑
n=0

1

(1 + n)1+μ
≤ Cμ
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with some Cμ. Further, we simplify [7, 8] which estimate ∇θ in an anisotropic space.
For our purposes, an estimate of ∇θ in an “isotropic” space Lζ(Q; R3) will suffice.
For this, let us take 1 ≤ ζ < 2. By Hölder’s inequality,

∫
Q

|∇θ|ζ dxdt =

∫
Q

|∇θ|ζ
(1 + θ)(1+μ)ζ/2

(1 + θ)(1+μ)ζ/2 dxdt(3.38)

≤
(∫

Q

|∇θ|2
(1+θ)1+μ

dxdt

)ζ/2 (∫
Q

(1+θ)(1+μ)ζ/(2−ζ) dxdt

)(2−ζ)/2

≤ Cζ/2
μ

(∫ T

0

‖1 + θ(t, ·)‖(1+μ)ζ/(2−ζ)

L(1+μ)ζ/(2−ζ)(Ω)
dt

)(2−ζ)/2

.

The proven first part of (3.22j), i.e., ‖θ‖L∞(I;L1(Ω)) ≤ C10, allows us further to esti-
mate, by using the Gagliardo–Nirenberg inequality,

‖1+θ(t, ·)‖L(1+μ)ζ/(2−ζ)(Ω) ≤ CGN‖∇θ(t, ·)‖λLζ(Ω)‖1+θ(t, ·)‖1−λ
L1(Ω)(3.39)

≤ CGN

(
|Ω|+C10

)1−λ‖∇θ(t, ·)‖λLζ(Ω)

for some CGN ∈ R, provided that

2 − ζ

(1 + μ)ζ
≥ λ

(
1

ζ
− 1

3

)
+ 1 − λ.(3.40)

We raise (3.39) to the power (1+μ)ζ/(2 − ζ), exploit it for (3.38), and choose λ :=
(2−ζ)/(1+μ), which yields

(∫ T

0

‖1 + θ(t, ·)‖(1+μ)ζ/(2−ζ)

L(1+μ)ζ/(2−ζ)(Ω)
dt

)(2−ζ)/2

(3.41)

≤
(∫ T

0

C
(1+μ)ζ
2−ζ

GN

(
|Ω|+C10

) (1−λ)(1+μ)ζ
2−ζ ‖∇θ(t, ·)‖

λ(1+μ)ζ
2−ζ

Lζ(Ω)
dt

) 2−ζ
2

≤
(∫ T

0

C
(1+μ)ζ
2−ζ

GN

(
|Ω|+C10

) (1−λ)(1+μ)ζ
2−ζ ‖∇θ(t, ·)‖ζ

Lζ(Ω)
dt

) 2−ζ
2

= C
(1+μ)ζ/2
GN

(
|Ω|+C10

)ζ(ζ−1+μ)/2
(∫

Q

|∇θ|ζ dxdt

)(2−ζ)/2

.

Merging (3.38) with (3.41) gives the estimate

‖∇u‖ζ
Lζ(Q;R3)

≤ CμC
1+μ
GN

(
|Ω|+C10

)ζ−1+μ
.(3.42)

Putting our choice of λ := (2−ζ)/(1+μ) into (3.40), one obtains, after some algebra,
the conditions ζ ≤ (5−3μ)/4 so that (3.42) gives just the second part of the estimate
(3.22j) with ξ := 3

4μ.

To prove (3.22k), we must, in particular, estimate the term div(vθ) in the following
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way:

∥∥div(vθ)
∥∥
L1(I;W−3,2(Ω))

= sup
‖w‖

L∞(I;W
3,2
0 (Ω))

≤1

∫
Q

vθ · ∇w dxdt(3.43)

≤ sup
‖w‖

L∞(I;W
3,2
0 (Ω))

≤1

C
∥∥v∥∥

L5p/3(Q;R3)

∥∥θ∥∥
L5/3−δ(Q)

∥∥∇w‖L∞(Q;R3)

= C
∥∥v∥∥

L5p/3(Q;R3)

∥∥θ∥∥
L5/3−δ(Q)

with a sufficiently small δ > 0 and with a suitable constant C, where we used the
embedding W 3,2(Ω) ⊂ W 1,∞(Ω) and, by the Gagliardo–Nirenberg inequality, also the
embedding

Lp(I;W 1,p(Ω)) ∩ L∞(I;L2(Ω)) ⊂ L5p/3(Q)(3.44)

(cf. [11, sect. I.3]), and finally also the embedding

L∞(I;L1(Ω)) ∩ L5/4−ξ(I;W 1,5/4−ξ(Ω)) ⊂ L5/3−δ(Q),(3.45)

again by the Gagliardo–Nirenberg inequality. Alternatively, we could use here Sobolev
embeddings and usual interpolation of Lebesgue spaces; note that (3.43) works even
for p > 3/2.

Eventually, we prove (3.18f). Let us abbreviate σ :=
∑L

�=1 c� = 1. By summing
(3.18e) for � = 1, . . . , L and by (3.6a) and (3.7c,d), one gets

∂σ

∂t
=

L∑
�=1

r�
(
γ, ϑ

)
+ div

(
L∑

�=1

L∑
k=1

Dk�(γ, ϑ)∇ck + m�(γ, ϑ)∇φ− vc�

)
(3.46)

= 0 + div

(
β

L∑
k=1

∇ck +

(
L∑

�=1

m�(γ, ϑ)

)
∇φ− v

(
L∑

�=1

c�

))

= div(β∇σ) − v·∇σ.

Due to (3.6b) and (2.8b), a solution to the thus obtained initial-boundary-value prob-
lem for a parabolic (if β > 0) or hyperbolic (if β = 0) equation, i.e.,

∂σ

∂t
− div(β∇σ) + v·∇σ = 0 on Q,

∂σ

∂ν
= 0 on Σ, σ(0, ·) = 1 on Ω,(3.47)

is σ ≡ 1. This solution is unique, which can be proved by testing the difference of
(3.47) for two solutions σ1 and σ2 by σ1−σ2. The important fact is that the resulting
term

∫
Ω
(v·∇(σ1−σ2))(σ1−σ2) dx vanishes as in (3.27); note that our estimates (3.25)

and (3.22e) ensure integrability of all integrands occurring in (3.27) with σ1−σ2 in
place of c�.

Remark 3.7. The parabolic/hyperbolic equation (3.47) can be found in the liter-
ature in this context; cf. [17, sect. 7.3.5].

Proposition 3.8 (continuity). Let the assumptions of Proposition 3.6 hold.
Then the weak solution to (3.18)–(3.19) with the boundary conditions (2.8) and (3.14)
is determined uniquely, and the mapping

(γ, ϑ) �→
{
(v, c, θ, φ) is a weak solution to (3.18), (3.19), (2.8), (3.14)

}
(3.48)
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with
∑L

�=1 γ� = 1 is continuous from the weak topology on WL ×W with

W := L2(I;W 1,2(Ω)) ∩ W 1,2(I;W 1,2(Ω)∗)(3.49)

to the weak* topology related to the spaces from the estimates (3.22a), (3.22c), (3.22f),
(3.22i).

Proof. The uniqueness of the solution to (3.18a) follows in a standard way because
of linearity and because ε > 0 and α > 0 are assumed. As for (3.18b), (3.18c),
the uniqueness is due to the monotonicity (3.9b) of τ(·, γ, ϑ) and because the term
div(v⊗v) can be estimated on the right-hand side: indeed, considering two solutions
v1 and v2, by the difference of the weak formulations of (3.18b), (3.18c) for v1 and v2

tested by v1−v2 and using Green’s formula several times, we obtain

1

2

d

dt

∥∥v1−v2

∥∥2

L2(Ω;R3)
+ ε

∥∥∇kv1−∇kv2

∥∥2

L2(Ω;R3k+1 )
(3.50)

≤
∫

Ω

(
v1⊗v1 − v2⊗v2

)
: ∇(v1−v2) dx

=

∫
Ω

(
(v1·∇)v1 − (v2·∇)v2

)
· (v1−v2) dx

=

∫
Ω

(
((v1−v2)·∇)v1

)
· (v1−v2) dx ≤

∥∥∇v1

∥∥
L∞(Ω;R3×3)

∥∥v1−v2

∥∥2

L2(Ω;R3)

from which v1 = v2 follows by Gronwall’s inequality when taking into account also
the estimates ‖∇v1‖L∞(Ω;R3×3) ≤ N‖∇kv1‖L2(Ω;R3k+1 ) and (3.22c). The uniqueness

of solutions to (3.18d), (3.18e) then follows in a standard way because these equations
are decoupled and linear and all time derivatives are in duality with the corresponding
solutions.

Take a sequence {(γn, ϑn)}n∈N converging weakly to some (γ, ϑ) in WL×W. Take
the corresponding (vn, cn, θn, φn) and choose a subsequence converging weakly* in
the spaces specified in the estimates (3.22). By the Aubin–Lions compact-embedding
theorem [4, 19] (see also, e.g., [35, Lemma 7.7]), the estimates (3.22e) and (3.22f)
imply that

γn → γ in L2(I;L6−ξ(Ω; RL))(3.51)

in the norm topology with any ξ > 0. This allows us to pass to the limit K(γn) →
K(γ) and also ensures ∇φn → ∇φ strongly in Lr(Q; R3) for any r < +∞ to be
exploited for (3.18e). Using again the Aubin–Lions theorem, we obtain ϑn → ϑ
strongly in L2(I;L6−ξ(Ω)), which allows us to pass to the limit h(γn, ϑn) → h(γ, ϑ)
and r�(γn, ϑn) → r�(γ, ϑ). Moreover, again by the Aubin–Lions theorem and by
interpolation as in (3.29) in the proof of Proposition 3.6,

∇vn → ∇v in L2p(Q; R3)(3.52)

in the norm topology; hence

τ(Dvn, γn, ϑn):Dvn → τ(Dv, γ, ϑ):Dv in L2(Q),(3.53)

which is essential for the limit passage in (3.18e) to obtain a weak solution. For the
convective term in (3.18e), let us realize that vn → v weakly* in L∞(Q; R3) and, due
to (3.22i), θn → θ weakly in W 1,2(Q) and hence strongly in L2(Q) just by Rellich’s
theorem, which easily implies vnθn → vθ weakly in L2(Q; R3) ⊂ L1(Q; R3).
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The limit passage in (3.18) is then routine. The uniqueness already proved above
eventually ensures the convergence of the whole sequence.

Proposition 3.9 (existence of a weak solution to (2.1c)–(2.1e) and (3.13)). Let
again the assumptions of Proposition 3.6 hold; then the mapping F : (γ, ϑ) �→ (c, θ),
where (c, θ) is uniquely determined by (3.18), maps the set

S :=

{
(c, θ)∈WL×W :

∥∥c∥∥WL ≤ max

(
C5,

C6√
ε

)
,(3.54)

∥∥θ∥∥W ≤ max

(
C8√
ε
,
C9e

C0/ε
2

ε

)
,

L∑
�=1

c� = 1

}
,

where C0, C5, C6, C8, C9 are from (3.22e), (3.22f), (3.22h), (3.22i) with C0 and C9

depending on C5 and C8, into itself and has a fixed point (c, θ) ∈ S. Moreover,
every such fixed point also satisfies c� ≥ 0 for each � = 1, . . . , L, and, considering the
corresponding φ and v, the quadruple (v, c, θ, φ) is a weak solution to (2.1c)–(2.1e)
and (3.13) with (2.8), (3.14) and (3.19).

Proof. The fact that F : S → S follows from Proposition 3.6 because C5, C6, and
C8 from (3.22e), (3.22f), (3.22h) do not depend on (γ, ϑ) at all, while C0 and C9 from
(3.22i) are fixed when C5 and C8 are fixed; hence F indeed maps S into itself. We
use S equipped with the weak topology WL+1. The continuity of F in this topology
was proved in Proposition 3.8. The fixed point then exists by Schauder’s theorem (in
Tikhonov’s modification).

Although we cannot prove c� ≥ 0 if c �= γ, in the fixed point we have c = γ and
we can prove c� ≥ 0 for each � = 1, . . . , L by testing (3.18d) by the negative part c−

with c−� := min(c�, 0). It is important that c is a conventional weak solution so that
∂
∂tc� is in duality with c� and also with c−� ∈ L2(I;W 1,2(Ω)). For any � = 1, . . . , L,
by (3.10a), we use

3∑
k=1

Dk�(c, θ)∇ck·∇c−� =

{
D��(c, θ)∇c�·∇c−� ≥ 0 if c�(t, x) < 0,
0 as just ∇c−� = 0 if c�(t, x) ≥ 0,

(3.55)

which holds for a.a. (t, x) ∈ Q; recall that D is considered as extended continuously
(cf. Remark 3.2), so that (3.10a) holds for c� negative, too. For the convective term,
we use ∫

Ω

c�v·∇c−� dx =

∫
Ω

c−� v·∇c−� dx =

∫
Ω

v·∇ (c−� )2

2
dx =

∫
Ω

(−div v)
(c−� )2

2
dx = 0.(3.56)

Recall also (3.10c) which allows us to consider r�(·, θ) extended continuously and
nonnegatively for c� ≤ 0 (cf. Remark 3.2), so that r�(·, θ)c−� ≤ 0. By (3.10b), similar
extension can be assumed for m�(·, θ) so that m�(·, θ)∇φ · ∇c−� = 0 a.e. on Q.

Hence the suggested test of the Nernst–Planck equation (3.18d) in the weak for-
mulation by c−(t, ·) yields

1

2

d

dt

∫
Ω

|c−� |2 dx ≤ 1

2

d

dt

∫
Ω

|c−� |2 dx +

∫
Ω

L∑
k=1

Dk�(c, θ)∇ck · ∇c−� dx(3.57)

+

∫
Ω

m�(c, θ)∇φ·∇c−� dx−
∫

Ω

c�v·∇c−� dx =

∫
Ω

r�(c, θ)c
−
� dx ≤ 0
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for a.a. t ∈ (0, T ), so that c−� = 0 a.e. on Q provided c�|t=0 ≥ 0 for any � = 1, . . . , L, as
indeed assumed in (3.6a). Therefore c = K(c) and the retract K occurring in (3.18b)
can eventually be “forgotten” in the fixed point.

3.3. Limit passage for ε → 0. In this section we will make a limit passage
for ε → 0 in the weak solution to (2.1c)–(2.1e) and (3.13), denoted in this section
by (vε, cε, θε, φε), whose existence was proved in Proposition 3.9. This means that
(vε, cε, θε, φε) together with some πε solves (in the weak sense) the system

∂vε
∂t

− div
(
τ(Dvε, cε, θε) − vε ⊗ vε

)
+ ∇πε + (−1)kεΔkvε = −cε·z∇φε,(3.58a)

div(vε) = 0,(3.58b)

∂cε
∂t

− div
(
D(cε, θε)∇cε + m(cε, θε) ⊗∇φε − cε ⊗ vε

)
= r(cε, θε) ,(3.58c)

cv
∂θε
∂t

− div
(
κ∇θε − cvvε θε

)
= τ(Dvε, cε, θε):Dvε(3.58d)

+
(
D(cε, θε)∇cε + m(cε, θε) ⊗∇φε

)
:(z ⊗∇φε) + h(cε, θε),

− div(ε∇φε) = cε·z ,(3.58e)

cε · 1 :=

L∑
�=1

[cε]� = 1 and [cε]� ≥ 0 for � = 1, . . . , L,(3.58f)

together with the initial conditions,

vε(0, ·) = v0ε , cε(0, ·) = c0 , θε(0, ·) = θ0ε,(3.59)

and the boundary conditions on Σ,

∂lvε
∂νl

= 0, l = 0, . . . , k−1,(3.60a) (
D(cε, θε)∇cε + m(cε, θε) ⊗∇φε

)
ν = 0,(3.60b)

ε
∂φε

∂ν
= α(φΣ−φε),(3.60c)

κ
∂θε
∂ν

= 0.(3.60d)

Proposition 3.10 (existence of a very weak solution to (2.1)–(2.3)). Let the
assumptions of Proposition 3.6 be satisfied, let v0 ∈ L2

0,DIV(Ω; R3), c0 ∈ L∞(Ω; RL),
θ0 ∈ L1(Ω), and let v0ε → v0 in L2(Ω; R3) and θ0ε → θ0 in L1(Ω). Then any
sequence {(vε, cε, θε, φε)}ε>0 of weak solutions obtained in Proposition 3.9 contains a
subsequence converging weakly* in spaces involved in (3.22a), (3.22b), (3.22d), (3.22e),
(3.22g), (3.22j), (3.22k); let us denote by (v, c, θ, φ) its limit, and every (v, c, θ, φ)
obtained in this way is a very weak solution due to Definition 3.1.

Proof. We choose a subsequence that converges weakly* as claimed. Without
confusion, let us denote it briefly again by {(vε, cε, θε, φε)}ε>0.

First, by the Aubin–Lions theorem [4, 19] and by (3.22e), (3.22g) together with
the L∞-information from Proposition 3.9, cε → c in Lr(Q; RL) for any r < +∞, and
from (3.58e) together with the already used W 2,2-regularity of Δ-operator, φε → φ
strongly in Ls(I;W 2,2(Ω)).

Let us prove that the weak* limit v is the very weak solution to (2.1a), (2.1b)
that we seek. We use Minty’s trick for the term div τ(Dv, c, θ) and compactness for
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the convective term. The important fact is that we have chosen the subsequence so
that, by (3.22d), for some v̇ ∈ Lp/(p−1)(I;W 1,p

0,DIV
(Ω; R3)∗), we have at our disposal

∂vε
∂t

+ (−1)kεΔkvε → v̇ weakly in Lp/(p−1)(I;W 1,p
0,DIV

(Ω; R3)∗).(3.61)

For any w smooth with a compact support in Q, it holds that

〈
v̇, w

〉
= lim

ε→0

〈
∂vε
∂t

+ (−1)kεΔkvε, w

〉
= lim

ε→0

∫
Q

∂vε
∂t

w + ε∇kvε
...∇kw dxdt(3.62)

= lim
ε→0

∫
Q

−vε
∂w

∂t
+ ε∇kvε

...∇kw dxdt =

∫
Q

−v
∂w

∂t
dxdt

because vε → v weakly in L
p

(I;W 1,p
0,DIV

(Ω; R3)) thanks to (3.22b) and also because

‖ε∇kvε‖L2(Q;R3k+1 ) = εO(1/
√
ε) = O(

√
ε) → 0 due to (3.25) so that

lim
ε→0

∫
Q

ε∇kvε
... ∇kw dxdt = 0.(3.63)

This shows that v̇ is the distributional derivative of v; let us denote it naturally as
∂v
∂t . In particular, we have shown that

∂v

∂t
= v̇ ∈ Lp/(p−1)(I;W 1,p

0,DIV
(Ω; R3)∗).(3.64)

Furthermore, for w ∈ L2(I;W k,2
0 (Ω; R3)) ∩ L

p

(I;W 1,p
0,DIV

(Ω; R3)), by monotonicity of
τ(·, cε(t, x), θε(t, x)), it holds that

0 ≤
∫
Q

(τ(Dvε, cε, θε) − τ(Dw, cε, θε)) :D(vε − w) dxdt(3.65)

=

∫
Q

z · cε∇φε · (vε − w) − ∂vε
∂t

· (vε − w) + (vε ⊗ vε) : ∇(vε − w)

− ε∇kvε
... ∇k(vε − w) − τ(Dw, cε, θε) :D(vε − w) dxdt

≤
∫
Q

z · cε∇φε · (vε − w) − ∂vε
∂t

· (vε − w) + (vε ⊗ vε) : ∇(vε − w)

+ ε∇kvε
... ∇kw − τ(Dw, cε, θε) :D(vε − w) dxdt.

Then we can bound from above the limit superior. The important fact is that ∂v
∂t ∈

Lp/(p−1)(I;W 1,p
0,DIV

(Ω; R3)∗) is in duality to v due to (3.64) and the estimate (3.22b).
First, let us realize that (3.61) implies

vε(T ) = v0ε +

∫ T

0

∂vε
∂t

dt = v0ε +

∫ T

0

(
∂vε
∂t

+ (−1)kεΔkvε

)
dt(3.66)

−(−1)k
∫ T

0

εΔkvε dt → v0 +

∫ T

0

∂v

∂t
dt = v(T )

weakly in W k,2(Ω; R3)∗. Due to the estimate (3.22b), vε(T ) also converges weakly in
L2(Ω; R3); hence we can conclude that even

vε(T ) → v(T ) weakly in L2(Ω; R3).(3.67)
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Thus we can use the usual bound

lim inf
ε→0

∫
Q

∂vε
∂t

vε dxdt = lim inf
ε→0

1

2
‖vε(T )

∥∥2

L2(Ω;R3)
− 1

2
‖v0

∥∥2

L2(Ω;R3)
(3.68)

≥ 1

2
‖v(T )

∥∥2

L2(Ω;R3)
− 1

2
‖v0

∥∥2

L2(Ω;R3)
=

∫ T

0

〈
∂v

∂t
, v

〉
dt.

We also exploit (3.63) and the strong convergence τ(Dw, cε, θε) → τ(Dw, c, θ) in
Lp(Q; R3×3). Thus, from (3.65), we eventually get

0 ≥
∫ T

0

(〈
∂v

∂t
, v − w

〉
−

∫
Ω

z ·c∇φ·(v − w)(3.69)

−(v⊗v) :∇(v − w) + τ(Dw, c, θ) :D(v − w) dx

)
dt.

Now we can extend this inequality for all w ∈ Lp(I;W 1,p
0,DIV(Ω; R3)) by continuity.

Then, substituting w = v + δw̃, canceling δ > 0, passing δ → 0, and choosing w̃
arbitrary, we prove that v satisfies∫ T

0

(〈∂v
∂t

, w̃
〉

+

∫
Ω

(v⊗v) :∇w̃ + τ(Dv, c, θ) :Dw̃ − z·c∇φ·w̃ dx

)
dt = 0(3.70)

for any w̃ ∈ Lp(I;W 1,p
0,DIV(Ω; R3)). Hence v is a weak solution to (2.1a).

Let us prove the most essential and most difficult fact, namely, the strong con-

vergence of Dvε to Dv in Lp(Q; R3×3). We will use
∫ T

0
〈∂(vε−v)

∂t , vε − v〉dt ≥ −1
2‖v0ε −

v0‖2
L2(Ω;R3); here again it is important that ∂v

∂t belongs to Lp/(p−1)(I;W 1,p
0,DIV(Ω; R3)∗)

and is thus in duality to v due to (3.64) and the estimate (3.22b), and also that ∂vε

∂t
lives in L2(Q; R3) due to (3.22c) so it is certainly in duality with vε−v. By uniform
monotonicity (3.9b) of τ(·, cε(t, x), θε(t, x)), we get

η2

∥∥Dvε − Dv
∥∥p

Lp(Q;R3×3))
≤

∫ T

0

∫
Ω

(τ(Dvε, cε, θε)−τ(Dv, cε, θε)) :D(vε−v) dxdt(3.71)

≤
∫ T

0

(〈
∂(vε − v)

∂t
, vε − v

〉

+

∫
Ω

(
τ(Dvε, cε, θε)−τ(Dv, cε, θε)

)
:D(vε−v) dx

)
dt +

1

2

∥∥v0ε−v0

∥∥2

L2(Ω;R3)

=

∫ T

0

(〈
∂(vε − v)

∂t
, vε−v

〉
+

∫
Ω

(
τ(Dvε, cε, θε) − τ(Dv, c, θ)

)
:D(vε−v) dx

+

∫
Ω

(
τ(Dv, c, θ) − τ(Dv, cε, θε)

)
:D(vε − v) dx

)
dt +

1

2

∥∥v0ε−v0

∥∥2

L2(Ω;R3)

=: I(1)
ε + I(2)

ε + I(3)
ε + I(4)

ε .

Using (3.70) with w̃ := vε − v, the integrals I
(1)
ε and I

(2)
ε can be estimated in its sum

as follows:

I(1)
ε + I(2)

ε =

∫ T

0

∫
Ω

(
∂vε
∂t

· vε + τ(Dvε, cε, θε) :Dvε

)
dxdt(3.72)

−
∫ T

0

∫
Ω

(
∂vε
∂t

· v + τ(Dvε, cε, θε) :Dv

)
dxdt
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−
∫ T

0

(〈
∂v

∂t
, vε

〉
+

∫
Ω

τ(Dv, c, θ) :Dvε dx

)
dt

+

∫ T

0

(〈
∂v

∂t
, v

〉
+

∫
Ω

τ(Dv, c, θ) :Dv dx

)
dt

=

∫
Q

(
− ε|∇kvε|2 − z·cε∇φε·vε + (vε ⊗ vε) : Dvε

+ ε∇kvε
...∇kṽ + z·cε∇φε·ṽ − (vε ⊗ vε) : Dṽ

+ z · c∇φ · vε − (v ⊗ v) : Dvε

− z · c∇φ · v + (v ⊗ v) : Dv

− ∂vε
∂t

· (v − ṽ) − τ(Dvε, cε, θε) :D(v − ṽ)

)
dxdt

≤
∫
Q

(
− z·cε∇φε·(vε − ṽ) + (vε ⊗ vε) : D(vε − ṽ)

+ ε∇kvε
...∇kṽ + z·c∇φ·(vε − v) − (v ⊗ v) : D(vε − v)

− ∂vε
∂t

· (v − ṽ) − τ(Dvε, cε, θε) :D(v − ṽ)

)
dxdt

for any ṽ ∈ L2(I;W k,2
0 (Ω; R3)). Now we can pass to the limit with ε → 0. The

important trick is based on (3.61) with (3.64) and on integration-by-parts in time and
on (3.67), which allows for

lim
ε→0

∫
Q

(
∂vε
∂t

· (v − ṽ) + ε∇kvε
...∇kṽ

)
dxdt(3.73)

= lim
ε→0

∫ T

0

(〈
(−1)k+1εΔkvε −

∂vε
∂t

, ṽ

〉
−

〈
∂v

∂t
, vε

〉)
dt

+

∫
Ω

(
vε(T ) · v(T ) − v0ε · v0

)
dx

= −
∫ T

0

(〈
∂v

∂t
, ṽ

〉
+

〈
∂v

∂t
, v

〉)
dt +

∥∥v(T )
∥∥2

L2(Ω;R3)
−

∥∥v0

∥∥2

L2(Ω;R3)

=

∫ T

0

〈
∂v

∂t
, v − ṽ

〉
dt.

The limit passage in the convective term (vε ⊗ vε) : D(vε − ṽ) → (v ⊗ v) : D(v − ṽ)
in L1(Q) is standard, using the strong convergence vε → v in L5p/3−ξ(Q; R3) which
can be proved by interpolating L∞(I;L2(Ω)) and Lp(I;W 1−δ,p(Ω)) by the Gagliardo–
Nirenberg inequality (cf. [11, sect. I.3], and by using the Aubin–Lions theorem to have
strong convergence in Lp(I;W 1−δ,p(Ω)) for any δ > 0; here the restriction p > 11/5

is originated. As for the next-to-last term in (3.71), we have limε→0 I
(3)
ε = 0 because

τ(Dv, cε, θε) → τ(Dv, c, θ) strongly in Lp(Q; R3×3). By our assumption v0ε → v0 in

L2(Ω; R3), we also have limε→0 I
(4)
ε = 0. Now we can pass to the limit superior in
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(3.71) with ε → 0 to obtain

lim sup
ε→0

η2

∥∥Dvε − Dv
∥∥p

Lp(Q;R3×3)
(3.74)

≤
∫ T

0

(〈
∂v

∂t
, v − ṽ

〉
+

∫
Ω

(v ⊗ v) : D(v−ṽ) − z·c∇φ·(v−ṽ) dx

)
dt

+C lim sup
ε→0

(
1 +

∥∥vε‖p−1

Lp(I;W 1,p
0,DIV(Ω;R3))

)∥∥v − ṽ
∥∥
Lp(I;W 1,p

0,DIV(Ω;R3))

with C being the constant from (3.9c). Using the estimates (3.22b) and (3.22d) and
passing with ṽ to v in the norm topology of Lp(I;W 1,p

0,DIV
(Ω; R3)), we can see that

lim supε→0 ‖Dvε − Dv‖Lp(Q;R3×3) ≤ 0; i.e., Dvε → Dv strongly.
Having this strong convergence, we can pass to the limit in the term τ(Dvε, cε, θε) :

Dvε → τ(Dv, c, θ) : Dv in L1(Q) in the right-hand side of the heat equation (3.58d).
For the limit passage in the convective term in (3.58d) it suffices to prove, in the weak
formulation, that vεθε → vθ weakly in L1(Q), which is simple due to the weak conver-
gence vε → v in L5p/3(Q; R3) based on (3.22b) with (3.44) and, by the Aubin–Lions
theorem with the interpolation based on (3.22j) and (3.22k), the strong convergence
θε → θ in L5/3−δ(Q); thus we get vεθε → vθ weakly even in L55/48−δ(Q; R3) (see also
(3.43)).

Limit passage in the other terms is routine; e.g., D(cε, θε)∇cε ·∇φε → D(c, θ)∇c ·
∇φ because (cε, θε) → (c, θ) strongly in L2(Q; RL) × L5/3−δ(Q), ∇cε → ∇c weakly
in L2(Q; RL×3) and ∇φε → ∇φ strongly in L∞(I;Lr(Ω; R3)) for any r < +∞, and,
similarly, (m(cε, θε) ⊗ ∇φε):(z ⊗ ∇φε) → (m(c, θ) ⊗ ∇φ):(z ⊗ ∇φ) in L1(Q). The
limit passage in the term cv

∂θε
∂t is made easy after integration-by-parts based on

the estimates (3.22j) and (3.22k); i.e.,
∫
Q
cvθε

∂w
∂t dxdt +

∫
Ω
cvθ0εw(0, ·) dx indeed

converges to
∫
Q
cvθ

∂w
∂t dxdt +

∫
Ω
cvθ0w(0, ·) dx for any test function w ∈ C1(Q) as

used in (3.5).

Eventually, the constraints
∑L

�=1 cε,� = 1 and cε,� ≥ 0 for � = 1, . . . , L, which
have been proved valid for the approximate solution (see (3.58f)), are inherited by
the limit, too.

Remark 3.11 (weak solutions). For p ≥ 3, the estimate (3.22g) involves r = 2, and
then c is the conventional weak solution to the Nernst–Planck equation (2.1c). The
weak solution to the whole system (2.1) needs regularity of v. This was proved in [33]

for a very narrow interval of p’s (of length only about 0.0528), namely 9
4 ≤ p < 1+

√
13

2 ,
by using deep regularity results from [20] holding, however, only for a stress tensor
τ independent of compositon and temperature and having a potential. Let us recall
that regularity for the Navier–Stokes equation is generally recognized as an extremely
difficult problem which is, at this writing, open and, in particular for p = 2 and τ
linear, assigned to a $1 million Clay Mathematics Institute award.

4. Discussion of the model and particular cases. The general idea for
determining the phenomenological fluxes j� is a drift/diffusion model like that in
Roosbroeck’s model of semiconductors [32]; for comparison of semiconductors and
electrolytes; see, e.g., [37, p. 20]. In the simplest linear case, the phenomenological
fluxes in Roosbroeck’s model appear as

j� := mz�c�∇φ + d∇c� = mc�∇μ�, where μ� := ρ ln c� + z�φ,(4.1)

where m > 0 is a mobility and d > 0 a diffusivity coefficient, and where μ� is the
electrochemical potential of the �th constituent involving the ratio ρ = d/m; any
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influence of the temperature and its gradient on j� (in particular Soret’s cross-effect)
is neglected. In bipolar semiconductors, we have L = 2 and z1 = −z2, but here for
multicomponent electrolytes we admit L > 2 in general. The form (4.1), however, does
not satisfy (3.7d) except in the very trivial case z�m = 0. More generally, mobilities
in concrete mixtures may vary considerably for various components, especially if the
size of molecules of particular constituents varies considerably from constituent to
constituent [14], and then it is standardly considered that

j� :=

L∑
k=1

Mk�(c)∇μk,(4.2)

where μ� := ρ ln c� + z�φ is again from (4.1) now with ρ = RθR with θR a reference
temperature and R a universal gas constant; let us mention that we consider z� to
involve Faraday’s constant.

To satisfy the zero-sum condition for the fluxes, i.e., (3.7c), (3.7d) with β = 0,
the matrix [Mk�(c)] should satisfy

∀k = 1, . . . , L, ∀c ∈ G+
1 :

L∑
�=1

Mk�(c) = 0(4.3)

because then obviously

L∑
�=1

j� =

L∑
�=1

L∑
k=1

Mk�(c)∇μk =

L∑
k=1

L∑
�=1

Mk�(c)

︸ ︷︷ ︸
=0

∇μk = 0.(4.4)

Moreover, by the celebrated (Nobel prize winning) Onsager’s principle [26, 27], the
matrix [Mk�(c)] should be symmetric.

Example 4.1 (symmetric models). The zero-sum condition (4.3) for [Mk�(c)] has
actually been adopted, e.g., in [10, 17, 28] or, in a bit different context of multicompo-
nent alloys, in [15, 16, 23], where essentially the following matrix has been considered:

Mk�(c) := m�c�

(
δk� −

mkck∑L
l=1 mlcl

)
(4.5)

with m� being “actual” mobilities of particular constituents (assumed to be) known
from experiments. Such [Mk�] is symmetric and satisfies (4.3) because obviously∑L

�=1 Mk�(c) = mkck − (
∑L

�=1 m�c�)mkck/(
∑L

l=1 mlcl) = 0. Moreover, (4.5) also
makes j� proportional to c�, which is a natural property.

Substituting (4.5) into (4.2) gives

j� = m�

(
ρ∇c� + c�z�∇φ

)
− m�c�∑L

l=1 mlcl

(
L∑

k=1

mk

(
ρ∇ck + ckzk∇φ

))
.(4.6)

Comparing it with (3.8), we can see that our diffusion matrix D = [Dk�]
L
�,k=1 is now

Dk� = Dk�(c) = ρm�

(
δk� −

mkc�∑L
l=1 mlcl

)
(4.7)
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and our condition (3.10a) is indeed satisfied and also that (3.7c) is satisfied with β = 0

because
∑L

�=1 Dk� = ρmk − ρmk(
∑L

�=1 c�m�)/(
∑L

l=1 clml)=0. Therefore we can see
that the coercivity and the monotonicity assumptions (3.7b) would be satisfied if and
only if the matrix [Dk�] given by (4.7) is positive definite uniformly with respect to
c ∈ G+

1 . In fact, the positive definiteness of [Dk�] in (3.7b) suffices to verify for the
symmetric part of [Dk�] only, and it suffices to hold on the manifold

∑
∇c� = 0 and

in particular for [Dk�] + β
L (1⊗1) with some β ≥ 0 so that (3.7c) then holds with this

β; see also [17, Chap. 7]. As for the effective mobilities m�, comparing (4.6) with (3.8)
yields

m� = m�(c) = m�z�c� −m�c�

∑L
k=1 mkckzk∑L

l=1 mlcl
,(4.8)

and we can see that our conditions (3.7d) and (3.10b) are indeed satisfied.
Remark 4.2. The form (4.6) was suggested in [36, Remark 4.4], namely, if m�ρδk�

and m�δk� are taken, respectively, for quantities dk� and mk� in [36].
Remark 4.3 (special case: equal mobilities). As in (4.1), the very special situation

with equal mobilities m := m1 = · · · = mL, the formula (4.6) gives

j� = mz�c�∇φ + mρ∇c� −mc�

(
ρ

L∑
k=1

∇ck +

L∑
k=1

zkck∇φ

)
;(4.9)

again (3.7) with β = 0 holds. In fact, one can even omit
∑L

k=1 ∇ck in (4.9) because it

expectedly vanishes if
∑L

k=1 ck = 1; then (3.7c) will be satisfied with β = 1 and such
a j� is exactly what has been considered in [33, 34, 35, 36]; i.e.,

j� = mc�(z� − q)∇φ + mρ∇c�, where again q =
∑
�=1

c�z�.(4.10)

Example 4.4 (nonsymmetric models). Some other models neglect cross-effects
and treat one selected constitutent, say L, in a nonsymmetric way by the formula

j� = m�c�∇(μ� − μL) for � = 1, . . . , L−1 and jL = −
L−1∑
�=1

j�;(4.11)

see, e.g., [18, formula (2.26)]. In this case, the symmetric matrix [Mk�(c)] satisfying
(4.3) is given by

Mk�(c) :=

⎧⎪⎪⎨
⎪⎪⎩

m�c�δk� for k < L, � < L,
−m�c� for k = L, � < L,
−mkck for k < L, � = L,∑L−1

l=1 mlcl for k = L, � = L.

(4.12)

Substituting μ� from (4.1) into (4.11) yields

j� =

{
m�

(
ρ∇c� − ρ c�

cL
∇cL + (z� − zL)c�∇φ

)
for � < L,∑L−1

k=1 mk

(
ρ ck
cL

∇cL − ρ∇ck + (zL − zk)c�∇φ
)

for � = L.
(4.13)

This is sometimes used in electrochemistry either for hydrogen ions as the L-component
or, in the case of very diluted water solutions, for water as the L-component.
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Remark 4.5 (thermodynamics of the model). It is with a certain internal consis-
tency and beauty that the thermodynamics of the model based on μ� from (4.1) can
be derived from a single thermodynamical potential, namely, the specific free energy
in the form

ψ = ψ(c, θ, φ,E) = ρ

L∑
�=1

c�
(
ln c� − 1

)
− cv θ ln

θ

θR
+

L∑
�=1

c�z�φ− ε

2
E2,(4.14)

where E plays the role of the intensity of electric field. The partial derivatives of ψ
define, respectively, the electrochemical potential μ�, the entropy s, the total electric
charge q, and the electric induction D, namely,

μi =
∂ψ

∂ci
, s = −∂ψ

∂θ
, q =

∂ψ

∂φ
, D = − ∂ψ

∂E
.(4.15)

This indeed yields expected relations, namely,

μi = ρ ln ci + ziφ,(4.16a)

s = cv

(
ln

θ

θR
+ 1

)
,(4.16b)

q =

L∑
�=1

c�z�,(4.16c)

D = εE.(4.16d)

Furthermore, the internal energy u is then defined through Gibbs’ relation as

u = ψ + θs = cvθ + ρ

L∑
�=1

c�
(
ln c� − 1

)
+

L∑
�=1

c�z�φ− ε

2
E2.(4.17)

It is interesting that ε
2E

2 has a negative sign in (4.17); let us remark that this term
− ε

2E
2 can indeed be found in the literature (e.g., in [12, p. 342]).

The energetics of the model (2.1) considered, for simplicity, with α = 0 in (2.8),
has been derived in [36], resulting in

d

dt

∫
Ω

( �

2
|v|2︸ ︷︷ ︸

kinetic
energy

+
ε

2
|∇φ|2︸ ︷︷ ︸

electrostatic
energy

+ cvθ︸ ︷︷ ︸
heat part
of internal
energy u

)
dx =

∫
Ω

h(c, θ)︸ ︷︷ ︸
heat production by
chemical reactions

dx.(4.18)

Under the constitutive relation E = −∇φ, we have∫
Ω

qφ− ε

2
E2 dx = −

∫
Ω

(εΔφ)φ +
ε

2
|∇φ|2 dx(4.19)

=

∫
Ω

ε∇φ · ∇φ− ε

2
|∇φ|2 dx =

∫
Ω

ε

2
|∇φ|2 dx

and we can rewrite the above energy balance (4.18) in terms of u and μ� as

d

dt

∫
Ω

(
�

2
|v|2 + u−

L∑
�=1

c�μ� + qφ

)
dx =

∫
Ω

h(c, θ) dx.(4.20)
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Alternatively, (4.20) can equally be written in terms of u and c� as

d

dt

∫
Ω

(
�

2
|v|2 + u− ρ

L∑
�=1

c�ln c�

)
dx =

∫
Ω

h(c, θ) dx.(4.21)

In addition, φ solving (2.1e) is just the critical point of the overall free energy Ψ :
φ �→

∫
Ω
ψ(c, θ, φ,−∇φ) dx; interestingly, as Ψ(c, θ, ·, ·) given by (4.14) is concave, this

critical point is the global maximum.
The Clausius–Duhem inequality (under our zero-flux boundary conditions (2.8),

i.e., in the isolated system) reads as

0 ≤ d

dt

∫
Ω

sdx =

∫
Ω

cv
θ

∂θ

∂t
dx

=

∫
Ω

1

θ

(
div(κ∇θ − cvvθ) + τ(Dv, c, θ) : Dv +

L∑
�=1

f� · j� + h

)
dx

=

∫
Ω

(
div

(
κ∇θ

θ

)
− cvv∇ln θ + κ

|∇θ|2
θ2

+
τ(Dv, c, θ):Dv

θ
+

L∑
�=1

f�·j�
θ

+
h

θ

)
dx,

where f� = −z�c�∇φ is the Lorenz force acting on the �-constituent. The first and
second terms in the last integral vanish in a thermally isolated system, and the
third and fourth terms are always nonnegative (if θ > 0), while the nonnegativity

of
∫
Ω
(
∑L

�=1 f�·j� + h)/θ dx is a condition on j� and h.
Remark 4.6 (thermodynamics in the special case of equal mobilities). As already

observed in [33, 36], the special case (4.10) gives the heat sources
∑L

�=1 f� · j� in the
form

L∑
�=1

f� · j� = mρ∇q ·∇φ +

L∑
�=1

mc�z
2
� |∇φ|2 −mq2|∇φ|2.(4.22)

The meaning of these terms is the following: The first term mρ∇q·∇φ is the power (per
unit volume) of the electric current arising by the diffusion flux, which can create local
cooling effects; this is related to the Peltier effect mentioned already in Remark 2.1.
This cooling effect may seemingly violate the entropy production law, but, at least in
equilibrium situations (i.e., here spatially isothermal cases when θ(t, ·) is constant),
the overall entropy production due to this term on Ω is nonnegative: indeed, by using
Green’s formula, one gets∫

Ω

∇q·∇φdx = −
∫

Ω

ε∇(Δφ)·∇φdx =

∫
Ω

ε|Δφ|2dx ≥ 0.(4.23)

In the anisothermal case, we would get the nonnegative entropy production if the
coefficient m in (4.10) were proportional to the absolute temperature θ, as it is really
considered, e.g., in the kinetic theory of gases and known as Einstein’s law. Such
dependence would, however, make derivation of the a priori estimates (3.22e) difficult

because inf θ > 0 would have to be proved. The second term
∑L

�=1 mc�z
2
� |∇φ|2 in

(4.22) is the power of hypothetical Joule’s heat produced by the electric currents j�
in ideally diluted water solutions. The third term −mq2|∇φ|2 = −mf2

R reduces it
and represents the rate of cooling by the force which balances the volume-additivity
constraint. Furthermore, the total actual Joule’s heat is always nonnegative because
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the second term in (4.22) always dominates the third one thanks to the algebraic
inequality

L∑
�=1

c�z
2
� ≥

(
L∑

�=1

c�z�

)2

(4.24)

if (2.2) holds; cf. [36, Remark 2.2].
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[20] J. Málek, J. Nečas, and M. Růžička, On weak solutions to a class of non-Newtonian incom-

pressible fluids in bounded three-dimensional domains: The case p ≥ 2, Adv. Differential
Equations, 6 (2001), pp. 257–302.
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[23] A. Miranville and G. Schimperna, Generalized Cahn–Hilliard equations for multicomponent
alloy, Adv. Math. Sci. Appl., to appear.

[24] I. Müller and T. Ruggeri, Rational Extended Thermodynamics, 2nd ed., Springer, New
York, 1998.
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KINETIC FORMULATION FOR A PARABOLIC CONSERVATION
LAW. APPLICATION TO HOMOGENIZATION∗

ANNE-LAURE DALIBARD†

Abstract. We derive a kinetic formulation for the parabolic scalar conservation law ∂tu +
divyA(y, u) − Δyu = 0. This allows us to define a weaker notion of solutions in L1, which is
enough to recover the L1 contraction principle. We also apply this kinetic formulation to a ho-
mogenization problem studied in a previous paper; namely, we prove that the kinetic solution uε of
∂tuε + divxA (x/ε, uε) − εΔxuε = 0 behaves in L1

loc as v (x/ε, ū(t, x)), where v is the solution of a
cell problem and ū the solution of the homogenized problem.

Key words. scalar conservation law, kinetic formulation, homogenization
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1. Introduction. This paper is devoted to the study of the solution u ∈ C([0,∞),
L1(Y )) ∩ L2

loc([0,∞), H1
per(Y )) ∩ L∞

loc([0,∞) × Y ) of the equation

(1.1)

{
∂tu(t, y) + divyA(y, u(t, y)) − Δyu(t, y) = 0, t > 0, y ∈ Y,
u(t = 0, y) = u0(y),

where Y = [0, 1]N is the N -dimensional torus; A = A(y, v) ∈ R
N , y ∈ Y , v ∈ R, is a

given N -dimensional flux, periodic in the space variable y.
In [5], a kinetic formulation was derived for such heterogeneous conservation laws

(in fact, that work was achieved for hyperbolic laws, but it can be generalized to
parabolic laws with no difficulty), based on the previous papers of Lions, Perthame,
and Tadmor concerning hyperbolic homogeneous conservation laws (see [14], [13],
[18], [16], and the general presentation in [17]). However, this formulation is not
entirely satisfactory: indeed, it is based on the comparison between the solution
u(t, y) of the conservation law and the constants via the function 1v<u(t,y), where v is
an additional fluctuation variable. But the constants, which happen to be stationary
solutions of homogeneous conservation laws, no longer play a special role in the context
of heterogeneous conservation laws. Hence, our goal in this article is to derive a
kinetic formulation based on the study of the stationary solutions of (1.1). Let us
mention a related work of Audusse and Perthame [2], which defines a notion of entropy
solution which is not based on Kruzkhov’s inequalities, but rather on the comparison
with special stationary solutions, and which is sufficient to derive the L1 contraction
principle.

Let us make precise some notation which will be used later on: if C∞
per(Y ) denotes

the space of Y -periodic functions in C∞(RN ), then

W k,p
per (Y ) := C∞

per(Y )
Wk,p(Y )

,

W 1,∞
per,loc(Y × R) := {u = u(y, v) ∈ W 1,∞

loc (RN+1), u is Y -periodic in y},
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http://www.siam.org/journals/sima/39-3/66277.html
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Dper([0,∞) × Y × R) := {u = u(t, y, v) ∈ C∞([0,∞) × R
N+1),

u is periodic in y and ∃R > 0, u(t, y, v) = 0 if t + |v| ≥ R},

〈v〉 :=
1

|Y |

∫
Y

v(y) dy ∀v ∈ L1(Y ).

First, let us recall a few results on the stationary solutions of (1.1), which were
studied in [3].

Proposition 1.1. Let A = A(y, v) ∈ W 1,∞
per,loc(Y × R)N .

Let ai(y, v) := ∂vAi(y, v), 1 ≤ i ≤ N , b(y, v) := divyA(y, v) ∈ L∞
loc(R

N+1).
Assume that there exist real numbers C0 > 0, m ∈ [0,∞), n ∈ [0, N+2

N−2 ) when N ≥ 3,
such that for all (y, p) ∈ Y × R

|ai(y, p)| ≤ C0 (1 + |p|m) ∀1 ≤ i ≤ N,(1.2)

|b(y, p)| ≤ C0 (1 + |p|n) .(1.3)

Assume as well that the couple (m,n) satisfies at least one of the following conditions:

(1.4) m = 0

or

(1.5) 0 ≤ n < 1

or

(1.6) n < min

(
N + 2

N
, 2

)
and ∃p0 ∈ R ∀y ∈ Y b(y, p0) = 0.

Then for all p ∈ R, there exists a unique solution v(·, p) ∈ H1
per(Y ) of the equation

(1.7) −Δyv(y, p) + divyA(y, v(y, p)) = 0, 〈v(·, p)〉 = p.

For all p ∈ R, v(·, p) belongs to W 2,q
per(Y ) for all 1 < q < +∞ and satisfies the

following a priori estimate: for all R > 0, there exists a constant CR > 0 depending
only on N , Y , C0, m, n, q, p0, and R, such that

(1.8) ||v(·, p)||W 2,q(Y ) ≤ CR ∀p ∈ R, |p| ≤ R.

Moreover, for all p ∈ R, ∂pv(·, p) ∈ H1
per(Y ) and is a solution of

(1.9) −Δy
∂v

∂p
+ divy

[
a(y, v(y, p))

∂v

∂p

]
= 0,

〈
∂v

∂p

〉
= 1.

And for all R > 0, there exists α > 0 depending only on N , Y , C0, m, n, q, p0, and
R, such that for all (y, p) ∈ Y × (−R,R),

∂v

∂p
(y, p) ≥ α > 0.

Equation (1.7) is also called a “cell problem” on account of its significance in
homogenization problems.

Following the idea of Audusse and Perthame (see [2]), we now give a notion of
entropy solution for (1.1) based on the comparison with stationary solutions.
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Definition 1.2. Assume the hypotheses of Proposition 1.1 are satisfied.
Let u ∈ C([0,∞), L1(Y )) ∩ L2

loc([0,∞), H1
per(Y )) ∩ L∞

loc([0,∞) × Y ) be a solution
of (1.1). We say that u is an entropy solution of (1.1) if u satisfies the inequality
(1.10)
∂t(u(t, y)−v(y, p))++divy

[
1u>v(y,p)(A(y, u) −A(y, v(y, p)))

]
−Δy(u(t, y)−v(y, p))+ ≤ 0

for all p ∈ R and in the sense of distributions on [0,∞) × Y .
Notice that this notion of entropy solution is different (at least in its formulation)

from the one of Kruzkhov, since the latter is based on the comparison with constants.
However, inequality (1.10) was known by Kruzkhov, since it can be considered as a
particular case of the comparison principle (notice that v(y, p) is a stationary solution
of (1.1)). It will be proved in the second section, under suitable regularity assumptions
on the flux function A, that all solutions of (1.1) are entropy solutions in the sense of
Definition 1.2.

Let us mention here an important application of inequality (1.10) and of the
kinetic formulation which follows from (1.10): we give in this paper another proof for
a homogenization result proved in [3], which we recall here for the reader’s convenience.

Proposition 1.3. Assume that A ∈ W 1,∞
per,loc(R

N+1)N satisfies the assumptions

of Proposition 1.1, and that ∂yjai ∈ L1
loc(R

N+1), ∂vai ∈ L1
loc(R

N+1) for 1 ≤ i ≤ N+1,
1 ≤ j ≤ N .

For ε > 0, let vε ∈ L∞
loc([0,∞)×R

N )∩C([0,∞), L1
loc(R

N ))∩L2
loc([0,∞), H1

loc(R
N ))

be a solution of the parabolic scalar conservation law:

∂vε

∂t
(t, x) +

N∑
i=1

∂

∂xi
Ai

(x
ε
, vε(t, x)

)
− εΔxv

ε = 0, t ≥ 0, x ∈ R
N ,(1.11)

vε(t = 0) = v0

(
x,

x

ε

)
.(1.12)

Let p ∈ R, and let v = v(y, p) be the unique solution in H1
per(Y ) of the cell problem

(1.7). Define

(1.13) Āi(p) :=
1

|Y |

∫
Y

Ai(y, v(y, p)) dy.

Assume also that v0 is “well-prepared,” i.e., satisfies

(1.14) v0(x, y) = v(y, v̄0(x))

for some v̄0 ∈ L1 ∩ L∞(RN ).
Then as ε goes to 0,

vε(t, x) − v
(x
ε
, v̄(t, x)

)
→ 0 in L2

loc([0,∞) × R
N ),

where v̄ = v̄(t, x) ∈ C([0,∞), L1(RN ))∩L∞([0,∞)×R
N ) is the unique entropy solution

of the hyperbolic scalar conservation law

(1.15)

⎧⎪⎨
⎪⎩

∂v̄

∂t
+

N∑
i=1

∂Āi(v̄(t, x))

∂xi
= 0,

v̄(t = 0, x) = v̄0(x) ∈ L1 ∩ L∞(RN ).
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Actually, the result proved in section 3 is more general than Proposition 1.3 but is
much more complicated to state at this stage. In particular, we work in an L1 rather
than L∞ setting, which appears to us to be entirely new for this kind of equation; this
point will be developed a little further in Remark 3.2. We emphasize that inequality
(1.10) was already used in [3], but we believe that the proof given here provides better
insight into the homogenization process.

Let us mention related results of W. E (see [6], [7]) and W. E and Serre (see [8]),
who use two-scale Young measures instead of the kinetic formulation in a hyperbolic
context. In fact, the proof of [3] is close to those of these articles, although the viscous
term in (1.11) is absent from the problems studied by W. E in [6] and W. E and Serre
in [8]. Indeed, the scaling in our problem is chosen so that the viscosity has the same
order of magnitude than the size of the oscillations in the flux function, and thus
the viscosity has an effect at a microscopic level only. Notice that the (macroscopic)
homogenized problem (1.15) is hyperbolic; this justifies the use of hyperbolic tools,
such as Young measures or a kinetic formulation, in the study of (1.11).

We also wish to point out that the expression of the homogenized flux in the case
studied by W. E and Serre in [8] when N = 1 is the same as that in (1.13). However,
the corrector v appearing in the expression is not the same in both cases: indeed, in
the hyperbolic case studied by W. E and Serre, v is a solution of

∂yA(y, v(y, p)) = 0.

In particular, v is not unique in general, although the homogenized flux is. We refer the
interested reader to [8] and [12] for details; the latter uses an equivalent formulation
using Hamilton–Jacobi equations.

The organization of this article is as follows: first we derive a kinetic formula-
tion for (1.1). As usual, this allows us to define a weaker notion of solutions of the
parabolic conservation law (1.1), called kinetic solutions. We also derive formally the
L1 contraction principle for kinetic solutions of (1.1). Then we use this formulation
to give another proof of Proposition 1.3 in section 3. Eventually, in section 4 we give a
rigorous proof for the derivation of the L1 contraction principle announced in section 2.

2. Kinetic formulation. This section is devoted to the derivation of a kinetic
formulation for (1.1). Throughout the section, we assume that the hypotheses of
Proposition 1.1 are satisfied, that is, A ∈ W 1,∞

per,loc(Y × R), and A satisfies either
(1.4), (1.5), or (1.6). Additionally, we assume that

(2.1) a(y, ·) ∈ C(R)N for a.e. y ∈ Y.

Under such hypotheses, the following result is easily deduced from Proposition 1.1.
Lemma 2.1. For a.e. y ∈ Y , p �→ v(y, p) is a C1 diffeomorphism from R to

(α−(y), α+(y)), where α±(y) = limp→±∞ v(y, p).
Its reciprocal application is denoted by w(y, ·)

w(y) : (α−(y), α+(y)) → R.

Remark 2.1. Notice that +∞ (resp., −∞) is an admissible value for α+ (resp.,
α−). In fact, it can be checked that

〈α±〉 = ±∞,

and there are cases when

α±(y) = ±∞ ∀y ∈ Y.



KINETIC FORMULATION FOR A PARABOLIC CONSERVATION LAW 895

Indeed, for all y ∈ Y , the family (v(y, p) − v(y, 0))p>0 is increasing in p and
nonnegative. Moreover,

〈v(·, p) − v(·, 0)〉 = p ∀p ∈ R.

Hence according to Lebesgue’s monotone convergence theorem, 〈α+ − v(·, 0)〉 = +∞,
and thus 〈α+〉 = +∞. If we assume additionally that m = 0 in hypothesis (1.2) (i.e.,
we assume that (1.4) is satisfied), then it is proved in [3, Lemma 6] that

lim
p→+∞

inf
y∈Y

v(y, p) = +∞.

In that case, α+(y) = +∞ for all y ∈ Y .
We begin our study of (1.1) with the following lemma.
Lemma 2.2. Let u ∈ C([0,∞);L1(Y )) ∩ L2

loc(0,∞;H1
per(Y )) ∩ L∞

loc([0,∞) × Y )

be an arbitrary solution of (1.1). Assume that the flux A ∈ W 1,∞
per,loc(Y × R) satisfies

(2.1) and the hypotheses of Proposition 1.1.
Then the function u satisfies the following equality in the sense of distributions

on [0,∞) × Y × Rp:
(2.2)
∂t(u− v(y, p))+ + divy

[
1u>v(y,p)(A(y, u) −A(y, v(y, p)))

]
− Δy(u− v(y, p))+ = −m,

where

m(t, y, p) =
1

∂v
∂p (y, p)

|∇y(u(t, y) − v(y, p))|2 δ(p = w(y, u(t, y)))

is a nonnegative measure on (0,∞) × Y × R.
Consequently, u is an entropy solution of (1.1) in the sense of Definition 1.2.
We postpone the proof of Lemma 2.2 to the end of section 2. Let us stress that

(2.2) is to be understood in the sense of distributions in [0,∞) × Y × R. Such an
equality would indeed be meaningless were it considered for p ∈ R fixed.

Let us now write down the kinetic formulation for (1.1). Let u be an entropy
solution of (1.1); differentiating (2.2) with respect to p leads to
(2.3)
∂

∂t

(
∂v(y, p)

∂p
f+

)
+

∂

∂yi

(
∂v(y, p)

∂p
ai(y, v(y, p))f

+

)
−Δy

(
∂v(y, p)

∂p
f+

)
=

∂m(t, y, p)

∂p
,

where f+(t, y, p) = 1u(t,y)>v(y,p).
The same kind of equation holds for f− = 1u(t,y)<v(y,p) = 1 − f+ (recall (1.9)):

(2.4)
∂

∂t

(
∂v(y, p)

∂p
f−
)

+
∂

∂yi

(
∂v(y, p)

∂p
ai(y, v(y, p))f

−
)
−Δy

(
∂v(y, p)

∂p
f−
)

= −∂m(t, y, p)

∂p
.

This leads to a notion of kinetic solution.
Definition 2.3. Assume that the flux A satisfies the hypotheses of Proposition

1.1 and (2.1). Let u = u(t, y) ∈ C([0,∞);L1(Y )) ∩ L2
loc(0,∞;H1

per(Y )) such that

α−(y) < u(t, y) < α+(y) for a.e. (t, y) ∈ [0,∞) × Y.

We say that u is a kinetic solution of (1.1) if f+ = 1u(t,y)>v(y,p) satisfies (2.3)
in the sense of distributions with the initial data f+(t = 0, y, p) = 1u0(y)>v(y,p), and
if there exists a function μ ∈ L∞(R) such that μ(p) → 0 as |p| → ∞, and

(2.5)

∫ ∞

0

∫
Y

m(t, y, p) dy dt ≤ μ(p) in D′(R).
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Precisely, u is a kinetic solution of (1.1) if (2.5) holds and if for every test function
ψ = ψ(t, y, p) ∈ Dper([0,∞) × Y × R), we have

(2.6)

∫ ∞

0

∫
Y×R

f+(t, y, p)
∂v(y, p)

∂p
{∂tψ + ai(y, v(y, p))∂yiψ + Δyψ} dt dy dp

=

∫ ∞

0

∫
Y×R

m(t, y, p)∂pψ(t, y, p) dtdydp −
∫
Y×R

1u0(y)>v(y,p)
∂v(y, p)

∂p
ψ(0, y, p)dydp.

Notice that without any loss of generality, we can choose a function μ in (2.5)
which is nonincreasing on (0,∞) and nondecreasing on (−∞, 0).

It is easily checked that the notions of entropy and kinetic solutions are equivalent
as long as u is bounded in some kind of L∞ norm.

Proposition 2.4. Assume that A satisfies (2.1) and the hypotheses of Proposi-
tion 1.1. Let u = u(t, y) ∈ C([0,∞);L1(Y )) ∩ L2

loc(0,∞;H1
per(Y )). Assume that there

exist real numbers β1, β2 ∈ R such that

(2.7) v(y, β1) ≤ u(t, y) ≤ v(y, β2) for a.e. (t, y) ∈ (0,∞) × Y.

Then u is an entropy solution of (1.1) if and only if u is a kinetic solution.
We are then able to prove the L1 contraction principle thanks to the kinetic

formulation; we wish to emphasize that when u satisfies (2.7), this result is not new
by any means, and has been known since the articles of Kruzkhov [10], [11]. However,
we present here a different proof (see section 4), using merely regularizations by
convolution following [16], [17]. Moreover, we prove that the L1 contraction principle
holds for a larger class of solutions.

Theorem 2.5. Assume the hypotheses of Proposition 1.1 are satisfied, with a ∈
W 1,1

per,loc(Y × R)N , and

∂va ∈ L∞
loc(Y × R)N ,(2.8)

∀R > 0, ∃ α,C > 0, ∀(y, y′) ∈ Y 2, ∀v ∈ (−R,R) |a(y, v) − a(y′, v)| ≤ C|y − y′|α.
(2.9)

Let u1, u2 be two kinetic solutions of (1.1). Then

(2.10) ||(u1(t) − u2(t))+||L1(Y ) ≤ ||(u1(t = 0) − u2(t = 0))+||L1(Y ).

Moreover, if for all T > 0

(2.11)

∫ T

0

∫
Y

∫
R

∂v(y, p)

∂p
|a(y, v(y, p))|1u2(t,y)<v(y,p)<u1(t,y) dt dy dp < +∞,

then the following inequality holds in the sense of distributions on [0,∞) × Y :

(2.12)
∂

∂t
(u1 − u2)+ +

∂

∂yi
[1u1>u2 (Ai(y, u1) −Ai(y, u2))] − Δy(u1 − u2)+ ≤ 0.

Remark 2.2. Hypothesis (2.11) is necessary in order to retrieve inequality (2.12).
However, if the sole purpose is to derive the L1 contraction inequality (2.10), hypoth-
esis (2.11) is no longer required. Hypothesis (2.11) implies that the function

(t, y) �→ 1u1>u2 [A(y, u1(t, y)) −A(y, u2(t, y))]
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belongs to L1((0, T ) × Y )N for all T > 0. Notice that such an integrability property
is not obvious in general, since we no longer assume that u ∈ L∞

loc, and thus A(·, u)
does not belong to L∞

loc either.

Let us explain formally how inequality (2.12) is derived: let u1, u2 be two kinetic
solutions of (1.1). We set f1 = 1u1(t,y)>v(y,p), f2 = 1u2(t,y)<v(y,p),

mi = |∇yui(t, y) −∇yv(y, p)|2
1

∂v(y,p)
∂p

δ(p = w(y, ui(t, y))), i = 1, 2.

Then

∂

∂t

(
∂v

∂p
f1

)
+

∂

∂yi

(
∂v

∂p
ai(y, v(y, p))f1

)
− Δy

(
∂v

∂p
f1

)
=

∂m1

∂p
,(2.13)

∂

∂t

(
∂v

∂p
f2

)
+

∂

∂yi

(
∂v

∂p
ai(y, v(y, p))f2

)
− Δy

(
∂v

∂p
f2

)
= −∂m2

∂p
.(2.14)

Multiply (2.13) by f2, and (2.14) by f1; recalling (1.9), we add the two equations thus
obtained and are led to

(2.15)
∂

∂t

(
∂v

∂p
f1f2

)
+

∂

∂yi

(
∂v

∂p
ai(y, v(y, p))f1f2

)
− Δy

(
∂v

∂p
f1f2

)

=
∂m1

∂p
f2 −

∂m2

∂p
f1 − 2

∂v

∂p
∇yf1 · ∇yf2.

Set ϕi(t, y) = w(y, ui(t, y)) (i = 1, 2), i.e., v(y, ϕi(t, y)) = ui(t, y). Then

∇yϕi(t, y) =
1

∂v
∂p (y, ϕi(t, y))

[∇yui(t, y) −∇yv(y, ϕi(t, y))] .

Notice that

f1 = 1u1(t,y)>v(y,p) = 1ϕ1(t,y)>p,

f2 = 1u2(t,y)<v(y,p) = 1ϕ2(t,y)<p,

and thus, setting η1 = 1 and η2 = −1,

∂fi
∂p

= −ηi δ(p = ϕi(t, y)),

∇yfi = ηi∇yϕi(t, y)δ(p = ϕ1(t, y)).

We refer to the proof of Lemma 2.2, at the end of the present section, for a derivation
of the above equalities in the sense of distributions on [0,∞) × Y × R.

On the other hand, for any function G ∈ W 1,∞
loc (R),

∫
R

G′(v(y, p))f1f2
∂v(y, p)

∂p
dp =

∫
R

G′(v(y, p))1u2(t,y)<v(y,p)<u1(t,y)
∂v(y, p)

∂p
dp

= 1u2(t,y)<u1(t,y) [G(u1(t, y)) −G(u2(t, y))] .
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Hence, integrating (2.15) with respect to p on R yields

∂

∂t
(u1 − u2)+ +

∂

∂yi
1u2(t,y)<u1(t,y) [Ai(y, u1(t, y)) −Ai(y, u2(t, y))] − Δy(u1 − u2)+

=

∫
R

−m1∂pf2 + m2∂pf1 − 2
∂v

∂p
∇yf1 · ∇yf2 dp

= −
∫

R

|∇yu1(t, y) −∇yv(y, ϕ1)|2
1

∂v(y,p)
∂p

δ(p = ϕ1)δ(p = ϕ2)dp

−
∫

R

|∇yu2(t, y) −∇yv(y, ϕ2)|2
1

∂v(y,p)
∂p

δ(p = ϕ2)δ(p = ϕ1)dp

+ 2

∫
R

∂v

∂p
(y, p) ∇yϕ1(t, y) · ∇yϕ2(t, y)δ(p = ϕ1)δ(p = ϕ2)dp

= −
∫

R

1
∂v(y,p)

∂p

δ(p = ϕ1)δ(p = ϕ2)|∇y(u1 − u2)(t, y) −∇yv(y, ϕ1) + ∇yv(y, ϕ2)|2 dp

≤ 0,

which is exactly the L1 contraction principle between u1 and u2.

However, the calculations above are entirely formal, since the product of Dirac
masses is not a well-defined object, and f1, f2 do not have enough regularity to perform
nonlinear calculations. Thus, regularizations are necessary in order to justify the
contraction principle, which is proved in section 4.

Proof of Lemma 2.2. Notice first that since u(t, y) and v(y, p) are both solutions
of (1.1), we always have

∂t [u(t, y) − v(y, p)] + divy [A(y, u) −A(y, v(y, p))] − Δy [u(t, y) − v(y, p)] = 0.

Thanks to the regularizing parabolic (resp., elliptic) term, the regularity of u (resp.,
v) is sufficient for us to use the chain rule, and thus

1u(t,y)>v(y,p)∂t [u(t, y) − v(y, p)] = ∂t [u(t, y) − v(y, p)]+ ,

1u(t,y)>v(y,p)divy [A(y, u) −A(y, v(y, p))] = divy

[
1u(t,y)>v(y,p) (A(y, u) −A(y, v(y, p)))

]
,

1u>v(y,p)Δy [u− v(y, p)] = Δy [u− v(y, p)]+ −∇y1u>v(y,p) · ∇y [u− v(y, p)] .

Similar calculations can be found, for instance, in [10], [11] and are in fact at the
heart of Kruzkhov’s method for proving the L1 contraction principle.

The major difficulty comes from the term ∇y1u(t,y)>v(y,p). Notice that 1u(t,y)>v(y,p)

= 1w(y,u(t,y))>p. When p ∈ R is considered as a fixed parameter, we have

∇y1u>v(y,p) = ν ⊗Hn−1
∂ω ,

where ω := {y ∈ Y ; w(y, u(t, y)) > p}, Hn−1
∂ω is the (n − 1)-dimensional Hausdorff

measure along {w(y, u(t, y)) = p}, and ν is the unit normal vector field oriented
from {w(y, u(t, y)) < p} to {w(y, u(t, y)) > p}. In general, no simplification occurs.
However, when deriving a kinetic formulation for (1.1), we are interested only in the
computation of ∇y1u>v(y,p) in the sense of distributions on [0,∞) × Y × Rp (see, for
instance, [14], [13], and [17, section 3.2]). In that case, we can give another expression
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for the gradient of 1u>v(y,p), namely,

∇y1u(t,y)>v(y,p) = ∇y1w(y,u(t,y))>p

= ∇y (w(y, u(t, y))) δ(p = w(y, u(t, y)))

=
1

∂v
∂p (y, p)

∇y(u(t, y) − v(y, p))δ(p = w(y, u(t, y))).

Notice that the above expression, although meaningless if considered for p ∈ R fixed,
is well-defined in the sense of distributions on [0,∞) × Y × Rp.

Thus (2.2) is proved. Consequently, all solutions of (1.1) satisfy inequality (1.10)
in the sense of distributions on [0,∞) × Y × R. And it is then easily checked that
if a solution u of (1.1) satisfies (1.10) in the sense of distributions in t, y, p, then u
satisfies (1.10) for all p in the sense of distributions in t, y.

3. An application to homogenization. We provide here a proof for Proposi-
tion 1.3. The kinetic formulation derived above allows a better understanding of the
homogenization process, and the proof is much more elegant than the original one in
[3], which used two-scale Young measures.

We will work in the context of kinetic solutions of (1.11): Let ε > 0, and let
uε ∈ L∞

loc([0,∞);L1
loc(R

N )) ∩ L2
loc(0,+∞;H1

loc(R
N )). We assume that

fε(t, x, p) := 1v( x
ε ,p)<uε(t,x)

is a solution in the sense of distributions of

∂t

(
vp

(x
ε
, p
)
fε
)

+ ∂xi

[
ai

(x
ε
, v
(x
ε
, p
))

vp

(x
ε
, p
)
fε
]
− εΔx

(
vp

(x
ε
, p
)
fε
)

= ∂pm
ε,

fε(t = 0) = 1v( x
ε ,p)<u0(x, xε ),(3.1)

where

mε(t, x, p) := ε
∣∣∣∇xu

ε(t, x) −∇yv
(x
ε
, p
)∣∣∣2 1

vp
(
x
ε , p
)δ (p = w

(x
ε
, uε(t, x)

))
.

We assume that the hypotheses of Proposition 1.1 are satisfied, together with (2.1),
so that w(y, p) is well-defined (see Lemma 2.1). We have used the notation vp(y, p) =
∂pv(y, p).

The hypotheses on fε are the following:
(H1) u0(x, y) = v(y, ū0(x)) for some ū0 ∈ L1(RN ).
(H2) u0 − v(y, 0) ∈ L1(RN , Cper(Y )); this means that∫

RN

sup
y∈Y

|v(y, ū0(x)) − v(y, 0)| dx < +∞,

which is slightly stronger than requiring ū0 ∈ L1.
(H3) fε(t, x, p) → 0 (resp., 1 − fε → 0) as p → +∞ (resp., as p → −∞) for a.e.

(t, x) ∈ [0,∞) × R
N and for all ε > 0. Equivalently,

α−

(x
ε

)
< uε(t, x) < α+

(x
ε

)
for a.e. (t, x) ∈ (0,∞) × R

N ,

where α− and α+ were defined in Lemma 2.1.
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(H4) For all ε > 0, there exists a function με ∈ L∞(R) such that με(p) → 0 as
|p| → ∞ and ∫ ∞

0

∫
RN

mε(t, x, p) dt dx ≤ με(p) ∀p ∈ R.

(H5) For all ε > 0, the function

(t, x, p) �→ ∂v

∂p

(x
ε
, p
)

[1p>0f
ε(t, x, p) + 1p<0(1 − fε(t, x, p))]

belongs to L∞
loc([0,∞), L1(RN+1)). Equivalently, the function

(t, x) �→ uε(t, x) − v
(x
ε
, 0
)

belongs to L∞
loc([0,∞), L1(RN )).

A function uε ∈ L∞
loc([0,∞);L1

loc(R
N )) ∩ L2

loc(0,+∞;H1
loc(R

N )) such that fε is a
solution of (3.1) and such that (H3)–(H5) are satisfied is called a kinetic solution of
the parabolic scalar conservation law (1.11). Notice that we do not assume that (1.11)
is satisfied in the sense of distributions.

Let us now state the result we prove in this section.
Theorem 3.1. Assume that A satisfies the hypotheses of Proposition 1.1 and

(2.1). Let uε ∈ L∞
loc([0,∞);L1

loc(R
N )) ∩ L2

loc(0,+∞;H1
loc(R

N )) be a kinetic solution
of (1.11) such that hypotheses (H1)–(H5) are satisfied. Then

uε(t, x) − v
(x
ε
, ū(t, x)

)
→ 0

in L1
loc([0,∞) × R

N ), where ū ∈ L∞([0,∞), L1(RN )) is the kinetic solution of (1.15)
with initial data ū0.

Remark 3.1. When hypothesis (H1) on the microscopic profile of the initial data
is not satisfied, it is proved in the L∞ case in [4] that there is an initial layer of typical
size ε, during which the solution adapts itself to the profile dictated by the microscopic
structure. The proof of this result relies on the parabolic structure of the equation,
which cannot be used here since the kinetic formulation is essentially a hyperbolic
tool.

Remark 3.2. It can be checked that (H2)–(H5) are always satisfied when ū0 ∈
L∞ ∩ L1(RN ) and uε ∈ L∞

loc is an entropy solution. However, we wish to stress that
hypothesis (H3) does not imply that uε ∈ L∞

loc([0,∞) × R
N ) in general. For instance,

in the case when hypothesis (1.4) is satisfied, we have α± = ±∞, as explained in
Remark 2.1. Hence in that case, hypothesis (H3) is always satisfied, and the only
bound required on uε is (H5), which is an L1 bound. Consequently, we refer to (H2)–
(H5) as an “L1 setting,” in contrast with the “L∞ setting” of entropy solutions.

At last, let us mention that the function με in hypothesis (H4) can in fact be
derived from (3.1) (see Lemma 3.2 below) if it is known that (H4) holds for some
function με; nonetheless, (H4) cannot be avoided and is necessary for Lemma 3.2 to
hold.

We will prove the convergence in several steps; first, we introduce the two-scale
weak limit f(t, x, y, p) of fε. Then the key point in the analysis is to show that
f(t, x, y, p) = 1p<ū(t,x), where ū is the solution of the homogenized problem. Hence,
we first prove that f does not depend on y. Then we derive the macroscopic equation
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solved by f and prove that f(t = 0) = 1p<ū0(x); this entails that f = 1p<ū, and ū
can be identified thanks to the equation solved by f . Eventually, we prove the strong
convergence in L1

loc.
We begin with a few preliminary bounds on mε and fε, of which we give only a

rough idea of the proof (see, for instance, [17, Proposition 4.1.7 and Lemma 3.1.7] for
the derivation of similar inequalities).

Lemma 3.2. Assume that (H1)–(H5) are satisfied.
• There exists a constant C > 0 such that for all ε > 0, for a.e. t > 0,∫

RN+1

vp

(x
ε
, p
)

(1p>0f
ε(t, x, p) + 1p<0(1 − fε)(t, x, p)) dx dp ≤ C.

• There exists a constant C > 0 such that for all p0 > 0, ε > 0,∫ ∞

0

∫
RN

mε(t, x, p0) dx dt ≤
∫

RN

(
v
(x
ε
, ū0(x)

)
− v
(x
ε
, p0

))
+

dx ≤ C.

The same kind of bound holds for p0 < 0.
Thus mε((0,+∞) × R

N × (−R,R)) is bounded for all R > 0 uniformly in ε.
• For all t ≥ 0, for all p0 > 0, and for all ε > 0,

(3.2)∫
RN

(
uε(t, x) − v

(x
ε
, p0

))
+

dx ≤
∫

RN

(
v
(x
ε
, ū0(x)

)
− v
(x
ε
, p0

))
+

dx.

We deduce from the second bound in the lemma that we can take in (H4)

με(p) := 1p>0

∫
RN

(
v
(x
ε
, ū0(x)

)
− v
(x
ε
, p
))

+
dx

+ 1p<0

∫
RN

(
v
(x
ε
, ū0(x)

)
− v
(x
ε
, p
))

−
dx.

Then με is bounded in L∞, uniformly in ε. Moreover, it will be proved in the very
last step of the proof that for all p, με(p) converges as ε → 0 toward μ0(p) for some
function μ0 ∈ L∞(R) vanishing at infinity.

Proof. Thanks to the integrability assumptions (H4)–(H5) on fε and mε, we
prove that for any test function S′ ∈ D(R), for all t > 0, we have

∫
RN+1

S′(p)fε(t, x, p)vp

(x
ε
, p
)
dx dp−

∫
RN+1

S′(p)fε(t = 0, x, p)vp

(x
ε
, p
)
dx dp

= −
∫ t

0

∫
RN+1

mε(t, x, p)S′′(p) dt dx dp.

Then, using the fact that με vanishes at infinity, we prove that the above equality
holds for more general functions S. In particular, the choice S′(p) = 1p>0 (and thus
S′′(p) = δ(p = 0)) yields the first bound on fε, and the choice S′(p) = 1p>p0 for some
p0 > 0 gives the one on mε. Moreover∫

RN+1

1p>p0f
ε(t, x, p)vp

(x
ε
, p
)
dx dp =

∫
RN+1

1v( x
ε ,p0)<v( x

ε ,p)<uε(t,x)vp

(x
ε
, p
)
dx dp

=

∫
RN

[
uε(t, x) − v

(x
ε
, p0

)]
+

dx,
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and thus the choice S′(p) = 1p>p0
also yields the bound on uε.

We now use the concept of two-scale convergence, defined by Allaire in [1] follow-
ing an idea of Nguetseng (see [15]), in order to find a two-scale limit for fε.

Proposition 3.3. Let {vε}ε>0 be a bounded sequence of L2(Ω), where Ω is an
open set of R

N . Then as ε → 0, there exists a subsequence, still denoted by ε, and
v0 ∈ L2(Ω × Y ), such that∫

Ω

ψ
(
x,

x

ε

)
vε(x) dx →

∫
Ω×Y

ψ(x, y)v0(x, y) dx dy

for all ψ ∈ Cper(Y, L
2(Ω)).

It is then said that the sequence {vε}ε>0 “two-scale” converges to v0.
This concept is easily generalized to functions in L∞ (the proof goes along the

same lines as the one given in [1]), which allows us to prove the following.
Lemma 3.4. There exists a function f(t, x, y, p) ∈ L∞((0,∞)×R

N ×Y ×R) and
a subsequence, still denoted by ε, such that fε two-scale converges to f .

It is easily checked that 0 ≤ f ≤ 1 almost everywhere. Since vp, f , and 1− f are
nonnegative, Lemma 3.2 entails that there exists a constant C such that∫

RN×Y×R

{1p>0f(t, x, y, p) + 1p<0(1 − f(t, x, y, p))} vp(y, p)dxdydp ≤ C for a.e. t > 0.

The goal is now to identify the equations solved by f in order to prove that f
is an indicator function. Hence, we now focus on the microscopic (i.e., in y) and
macroscopic (i.e., in t, x) equations solved by f .

First step. Microscopic profile. Multiplying (3.1) by a test function of the form
εϕ (t, x, x/ε, p), with ϕ ∈ Dper((0,∞) × R

N × Y × R), and passing to the limit as
ε → 0 leads to the equation

(3.3) −Δy

(
∂v

∂p
f

)
+ divy

(
a(y, v(y, p))

∂v

∂p
f

)
= 0

in the sense of distributions on (0,∞)×R
N×Y ×R. Let us point out that a(y, v(y, p))

is an “admissible” test function in the sense of Allaire (see [1]) thanks to the continuity
assumption (2.1).

Then we regularize (3.3) in the variables t, x, y, p thanks to a convolution kernel,
and pass to the limit as the parameter of the regularization vanishes. We easily deduce
that (3.3) in fact holds almost everywhere in t, x, p in the variational sense in y.

Notice that the constant function equal to 1 on Y, denoted by 1̄, is a positive
solution of the dual problem

−Δy 1̄ − a(y, v(y, p)) · ∇y 1̄ = 0.

Consequently, by the Krein–Rutman theorem, we infer that any solution g of the
equation

−Δyg + divy (a(y, v(y, p))g) = 0

can be written g(y) = c∂v(y,p)
∂p , where c is a constant in y (recall (1.9)).

Thus f(t, x, y, p) does not depend on y, and f = f(t, x, p).
Second step. Evolution equation. Now, we multiply (3.1) by a test function of

the form ϕ(t, x, p), with ϕ(t, x, p) = 0 when |p| ≥ R, R > 0 arbitrary; thanks to
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Lemma 3.2, mε((0,∞) × R
N × (−R,R)) is bounded uniformly in ε, and thus up to

the extraction of a subsequence, there exists a measure m̄R such that

mε ⇀ m̄R in w −M1((0,∞) × R
N × (−R,R)).

We define, for any p ∈ R,

ā(p) =
1

|Y |

∫
Y

a(y, v(y, p))
∂v

∂p
dy;

recall also that

1

|Y |

∫
Y

∂v

∂p
dy = 1.

Then f satisfies, in the sense of distributions on (0,∞) × R
N × (−R,R),

(3.4) ∂tf + divx(ā(p)f) =
∂m̄R

∂p
.

We deduce that for any 0 < R < R′, m̄R = m̄R′ on (0,∞) × R
N × (−R,R).

Consequently, the measure m̄, defined by m̄ = m̄R on (0,∞) × R
N × (−R,R), is

well-defined. Hence (3.4) holds in (0,∞) × R
N+1 with m̄R replaced by m̄, and m̄ ∈

C(Rp, w−M1([0,∞)×R
N
x )). Moreover the measure m̄ inherits the following property

from the bounds on mε: for almost every p ∈ R,

(3.5)

∫ ∞

0

∫
RN×Y

m̄(t, x, y, p) dt dx dy ≤ μ0(p),

and μ0 belongs to L∞ and vanishes at infinity, as we shall prove in the fourth step.
Equation (3.4) looks very much like the kinetic formulation for a homogeneous

and hyperbolic scalar conservation law (see, for instance, [14], [13], and [17, Chapter
3]). However, we have to work out a few points before coming to a conclusion.

Third step. Identification of f as an indicator function. First, the function which
occurs in the kinetic formulation is the function χ : R

2 → {1,−1, 0} defined by

χ(v, u) :=

⎧⎨
⎩

1 if 0 < v < u,
−1 if u < v < 0,
0 otherwise.

Here, if uε(t, x) − v (x/ε, ū(t, x)) converges strongly to 0, as we intend to prove, then
f = 1v(y,p)<v(y,ū(t,x)) = 1p<ū(t,x); hence, a good candidate for a function χ(v, ū(t, x))
seems to be

g(t, x, p) = 1p>0f − 1p<0(1 − f) = f − 1p<0.

The function g satisfies the same equation as f , and

sgn(p)g = 1p>0f + 1p<0(1 − f) = |g| ∈ [0, 1].

Moreover,

(3.6)
∂g

∂p
= δ(p = 0) + ∂pf.
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Recall that

∂pf
ε(t, x, p) = −δ

(
p− w

(x
ε
, uε(t, x)

))
;

Hence −∂pf
ε(t, x, p) is a nonnegative measure, uniformly bounded in ε on compact

sets of (0,∞) × R
N+1. Since ∂pf

ε weakly converges to ∂pf , we deduce that ∂pf is a
nonpositive locally finite measure.

It remains to check that

(3.7) g(t = 0, x, p) = χ(p, ū0(x));

this equality is in fact not obvious: if fε(t = 0, x, p) = f0 (x, x/ε, p), then it is false
in general that f(t = 0, x, y, p) = f0(x, y, p). Indeed, there might be initial layers of
typical size ε. These are not taken into account when passing to the two-scale limit
because the test functions do not select the microscopic information in time. In order
to see the possible initial layers, we should have taken test functions of the kind

ψ

(
t,
t

ε
, x,

x

ε
, p

)
.

Here, it is unnecessary to consider test functions which have microscopic oscilla-
tions in time because the initial data is well prepared. Hence, there is no initial layer
in this case. In other words, the uε are uniformly continuous in time at time t = 0
(with values in L1

loc). In terms of the kinetic formulation, this result follows directly
from the fact that

fε(t = 0, x, p) = 1v( x
ε ,p)<v( x

ε ,ū0(x)) = 1p<ū0(x).

Hence fε(t = 0) does not depend on ε. Consequently, multiplying (3.1) by a test
function ϕ(t, x, p) ∈ D([0,∞) × R

N+1) yields

∫ ∞

0

∫
RN+1

fε(t, x, p)
∂v

∂p

(x
ε
, p
){

∂tϕ + ai

(x
ε
, v
(x
ε
, p
))

∂xi
ϕ + εΔxϕ

}
dt dx dp

=

∫ ∞

0

∫
RN+1

mε(t, x, p)∂pϕ(t, x, p)dtdxdp−
∫

RN+1

∂v

∂p

(x
ε
, p
)
1p<ū0(x)ϕ(t = 0, x, p)dxdp.

Passing to the limit as ε → 0 entails that

f(t = 0, x, p) = 1p<ū0(x),

and thus

g(t = 0, x, p) = χ(p, ū0(x)).

Gathering (3.4), (3.5), (3.6), (3.7), we infer that g is a generalized kinetic solution
(see Definition 4.1.2 in [17]) of the scalar conservation law

∂u

∂t
+

∂Āi(u)

∂xi
= 0,

where

Ā′
i(p) = āi(p).
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Now, we can apply Theorem 4.3.1 in [17]: there exists ū(t, x) ∈ L∞([0,∞);L1(RN ))
such that g(t, x, p) = χ(p, ū(t, x)) almost everywhere, and ū is a kinetic solution of
the above scalar conservation law.

And since

1p>0f − 1p<0(1 − f) = χ(p, ū(t, x)),

we deduce that

f(t, x, p) = 1p<ū(t,x)

almost everywhere.
Fourth step. Strong convergence. Let us now prove that this result entails that

uε(t, x) − v
(x
ε
, ū(t, x)

)
→ 0

in L1
loc.
(i) Convergence of uε∧v(x/ε, p0) for all p0 > 0: Take an arbitrary cut-off function

ϕ = ϕ(t, x) with compact support in [0,∞) × R
N , p0 > 0 and set

ψ(t, x, y, p) := 1ū(t,x)<p<p0

∂v

∂p
(y, p) ϕ(t, x).

Since fε(t, x, p) = 1v( x
ε ,p)<uε(t,x) two-scale converges to f = 1p<ū(t,x), we deduce that

as ε → 0 ∫ ∞

0

∫
RN+1

ψ
(
t, x,

x

ε
, p
)
1v( x

ε ,p)<uε(t,x) dp dx dt → 0.

And the left-hand side can be transformed as follows:∫ ∞

0

∫
RN+1

ψ
(
t, x,

x

ε
, p
)
1v( x

ε ,p)<uε(t,x) dp dx dt

=

∫ ∞

0

∫
RN+1

1v( x
ε ,ū(t,x))<v( x

ε ,p)<uε(t,x)∧v( x
ε ,p0) ϕ(t, x)

∂v

∂p

(x
ε
, p
)
dp dx dt

=

∫ ∞

0

∫
RN+1

1v( x
ε ,ū(t,x))<v<uε(t,x)∧v( x

ε ,p0) ϕ(t, x)dv dx dt

=

∫ ∞

0

∫
RN

ϕ(t, x)
[
uε(t, x) ∧ v

(x
ε
, p0

)
− v
(x
ε
, ū(t, x)

)]
+

dx dt.

Take any compact set K ⊂ [0,∞)×R
N and choose a test function ϕ ∈ D([0,∞)×R

N )
such that 0 ≤ ϕ ≤ 1, and ϕ ≡ 1 on K. Then for all ε > 0,∥∥∥∥[uε(t, x) ∧ v

(x
ε
, p0

)
− v
(x
ε
, ū(t, x)

)]
+

∥∥∥∥
L1(K)

≤
∫ ∞

0

∫
RN

ϕ(t, x)
[
uε(t, x) ∧ v

(x
ε
, p0

)
− v
(x
ε
, ū(t, x)

)]
+

dx dt.

In the inequality above, we have used the fact that u+ = max(u, 0) is always nonneg-
ative. Thus we deduce that for all p0 > 0∥∥∥∥[uε(t, x) ∧ v

(x
ε
, p0

)
− v
(x
ε
, ū(t, x)

)]
+

∥∥∥∥
L1

loc([0,∞)×RN )

−→
ε→0

0.
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The same kind of result holds for p0 < 0.
(ii) Convergence of uε: Let T > 0, R > 0, and set Q := (0, T ) × BR. For p0 > 0

arbitrary, we have∥∥∥∥[uε(t, x) − v
(x
ε
, ū(t, x)

)]
+

∥∥∥∥
L1(Q)

≤
∥∥∥∥[uε ∧ v

(x
ε
, p0

)
− v
(x
ε
, ū(t, x)

)]
+

∥∥∥∥
L1(Q)

+

∥∥∥∥[uε − uε ∧ v
(x
ε
, p0

)]
+

∥∥∥∥
L1(Q)

≤
∥∥∥∥[uε ∧ v

(x
ε
, p0

)
− v
(x
ε
, ū(t, x)

)]
+

∥∥∥∥
L1(Q)

+

∥∥∥∥[uε − v
(x
ε
, p0

)]
+

∥∥∥∥
L1(Q)

≤
∥∥∥∥[uε ∧ v

(x
ε
, p0

)
− v
(x
ε
, ū(t, x)

)]
+

∥∥∥∥
L1(Q)

+ T

∫
RN

[
v
(x
ε
, ū0(x)

)
− v
(x
ε
, p0

)]
+
dx

thanks to inequality (3.2).
According to (H2), we have [v(y, ū0) − v(y, p0)]+ ∈ L1(RN ; Cper(Y )); thus, using

a result of Allaire (see [1]), we deduce∫
RN

[
v
(x
ε
, ū0(x)

)
− v
(x
ε
, p0

)]
+

dx →
∫

RN×Y

[v (y, ū0(x)) − v (y, p0)]+ dx dy

as ε → 0 for all p0 > 0. Since || (v(y, p) − v(y, p′))+ ||L1(Y ) = (p−p′)+ for all p, p′ ∈ R,
we derive the bound∫ T

0

∫
BR

[
uε(t, x) − v

(x
ε
, ū(t, x)

)]
+

dx dt

≤
∫ T

0

∫
BR

[
uε(t, x) ∧ v

(x
ε
, p0

)
− v
(x
ε
, ū(t, x)

)]
+

dx dt

+ T

∣∣∣∣
∫

RN

[
v
(x
ε
, ū0(x)

)
− v
(x
ε
, p0

)]
+

dx− ||(ū0 − p0)+||L1(RN )

∣∣∣∣
+T ||(ū0 − p0)+||L1(RN ).

In the above inequality, take p0 large enough so that ||(ū0 − p0)+||L1(RN ) is small
enough, and then for this p0, take ε > 0 small enough so that the two other terms are
small (notice that the first one vanishes thanks to the first step). We deduce that[

uε(t, x) − v
(x
ε
, ū(t, x)

)]
+
→ 0

in L1
loc([0,∞) × R

N ), and Theorem 3.1 is proved.
Moreover, we have proved that for all p > 0,

lim
ε→0

με(p) = lim
ε→0

∫
RN

[
v
(x
ε
, ū0(x)

)
− v
(x
ε
, p
)]

+
dx

=

∫
RN×Y

[v (y, ū0(x)) − v (y, p)]+ dx dy

= ||(ū0 − p)+||L1(RN ) =: μ0(p).

Thus μ0 vanishes at infinity, and the result stated after Lemma 3.2 holds.
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4. Rigorous proof of the L1 contraction principle. This section is devoted
to the proof of inequality (2.12) under assumption (2.11) and the hypotheses of The-
orem 2.5. The main ideas behind the proof were exposed in the formal calculations
of section 2; however, regularizations are necessary in order to justify nonlinear ma-
nipulations of the type

f1∂tf2 + f2∂tf1 = ∂t(f1f2),

as well as the reduction of the right-hand side.
As in [16], [17, Chapter 4], we will merely regularize the equation by convolution;

let ε > 0 be a small parameter, ζ1 ∈ D(R), ζ2 ∈ D(RN ), ζ3 ∈ D(R), such that

ζi ≥ 0 (i = 1, 2, 3),

supp ζ1 ⊂ [−1, 0], supp ζ2 ⊂ B1, supp ζ3 ⊂ [−1, 1], ζ1(0) = 0,∫
R

ζ1 =

∫
RN

ζ2 =

∫
R

ζ3 = 1.

We set, for ε > 0, (t, x, p) ∈ R
N+2,

φε(t, x, p) :=
1

εN+2
ζ1

(
t

ε

)
ζ2

(x
ε

)
ζ3

(p
ε

)
,

and for (t, x, p) ∈ [0,∞) × R
N × R,

fε
i (t, x, p) =

∫
RN+2

fi(s, z, q)φε(t− s, x− z, p− q) ds dz dq,

mε
i (t, x, p) =

∫
RN+2

mi(s, z, q)φε(t− s, x− z, p− q) ds dz dq.

(Notice that the convolution in the space variable x is meant in the whole of R
N : fi

is thus considered as a function defined on [0,∞) × R
N × R, periodic with period Y

in its second variable. The function fε
i is of course Y -periodic as well.)

We begin with the derivation of the equation solved by fε.

Lemma 4.1. Set ãi(y, p) = ai(y, v(y, p))
∂v(y,p)

∂p for 1 ≤ i ≤ N , y ∈ Y , p ∈ R.

Then for ε < 1/2, fε
j (j = 1, 2) is a classical solution of

(4.1)
∂

∂t

(
∂v

∂p
fε
j

)
+

∂

∂yi

(
ãi(y, p)f

ε
j

)
− Δy

(
∂v

∂p
fε
j

)
= ηj

∂mε
j

∂p
+ rεj ,

where η1 = 1, η2 = −1, and the error term rεj is equal to

rεj (t, y, p) =
∂

∂t

[
∂v

∂p
(y, p)fε

j (t, y, p) −
(
∂v

∂p
fj

)
∗ φε(t, y, p)

]

+
∂

∂yi

[
ãi(y, p)f

ε
j (t, y, p) − (ãifj) ∗ φε(t, y, p)

]
− Δy

[
∂v

∂p
(y, p)fε

j (t, y, p) −
(
∂v

∂p
fj

)
∗ φε(t, y, p)

]
.

Moreover, for all 0 < ε < 1/2, for all p ∈ R,∫ ∞

0

∫
Y

mε
i (t, y, p) dt dy ≤ max(μi(p + 1), μi(p− 1)),
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where the functions μi were introduced in hypothesis (2.5) in Definition 2.3.
We postpone the proof of Lemma 4.1 until the end of the section.
Now, since fε

j is smooth we can multiply (4.1) written for fε
1 (resp., fε

2 ) by fε
2

(resp., fε
1 ) and add the two equations thus obtained. Following the calculations in

section 2 leads to

∂

∂t

(
∂v

∂p
fε
1f

ε
2

)
+

∂

∂yi
(ãi(y, p)f

ε
1f

ε
2 ) − Δy

(
∂v

∂p
fε
1f

ε
2

)

=
∂mε

1

∂p
fε
2 − ∂mε

2

∂p
fε
1 − 2

∂v

∂p
∇yf

ε
1 · ∇yf

ε
2 + rε1f

ε
2 + rε2f

ε
1 .

Let R > 0 arbitrary, and let KR ∈ D(R) be a cut-off function such that

0 ≤ KR(p) ≤ 1, |K ′
R(p)| ≤ 2 ∀p ∈ R,

KR(p) = 1 ∀p ∈ [−R,R],

KR(p) = 0 ∀p ∈ (−∞,−R− 1] ∪ [R + 1,+∞).

Classically, the following convergence results hold for any test function θ = θ(t, y) ∈
Dper([0,∞) × Y ) (recall (2.11)):

lim
R→∞

lim
ε→0

∫ ∞

0

∫
Y×R

∂v

∂p
(y, p)fε

1f
ε
2θ(t, y)KR(p) dt dy dp =

∫
Y

(u1 − u2)+θ(t, y) dt dy,

lim
R→∞

lim
ε→0

∫ ∞

0

∫
Y×R

ãi(y, p)f
ε
1f

ε
2∂yiθ(t, y)KR(p) dt dy dp

=

∫ ∞

0

∫
Y

1u1>u2
[Ai(y, u1) −Ai(y, u2)] ∂yi

θ(t, y) dt dy.

(If one is interested in deriving (2.10), without assumption (2.11), instead of (2.12),
one should merely take θ ∈ D([0,∞)), independent of y, at this stage; the left-hand
side in the second equality above is zero in that case. The rest of the proof remains
unchanged.)

On the other hand, it is easily proved that the first order terms in rεj go to 0 in
L1

loc((0,∞) × R
N+1) as ε → 0 thanks to the assumption a ∈ W 1,1

loc . Hence, we now
focus on the convergence of

∂mε
1

∂p
fε
2 − ∂mε

2

∂p
fε
1 − 2

∂v

∂p
∇yf

ε
1 · ∇yf

ε
2

and the second order terms in rεj , that is,

−Δy

[
∂v

∂p
(y, p)fε

1 (t, y, p) −
(
∂v

∂p
f1

)
∗ φε(t, y, p)

]
fε
2 ,

−Δy

[
∂v

∂p
(y, p)fε

2 (t, y, p) −
(
∂v

∂p
f2

)
∗ φε(t, y, p)

]
fε
1 .

In the following, we set

ϕi(t, y) = w(y, ui(t, y)) (i.e., v(y, ϕi(t, y)) = ui(t, y) ),(4.2)

γi(t, y) =
1

∂v
∂p (y, ϕi(t, y))

[∇yui(t, y) − (∇yv)(y, ϕi(t, y))] = ∇yϕi(t, y).(4.3)
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We recall that

mi(t, y, p) = |∇yϕi(t, y)|2
∂v

∂p
(y, ϕi(t, y)) δ(p = ϕi(t, y))(4.4)

= |γi|2(t, y)
∂v

∂p
(y, ϕi(t, y)) δ(p = ϕi(t, y)),(4.5)

∇yfi(t, y, p) = ηi∇yϕi(t, y)δ(p = ϕi(t, y))(4.6)

= ηiγi(t, y)δ(p = ϕi(t, y)),(4.7)

∂pfi = −ηiδ(p = ϕi(t, y))(4.8)

for i = 1, 2, where η1 = 1 and η2 = −1.
First, for any test function θ = θ(t, y) ∈ Dper([0,+∞) × Y ) such that θ ≥ 0, for

ε < 1, R > 1, we claim that∫ ∞

0

∫
Y×R

[
∂mε

1

∂p
fε
2 − ∂mε

2

∂p
fε
1 − 2

∂v

∂p
∇yf

ε
1 · ∇yf

ε
2

]
θ(t, y)KR(p) dt dy dp

≤
∫ ∞

0

∫
R2N+2

∫
Y×R

φε(t− s1, y − y1, p− ϕ1)φ
ε(t− s2, y − y2, p− ϕ2)θ(t, y)KR(p)

× 2

[
γ1 · γ2

(
∂v

∂p
(y, p) −

√
∂v

∂p
(y1, ϕ1)

∂v

∂p
(y2, ϕ2)

)]
dy dp dy1 dy2 ds1 ds2 dt

+ 2||θ||∞ [μ1(R− 1) + μ1(−R + 1) + μ2(R− 1) + μ2(−R + 1)] .(4.9)

In the integral of the right-hand side above, γi, ϕi are evaluated at (si, yi) (i = 1, 2).
The derivation of this inequality is rather technical but straightforward if one

follows the formal calculations of section 2. Let us focus on the first term of the
left-hand side, namely,

Iε :=

∫ ∞

0

∫
Y×R

∂mε
1

∂p
fε
2θ(t, y)KR(p) dt dy dp

= −
∫ ∞

0

∫
Y×R

mε
1 ∂pf

ε
2 θ(t, y)KR(p) dt dy dp−

∫ ∞

0

∫
Y×R

mε
1f

ε
2 θ(t, y) K ′

R(p) dt dy dp

=: −(Iε,1 + Iε,2).

Remembering (4.5) and (4.8), we have

mε
1(t, y, p) =

∫
RN+1

|γ1(s1, y1)|2
∂v

∂p
(y1, ϕ1(s1, y1))φ

ε(t− s1, y − y1, p− ϕ1(s1, y1)) ds1 dy1,

∂pf
ε
2 =

∫
RN+1

φε(t− s2, y − y2, p− ϕ2(s2, y2)) ds2 dy2,

and thus

Iε,1 =

∫ ∞

0

∫
R2N+2

∫
Y×R

φε(t− s1, y − y1, p− ϕ1)φ
ε(t− s2, y − y2, p− ϕ2)θ(t, y)KR(p)

×
[√

∂v

∂p
(y1, ϕ1(s1, y1))γ1(s1, y1)

]2
dy dp dy1 dy2 ds1 ds2 dt.
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On the other hand, according to Lemma 4.1 and the assumptions on KR,

|Iε,2| ≤
∫ ∞

0

∫
Y×R

mε
1θ(t, y)|K ′

R(p)| dt dy dp

≤ 2||θ||∞ [μ1(R− 1) + μ1(−R + 1)] .

The two other terms are treated in a similar way; eventually, we use the inequality
−(|a|2 + |b|2) ≤ −2a · b for all a, b ∈ R

N with a =
√
vp(y1, ϕ1) γ1, b =

√
vp(y2, ϕ2) γ2,

and γi, ϕi are evaluated at (si, yi) ∈ [0,∞) × R
N . This concludes the derivation of

(4.9).
Next, we investigate the second order terms in rεj , i.e.,

∫ ∞

0

∫
RN+1

−
{

Δy

[
∂v

∂p
(y, p)fε

1 (t, y, p) −
(
∂v

∂p
f1

)
∗ φε(t, y, p)

]
fε
2

+Δy

[
∂v

∂p
(y, p)fε

2 (t, y, p) −
(
∂v

∂p
f2

)
∗ φε(t, y, p)

]
fε
1

}
θ(t, y)KR(p) dt dy dp.

Integrating by parts, we obtain for instance∫ ∞

0

∫
Y×R

−Δy

[
∂v

∂p
fε
1 −
(
∂v

∂p
f1

)
∗ φε

]
fε
2 θ(t, y)KR(p) dt dy dp

=

∫ ∞

0

∫
Y×R

[
∂v

∂p
∇yf

ε
1 −
(
∂v

∂p
(∇yf1)

)
∗ φε

]
· ∇yf

ε
2 θ(t, y)KR(p) dt dy dp

+

∫ ∞

0

∫
Y×R

[
∇y

∂v

∂p
fε
1 −
((

∇y
∂v

∂p

)
f1

)
∗ φε

]
· ∇yf

ε
2 θ(t, y)KR(p) dt dy dp

−
∫ ∞

0

∫
Y×R

[
∂v

∂p
fε
1 −
(
∂v

∂p
f1

)
∗ φε

]
∇yf

ε
2 · ∇θ(t, y)KR(p) dt dy dp

−
∫ ∞

0

∫
Y×R

[
∂v

∂p
fε
1 −
(
∂v

∂p
f1

)
∗ φε

]
fε
2Δθ(t, y)KR(p) dt dy dp

=: Jε,1 + Jε,2 + Jε,3 + Jε,4.

Notice that hypothesis (2.8) ensures that ∂2v
∂p2 exists and is Hölder continuous in y,

with locally uniform bounds in p (see Theorem 8.24 in [9]), and hypothesis (2.9) entails
that ∇y

∂v
∂p is Hölder continuous in y, with locally uniform bounds in p (see Theorem

8.32 in [9]).
Hence, ∂v

∂p belongs to C(R, Cα
per(Y )) for some α ∈ (0, 1). Moreover, thanks to clas-

sical H1 bounds for elliptic equations, we deduce that ∇y
∂v
∂p belongs to C(R, L2(Y )).

Together with identity (4.7), these regularity results easily entail that for all R > 0,

lim
ε→0

Jε,i = 0 for i = 2, 3, 4.

In the following, we denote by ωR : [0,∞) → [0,∞) a function such that lim0+ ωR = 0
and

|Jε,2| + |Jε,3| + |Jε,4| ≤ ωR(ε) ∀R > 0, ∀ε > 0.

Without loss of generality, we can also assume that the first order terms in rεj are
bounded by ωR(ε).
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We now focus on the term Jε,1; thanks to identity (4.7), we have

Jε,1 = −
∫ ∞

0

∫
R2N+2

∫
Y×R

φε(t− s1, y − y1, p− ϕ1)φε(t− s2, y − y2, p− ϕ2)

×
[
∂v

∂p
(y, p) − ∂v

∂p
(y1, ϕ1)

]
γ1 · γ2 θ(t, y) KR(p) dy dp dy1 dy2 ds1 ds2 dt,

and γi, ϕi are evaluated at ti, si. Gathering all the terms, we infer∫ ∞

0

∫
Y×R

[
∂mε

1

∂p
fε
2 − ∂mε

2

∂p
fε
1 − 2

∂v

∂p
∇yf

ε
1 · ∇yf

ε
2 + rε1f

ε
2 + rε2f

ε
1

]
θKR

≤
∫

φε(t− s1, y − y1, p− ϕ1)φε(t− s2, y − y2, p− ϕ2)θ(t, y)KR(p)γ1 · γ2

×
(
∂v

∂p
(y1, ϕ1) +

∂v

∂p
(y2, ϕ2) − 2

√
∂v

∂p
(y1, ϕ1)

∂v

∂p
(y2, ϕ2)

)
dy dp dy1 dy2 ds1 ds2 dt

+ 2||θ||∞ [μ1(R− 1) + μ1(−R + 1) + μ2(R− 1) + μ2(−R + 1)] + CωR(ε)

≤
∫ ∞

0

∫
R2N+2

∫
Y×R

φε(t− s1, y − y1, p− ϕ1)φε(t− s2, y − y2, p− ϕ2)θ(t, y)KR(p)

× γ1 · γ2

[√
∂v

∂p
(y1, ϕ1) −

√
∂v

∂p
(y2, ϕ2)

]2
dy dp dy1 dy2 ds1 ds2 dt

+ 2||θ||∞ [μ1(R− 1) + μ1(−R + 1) + μ2(R− 1) + μ2(−R + 1)] + CωR(ε).

The function ∂v
∂p belongs to W 1,∞

per,loc(Y ×R) and is bounded away from zero on bounded
subsets of Y ×R. As a consequence, there exists a constant CR > 0, depending on R,
such that for all ε > 0, ∣∣∣∣∣

√
∂v

∂p
(y1, ϕ1) −

√
∂v

∂p
(y2, ϕ2)

∣∣∣∣∣ ≤ CR ε

whenever |y1 − y2| ≤ 2ε, |ϕ1 − ϕ2| ≤ 2ε, and |ϕ1|, |ϕ2| ≤ R. We set

φ(t, x, p) := ζ1(t) ζ2(x) ζ3(p).

Performing changes of variables in the integral on the right-hand side, we obtain∫ ∞

0

∫
Y×R

[
∂mε

1

∂p
fε
2 − ∂mε

2

∂p
fε
1 − 2

∂v

∂p
∇yf

ε
1 · ∇yf

ε
2 + rε1f

ε
2 + rε2f

ε
1

]
θKR

≤ CR ε2

∫ ∞

0

∫
R2N+2

∫
Y×R

φε(t− s1, y − y1, p− ϕ1)φε(t− s2, y − y2, p− ϕ2)

× θ(t, y)KR(p)γ1 · γ2 dy dp dy1 dy2 ds1 ds2 dt

+ 2||θ||∞ [μ1(R− 1) + μ1(−R + 1) + μ2(R− 1) + μ2(−R + 1)] + CωR(ε)

≤ CR ε

∫ ∞

0

∫
R2N+2

∫
Y×R

θ(t, y)KR(p + εϕ1(t− εs1, y − εy1))

× φ(s1, y1, p)φ

(
s2, y2, p +

ϕ1(t− εs1, y − εy1) − ϕ2(t− εs2, y − εy2)

ε

)
× γ1(t− εs1, y − εy1) · γ2(t− εs2, y − εy2) dy dp dy1 dy2 ds1 ds2 dt

+ 2||θ||∞ [μ1(R− 1) + μ1(−R + 1) + μ2(R− 1) + μ2(−R + 1)] + CωR(ε)

≤ CR ε + 2||θ||∞ [μ1(R− 1) + μ1(−R + 1) + μ2(R− 1) + μ2(−R + 1)] + CωR(ε),
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so that eventually, for all test functions θ(t, y) ∈ Dper([0,∞) × R
N ) such that θ ≥ 0,

(4.10)

lim sup
R→∞

lim sup
ε→0

∫ ∞

0

∫
Y×R

[
∂mε

1

∂p
fε
2 − ∂mε

2

∂p
fε
1 − 2

∂v

∂p
∇yf

ε
1 · ∇yf

ε
2 + rε1f

ε
2 + rε2f

ε
1

]
× θ(t, y)KR(p)dt dy dp ≤ 0.

Consequently, in the limit, we obtain for any test function θ(t, y) ∈ Dper([0,∞)×
R

N ) such that θ ≥ 0

∫ ∞

0

∫
Y

(u1 − u2)+∂tθ(t, y) + 1u1>u2
[A(y, u1) −A(y, u2)] · ∇yθ(t, y) dtdy

≥
∫
Y

(u1(t = 0, y) − u2(t = 0, y))+ θ(t = 0, y) dy,

which means exactly that

(4.11) ∂t(u1 − u2)+ + divy [1u1>u2 (A(y, u1) −A(y, u2))] ≤ 0

in the sense of distributions.

Integrating this last inequality on (0, T ) × Y for any T > 0 yields

(4.12) ||(u1(t = T ) − u2(t = T ))+||L1(Y ) ≤ ||(u1(t = 0) − u2(t = 0))+||L1(Y ).

Hence the derivation of (2.10) and (2.12) is complete; there remains only to prove
Lemma 4.1. The argument goes along the same lines as Lemma 4.2.1 in [17].

Proof of Lemma 4.1. Notice that (4.1) is equivalent to

(4.13)
∂

∂t

(
∂v

∂p
fj

)
∗ φε +

∂

∂yi
(ãifj) ∗ φε − Δy

(
∂v

∂p
fj

)
∗ φε = ηj

∂mε
j

∂p
.

Thus we focus on the derivation of (4.13) for f1; let (t, y, p) ∈ [0,∞) × Y × R be
arbitrary. Following [17], one is tempted to consider the test function

(s, z, q) �→ φε(t− s, y − z, p− q) =
1

εN+2
ζ1

(
t− s

ε

)
ζ2

(
y − z

ε

)
ζ3

(
p− q

ε

)

in Definition 2.3 of kinetic solutions. However, such a test function is not periodic in
z, as required in Definition 2.3; but the support of z �→ ζ2 ((y − z)/ε) is a subset of
B̄(y, ε), the closed ball centered on y and of radius ε. Thus, for 0 < ε < 1/2,

supp ζ2 ((y − ·)/ε) ⊂ B̄(y, ε) ⊂ ΠN
i=1

(
yi −

1

2
, yi +

1

2

)
.

Hence for ε < 1/2, we can extend ζ2 ((y − ·)/ε) by periodicity on R
N ; the function

thus obtained is denoted by ζ̃y,ε and belongs to C∞
per(R

N ).
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Now, for fixed (t, y, p) ∈ [0,∞) × Y × R, we define the test function

ψ : (s, z, q) �→ 1

εN+2
ζ1

(
t− s

ε

)
ζ̃y,ε(z)ζ3

(
p− q

ε

)
.

By construction, ψ belongs to Dper([0,∞) × Y × R). Thus ψ is an admissible test
function, and according to Definition 2.3,

∫ ∞

0

∫
Y×R

f1(s, z, q)
∂v(z, q)

∂q
{∂sψ + ai(z, v(z, q))∂ziψ + Δzψ} ds dz dq

=

∫ ∞

0

∫
Y×R

m(s, z, q)∂qψ(s, z, q) dsdzdq −
∫
Y×R

1u0(z)>v(z,q)ψ(0, z, q)
∂v(z, q)

∂q
dzdq.

First, notice that since supp ζ1 ⊂ [−1, 0], we have ψ(0, z, q) = 0 for all z, q. Moreover,
since f1 and ψ are Y -periodic in their second variable, we have, for instance, setting
Yy = ΠN

i=1 (yi − 1/2, yi + 1/2) = y − e + Y , where e := (1/2, . . . , 1/2) ∈ R
N ,

∫ ∞

0

∫
Y×R

f1
∂v

∂q
∂sψ =

∫ ∞

0

∫
Yy×R

f1
∂v

∂q
∂sψ.

And when z ∈ Yy, ψ(s, z, q) = φε(t − s, y − z, p − q) by definition. Thus, using once
again the assumption on the support of ζ2,∫ ∞

0

∫
Y×R

f1(s, z, q)
∂v

∂q
(z, q)∂sψ(s, z, q)ds dz dq

=

∫ ∞

0

∫
Yy×R

f1(s, z, q)
∂v

∂q
(z, q)∂sφ

ε(t− s, y − z, p− q)ds dz dq

=

∫ ∞

0

∫
RN×R

f1(s, z, q)
∂v

∂q
(z, q)∂sφ

ε(t− s, y − z, p− q)ds dz dq

= −
∫ ∞

0

∫
RN×R

f1(s, z, q)
∂v

∂q
(z, q)∂tφ

ε(t− s, y − z, p− q)ds dz dq

= −∂t [(f1vp) ∗ φε] (t, y, p).

The other terms are treated in a similar way; we obtain

∫ ∞

0

∫
Y×R

f1(s, z, q)ãi(z, q)∂ziψ(s, z, q) ds dz dq

=

∫ ∞

0

∫
RN×R

f1(s, z, q)ãi(z, q)∂ziφ
ε(t− s, y − z, p− q) ds dz dq = −∂yi [f1ãi] ∗ φε(t, y, p),

∫ ∞

0

∫
Y×R

f1(s, z, q)vq(z, q)Δzψ(s, z, q)ds dz dq = Δy [(f1vp) ∗ φε] (t, y, p),

∫ ∞

0

∫
Y×R

m(s, z, q)∂qψ(s, z, q) ds dz dq = −∂pm
ε
1(t, y, p).
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There remains to derive the bound on mε
1: by definition,∫ ∞

0

∫
Y

mε
1(t, y, p) dt dy

=

∫ ∞

0

∫
Y

∫
RN+2

m1(s, z, q)φ
ε(t− s, y − z, p− q)ds dz dq dt dy

=

∫
Y

∫
RN+1

∫ ∞

0

∫ ∞

0

m1(s, z, q)φ
ε(t− s, y − z, p− q) dt ds dz dq dy

=

∫
Y

∫
RN+1

∫ ∞

0

∫ ∞

−s

m1(s, z, q)φ
ε(u, y − z, p− q) du ds dz dq dy

≤
∫
Y

∫
RN+1

∫ ∞

0

∫
R

m1(s, z, q)φ
ε(u, y − z, p− q) du ds dz dq dy

≤ 1

εN+1

∫
Y

∫
RN+1

∫ ∞

0

m1(s, z, q)ζ2

(
y − z

ε

)
ζ3

(
p− q

ε

)
ds dz dq dy.

Then, with the same notation as earlier,

∫
Y

∫
RN

m1(s, z, q)ζ2

(
y − z

ε

)
dz dy =

∫
Y

dy

(∫
Yy

dz m1(s, z, q)ζ2

(
y − z

ε

))

=

∫
Y×Y

m1(s, y + y′ − e, q)ζ2

(
−y′ + e

ε

)
dy dy′

=

∫
Y×Y

m1(s, y, q)ζ2

(
−y′ + e

ε

)
dy dy′

=

(∫
Y

m1(s, y, q) dy

)
×
(∫

RN

ζ2

(
−y′

ε

)
dy′
)
.

In the penultimate step, we have used the periodicity of m1.
Thus∫ ∞

0

∫
Y

mε
1(t, y, p) dt dy ≤ 1

ε

∫
R

∫
z∈Y

∫ ∞

0

m1(s, z, q)ζ3

(
p− q

ε

)
ds dz dq

≤ 1

ε

∫
R

μ1(q)ζ3

(
p− q

ε

)
dq

≤
∫ 1

−1

μ1(p− εq)ζ3(q) dq.

The monotonicity of μ1 yields the desired result.
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BOUNDS ON ENERGY AND HELICITY DISSIPATION RATES OF
APPROXIMATE DECONVOLUTION MODELS OF TURBULENCE∗

WILLIAM LAYTON†

Abstract. We consider a family of high-accuracy, approximate deconvolution models of tur-
bulence. For body force driven turbulence, we prove directly from the model’s equations of motion
the following bounds on the model’s time-averaged energy dissipation rate 〈εADM 〉 and helicity
dissipation rate 〈γADM (w)〉:

〈εADM 〉 ≤ 2
U3

L
+ Re−1 U3

L

(
1 +

(
δ

L

)2
)

and

|〈γADM (w)〉| ≤ U3

L2
+

√
2 Re−

1
2

(
1 +

δ2

L2

) 1
2 U3

L2
+ Re−1

(
1 +

δ2

L2

)
U3

L2
,

where U,L are global velocity and length scales, respectively, and δ is the large eddy simulation filter
radius. We also give a partial result on the helicity dissipation rate of solutions of the Navier–Stokes
equations.

Key words. energy dissipation rate, helicity, helicity dissipation rate, large eddy simulation,
turbulence, deconvolution
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1. Introduction. Turbulent flows consist of complex, interacting three-dimen-
sional (3d) eddies of various sizes down to the Kolmogorov microscale, η = O(Re−3/4)
in 3d. A direct numerical simulation of the persistent eddies in a 3d flow thus requires
roughly O(Re+9/4) mesh points in space per time step. Therefore, direct numerical
simulation of turbulent flows is often not computationally economical or even feasible.
On the other hand, the largest structures in the flow (containing most of the flow’s
energy) are responsible for much of the mixing and most of the flow’s momentum
transport. One promising approach to predicting a flow’s large structures is called
large eddy simulation (LES). LES seeks to model and predict the evolution of local,
spatial averages over a user-selected length scale δ. The correct treatment by an LES
model of fundamental flow quantities is critical to predicting correctly a flow’s large
structures.

The first fundamental integral invariant of the Euler equations is kinetic energy

E(u)(t) :=
1

|Ω|

∫
Ω

1

2
u · udx.

Inviscid conservation of kinetic energy leads (by the reasoning of Richardson and Kol-
mogorov) to the kinetic energy cascade for turbulent flows which has important and
universal features. If the LES model does not dissipate enough energy, the statistics
of any energy cascade predicted by the model can be wrong, and there can be an ac-
cumulation of energy around the smallest resolved scales (i.e., wiggles in the model’s
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predicted velocity). The energy dissipation rates in various LES models are adjusted
in various ways, such as using mixed models (i.e., adding eddy viscosity) and picking
the parameters introduced (e.g., Lilly [L67]) to match the energy dissipation rate of
homogeneous, isotropic turbulence. On the other hand, parameter-free models have
great advantages, and understanding their important statistics, such as their energy
dissipation rate, is critical to advancing their reliability.

The second fundamental integral invariant of the 3d Euler equations (discovered
in 1961 by Moreau [M61]) is helicity or streamwise vorticity

H(u)(t) :=
1

|Ω|

∫
Ω

u · (∇× u)dx.

The helicity of a flow vanishes if and only if a flow has a reflectional symmetry and
has the interpretation as the degree to which vortex lines are knotted and intertwined
(Moffatt [M84], Moffatt and Tsoniber [MT92]). The interaction of helicity and energy
is thought to play a key role in organizing flows. However, much less is known about
helicity than energy, and its mathematical study is more difficult than that of energy
because more derivatives are involved and neither H nor γ has one sign. (The best
current result concerning helicity of weak solutions of the Navier–Stokes equations
(NSE) appears to be Foias, Hoang, and Nicolenko [FHN06], in which it is proven that
if the body force is potential, then H(u)(T ) → 0 as T → ∞ for ν > 0.) By the
same reasoning as energy, a similarity theory of coupled helicity and energy cascades
with universal statistics has also been developed by Brissaud et al. [BFL73], Andre
and Lesieur [AL77], Chen, Chen, and Eyink [CCE03], and Chen et al. [CCEH03],
by Ditlevsen and Giuliani [DG01a], [DG01b] (and observed by Bourne and Orszag
[BO97]) in turbulent flows and for the family of approximate deconvolution model
(ADM) turbulence models in [LMNR06]. Helical modes where both signs exist are
fundamental to the analysis of helicity cascades. In this theory the time-averaged
helicity dissipation rate plays a key role analogous to that of the time-averaged energy
dissipation rate. In the inertial range (after suitable averaging), the only quantities
that distinguish one flow from another in these two cascades are their energy and
helicity dissipation rates. Thus, a model prediction of energy and helicity dissipation
rates is critical for evaluating a model’s physical fidelity.

Herein we consider one family of high-accuracy, parameter-free models, ADMs,
and bound the ADM time-averaged energy and helicity dissipation rates. The bounds
derived mirror both dissipation rates of the underlying solution of the NSE (in the
limit δ → 0) and the estimates of it derived in [LN07b], [LMNR06] by dimensional
analysis.

To begin, consider the NSE in a periodic box in R
3, Ω = (0, LΩ)3 :

ut + u · ∇u− ν�u + ∇p = f (x) in Ω = (0, LΩ)3, t > 0,(1.1)

∇ · u = 0 in (0, LΩ)3,

subject to periodic (with zero mean) conditions

u(x + LΩej , t) = u(x, t), j = 1, 2, 3, and(1.2) ∫
Ω

φdx = 0 for φ = u, u0, f, p.

We suppose throughout that the data u0(x), f(x) are smooth and satisfy

∇ · u0 = 0 and ∇ · f = 0.
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Many averaging operators are used in LES; see, e.g., Sagaut [S01], John [J04], and
Berselli, Iliescu, and Layton [BIL06]. Herein we consider a differential filter (Germano
[Ger86]) associated with length scale δ > 0 related to the Yoshida regularization (and
sometimes called a Helmholz filter in the alpha-model literature, e.g., Cheskidov et al.
[CHOT05]) defined as follows. Given φ(x), φ(x) is the unique L-periodic solution of

Aφ := −δ2 �φ + φ = φ in Ω.

Averaging the NSE (i.e., applying A−1 to (1.1)) gives the exact space-filtered NSE
for u

ut + u · ∇u− ν�u + ∇p = f(x) and

∇ · u = 0.

This is not closed since (noting that u · ∇u = ∇ · (uu))

uu �= u u.

There are many closure models used in LES; see Sagaut [S01], John [J04], Lesieur,
Metais, and Comte [LMC05], and Berselli, Iliescu, and Layton [BIL06] for surveys.
Approximate deconvolution models, studied herein, are used, with success, in many
simulations of turbulent flows, e.g., the works of Adams, Stolz, and Kleiser [AS01],
[AS02], [SA99], [SAK01a], [SAK01b], [SAK02]. They are among the most accurate of
turbulence models, and one of the few turbulence models for which a mathematical
confirmation of their effectiveness is known [LL06b] and [DE06]. Briefly, an approxi-
mate deconvolution operator (constructed in section 3) denoted by DN is an operator
satisfying

φ = DN (φ) + O(δ2N+2) for smooth φ.

Since DNu approximates u to accuracy O(δ2N+2) in the smooth flow regions, it is
justified to consider the closure approximation:

uu � DNuDNu + O(δ2N+2).(1.3)

Using this closure approximation, the resulting family of ADMs is given by1

wt + ∇ · (DNw DNw) − ν�w + ∇q = f(x),
∇ · w = 0, N = 0, 1, 2, . . . .

(1.4)

As a special case, D0u = u + O(δ2) gives the zeroth order ADM:

wt + ∇ · (w w) − ν�w + ∇q = f(x) and ∇ · w = 0.

We consider two important flow statistics: the time-averaged energy and helicity
dissipation rates. The energy dissipation rate is a fundamental statistic in experi-
mental and theoretical studies of turbulence, e.g., Sreenivasan [S84], [S98], Bourne
and Orszag [BO97], Pope [P00], Frisch [Frisch], and Lesieur [Les97]. In the theory of
turbulent energy cascades, the time-averaged energy dissipation is the only quantity

1In practical computations with ADMs an additional time relaxation term χ (w − w) has often
been added to (1.4). This term can be used as a numerical regularization in any model and is studied
in [LN07a], [ELN07], [AS02], [P06], and [Gue04].
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that distinguishes the inertial range of one flow from another. In the early 1990s
Constantin and Doering [CD92] (see also Doering and Gibbon [DG95]) established
a direct link between the phenomenology of energy dissipation and that predicted
for shear flows directly from the NSE. This work builds on the work of Busse [B78]
and Howard [H72] (and others) and has developed in many important directions, in-
cluding Childress, Kerswell, and Gilbert [CKG01], Kerswell [K98], and Wang [W97]
(shear flows) and Foias [F97], Doering and Foias [DF02], and Cheskidov, Doering,
and Petrov [CDP07] (body force driven flows). Because of the greater difficulties of
studying helicity directly from the NSE, this connection remains open for helicity
dissipation rates; see section 5.1.

Let 〈·〉 denote long time averaging (defined in section 2). K41 phenomenology
(e.g., Frisch [Frisch], Muschinski [Mus97], and Pope [P00]) in [LN07b] suggests the
scaling of the energy dissipation rate 〈εADM 〉

〈εADM 〉 ≈ U3

L

(
1 +

δ2

L2

)
.

In section 4, we prove directly from the equations of motion (1.4) that the energy
dissipation rate of the model satisfies

〈εADM 〉 ≤ 2
U3

L
+ Re−1 U3

L

(
1 +

(
δ

L

)2
)
.

Here U,L denote natural velocity and length scales, respectively, associated with the
largest scales of the model (1.4), defined precisely in section 2.1.

The time-averaged helicity dissipation rate is defined in an analogous way. For
the NSE, it is known2 that the helicity satisfies the balance equation

H(u)(T ) +

∫ T

0

γ(u)(t)dt = H(u0) +

∫ T

0

1

|Ω| (∇× f, u)dt.(1.5)

The term γ(u) is thus taken to be the helicity dissipation rate and is given by

γ(u) :=
ν

|Ω| (∇× u,∇×∇× u).(1.6)

The helicity dissipation rate is defined several ways in the literature on the phe-
nomenology of helicity cascades due to possible coupling with energy dissipation rates.
Herein we use the above definition for the NSE, which is natural from the point of
view of the above helicity balance equation. For the model (1.4), we use the definition
of the model helicity dissipation rate γADM (w) that comes from the model’s helicity
balance in the same way as above for the NSE. In section 5, we prove that the model’s
helicity dissipation rate |〈γADM (w)〉| satisfies

|〈γADM (w)〉| ≤ U3

L2
+
√

2 Re−
1
2

(
1 +

δ2

L2

) 1
2 U3

L2
+ Re−1

(
1 +

δ2

L2

)
U3

L2
.

This estimate of |〈γADM (w)〉| is consistent, as δ → 0, with the dimensional analysis

estimate of U3

L2 for the NSE.

2Derived formally by multiplication by the vorticity, integration over the flow domain and inte-
gration by parts.
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The higher order models give much more accurate predictions of flow quantities.
However, the mathematical structures of the zeroth order model and the entire family
of ADMs are closely related. Proofs will be given in detail for the zeroth order model
and the corresponding proofs (which involve only additional subscripts) for the Nth
ADM sketched. Aside from the family of ADMs, we also give a partial result on the
helicity dissipation rate for the NSE and delineate why the technique (just) fails to
isolate the NSE’s helicity dissipation rate. Thus, it seems likely that the techniques
used herein can be used to prove parallel estimates of energy and helicity dissipation
rates for other models which have more regular solutions than the NSE and known
helicity balance equations, such as the alpha model.

2. Notation and preliminaries. The long time average of a function φ(t) is
defined, following [DF02], by

〈φ〉 := LimT→∞
1

T

∫ T

0

φ(t)dt,

where Lim denotes a generalized limit. (It can also be defined by a limit superior
which lengthens several proofs.)

First consider the zeroth order model. With |Ω| the volume of the flow domain,
the scale of the body force and the large scale velocity are defined, respectively, by

F :=

(
1

|Ω|

∫
Ω

|f(x)|2dx
) 1

2

and

U :=

〈
1

|Ω|

∫
Ω

|w(x, t)|2dx
〉 1

2

.

Let || · ||, (·, ·) denote the usual L2(Ω) norm and inner product, respectively (other
norms are explicitly indicated by a subscript). The global length scale associated with
the power input of the large scales, i.e., with f(x), is

L := min

{
LΩ,

F

||∇f ||L∞(Ω)
,

F

( 1
|Ω| ||∇f ||2) 1

2

,
F

( 1
|Ω| ||∇ × f ||2) 1

2

,
F

1
2

( 1
|Ω| ||�f ||2) 1

4

}
.

It is easy to check that L has units of length and satisfies the inequalities:

||∇f ||L∞ ≤ F

L
,

1

|Ω|

∫
Ω

|∇f(x)|2dx ≤ F 2

L2
,

1

|Ω|

∫
Ω

|∇ × f(x)|2dx ≤ F 2

L2
, and(2.1)

1

|Ω|

∫
Ω

|�f(x)|2dx ≤ F 2

L4
.

The kinetic viscosity is denoted ν, and the associated global Reynolds number is
Re := LU

ν .
The energy dissipation rate induced by the model depends on the precise form

of the model’s kinetic energy balance. Let w denote the solution of the zeroth order
model. The appropriate definitions (see Proposition 3.1, Remark 4.1, (3.2)–(3.5), as
well as [LL03], [LL06a], [LL06b]) for the zeroth order model are

εADM−0(w)(t) =
ν

L3
{||∇w(t)||2 + δ2||�w(t)||2} and

〈εADM−0〉 := 〈εADM−0(w)(t)〉.
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Before introducing the notation for the general case we must first define the van
Cittert approximate deconvolution operators.

2.1. Approximate deconvolution operators. The filtering or convolution
operator u → u is a bounded map: L2(Ω) → L2(Ω). If (as in the case we study)
it is smoothing, its inverse cannot be bounded due to small divisor problems. An
approximate deconvolution operator DN is an approximate inverse u → DN (u) ≈ u,
(e.g., [Geu97]) which

• is a bounded operator on L2(Ω),
• approximates u in some useful (typically asymptotic) sense, and
• satisfies other conditions necessary for the application at hand.

The deconvolution operator we consider was studied by van Cittert in 1931, e.g.,
Bertero and Boccacci [BB98], and its use in LES pioneered by Adams, Kleiser, and
Stolz [AS01], [SA99], [AS02], [SAK01a], [SAK01b], [SAK02]. The Nth van Cittert
approximate deconvolution operator DN is defined by N steps of Picard iteration
[BB98] for the fixed point problem:

Given u, solve u = u + {u−A−1u} for u.

Algorithm 2.1 (van Cittert approximate deconvolution operator). u0 = u,
for n = 1, 2, . . . , N − 1, perform
un+1 = un + {u−A−1un}.
Define DNu := uN .
By eliminating the intermediate steps, the Nth deconvolution operator DN is

given explicitly by

DNφ :=

N∑
n=0

(I −A−1)nφ.(2.2)

For example, the approximate deconvolution operators corresponding to N = 0, 1, 2
are

D0u = u,

D1u = 2u− u,

D2u = 3u− 3u + u.

Definition 2.1. The deconvolution-weighted inner product and norm (·, ·)N and
|| · ||N are, respectively,

(u, v)N := (u,DNv) , ||u||N := (u, u)
1
2

N .

Lemma 2.2. Consider the approximate deconvolution operator

DN : L2(Ω) → L2(Ω).

DN is a bounded, self-adjoint, positive-definite operator and satisfies

||φ||2 ≤ ||φ||2N ≤ (N + 1)||φ||2 ∀φ ∈ L2(Ω).

Proof. DN is a function of the bounded, self-adjoint operator A−1 and is thus
bounded and self-adjoint. By the spectral mapping theorem we have

λ(DN ) =

N∑
n=0

λ(I −A−1)n =

N∑
n=0

(1 − λ(A−1))n, and

0 < λ(A−1) ≤ 1 by the definition of operator A.
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Thus, 1 ≤ λ(DN ) ≤ N + 1. Since DN is a self-adjoint operator, this proves positive
definiteness and the above equivalence of norms. %newpage

3. Kinetic energy balance of ADM turbulence models. To see the math-
ematical key to the estimates of energy and helicity dissipation rates, we first recall
from [LL03], [DE06] (see also [LL06a], and [MM06] for the more difficult case of no-slip
boundary conditions) the energy equality for the ADM (1.4).

Proposition 3.1. If w is a weak or strong solution3 of (1.4), w satisfies

1

2
[||w(T )||2N + δ2||∇w(T )||2N ] +

∫ T

0

ν||∇w(t)||2N + νδ2||�w(t)||2Ndt

=
1

2
[||u0||2N + δ2||∇u0||2N ] +

∫ T

0

(f, w(t))N dt.

Proof (sketch). Let (w, q) denote a periodic solution of the ADM (1.4). Multi-
plying (1.4) by ADNw and integrating over Ω gives

∫
Ω

wt ·ADNw + ∇ · (DNw DNw) ·ADNw − ν�w ·ADNw + ∇q ·ADNwdx

=

∫
Ω

f ·ADNwdx.

The nonlinear term vanishes exactly because∫
Ω

∇ · (DNw DNw) ·ADNwdx =

∫
Ω

A−1(∇ · (DNw DNw)) ·ADNwdx

=

∫
Ω

∇ · (DNw DNw) ·DNwdx = 0.

Integrating by parts the remaining terms gives

d

dt

1

2
{||w(t)||2N + δ2||∇w(t)||2N} + ν{||∇w(t)||2N + δ2||�w(t)||2N} = (f, w(t))N .(3.1)

The results follow by integrating this from 0 to t.
From Proposition 3.1, the ADM kinetic energy EADM−N (w)(t), energy dissipa-

tion rate εADM−N (w)(t), time-averaged dissipation rate 〈εADM−N 〉, and power input
PADM−N (w)(t) are clearly identified.

EADM−N (w)(t) :=
1

2|Ω| {||w(t)||2N + δ2||∇w(t)||2N},(3.2)

εADM−N (w)(t) :=
ν

|Ω| {||∇w(t)||2N + δ2||�w(t)||2N},(3.3)

〈εADM−N 〉 := 〈εADM−N (w)(t)〉,(3.4)

PADM−N (w)(t) :=
1

|Ω| (f, w(t))N .(3.5)

3Unlike the NSE case, e.g., [Gal95], it is known that weak=strong for the ADM and that both
exist and are unique.
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Let || · ||N denote the deconvolution-weighted L2(Ω) norm (Definition 2.1). The
deconvolution weighted scales of the body force and large scale velocity are defined
by

FN :=

(
1

|Ω| ||f ||
2
N

) 1
2

, and UN :=

〈
1

|Ω| ||w||
2
N

〉 1
2

.

Note that these are related to F and U by

F ≤ FN ≤ (N + 1)
1
2F,U ≤ UN ≤ (N + 1)

1
2U, and also

〈εADM−0(w)〉 ≤ 〈εADM−N (w)〉 ≤ (N + 1)
1
2 〈εADM−0(w)〉.

For N = 1, 2, 3, . . . the deconvolution-weighted global length scale associated with the
power input to the large scales, i.e., with f(x), is defined to be

LN := min

⎧⎨
⎩LΩ,

FN

||D
1
2

N∇f ||L∞(Ω)

,
FN

( 1
|Ω| ||∇f ||2N )

1
2

,
FN

( 1
|Ω| ||∇ × f ||2N )

1
2

,
F

1
2

N

( 1
|Ω| ||�f ||2N )

1
4

⎫⎬
⎭ .

It is easy to check that LN has units of length and satisfies the deconvolution-weighted
form of the inequalities (2.1) above.

Lemma 3.2. As δ → 0, for N = 0, 1, 2, . . .

EADM−N (w)(t) → E(w)(t) =
1

2|Ω| ||w(t)||2,

εADM−N (w)(t) → ε(w)(t) =
ν

2|Ω| ||∇w(t)||2, and

PADM−N (w)(t) → P (w)(t) =
1

|Ω| (f(t), w(t)).

Proof. As δ → 0 all of the δ2 terms drop out in the definitions above, DN → I,
and ||φ||N → ||φ||.

Corollary 3.3. Let f = f(x) ∈ L2(Ω) and w be a solution of the ADM turbu-
lence model (1.4); then

sup
t∈(0,∞)

EADM−N (w)(t) ≤ C(data) < ∞,

1

T

∫ T

0

εADM−N (w)(t)dt ≤ C(data) < ∞.

Proof. We begin with (3.1) from the proof of Proposition 3.1. Using the Poincaré
and Cauchy–Schwarz inequalities we have from (3.1)

d

dt
EADM−N (t) + αEADM−N (t) ≤ ||f ||2N

for some α > 0, which implies EADM−N (w)(t) is uniformly bounded in time. For
boundedness of the time-averaged dissipation rate, divide the energy estimate of the
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ADM turbulence model energy equality from Proposition 3.1 by T :

1

T
EADM−N (w)(T ) +

1

T

∫ T

0

εADM−N (w)(t)dt

=
1

T
EADM−N (w)(0) +

1

T

∫ T

0

(f, w(t))Ndt

≤ 1

T
EADM−N (w)(0) + ||f ||N

[
1

T

∫ T

0

||w(t)||2Ndt

] 1
2

(3.6)

≤ C(data).(3.7)

4. Bounds on energy dissipation rates. We prove the following estimate on
the model’s time-averaged energy dissipation rates. Recall that the body force f(x)
is a smooth, divergence-free function. The global velocity and length scales are given
in section 3.

Theorem 4.1. Let the data f(x) and u0(x) be smooth, divergence-free functions.
For all cases N = 0, 1, 2, 3, . . .

〈εADM−N (w)〉 ≤ 2
U3
N

LN
+ Re−1 U3

N

LN

(
1 +

δ2

L2
N

)
.

The proof in the general case follows the zeroth order case by adding subscripts as
appropriate. The mathematics driving the proof in both cases is the precise estimate
of the model’s energy balance. In the general case, the model’s kinetic energy bal-
ance satisfies the analog of the zeroth order’s energy balance with norms replaced by
deconvolution-weighted norms. We shall give the proof in detail for the notationally
clearest, N = 0, case (indicating the notational modifications in the general case).

Proposition 4.2. Let the data f(x) and u0(x) be smooth, divergence-free func-
tions. For the case N = 0,

〈εADM−0(w)〉 ≤ 2
U3

L
+ Re−1 U3

L

(
1 +

δ2

L2

)
.

The proof of the proposition and theorem follow next. They combine the energy
estimate for the ADM in Proposition 3.1 with the breakthrough arguments of Foias
[F97] and Doering and Foias [DF02] from the NSE case.

The case of general N = 0, 1, 2, . . . . The first of two key bounds is obtained
by time averaging the energy inequality of Proposition 3.1. Using Corollary 3.3 we
have for N = 0, 1, 2, . . .

LimT→∞
1

T

∫ T

0

ν||∇w(t)||2N + νδ2||�w(t)||2Ndt ≤ LimT→∞
1

T

∫ T

0

(f, w(t))N dt.

The Cauchy–Schwarz inequality and Corollary 3.3 imply

〈 εADM−N 〉 ≤ FNUN , and thus 〈εADM−0〉 ≤ FU.(4.1)

Time averaging the ADM turbulence model (1.4) gives for N = 0, 1, 2, . . .

〈w〉t + ∇ · (〈DNw DNw〉) − ν�〈w〉 + ∇〈q〉 = 〈f〉,(4.2)

∇·〈w〉 = 0.
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The case N = 0. Set N = 0 and recall that D0 = I. Take the inner product
of the time-averaged model (4.2) with Af . Note that because f = f(x), 〈f〉 = f(x).
Further (f,Af) = (A−1f,Af) = ||f ||2 and analogously for the nonlinear term. Since
∇ · f = 0, the pressure term vanishes. This gives

1

|Ω| ||f ||
2 =

1

|Ω| (Af, 〈w〉t) −
1

|Ω| (∇f, 〈D0w D0w〉) +
ν

|Ω| (A∇f,∇〈w〉).

The time derivative term vanishes in the limit as T → ∞ by the Cauchy–Schwarz
inequality and Corollary 3.3. The last term on the right-hand side (RHS) is integrated
by parts, giving:

1

|Ω| ||f ||
2 = − 1

|Ω| (∇f, 〈D0w D0w〉) +
ν

|Ω| {(∇f,∇〈w〉) + δ2(�f,�〈w〉)}.

Thus, using the Cauchy–Schwarz inequality,

1

|Ω| ||f ||
2 ≤ − 1

|Ω| (∇f, 〈D0w D0w〉) + εADM−0(f)
1
2 εADM−0(〈w〉)

1
2 .(4.3)

Next, consider the nonlinear term on the above RHS. By the definitions of L,F, U we
have (recalling D0w = w)

1

|Ω| (∇f, 〈w w〉) ≤ ||∇f ||L∞

〈
1

|Ω| ||w||
2

〉
≤ FU2

L
.(4.4)

By the triangle inequality we have

||∇〈w〉||2 ≤ 〈||∇w||2〉, and ||�〈w〉||2 ≤ 〈||�w||2〉.(4.5)

(This step is not sharp.) This implies, by the definitions of F,L,

εADM−0(〈w〉)
1
2 ≤ 〈εADM−0(w)〉 1

2 ,(4.6)

ν

|Ω| ||∇f ||2 ≤ ν
F 2

L2
, and

νδ2

|Ω| ||�f ||2 ≤ νδ2F
2

L4
.

Using the bounds (4.4), (4.6), and (4.7) in (4.3) gives

F 2 ≤ FU2

L
+

(
νF 2

L2
+

νδ2F 2

L4

) 1
2

〈εADM−0(w)〉 1
2 .(4.7)

From the first basic estimate 〈εADM−0(w)〉 ≤ FU . Inserting this in the RHS and
cancelling the obvious terms gives

〈εADM−0(w)〉 ≤ FU ≤ U3

L
+ U

(
ν

L2
+

νδ2

L4

) 1
2

〈εADM−0(w)〉 1
2 .(4.8)

Thus, by Young’s inequality

〈εADM−0(w)〉 ≤ 2
U3

L
+

νU2

L2

(
1 +

δ2

L2

)
,

and Proposition 4.2 is proven:

〈εADM−0(w)〉 ≤ 2
U3

L
+ Re−1 U3

L

(
1 +

δ2

L2

)
.
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The case of general N = 0, 1, 2, . . . . For the general case in Theorem 4.1,
the claimed estimates hold by the same proof as the N = 0 case (above) with norms
and inner products replaced by their deconvolution-weighted versions (i.e., by adding
subscripts N).

Remark 4.1. Exactly as in the NSE case, Foias [F97] and Doering and Foias
[DF02], the estimate can be improved by more careful treatment of the quadratic equa-
tion. The result is the elimination of the multiplier 2 on the RHS and a slight modi-
fication of the second term.

5. Bounds on helicity dissipation rates. This section considers bounds on
the time-averaged helicity dissipation rate for both the NSE and the ADM turbulence
models (1.4). We consider the NSE case first and derive a partial result. The expected
result predicted by dimensional analysis in the NSE case is recovered if it is known
that the helicity of a solution of the NSE is eventually bounded—a property that
seems physically obvious but mathematically intractable. Because of the enhanced
kinetic energy bound available for the ADM turbulence model, we are able to prove
a bound on the ADM helicity, 〈γADM−N (w)〉.

5.1. Helicity dissipation for the NSE. Because of the incomplete nature of
the final result, we proceed formally. Dividing the helicity balance equation by T
gives

1

T
H(u)(T ) +

1

T

∫ T

0

γ(u)(t)dt =
1

T
H(u0) +

1

T

∫ T

0

1

|Ω| (∇× f, u)dt.

If the initial velocity is smooth, 1
T H(u0) → 0 as T → ∞. Further, if ∇× f is square

integrable, then, by the Cauchy–Schwarz inequality,

LimT→∞

∣∣∣∣∣ 1

T

∫ T

0

1

|Ω| (∇× f, u)dt

∣∣∣∣∣ ≤ FU

L
(< ∞).(5.1)

Thus, the following generalized limits satisfy

LimT→∞

∣∣∣∣∣ 1

T
H(u)(T ) +

1

T

∫ T

0

γ(u)(t)dt

∣∣∣∣∣ ≤ FU

L
(< ∞).

In the NSE case, Foias [F97] and Doering and Foias [DF02] prove, as a step to
bounds on energy dissipation rates, the following intermediate result on the numerator
of the RHS:

FU ≤ U3

L
+ ν

1
2
U

L
〈ε〉 1

2 .(5.2)

(For example, formally set δ = 0 in the estimate (4.8).) Using this and the bound on

energy dissipation in [F97], [DF02] that 〈ε〉 ≤ 2U3

L + Re−1 U3

L , in (5.1) gives

LimT→∞

∣∣∣∣∣ 1

T
H(u)(T ) +

1

T

∫ T

0

γ(u)(t)dt

∣∣∣∣∣ ≤ U3

L2
+
√

2 Re−
1
2
U3

L2
+ Re−1 U3

L2
.(5.3)

If H(T ) is eventually bounded (as is expected physically but unknown mathemati-
cally), this gives the upper bound

|〈γ〉| ≤ U3

L2
+
√

2 Re−
1
2
U3

L2
+ Re−1 U3

L2
.(5.4)
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Thus, it is clear that obtaining a bound on the helicity dissipation, i.e., completing
the step between (5.3) and (5.4), depends on proving boundedness of H(T ).

5.2. Helicity dissipation in ADM turbulence models. From the NSE case,
it is clear that the key to completing the argument of section 5.1 for the ADM turbu-
lence model will be proving HADM−N (w)(T ) is bounded. We begin by recalling the
ADM turbulence model’s helicity balance (the essential first ingredient in the analy-
sis) discovered by Rebholz [R07]. Define the ADM helicity which is exactly conserved
by the model if ν = 0

HADM−N (w)(t) :=
1

|Ω| [(w,∇× w)N + δ2(∇× w,∇×∇× w)N ].(5.5)

For the ADM, it is known [R07] that the ADM helicity satisfies the balance equation

HADM−N (w)(T ) +

∫ T

0

γADM−N (w)(t)dt = H(w(0)) +

∫ T

0

1

|Ω| (∇× f, w)dt,(5.6)

where γADM−N (w) is the model’s helicity dissipation rate given by

γADM−N (w) :=
ν

|Ω| [(∇× w,∇×∇× w)N + δ2(∇×∇× w,∇×∇×∇× w)N ].

(5.7)

Note that (in the zeroth order model, to simplify notation)

HADM (w) = H(w) + δ2H(∇× w) and

γADM (w) = γ(w) + δ2γ(∇× w).

5.3. Bounding model helicity. Arguing as in [LN07b], the zeroth order model,
(1.4) with N = 0, is equivalent to ∇ ·Aw = 0 and

Awt + w · ∇w + ∇Aq − ν�Aw = f.(5.8)

Lemma 5.1. Let the data f(x) and u0(x) be smooth, divergence-free functions.
Suppose δ > 0; then

sup
0≤T<∞

[||w(T )|| + ||∇w(T )|| + ||�w(T )||] ≤ C(data, δ) < ∞.(5.9)

Proof. First we note that it has been proven that the ADM turbulence model
(1.4) has a unique strong solution that is as smooth as the problem data, so formal
manipulations of the model are mathematically justified. The bound on w and ∇w
follows from the energy inequality for the model in Proposition 3.1. Taking the inner
product of (5.8) with Aw gives

1

2

d

dt
||Aw||2 + ν||∇Aw||2 = (Af,w) − (w · ∇w,Aw).

Basic inequalities and the bounds on w and ∇w give

|(Af,w)| ≤ C(data),

|(w · ∇w,Aw)| ≤ C||∇w||2||∇Aw||2 ≤ C(data, δ) +
ν

2
||∇Aw||2.
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Thus,

1

2

d

dt
||Aw||2 + ν||∇Aw||2 ≤ C(data, δ) +

ν

2
||∇Aw||2,

and the result follows by a Poincaré inequality and using an integrating factor.
Corollary 5.2. Let the data f(x) and u0(x) be smooth, divergence-free functions

and N = 0. If δ > 0, then |HADM−0(w)(T )| is uniformly bounded.
Proof. There follows

|HADM−0(w)(T )| ≤ C(||w||||∇w|| + δ2||∇w||||�w||) ≤ C(data, δ).

In the general case, the analogous estimates hold by essentially the same proofs.
Corollary 5.3. Let the data f(x) and u0(x) be smooth, divergence-free func-

tions. If δ > 0, then, for all cases N = 0, 1, 2, . . . , |HADM−0(w)(T )| is uniformly
bounded.

Proof (sketch). By using weighted norms, we show by the same proof as the
above lemma that the estimate holds:

sup
0≤T<∞

[||w(T )||N + ||∇w(T )||N + ||�w(T )||N ] ≤ C(data, δ,N) < ∞.(5.10)

Using this estimate it follows that

|HADM−N (w)(T )| ≤ C(||w||N ||∇w||N + δ2||∇w||N ||�w||N ) ≤ C(data, δ,N).

With these bounds, the final step lacking in the argument from section 5.1 in the
NSE case can be carried through successfully.

Theorem 5.4. Let f(x), u0(x) be smooth, divergence-free functions and δ > 0.
Then for any N = 0, 1, 2, . . .

|〈γADM−N (w)〉| ≤ U3
N

L2
N

+
√

2 Re−
1
2

(
1 +

δ2

L2
N

) 1
2 U3

N

L2
N

+ Re−1

(
1 +

δ2

L2
N

)
U3
N

L2
N

.

Proof. We shall give the proof in the case N = 0. The proof for general N is the
same as the N = 0 case with subscripts N added.

Time average the ADM turbulence model’s helicity balance relation; both helicity
terms drop out by Corollaries 5.2 (N = 0 case) and 5.3 (N > 0 case). Thus, when
N = 0 we have

LimT→∞

∣∣∣∣∣ 1

T

∫ T

0

γADM−0(w)(t)dt

∣∣∣∣∣ ≤ LimT→∞

∣∣∣∣∣ 1

T

∫ T

0

1

|Ω| (∇× f, u)dt

∣∣∣∣∣ ≤ FU

L
.

Inserting the bounds on FU and 〈εADM (w)〉 from section 4 gives

|〈γADM−0(w)〉| ≤ FU

L
≤ U3

L2
+

U

L

(
ν

L2
+

νδ2

L4

) 1
2

〈εADM−0(w)〉 1
2

≤ U3

L2
+ Re−

1
2

(
U

L

) 3
2

(1 + δ2)
1
2

[
2
U3

L
+ Re−1 U3

L

(
1 +

δ2

L2

)] 1
2

≤ U3

L2
+
√

2 Re−
1
2 (1 + δ2)

1
2
U3

L2
+ Re−1(1 + δ2)

U3

L2
,

as claimed. When N > 0 the proof is the same with only subscripts N added.



ENERGY AND HELICITY DISSIPATION RATES 929

6. Conclusions. Similarity theories of cascades in homogeneous, isotropic tur-
bulence are based on several assumptions which have yet to be verified directly from
the NSE. Nevertheless, the predictions of these theories have been observed in many
turbulent flows in nature. As analytic understanding advances, many of these predic-
tions have also been proven directly from the Navier–Stokes equations.

The correctness of the predictions of turbulence models, however, can be very
unclear, and simulations based on those models can be even more so. We have con-
sidered the energy and helicity dissipation rates of general solutions of one promising
family of models. These rates are key quantities in physical theories of energy and
helicity cascades. Rigorous upper bounds of the model’s energy and helicity dissipa-
tion rates are derived. These estimates agree with those proven for energy for the
NSE and derived by physical theories of homogeneous, isotropic turbulence. This
analysis is based on a rigorous understanding of physical integral invariants of flow
models and their corresponding dissipation rates. It gives important (even essential)
analytic insight into the reliability of models and the predictions coming from them.
Approximate deconvolution models have a systematic mathematical derivation which
is reflected in their high-accuracy, exact conservation (when ν = 0) of a model energy
and helicity and the validity of their predictions of energy and helicity dissipation
rates (when ν > 0).
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SPATIAL DYNAMICS METHODS FOR SOLITARY
GRAVITY-CAPILLARY WATER WAVES WITH AN ARBITRARY

DISTRIBUTION OF VORTICITY∗
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Abstract. This paper presents existence theories for several families of small-amplitude solitary-
wave solutions to the classical two-dimensional water-wave problem in the presence of surface tension
and with an arbitrary distribution of vorticity. Moreover, the established local bifurcation diagram
for irrotational solitary waves is shown to remain qualitatively unchanged for any choice of vorticity
distribution. The hydrodynamic problem is formulated as an infinite-dimensional Hamiltonian sys-
tem in which the horizontal spatial direction is the timelike variable. A center-manifold reduction
technique is employed to reduce the system to a locally equivalent Hamiltonian system with a finite
number of degrees of freedom. Homoclinic solutions to the reduced system, which correspond to
solitary water waves, are detected by a variety of dynamical systems methods.
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1. Introduction. The gravity-capillary water-wave problem concerns the flow
of a perfect fluid of unit density subject to the forces of gravity and surface tension;
the fluid is bounded below by a rigid horizontal bottom {y = 0} and above by a
free surface {y = η(x, t)}, where η depends upon the horizontal spatial coordinate
x and time t. Traveling waves are waves which propagate from left to right with
constant speed c and without change of shape, so that η(x, t) = η(x − ct). The two
principal classes of traveling waves are Stokes waves, which are periodic in a frame
of reference moving with the wave, and solitary waves, which have the property that
η(x− ct) → 0 as x− ct → ±∞. In this paper we construct rigorous existence theories
for solitary waves on flows with an arbitrary distribution of vorticity; the physical
setting corresponds to waves originating from a distant storm advancing into a shear
current.

Working in a frame of reference moving with the wave, let us describe the velocity
field (u(x, y), v(x, y)) within the fluid domain Dη = {(x, y) : x ∈ R, 0 < y < η(x)} in
terms of a stream function ψ(x, y) which satisfies ψx = −v, ψy = u − c and suppose
that u < c, so that ψy < 0. The vorticity ω(x, y) = vx(x, y)−uy(x, y) is known under
this condition to be a function of the stream function ψ, and we specify its distribution
by prescribing a vorticity function γ such that ω = γ(ψ). The hydrodynamic problem
is to solve the nonlinear elliptic equation

Δψ = −γ(ψ), 0 < y < η(x),(1)

subject to the Dirichlet boundary conditions

ψ(x, 0) = 0,(2)
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ψ(x, η(x)) = m0,(3)

where m0 < 0 is the constant mass flux, the asymptotic conditions

η(x) → d as x → ±∞,(4)

and the nonlinear boundary condition

1

2
|∇ψ|2 + g(y − d) − σ

[
ηx√

1 + η2
x

]
x

=
λ

2
on y = η(x),(5)

where g, σ, and d are, respectively, the acceleration due to gravity, the coefficient of
surface tension, and the asymptotic depth of the water, and λ is a constant called the
Bernoulli constant (e.g., see Constantin and Strauss [11]).

Several existence theories for irrotational gravity-capillary solitary waves (where
γ = 0) are available in the literature (see below), and many of them use spatial
dynamics methods. The phrase “spatial dynamics” refers to an approach where a
system of partial differential equations governing a physical problem is formulated as
a (typically ill-posed) evolutionary equation

uξ = L(u) + N(u),(6)

in which an unbounded spatial coordinate plays the role of the timelike variable ξ. The
water-wave problem has one bounded or semibounded coordinate, namely, the vertical
coordinate y; by contrast no restriction is placed upon the behavior of the waves in the
horizontal coordinate x, and so this coordinate qualifies as “timelike.” One therefore
studies the problem using spatial dynamics by formulating it as an evolutionary system
of the form (6), where ξ = x, in an infinite-dimensional phase space consisting of
functions of y. Notice that the hydrodynamic problem is conservative and isotropic
in x, and these symmetries manifest themselves in the fact that its spatial dynamics
formulation is Hamiltonian and reversible. In section 2 we derive a formulation of
the water-wave problem with an arbitrary choice of γ ∈ L2(m0, 0) as a reversible
Hamiltonian system and place it in a secure functional-analytic framework.

One particularly useful technique for finding solutions of (6) is known as center-
manifold reduction. Supposing that L has a finite number of purely imaginary eigen-
values and that certain technical hypotheses are satisfied, one can show that (6) admits
an invariant manifold called the center manifold which contains all its small, bounded
solutions; the dimension of the center manifold is given by the number of purely imag-
inary eigenvalues. This reduction procedure is explained in detail by Mielke [32] and
is shown in section 3.1 to be applicable to our spatial dynamics formulation of the
gravity-capillary water-wave problem for fluid of finite depth and with any choice of
γ ∈ H1(m0, 0) which satisfies∫ 1

0

1√
2Γ(s) − 2Γmin

ds > 1, Γmin = min
s∈[0,1]

Γ(s),(7)

where

Γ(s) =
d2

m0

∫ 1

s

γ(m0u) du.

(The additional regularity requirement on γ simplifies the calculation of the spec-
trum of L.) An important aspect of the center-manifold reduction procedure is that
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it preserves symmetries of the initial evolutionary equation. This feature can be ex-
ploited in existence theories for water waves: Since our spatial dynamics formulation is
Hamiltonian and reversible, the reduced system on the center manifold is a reversible
Hamiltonian system with finitely many degrees of freedom.

Bifurcation phenomena obtained by varying a parameter can also be captured by
the center-manifold reduction procedure. A bifurcation parameter ε may be intro-
duced by perturbing physical parameters present in the problem (in the case of water
waves, α = gd3/m2

0 and β = σd/m2
0) around fixed reference values, and the reduction

procedure delivers an ε-dependent manifold which captures the small-amplitude dy-
namics for small values of this parameter; the manifold is a true center manifold at
criticality (ε = 0), so that its dimension is the number of purely imaginary eigenvalues
of L at ε = 0. The reduction procedure is therefore especially helpful in detecting
bifurcations which are associated with a change in the number of purely imaginary
eigenvalues. In the case of irrotational waves there are three critical curves C2, C3, C4

in the (β, α) parameter plane at which the number of purely imaginary eigenvalues of
L changes (see Figure 1(a)), together with a fourth curve C1 at which the number of
real eigenvalues changes; an explicit parametrization of each of these curves is avail-
able (Kirchgässner [29]). Section 3.2 contains spectral theory which shows that this
“bifurcation diagram” remains qualitatively unchanged for each choice of vorticity
function γ; explicit formulas are, however, available only for C3 = {(β, α�) : β < β�}
and C4 = {(β, α�) : β > β�}, where β�, α� are positive constants determined by the
choice of γ (the values of β� and α� for γ = 0 are, respectively, 1/3 and 1).

In irrotational water-wave theory the curves C1, C2, and C4 are associated with
homoclinic bifurcation, where solutions of the reduced Hamiltonian system which are
asymptotically zero bifurcate from the trivial solution; these solutions correspond
to solitary water waves. Figure 1 illustrates the regions I, II, and III adjacent to,
respectively, C4, C1, and C2 in which homoclinic solutions exist for γ = 0, and in
the present paper we show that the same is true for any choice of γ ∈ H1(m0, 0)
satisfying (7). There are, however, physical differences in the corresponding solitary
waves: A small-amplitude irrotational solitary wave is a perturbation of a uniform
flow, while a solitary wave with γ �= 0 “rides” a laminar flow in which the velocity
field is horizontal but depth-dependent.

Irrotational waves in region I were studied by Kirchgässner [29] (see also Amick
and Kirchgässner [1], Sachs [33], and Iooss and Kirchgässner [24]). A Hamiltonian
02-resonance takes place at C4; that is, two imaginary eigenvalues collide at the
origin and become real as one crosses the curve from below. Kirchgässner showed
that the flow on the two-dimensional center manifold is controlled by the reversible,
Hamiltonian equation

uxx = u +
3

2
u2 + O(δ1/2),

where 0 < δ � 1 is the bifurcation parameter α − α�. This equation admits a
homoclinic solution which corresponds to a solitary wave of depression whose tail
decays exponentially and monotonically. In section 4.1 we show that Kirchgässner’s
analysis and conclusions remain valid for an arbitrary choice of γ �= 0 and give a
geometric interpretation of his method.

Region II lies on the “complex side” of the curve C1, at points of which two pairs of
small-magnitude real eigenvalues collide and become complex. The center manifold is
four-dimensional, and it was shown by Buffoni, Groves, and Toland [8] that for γ = 0
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43 CC

C2 C1

α�

β� β

α

III

III

(a) Bifurcation curves in the (β, α)-plane; the shaded regions indicate the parameter regimes in which
homoclinic bifurcation is detected.

(b) A symmetric solitary wave of depression (left) is found in region I.

(c) Region II contains an infinite family of multitroughed solitary waves which decay in an oscillatory
fashion.

(d) Symmetric unipulse modulated solitary waves (left and center) coexist with an infinite family of
multipulse modulated solitary waves (right) in region III.

Fig. 1. Summary of the solitary waves whose existence is established in the present paper by
center-manifold reduction and homoclinic bifurcation theory.
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the flow on the center manifold is controlled by the reversible, Hamiltonian equation

uxxxx − 2(1 + δ)uxx + u− u2 = 0(μ),(8)

where 0 < μ � 1 measures the distance from the point (β�, α�) and 0 < δ �
1 is the bifurcation parameter (measuring the distance from C1). This equation
has an infinite family of multipulse homoclinic solutions which make several large
excursions away from the origin. The corresponding water waves are solitary waves of
depression with 2, 3, 4, . . . large troughs separated by 2, 3, . . . small oscillations; their
tails are oscillatory and decay exponentially. In section 4.2 we compute the reduced
Hamiltonian system for a general choice of γ using a method which is simpler than
that employed by Buffoni, Groves, and Toland. We again arrive at (8), so that our
hydrodynamic problem also admits a plethora of multipulse solitary waves in this
parameter regime.

Region III was first examined by Iooss and Kirchgässner [23], who studied homo-
clinic bifurcation associated with the Hamiltonian-Hopf bifurcation at points of C2

(two pairs of purely imaginary eigenvalues collide at nonzero points ±iq and become
complex). The center manifold is four-dimensional at Hamiltonian-Hopf points, and
the two-degree-of-freedom reduced Hamiltonian system is conveniently studied using
complex coordinates (A,B) and a normal-form transformation. Introducing a bifur-
cation parameter δ so that positive values of δ correspond to points on the complex
side of C2, one obtains the reduced Hamiltonian system

Ax =
∂H

∂B̄
, Bx = −∂H

∂Ā
,

H = iq(AB̄ − ĀB) + |B|2 + HNF(|A|2, i(AB̄ − ĀB), δ) + O(|(A,B)|2|(δ, A,B)|n0),

where HNF is a real polynomial which satisfies HNF(0, 0, δ) = 0; it contains the
terms of order 3, . . . , n0 + 1 in the Taylor expansion of H. Supposing that the
coefficients of certain terms in HNF have the correct sign, one finds that the “truncated
normal form” obtained by neglecting the remainder term admits a circle of homoclinic
solutions, two of which persist when the remainder terms are reinstated (see Iooss and
Pérouème [26]). The corresponding water waves are symmetric solitary waves which
take the form of periodic wave trains modulated by exponentially decaying envelopes.
Buffoni and Groves [7] strengthened this result by showing that the above Hamiltonian
system in fact has an infinite number of geometrically distinct homoclinic solutions
which generically resemble multiple copies of one of the homoclinic solutions found
by Iooss and Kirchgässner. The relevant normal-form coefficients were computed for
irrotational waves by Buffoni and Groves [7, Appendix B]. Although such explicit
formulas are not available, for a general choice of γ it is possible to prove that the
coefficients have the correct signs in the local part of region III near (β�, α�); this
procedure is carried out in section 4.3.

A different homoclinic bifurcation phenomenon occurs at C3, where a Hamiltonian
02iω resonance takes place; that is, two imaginary eigenvalues collide at the origin and
become real as C3 is crossed from above, while a second pair of eigenvalues remains on
the imaginary axis. Lombardi [30] has proved the existence of irrotational generalized
solitary waves in the region just below C3; their pulselike profile decays at infinity to a
periodic ripple whose amplitude is exponentially small compared to that of the pulse.
It is still an open question whether genuine solitary waves exist in this parameter
regime, although Sun [34] has recently proved that they do not exist for values of β



SOLITARY WATER WAVES WITH VORTICITY 937

close to β�, and there is strong numerical evidence that the same is true for all values
of β < β� (Champneys, Vanden-Broeck, and Lord [9]). The corresponding discussion
for γ �= 0 is beyond the scope of the present paper.

Spatial dynamics techniques are also used in a variety of existence proofs for
other types of irrotational gravity-capillary water waves, notably in center-manifold
methods for three-dimensional traveling waves (Groves and Mielke [18], Groves [15],
Groves and Haragus [16], Groves and Sandstede [19]). On the other hand, center-
manifold reduction is not available in other situations, for example, in the existence
theories for three-dimensional solitary waves by Groves, Haragus, and Sun [17] and
for two-dimensional solitary waves on water of infinite depth by Iooss and Kirrmann
[25]; in these cases other methods are used to find solutions of the spatial dynam-
ics formulation of the hydrodynamic problem as an infinite-dimensional evolutionary
equation.

The present contribution is one of a series of papers in which established existence
theories for irrotational water waves are generalized to flows with arbitrary distribu-
tions of vorticity. This program of research began with Constantin and Strauss [11],
who generalized Keady and Norbury’s [28] proof of the existence of a connected global
branch of irrotational symmetric gravity Stokes waves containing waves whose speeds
at the crest are arbitrarily small. Wahlén [35] has recently generalized the bifurcation
theory for small-amplitude gravity-capillary Stokes waves by Jones [27] (see also Zei-
dler [36, 37]), while Hur [21] has extended Beale’s [2] construction of small-amplitude
gravity solitary waves.

2. Formulation as a Hamiltonian system. In this section we formulate the
hydrodynamic problem as a reversible Hamiltonian system, the irrotational version of
which was outlined by Groves [14] (see also Benjamin [3, Appendix B]). Note that the
irrotational version differs from the Hamiltonian system by Groves and Toland [20]
which is employed in the center-manifold reduction methods for irrotational water
waves described above.

We begin by writing the hydrodynamic problem (1)–(5) in terms of the dimen-
sionless variables

(x′, y′) =
1

d
(x, y), η′(x′) =

1

d
η(x), ψ′(x′, y′) = − 1

m0
ψ(x, y)

and dimensionless vorticity function

γ′(ψ′) = − d2

m0
γ(ψ).

One finds that

Δψ = −γ(ψ), 0 < y < η(x),(9)

ψ(x, 0) = 0,(10)

ψ(x, η(x)) = −1,(11)

η(x) → 1 as x → ±∞,(12)

and

1

2
|∇ψ|2 + α(y − 1) − β

[
ηx√

1 + η2
x

]
x

=
μ

2
on y = η(x),(13)
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in which

α =
gd3

m2
0

, β =
σd

m2
0

, μ =
λd2

m2
0

are dimensionless parameters and the primes have been dropped for notational sim-
plicity. The next step is to map the unknown fluid domain Dη into a fixed strip
R × (0, 1) using a transformation devised by Dubreil-Jacotin [13]. We define s =
−ψ(x, y), h = y, and treat (x, s) ∈ R × (0, 1) as independent variables and η(x),
h(x, s) as dependent variables. A straightforward calculation shows that (9)–(13) are
transformed into[

hx

hs

]
x

−
[
1 + h2

x

2h2
s

]
s

+ γ(−s) = 0, 0 < s < 1,(14)

h(x, 0) = 0,(15)

h(x, 1) = η,(16)

η(x) → 1 as x → ±∞,(17)

1 + h2
x

2h2
s

+ α(h− 1) − β

[
hx√

1 + h2
x

]
x

=
μ

2
, s = 1,(18)

and we seek solutions with hs > 0, a condition which is implied by the assumption
ψy < 0 (Constantin and Strauss [11]). The following proposition, which is proved
by straightforward arguments from the theory of elliptic boundary-value problems,
relates solutions of the transformed equations to those of (9)–(13).

Proposition 2.1. Define I = (x1, x2), I
′ = (x′

1, x
′
2), with x1 < x′

1 < x′
2 < x2,

and let Dη,I = {(x, y) : x ∈ I, 0 < y < η(x)}.
(i) Suppose that γ ∈ L2(−1, 0). Any solution h ∈ H2(I × (0, 1))∩C1(I × [0, 1])

and η = h|{s=1} ∈ C2(I) of (14)–(16), (18) defines a solution ψ ∈ H2(Dη,I′) ∩
C1(Dη,I′), η ∈ C2(I) of (9)–(11), (13).

(ii) The additional regularity γ ∈ Ck,α[−1, 0] and η ∈ Ck+2,α(I) for some α ∈
(0, 1) and some nonnegative integer k implies that ψ ∈ Ck+2,α(Dη,I′).

Observe that (14)–(16), (18) follow from the formal variational principle

δJ = 0,

where

J =

∫ {∫ 1

0

(
−1 + h2

x

2h2
s

+ α(h− 1) − μ

2
− Γ(s)

)
hs ds + β

√
1 + η2

x

}
dx,(19)

Γ(s) = −
∫ 1

s

γ(−u) du, s ∈ [0, 1],

and the variations are taken with respect to η(x) and h(x, s) such that h(x, 1) = η(x)
and h(x, 0) = 0. (The corresponding variational principle for gravity waves was given
by Constantin, Sattinger, and Strauss [10].) We exploit this variational principle by
regarding J as an action functional of the form

J =

∫
J(η, h, ηx, hx) dx,
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in which J is the integrand on the right-hand side of (19), and deriving a Hamiltonian
formulation of (14)–(16), (18) by means of the Legendre transform. To this end, let
us introduce new variables ω and w by the formulas

ω =
δJ
δηx

=
βηx√
1 + η2

x

, w =
δJ
δhx

= −hx

hs
,(20)

in which the variational derivatives are taken in, respectively, L2(R) and L2(R×(0, 1)),
and define the Hamiltonian function by

H(η, ω, h, w)

=

∫ 1

0

whx ds + ωηx − J(η, h, ηx, hx)

=

∫ 1

0

{
1

2

(
1

hs
− hsw

2

)
+ Γ(s)hs

}
ds− 1

2
α(η − 1)2 +

1

2
α +

μ

2
η −

√
β2 − ω2.(21)

This procedure suggests that the equations

ηx =
δH

δω
, ωx = −δH

δη
, hx =

δH

δw
, wx = −δH

δh

formally represent Hamilton’s equations for a formulation of the hydrodynamic prob-
lem (14)–(16), (18) as a Hamiltonian system.

In order to make the above suggestion rigorous, we define the Hilbert spaces

X = {(η, ω, h, w) ∈ R × R ×H1(0, 1) × L2(0, 1) : h(0) = 0, h(1) = η},
Y = {(η, ω, h, w) ∈ R × R ×H2(0, 1) ×H1(0, 1) : h(0) = 0, h(1) = η}

and consider the symplectic manifold (X,Ω), where Ω is the position-independent
2-form on X given by

Ω|(η,ω,h,w)((η1, ω1, h1, w1), (η2, ω2, h2, w2)) =

∫ 1

0

(w2h1 − w1h2) ds + ω2η1 − ω1η2

(the canonical 2-form with respect to the R × R × L2(0, 1) × L2(0, 1)-inner product).
Choose γ ∈ L2(−1, 0), so that Γ ∈ H1(−1, 0), and observe that the set

M = {(η, ω, h, w) ∈ Y : |ω| < β, η > 0, hs(s) > 0 for each s ∈ [0, 1]}

is a manifold domain of X and that the function H given by (21) belongs to C∞(M,R);
a direct calculation shows that

dH|m(v1|m) =

∫ 1

0

{
−1

2

(
w2 +

1

h2
s

)
+ Γ(p)

}
h1s ds−

∫ 1

0

hsww1 ds

− α(η − 1)η1 +
μ

2
η1 +

ωω1√
β2 − ω2

for m = (η, ω, h, w) ∈ M and v1|m = (η1, ω1, h1, w1) ∈ TM |m ∼= Y . The triple
(X,Ω, H) is therefore a Hamiltonian system.

Recall that the point m ∈ M belongs to the domain D(vH) of the Hamiltonian
vector field vH associated with (X,Ω, H), with vH |m = v̄|m, if and only if

Ωm(v̄|m, v1|m) = dH|m(v1|m)
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for all tangent vectors v1|m ∈ TM |m ⊂ TX|m. Using this criterion and the above
expression for dH|m(v1|m) and integrating by parts, one finds that

D(vH) =

{
(η, ω, h, w) ∈ M : w(0) = 0, hs(1)w(1) = − ω√

β2 − ω2

}

and that Hamilton’s equations

ux = vH(u)

are given explicitly by

ηx =
ω√

β2 − ω2
,(22)

ωx =
1

2

(
w2(1) +

1

h2
s(1)

)
+ α(η − 1) − μ

2
,(23)

hx = −hsw,(24)

wx = −1

2

(
w2 +

1

h2
s

)
s

+ γ(−s).(25)

Observe that Hamilton’s equations are reversible; the reverser S : X → X is defined
by S(η, ω, h, w) = (η,−ω, h,−w).

Proposition 2.2. Suppose that (η, ω, h, w) ∈ C(I,D(vH)) ∩ C1(I,X), I =
(x1, x2) solves Hamilton’s equations, and let I ′ = (x′

1, x
′
2), with x1 < x′

1 < x′
2 < x2.

The functions h̃, w̃ defined by

h̃(x, s) = h(x)(s), w̃(x, s) = w(x)(s)

belong to, respectively, H2(Dη,I′) ∩ C1(Dη,I′) and H1(Dη,I′) ∩ C(Dη,I′), while η and

ω belong to, respectively, C2(I ′) and C1(I ′). These functions satisfy h̃(x, s) > 0 in
Dη,I′ , |ω| < β in I ′, the equations

h̃x = −h̃sw̃, w̃x = −1

2

(
w̃2 +

1

h̃2
s

)
s

+ γ(−s)

in Dη,I′ with boundary conditions

h̃(x, 0) = w̃(x, 0) = 0, h̃(x, 1) = η(x), h̃s(x, 1)w̃(x, 1) = − ω√
β2 − ω2

,

and the equations

ηx =
ω√

β2 − ω2
,

ωx =
1

2

(
w̃2 +

1

h̃2
s

)∣∣∣∣∣
s=1

+ α(η − 1) − μ

2

in I ′.
The above proposition is proved using the methods given by Groves and Toland

[20]. Eliminating ω and w̃ between the above equations, we find that h̃ and η satisfy
(14)–(16), (18), and Proposition 2.1 yields a solution of the hydrodynamic prob-
lem (9)–(11), (13). Note that the additional regularity γ ∈ Ck,α[0, 1] and u ∈
Ck+2(I,D(vH)) ∩ Ck+3(I,X) for some α ∈ (0, 1) and some nonnegative integer k
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implies that ψ ∈ Ck+2,α(Dη,I′). In the remainder of this article we take γ ∈ H1(0, 1)
rather than γ ∈ L2(0, 1) in order to simplify the spectral theory presented in sec-
tion 3.2.

We proceed by seeking solutions (η, ω, h, w) ∈ C(R,D(vH))∩C1(R, X) of Hamil-
ton’s equations which satisfy η(x) → 1 as x → ±∞. These solutions take the form of
perturbations of equilibrium (that is, x-independent) solutions (η0, ω0, h0(s), w0(s)),
where necessarily η0 = 1 and ω0 = 0, w0 = 0 (see (20)); our solitary waves therefore
ride a horizontal laminar flow (which is, in general, not uniform). The requirement
that the hydrodynamic problem admits a horizontal laminar flow for a given vorticity
function fixes the value of the Bernoulli constant μ.

Lemma 2.3. Suppose that∫ 1

0

1√
2Γ(s) − 2Γmin

ds > 1,(26)

where

Γmin = min
s∈[0,1]

Γ(s), Γmax = max
s∈[0,1]

Γ(s).

There exists a unique value μ� > −2Γmin of μ for which Hamilton’s equations (22)–
(25) admit a solution of the form

(η, ω, h, w) = (1, 0, θ(s), 0)(27)

for all β, α > 0. The function θ(s) is given by the formula

θ(s) =

∫ s

0

a−1(u) du, a(s) =
√
μ� + 2Γ(s).

Proof. Any solution of (22)–(25) of the form (27) satisfies

1

2

(
1

θ2
s

)
s

= γ(−s),
1

θ2
s(1)

= μ, θ(0) = 0,

so that

θ(s) =

∫ s

0

1√
μ + 2Γ(u)

du,

where we have assumed that μ > −2Γmin. It remains to satisfy the boundary condition
h(1) = η; that is, θ(1) = 1. Observe that θ(1) is a strictly decreasing function of
μ ∈ [−2Γmin,∞) which satisfies θ(1) → 0 as μ → ∞ and θ(1)|μ=−2Γmin > 1 under
the assumption (26). It follows that there exists a unique value μ� of μ such that
θ(1) = 1.

In accordance with Lemma 2.3 we take μ = μ� and seek solutions of Hamilton’s
equations for (X,Ω, H) of the form

η = 1 + ρ, h = θ + φ,

where ρ > −1 and φs(s) > −a−1(s) for s ∈ [0, 1]. Let us write

(β, α) = (β0 + ε1, α0 + ε2),
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where (β0, α0) is fixed and (ε1, ε2) lies in a neighborhood Λ of the origin in R
2, and

consider solutions (ρ, ω, φ, w) which lie in a neighborhood V of the origin in Y ; here
Λ and V are chosen small enough so that

|ε1| <
β0

4
, ρ > −1

2
> −1, |ω| < β0

2
< β0 + ε1,

φs(s) > −1

2
(μ� + 2Γmax)

−1/2 > −a−1(s)

for each s ∈ [0, 1]. This change of variable transforms (X,Ω, H) into (X,Ω, Hε),
where Hε ∈ C∞(V,R) is defined by the formula

Hε(ρ, ω, φ, w) =

∫ 1

0

{
1

2

(
1 − (a−1(s) + φs)

2w2

a−1(s) + φs

)
− 1

2
a(s) + Γ(s)φs

}
ds

− 1

2
(α0 + ε2)ρ

2 +
1

2
μ�ρ + (β0 + ε1) −

√
(β0 + ε1)2 − ω2

(a constant term has also been added to the Hamiltonian to ensure that Hε(0) = 0).
Hamilton’s equations (22)–(25) are transformed into

ρx =
ω√

(β0 + ε1)2 − ω2
,(28)

ωx =
1

2

(
w2(1) +

a2(1)

(1 + a(1)φs(1))2

)
+ (α0 + ε2)ρ−

μ�

2
,(29)

φx = −(a−1(s) + φs)w,(30)

wx = −1

2

(
w2 +

a2(s)

(1 + a(s)φs)2

)
s

+ γ(−s),(31)

the domain D(vHε) of the Hamiltonian vector field on the right-hand side of this
system of equations is the set of elements (ρ, ω, φ, w) ∈ V which satisfy

w(0) = 0,

(φs(1) + a−1(1))w(1) = − ω√
(β + ε1)2 − ω2

,(32)

and the action of the reverser S : X → X is given by S(ρ, ω, φ, w) = (ρ,−ω, φ,−w).
Our task is to find homoclinic solutions of the above equations, that is, solutions
(ρ, ω, φ, w) ∈ C(R,D(vHε)) ∩ C1(R, X) which satisfy

(ρ(x), ω(x), φ(x), w(x)) → (0, 0, 0, 0)

as x → ±∞.

3. Center-manifold reduction.

3.1. Application of the reduction theorem. Our strategy in finding solu-
tions to Hamilton’s equations (28)–(31) for (X,Ω, Hε) consists in applying a reduc-
tion principle which asserts that (X,Ω, Hε) is locally equivalent to a finite-dimensional
Hamiltonian system. The key result is the following theorem, which is a parametrized,
Hamiltonian version of a reduction principle for quasi-linear evolutionary equations
presented by Mielke [31, Theorem 4.1] (see Buffoni, Groves, and Toland [8, Theorem
4.1]).
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Theorem 3.1. Consider the reversible differential equation

ux = Lu + N (u;λ),(33)

which is Hamilton’s equation for the Hamiltonian system (X,Ωλ, Hλ). Here u belongs
to a Hilbert space X , λ ∈ R

	 is a parameter, and L : D(L) ⊂ X → X is a densely
defined, closed linear operator. Regarding D(L) as a Hilbert space equipped with the
graph norm, suppose that 0 is an equilibrium point of (33) when λ = 0 and that

(H1) the part of the spectrum σ(L) of L which lies on the imaginary axis consists
of a finite number of eigenvalues of finite multiplicity and is separated from
the rest of σ(L) in the sense of Kato, so that X admits the decomposition
X = X1 ⊕ X2, where X1 = P(X ), X2 = (I − P)(X ), and P is the spectral
projection corresponding the purely imaginary part of σ(L);

(H2) the operator L2 = L|X2 satisfies the estimate

‖(L2 − iξI)−1‖X2→X2 ≤ C

1 + |ξ| , ξ ∈ R

for some constant C that is independent of ξ;
(H3) there exists a natural number k and neighborhoods Λ ⊂ R

	 of 0 and U ⊂ D(L)
of 0 such that N is (k + 1) times continuously differentiable on U × Λ, its
derivatives are bounded and uniformly continuous on U×Λ, and N (0, 0) = 0,
d1N [0, 0] = 0.

Under these hypotheses there exist neighborhoods Λ̃ ⊂ Λ of 0 and Ũ1 ⊂ U ∩ X1,
Ũ2 ⊂ U ∩ X2 of 0 and a reduction function r : Ũ1 × Λ̃ → Ũ2 with the following
properties. The reduction function r is k times continuously differentiable on Ũ1 × Λ̃,
its derivatives are bounded and uniformly continuous on Ũ1 × Λ̃, and r(0; 0) = 0,
d1r[0; 0] = 0. The graph X̃λ = {u1 + r(u1;λ) ∈ Ũ1 × Ũ2 : u1 ∈ Ũ1} is a Hamiltonian
center manifold for (33), so that

(i) X̃λ is a locally invariant manifold of (33): Through every point in X̃λ there
passes a unique solution of (33) that remains on X̃λ as long as it remains in
Ũ1 × Ũ2;

(ii) every small bounded solution u(x), x ∈ R of (33) satisfying (u1(x), u2(x)) ∈
Ũ1 × Ũ2 lies completely in X̃λ:

(iii) every solution u1 : (x1, x2) → Ũ1 of the reduced equation

u1x = Lu1 + PN (u1 + r(u1;λ);λ)(34)

generates a solution

u(x) = u1(x) + r(u1(x);λ)(35)

of the full equation (33);
(iv) X̃λ is a symplectic submanifold of X, and the flow determined by the Hamil-

tonian system (X̃λ, Ω̃λ, H̃λ), where the tilde denotes restriction to X̃λ, coin-
cides with the flow on X̃λ determined by (X,Ωλ, Hλ). The reduced equation
(34) is reversible and represents Hamilton’s equations for (X̃λ, Ω̃λ, H̃λ).

The center manifold X̃λ is equipped with the single coordinate chart Ũ1 ⊂ X1 and
coordinate map χ : X̃λ → Ũ1 defined by χ−1(u1) = u1 +r(u1;λ). It is, however, more
convenient to use an alternative coordinate map for calculations. According to the
parameter-dependent version of Darboux’s theorem presented by Buffoni and Groves
[7, Theorem 4], there exists a near-identity change of variable

ũ1 = u1 + Θ(u1;λ)(36)
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of class Ck−1 which transforms Ω̃λ into Ψ, where

Ψ(v1, v2) = Ω0|0(v1, v2).

Define the function r̃ : Ũ1 × Λ̃ → Ũ1 × Ũ2 (which, in general, has components in X1

and X2) by the formula

ũ1 + r̃(ũ1;λ) = T (u1 + r(u1;λ);λ), T (u1, u2;λ) = (u1 + Θ(u1;λ), u2),

where r̃(0; 0) = 0, d1r̃[0; 0] = 0, and equip X̃λ with the coordinate map χ̃ : X̃λ → Ũ1

given by χ̃−1(ũ1) = ũ1 + r̃(ũ1;λ). One can always choose a basis for X1 so that Ψ is
the canonical symplectic 2-form Υ in this coordinate system (a “symplectic basis”).
The choice of χ̃ as coordinate map therefore yields a finite-dimensional canonical
Hamiltonian system.

Theorem 3.1 cannot be applied directly to (28)–(29) because of the nonlinear
boundary condition (32). We overcome this difficulty by using the change of variable
(ρ, ζ, φ, z) = Gε(ρ, ω, φ, w), where

ζ = − a(1)ω√
(β + ε1)2 − ω2

, z(s) = (1 + a(s)φs(s))w(s),

which transforms the nonlinear boundary condition into the linear condition z(1) = ζ.
The following lemma shows that Gε defines a valid change of variable.

Lemma 3.2.

(i) For each ε ∈ Λ the mapping Gε is a smooth diffeomorphism from the neigh-
borhood V of 0 in Y onto itself.

(ii) For each (v, ε) ∈ V × Λ the operators dGε[v], d((Gε)−1)[v] : Y → Y extend
to mappings X → X that depend smoothly upon (v, ε) ∈ V × Λ.

Proof. These results follow from the explicit formula

G−1(ρ, ζ, φ, z) = (ρ, ω, φ, w),

where

ω = − (β0 + ε1)ζ√
ζ2 + a2(1)

, w(s) =
z(s)

1 + a(s)φs(s)
,

and

dGε[ρ, ω, φ, w](ρ1, ω1, φ1, w1)

=

(
ρ1,−

a(1)(β0 + ε1)
2ω1

((β0 + ε1)2 − ω2)3/2
, φ1, (1 + a(s)φs)w1 + a(s)wφ1s

)
,

d((Gε)−1))[ρ, ζ, φ, z](ρ1, ζ1, φ1, z1)

=

(
ρ1,−

(β0 + ε1)a
2(1)ζ1

(a2(1) + ζ2)3/2
, φ1,

z1

1 + a(s)φs
− a(s)zφ1s

(1 + a(s)φs)2

)
.

An explicit calculation shows that the above change of variable transforms (28)–
(31) into

ρx = −a−1(1)ζ,(37)

ζx = − (a2(1) + ζ2)3/2

a2(1)(β0 + ε1)

(
z2(1) + a2(1)

2(1 + a(1)φs(1))2
+ (α0 + ε2)ρ−

μ�

2

)
,(38)

φx = −a−1(s)z,(39)

zx = −a(s)z(a−1(s)z)s
1 + a(s)φs

− (1 + a(s)φs)

((
z2 + a2(s)

2(1 + a(s)φs)2

)
s

− γ(−s)

)
;(40)
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these equations hold in the phase space X, and the domain of the vector field on their
right-hand side is a neighborhood of the origin in the linear space

Z = {(ρ, ζ, φ, z) ∈ Y : z(0) = 0, z(1) = ζ}.

Notice that the change of variable preserves the reversibility; the action of the reverser
S : X → X is given by S(ρ, ζ, φ, z) = (ρ,−ζ, φ,−z). Equations (37)–(40) represent
Hamilton’s equations for the Hamiltonian system (X,Φε,Kε), where

Φε|(ρ,ζ,φ,z)((ρ1, ζ1, φ1, z1), (ρ2, ζ2, φ2, z2))

=

∫ 1

0

{
z2φ1 − z1φ2

1 + a(s)φs
− a(s)z

(1 + a(s)φs)2
(φ2sφ1 − φ1sφ2)

}
ds

− (β0 + ε1)a
2(1)

(ζ2 + a2(1))3/2
(ζ2ρ1 − ζ1ρ2)

and Kε ∈ C∞(V,R) is defined by the formula

Kε(ρ, ζ, φ, z) =

∫ 1

0

{
a(s) − a−1(s)z2

2(1 + a(s)φs)
+ Γ(s)φs −

a(s)

2

}
ds

− 1

2
(α0 + ε2)ρ

2 +
1

2
μ�ρ− a(1)(β0 + ε1)√

a2(1) + ζ2
+ (β0 + ε1).

The next step is to verify that (37)–(40) satisfy the hypotheses of Theorem 3.1.
We write these equations as

ux = Lu + Nε(u),(41)

in which the linear operator L : D(L) ⊂ X → X, with D(L) = Z, is given by

L

⎛
⎜⎜⎝

ρ
ζ
φ
z

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−a−1(1)ζ
a4(1)β−1

0 φs(1) − a(1)α0β
−1
0 ρ

−a−1(s)z
(a3(s)φs)s

⎞
⎟⎟⎠(42)

(the linearization of the Hamiltonian vector field vKε at ε = 0). It follows from
Proposition 3.3 and Lemma 3.4, the former of which is proved using the elementary
theory of ordinary differential equations, that L satisfies hypotheses (H1) and (H2);
hypothesis (H3) is clearly satisfied for an arbitrary value of k.

Proposition 3.3. The spectrum of the operator L : D(L) ⊂ X → X consists of
isolated, geometrically simple eigenvalues of finite algebraic multiplicity.

Lemma 3.4. There exist real constants C, ξ0 > 0 such that each solution v ∈ Y
of the resolvent equation

(L− iξI)v = f�,(43)

in which f� belongs to X and ξ is a real number with |ξ| > ξ0, satisfies the estimates

‖v‖Y ≤ C‖f�‖X , ‖v‖X ≤ C

|ξ| ‖f
�‖X .
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Proof. Let us write the resolvent equation (43) in the form

−a−1(1)ζ − iξρ = ρ�,(44)

a4(1)β−1
0 φs(1) − a(1)α0β

−1
0 ρ− iξζ = ζ�,(45)

−a−1(s)z − iξφ = φ�,(46)

(a3(s)φs)s − iξz = z�,(47)

where (ρ�, ω�, φ�, z�) ∈ X and (ρ, ω, φ, z) ∈ Z, so that φ�(0) = 0, φ�(1) = ρ�, and
φ(0) = 0, φ(1) = ρ, z(0) = 0, z(1) = ζ.

The first step is to differentiate (46) and multiply by a3/2(s), and multiply (47)
by a−1/2(s), so that

−a3/2(s)(a−1(s)z)s − iξa3/2(s)φs = a3/2(s)φ�
s,

a−1/2(s)(a3(s)φs)s − iξa−1/2(s)z = a−1/2(s)z�;

squaring and adding these equations, one finds that

a3(s)|(a−1(s)z)s|2 + a−1(s)|(a3(s)φs)s| + ξ2(a3(s)|φs|2 + a−1(s)|z|2)
+ 2ξ Im {(a−1(s)z)sa

3(s)φs + a−1(s)z(a3(s)φs)s} = a3(s)|φ�
s|2 + a−1(s)|z�|2.

Let ‖ ·‖ and ‖ ·‖w denote, respectively, the usual L2(0, 1)-norm and the L2(0, 1)-norm
with weight function w. We integrate the above equation over (0, 1), so that

‖(a−1(s)z)s‖2
a3 + ‖(a3(s)φs)s‖2

a−1 + ξ2(‖φs‖2
a3 + ‖z‖2

a−1)

= ‖φ�
s‖2

a3 + ‖z�‖2
a−1 − 2ξa2(1)Im {z(1)φs(1)},(48)

and multiplying (45) by φs(1) and taking real parts, we find that

ξ Im {z(1)φs(1)} = −a4(1)

β0
|φs(1)|2 +

a(1)α0

β0
Re {φ(1)φs(1)} + Re {ζ�φs(1)}

≤ C1(|φs(1)|2 + |φ(1)|2 + |ζ�|2).(49)

To estimate |φs(1)|2 we multiply (47) by sn, where n is a positive integer, and
integrate over (0, 1), so that

a3(1)φs(1) =

∫ 1

0

a3(s)φs(s)ns
n−1 ds + iξ

∫ 1

0

z(s)sn ds +

∫ 1

0

z�(s)sn ds,

and an application of the Cauchy–Schwarz inequality yields

|φs(1)|2 ≤ C2

(
n2

2n− 1
‖φs‖2

a6 +
ξ2

2n + 1
‖z‖2 +

1

2n + 1
‖z�‖2

)
.(50)

A straightforward combination of estimates (48)–(50), the inequality |φ(1)|2 ≤ ‖φs‖2,
and the fact that ‖ · ‖ and ‖ · ‖w are equivalent norms for any positive w ∈ C[0, 1]
shows that

‖φss‖2 + ‖φs‖2 + ‖zs‖2 + ‖z‖2 + ξ2(‖φs‖2 + ‖z‖2)

≤ C3

(
n2

2n− 1
‖φs‖2 +

ξ2

2n + 1
‖z‖2 + ‖φ�

s‖2 + ‖z�‖2 + |ζ�|2
)
.
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Choosing n large enough so that C3/(2n + 1) ≤ 1/2, we therefore find that

‖φss‖2 + ‖φs‖2 + ‖zs‖2 + ‖z‖2 +
ξ2

2
(‖φs‖2 + ‖z‖2) ≤ C3(|ζ�|2 + ‖φ�

s‖2 + ‖z�‖2)

and hence that

‖φ‖2
H2 + ‖z‖2

H1 +
ξ2

2
(‖φ‖2

H1 + ‖z‖2) ≤ C4(|ζ�|2 + ‖φ�‖2
H1 + ‖z�‖2)

for sufficiently large ξ, where we have exploited the fact that φ(0), φ�(0), and z(0) all
vanish.

It follows from (45) that

ξ2|ζ|2 ≤ C4(|ζ�|2 + |φ(1)|2 + |φs(1)|2) ≤ C5(|ζ�|2 + ‖φ‖2
H1 + ξ2‖z‖2 + ‖z�‖2)

and clearly |ρ|2 = |φ(1)|2 ≤ ‖φ‖2
H1 , so that altogether

‖φ‖2
H2 + ‖z‖2

H1 +
ξ2

2
(|ρ|2 + |ζ|2 + ‖φ‖2

H1 + ‖z‖2) ≤ C6(|ζ�|2 + ‖φ�‖2
H1 + ‖z�‖2).

3.2. Eigenvalues of the linearized problem. In this section we examine the
spectrum of L in more detail, in particular the qualitative dependence of its eigenvalues
upon (β0, α0). Eliminating ρ, ζ, and z, we find that the eigenvalue problem Lu = κu
is equivalent to

−a−1(s)(a3(s)φs)s = κ2φ, 0 < s < 1,(51)

−a3(1)

β
φs(1) +

α

β
φ(1) = κ2φ(1),(52)

φ(0) = 0(53)

(for convenience we drop the subscript 0 in this section). The change of variable

y =

∫ s

0

a−1(u) du, v(y) = a(s)φ(s)

transforms the above equations into the equivalent non-self-adjoint Sturm–Liouville
problem

−vyy + Q(y)v = νv,(54)

vy(1)

v(1)
= α̂− β̂ν,(55)

v(0) = 0,(56)

where ν = κ2, Q(y) = −γ′(−s), α̂ = a′(1) + a−2(1)α, and β̂ = a−2(1)β; detailed
spectral results for problems of this type have been presented by Binding et al. [4].

The Sturm–Liouville problem (54)–(56) has a countable number of geometrically
simple eigenvalues which can be listed as ν0, ν1, ν2, . . . , where Re νn ≤ Re νn+1

(entries are repeated according to their algebraic multiplicity); they occur in complex-
conjugate pairs and satisfy

νn = n2π2 +

∫ 1

0

Q(y) dy − 2α̂

β̂
+ o

(
1

n

)
, n ∈ N0.(57)
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ννD
0 νD

1 νD
2

ννD
0 νD

1 νD
2

ννD
0 νD

1 νD
2

Fig. 2. Geometric characterization of the eigenvalues νn as the points of intersection of the
curve s = B(ν) with the straight line s = α̂− β̂ν; one real eigenvalue lies in each interval (νD

n−1, ν
D
n ),

n ∈ N. Clockwise from top left: two additional real eigenvalues to the left of νD
0 ; two additional real

eigenvalues in the interval (νD
n−1, ν

D
n ) for some n ∈ N; two additional complex eigenvalues.

Observe that the real eigenvalues of the spectral problem (54)–(56) correspond to the

intersections in the (ν, s) plane of the line s = α̂− β̂ν and the curve s = B(ν), where
B(ν) = vy(1; ν)/v(1; ν) and v(y; ν) solves the initial-value problem

−vyy + Q(y)v = νv, v(0; ν) = 0;

a tangent intersection indicates that the eigenvalue has algebraic multiplicity 2. The
function B(ν) = vy(1; ν)/v(1; ν) has poles exactly at the Dirichlet eigenvalues νD

n

(the necessarily real, positive, and algebraically simple eigenvalues of the self-adjoint
problem in which (55) is replaced by v(1) = 0); it is strictly decreasing from +∞ to
−∞ in each interval (−∞, νD

0 ) and (νD
k−1, ν

D
k ), k ∈ N. It follows that (54)–(56) have

at least one real eigenvalue in each interval (νD
k−1, ν

D
k ), k ∈ N (see Figure 2).

Further information concerning the distribution of the eigenvalues νn is obtained
by comparing (57) with the corresponding formula

νD
n = (n + 1)2π2 +

∫ 1

0

Q(y) dy + o

(
1

n

)
, n ∈ N0

for the Dirichlet eigenvalues; in particular one finds that

νD
n−1 < Re νn+1 < νD

n

for sufficiently large n. It follows that for sufficiently large n the eigenvalue νn+1

is real and located in the interval (νD
n−1, ν

D
n ). Using this observation and the above

geometrical characterization of real eigenvalues, one concludes that
(i) each interval (νD

n−1, ν
D
n ), n ∈ N contains a simple real eigenvalue;

(ii) there are precisely two additional eigenvalues (counted according to algebraic
multiplicity) which are either
(a) real and located to the left of νD

0 (Figure 2 (top left)),
(b) real and located in the interval (νD

n−1, ν
D
n ) for some n ∈ N (Figure 2 (top

right)),
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(c) a complex-conjugate pair (with a nonvanishing imaginary part) whose
real part is smaller than νD

0 (Figure 2 (bottom)),
(d) a complex-conjugate pair (with a nonvanishing imaginary part) whose

real part lies in the interval (νD
n−1, ν

D
n ) for some n ∈ N (Figure 2 (bot-

tom)).
The eigenvalues κ of L are recovered from the above analysis by the formula ν =

κ2, so that in particular they occur in plus-minus pairs. Clearly L has a real eigenvalue
in each interval ((νD

n−1)
1/2, (νD

n )1/2) and (−(νD
n )1/2,−(νD

n−1)
1/2), n ∈ N (see point

(i) above), and it follows from point (ii) that there are four additional eigenvalues
(counted according to algebraic multiplicity). The four additional eigenvalues could
be real with magnitude greater than (νD

0 )1/2 (case (b)) or a plus-minus, complex-
conjugate quartet with nonvanishing real and imaginary parts (cases (c) and (d)).
Observe that only the remaining case (a) can lead to purely imaginary eigenvalues of
L, and we now examine this case in detail.

Case (a) has eight subcases, each of which is illustrated in Figure 3. Clearly a
positive eigenvalue ν yields a plus-minus pair of real eigenvalues of L, while a negative
eigenvalue ν yields a complex-conjugate pair of purely imaginary eigenvalues of L; an
algebraically double positive or negative eigenvalue ν yields a pair of algebraically
double real or purely imaginary eigenvalues. A zero eigenvalue of (54)–(56) similarly
leads to a zero eigenvalue of L, the algebraic multiplicity of which is readily determined
by studying the equation Lu = 0 directly. A straightforward calculation shows that
zero is an eigenvalue of L if and only if α = α�; the eigenvalue has algebraic multiplicity
2 when β �= β� and algebraic multiplicity 4 when β = β�, where

α� =

(∫ 1

0

a−3(s) ds

)−1

, β� = α2
�

∫ 1

0

a(s)

(∫ s

0

a−3(t) dt

)2

ds.

The generalized eigenvectors wj , where Lw1 = 0, Lw2 = w1, and Lwj = wj−1,
j = 3, 4, for β = β� are given by

w1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

∫ 1

0
a−3(s) ds

0∫ s

0
a−3(t) dt

0

⎞
⎟⎟⎟⎟⎟⎟⎠

, w2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

−a(1)
∫ 1

0
a−3(s) ds

0

−a(s)
∫ s

0
a−3(t) dt

⎞
⎟⎟⎟⎟⎟⎟⎠

,(58)

w3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−
∫ 1

0
a−3(s)

∫ s

0
a(t)

∫ t

0
a−3(u) du dtds

0

−
∫ s

0
a−3(t)

∫ t

0
a(u)

∫ u

0
a−3(v) dv du dt

0

⎞
⎟⎟⎟⎟⎟⎟⎠

,(59)

w4 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

a(1)
∫ 1

0
a−3(s)

∫ s

0
a(t)

∫ t

0
a−3(u) du dtds

0

a(s)
∫ s

0
a−3(t)

∫ t

0
a(u)

∫ u

0
a−3(v) dv du dt

⎞
⎟⎟⎟⎟⎟⎟⎠

.(60)
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(a) (b)

ν ν

(c) (d)

ν ν

(e) (f)

ν ν

(g) (h)

ν ν

Fig. 3. The eight cases in which the Sturm–Liouville problem (54)–(56) has two real eigen-
values (counted according to algebraic multiplicity) which are less than νD

0 ; solid and hollow dots
denote, respectively, algebraically simple and algebraically double eigenvalues. The insets show the
corresponding eigenvalues of the linear operator L; the cross denotes an eigenvalue of algebraic
multiplicity 4.

Recall that L has four eigenvalues (counted according to algebraic multiplicity) with a
real part in the interval (−(νD

0 )1/2, (νD
0 )1/2). An algebraically simple zero eigenvalue

of (54)–(56) (Figure 3(f) or (g)) therefore corresponds to the case α = α�, β �= β�,
while an algebraically double zero eigenvalue (Figure 3(h)) corresponds to the case
α = α�, β = β�; it follows that

B(0) = a′(1) + a−2(1)α�, B′(0) = −a−2(1)β�.
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43 CC

C2 C1

α�

β� β

α

Fig. 4. Eigenvalues of L whose real parts lie in (−(νD
0 )1/2, (νD

0 )1/2); solid and hollow dots
denote, respectively, algebraically simple and double eigenvalues. The curves Cj , j = 1, . . . , 4,
consist of points in (β, α) parameter space at which the qualitative nature of the eigenvalue picture
changes; the real parts of the four complex eigenvalues just above C1 ∪ C2 move out of the range
(−(νD

0 )1/2, (νD
0 )1/2) as one moves away from C1 ∪ C2.

From this observation we conclude that Figure 3(f) corresponds to the case α = α�,
β > β�, while Figure 3(g) corresponds to the case α = α�, β < β�; furthermore,
Figure 3(a) corresponds to the case α < α�, Figures 3(b) and (e) arise when α > α�,
β > β�, and Figures 3(c) and (d) arise when α > α�, β < β�.

Figure 4 summarizes the behavior of the four eigenvalues of L whose real parts lie
in (−(νD

0 )1/2, (νD
0 )1/2). The values of β and α determine, respectively, the gradient

of the straight line in Figure 3 and its point of intersection with the vertical axis:
Increasing β makes it steeper, while increasing α moves it upwards. Suppose, for
example, that α < α� (Figure 3(a)), and we increase the value of α while keeping β
fixed; according to whether β < β� or β > β� we pass through the sequence (a), (g),
(c), (d) or (a), (f), (b), (e). Figure 4 follows from these observations. Of particular
interest are the four bifurcation curves Cj , j = 1, 4, at points of which the qualitative
nature of the eigenvalue picture changes. In contrast to C4 = {(β, α�) : β > β�} and
C3 = {(β, α�) : β < β�}, explicit parametrizations of C2 and C1 are available only in
certain special cases, in particular for irrotational flows (Kirchgässner [29]).

Recall that L also has a countably infinite number of eigenvalues whose real parts
lie outside the range (−(νD

0 )1/2, (νD
0 )1/2); these eigenvalues are all real and simple at

points in the (β, α) parameter plane below the curve C1 ∪ C2, while all but possibly
four of the complete set of eigenvalues are real above C1∪C2. The region above C1∪C2

contains a further countably infinite family of bifurcation curves, points of the nth of
which correspond to the transition between Figure 2 (top right) and Figure 2 (bottom):
Four real eigenvalues with magnitudes in the interval ((νD

n−1)
1/2, (νD

n )1/2) become
complex by colliding in pairs on the real axis. At each point in (β, α) parameter space
above C1 ∪ C2 there is therefore an infinite number of real, simple eigenvalues and
possibly one pair of algebraically double real eigenvalues or one plus-minus, complex-
conjugate quartet of complex eigenvalues.

The spectral theory presented above can also be formulated in terms of self-adjoint
operators on Pontryagin spaces (see, e.g., Bognár [5] and Iohvidov, Krein, and Langer
[22]). Introduce the π1-space P = L2(0, 1) × R with indefinite inner product

[(φ1, b1), (φ2, b2)] = 〈aφ1, φ2〉L2(0,1) − βb1b2
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and the linear operator T : D(T ) ⊂ P → P defined by

T (φ, b) = (−a−1(s)(a3(s)φs)s,−a3(1)β−1φs(1) + αβ−1φ(1)),

with

D(T ) = {(φ, b) : φ ∈ H2(0, 1), φ(0) = 0, φ(1) = b}.
Observe that T is densely defined (with respect to the topology of L2(0, 1) × R) and
symmetric (with respect to [· , ·]), so that it is a self-adjoint operator on P , and it
follows from (51)–(53) that κ is an eigenvalue of L if and only if κ2 is an eigenvalue
of T . This framework, which was used by Wahlén [35] in his study of periodic water
waves, yields a convenient method of calculating the local parts of the curves C1 and
C2 in Figure 4 near the point (β�, α�).

A point (βκ, ακ) of C1 is characterized by the fact that κ2 is a geometrically
simple eigenvalue of Tκ := T |(β,α)=(βκ,ακ) with algebraic multiplicity 2, and since
the algebraic multiplicity of this eigenvalue exceeds its geometric multiplicity the
corresponding eigenspace Eκ2 is neutral; that is, [ṽ, ṽ]κ := [ṽ, ṽ]β=βκ vanishes for
every ṽ = (v, v(1)) ∈ Eκ2 (see Wahlén [35, p. 12]). One obtains expressions for vj , βj ,
αj by inserting the expansions

Tκ = T0 + κ2T2 + κ4T4 + · · · , [· , ·]κ = [· , ·]0 + κ2[· , ·]2 + κ4[· , ·]4 + · · ·
and

vκ = v0 + κ2v2 + κ4v4 + · · · ,

βκ = β� + κ2β2 + κ4β4 + · · · , ακ = α� + κ2α2 + κ4α4 + · · ·
into

Tκṽκ = κ2ṽκ, [ṽκ, ṽκ]κ = 0,

and equating coefficients of κ2. In particular we find that

v0 =

∫ s

0

a−3(s) dt, v2 = −
∫ s

0

a−3(t)

∫ t

0

a(u)

∫ u

0

a−3(v) dv du dt,

β2 =
2[ṽ2, ṽ0]0
v2
0(1)

, α2 = 0, α4 =
[ṽ2, ṽ0]0
v2
0(1)

,

and hence that

α4 = α2
�d1, β2 = 2α2

�d1,(61)

where

d1 = −α�

(∫ 1

0

a−3(s)

∫ s

0

a(t)

∫ t

0

a−3(u) du dtds

)2

+

∫ 1

0

a−3(s)

(∫ s

0

a(t)

∫ t

0

a−3(u) du dt

)2

ds > 0.(62)

A similar calculation shows that the corresponding parametrization of the local part
of C2 near (β�, α�) is

βλ = β� − 2α2
�d1λ

2 + O(λ4), αλ = α� + α2
�d1λ

4 + O(λ6)

(a point (βλ, αλ) of C2 is characterized by the fact that −λ2 is a geometrically simple
eigenvalue of Tλ := T |(β,α)=(βλ,αλ) with algebraic multiplicity 2).
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4. The reduced Hamiltonian systems. Our existence theory for solitary
waves is completed by showing that the reduced Hamiltonian system on the cen-
ter manifold admits homoclinic solutions. Irrotational solitary waves have been found
at points in (β, α) parameter space near C1, C2, and C4 in this fashion, and in this
section we examine the corresponding reduced systems in our more general context.

4.1. Homoclinic bifurcation at C4. A Hamiltonian 02 resonance takes place
at points of the curve C4 in Figure 4: Two real eigenvalues become purely imaginary
by colliding at the origin and forming a Jordan chain of length 2. This resonance is
associated with the bifurcation of a branch of homoclinic solutions into the region with
real eigenvalues (the parameter regime marked I in Figure 1(a)). Let us therefore fix
reference values (β0, α0) ∈ C4, so that β0 > β�, α0 = α�, and introduce a bifurcation
parameter by choosing (ε1, ε2) = (0, δ), where 0 < δ � 1.

Formulas for the generalized eigenvectors w1, w2, where Lw1 = 0, Lw2 = w1, are
given in (58), and one finds that

Ψ(w1, w2) = α−2
� (β0 − β�),

where

Ψ((ρ1, ζ1, φ1, z1), (ρ2, ζ2, φ2, z2)) = Φ0|0((ρ1, ζ1, φ1, z1), (ρ2, ζ2, φ2, z2))

= −β0a
−1(1)(ζ2ρ1 − ζ1ρ2) +

∫ 1

0

(z2φ1 − z1φ2) ds.

It follows that {e, f}, where

e = α�(β0 − β�)
−1/2w1, f = α�(β0 − β�)

−1/2w2,

is a symplectic basis for the central subspace X1 = P (X) of X defined by the spectral
projection P : X → X corresponding to the purely imaginary part of L. The coordi-
nates q, p in the e and f directions are canonical coordinates for X1, and the action
of the reverser S on this space is given by

S(q, p) = (q,−p).

Modeling the center manifold X̃ε, ε = (0, δ), upon the single coordinate chart Ũ1

and choosing the coordinate map according to the recipe given in the paragraph
below Theorem 3.1, we can identify (X̃ε, Φ̃ε, H̃ε) with the two-dimensional canonical
Hamiltonian system (M,Υ, H̃ε), where M is a neighborhood of the origin in R

2,

Υ((q1, p1), (q2, p2)) = q1p2 − p1q2

and

H̃ε(q, p) = Kε(ũ1 + r̃(ũ1; ε)), ũ1 = qe + pf.

A direct calculation shows that

H̃0,0
2 (q, p) = K0,0

2 [ũ1, ũ1] =
1

2
p2,

where εi1ε
j
2H̃

i,j
k (ũ1) denotes the part of the Taylor expansion of H̃ε(ũ1) which is homo-

geneous of order i in ε1, j in ε2, and k in ũ1
∼= (q, p) and Ki,j

k denotes the symmetric,
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k-linear operator Xk
1 → R which defines the corresponding coefficient in the Taylor

expansion of Kε. Anticipating the scaling q ∼ δQ, p ∼ δ3/2P , we write

H̃ε(q, p) =
1

2
p2 + c1δq

2 + c2q
3 + O(|p||(q, p)||(δ, q, p)|) + O(|(q, p)|2|(δ, q, p)|2),

so that the first three terms on the right-hand side of the above equation are O(δ3)
and the remainder is of higher order. The coefficients c1 and c2 are obtained from the
calculations

c1 = K0,1
2 [e, e] + 2K0,0

2 [e, r̃0,1
10 ]

= K0,1
2 [e, e] + Ψ(Le, r̃0,1

10 )

= K0,1
2 [e, e]

= −1

2
(β0 − β�)

−1

and

c2 = K0,0
3 [e, e, e] + 2K0,0

2 [e, r̃0,0
20 ] = −1

2
c0(β0 − β�)

−3/2, c0 = α3
�

∫ 1

0

a−5(s) ds,

in which r̃i,jk	 denotes the coefficient of εi1ε
j
2q

kp	 in the Taylor expansion of r̃ and we
have made use of the identity

Ψ(Lũ1
1, ũ

2
1) = 2K0,0

2 [ũ1
1, ũ

2
2].(63)

Hamilton’s equations for (M,Υ, H̃ε) are

qx = p + R1(q, p, δ),(64)

px = δ(β0 − β�)
−1q +

3

2
c0(β0 − β�)

−3/2q2 + R2(q, p, δ),(65)

where R1, R2 are, respectively, odd and even in their second arguments and

R1 = O(|p||(δ, q, p)|) + O(|(q, p)||(δ, q, p)|2), R2 = O(|(q, p)||(δ, q, p)|).

Introducing the scaled variables

X = δ1/2(β0 − β�)
−1/2x, q(x) = c−1

0 δ(β0 − β�)
1/2Q(X), p(x) = c−1

0 δ3/2P (X),

one finds from (64), (65) that

QX = P + R3(Q,P, δ),(66)

PX = Q +
3

2
Q2 + R4(Q,P, δ),(67)

where the remainder terms R3 and R4 are O(δ1/2) and, respectively, odd and even
in their second arguments. In the limit δ → 0, (66), (67) are equivalent to

QX = P,

PX = Q +
3

2
Q2,
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Q

P

Fig. 5. Phase portrait of the scaled reduced system of equations.

whose phase portrait is easily calculated by elementary methods and is depicted in
Figure 5. Notice in particular that it has a nonzero equilibrium (−2/3, 0), surrounded
by the symmetric homoclinic orbit

Q(X) = −sech2

(
X

2

)
, P (X) = sech2

(
X

2

)
tanh

(
X

2

)
.

One can exploit the reversibility of (66), (67) to deduce that it has a symmetric
homoclinic orbit for small positive values of δ. For δ = 0 the stable manifold W 0

s of
the zero equilibrium is known explicitly (it consists of the points on the homoclinic
orbit), and since TW 0

s |(−1,0) = {Q = 0} it intersects the symmetric section Fix S =
{P = 0} transversally in the point (−1, 0). The stable manifold theorem states
that W δ

s depends uniformly smoothly upon δ, and because the symmetric section is
independent of δ it follows that W δ

s and Fix S intersect transversally in a point near
(−1, 0) for sufficiently small positive values of δ. One concludes that the phase portrait
of (66), (67) has a reversible homoclinic orbit in the left half-plane for sufficiently small
positive values of δ.

Tracing back the various changes of variable, one finds that the surface profile of
the water corresponding to the homoclinic orbit detected above is given by

ρ(x) = −c−1
0 δ sech2

(
δ1/2x

2(β0 − β�)1/2

)
+ O(δ3/2).

We therefore obtain a symmetric solitary wave of depression which decays exponen-
tially and monotonically to a horizontal laminar flow as x → ±∞ and is sketched in
Figure 1(b).

4.2. Homoclinic bifurcation at C1. A Hamiltonian real 1 : 1 resonance oc-
curs at points of the curve C1 in Figure 4: Two pairs of real eigenvalues become com-
plex by colliding at nonzero points on the real axis and forming two Jordan chains of
length 2. Of particular interest here is the local part of C1 near the point (β�, α�),
since we can access this curve using the center-manifold reduction technique with
reference value (β0, α0) = (β�, α�). We choose values of the bifurcation parameter
ε = (ε1, ε2) in a fashion which enables us to access this curve effectively, namely, by
writing

ε1 = β2(1 + δ)μ2, ε2 = α4μ
4,(68)

where β2, α4 are the first nonvanishing coefficients in the parametrization

βκ = β� + β2κ
2 + O(κ4), ακ = α� + α4κ

4 + O(κ6)
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of the local part of C1 near (β�, α�); explicit formulas for β2 and α4 are given in (61).
Notice that μ indicates the distance from the point (β�, α�), while δ plays the role
of a bifurcation parameter (varying δ through zero from above we cross the critical
curve C1 in parameter space from above); the parameter regime marked II in Figure
1(a) corresponds to small, positive values of δ and μ.

The point (β0, α0) = (β�, α�) in parameter space is associated with a Hamiltonian
04 resonance (L has a zero eigenvalue with a Jordan chain of length 4); formulas for the
generalized eigenvectors wj , j = 1, . . . 4, where Lw1 = 0 and Lwj = wj−1, j = 2, 3, 4,
are given in (58)–(60). One finds that

Ψ(w1, w4) = −d1, Ψ(w2, w3) = d1, Ψ(w3, w4) = d2,

and the symplectic product of any other combination of these vectors is zero; here
d1 > 0 is given by (62) and

d2 = β�

(∫ 1

0

a−3(s)

∫ s

0

a(t)

∫ t

0

a−3(u) du dtds

)2

−
∫ 1

0

a(s)

(∫ s

0

a−3(t)

∫ t

0

a(u)

∫ u

0

a−3(v) dv du dt

)2

ds.

It follows that {e1, e2, f1, f2}, where

e1 = d
−1/2
1 (w4 + d3w2), e2 = d

−1/2
1 w2, f1 = d

−1/2
1 w1, f2 = d

−1/2
1 w3,

and d3 = d2/d1, is a symplectic basis for the central subspace X1. The coordinates
q1, q2, p1, and p2 in the e1, e2, f1, and f2 directions are canonical coordinates for X1,
and the action of the reverser S on this space is given by

S(q1, q2, p1, p2) = (−q1,−q2, p1, p2).

Modeling the center manifold X̃ε upon the single coordinate chart Ũ1 and choosing
the coordinate map according to the recipe given in the paragraph below Theorem 3.1,
we can identify (X̃ε, Φ̃ε, H̃ε) with the four-dimensional canonical Hamiltonian system
(M,Υ, H̃ε), where M is a neighborhood of the origin in R

4,

Υ((q1
1 , q

1
2 , p

1
1, p

1
1), (q

2
2 , q

2
2 , p

2
2, p

2
2)) = q1

1p
2
1 + q1

2p
2
2 − p1

1q
2
1 − p1

2q
2
2

and

H̃ε(q1, q2, p1, p2) = Kε(ũ1 + r̃(ũ1; ε)), ũ1 = q1e1 + q2e2 + p1f1 + p2f2.

The quadratic part of the reduced Hamiltonian is readily computed; one finds
that

H̃0,0
2 (q1, q2, p1, p2) = K0,0

2 [ũ1, ũ1] = −d3

2
q2
1 − q1q2 +

1

2
p2
2,

and anticipating the scaling q1 ∼ μ7Q1, q2 ∼ μ5Q2, p1 ∼ μ4P1, p2 ∼ μ6P2 and the
parametrization (68), we write

H̃ε(q1, q2, p1, p2) =
1

2
p2
2 − q1q2

+ c1,01 ε1p
2
1 + c1,02 ε1p1p2 + c1,06 ε1q

2
2 + c0,11 ε2p

2
1 + c2,01 ε2

1p
2
1 + cp3

1 + R(q1, q2, p1, p2),(69)
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so that the third term on the right-hand side of the above equation is O(μ10), the re-
mainder term R is O(μ14) (note that H̃ε(−q1,−q2, p1, p2) = H̃ε(q1, q2, p1, p2) because
of the reversibility), and all other terms are O(μ12).

Proposition 4.1. The Darboux transformation used to construct (M,Υ, H̃ε)
(see (36)) can be chosen so that c1,02 = 0.

Proof. Observe that the change of variable

q̄1 = q1 − c1,02 ε1q2, q̄2 = q2, p̄1 = p1, p̄2 = p2 + c1,02 ε1p1(70)

is symplectic and transforms (M,Υ, H̃ε) into (M,Υ, H̄ε), where

H̄ε(q̄1, q̄2, p̄1, p̄2) =
1

2
p̄2
2 − q̄1q̄2

+ c1,01 ε1p̄
2
1 + c̄1,06 ε1q̄

2
2 + c0,11 ε2p̄

2
1 + c̄2,01 ε2

1p̄
2
1 + cp̄3

1 + R̄(q̄1, q̄2, p̄1, p̄2)

and c̄1,06 = c1,06 − c1,02 , c̄2,01 = c2,01 − 1
2 (c1,02 )2 (the remainder term R̄ is O(μ14) in the

sense explained above). The result follows by replacing the Darboux transformation
used in the construction by its composition with the change of variable (70).

To calculate the remaining coefficients on the right-hand side of (69), we exploit
the identity

Lr̃(ũ1; ε) − d1r̃[ũ1; ε](Lũ1)

= −Nε(ũ1 + r̃(ũ1; ε)) + d1r̃[ũ1; ε](P
ε(ũ1)) + P ε(ũ1),(71)

in which P ε(ũ1) is the nonlinear part of the reduced Hamiltonian vector field vH̃ε ;
this identity is derived by substituting u = ũ1 + r̃(ũ1; ε) and ũ1x = Lũ1 +P ε(ũ1) into
(41). Let us write

H̃1,0
2 (q1, q2, p1, p2) = c1,01 p2

1 + c1,03 p2
2 + c1,04 q2

1 + c1,05 q1q2 + c1,06 q2
2

(the coefficients of the remaining terms vanish because of the reversibility), so that

P 1,0
1 (ũ1) = 2c1,01 p1e1 + 2c1,03 p2e2 − (2c1,04 q1 + c1,05 q2)f1 − (2c1,06 q2 + c1,05 q1)f2,

and equating coefficients of ε1ũ1 on both sides of (71), we find that

Lr̃1,0
1000 − r̃1,0

0001 − d3r̃
1,0
0010 = −N1,0

1 [e1] − 2c1,04 f1 − c1,05 f2,(72)

Lr̃1,0
0100 − r̃1,0

0010 = −N1,0
1 [e2] − c1,05 f1 − 2c1,06 f2,(73)

Lr̃1,0
0010 = −N1,0

1 [f1] + 2c1,01 e1,(74)

Lr̃1,0
0001 − r̃1,0

0100 = −N1,0
1 [f2] + 2c1,03 e2.(75)

Here the notation N i,j
k and r̃i,jk , P i,j

k is defined analogously to the notation Ki,j
k and

H̃i,j
k , while r̃i,jk1k2k3k4

is the coefficient of εi1ε
j
2q

k1
1 qk2

2 pk3
1 pk4

2 in the Taylor expansion of

r̃. Explicit calculations show that N1,0
1 (e1), N

1,0
1 (e2), N

1,0
1 (f1) vanish while

N1,0
1 (f2) =

(
0, d

−1/2
1 β−1

� α−1
� a(1), 0, 0

)
.

It follows by elementary linear algebra that the system of equations (72)–(75) is
solvable if and only if

c1,01 = 0, c1,06 = − 1

2d1α2
�

,

and r̃1,0
0010 = γf1 for some γ ∈ R.
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The value of the coefficient c0,11 is obtained from the calculation

c0,11 = K0,1
2 [f1, f1] + 2K0,0

2 [f1, r̃
0,1
0010]

= K0,1
2 [f1, f1] + Ψ(Lf1, r̃

0,1
0010)

= K0,1
2 [f1, f1]

= − 1

2d1α2
�

.

Equating coefficients of ε2p1 on both sides of (71), we find that

Lr̃2,0
0010 = −N2,0

1 [f1] −N1,0
1 [r̃1,0

0010] + 2c2,01 e1 + c2,02 e2,(76)

where the notation for the coefficients in H̃0,1
1 is analogous to that used for H̃1,0

1 . An
explicit calculation shows that

N2,0
1 [f1] = 0, N1,0

1 [r̃1,0
0010] = γ1N

1,0
1 [f1] = 0,

and it follows from (76) that

c2,01 =
1

2
Ψ(Lr̃2,0

0010, f1) = −1

2
Ψ(r̃2,0

0010, Lf1) = 0

(the “skew orthogonality” of L with respect to Ψ follows from (63)). Similarly, one
finds from the p3

1 component of (71), namely,

Lr̃0,0
0020 = −N0,0

2 [f1, f1] + 3ce1,

that

3c− Ψ(N0,0
2 [f1, f1], f1) = Ψ(Lr̃0,0

2000, f1) = −Ψ(r̃0,0
2000, Lf1) = 0

and hence that

c =
1

3
Ψ(N0,0

2 [f1, f1], f1) = − 1

2d
3/2
1

∫ 1

0

a−5(s) ds.

Observe that

c1,06 = − 1

β2
, c0,11 = − 1

2α4
.

Choosing ε1, ε2 according to (68) and introducing the scaled variables X = μx and

q1(x) = μ7Q1(X), q2(x) = μ5Q2(X), p1(x) = μ4P1(X), p2(x) = μ6P2(X),

we therefore find that

H̃ε(q1, q2, p1, p2) = μ12

[
−1

2
P 2

1 − (1 + δ)Q2
2 +

1

2
P 2

2 −Q1Q2 + cP 3
1

]
+ O(μ14)

and that Hamilton’s equations for (M,Υ, H̃ε) are

Q1X = −P1 + 3cP 2
1 + O(μ),(77)

Q2X = P2 + O(μ),(78)

P1X = Q2 + O(μ),(79)

P2X = 2(1 + δ)Q2 + Q1 + O(μ).(80)
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In the limit μ → 0 this dynamical system is equivalent to the single fourth-order
ordinary differential equation

∂4
Xu− 2(1 + δ)∂2

Xu + u− u2 = 0(81)

for the variable u = 3c P1.
It was shown by Buffoni, Champneys, and Toland [6, section 2] that for δ = 0

(81), and hence the system (77)–(80), has a homoclinic solution which corresponds to
a transverse intersection (relative to the zero energy surface) of the stable and unstable
manifolds of the zero equilibrium. Since transversality is an open condition, it follows
that the same is true of the system (77)–(80) for sufficiently small positive values of δ
and μ, for which (77)–(80) is a four-dimensional Hamiltonian system whose lineariza-
tion has a plus-minus, complex-conjugate quartet of complex eigenvalues. The work
of Devaney [12] therefore implies that there is a Smale horseshoe in the dynamics
within the zero energy surface, and implicit in this construction is the existence of
infinitely many homoclinic orbits which pass several times through a neighborhood
of the “primary” transverse homoclinic orbit. These “multipulse” homoclinic orbits
resemble multiple copies of the primary homoclinic orbit, between which there are
distributed smaller local maxima and minima, and have an exponentially decaying
oscillatory tail at infinity.

Tracing back the various changes of variable, one finds that the surface profile of
the water is given by

ρ(x) = d
−1/2
1 μ4P1(μx) + O(μ5).

The primary homoclinic orbit u(x) of (81) satisfies maxx∈R u(x) > 0, so that the ho-
moclinic orbits of (77)–(80) correspond to multitroughed solitary waves of depression
which decay exponentially to a horizontal laminar flow as x → ±∞ (see Figure 1(c)).

4.3. Homoclinic bifurcation at C2. A Hamiltonian Hopf bifurcation takes
place at points of the curve C2 in Figure 4: Two pairs of purely imaginary eigenvalues
become complex by colliding at nonzero points ±iq on the imaginary axis and forming
two Jordan chains of length 2. This resonance is associated with the bifurcation
of a branch of homoclinic solutions into the region with complex eigenvalues (the
parameter regime marked III in Figure 1(a)). Let us therefore fix reference values
(β0, α0) ∈ C2 and introduce a bifurcation parameter by choosing (ε1, ε2) = (0, δ),
where 0 < δ � 1.

By normalizing e, f and modifying f by the addition of a suitable multiple of e
if necessary, we may suppose that the generalized eigenvectors e, f , where

Le = iqe, Lē = −iqē, (L− iqI)f = e, (L + iqI)f̄ = ē,(82)

satisfy Se = ē, Sf = −f̄ and Ψ(e, f̄) = 1, Ψ(f, ē) = −1, and the symplectic products
of all other combinations are zero (note that Ψ acts bilinearly on pairs of complex
vectors). It follows that {e, f, ē, f̄} is a symplectic basis for the central subspace X1

(so that the coordinates A, B, Ā, and B̄ in the e, f , ē, and f̄ directions are canonical
coordinates for X1), and the action of the reverser S on this space is given by

S(A,B) = (Ā,−B̄).
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Modeling the center manifold X̃ε, ε = (0, δ), upon the single coordinate chart Ũ1

and choosing the coordinate map according to the recipe given in the paragraph
below Theorem 3.1, we can identify (X̃ε, Φ̃ε, H̃ε) with the four-dimensional canonical
Hamiltonian system (M,Υ, H̃ε), where M is a neighborhood of the origin in R

4,

Υ((A1, B1, A1, B1), (A2, B2, A2, B2)) = A1B2 −A2B1 + A1B2 −A2B1

and

H̃ε(A,B) = Kε(ũ1 + r̃(ũ1; ε)), ũ1 = Ae + Bf + Āē + B̄f̄ .

The flow of the above four-dimensional Hamiltonian system can be analyzed using
the theory developed by Iooss and Pérouème [26] and Buffoni and Groves [7]. The
Birkhoff normal-form theory states that for each n0 ≥ 2 there is a near-identity,
analytic, symplectic change of coordinates with the property that

H̃ε(A,B) = iq(AB̄ − ĀB) + |B|2

+ HNF(|A|2, i(AB̄ − ĀB), δ) + O(|(A,B)|2|(δ, A,B)|n0)

in the new coordinates; the function HNF is a real polynomial of order n0 + 1 which
satisfies

HNF(|A|2, i(AB̄ − ĀB), δ) = O(|(A,B)|2|(δ, A,B)|),

and in these coordinates Hamilton’s equations for the reduced system are given by

Ax = iqA + B + iA∂2HNF(|A|2, i(AB̄ − ĀB), δ) + O(|(A,B)||(δ, A,B)|n0),(83)

Bx = iqB + iB∂2HNF(|A|2, i(AB̄ − ĀB), δ)

−A∂1HNF(|A|2, i(AB̄ − ĀB), δ) + O(|(A,B)||(δ, A,B)|n0).(84)

The theory by Iooss and Pérouème and Buffoni and Groves demands that the coeffi-
cients c1 and c3 in the expansion

HNF = δc1|A|2 + δic2(AB̄ − ĀB) + c3|A|4

+ ic4|A|2(AB̄ − ĀB) − c5(AB̄ − ĀB)2 + δ2c6|A|2 + δ2ic7(AB̄ − ĀB) + · · ·

are, respectively, negative and positive; the methods explained in section 4.2 show
that

c1 = Ψ(N0,1
1 [e], ē)

and

c3 = Ψ(N0,0
2 [e, r̃0,0

1010], ē) + Ψ(N0,0
2 [ē, r̃0,0

2000], ē) +
3

2
Ψ(N0,0

3 [e, e, ē], ē),

where r̃0,0
1010 and r̃0,0

2000 are the unique solutions of the equations

Lr̃0,0
1010 = −2N0,0

2 [e, ē],

(L− 2iqI)r̃0,0
2000 = −N0,0

2 [e, e].
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Theorem 4.2. Suppose that c1 < 0 and c3 > 0.
(i) (Iooss and Pérouème) For each sufficiently small, positive value of δ the two-

degree-of-freedom Hamiltonian system (83), (84) has two distinct symmetric
homoclinic solutions.

(ii) (Buffoni and Groves) For each sufficiently small, positive value of δ the two-
degree-of-freedom Hamiltonian system (83), (84) has an infinite number of
geometrically distinct homoclinic solutions which generically resemble multi-
ple copies of one of the homoclinic solutions in part (i).

The homoclinic solutions identified above correspond to envelope solitary waves of
amplitude O((−c1δ)

1/2) which decay exponentially to a horizontal flow as x → ±∞;
they are sketched in Figure 1(c).

Explicit formulas for c1 and c3 were computed for irrotational waves by Buffoni
and Groves [7, Appendix B], and for general vorticity distributions one can prove that
c1 < 0, c3 > 0 for values of (β0, α0) on the local part of C2 near (β�, α�). To this end
suppose that (β0, α0) = (βμ, αμ), where

βμ = β� − 2α2
�d1μ

2 + O(μ4), αμ = α� + α2
�d1μ

4 + O(μ6),

so that q = μ. We find that

Le0 = iμe0, (L− iμI)f0 = e0,

where

e0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

iμα−1
� + iμ3

∫ 1

0
a−3(s)

∫ s

0
a(t)

∫ t

0
a−3(u) du dtds + Oi(μ

5)

μ2a(1)α−1
� + μ4a(1)

∫ 1

0
a−3(s)

∫ s

0
a(t)

∫ t

0
a−3(u) du dtds + Or(μ

6)

iμ
∫ s

0
a−3(t) dt + iμ3

∫ s

0
a−3(t)

∫ t

0
a(u)

∫ u

0
a−3(v) dv du dt + Oi(μ

5)

μ2a(s)
∫ s

0
a−3(t) dt + μ4a(s)

∫ s

0
a−3(t)

∫ t

0
a(u)

∫ u

0
a−3(v) dv du dt + Or(μ

6)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

f0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

2μ2
∫ 1

0
a−3(s)

∫ s

0
a(t)

∫ t

0
a−3(u) du dtds + Or(μ

4)

−iμa(1)α−1
� − 3iμ3a(1)

∫ 1

0
a−3(s)

∫ s

0
a(t)

∫ t

0
a−3(u) du dtds + Oi(μ

5)

2μ2
∫ s

0
a−3(t)

∫ t

0
a(u)

∫ u

0
a−3(v) dv du dt + Or(μ

4)

−iμa(s)
∫ s

0
a−3(t) dt− 3iμ3a(1)

∫ s

0
a−3(t)

∫ t

0
a(u)

∫ u

0
a−3(v) dv du dt + Oi(μ

5)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and the symbols Or(μ
n), Oi(μ

n) denote quantities of O(μn) which are, respectively,
real and purely imaginary. Observe that e0 = iμ(φμ(1),−iμa(1)φμ(1), φμ,−iμa(s)φμ)T,
where

Tμφ̃μ = −μ2φ̃μ, [φ̃μ, φ̃μ]μ = 0.

The next step is to normalize the generalized eigenvectors. We have that

Ψ(e0, f0) = −Ψ(f0, e0) = d4, Ψ(f0, f0) = id5,

where

d4 = 4d1μ
4 + Or(μ

6), d5 = −4d1μ
3 + Or(μ

5),

and the calculations

Ψ(e0, e0) = 2iμ3[φ̃μ, φ̃μ]μ
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and

iμΨ(e0, f0) = Ψ(Le0, f0) = −Ψ(e0, Lf0) = −Ψ(e0, iμf0 + e0) = −iμΨ(e0, f0)

imply that Ψ(e0, ē0) = Ψ(e0, f0) = Ψ(ē0, f̄0) = 0. It follows that

e =
i

d
1/2
4

e0, f =
i

d
1/2
4

(
f0 −

id5

2d4
e0

)

satisfy (82) and the normalization requirements given below it.
Performing a series of lengthy calculations, one finds that

c1 =
1

d4
Ψ(N0,1

1 [e0], e0) = − 1

4d1
α−2
� μ−2 + Or(1) < 0

and

c3 =
1

d2
4

Ψ(N0,0
2 [e0, R̃

0,0
1010], e0) +

1

d2
4

Ψ(N0,0
2 [e0, R̃

0,0
2000], e0) +

3

2d2
4

Ψ(N0,0
3 [e0, e0, e0], e0)

=
19

64d3
1

(∫ 1

0

a−5(s) ds

)2

μ−8 + Or(μ
−6) > 0,

where

R̃0,1
1010 = −2L−1N0,0

2 [e0, e0]

=

⎛
⎜⎜⎜⎜⎜⎜⎝

−3d−1
1 α−1

� μ−2
∫ 1

0
a−5(s) ds + Or(1)

0

−3d−1
1 μ−2

∫ 1

0
a−5(s) ds

∫ s

0
a−3(t) dt + Or(1)

0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

R̃0,1
2000 = −(L− 2iμI)−1N0,0

2 [e0, e0]

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1
6d

−1
1 α−1

� μ−2
∫ 1

0
a−5(s) ds + Or(1)

− 1
3 id−1

1 α−1
� μ−1a(1)

∫ 1

0
a−5(s) ds + Oi(μ)

1
6d

−1
1 μ−2

∫ 1

0
a−5(s) ds

∫ s

0
a−3(t) ds + Or(μ)

− 1
3 id−1

1 μ−1a(p)
∫ 1

0
a−5(s) ds

∫ s

0
a−3(t) dt + Oi(μ)

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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AHMAD EL HAJJ†

Abstract. In this work we study a system of nonconservative Burgers type in one space dimen-
sion, arising in modeling the dynamics of dislocation densities in crystals. Starting from physically
relevant initial data that are of a special form, namely nondecreasing, periodic plus linear functions,
we prove the global existence and uniqueness of a solution in H1

loc(R × [0,+∞)) that preserves the
nature of the initial data. The approach is made by adding some viscosity to the system, obtaining
energy estimates, and passing to the limit for vanishing viscosity. A comparison principle is shown
for this system as well as an application in the case of the classical Burgers equation.

Key words. system of Burgers equations, system of nonlinear transport equations, nonlinear
hyperbolic system, dynamics of dislocation densities
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1. Introduction.

1.1. Physical motivations and presentation of the model. Real crystals
comprise certain defects in the organization of their crystalline structure called dis-
locations. In a particular case where these defects are parallel straight lines in the
three-dimensional space, they can be viewed as points in a plan. Under the effect
of exterior constraints, dislocations can move in a certain crystallographic direction
called the slip direction. This slip direction is given by a vector called the “Burgers
vector.” The norm of this vector represents the amplitude of the generated deforma-
tion. (We refer the reader to [12] for further physical explanation.)

In this work, we are interested in the study of a one-dimensional submodel of
a problem introduced by Groma and Balogh [11], initially proposed in the two-
dimensional case. In fact, this one-dimensional submodel was defined by El Hajj
and Forcadel [8, Lemme 3.1].

This two-dimensional model is characterized by the fact that dislocations propa-
gate in the plane (x1, x2) following the two Burgers vectors ±�b with �b = (1, 0). In this
one-dimensional submodel we suppose also that dislocation densities depend only on
the variable x = x1+x2, which transforms the two-dimensional into a one-dimensional
model (see El Hajj and Forcadel [8] for more modeling details).

More precisely this one-dimensional model is given by the following coupled
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equations of nonconservative Burgers type:
(1)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ+

∂t
(x, t) = −

(
a(t) + (ρ+ − ρ−)(x, t) + α

∫ 1

0

(ρ+ − ρ−)(y, t)dy

)
∂ρ+

∂x
(x, t)

in D′(R × (0, T )),

∂ρ−

∂t
(x, t) =

(
a(t) + (ρ+ − ρ−)(x, t) + α

∫ 1

0

(ρ+ − ρ−)(y, t)dy

)
∂ρ−

∂x
(x, t)

in D′(R × (0, T )).

The unknowns ρ+ and ρ− are scalar-valued functions, which we denote for simplicity

by ρ±. Their spatial derivatives ∂ρ±

∂x are the dislocation densities of the Burgers vector

±�b = ±(1, 0). The function a = a(t), representing the field of the imposed exterior
constraint, is supposed to be independent of x, and the constant α depends on the
elastic coefficients and the material size.

We consider the following initial conditions for (1):

(2) ρ±(x, t = 0) = ρ±0 (x) = ρ±,per
0 (x) + L0x, x ∈ R,

where ρ±,per
0 are 1-periodic functions. We thus modelize a periodic distribution for the

± dislocations, with a spatial period of length 1. Note that each type of ± dislocation
has a mean density equal to L0. In fact, the use of the periodic boundary conditions
is a way of regarding what is going on in the interior of the material away from its
boundary.

1.2. A brief review of some related literature. From a mathematical point
of view, system (1) is related to other similar models such as transport equations
based on vector fields with low regularity. Such equations were, for instance, studied
by DiPerna and Lions in [7]. They proved the existence and uniqueness of a solution
(in the renormalized sense) for vector fields in L1((0,+∞);W 1,1

loc (RN )) whose diver-
gence is in L1((0,+∞);L∞(RN )). This study was generalized by Ambrosio [3], who
considered vector fields in L1((0,+∞);BVloc(R

N )) with bounded divergence. In the
present paper, we work in dimension N = 1 and prove the existence and unique-
ness of solutions of the system (1)–(2) with a vector field (i.e., the velocity) only in
L∞((0,+∞), H1

loc(R)).
We also refer the reader to the works of LeFloch [13] and LeFloch and Liu [14], in

which they considered the study in the framework of functions of bounded variation
for a system of the form

(3)

⎧⎨
⎩

∂u

∂t
(x, t) + A(u)

∂u

∂x
(x, t) = 0, u(x, t) ∈ U, x ∈ R, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ R,

where the space of states U is an open subset of R
p, and A is a (p × p) matrix

which is of class C1 on U . Moreover, A(u) have p scalar distinct eigenvalues that
we denote by λ1(u) < λ2(u) < · · · < λp(u). We remark that this condition on the
eigenvalues does not enter into our framework even in the case where α = a = 0,
because we have not sign property on ρ+ − ρ−. LeFloch and Liu proved that if the
initial condition u0 is sufficiently close to a constant state, and if the total variation
TV (u0) is assumed to be small enough, then system (3) admits a unique solution in
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L∞(R × (0,+∞)) ∩ BV (R × (0,+∞)), in the sense of weak entropy solutions with
respect to admissible function (see LeFloch [13, Definition 3.2]).

When the system is hyperbolic and symmetric, this corresponds to the case α =
a = 0 in our system (1); it is proved in Serre [17, Thm. 3.6.1] and [18] to be a result
of local existence and uniqueness in C([0, T );Hs(RN )) ∩ C1([0, T );Hs−1(RN )), with
s > N

2 + 1, this result being only local in time, even in dimension N = 1.
The assumptions of increasing initial conditions were also considered in the study

of the Euler equation for compressible fluids in dimension one. With regard to these
studies, we refer the reader to Chen and Wang [6, Thm. 3.1] for an existence and
uniqueness result in C1(R × [0,+∞)) based on the method of characteristic. The
result of Chen and Wang shows that the Euler equation of compressible fluids does
not create shocks for suitable increasing and C1(R) initial conditions. In our case, we
already knew that solutions of (1) are Lipschitz continuous; see El Hajj and Forcadel
[8]. Even if this regularity question is not addressed in the present paper, we may
expect some C1(R × [0,+∞)) regularity of the solution for C1(R) initial data.

1.3. Main result. The main result of this paper is the existence and uniqueness
of global in time solutions for the system (1)–(2), modeling the dynamics of dislocation
densities. This result ensures the mathematical well-posedness of the Groma–Balogh
model [11] in the particular case of our interest.

Theorem 1.1 (existence and uniqueness). For all T,L0 ≥ 0, α ∈ R, and ρ±0 ∈
H1

loc(R), and under the assumptions
(H1) ρ±0 (x + 1) = ρ±0 (x) + L0 (1-periodic function + linear function),

(H2)
∂ρ±0
∂x

≥ 0 a.e. in R (ρ±0 nondecreasing),

(H3) a ∈ L∞(0, T ),
the system (1)–(2) admits a unique solution ρ± ∈ H1

loc(R × [0, T )) such that, for a.e.
t ∈ (0, T ), the function ρ±(., t) : x �−→ ρ±(x, t) verifies (H1) and (H2).

The preceding theorem gives a global existence and uniqueness result of the system
(1). Its proof is based on the following steps. First, we regularize the system (1);
then we show a uniform a priori estimate in L∞((0, T );H1

loc(R)) for this regularized
system. These estimates lead to a result of existence for long time solution and ensure
the passage to the limit by compactness. Finally, the demonstration of uniqueness is
done in a direct way.

Theorem 1.2 (comparison principle for (1) with α = 0). Let a(·) satisfy (H3) and
ρ±,
1 , ρ±2 ∈ H1

loc(R×[0, T )) be two solutions of the system (1) with α = 0. Moreover, let
ρ±1 (., t), ρ±2 (., t) verify (H1) and (H2) for a.e. t ∈ (0, T ). Then, if ρ±1 (·, 0) ≤ ρ±2 (·, 0)
in R, we have ρ±1 ≤ ρ±2 a.e. in R × (0, T ).

This comparison result was crucial in a previous work [8], for the demonstration
of existence and uniqueness of a Lipschitz solution to problem (1), in the sense of
viscosity solution, for Lipschitz initial conditions. Here the interest of this result is a
little bit secondary. Indeed, thanks to this comparison principle, we have been able to
obtain indirectly H1

loc(R × [0, T )) estimates. These estimates in turn lead to a result
of existence in H1

loc(R × [0, T )).
Our work focuses on the study of the dynamics of dislocation densities. In a

different direction, let us quote some recent results on the dynamics of dislocation
lines, taken individually, that are represented by nonlocal Hamilton–Jacobi equations
(see [2, 9] and [1, 4] for local and global in time results, respectively).

Remark 1.3 (existence and uniqueness for the Burgers equation). We remark
that these techniques can be applied to the case of the classical Burgers equations in
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W 1,p
loc (R × [0, T )) for all 1 ≤ p < +∞.

Indeed, if we consider for a given function f and initial data u0 the equation

(4)

⎧⎨
⎩

∂u

∂t
+

∂

∂x
(f(u)) = 0 in D′(R × (0, T )),

u(x, 0) = u0(x), x ∈ R,

then we have the following theorem.
Theorem 1.4. Let p ∈ [1,+∞) and f be locally Lipschitz and convex; then, for

all T,L0 ≥ 0, and u0 ∈ W 1,p
loc (R), they satisfy (H1) and (H2). Equation (4) admits

a solution u ∈ W 1,p
loc (R × [0, T )), unique in the class of solutions satisfying (H1) and

(H2), a.e. t ∈ (0, T ).

1.4. Organization of the paper. In section 2, we regularize the function
a(·) and the initial conditions and prove that the system (1)–(2) modified by the

term (ε{∂2ρ±

∂x2 }) admits local in time solutions (in the “mild” sense). This will be
achieved by using an application of a fixed point theorem in the space of functions
in C([0, T );H1

loc(R)) and verifying (H1) for all t ∈ (0, T ). In section 3, we prove that
the obtained solutions are regular and verify (H2) for all t ∈ (0, T ), with initial con-
ditions verifying (H2). In section 4, we prove some uniform a priori estimates on the
regularized solution obtained in section 3. Thanks to these estimates, we also prove
the existence of global in time solutions. In section 5, we give the demonstration of
Theorem 1.1, and in section 6 we prove a comparison principle result of the system
(1) in the case α = 0. Finally, in section 7 we give an application of the previous
results in the case of the classical Burgers equation.

2. Existence of solutions for an approximated system. In this section, we
prove a theorem of existence of solutions, local in time, for the system (1) modified by

the term ε{∂2ρ±

∂x2 } after the regularization of the function a(·) and the initial conditions.
This approximation brings us back to the study, for every 0 < ε < 1, of the following
system:
(5)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ+,ε

∂t
− ε

∂2ρ+,ε

∂x2
= −

(
aε(t) + (ρ+,ε − ρ−,ε) + α

∫ 1

0

(ρ+,ε − ρ−,ε)(y, t)dy

)
∂ρ+,ε

∂x

in D′(R × (0, T )),

∂ρ−,ε

∂t
− ε

∂2ρ−,ε

∂x2
=

(
aε(t) + (ρ+,ε − ρ−,ε) + α

∫ 1

0

(ρ+,ε − ρ−,ε)(y, t)dy

)
∂ρ−,ε

∂x

in D′(R × (0, T )),

where aε = ã ∗ ηε, with ηε(·) = 1
εη(

·
ε ), such that η ∈ C∞

c (R), η is positive, and∫
R
η = 1. The function ã(·) is an extension in R of the function a(·) by 0.
We also consider the regularized initial conditions of the system (5):

(6) ρ±,ε(x, 0) = ρ±,ε
0 (x) = ρ±,ε,per

0 (x) + L0x = ρ±,per
0 ∗T ηε(x) + L0x.

We have the following local in time existence result for the approximated system.
Theorem 2.1 (short time existence). Assume (H1) and (H3). For all α ∈ R

and ρ±0 ∈ H1
loc(R) there exists

T �(‖ρ±,per
0 ‖H1(T), ‖a‖L∞(0,T ), L0, α, ε) > 0
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such that the system (5)–(6) admits a solution ρ±,ε ∈ C([0, T �);H1
loc(R)) with ρ±,ε(., t)

verifying (H1).
For the proof of this theorem, see subsection 2.3. Before going on, we need to

give some notation and preliminary results that will be used throughout the paper.

2.1. Notation. In what follows, we are going to use the following notation:
1. ρε = ρ+,ε − ρ−,ε.
2. ρ±,ε,per = ρ±,ε − L0x.
3. T = (R/Z) is the [0, 1)-periodic interval.
4. Let f = (f1, f2) be a vector such that fi ∈ H1(T) for i ∈ {1, 2}. The norm of

f in
(
H1(T)

)2
will be defined by ‖f‖H1(T) = max(‖f1‖H1(T), ‖f2‖H1(T)).

5. Let f be a function from R × (0, T ) to R. We note by f(t) = f(., t) : x �−→
f(x, t).

Remark 2.2 (periodicity). According to (H1)–(H2), it is clear that ρε, ρ±,ε,per,

and ∂ρ±,ε

∂x are 1-periodic in space functions.
Under the notation of section 2.1, we know that the system (5) is equivalent to

∂ρ±,ε,per

∂t
− ε

∂2ρ±,ε,per

∂x2
= ∓

bilinear term︷ ︸︸ ︷
Cα[ρε(t)]

∂ρ±,ε,per

∂x
∓

linear term︷ ︸︸ ︷
aε(t)

∂ρ±,ε,per

∂x
∓ L0Cα[ρε(t)](7)

∓ L0a
ε(t) in T × (0, T ),

where Cα[ρε(t)](x) = (ρε(x, t) + α
∫ 1

0
ρε(y, t)dy), with the periodic initial conditions

(8) ρ±,ε,per(x, 0) = ρ±,ε,per
0 (x) in T.

2.2. Preliminary results.
Lemma 2.3 (properties of the regularized sequence). Under hypotheses (H1) and

(H3) and for every ρ±0 ∈ H1
loc(R), we have the following:

1. The functions ρ±,ε,per
0 ∈ C∞(T) and verify the following estimate:

‖ρ±,ε,per
0 ‖H1(T) ≤ C‖ρ±,per

0 ‖H1(T).

2. The function aε(·) ∈ C∞(R) ∩ L∞(R) and verifies the following estimate:

‖aε‖L∞(R) ≤ ‖a‖L∞(0,T ).

3. The sequence aε(·) strongly converges to a(·) in L2(0, T ). The sequences
ρ±,ε,per
0 strongly converge to ρ±,per

0 in H1(T).
The proof of this lemma is a classical property of the regularizing sequence (ηε)ε.
Lemma 2.4 (mild solution). Assume (H3). For every T ≥ 0, if ρ±,ε,per ∈

C([0, T );H1(T)) are solutions of the equation

(9)

ρ±,ε,per(x, t) = Sε(t)ρ
±,ε,per
0

∓L0

∫ t

0

aε(s)ds∓
∫ t

0

Sε(t− s)

(
Cα[ρε(s)]

∂ρ±,ε,per

∂x
(s)

)
ds

∓
∫ t

0

Sε(t− s)

(
L0Cα[ρε(s)] + a(t)

∂ρ±,ε,per

∂x
(s)

)
ds,
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where Sε(t) = eεtΔ is the heat semigroup, then ρ±,ε,per is a solution of the system
(7)–(8) in the sense of distributions.

For the proof of this lemma, we refer the reader to Pazy [16, Thm. 5.2, p. 146].

Lemma 2.5 (fixed point). Let E be a Banach space, B be a continuous bilinear
application from E × E to E, and L be a continuous linear application from E to E
such that

‖B(x, y)‖E ≤ λ‖x‖E‖y‖E for all x, y ∈ E,

‖L(x)‖E ≤ μ‖x‖E for all x ∈ E,

where λ > 0 and μ ∈ (0, 1) are given constants. Then, for all x0 ∈ E such that

‖x0‖E <
1

4λ
(μ− 1)2,

the equation x = x0 + B(x, x) + L(x) admits a solution in E.

For the proof of this lemma we refer the reader to Cannone [5, Lem. 4.2.14].

In order to show the existence of a solution within the framework of Lemma 2.4,

we apply Lemma 2.5 in the space E =
(
L∞((0, T );H1(T))

)2
, where x0, B, and L are

defined, for u = (u1, u2), v = (v1, v2) ∈ E, by

x0 = Sε(t)ρ
ε
0,vec + L0

�i

∫ t

0

aε(s)ds, where ρε0,vec = (ρ+,ε,per
0 , ρ−,ε,per

0 ), �i =

(
−1
1

)
,

(10)

B(u, v)(t) = Ī1

∫ t

0

Sε(t− s)

(
Cα[u1(s) − u2(s)]

∂v

∂x
(s)

)
ds, where Ī1 =

(
−1 0
0 1

)
,

(11)

L(u)(t) = L0
�i

∫ t

0

Sε(t− s)Cα[u1(s) − u2(s)]ds + Ī1

∫ t

0

Sε(t− s)

(
aε(s)

∂u

∂x
(s)

)
ds.

(12)

Lemma 2.6 (decreasing estimates). If f ∈ Lq(T) with 2 ≤ q ≤ +∞ and g ∈
L2(T), then for all t > 0 we have the following estimates:

(i)

‖Sε(t)(fg)‖L∞(T) ≤ Ct−
1
2 ‖f‖L2(T)‖g‖L2(T).

(ii) ∥∥∥∥ ∂

∂x
(Sε(t)f)

∥∥∥∥
L2(T)

≤ Ct−
1
2 ‖Sε

(
t

2

)
f‖L2(T).

(iii) ∥∥∥∥ ∂

∂x
(Sε(t)(fg))

∥∥∥∥
L2(T)

≤ Ct−
1
2 (1+ 1

q )‖f‖Lq(T)‖g‖L2(T),



A NONCONSERVATIVE BURGERS-TYPE SYSTEM 971

where C = C(ε) is a positive constant depending on ε.
For the proof of this lemma, see Pazy [16, Lem. 1.1.8 and Thm. 6.4.5].

Proposition 2.7 (bilinear operator). Let FT =
(
L∞((0, T );H1(T))

)2
. Then for

every T ≥ 0, α ∈ R, u = (u1, u2) ∈ FT , and v = (v1, v2) ∈ FT the bilinear operator B
defined in (11) is continuous from FT × FT to FT . Moreover, there exists a positive
constant C = C(α, ε) such that for all u, v ∈ FT we have

‖B(u, v)‖FT
≤ CT

1
2 ‖u‖FT

‖v‖FT
.

Proof of Proposition 2.7. First, we know that

‖B(u, v)(t)‖H1(T) =

∥∥∥∥Ī1
∫ t

0

Sε(t− s)

(
Cα[u1(s) − u2(s)]

∂v

∂x
(s)

)
ds

∥∥∥∥
H1(T)

≤
∫ t

0

∥∥∥∥Sε(t− s)

(
Cα[u1(s) − u2(s)]

∂v

∂x
(s)

)∥∥∥∥
H1(T)

ds.

Then, since L∞(T) ↪→ L2(T), we have

‖B(u, v)(t)‖H1(T) ≤
∫ t

0

∥∥∥∥Sε(t− s)

(
Cα[u1(s) − u2(s)]

∂v

∂x
(s)

)∥∥∥∥
L∞(T)

ds

+

∫ t

0

∥∥∥∥ ∂

∂x
Sε(t− s)

(
Cα[u1(s) − u2(s)]

∂v

∂x
(s)

)∥∥∥∥
L2(T)

ds.

Using Lemma 2.6(i) for the first term and Lemma 2.6(iii) with q = ∞ for the second
term, we can conclude that

‖B(u, v)(t)‖H1(T) ≤ C

∫ t

0

1

(t− s)
1
2

‖Cα[u1(s) − u2(s)]‖L∞(T)

∥∥∥∥∂v∂x (s)

∥∥∥∥
L2(T)

ds

≤ C sup
0≤t<T

(‖u(t)‖H1(T)) sup
0≤t<T

(‖v(t)‖H1(T))

∫ t

0

1

(t− s)
1
2

ds.

Then, for all t ∈ (0, T ), we have

(13)
‖B(u, v)(t)‖H1(T) ≤ Ct

1
2 ‖u‖L∞((0,T );H1(T))2‖v‖L∞((0,T );H1(T))2

≤ CT
1
2 ‖u‖L∞((0,T );H1(T))2‖v‖L∞((0,T );H1(T))2 .

Proposition 2.8 (linear operator). Let FT =
(
L∞((0, T );H1(T))

)2
and a(·)

satisfy (H3). Then for all L0 T ≥ 0, and u = (u1, u2) ∈ FT , the linear operator L
defined in (12) is continuous from FT to FT . Moreover, there exists a positive constant
C = C(α, ε, ‖a‖L∞(0,T ), L0) such that

‖L(u)‖FT
≤ CT

1
2 ‖u‖FT

.

The proof of Proposition 2.8 is similar to the one used in Proposition 2.7.
Lemma 2.9. For all L0, T ≥ 0, and a(·) satisfying (H3), if

Xaε(t) = L0
�i

∫ t

0

aε(s)ds, t ∈ (0, T ),

then

‖Xaε‖(L∞(0,T ))2 ≤ L0T‖a‖L∞(0,T ).
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The proof of Lemma 2.9 is trivial (from Lemma 2.3(2)).
Lemma 2.10 (continuity of the semigroup). For all f ∈ W 2,2(T) and 0 ≤ θ < t,

we have the following estimates:
(i)

‖(Sε(t− θ) − Id)f‖L2(T) ≤ C(t− θ)

∥∥∥∥∂2f

∂x2

∥∥∥∥
L2(T)

.

(ii)

‖(Sε(t− θ) − Id)f‖L2(T) ≤ 2‖f‖L2(T),

where C = C(ε) is a positive constant depending on ε.
We refer the reader to Pazy [16, Lem. 6.2, p. 151] for the proof of this lemma.
Lemma 2.11 (time continuity). Assume (H3). If ρ0,vec = (ρ+,per

0 , ρ−,per
0 ) ∈

(H1(T))2, then for all T ≥ 0 and u = (u1, u2) ∈
(
L∞((0, T );H1(T))

)2
, we have the

following applications:
(A1) t → Xaε(t);
(A2) t → Sε(t)ρ

ε
0,vec, where ρε0,vec = (ρ+,ε,per

0 , ρ−,ε,per
0 );

(A3) t → B(u, u)(t);

(A4) t → L(u)(t) are
(
C([0, T );H1(T))

)2
, where Xaε , B, and L are defined in

Lemma 2.9, (11), and (12), respectively.
Proof of Lemma 2.11. The continuity of (A1) is trivial since a ∈ L∞(0, T ). From

the fact that the semigroup Sε(·) is continuous from [0, T ) to (H1(T))2, we deduce
the continuity of (A2).

It remains to prove the continuity of (A3) and (A4). Indeed, the continuity of
(A3) at 0 is a consequence of inequality (13). Now we are going to prove the continuity
of (A3) for all θ ∈ (0, T ). For all t, such that θ < t ≤ min(T, 3θ

2 ), we write t = (1+γ)θ
and denote τ = (1 − γ)θ (where 0 < γ ≤ 1

2 ), and we write

B(u, u)(t) −B(u, u)(θ) =

∫ τ

0

(S(t− s) − S(θ − s))

(
Cα[u1(s) − u2(s)]

∂u

∂x
(s)

)
ds

+

∫ θ

τ

(S(t− s) − S(θ − s))

(
Cα[u1(s) − u2(s)]

∂u

∂x
(s)

)
ds

+

∫ t

θ

S(t− s)

(
Cα[u1(s) − u2(s)]

∂u

∂x
(s)

)
ds

=

I1︷ ︸︸ ︷∫ τ

0

((S(t− θ) − Id)S(θ − s))

(
Cα[u1(s) − u2(s)]

∂u

∂x
(s)

)
ds

+

I2︷ ︸︸ ︷∫ θ

τ

((S(t− θ) − Id)S(θ − s))

(
Cα[u1(s) − u2(s)]

∂u

∂x
(s)

)
ds

+

∫ t

θ

S(t− s)

(
Cα[u1(s) − u2(s)]

∂u

∂x
(s)

)
ds.

We apply Lemma 2.10(i) and Lemma 2.6(ii) to find an upper bound to I1. We then
apply Lemma 2.10(ii) to find an upper bound to I2. After that, we follow the same
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steps of the proof of Proposition 2.7 to conclude that

‖B(u, u)(t) −B(u, u)(θ)‖H1 ≤ C(t− θ)‖u‖2
(L∞((0,T );H1(T)))2

∫ τ

0

1

(θ − s)
3
2

ds

+C‖u‖2
(L∞((0,T );H1(T)))2

∫ θ

τ

1

(θ − s)
1
2

ds

+C‖u‖2
(L∞((0,T );H1(T)))2

∫ t

θ

1

(t− s)
1
2

ds.

After the computation of each integral we deduce that

‖B(u, u)(t) −B(u, u)(θ)‖H1 ≤ C(t− θ)

(
1

(θ−τ)
1
2
− 1

θ
1
2

)
‖u‖2

(L∞((0,T );H1(T)))2

+C
(
(θ − τ)

1
2 + (t− θ)

1
2

)
‖u‖2

(L∞((0,T );H1(T)))2
.

Observing that t− θ = θ − τ = γθ we finally obtain the following inequality:

‖B(u, u)(t) −B(u, u)(θ)‖H1 ≤ C(θ, γ)
(
(t− θ)

1
2 + (t− θ)

)
‖u‖2

(L∞((0,T );H1(T)))2 ,

and hence we get the continuity of (A3). In the same way we get the continuity in
time of (A4).

2.3. Proof of Theorem 2.1. We rewrite the system (9) in the following vecto-
rial form:

ρεvec(·, t) = Sε(t)ρ
ε
0,vec + L0

�i

∫ t

0

aε(s)ds + Ī1

∫ t

0

Sε(t− s)

(
Cα[ρε(s)]

∂ρεvec
∂x

(s)

)
ds

+L0
�i

∫ t

0

Sε(t− s)Cα[ρε(s)]ds + Ī1

∫ t

0

Sε(t− s)

(
aε(s)

∂ρεvec
∂x

(s)

)
ds

such that ρεvec is the vector (ρ+,ε,per, ρ−,ε,per) and ρε0,vec is the vector (ρ+,ε,per
0 , ρ−,ε,per

0 ).
�i and Ī1 are defined in (10) and (11), respectively.

This altogether leads to the following equation:

(14) ρεvec(·, t) = Sε(t)ρ
ε
0,vec + Xaε(t) + B(ρεvec, ρ

ε
vec)(t) + L(ρεvec)(t),

where B is the bilinear application and L is the linear application defined in (11)
and (12), respectively, and Xaε is defined in Lemma 2.9. Moreover, according to
Lemmas 2.9 and 2.3 we know that

‖S(t)ρε0,vec + Xaε(t)‖(L∞((0,T );H1(T)))2 ≤ ‖ρε0,vec‖H1(T) + L0T‖aε‖L∞(R)

≤ C0‖ρ0,vec‖H1(T) + L0T‖a‖L∞(0,T ).

In order to apply Lemma 2.5, we want, for a well-chosen time T , that the following
inequality holds:

(15) C0‖ρ0
vec‖H1(T) + L0T‖a‖L∞(0,T ) <

1

4CT
1
2

(CT
1
2 − 1)2, and CT

1
2 < 1,
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where C is the largest constant between the two constants computed in Proposi-
tions 2.8 and 2.7. For

(T �)
1
2 (‖ρ0,vec‖H1(T), ‖a‖L∞(0,T ), L0, ε)(16)

= min

(
1,

1

2C
,

1

16C(C0‖ρ0
vec‖H1(T) + L0‖a‖L∞(0,T ))

)
,

we can easily verify that T � satisfies the inequality (15). We apply Lemma 2.5 over

the space FT� =
(
L∞((0, T �);H1(T))

)2
to prove the existence of a solution for the

system (14) in FT� .
Then, according to Lemma 2.11, we deduce that the obtained solution is (C([0, T �);

H1(T)))2.
This proves, by Lemma 2.4, the existence of a solution in the sense of distributions

for the system (5)–(6) in C([0, T �);H1
loc(R)) that verifies (H1).

3. Properties of the solution to the approximated system. In this section
we show that the solutions of system (5)–(6) obtained in the previous section are
regular and verify (H2), provided that initial conditions verify (H2).

Lemma 3.1 (regularity of the solution). Assume (H1), (H3), and ρ±0 ∈ H1
loc(R);

if ρ±,ε ∈ C([0, T );H1
loc(R)) are solutions of the system (5)–(6), then ρ±,ε ∈ C∞(R ×

[0, T )).
Proof of Lemma 3.1. If we denote the second term of the system (7) by

f±
aε,α[ρε(t)] = ∓aε(t)

(
L0 +

∂ρ±,ε,per

∂x

)
∓ Cα[ρε(t)]

(
∂ρ±,ε,per

∂x
+ L0

)
,

we know that f±
aε,α[ρε] ∈ L2(T×(0, T )). Moreover, we know that the initial conditions

ρ±,ε,per
0 ∈ C∞(T), which allows us to apply the L2 regularity of the heat equation

over the system (7)–(8) (see Lions and Magenes [15, Thm. 8.2]). Then we deduce by
induction that the solution is C∞(T × [0, T )).

Lemma 3.2 (monotonicity of the solution in space). Assume (H1), (H2), (H3),
and ρ±0 ∈ H1

loc(R); if ρ±,ε ∈ C∞(R × [0, T )) are solutions of the system (5)–(6), then
ρ±,ε(., t) verifies (H2) for all t ∈ (0, T ).

Proof of Lemma 3.2. First, we remark that if
∂ρ±

0

∂x ≥ 0, then
∂ρ±,ε

0

∂x ≥ 0. Indeed,
we have

∂ρ±,ε
0

∂x
=

∂ρ±,per
0

∂x
∗ ηε + L0 =

(
∂ρ±,per

0

∂x
+ L0

)
∗ ηε

=

(
∂ρ±0
∂x

)
∗ ηε ≥ 0, because η is positive.

We apply the maximum principle over the derived system of (5)–(6):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂θ±,ε

∂t
− ε

∂2θ±,ε

∂x2
± (Cα[ρε(t)] + aε(t))

∂θ±,ε

∂x
± (θ+,ε − θ−,ε)θ±,ε = 0

in T × (0, T ),

θ±,ε(x, 0) =
∂ρ±,ε

0

∂x
,
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where θ±,ε = ∂ρ±,ε

∂x (see Gilbarg and Trudinger [10, Thm. 8.1]). Since ρ±,ε ∈ C∞(R×
[0, T )), we deduce that θ±,ε ≥ 0 belongs to T × (0, T ).

Corollary 3.3 (short time existence of nondecreasing regular solutions). For
all α ∈ R and ρ±0 ∈ H1

loc(R), under the assumptions (H1), (H2), and (H3), there exists

T �(‖ρ±,per
0 ‖H1(T), ‖a‖L∞(0,T ), L0, α, ε) > 0

such that the system (5)–(6) admits a solution ρ±,ε ∈ C∞(R × [0, T �)) with ρ±,ε(., t)
verifying (H1) and (H2).

The proof of Corollary 3.3 is a consequence of Theorem 2.1 and Lemmas 3.1
and 3.2 (with T = T �).

Remark 3.4. Here we remark that the case of nondecreasing solutions corresponds
to a nonshock case in the Burgers equation. On the other hand, the decreasing
solutions represent the shock case.

4. A priori estimates and long time existence for the approximated
system. In this section, we are going to show some ε-uniform estimates on the solu-
tions of the system (5)–(6). These estimates will be used in section 4 for the passage
to the limit as ε tends to zero.

Lemma 4.1 (L2 estimates over the space derivatives of the solutions). Assume
(H1), (H2), (H3), and ρ±0 ∈ H1

loc(R); if ρ±,ε ∈ C∞(R × [0, T )) is a solution of the
system (5)–(6) for all T ≥ 0, then

∥∥∥∥∂ρ+,ε

∂x

∥∥∥∥
2

L∞((0,T );L2(T))

+

∥∥∥∥∂ρ−,ε

∂x

∥∥∥∥
2

L∞((0,T );L2(T))

≤ CB0,

with B0 = (‖∂ρ+
0

∂x ‖2
L2(T) + ‖∂ρ−

0

∂x ‖2
L2(T)).

Proof of Lemma 4.1. If we denote ρε = ρ+,ε − ρ−,ε and kε = ρ+,ε + ρ−,ε, then,

according to (H1), it is clear that ρε, ∂ρε

∂x , and ∂kε

∂x are 1-periodic functions. Moreover,

by Lemma 3.2, we know that ∂kε

∂x ≥ 0.

If we take into consideration the equations of the system (5), we can conclude
that ρε and kε verify the following system:

(17)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ρε

∂t
− ε

∂2ρε

∂x2
= −

(
ρε + α

∫ 1

0

ρεdx + aε(t)

)
∂kε

∂x
in D′(R × (0, T )),

∂kε

∂t
− ε

∂2kε

∂x2
= −

(
ρε + α

∫ 1

0

ρεdx + aε(t)

)
∂ρε

∂x
in D′(R × (0, T )).

We derive the first equation of the system (17) with respect to x, then we multiply

the result by ∂ρε

∂x , and, finally, we integrate in space. For all t ∈ (0, T ), we then obtain

1

2

d

dt

∥∥∥∥∂ρε∂x
(t)

∥∥∥∥
2

L2(T)

+ ε

∥∥∥∥∂2ρε

∂x2
(t)

∥∥∥∥
2

L2(T)

= −
∫ 1

0

(
∂ρε

∂x

)2
∂kε

∂x
−
∫ 1

0

ρε
∂ρε

∂x

∂2kε

∂x2

−
(
α

∫ 1

0

ρε + aε(t)

)∫ 1

0

∂2kε

∂x2

∂ρε

∂x
.

Now we proceed in the same way as for the previous equation, but we multiply the
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second equation of the system (17) by ∂kε

∂x . For every t ∈ (0, T ), we obtain

1

2

d

dt

∥∥∥∥∂kε∂x
(t)

∥∥∥∥
2

L2(T)

+ ε

∥∥∥∥∂2kε

∂x2
(t)

∥∥∥∥
2

L2(T)

= −
∫ 1

0

(
∂ρε

∂x

)2
∂kε

∂x
−
∫ 1

0

ρε
∂kε

∂x

∂2ρε

∂x2

−
(
α

∫ 1

0

ρε + aε(t)

)∫ 1

0

∂2ρε

∂x2

∂kε

∂x
.

Adding the two previous equations, thanks to the periodicity of ρε and ∂kε

∂x , we infer
that

1

2

d

dt

∥∥∥∥∂ρε∂x
(t)

∥∥∥∥
2

L2(T)

+
1

2

d

dt

∥∥∥∥∂kε∂x
(t)

∥∥∥∥
2

L2(T)

≤ −
∫ 1

0

(
∂ρε

∂x

)2
∂kε

∂x
−
∫ 1

0

∂

∂x

(
ρε

∂ρε

∂x

∂kε

∂x

)

−
(
α

∫ 1

0

ρε + aε(t)

)∫ 1

0

∂

∂x

(
∂ρε

∂x

∂kε

∂x

)

≤ −
∫ 1

0

(
∂ρε

∂x

)2
∂kε

∂x
≤ 0.

We integrate in time and use the fact that ρ±,ε ∈ C∞(R × [0, T )) and Lemma 2.3.
We obtain, in particular,

sup
t∈(0,T )

∥∥∥∥∂ρε∂x
(t)

∥∥∥∥
2

L2(T)

+ sup
t∈(0,T )

∥∥∥∥∂kε∂x
(t)

∥∥∥∥
2

L2(T)

≤ C

(∥∥∥∥∂(ρ+
0 − ρ−0 )

∂x

∥∥∥∥
2

L2(T)

+

∥∥∥∥∂(ρ+
0 + ρ−0 )

∂x

∥∥∥∥
2

L2(T)

)
.

That leads to the desired result.
Lemma 4.2 (L2 estimates of the solutions). Assume (H1), (H2), (H3), and

ρ±0 ∈ H1
loc(R); if ρ±,ε ∈ C∞(R × [0, T )) are solutions of the system (5)–(6) for every

T ≥ 0, then ∥∥ρ+,ε
∥∥2

L∞((0,T );L2(0,1))
+
∥∥ρ−,ε

∥∥2

L∞((0,T );L2(0,1))

≤ C
(
M0 + (B0 + ‖a‖2

L∞(0,T ))
)
e4L0(1+α2)T ,

where B0 is defined in Lemma 4.1, and M0 = (‖ρ+
0 ‖2

L2(0,1) + ‖ρ−0 ‖2
L2(0,1)).

Proof of Lemma 4.2. We will use the same procedure of the proof of Lemma 4.1.
We multiply the first equation of the system (17) by ρε; then we integrate in space.
For every t ∈ (0, T ), we obtain

1

2

d

dt
‖ρε(t)‖2

L2(T) + ε

∥∥∥∥∂ρε∂x
(t)

∥∥∥∥
2

L2(T)

= −
∫ 1

0

(ρε)2
∂kε

∂x
−
(
α

∫ 1

0

ρε + aε(t)

)∫ 1

0

ρε
∂kε

∂x
.

Similarly, we multiply the second equation of the system (17) by kε and integrate in
space. For every t ∈ (0, T ), we obtain

1

2

d

dt
‖kε(t)‖2

L2(0,1) +ε

∥∥∥∥∂kε∂x
(t)

∥∥∥∥
2

L2(T)

= −
∫ 1

0

ρε
∂ρε

∂x
kε−

(
α

∫ 1

0

ρε + aε(t)

)∫ 1

0

kε
∂ρε

∂x
.
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Now we add the two previous equations and get

1

2

(
d

dt
‖ρε(t)‖2

L2(T) +
d

dt
‖kε(t)‖2

L2(0,1)

)

≤ −
∫ 1

0

(
(ρε)2

∂kε

∂x
+

1

2
kε

∂(ρε)2

∂x

)

−
(
α

∫ 1

0

ρε + aε(t)

)(∫ 1

0

kε
∂ρε

∂x
+

∫ 1

0

ρε
∂kε

∂x

)

≤ −1

2

∫ 1

0

(ρε)2
∂kε

∂x
− 1

2

∫ 1

0

∂((ρε)2kε)

∂x

−
(
α

∫ 1

0

ρε + aε(t)

)∫ 1

0

∂(kερε)

∂x
.

Recalling that ρε is periodic and kε is nondecreasing, we see that

1

2

(
d

dt
‖ρε(t)‖2

L2(T) +
d

dt
‖kε(t)‖2

L2(0,1)

)
≤ −

(
α

∫ 1

0

ρε + aε(t)

)∫ 1

0

∂(kερε)

∂x
.

But we know from (H1) that ρε and (kε−2L0x) are 1-periodic functions, which implies
that

∫ 1

0

∂(kερε)

∂x
=

∫ 1

0

∂((kε − 2L0x)ρε)

∂x
+ 2L0

∫ 1

0

∂(xρε)

∂x
= 2L0

∫ 1

0

x
∂ρε

∂x
+ 2L0

∫ 1

0

ρε.

We use Lemmas 4.1 and 2.3 and the fact that (ab ≤ 1
2 (a2+b2) and (a+b)2 ≤ 2(a2+b2))

to deduce that

d

dt

(
‖kε(t)‖2

L2(0,1) + ‖ρε(t)‖2
L2(T)

)

≤ 4L0

(
|α| ‖ρε(t)‖L2(T) + ‖a‖L∞(0,T )

)(∥∥∥∥∂ρε∂x
(t)

∥∥∥∥
L2(T)

+ ‖ρε(t)‖L2(T)

)

≤ 4L0

(
‖a‖2

L∞(0,T ) + (1 + α2)‖ρε(t)‖2
L2(T) +

∥∥∥∥∂ρε∂x
(t)

∥∥∥∥
2

L2(T)

)

≤ 4L0

(
CB0 + ‖a‖2

L∞(0,T )

)
+ 4L0(1 + α2)

(
‖ρε(t)‖2

L2(T) + ‖kε(t)‖2
L2(0,1)

)
.

Using the previous estimate and the fact that ρ±,ε ∈ C∞(R× [0, T )), we finally obtain

‖ρε‖2
L∞((0,T );L2(T)) + ‖kε‖2

L∞((0,T )L2(0,1)) ≤ C
(
M0 + B0 + ‖a‖2

L∞(0,T )

)
e4L0(1+α2)T .

This leads to the desired result.
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Lemma 4.3 (L2 estimate on the time derivatives of the solutions). Assume (H1),
(H2), (H3), and ρ±0 ∈ H1

loc(R); if ρ±,ε ∈ C∞(R × [0, T )) is a solution of the system
(5)–(6) for every T ≥ 0, then there exists a constant C

(
T,L0, α, ‖a‖L∞(0,T ),M0, B0

)
independent of ε such that

∥∥∥∥∂ρ±,ε

∂t

∥∥∥∥
L2(T×(0,T ))

≤ C.

Proof of Lemma 4.3. For the proof of Lemma 4.3, it is sufficient to show that the
second term of the system (5),

f±
aε,α[ρε(t)] = ∓

(
aε(t) + ρε + α

∫ 1

0

ρεdx

)
∂ρ±,ε

∂x
,

is bounded in L∞((0, T );L2(T)) uniformly in ε. Indeed,

∥∥f±
aε,α[ρε]

∥∥
L∞((0,T�);L2(T))

≤
∥∥∥∥
(
aε(·) + ρε + α

∫ 1

0

ρεdx

)
∂ρ±,ε

∂x

∥∥∥∥
L∞((0,T );L2(T))

≤ C
(
‖ρε‖L∞(T×(0,T )) + ‖a‖L∞(0,T )

) ∥∥∥∥∂ρ±,ε

∂x

∥∥∥∥
L∞((0,T );L2(T))

.

We use Lemmas 4.1 and 4.2 and the Sobolev injections to deduce that there exists a
constant C

(
T,L0, α, ‖a‖L∞(0,T ),M0, B0

)
such that

∥∥f±
aε,α[ρε]

∥∥
L∞((0,T );L2(T))

≤ C.

To conclude, we multiply the first and the second equations of the system (5) by ∂ρ+,ε

∂t

and ∂ρ−,ε

∂t , respectively, and we integrate in space. We deduce that for every t ∈ (0, T )
we have

∥∥∥∥∂ρ±,ε

∂t
(t)

∥∥∥∥
2

L2(T)

+
ε

2

d

dt

∥∥∥∥∂ρ±,ε

∂x
(t)

∥∥∥∥
2

L2(T)

=

∫ 1

0

f±
aε,α[ρε(t)]

∂ρ±,ε

∂t
.

Integrating in time and using the fact that ρ±,ε ∈ C(R × [0, T )) for all T ≥ 0, we get

∥∥∥∥∂ρ±,ε

∂t

∥∥∥∥
2

L2(T×(0,T ))

+
ε

2

∥∥∥∥∂ρ±,ε

∂x
(T )

∥∥∥∥
2

L2(T)

=

∫ T

0

∫ 1

0

f±
aε,α[ρε(t)]

∂ρ±,ε

∂t
+

ε

2

∥∥∥∥∂ρ0
±,ε

∂x

∥∥∥∥
2

L2(T)

.

We apply Hölder’s inequality and the fact that ε < 1 and ab ≤ 1
2 (a2 + b2) to obtain

that
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∥∥∥∥∂ρ±,ε

∂t

∥∥∥∥
2

L2(T×(0,T ))

≤
∥∥f±

aε,α[ρε]
∥∥
L2(T×(0,T ))

∥∥∥∥∂ρ±,ε

∂t

∥∥∥∥
L2(T×(0,T ))

+
1

2

∥∥∥∥∂ρ0
±,ε

∂x

∥∥∥∥
2

L2(T)

≤ C

2

(∥∥f±
aε,α[ρε]

∥∥2

L2(T×(0,T ))
+

∥∥∥∥∂ρ±,ε

∂t

∥∥∥∥
2

L2(T×(0,T ))

+

∥∥∥∥∂ρ0
±

∂x

∥∥∥∥
2

L2(T)

)
,

which leads to∥∥∥∥∂ρ±,ε

∂t

∥∥∥∥
2

L2(T×(0,T ))

≤ C

(∥∥f±
aε,α[ρε]

∥∥2

L2(T×(0,T ))
+

∥∥∥∥∂ρ0
±

∂x

∥∥∥∥
2

L2(T)

)

≤ C

(
T
∥∥f±

aε,α[ρε]
∥∥2

L∞((0,T );L2(T))
+

∥∥∥∥∂ρ0
±

∂x

∥∥∥∥
2

L2(T)

)
≤ C,

where C
(
T,L0, α, ‖a‖L∞(0,T ),M0, B0

)
.

Remark 4.4 (the sense of the initial conditions). According to Lemma 4.3, we
have ρ±,ε,per ∈ C([0, T ), L2(T)) uniformly in ε. This will give a sense to the limit of
the initial conditions.

Theorem 4.5 (long time existence). Assume (H1), (H2), and (H3); for all
L0, T ≥ 0, α ∈ R, and ρ±0 ∈ H1

loc(R), the system (5)–(6) admits the solutions
ρ±,ε ∈ C∞(R× [0, T )), with ρ±,ε(., t) verifying (H1) and (H2). Moreover, there exists
a constant C

(
T,L0, α, ‖a‖L∞(0,T ),M0, B0

)
independent of ε, with B0 and M0 defined

in Lemmas 4.1 and 4.2, respectively, such that

(18)
∥∥ρ±,ε,per

∥∥
L∞((0,T );L2(T))

+

∥∥∥∥∂ρ±,ε

∂x

∥∥∥∥
L∞((0,T );L2(T))

+

∥∥∥∥∂ρ±,ε

∂t

∥∥∥∥
L2(T×(0,T ))

≤ C,

where ρ±,ε,per = ρ±,ε − L0x.
Proof of Theorem 4.5. We are going to prove that local time solutions obtained

by Corollary 3.3 can be extended to global time solutions for the same system.
We argue by contradiction: Assume that there exists a maximum time Tmax such

that we have the existence of solutions of the system (5)–(6) in the function space
C∞(R × [0, Tmax)).

For every δ > 0, we consider the system (5) with the initial conditions

ρ±,ε
δ,max = ρ±,ε(x, Tmax − δ).

We apply for the second time the same technique of Corollary 3.3 to deduce that there
exists a time

T �
δ,max(‖ρ±,ε,per

δ,max ‖H1(T), ‖a‖L∞(0,T ), L0, α, ε) > 0, where ρ±,ε,per
δ,max = ρ±,ε

δ,max − L0x,

such that the system (5)–(6) admits a solution defined until the time

T0 = (Tmax − δ) + T �
δ,max.

Moreover, according to Lemmas 4.1 and 4.2, we know that ρ±,ε,per
δ,max are δ-uniformly

bounded in H1(T). We use (16) to deduce that there exists a constant C(ε, Tmax, α,
‖a‖L∞(0,T ), L0) > 0 independent of δ such that T �

δ,max ≥ C > 0; then limδ→0 T
�
δ,max ≥

C > 0, which implies that T0 > Tmax, and so we have a contradiction.
The estimation (18) is a consequence of Lemmas 4.1, 4.2, and 4.3.
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5. Existence and uniqueness of the solution of (1)–(2). In this section,
we are going to prove that the system (1)–(2) admits a unique solution ρ± (in the
distribution sense) which is the limit as ε → 0 of ρ±,ε given by Theorem 4.5. In order
to do that, we pass to the limit when ε tends to 0 in the system (7)–(8), and we
use (18) in order to ensure the compactness. The proof of the uniqueness uses direct
arguments.

Proof of Theorem 1.1. We first prove the existence and then establish the unique-
ness.

Step 1 (existence). Let ρ±,ε be the solution of the system (5) given by Theo-
rem 4.5. According to (18) we know that ρ±,ε,per are ε-uniformly bounded in H1(T×
(0, T )); then we can extract a subsequence that converges weakly in H1(T × (0, T )).
Knowing that H1(T× (0, T )) is compact in L2(T× (0, T )), this subsequence strongly
converges in L2(T × (0, T )). If we denote by ρ±,per the limit of this subsequence, we
have to prove that ρ±,per + L0x is a solution of the system (1)–(2) in the sense of
distribution. Indeed, by Lemma 2.3, the term ∓ (L0a

ε) of (7) converges strongly to
(∓L0a) in L2(0, T ).

The linear term

∓
(
L0Cα[ρε] + aε(t)

∂ρ

∂x

±,ε,per)

of (7) weakly converges in L1(T × (0, T )), and the reason is, on the one hand, that
∂ρ
∂x

±,ε,per
are ε-uniformly bounded in L2(T× (0, T )), which gives us the weak conver-

gence in L2(T×(0, T )), and, on the other hand, that aε strongly converges in L2(0, T ).
Then the linear term converges in the sense of distributions (i.e., in D′(T × (0, T ))).
It remains to prove that the bilinear term

Cα[ρε]
∂ρ

∂x

±,ε,per

of (7) also converges in the sense of distributions. We have the following:
1. The sequence Cα[ρε] is compact in L2(T × (0, T )).

2. The functions ∂ρ
∂x

±,ε,per
are ε-uniformly bounded in L2(T × (0, T )).

This gives us a strong convergence in L2(T × (0, T )) times a weak convergence in
L2(T × (0, T )) and hence a weak convergence of the product in L1(T × (0, T )). This
leads, as a consequence, to the convergence in the distribution sense. This altogether
shows that ρ±,per +L0x is a solution in the sense of distribution of the system (1)–(2)
and ρ±,per verifies estimate (18).

It remains to prove that the initial condition is satisfied by the limit function

ρ±,per. In fact, according to the estimate (18) on ρ±,ε,per, ∂ρ
∂t

±,ε
, and ∂ρ

∂x

±,ε
, we see

that ρ±,ε,per is ε-uniformly bounded in H1(T × (0, T )).
From the fact that the injection of H1(T×(0, T )) in C([0, T );L2(T)) is continuous

and compact by classical arguments, we see that, for all v ∈ L2(T), the application

γ : U �−→
∫ 1

0
U(0)v is a continuous linear form for U ∈ C([0, T );L2(T)) and hence

γ(ρ±,ε,per) → γ(ρ±,per) as ε → 0, because up to a subsequence ρ±,ε,per converges
strongly in C([0, T );L2(T)). This altogether proves that the solution verifies the
initial conditions (2).

Step 2 (uniqueness). Let ρ±1 and ρ±2 be two solutions of the system (1) such that
ρ±1 (·, 0) = ρ±2 (·, 0) = ρ±0 and ρ±i (·, t) verify (H1), (H2), and estimate (18) for i = 1, 2,
t ∈ (0, T ).
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If we denote ρi = ρ+
i −ρ−i , ki = ρ+

i +ρ−i for i = 1, 2, then it is clear that (ρ1−ρ2)
and (k1 − k2) are 1-periodic functions in space and ρi, ki verify the following system
for i = 1, 2:

(19)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ρi
∂t

= −
(
ρi + α

∫ 1

0

ρidx + a(t)

)
∂ki
∂x

in D′(R × (0, T )),

∂ki
∂t

= −
(
ρi + α

∫ 1

0

ρidx + a(t)

)
∂ρi
∂x

in D′(R × (0, T )).

We substract the two systems to obtain that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂(ρ1 − ρ2)

∂t
= −

(
ρ1 + α

∫ 1

0

ρ1dx

)
∂k1

∂x
+

(
ρ2 + α

∫ 1

0

ρ2dx

)
∂k2

∂x

− a(t)
∂(k1 − k2)

∂x
,

∂(k1 − k2)

∂t
= −

(
ρ1 + α

∫ 1

0

ρ1dx

)
∂ρ1

∂x
+

(
ρ2 + α

∫ 1

0

ρ2dx

)
∂ρ2

∂x

− a(t)
∂(ρ1 − ρ2)

∂x
.

The previous system is equivalent to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂(ρ1 − ρ2)

∂t
= −

(
(ρ1 − ρ2) + α

∫ 1

0

(ρ1 − ρ2)dx

)
∂k1

∂x

−
(
ρ2 + α

∫ 1

0

ρ2dx

)
∂(k1 − k2)

∂x
− a(t)

∂(k1 − k2)

∂x
,

∂(k1 − k2)

∂t
= −

(
(ρ1 − ρ2) + α

∫ 1

0

(ρ1 − ρ2)dx

)
∂ρ1

∂x

−
(
ρ2 + α

∫ 1

0

ρ2dx

)
∂(ρ1 − ρ2)

∂x
− a(t)

∂(ρ1 − ρ2)

∂x
.

We multiply the first equation of this system by (ρ1 − ρ2) and integrate in space to
obtain, for almost every t, that

1

2

d

dt
‖(ρ1 − ρ2)(t)‖2

L2(T) = −
∫ 1

0

(
(ρ1 − ρ2)

2 ∂k1

∂x

)

−α

(∫ 1

0

(ρ1 − ρ2)

)∫ 1

0

(
(ρ1 − ρ2)

∂k1

∂x

)

−
∫ 1

0

(
(ρ1 − ρ2)

(
ρ2 + α

∫ 1

0

ρ2

)
∂(k1 − k2)

∂x

)

−a(t)

∫ 1

0

(
(ρ1 − ρ2)

∂(k1 − k2)

∂x

)
.

Similarly, we multiply the second equation by (k1 − k2) and integrate in space to get,
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for almost every time t,

1

2

d

dt
‖(k1 − k2)(t)‖2

L2(T) = −
∫ 1

0

(
(ρ1 − ρ2)(k1 − k2)

∂ρ1

∂x

)

−α

(∫ 1

0

(ρ1 − ρ2)

)∫ 1

0

(k1 − k2)
∂ρ1

∂x

−
∫ 1

0

(
(k1 − k2)

(
ρ2 + α

∫ 1

0

ρ2

)
∂(ρ1 − ρ2)

∂x

)

−a(t)

∫ 1

0

(
(k1 − k2)

∂(ρ1 − ρ2)

∂x

)
.

We add the two previous equations to obtain, for almost every time t,

1

2

d

dt

(
‖(ρ1 − ρ2)(t)‖2

L2(T) + ‖(k1 − k2)(t)‖2
L2(T)

)

= −
∫ 1

0

(
(ρ1 − ρ2)

2 ∂k1

∂x

)
− α

(∫ 1

0

(ρ1 − ρ2)

)∫ 1

0

(
(ρ1 − ρ2)

∂k1

∂x

)

−α

(∫ 1

0

(ρ1 − ρ2)

)∫ 1

0

(
(k1 − k2)

∂ρ1

∂x

)

−
∫ 1

0

(
∂

∂x

(
(ρ1 − ρ2)(k1 − k2)

(
ρ2 + α

∫ 1

0

ρ2

)))

−
∫ 1

0

(
(ρ1 − ρ2)(k1 − k2)

∂(ρ1 − ρ2)

∂x

)
− a(t)

∫ 1

0

(
∂

∂x
((ρ1 − ρ2)(k1 − k2))

)
.

From the fact that ρi, i = 1, 2, and (k1 − k2) are 1-periodic functions in space, the
previous equation becomes

=

I1︷ ︸︸ ︷
−
∫ 1

0

(
(ρ1 − ρ2)

2 ∂k1

∂x

) I2︷ ︸︸ ︷
− α

(∫ 1

0

(ρ1 − ρ2)

)∫ 1

0

(
(ρ1 − ρ2)

∂k1

∂x

)
I3︷ ︸︸ ︷

−α

(∫ 1

0

(ρ1 − ρ2)

)∫ 1

0

(
(k1 − k2)

∂ρ1

∂x

) I4︷ ︸︸ ︷
−
∫ 1

0

(
(ρ1 − ρ2)(k1 − k2)

∂(ρ1 − ρ2)

∂x

)
.

And since ∂ki

∂x ≥ 0 for i = 1, 2, we know that

I1 + I4 = −
∫ 1

0

(
(ρ1 − ρ2)

2 ∂k1

∂x

)
− 1

2

∫ 1

0

(
(k1 − k2)

∂

∂x

(
(ρ1 − ρ2)

2
))

= −
∫ 1

0

(
(ρ1 − ρ2)

2 ∂k1

∂x

)
+

1

2

∫ 1

0

(
(ρ1 − ρ2)

2 ∂(k1 − k2)

∂x

)

= −1

2

∫ 1

0

(
(ρ1 − ρ2)

2 ∂(k1 + k2)

∂x

)
≤ 0.
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Moreover, from (18), we have, for almost every t,

I2 ≤ |α|‖(ρ1 − ρ2)(t)‖L2(T)‖(ρ1 − ρ2)(t)‖L2(T)

∥∥∥∥∂k1

∂x
(t)

∥∥∥∥
L2(T)

≤ C‖(ρ1 − ρ2)(t)‖2
L2(T).

Similarly, from (18), we have, for almost every t,

I3 ≤ |α|‖(ρ1 − ρ2)(t)‖L2(T)‖(k1 − k2)(t)‖L2(T)

∥∥∥∥∂ρ1

∂x
(t)

∥∥∥∥
L2(T)

≤ C
(
‖(ρ1 − ρ2)(t)‖2

L2(T) + ‖(k1 − k2)(t)‖2
L2(T)

)
.

Then

d

dt

(
‖(ρ1 − ρ2)(t)‖2

L2(T) + ‖(k1 − k2)(t)‖2
L2(T)

)

≤ C
(
‖(ρ1 − ρ2)(t)‖2

L2(T) + ‖(k1 − k2)(t)‖2
L2(T)

)
.

Now we integrate in time and use the fact that ρi, ki ∈ C([0, T ), L2
loc(R)), ρ1(·, 0) =

ρ2(·, 0), and k1(·, 0) = k2(·, 0) to obtain that

sup
t∈(0,T )

‖(ρ1 − ρ2)(t)‖2
L2(T) + sup

t∈(0,T )

‖(k1 − k2)(t)‖2
L2(T) ≤ 0.

This achieves the proof of uniqueness.

Remark 5.1. In Theorem 1.1, we have proved a result of existence and uniqueness
in H1

loc(R×[0, T )) depending on some uniform estimates in this space. These estimates
give a sufficient compactness in order to ensure the passage to the limit as ε tends
to 0 in the bilinear term. However, the space W 1,1

loc (R × [0, T )) does not give enough
compactness. On the other hand, the space of functions L2

loc(R× [0, T )) having their
derivatives in L∞((0, T );

(
L1 logL1

)
loc

(R)) requires the minimal properties to ensure
the passage to the limit in the bilinear term. The result of existence in this space will
be the core of a paper in preparation.

6. Further properties: Comparison principle with case α = 0. In this
section, we are going to prove a comparison principle result of the system (1) in the
case α = 0 (i.e., Theorem 1.2). In order to do this, first we prove in the following
subsection the same result for the approximate system (5). Then we give the proof
of Theorem 1.2.

6.1. Comparison principle for the regularized system with case α = 0.

Lemma 6.1 (comparison principle). Let a(·) satisfy (H3) and ρ±,ε
1 , ρ±,ε

2 ∈
C∞(R× [0, T )) be two solutions of the system (5) with α = 0. Moreover, let ρ±,ε

1 (., t),
ρ±,ε
2 (., t) verify (H1) and (H2) for all t ∈ [0, T ). Then, if ρ±,ε

1 (·, 0) ≤ ρ±,ε
2 (·, 0) in R,

we have ρ±,ε
1 ≤ ρ±,ε

2 on R × [0, T ).
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Proof of Lemma 6.1. We know that ρ±,ε
1 and ρ±,ε

2 verify the following systems:

⎧⎪⎪⎨
⎪⎪⎩

∂ρ+,ε
1

∂t
− ε

∂2ρ+,ε
1

∂x2
= −

(
ρ+,ε
1 − ρ−,ε

1 + aε(t)
) ∂ρ+,ε

1

∂x
in D′(R × (0, T )),

∂ρ−,ε
1

∂t
− ε

∂2ρ−,ε
1

∂x2
=

(
ρ+,ε
1 − ρ−,ε

1 + aε(t)
) ∂ρ−,ε

1

∂x
in D′(R × (0, T )),

⎧⎪⎪⎨
⎪⎪⎩

∂ρ+,ε
2

∂t
− ε

∂2ρ+,ε
2

∂x2
= −

(
ρ+,ε
2 − ρ−,ε

2 + aε(t)
) ∂ρ+,ε

2

∂x
in D′(R × (0, T )),

∂ρ−,ε
2

∂t
− ε

∂2ρ−,ε
2

∂x2
=

(
ρ+,ε
2 − ρ−,ε

2 + aε(t)
) ∂ρ−,ε

2

∂x
in D′(R × (0, T )),

respectively.
If we denote w±,ε by ρ̃±,ε

2 − ρ̃±,ε
1 , where

ρ̃±,ε
2 = ρ±,ε

2 e−γt and ρ̃±,ε
1 = ρ±,ε

1 e−γt with γ > 0,

we can easily check that w±,ε are solutions of the following system:

(20)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂w+,ε

∂t
− ε

∂2w+,ε

∂x2
+ γw+,ε = − eγt (w+,ε − w−,ε)

∂ρ̃+,ε
2

∂x

− eγt
(
ρ̃+,ε
1 − ρ̃−,ε

1 + e−γtaε(t)
) ∂w+,ε

∂x
,

∂w−,ε

∂t
− ε

∂2w−,ε

∂x2
+ γw−,ε = eγt (w+,ε − w−,ε)

∂ρ̃−,ε
2

∂x

+ eγt
(
ρ̃+,ε
1 − ρ̃−,ε

1 + e−γtaε(t)
) ∂w−,ε

∂x
.

We are interested in the min(k,x,t)∈{+,−}×T×(0,T )(w
k,ε(x, t)). Our result follows if we

can prove that this minimum is positive. However, this minimum is attained at a
point (k0, x0, t0) ∈ {+,−} × T × [0, T ] (because w+,ε and w−,ε are C∞(T × (0, T ))).
Two cases may occur:

1. Case t0 = 0. We have

min
(k,x,t)∈{+,−}×T×(0,T )

(wk,ε(x, t))

= wk0,ε(x0, t0) =
(
ρk0,ε
2 (x0, 0) − ρk0,ε

1 (x0, 0)
)
e−γt0 ≥ 0;

and we are done.
2. Case t0 ∈ (0, T ]. We have that (k0, x0, t0) is a minimum point; then

∂2wk0,ε

∂x2
(x0, t0) ≥ 0,(21)

∂wk0,ε

∂t
(x0, t0) ≤ 0,(22)

∂wk0,ε

∂x
(x0, t0) = 0.(23)
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Combining (21), (22), (23) and taking into consideration that w±,ε verifies the system
(20), we obtain that

γwk0,ε(x0, t0) ≥ eγt0sign(w+,ε(x0, t0) − w−,ε(x0, t0))(w
+,ε(x0, t0)

−w−,ε(x0, t0))
∂ρ̃k0,ε

2

∂x

≥ eγt0 |w+,ε(x0, t0) − w−,ε(x0, t0)|
∂ρ̃k0,ε

2

∂x
≥ 0.

Then ρ̃±,ε
1 ≤ ρ̃±,ε

2 in R × (0, T ), which gives ρ±,ε
1 ≤ ρ±,ε

2 .

We now give the proof of Theorem 1.2.

6.2. Proof of Theorem 1.2. Let

ρ±1 (x, 0) = ρ±1,0(x) = ρ±,per
1,0 (x) + L0x and ρ±2 (x, 0) = ρ±2,0(x) = ρ±,per

2,0 (x) + L0x.

If we denote

ρ±,ε
1,0 (x) = ρ±,per

1,0 ∗ ηε(x) + L0x and ρ±,ε
2,0 (x) = ρ±,per

2,0 ∗ ηε(x) + L0x,

where ηε is a regularization sequence, we can easily check that ρ±,ε
1,0 ≤ ρ±,ε

2,0 .

Moreover, according to the uniqueness of the solution, we know that there exist
ρ±,ε
1 , ρ±,ε

2 ∈ C∞(R × [0, T )), verifying (H2) for all t ∈ (0, T ), which are solutions of
the system (5), such that

ρ±1 = lim
ε→0

ρ±,ε
1 , ρ±2 = lim

ε→0
ρ±,ε
2 ,

ρ±,ε
1 (x, 0) = ρ±,ε

1,0 (x) and ρ±,ε
2 (x, 0) = ρ±,ε

2,0 (x).

We apply Lemma 6.1 to obtain that ρ±,ε
1 ≤ ρ±,ε

2 . We pass to the limit as ε → 0 to
deduce that ρ±1 ≤ ρ±2 a.e. in R × (0, T ).

Remark 6.2. Thanks to this comparison result, we proved in a previous paper
[8] the existence and the uniqueness of a solution (in the viscosity sense). Here this
comparison result is an indirect explanation of our estimates obtained in Lemmas 4.1,
4.2, and 4.3 that have ensured our principal theorem, Theorem 1.1.

7. Application in the case of the classical Burgers equation. In this
paragraph we are going to prove that this technique can be also applied to the classical
Burgers equation, even in the frame of functions in W 1,p

loc (R × (0, T )) for all 1 ≤ p <
+∞, constituting the proof of Theorem 1.4.

Proof of Theorem 1.4. First, we remark that the existence of solution to the
regularized problem can be done thanks to the continuous injection W 1,p(T) in L∞(T).

Now, for the proof of this theorem, it suffices to show an estimation over the space
derivatives of the solution (i.e., a result similar to that of Lemma 4.1).

First, we put ourselves in the hypothesis of Lemma 4.1. We derive the equation
(4) with respect to x, then we multiply it by (∂u∂x )p−1, and, finally, we integrate over
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(0, 1); since u verifies (H2), we obtain that

1

p

d

dt

∥∥∥∥∂u∂x (t)

∥∥∥∥
p

Lp(T)

= −
∫ 1

0

f ′′(u)
∂u

∂x

(
∂u

∂x

)p

−
∫ 1

0

f ′(u)
∂2u

∂x2

(
∂u

∂x

)p−1

= −
∫ 1

0

∂(f ′(u))

∂x

(
∂u

∂x

)p

− 1

p

∫ 1

0

f ′(u)
∂

∂x

(
∂u

∂x

)p

= −1

p

∫ 1

0

∂

∂x

(
f ′(u)

(
∂u

∂x

)p)
−
(

1 − 1

p

)∫ 1

0

f ′′(u)
∂u

∂x

(
∂u

∂x

)p

≤ 0,

because f is convex, u verifies (H2), and p ≥ 1. To terminate the demonstration, we
follow the same steps of the proof of Theorem 1.1. We remark that here we do not
need the L2 bound over the solution and also the compactness in the passage to the
limit, because (4) is in the conservative form, which was not the case of our study.
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HOMOGENIZATION OF A DOUBLY NONLINEAR STEFAN-TYPE
PROBLEM∗

AUGUSTO VISINTIN†

Abstract. Temperature and phase evolution in phase transitions are represented here by cou-
pling the energy balance equation with a multivalued constitutive relation between the density of
internal energy and the temperature, and with a nonlinear conduction law. This doubly nonlinear
problem generalizes the classical Stefan model. Existence of a weak solution is proved via time dis-
cretization, a priori estimates, and passage to the limit. A medium exhibiting periodic oscillations
in space is then considered; as the oscillation period vanishes, two-scale convergence (in the sense
of Nguetseng) to a corresponding two-scale homogenized problem is proved. The latter is shown
to be equivalent to a coarse-scale model. The cases of Fourier’s law with either temperature- or
phase-dependent conductivity are also treated.

Key words. phase transitions, Stefan problem, homogenization, two-scale convergence

AMS subject classifications. 35K60, 35R35, 78M40, 80A22
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1. Introduction. This paper deals with the two- and single-scale homogeniza-
tion of a class of quasi-linear parabolic problems that includes Stefan-type models of
phase transitions.

The model. Let us consider a (possibly inhomogeneous and anisotropic) incom-
pressible material capable of attaining two phases, say solid and liquid, that occupies
a three-dimensional domain Ω. Let us denote the temperature by u, the density of
internal energy (or enthalpy at fixed pressure) by w, the heat flux by �q, and the
intensity of a heat source or sink by f .

Let ϕ : R × Ω → R ∪ {+∞} and �α : R3 × R × Ω × ]0, T [ → R3, and assume

that ϕ is convex w.r.t. the first variable and that �α(�ξ, u, x, t) is continuous w.r.t. the

pair (�ξ, u) and nondecreasing w.r.t. �ξ. We fix any T > 0, set ΩT := Ω × ]0, T [,
and provide a weak formulation for an initial- and boundary-value problem for the
following nonlinear system:

∂w

∂t
+ ∇ · �q = f(u,∇u) in D′(ΩT ) (∇ · := div),(1.1)

w ∈ ∂ϕ(u, x) a.e. in ΩT ,(1.2)

�q = �α(−∇u, u, x, t) a.e. in ΩT(1.3)

(by ∂ϕ(·, x) we denote the subdifferential of ϕ(·, x)) or, more synthetically,

(1.4)
∂

∂t
∂ϕ(u, x) + ∇ · �α(−∇u, u, x, t) � f(u,∇u) in D′(ΩT ).

The occurrence of a double nonlinearity in the principal part of the equation may be
noticed. An initial condition for w and boundary conditions for either u or the normal
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component of �q may be appended to this system. Equation (1.1) represents the energy
balance, whereas (1.2) and (1.3) are constitutive relations. The explicit dependence
on x of the constitutive functions ϕ and �α may account for either a mixture of different
materials or a single material whose behavior varies in space; in the first case these
functions will be discontinuous w.r.t. x, whereas in the latter case they need not be
so.

A free boundary problem. The discontinuity of the dependence of w on u
may account for a simplified model of phase transitions, e.g., in a solid-liquid system,
in which density variations and convection are neglected. For instance let us assume
that (1.2) is of the form w ∈

∫ u

0
C(ξ, x) dξ + L(x)H(u − u∗(x)) a.e. in ΩT , with

C = C(u, x) being the temperature- and space-dependent specific heat, L the space-
dependent density of latent heat of phase transition, H the Heaviside function (i.e.,
H(v) = 0 for v ≤ 0, H(v) = 1 for v > 0), and u∗ the space-dependent temperature
of phase equilibrium. Equation (1.1) may then account for the energy balance in a
solid-liquid system, and the space-time domains

Ω+
T := {(x, t) ∈ ΩT : u > u∗(x)}, Ω−

T := {(x, t) ∈ ΩT : u < u∗(x)}

represent, respectively, the evolution of the liquid and solid phases. The set ΩT∗ :=
{(x, t) ∈ ΩT : u(x, t) = u∗(x)} may consist of one or more moving surfaces that
represent the space-time interface S between the phases; but ΩT∗ may also comprise
a component with nonempty interior that would represent a fine mixture of liquid and
solid and is known as a mushy region.

In general for an inhomogeneous material the interface S need not be smooth
even in the absence of a mushy region. For instance a connected component of St :=
S ∩ (Ω × {t}) may end at the boundary between two grains of materials that are
characterized by different temperatures of phase transition. If ∂ϕ is as above, in the
neighborhood U of any regular point (x, t) ∈ S, (1.1) is equivalent to the following
bulk and interface conditions:

C(u, x)
∂u

∂t
+ ∇ · �q = f in U \ S,(1.5)

u = u∗(x) on U ∩ S,(1.6)

�q1 · �ν − �q2 · �ν = L(x)�v · �ν on U ∩ S.(1.7)

Here by �q1 we denote the heat flux contributed by the liquid phase, by �q2 that absorbed
by the solid phase, by �v the interface velocity, and by �ν a normal vector field to St.

Equation (1.3) includes the nonlinear Fourier conduction law
(1.8)
�q = −K(u, x) · ∇u in ΩT

(
i.e., qi = −

∑
j=1,2,3 Kij(u, x)∂u/∂xj for i = 1, 2, 3

)
;

here K is a symmetric and positive-definite tensor function and represents the heat
conductivity. For an isotropic material K(u, x) = k(u, x)I (I being the identity
tensor), and (1.7) is reduced to the classical Stefan condition

(1.9) k(u, x)
∂u+

∂ν
− k(u, x)

∂u−
∂ν

= −L(x)�v · �ν on U ∩ S,

where by ∂u±/∂ν we denote the limit of the normal derivative of u taken from the
set Ω±

T . The system (1.5)–(1.8) is a (local) strong formulation of the classical two-
phase Stefan problem in several space dimensions. This is a free boundary problem,
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for the evolution of the interface between the phases is unknown. Here we shall be
concerned with the more general system (1.1)–(1.3). From the physical point of view,
the fact that the conduction law (1.3) allows for the dependence of the heat flux on
the temperature seems more relevant than the nonlinearity of this equation.

Existence of a solution. We formulate an initial- and boundary-value problem
for the system (1.1)–(1.3) in the framework of Sobolev spaces and prove existence
of a weak solution via approximation by time discretization, derivation of a priori
estimates, and passage to the limit.

Some remarks about this argument are in order. Here the standard estimate
procedure based on multiplying the approximate equation by the time derivative of the
approximate temperature seems to hardly be applicable, because of the dependence
of the conductivity on the temperature. Therefore it is not evident that a uniform Lp-
estimate might be derived for the time derivative of the approximating temperature
if we exclude the special cases in which the Kirchhoff transformation can be applied
(see section 6). However, here we prove the strong convergence of the approximate
temperature in L2(ΩT ) via compactness by strict convexity—namely the property
that (freely speaking) weak convergence in Lp

loc (p > 1) joint with convergence of a
strictly convex potential entail strong convergence in Lq

loc for any q < p; see, e.g., [77],
[78, Chap. X]. Along the lines of [4], one might also derive strong L2-convergence
by multiplying the approximate equation by the time increment (rather than the
time-incremental ratio) of the approximate temperature.

We deal with a heat conductivity that depends continuously on the temperature
and (possibly nonstrictly) monotonically on the temperature gradient. In case of a
degenerate parabolic part (e.g., for ϕ identically constant), we would then miss the
strong convergence of the temperature; however, if (1.3) were independent of the
temperature, our results might easily be extended to this case, too. Via the classical
Kirchhoff transformation we also treat the case of phase-dependent conductivity under
a structure hypothesis on the conductivity itself.

Homogenization. The main concern of this work is the homogenization of com-
posite materials in which the constitutive functions ϕ and �α are discontinuous func-
tions of the space variable x. By a classical procedure, we assume that ϕ and �α depend
not only on the coarse-scale variable x but also on a fine-scale variable x/ε (ε being
a small scalar parameter), and we assume that the latter dependence if periodic. We
then let ε vanish and show that the solution of the ε-dependent problem two-scale
converges (in the sense of Nguetseng [65] and Allaire [2]) to a solution of a two-scale
problem in which two further fields u� and �q� occur besides the coarse-scale fields u
and �q. Our argument is based on two-scale techniques somehow analogous to those
that we used for the existence result. (The analogy between these methods seems to
confirm the potentialities of an approach based on two-scale convergence.)

We then retrieve a purely coarse-scale problem of the form (1.1)–(1.3) (so-called
upscaling) with different constitutive functions ϕ and �α. These functions are de-
termined via the solution of a family of nonlinear cell problems; in the case of the
linear Fourier law, we also construct a solution of these problems along the lines of a
well-known procedure.

We also show the inverse statement: any solution of the coarse-scale problem
may be retrieved from the two-scale model (this procedure might be referred to as
downscaling). The two- and single-scale formulations are thus equivalent, although
the latter provides a somehow more synthetic picture of the phenomenon. This entails
that no spurious solution may be introduced by dealing with the coarse-scale model
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and that inspection of the macroscopic behavior does not allow one to distinguish a
composite from a mesoscopically homogeneous material. This part is the main issue
of this paper and is based on techniques that are also studied in [83]. The restrictions
that are required here are consistent with the Stefan model.

Plan of the paper. In section 2 we state some preliminary results that are used
in the remainder of this paper. More specifically we review Nguetseng’s notion of two-
scale convergence and illustrate some properties of convexity and monotonicity that
involve either single- or two-scale convergence, mainly referring to [81]. In section 3
we provide the weak formulation of an initial- and boundary-value problem for the
system (1.1)–(1.3) and show existence of a weak solution.

In section 4 we introduce the dependence on the fine-scale variable x/ε, pass to the
limit as the space period ε vanishes, and prove convergence to a solution of a two-scale
problem. In section 5 we complete the homogenization procedure by upscaling the
latter problem to a purely coarse-scale formulation and show that the two problems
are equivalent. In section 6 we assume a linear dependence of the heat flux on the
temperature gradient and retrieve the homogenized conductivity tensor via the two-
scale formulation of a standard procedure; see [2]. (If the function K is scalar and
independent of the temperature, we thus retrieve the results of [38].) In this section
we also illustrate the use of the classical Kirchhoff transformation.

Literature. The Stefan problem and its various generalizations were studied in
an impressive number of works; see, e.g., the monographs [1, 21, 36, 46, 48, 50, 62,
70, 71, 78], the references therein, and the extensive bibliography [75]. Physical and
engineering aspects of phase transitions were dealt with, e.g., in [28, 47, 56, 85].

Homogenization, namely the search for effective models representing the macro-
scopic behavior of mesoscopically inhomogeneous materials, has also been and still is
the object of intense research; see, e.g., [3, 7, 9, 11, 19, 33, 37, 39, 55, 61, 63, 72, 74]. In
particular the homogenization of integral functionals was studied in [24, 60]; see also
[19, 23, 30, 31, 37]. A new approach to periodic homogenization based on two-scale
convergence was proposed by Nguetseng [65] and then developed by Allaire [2] and
others; see also, e.g., [6, 18, 32]. This notion is receiving increasing attention; see,
e.g., [59] for a recent review. Some results of [81, 82, 83] are applied in the present
paper.

Apparently so far just a few works have been devoted to the homogenization
of models of phase transitions. In [17, 38, 69] this was accomplished assuming the
linear Fourier law with a space-oscillating conductivity �q = −k(x/ε)∇u, with k be-
ing a positive definite tensor function. In [17] these results were also applied to a
univariate magnetic medium that under the eddy-current approximation was rep-
resented by a similar model. [17, 38] dealt with the homogenization of the weak
formulation of the two-phase Stefan problem, whereas [69] addressed the analogous
question for the single-phase problem via a well-known integral transformation due
to C. Baiocchi and G. Duvaut, and also proved the convergence of the free boundary.
[38] also raised the question of extending the homogenization result to a temperature-
dependent conductivity (this is performed in the present work). The homogenization
of the phase-field model of phase transition for binary mixtures was also addressed
via two-scale convergence in [42, 43, 44]. Recently two-scale convergence was applied
to the homogenization of stationary variational inequalities in [29].

Doubly nonlinear parabolic problems were studied in a number of works, e.g.,
[4, 10, 12, 13, 14, 25, 27, 40, 49, 53, 57, 58, 66, 76, 78]. Equations of this class may
model not only phase transitions but also filtration of either gas or liquid through
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porous media; see, e.g., [4]; their homogenization was addressed, for instance, in
[18, 52, 64]. In [64] oscillations w.r.t. the time variable were also accounted for in
the elliptic term, and consequently space-time two-scale convergence was used. The
uniqueness of the solution for doubly nonlinear elliptic-parabolic equations is less
obvious than for the standard Stefan model; however, it was proved in [14, 25, 26, 53]
by using the notions of entropy solutions, renormalization, and L1-contractions. These
results cover a fairly general setting that includes the problem addressed in the present
work.

Our argument for the existence of a solution for the parabolic problem in the
presence of a nonstrictly monotone elliptic part is based on classical techniques; in
particular it rests on a result (i.e., Theorem 2.10 below) that, in turn, is based on
Lemma 5 of [22, p. 27]; in this respect see also [15, 16, 57].

The methods of this paper may also be applied to other quasi-linear equations that
represent different phenomena. For instance, a doubly nonlinear parabolic problem
arises as a model of electromagnetic processes under the eddy-current approximation;
its homogenization is studied in the parallel paper [84]. That setting differs from
the present one under several respects: there the unknown fields are vectors, the
energy balance and the Fourier law are replaced by the Maxwell and Ohm equations,
the curl and the divergence operators occur in place of the gradient, compensated
compactness plays a key role, and so on. Some results of [84] and of the present work
were announced in the note [80].

2. Two-scale convergence, convexity, and monotonicity. In this section
first we review some basic properties of two-scale convergence, along the lines of
the fundamental works [2, 65]. We then state some results concerning convexity,
monotonicity, and either single- or two-scale convergence that will be used afterwards;
for these arguments we mainly refer to [81], with the exception of Theorem 2.10, which
we prove here.

Let us set Y := [0, 1[3, denote by Y the same set equipped with the metric of
the three-dimensional unit torus, and identify any Y -periodic function on R3 with
a function on Y. Let us denote by ε a parameter that we assume vanishes along a
prescribed sequence. Let p ∈ [1,+∞[ (resp., p = ∞), {uε} be any bounded sequence in
Lp(R3), and u ∈ Lp(R3×Y); by a natural extension of Nguetseng’s definition of [65],
we say that uε weakly (resp., weakly star) two-scale converges to u in Lp(R3 × Y),

and write uε ⇀
2
u (resp., uε

∗
⇀
2
u), whenever

(2.1)

∫
R3

uε(x) v(x, x/ε) dx →
∫∫

R3×Y
u(x, y) v(x, y) dxdy ∀v ∈ D(R3 × Y).

If p ∈ ]1,+∞[, following Allaire [2] we say that uε strongly two-scale converges to u in
Lp(R3 ×Y), and write uε →

2
u, whenever (2.1) holds and ‖uε‖Lp(R3) → ‖u‖Lp(R3×Y).

On the other hand, we denote the standard (single-scale) weak (resp., weak star,

strong) convergence by ⇀ (resp.,
∗
⇀, →). These definitions and the next two state-

ments trivially take over to vector functions and also to functions defined on a domain
Ω of R3 just by extending these functions with vanishing value outside Ω.

Proposition 2.1 (see [2, 65]). For any bounded sequence {uε} of Lp(R3) (p ∈
]1,+∞]), there exists u ∈ Lp(R3 × Y) such that, possibly extracting a subsequence,

(2.2) uε ⇀
2
u in Lp(R3 × Y) (uε

∗
⇀
2
u if p = ∞).
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Proposition 2.2 (see [2]). If {uε} is a sequence of Lp(R3) (p ∈ [1,+∞[) such
that uε ⇀

2
u in Lp(R3 × Y), then

uε ⇀ û :=

∫
Y
u(·, y) dy in Lp(R3),(2.3)

lim inf
ε→0

‖uε‖Lp(R3) ≥ ‖u‖Lp(R3×Y) ≥ ‖û‖Lp(R3).(2.4)

If uε → û in Lp(R3), then u = û (that is, u does not depend on y).

Dealing with functions of (x, y) we shall denote the gradient operator w.r.t. x
(resp., y) by ∇x (resp., ∇y). For any v ∈ L1

loc(R
3 × Y) we define the average and

fluctuating components:

(2.5) v̂(x) :=

∫
Y
v(x, y) dy, ṽ(x) := v(x, y) − v̂(x) for a.e. (x, y) ∈ R3 × Y,

and similarly for vectors. The next two statements deal with the two-scale limit of
derivatives.

Proposition 2.3 (see [2, 32, 65]). Let p ∈ ]1,+∞[, and let a sequence {uε} of
W 1,p(R3) be such that uε ⇀ u in W 1,p(R3). Then there exists u� ∈ Lp

(
R3;W 1,p(Y)

)
such that û� = 0 a.e. in R3 and, as ε → 0 along a suitable subsequence,

(2.6) ∇uε ⇀
2
∇xu + ∇yu� in Lp(R3 × Y)3.

Henceforth we confine ourselves to p = 2. Let us set L2
div(R

3)3 :=
{
�v ∈ L2(R3)3 :

∇ ·�v ∈ L2(R3)
}
, which is a Hilbert space equipped with the graph norm, and denote

by ∇× the curl operator.

Proposition 2.4 (see [79, 82]). Let {�uε} be a bounded sequence of L2
div(R

3)3

such that �uε ⇀
2
�u in L2(R3×Y)3. Then �̂u ∈ L2

div(R
3)3 and ∇y ·�u = 0 in D′(R3×Y).

Moreover, there exists �u� ∈ L2
(
R3;H1(Y)3

)
such that �̂u� = �0 a.e. in R3, ∇y×�u� = �0

a.e. in R3 × Y, and, as ε → 0 along a suitable subsequence,

(2.7) ∇ · �uε ⇀
2
∇x · �̂u + ∇y · �u� in L2(R3 × Y).

(An analogous statement holds for the curl operator, with exchanged roles of curl
and divergence [79, 82].) The above definitions and results are trivially extended to
time-dependent functions, if time is regarded as a parameter, and to functions defined
on a subdomain of R3.

Convexity and two-scale convergence. Here we review some results about
convex integral functionals and maximal monotone graphs that will be applied in
the next sections. For several statements we provide two versions: the first one is
written for a fixed value of the parameter ε > 0, concerns the standard (single-scale)
convergence, and stems from classical properties. We then extend it to two-scale
convergence as ε → 0; see [81].

First, we state some known properties of integral functionals. We shall denote by
L(Ω) (resp., B(Ω)) the σ-algebra of Lebesgue- (resp., Borel-) measurable subsets of
Ω, define L(Y) and B(Y) similarly, and denote by A1 ⊗ A2 the σ-algebra generated
by any pair of σ-algebras A1,A2.



HOMOGENIZATION OF A STEFAN PROBLEM 993

Lemma 2.5 (see [81]). (i) Assume that

ϕ : R ×Ω × Y → R ∪ {+∞},
ϕ(v, ·, ·) is measurable w.r.t. either B(Ω) ⊗ L(Y) or L(Ω) ⊗ B(Y) ∀v,
ϕ(·, x, y) is convex and lower semicontinuous for a.e. (x, y),

{v ∈ R : ϕ(v, x, y) < +∞} has nonempty interior for a.e. (x, y).

(2.8)

Then

x �→ ϕ(v(x), x, x/ε) is measurable ∀v ∈ L1
loc(Ω), ∀ε > 0,

(x, y) �→ ϕ(v(x, y), x, y) is measurable ∀v ∈ L1
loc(Ω × Y).

(2.9)

(ii) Moreover, assume that

(2.10) ∃w ∈ L2(Ω), ∃h ∈ L1(Ω) : ϕ(v, x, y) ≥ w(x)v + h(x) ∀v for a.e. (x, y),

and set

ϕε(v, x) := ϕ(v, x, x/ε) ∀(v, x) ∈ R ×Ω, ∀ε > 0,

Φε : L2(Ω) → R ∪ {+∞} : v �→
∫
Ω

ϕ(v, x, x/ε) dx ∀ε > 0,

Φ : L2(Ω × Y) → R ∪ {+∞} : v �→
∫∫

Ω×Y
ϕ(v(x, y), x, y) dxdy.

(2.11)

The functionals Φε and Φ are then convex and lower semicontinuous.

(iii) Under the above hypotheses, for any sequence {vε} in L2(Ω),

vε →
2
v in L2(Ω × Y) ⇒ Φε(vε) → Φ(v),(2.12)

vε ⇀
2
v in L2(Ω × Y) ⇒ lim inf

ε→0
Φε(vε) ≥ Φ(v).(2.13)

We shall denote by ϕ∗ the convex conjugate function of ϕ w.r.t. the first variable;
see, e.g., [45, 51, 68]. The convex conjugate functionals Φ∗

ε and Φ∗ then coincide with
the integral functionals of ϕ∗

ε and ϕ∗, respectively; see, e.g., [45, 67].

The next result is based on simple properties of convexity. We shall not display
the proof and just refer the reader to the analogous argument of Theorem 2.1 of [81].
The weight function θ is here introduced in view of the application of this result that
we shall perform in the next sections.

Proposition 2.6. Let ϕ fulfil (2.8) and (2.10), fix any ε > 0, and define ϕε, Φε, Φ
as in (2.11). Let θ be any nonnegative function of D(Ω̄), and let {um} and {wm} be
two sequences of L2(ΩT ). If

wm(x, t) ∈ ∂ϕε(um(x, t), x) for a.e. (x, t) ∈ ΩT ∀m,(2.14)

um ⇀ u, wm ⇀ w in L2(ΩT ),(2.15)

lim inf
m→∞

∫∫
ΩT

umwmθ dxdt ≤
∫∫

ΩT

uw θ dxdt,(2.16)

then, denoting by Ω̃ the support of θ,
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w(x, t) ∈ ∂ϕε(u(x, t), x) for a.e. (x, t) ∈ Ω̃T ,(2.17) ∫∫
ΩT

ϕε(um, x)θ dxdt →
∫∫

ΩT

ϕε(u, x)θ dxdt,(2.18) ∫∫
ΩT

ϕ∗
ε(wm, x)θ dxdt →

∫∫
ΩT

ϕ∗
ε(w, x)θ dxdt,(2.19) ∫∫

ΩT

umwmθ dxdt →
∫∫

ΩT

uw θ dxdt.(2.20)

Next we state an extension to two-scale convergence.
Proposition 2.7 (see [81]). Let ϕ fulfil (2.8) and (2.10), and define ϕε, Φε, Φ

as in (2.11) for any ε > 0. Let {uε} and {wε} be two sequences of L2(ΩT ), and let
θ be any nonnegative function of D(Ω̄). If

wε(x, t) ∈ ∂ϕε(uε(x, t), x) for a.e. (x, t) ∈ ΩT ∀ε,(2.21)

uε ⇀
2
u, wε ⇀

2
w in L2(ΩT × Y),(2.22)

lim inf
ε→0

∫∫
ΩT

uεwε θ dxdt ≤
∫∫∫

ΩT×Y
uw θ dxdydt,(2.23)

then, denoting by Ω̃ the support of θ,

w(x, y, t) ∈ ∂ϕ(u(x, y, t), x, y) for a.e. (x, y, t) ∈ Ω̃T × Y,(2.24) ∫∫
ΩT

ϕε(um, x)θ dxdt →
∫∫∫

ΩT×Y
ϕ(u, x, y)θ dxdydt,(2.25) ∫∫

ΩT

ϕ∗
ε(wm, x)θ dxdt →

∫∫∫
ΩT×Y

ϕ∗(w, x, y)θ dxdydt,(2.26) ∫∫
ΩT

uεwεθ dxdt →
∫∫∫

ΩT×Y
uw θ dxdydt.(2.27)

Compactness by strict convexity. The following result will be used in the
next section.

Proposition 2.8 (see [77], [78, Chap. X]). Let ϕ fulfil (2.8) and be such that

∃c > 0, ∃w ∈ L2(Ω), ∃h ∈ L1(Ω) :

ϕ(v, x, y) ≥ w(x)v + cv2 + h(x) ∀v for a.e. (x, y),
(2.28)

v �→ ϕ(v, x, y) is strictly convex for a.e. (x, y).(2.29)

Let us then fix any ε > 0, and define ϕε as in (2.11)1. If {um} is a sequence of
L2(ΩT ) such that

um ⇀ u in L2(ΩT ),(2.30) ∫∫
ΩT

ϕε(um, x) dxdt →
∫∫

ΩT

ϕε(u, x) dxdt,(2.31)

then

(2.32) um → u in L2(ΩT ).

Here is an extension to two-scale convergence.
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Proposition 2.9 (see [81]). Let ϕ fulfil (2.8), (2.28), and (2.29), and define ϕε

as in (2.11)1 for any ε > 0. If {uε} is a sequence of L2(ΩT ) such that

uε ⇀
2
u in L2(ΩT × Y),(2.33) ∫∫

ΩT

ϕε(uε, x) dxdt →
∫∫∫

ΩT×Y
ϕ(u, x, y) dxdydt,(2.34)

then

(2.35) uε →
2
u in L2(ΩT × Y).

Monotonicity and two-scale convergence. After dealing with the subdiffer-
ential of convex lower semicontinuous functions, namely maximal cyclically monotone
functions, now we extend some of these results to the larger class of maximal mono-
tone functions. Here we confine ourselves to single-valued functions, and in view of
the developments of the next sections we also allow for continuous dependence on a
further scalar argument. Let us assume that

�α : R3 × R ×Ω × Y × ]0, T [ → R3,

�α(·, u, x, y, t) is monotone ∀u and for a.e. (x, y, t),

�α(·, ·, x, y, t) is continuous for a.e. (x, y, t), and

�α(�z, u, ·, ·, ·) is measurable w.r.t. either B(Ω) ⊗ L(Y) ⊗ L(]0, T [)

or L(Ω) ⊗ B(Y) ⊗ L(]0, T [) ∀(�z, u),

(2.36)

∃L > 0, ∃ξ ∈ L2(ΩT ) : ∀(�z, u) for a.e. (x, y, t),

|�α(�z, u, x, y, t)| ≤ L|�z| + L|u| + ξ(x, t),
(2.37)

and set
(2.38)

�αε(�z, u, x, t) := �α(�z, u, x, x/ε, t) ∀(�z, u) ∈ R3 × R for a.e. (x, t) ∈ ΩT ∀ε > 0.

This function is measurable w.r.t. x and thus is of Caratheodory class.
The first part of the next statement is a simple extension of a standard result of

the theory of maximal monotone graphs; see, e.g., [20]. The second part is based on
Lemma 5 of [22, p. 27]; see also [16, 15], [57, p. 183]. (A proof is needed, however, for
this statement is not a direct consequence of the known results.)

Theorem 2.10. Let �α fulfil (2.36) and (2.37), fix any ε > 0, and define �αε as in
(2.38). Let {�zm} (resp., {um}) be a sequence of L2(ΩT )3 (resp., L2(ΩT )).

(i) If

�rm(x, t) := �αε(�zm(x, t), um(x, t), x, t) ⇀ �r in L2(ΩT )3,(2.39)

�zm ⇀ �z in L2(ΩT )3,(2.40)

um → u in L2(ΩT ),(2.41)

lim inf
m→∞

∫∫
ΩT

�rm · �zm dxdt ≤
∫∫

ΩT

�r · �z dxdt,(2.42)

then

(2.43) �r(x, t) = �αε(�z(x, t), u(x, t), x, t) for a.e. (x, t) ∈ ΩT .
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(ii) If, moreover,

for a.e. (x, y) ∈ Ω × Y ∀�s ∈ R3, ∀{�sn} ⊂ R3,

∀ bounded sequence {vn} ⊂ R for a.e. t ∈ ]0, T [,

[�α(�s, vn, x, y, t) − �α(�sn, vn, x, y, t)] · (�s− �sn) → 0 ⇒ �sn → �s,

(2.44)

∃c1 ∈ R, ∃c2 > 0, ∃� ∈ L1(ΩT ) :

for a.e. (x, y, t) ∈ ΩT × Y ∀(�z, v) ∈ R3 × R,

�α(�z, v, x, y, t) · �z + c1|v|2 ≥ c2|�z|2 + �(x, t),

(2.45)

then

(2.46) �zm → �z, �αε(�zm, um, x, t) → �αε(�z, u, x, t) in L2(ΩT )3.

The condition (2.44) may be interpreted as an assumption of strict monotonicity
of �w �→ �αε(�w, v, x, t) uniform w.r.t. v.

Proof. (i) The monotonicity of �αε w.r.t. its first argument yields∫∫
ΩT

[�rm − �αε(�s, um, x, t)] · (�zm − �s) dxdt ≥ 0 ∀�s ∈ L2(ΩT )3.

By (2.36), (2.37), and (2.41),

(2.47) �αε(�s, um, x, t) → �αε(�s, u, x, t) in L2(ΩT )3 ∀�s ∈ L2(ΩT )3.

By passing to the inferior limit as m → ∞ in the latter inequality, by (2.39)–(2.42)
we then get ∫∫

ΩT

[�r − �αε(�s, u, x, t)] · (�z − �s) dxdt ≥ 0 ∀�s ∈ L2(ΩT )3.

By the maximal monotonicity of �αε w.r.t. its first argument, this inequality is equiv-
alent to (2.43).

(ii) Let us now set

Pm(x, t) := [�αε(�zm, um, x, t) − �αε(�z, um, x, t)] · (�zm − �z) for a.e. (x, t) ∈ ΩT .

By (2.39), (2.40), (2.42), and (2.47), lim infm→∞
∫∫

ΩT
Pm(x, t) dxdt ≤ 0. As Pm is

nonnegative this means that for a suitable sequence that we label by m′:

(2.48) Pm′ → 0 in L1(ΩT ).

Hence there exists a subsequence that we label by m′′ such that Pm′′(·, ·) → 0 a.e. in
ΩT . By (2.41), possibly extracting a further subsequence, um′′ → u a.e. in ΩT . By
(2.44) we then get

(2.49) �zm′′ → �z a.e. in ΩT ,

whence

(2.50) �αε(�zm′′ , um′′ , x, t) → �αε(�z, u, x, t) = �r a.e. in ΩT .
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By (2.37), (2.40), (2.41), and (2.50), we have

(2.51)

∫∫
ΩT

�αε(�z, um′′ , x, t) · (�zm′′ − z) dxdt → 0.

By the definition of Pm, (2.40), (2.48), and (2.51), we get∫∫
ΩT

�αε(�zm′′ , um′′ , x, t) · �zm′′ dxdt

=

∫∫
ΩT

[Pm′′(x, t) + �αε(�z, um′′ , x, t) · (�zm′′ − z)] dxdt

+

∫∫
ΩT

�αε(�zm′′ , um′′ , x, t) · �z dxdt →
∫∫

ΩT

�r · �z dxdt.

We claim that this entails that

(2.52) ξm′′ := �rm′′ · �zm′′ → �r · �z =: ξ in L1(ΩT )3.

In view of proving this statement, first notice that we already know that

ξm′′ ≥ 0, ξm′′ → ξ a.e. in ΩT ,

∫∫
ΩT

ξm′′ dxdt →
∫∫

ΩT

ξ dxdt.

Moreover, setting Am′′ := {(x, t) ∈ ΩT : ξm′′(x, t) ≤ ξ(x, t)},∫∫
ΩT

|ξm′′ − ξ| dxdt = 2

∫∫
Am′

(ξ − ξm′′) dxdt +

∫∫
ΩT

(ξm′′ − ξ) dxdt.

The Lebesgue dominated convergence theorem then yields (2.52).
By (2.45) we have

c2|�zm′′ |2 ≤ �rm′′ · �zm′′ + c1u
2
m′′ − � a.e. in Ω;

(2.41) and (2.52) then entail that the sequence {|�zm′′ |2} is equi-integrable in Ω. By
(2.37) the same then applies to {|�rm′′ |2}, so that by Vitali’s convergence theorem we
infer that

(2.53) �zm′′ → �z, �rm′′ = �αε(�zm′′ , um′′ , x, t) → �αε(�z, u, x, t) in L2(ΩT )3.

As both limits are independent of the extracted subsequence, the whole sequence
converges; (2.46) is thus established.

Here is an extension to two-scale convergence that rests on a similar argument.
Proposition 2.11 (see [81]). Let �α fulfil (2.36) and (2.37), and define �αε as

in (2.38) for any ε > 0. Let {�rε} (resp., {uε}) be a sequence of L2(ΩT )3 (resp.,
L2(ΩT )).

(i) If

�rε(x, t) = �αε(�zε(x, t), uε(x, t), x, t) for a.e. (x, t) ∈ ΩT ∀ε,(2.54)

�zε ⇀
2
�z, �rε ⇀

2
�r in L2(ΩT × Y)3,(2.55)

uε →
2
u in L2(ΩT × Y),(2.56)

lim inf
ε→0

∫∫
ΩT

�rε(x, t) · �zε(x, t) dxdt ≤
∫∫∫

ΩT×Y
�r(x, y, t) · �z(x, y, t) dxdydt,(2.57)
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then

(2.58) �r(x, y, t) = �α(�z(x, y, t), u(x, y, t), x, y, t) for a.e. (x, y, t) ∈ ΩT × Y.

(ii) If, moreover, (2.44) and (2.45) are satisfied, then

(2.59) �zε →
2
�z, �αε(�zε, uε, x, t) →

2
�α(�z, u, x, y, t) in L2(ΩT )3.

3. A quasi-linear parabolic problem. In this section we deal with an initial-
and boundary-value problem for the system (1.1)–(1.3): we provide a weak formula-
tion in Sobolev spaces and prove existence of a solution.

We denote by Ω a domain of R3, fix any T > 0, and set At := A× ]0, t[ for any
set A and any t > 0. We fix a partition {Γ0, Γ1} of the boundary of Ω and prescribe
the evolution of u on Γ0 and of the normal component of ∇u on Γ1. We also assume
that we are given three constitutive functions

ϕ : R ×Ω × Y → R ∪ {+∞}, �α : R3 × R ×Ω × Y × ]0, T [ → R3,

β : R × R3 ×Ω × Y × ]0, T [ → R

that satisfy (2.8) and (2.36) and such that

∃c1, c̃1 > 0, ∃h1, h̃1 ∈ L1(Ω) : for a.e. (x, y),

∀v ∈ R, ∀w ∈ ∂ϕ(v, x, y), c1|v| + h1(x) ≤ |w| ≤ c̃1|v| + h̃1(x),
(3.1)

∃L > 0, ∃�1 ∈ L2(ΩT ) : ∀(�z, v) for a.e. (x, y, t),

|�α(�z, v, x, y, t)| ≤ L|�z| + L|v| + �1(x, t),
(3.2)

for a.e. (x, y, t) ∈ ΩT × Y ∀�s ∈ R3, ∀{�sn} ⊂ R3, ∀{vn} ⊂ R,

[�α(�s, vn, x, y, t) − �α(�sn, vn, x, y, t)] · (�s− �sn) → 0 ⇒ �sn → �s,
(3.3)

∃c2 > 0, ∃�2 ∈ L1(ΩT ) : ∀(�z, v) for a.e. (x, y, t),

�α(�z, v, x, y, t) · �z ≥ c2|�z|2 + �2(x, t),
(3.4)

β(·, ·, x, y, t) is continuous for a.e. (x, y, t),

β(v, �z, ·, ·, ·) is measurable w.r.t. either B(Ω) ⊗ L(Y) ⊗ L(]0, T [)

or L(Ω) ⊗ B(Y) ⊗ L(]0, T [) ∀v, �z,
(3.5)

∃c3 > 0, ∃�3 ∈ L2(ΩT ) : ∀v ∈ R, ∀�z ∈ R3,

|β(v, �z, x, y, t)| ≤ c3(|v| + |�z|) + �3(x, t) for a.e. (x, y, t).
(3.6)

Let us fix any ε > 0, define ϕε, �αε, and βε as in (2.11)1 and (2.38), and set
(3.7)

βε(v, �z, x, t) := β(v, �z, x, x/ε, t) ∀v ∈ R, ∀�z ∈ R3 for a.e. (x, t) ∈ ΩT ∀ε > 0.

In view of specifying the functional framework, we assume that the domain Ω is
bounded and of Lipschitz class and that Γ0 is measurable and has positive bidimen-
sional Hausdorff measure. We denote by γ0 the trace operator and set

V :=
{
v ∈ H1(Ω) : γ0v = 0 a.e. on Γ0

}
, ‖v‖V := ‖∇v‖L2(Ω)3 .
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By the Poincaré inequality, ‖ · ‖V is equivalent to the usual Sobolev norm, so that V
is a closed Banach subspace of H1(Ω). Identifying H := L2(Ω) with its dual H ′ and
the latter with a closed subspace of the dual space V ′ of V , we get the Hilbert triplet

V ⊂ H = H ′ ⊂ V ′ with compact, continuous, and dense injections.

We denote by 〈·, ·〉 the duality pairing between V ′ and V and define the linear and
continuous operator

∇∗ · : L2(Ω)3 → V ′, 〈∇∗ · �z, v〉 := −
∫
Ω

�z · ∇v dx ∀�z ∈ L2(Ω)3, ∀v ∈ V

(thus ∇∗ · �z = ∇ · �z in D′(Ω)). Finally, we assume that

(3.8) w0 ∈ L2(Ω), z ∈ H1(ΩT ), g ∈ L2(0, T ;V ′),

and for any ε > 0 we introduce the weak formulation of an initial- and boundary-value
problem for the system (1.1)–(1.3) with ϕε and �αε in place of ϕ and �α.

Problem 3.1ε. Find uε ∈ L2(0, T ;V ) + z and wε ∈ L2(ΩT ) such that, setting

�qε(x, t) = �αε(−∇uε(x, t), uε(x, t), x, t) for a.e. (x, t) ∈ ΩT ,(3.9)

fε(x, t) = βε(uε(x, t),∇uε(x, t), x, t) for a.e. (x, t) ∈ ΩT ,(3.10)

one has

wε(x, t) ∈ ∂ϕε(uε(x, t), x) for a.e. (x, t) ∈ ΩT ,(3.11)

∫∫
ΩT

(
(w0 − wε)

∂v

∂t
− �qε · ∇v − fεv

)
dxdt =

∫ T

0

〈g, v〉 dt

∀v ∈ H1(0, T ;H) ∩ L2(0, T ;V ), v(·, T ) = 0 a.e. in Ω.

(3.12)

Interpretation. Equation (3.12) yields the equation

(3.13)
∂wε

∂t
+ ∇∗ · �qε = fε + g in V ′ a.e. in ]0, T [.

By comparing these terms, we see that wε ∈ H1(0, T ;V ′). Integrating by parts in
time in (3.12) we then get the initial condition

(3.14) wε(·, 0) = w0
ε in V ′.

If

(3.15) h ∈ L2(Γ1T ), 〈g, v〉 =

∫
Γ1

h γ0v dσ ∀v ∈ V a.e. in ]0, T [,

then (3.13) accounts for the energy balance equation

(3.16)
∂wε

∂t
+ ∇ · �qε = fε in D′(ΩT ),

coupled with the boundary condition

(3.17) �qε · �ν = −h on Γ1T (with �ν = outward-oriented unit normal vector)
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in weak form.

Theorem 3.1. For any fixed ε > 0, let (2.8), (2.36), (3.1)–(3.6), and (3.8) be
fulfilled, and define ϕε, �αε, and βε as in (2.11)1, (2.38), and (3.7). Assume also that

(3.18) v �→ ϕ(v, x, y) is strictly convex for a.e. (x, y).

Then there exists a solution of Problem 3.1ε such that wε ∈ L∞(0, T ;H).

It is easily seen that, under the hypothesis (2.8), the assumption (3.18) is equiv-
alent to the continuity of (∂ϕ)−1(·, x, y) = ∂ϕ∗(·, x, y).

Proof. Throughout this argument we drop the index ε, in order to make formulas
more readable.

(i) Approximation. Let us fix any m ∈ N, set k := T/m, and

znm :=
1

k

∫ nk

(n−1)k

z(·, t) dt, gnm :=
1

k

∫ nk

(n−1)k

g(·, t) dt,

�αn
m :=

1

k

∫ nk

(n−1)k

�α(·, ·, ·, t) dt, βn
m :=

1

k

∫ nk

(n−1)k

β(·, ·, ·, t) dt
(n = 1, . . . ,m).

We then introduce an implicit time-discretization scheme of our problem.

Problem 3.1m. Find un
m ∈ V +znm and wn

m ∈ L2(Ω) for n = 1, . . . ,m such that,
setting u0

m := 0, w0
m := w0, and

�q n
m(x) = �αn

m(−∇un
m(x), un−1

m (x), x) for a.e. x ∈ Ω,(3.19)

fn
m(x) = βn

m(un−1
m (x),∇un−1

m (x), x) for a.e. x ∈ Ω,(3.20)

one has

wn
m(x) ∈ ∂ϕ(un

m(x), x) for a.e. x ∈ Ω,(3.21)

wn
m − wn−1

m

k
+ ∇∗ · �q n

m = fn
m + gnm in V ′.(3.22)

In view of proving the existence of a solution of this problem, let us fix any
n ∈ {1, . . . ,m}, set

An
m(v) := ∂ϕ(v, ·) + k∇∗ · �αn

m(−∇v, un−1
m , ·) (⊂ V ′) ∀v ∈ H1(Ω),

and notice that for any n the system (3.21), (3.22) also reads

(3.23) An
m(un

m) � wn−1
m + kfn

m + kgnm in V ′.

At the nth step the right-hand side of this equation is known. The operator An
m

is maximal monotone, for it is the sum of two maximal monotone operators, and
v �→ ∇∗ · �αn

m(−∇v, un−1
m , ·) is defined on the whole H1(Ω). Because of (2.8) and

(3.4), An
m is also coercive. Therefore (3.23) has a solution un

m, and this determines a
solution of Problem 3.1m.

(ii) A priori estimates. Let us now define time-interpolate functions as follows.
For any family {vnm}n=0,...,m of numbers let us denote by vm the piecewise linear time
interpolate of v0

m := v0, v1
m, . . . , vmm a.e. in Ω. Let us denote by v̄m the corresponding

piecewise constant interpolate function; that is, v̄m(t) := vnm if (n − 1)k < t ≤ nk
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for n = 1, . . . ,m. Let us also set τkv := v(· − k) for any function v of time. Setting
ūm(x, t) := 0 for any t < 0, the system (3.19)–(3.22) then reads

�̄qm(x, t) = �αm(−∇ūm(x, t), τkūm(x, t), x, t) for a.e. (x, t) ∈ ΩT ,(3.24)

f̄m(x, t) = βm(τkūm(x, t), τk∇ūm(x, t), x, t) for a.e. (x, t) ∈ ΩT ,(3.25)

w̄m(x, t) ∈ ∂ϕ(ūm(x, t), x) for a.e. (x, t) ∈ ΩT ,(3.26)

∂wm

∂t
+ ∇∗ · �̄qm = f̄m + ḡm in V ′ a.e. in ]0, T [.(3.27)

Multiplying the latter equation by ūm − z̄m and integrating in time, we get∫∫
Ωt

(
∂wm

∂t
ūm − �̄qm · ∇(ūm − z̄m)

)
dxdτ =

∫∫
Ωt

∂wm

∂t
z̄m dxdτ

+

∫∫
Ωt

f̄m(ūm − z̄m) dxdτ +

∫ t

0

〈ḡm, ūm − z̄m〉 dτ ∀t ∈ ]0, T ].

By (3.26) ūm(x, t) ∈ ∂ϕ∗(w̄m(x, t), x) for a.e. (x, t) ∈ ΩT , whence∫∫
Ωt

∂wm

∂t
ūm dxdτ ≥

∫
Ω

[
ϕ∗(w̄m(·, t), x) − ϕ∗(w0, x)

]
dx.

Moreover, denoting by C1, C2, . . . suitable constants that may depend on ε but not
on m, by (3.1) and (3.6) we have∫∫

Ωt

∂wm

∂t
z̄m dxdτ = −

∫∫
Ωt

(τkw̄m)
∂zm
∂t

dxdτ +

∫
Ω

[w̄m(x, t)z̄m(x, t) − w0(x)zm(x, 0)] dx

≤ C1

(
‖w̄m‖L2(Ωt) + ‖w̄m(·, t)‖H + ‖w0‖H

)
‖zm‖H1(0,T :H),∫

Ω

f̄m(ūm − z̄m) dx ≤
(
c3‖ūm‖H1(Ω) + ‖�3‖L2(Ω)

)
(‖ūm‖H + ‖z̄m‖H)

≤
(
c3‖ūm‖H1(Ω) + ‖�3‖L2(Ω)

)( 1

c1
‖w̄m‖H +

1

c1
‖h1‖H + ‖z̄m‖H

)
a.e. in ]0, T [.

We thus get

∫
Ω

[
ϕ∗(w̄m(·, t), x) − ϕ∗(w0, x)

]
dx−

∫∫
Ωt

�̄qm · ∇(ūm − z̄m) dxdτ

≤ C1

(
‖w̄m‖L2(Ωt) + ‖w̄m(·, t)‖H + ‖w0‖H

)
‖zm‖H1(0,T :H) +

∫ t

0

〈ḡm, ūm − z̄m〉 dτ

+
(
c3‖ūm‖H1(Ω) + ‖�3‖L2(Ω)

)( 1

c1
‖w̄m‖H +

1

c1
‖h1‖H + ‖z̄m‖H

)
∀t ∈ ]0, T ].

(3.28)

Notice that by (3.1)

(3.29)
c1
2
|w̄m|2 ≤ ϕ(w̄m, ·) + |h1w̄m| a.e. in Ω.

Recalling (3.4), (3.6), and (3.8) a standard calculation then yields

(3.30) ‖wm‖L∞(0,T ;H), ‖um‖L2(0,T ;H1(Ω)), ‖fm‖L2(ΩT ) ≤ C2.
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By applying (3.2) and comparing the terms of (3.27), we also infer that

(3.31) ‖�qm‖L2(ΩT ), ‖wm‖L∞(0,T ;H)∩H1(0,T ;V ′) ≤ C3.

(iii) Limit procedure. By these estimates there exist u,w, �q, f such that, as m → ∞
along a suitable sequence (still omitting the fixed index ε),

um ⇀ u in L2
(
0, T ;H1(Ω)

)
,(3.32)

wm
∗
⇀ w in L∞(0, T ;H) ∩H1(0, T ;V ′),(3.33)

�qm ⇀ �q in L2(ΩT )3,(3.34)

fm ⇀ f in L2(ΩT ).(3.35)

Passing to the limit in (3.27) we then get (3.13), whence (3.12) follows. Let us
now fix any nonnegative function θ ∈ D(Ω̄). By a compactness result of Aubin (see
[8, 57, 73]), (3.32) and (3.33) yield

(3.36)

∫∫
Ωt

w̄m ūm θ dxdτ →
∫∫

Ωt

w uθ dxdτ ∀t ∈ ]0, T ].

By Proposition 2.6 we then get (3.11) and∫∫
Ωt

ϕ(ūm(x, τ), x) θ(x) dxdτ →
∫∫

Ωt

ϕ(u(x, τ), x) θ(x) dxdτ ∀t ∈ ]0, T ],(3.37)

∫∫
Ωt

ϕ∗(w̄m(x, τ), x) θ(x) dxdτ →
∫∫

Ωt

ϕ∗(w(x, τ), x) θ(x) dxdτ ∀t ∈ ]0, T ].

(3.38)

Of course this also applies for θ ≡ 1; by (3.29), (3.18), and (3.37), Proposition 2.8
yields

(3.39) um →
2
u in L2(ΩT ),

whence

(3.40)

∫∫
Ωt

ūm�̄qm · ∇θ dxdτ →
∫∫

Ωt

u�q · ∇θ dxdτ ∀t ∈ ]0, T ].

In view of proving (3.9), let us now assume that θ is a nonnegative function of
D(Ω), multiply (3.13) by uθ, and integrate in time. (We still imply the index ε.) By
(3.11) uθ ∈ ∂ϕ∗(w)θ a.e. in ΩT , whence

(3.41)

∫ t

0

〈
∂w

∂t
, uθ

〉
=

∫
Ω

[
ϕ∗(w(x, t), x) − ϕ∗(w0(x), x)

]
θ dx for a.e. t ∈ ]0, T [.

We then get∫
Ω

[
ϕ∗(w(x, t), x) − ϕ∗(w0(x), x)

]
θ dx−

∫∫
Ωt

�q · (∇u) θ dxdτ

=

∫∫
Ωt

(u�q · ∇θ + fuθ) dxdτ +

∫ t

0

〈g, uθ〉 dτ for a.e. t ∈ ]0, T [.

(3.42)
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Similarly, multiplying (3.27) by ūmθ we have∫
Ω

(
ϕ∗(w̄m(·, t)) − ϕ∗(w0)

)
θ dx−

∫∫
Ωt

�̄qm · (∇ūm)θ dxdτ

≤
∫∫

Ωt

(ūm�̄qm · ∇θ + f̄mūmθ) dxdτ +

∫ t

0

〈ḡm, ūmθ〉 dτ ∀t ∈ ]0, T ].

(3.43)

By (3.38), (3.40), (3.42), and (3.43), after a further integration in time we then obtain

lim inf
m→∞

∫ T

0

dt

∫∫
Ωt

�̄qm · (−∇ūm)θ dxdτ ≤
∫ T

0

dt

∫∫
Ωt

�q · (−∇u)θ dxdτ.

The constitutive relation (3.9) then follows from Theorem 2.10. Finally, by part (ii)
of the same theorem we infer that

(3.44) ∇um → ∇u in L2(ΩT )3.

This and (3.39) yield (3.10).
Remarks. (i) In view of the developments of the next section, notice that (3.30)

and (3.31) yield the following uniform estimates for the solutions of Problem 3.1ε
(here written displaying the index ε):

‖wε‖L∞(0,T ;H)∩H1(0,T ;V ′), ‖uε‖L2(0,T ;H1(Ω)), ‖�qε‖L2(ΩT )3 , ‖fε‖L2(ΩT )

≤ Constant (independent of ε).
(3.45)

(ii) If fε is assumed to be independent of ∇uε, the assumption (3.3) may be
dropped (�α is thus assumed only to be nondecreasing w.r.t. its first argument).

4. Two-scale homogenized problem. In this section we show that as ε van-
ishes the solutions of Problem 3.1ε converge to a solution of a two-scale homogenized
problem.

Two-scale formulation. Let us assume that (2.8), (2.36), and (3.5) are fulfilled
and that

(4.1) w0
ε →

2
w0 in L2(Ω × Y), z ∈ H1(ΩT ), g ∈ L2(0, T ;V ′).

We shall deal with functions that depend on two (vector) space variables x and y and
denote the respective gradient operators by ∇x (resp., ∇y). We shall use the notation
(2.5), set

(4.2) Z :=
{
v ∈ L2

(
Ω;H1(Y)

)
: v̂ ∈ V

}
,

and equip this space with the graph norm. Now we introduce the weak formulation
of a two-scale problem that we then retrieve by letting ε vanish in Problem 3.1ε.

Problem 4.1. Find

u ∈ L2(0, T ;V ) + z, w ∈ L2(ΩT × Y), �q ∈ L2(ΩT × Y)3,

u� ∈ L2
(
ΩT ;H1(Y)

)
, �q� ∈ L2(ΩT × Y)3

(4.3)

such that û� ≡ 0, �̂q� ≡ �0 a.e. in ΩT and, setting

(4.4) f = β(u,∇xu + ∇yu�, x, y, t) a.e. in ΩT × Y,
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one has

�q = �α(−∇xu−∇yu�, u, x, y, t) a.e. in ΩT × Y,(4.5)

w ∈ ∂ϕ(u, x, y) a.e. in ΩT × Y,(4.6)

∫∫∫
ΩT×Y

(
(w0 − w)

∂v

∂t
− �̂q · ∇xv̂ − �q� · ∇yv − fv

)
dxdydt =

∫ T

0

〈g, v〉 dt

∀v ∈ H1
(
0, T ;L2(Ω × Y)

)
∩ L2(0, T ;Z), v(·, ·, T ) = 0 a.e. in Ω × Y,

(4.7)

∫
Y
�q · ∇yv dy = 0 ∀v ∈ H1(Y) a.e. in ΩT .(4.8)

(It should be noticed that the function u is independent of y.)

Interpretation. Equation (4.7) yields the two-scale equation

(4.9)
∂w

∂t
+ ∇x · �̂q + ∇y · �q� = f + g in Z ′ a.e. in ]0, T [

and the initial condition

(4.10) w(·, ·, 0) = w0 in Z ′,

for by comparing the terms of (4.9) we infer that w ∈ H1(0, T ;Z ′). Conversely (4.9)
and (4.10) entail (4.7). By selecting v independent of y in (4.7), we get the following

system for the coarse-scale fields ŵ, �̂q:

∂ŵ

∂t
+ ∇x · �̂q = f̂ + g in V ′ a.e. in ]0, T [,

ŵ(·, 0) = ŵ0 in V ′.

(4.11)

Equations (4.9)–(4.11) then yield the fine-scale system

∂w̃

∂t
+ ∇y · �q� = f̃ in L2

(
Ω;H1(Y)′

)
a.e. in ]0, T [,

w̃(·, ·, 0) = w̃0 in V ′ for a.e. y ∈ Y.

(4.12)

The two latter systems are coupled via the nonlinear constitutive equations (4.4)–
(4.6). Equation (4.8) also reads ∇y · �q = 0 in D′(Y) a.e. in ΩT .

We now retrieve Problem 4.1 from Problem 3.1ε by letting ε vanish.
Theorem 4.1. For any fixed ε > 0, let (4.1) and the hypotheses of Theorem 3.1

be satisfied. Let {(uε, wε) : ε > 0} be a family of solutions of Problem 3.1ε that also
fulfils the uniform estimates (3.45) (we saw that such a family exists). Then there
exist u,w, �q, u�, �q� such that, as ε → 0 along a suitable sequence,

uε ⇀ u in L2
(
0, T ;H1(Ω)

)
,(4.13)

∇uε ⇀
2
∇xu + ∇yu� in L2(ΩT × Y)3,(4.14)

wε
∗
⇀
2
w in L∞(

0, T ;L2(Ω × Y)
)
,(4.15)

�qε ⇀
2
�q in L2(ΩT × Y)3,(4.16)

∇ · �qε ⇀
2
∇x · �̂q + ∇y · �q� in L2(ΩT × Y).(4.17)
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This entails that (u,w, �q, u�, �q�) is a solution of Problem 4.1.
Proof. This argument follows the lines of part (iii) of the proof of Theorem 3.1,

obviously with two-scale in place of single-scale convergence. By the estimates (3.45)
and Propositions 2.1, 2.3, and 2.4 there exist u,w, �q, u�, �q� such that, as ε → 0 along a
suitable subsequence, (4.8) and (4.13)–(4.17) hold. By passing to the limit in (3.12),
we then get (4.7).

In view of deriving the relations (4.4)–(4.6), let us now fix any nonnegative θ ∈
D(Ω̄), and notice that by (3.45), (4.15), and Proposition 2.2

wε
∗
⇀ ŵ in L∞(0, T ;H) ∩H1(0, T ;V ′).

By the aforementioned compactness result of Aubin (see [8, 57, 73]), we then have∫∫
ΩT

wε(x, t)uε(x, t) θ(x) dxdt

→
∫∫

ΩT

ŵ(x, t)u(x, t) θ(x) dxdt =

∫∫∫
ΩT×Y

w(x, y, t)u(x, t) θ(x) dxdydt.

(4.18)

By (3.11) and Proposition 2.7, we then get (4.6) and, setting ϕ̄(v, x) :=
∫
Y ϕ(v, x, y) dy

for any v and a.e. x,∫∫
ΩT

ϕε(uε(x, t), x)θ(x) dxdt

→
∫∫∫

ΩT×Y
ϕ(u(x, t), x, y)θ(x) dxdydt =

∫∫
ΩT

ϕ̄(u(x, t), x)θ(x) dxdt,

(4.19)

∫∫
ΩT

ϕ∗
ε(wε(x, t), x)θ(x) dxdt →

∫∫∫
ΩT×Y

ϕ∗(w(x, y, t), x, y)θ(x) dxdydt.(4.20)

This also applies for θ ≡ 1. As (3.18) entails that the mapping v �→ ϕ̄(v, x) is strictly
convex for a.e. x, Proposition 2.9 then yields uε →

2
u in L2(ΩT × Y); that is, as u is

independent of y,

(4.21) uε → u in L2(ΩT ).

In view of the proof of (4.5) let us now assume that θ is a nonnegative function

of D(Ω); notice that �qε ⇀ �̂q in L2(ΩT )3 and by (4.21)

(4.22)

∫∫
Ωt

uε�qε · ∇xθ dxdτ →
∫∫

Ωt

u�̂q · ∇xθ dxdτ ∀t ∈ ]0, T ].

Let us now select v = uθ in (4.7) and integrate in time. As by (4.6)

∫∫
Yt

〈
∂w

∂t
, uθ

〉
dydτ =

∫∫
Ω×Y

[
ϕ∗(w(x, y, t), x, y) − ϕ∗(w0(x, y), x, y)

]
θ dxdy

for a.e. t ∈ ]0, T [,

(4.23)

we thus get

∫∫
Ω×Y

[
ϕ∗(w(x, y, t), x, y) − ϕ∗(w0(x, y), x, y)

]
θ dxdy −

∫∫∫
Ωt×Y

�q · (∇xu)θ dxdydτ

=

∫∫
Ωt

(
u�̂q · ∇xθ + fuθ

)
dxdτ +

∫ t

0

〈g, uθ〉 dτ for a.e. t ∈ ]0, T [.

(4.24)
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Let us also rewrite (3.42) displaying the index ε,∫
Ω

[
ϕ∗
ε(wε(x, t), x) − ϕ∗(w0

ε(x), x)
]
θ(x) dx−

∫∫
Ωt

�qε · (∇uε) θ dxdτ

=

∫∫
Ωt

(uε�qε · ∇θ + fεuεθ) dxdτ +

∫ t

0

〈g, uεθ〉 dτ for a.e. t ∈ ]0, T [,

(4.25)

and notice that by (4.1)
∫
Ω
ϕ∗
ε(w

0
ε)θ dx →

∫∫
Ω×Y ϕ∗(w0)θ dxdy. After a further inte-

gration in time (4.20)–(4.25) yield∫ T

0

dt

∫∫
Ωt

�qε · (∇uε)θ dxdτ

=

∫ T

0

dt

∫
Ω

[
ϕ∗(w(x, y, t), x, y) − ϕ∗(w0(x, y), x, y)

]
θ(x) dxdy

−
∫ T

0

dt

∫∫
Ωt

(uε�qε · ∇θ + fεuεθ) dxdτ −
∫ T

0

dt

∫ t

0

〈g, uεθ〉 dτ

→
∫ T

0

dt

∫
Ω

[
ϕ∗(w(x, t), x) − ϕ∗(w0(x), x)

]
θ(x) dx−

∫ T

0

dt

∫∫
Ωt

(u�q · ∇θ + fuθ) dxdτ

−
∫ T

0

dt

∫ t

0

〈g, uθ〉 dτ =

∫ T

0

dt

∫∫∫
Ωt×Y

�q · (∇xu)θ dxdydτ ;

that is, as by (4.8)
∫
Y �q · ∇yu� dy = 0 a.e. in ΩT ,

∫ T

0

dt

∫∫
Ωt

�qε · (∇uε)θ dxdτ →
∫ T

0

dt

∫∫∫
Ωt×Y

�q · (∇xu + ∇yu�)θ dxdydτ.

Proposition 2.11 then yields (4.5). Finally, by part (ii) of Proposition 2.11 we infer
that

(4.26) ∇uε →
2
∇xu + ∇yu� in L2(ΩT × Y)3.

This convergence and (4.21) yield (4.4).
Remark. Similarly to what we saw for Theorem 3.1, if fε were assumed to be

independent of ∇uε, the assumption (3.3) might be dropped.

5. Coarse-scale homogenized problem. In this section we reduce the two-
scale problem of the last section to an equivalent coarse-scale formulation under some
minor restrictions. This will complete the homogenization procedure.

Here we assume that the source term f is independent of u and ∇u and that
the maximal monotone function �α is the subdifferential ∂ψ(·, v, x, y, t) of a function
ψ : R3 × R ×Ω × Y × ]0, T [ → R such that

ψ is measurable w.r.t. either B(Ω) ⊗ L(R3 × R × YT ) or L(R3 × R ×ΩT ) ⊗ B(Y),

ψ(�ξ, ·, x, y, t) is continuous ∀�ξ and for a.e. (x, y, t),

ψ(·, v, x, y, t) is lower semicontinuous and convex ∀v and for a.e. (x, y, t),

(5.1)

∃L > 0, ∃�4 ∈ L2(ΩT ) : ∀(�ξ, v) for a.e. (x, y, t),

∀�η ∈ ∂ψ(�ξ, v, x, y, t), |�η| ≤ L|�ξ| + L|v| + �4(x, t),
(5.2)
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∃c4 > 0, ∃h4 ∈ L1(ΩT ) : ∀(�ξ, v) for a.e. (x, y, t),

ψ(�ξ, v, x, y, t) ≥ c4|�ξ|2 + h4(x, t).
(5.3)

We define the function ϕ as in section 3, assume (3.1)–(3.6), and define the homoge-
nized potentials ϕ0 and ψ0:

ϕ0(v, x) :=

∫
Y
ϕ(v, x, y) dy ∀v ∈ R for a.e. x ∈ Ω,(5.4)

ψ0(�ξ, v, x, t) := inf

{∫
Y
ψ(�ξ + �ξ1(y), v, x, y, t) dy :

�ξ1 ∈ L2(Y)3, �̂ξ1 = �0, ∇y × �ξ1 = �0 in D′(Y)3
}

∀�ξ ∈ R3, ∀v ∈ R for a.e. (x, t) ∈ ΩT .

(5.5)

This minimization problem is equivalent to the corresponding Euler equation

(5.6)

{
θ ∈ H1(Y)3,

∇y · ∂ψ(�ξ + ∇yθ(y), v, x, y, t) � 0 in H−1(Y)3
for a.e. (x, t) ∈ ΩT .

In the case of a quadratic function ψ this family of cell problems will be studied in
the next section.

Here we assume that

(5.7) w0 ∈ L2(Ω × Y), z ∈ H1(ΩT ), f ∈ L2(ΩT × Y), g ∈ L2(0, T ;V ′)

and introduce a coarse-scale problem using the notation (2.5).
Problem 5.1. Find u ∈ L2(0, T ;V ) + z, w̄ ∈ L2(ΩT ), and �̄q ∈ L2(ΩT )3 such

that

w̄(x, t) ∈ ∂ϕ0(u(x, t), x) for a.e. (x, t) ∈ ΩT ,(5.8)

�̄q(x, t) ∈ ∂ψ0(−∇u(x, t), u(x, t), x, t) for a.e. (x, t) ∈ ΩT ,(5.9) ∫∫
ΩT

((
w̄ − ŵ0

) ∂v
∂t

− �̄q · ∇v − f̂v

)
dxdt =

∫ T

0

〈g, v〉 dt

∀v ∈ H1(0, T ;H) ∩ L2(0, T ;V ), v(·, T ) = 0 a.e. in Ω.

(5.10)

This formulation may be compared with Problem 3.1ε. In particular (5.10) yields
the energy balance equation in the form

(5.11)
∂w̄

∂t
+ ∇ · �̄q = f̂ + g in D′(ΩT ).

In view of relating Problems 4.1 and 5.1 to each other, first we review some basic
properties of subdifferentials and convex conjugate functions that will be used in what
follows.

Lemma 5.1. Let B be a real Banach space and 〈·, ·〉 be the duality pairing between
B and its dual B′. If F : B → R ∪ {+∞} is such that F �≡ +∞, then for any u ∈ B
and any w ∈ B′,

F (u) + F ∗(w) ≥ 〈w, u〉,(5.12)

w ∈ ∂F (u) ⇔ F (u) + F ∗(w) ≤ 〈w, u〉,(5.13)

w ∈ ∂F (u) ⇔ F (u) + F ∗(w) = 〈w, u〉.(5.14)
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The inequality (5.12) directly follows from the definition of the convex conjugate
function F ∗. The proof of (5.13) may be found, e.g., in [45, 51, 54, 69]. The statement
(5.14) is an obvious consequence of (5.12) and (5.13).

The next lemma will allow us to upscale from Problem 4.1 to 5.1 and may be
compared with classical results about the homogenization of integral functionals of
[24, 60].

Lemma 5.2. Let the function ψ fulfil (5.1)–(5.3), define ψ0 as in (5.5), and let

ν ∈ L2(ΩT ). If �ξ, �η ∈ L2(ΩT × Y)3 are such that

�η(x, y, t) ∈ ∂ψ(�ξ(x, y, t), ν(x, t), x, y, t) for a.e. (x, y, t) ∈ ΩT × Y,(5.15)

∇y × �ξ = �0 in D′(ΩT × Y)3, ∇y · �η = 0 in D′(ΩT × Y),(5.16)

then

(5.17) �̂η(x, t) ∈ ∂ψ0(�̂ξ(x, t), ν(x, t), x, t) for a.e. (x, t) ∈ ΩT .

Proof. As here the independent variables (x, t) ∈ ΩT just occur as parameters, for
the sake of simplicity we shall omit them as well as ν(x, t) throughout this argument.
For instance, we thus replace (5.15) by

(5.18) �η(y) ∈ ∂ψ(�ξ(y), y) for a.e. y ∈ Y.

Using the notation (2.5), let us first set

W :=
{
�w ∈ L2(Y)3 : ∇ · �w = 0 in D′(Y)

}
, W∗ :=

{
�v ∈ W : �̂v = �0

}
,

Z :=
{
�v ∈ L2(Y)3 : ∇× �v = �0 in D′(Y)3

}
, Z∗ :=

{
�v ∈ Z : �̂v = �0

}
;

these are Hilbert subspaces of L2(Y)3. Notice that Z∗ = ∇H1
∗ (Y), and this is the

orthogonal space of W∗ in L2(Y)3. Hence

∫
Y
�v(y) · �w(y) dy − �̂v · �̂w =

∫
Y

[�̂v · �̃w(y) + �̃v(y) · �̂w + �̃v(y) · �̃w(y)] dy

= �̂v ·
∫
Y
�̃w(y) dy +

(∫
Y
�̃v(y) dy

)
· �̂w +

∫
Y
�̃v(y) · �̃w(y) dy = 0 ∀(�v, �w) ∈ Z ×W.

(5.19)

By (5.15)∫
Y
�η(y) · [�ξ(y) − �v(y)] dy ≥

∫
Y
ψ(�ξ(y), y) dy −

∫
Y
ψ(�v(y), y) dy ∀�v ∈ L2(Y)3;

hence, applying (5.19) and noticing that
∫
Y ψ(�ξ(y), y) dy ≥ ψ0(�̂ξ),

�̂η · (�̂ξ − �̂v) =

∫
Y
�η(y) · [�ξ(y) − �v(y)] dy ≥ ψ0(�̂ξ) −

∫
Y
ψ(�v(y), y) dy ∀�v ∈ Z.

By the arbitrariness of �̃v, we then get �̂η · (�̂ξ− �̂v) ≥ ψ0(�̂ξ)−ψ0(�̂v) for any �̂v ∈ R3, that

is, �̂η ∈ ∂ψ0(�̂ξ).
The next statement inverts Lemma 5.2 and will be used to downscale from Prob-

lem 5.1 to 4.1.
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Lemma 5.3. Let the function ψ fulfil (5.1)–(5.3), define ψ0 as in (5.5), and let
ν ∈ L2(ΩT ). If
(5.20)

�r,�s ∈ L2(ΩT )3, �s(x, t) ∈ ∂ψ0(�r(x, t), ν(x, t), x, t) for a.e. (x, t) ∈ ΩT ,

then there exist �ξ, �η ∈ L2(ΩT × Y)3 such that

�̂ξ(x, t) = �r(x, t), �̂η(x, t) = �s(x, t) for a.e. (x, t) ∈ ΩT ,

�η(x, y, t) ∈ ∂ψ(�ξ(x, y, t), ν(x, t), x, y, t) for a.e. (x, y, t) ∈ ΩT × Y.
(5.21)

If, moreover, ψ(·, v, x, y, t) and ψ∗(·, v, x, y, t) are strictly convex for any v ∈ R

and a.e. (x, y, t) ∈ ΩT × Y, then the pair (�ξ, �η) is unique.
Proof. Here we imply the dependence on (x, t) and ν(x, t), as we did in the proof

of Lemma 5.2. Let us first set

(5.22) ρ0(�η) := inf

{∫
Y
ψ∗(�η + �z(y), y) dy : �z ∈ Z

}
∀�η ∈ R3.

By (5.3) the conjugate function ψ∗ also has quadratic growth at infinity, so that

(5.23) ψ(�λ, y) → +∞, ψ∗(�λ, y) → +∞ as |�λ| → +∞, uniformly for y ∈ Y.

By the convexity and the lower semicontinuity of ψ and ψ∗, the infima ψ0(�̂ξ) and

ρ0(�̂η) (cf. (5.4) and (5.22)) are then both attained, that is,

∃�ξ ∈ RN + W : �̂ξ = r, ψ0(�̂ξ) =

∫
Y
ψ(�ξ(y), y) dy,

∃�η ∈ RN + Z : �̂η = s, ρ0(�̂η) =

∫
Y
ψ∗(�η(y), y) dy.

(5.24)

By (5.13) the inclusion �s ∈ ∂ψ0(�r) is thus equivalent to

(5.25) �̂ξ · �̂η ≥ ψ0(�̂ξ) + ψ∗
0(�̂η).

The definitions of ψ0 and ρ0, respectively, yield ψ0 ≤ ψ and ρ0 ≤ ψ∗ in R3 × Y; the
former inequality entails that ψ∗ ≤ ψ∗

0 . Thus ρ0 ≤ ψ∗ ≤ ψ∗
0 , namely, ρ0 ≤ ψ∗

0 in R3.

The inequality (5.25) then yields �̂ξ · �̂η ≥ ψ0(�̂ξ) + ρ0(�̂η), which by (5.19) and (5.24)
reads ∫

Y
�ξ(y) · �η(y) dy ≥

∫
Y

[ψ(�ξ(y), y) + ψ∗(�η(y), y)] dy.

By (5.12), on the other hand, �ξ(y) · �η(y) ≤ ψ(�ξ(y), y) +ψ∗(�η(y), y) for a.e. y ∈ Y.
By the two latter inequalities, we infer that

�ξ(y) · �η(y) = ψ(�ξ(y), y) + ψ∗(�η(y), y) for a.e. y ∈ Y,

and by (5.14) this is tantamount to �η(y) ∈ ∂ψ(�ξ(y), y) for a.e. y ∈ Y. The final
statement about uniqueness is obvious.

Next by Lemmata 5.2 and 5.3 we show that Problems 4.1 and 5.1 are equivalent.
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Theorem 5.4. Let ϕ and �α := ∂ψ fulfil (2.8) and (2.36). Let (3.1)–(3.4), (3.6),
(5.1)–(5.5), and (5.7) also be satisfied (with β independent of v and �z). Then we have
the following:

(i) If (u,w, �q, u�, �q�) is a solution of Problem 4.1 (by Theorem 4.1 such a solution

exists), then (u, ŵ, �̂q) is a solution of Problem 5.1.

(ii) Conversely, for any solution (u, w̄, �̄q) of Problem 5.1 there exists a solution

(u,w, �q, u�, �q�) of Problem 4.1 such that ŵ = w̄ and �̂q = �̄q a.e. in ΩT .

Proof. (i) The inclusion (5.9) follows from (4.5) and Lemma 5.2, because of (4.8).
Equation (5.8) is an even simpler consequence of (4.6), for u is independent of y.
Indeed (4.6) is tantamount to

∫∫∫
ΩT×Y

[ϕ(u(x, t), x, y) − u(x, t)w(x, y, t)] dxdydt

≤
∫∫∫

ΩT×Y
[ϕ(v(x, y, t), x, y) − v(x, y, t)w(x, y, t)] dxdydt ∀v ∈ L2(ΩT × Y);

selecting v independent of y we then get∫∫
ΩT

[ϕ0(u(x, t), x) − uŵ] dxdt ≤
∫∫

ΩT

[ϕ0(v(x, t), x) − vŵ] dxdt ∀v ∈ L2(ΩT ),

that is, (5.8).

(ii) This part is a direct consequence of Lemma 5.3.

We can now state our single-scale homogenization result.

Corollary 5.5. Under the hypotheses of Theorems 4.1 and 5.4 there exist u, w̄, �̄q
such that, as ε → 0 along a suitable sequence,

uε ⇀ u in L2
(
0, T ;H1(Ω)

)
,(5.26)

wε
∗
⇀
2
w̄ in L∞(0, T ;H),(5.27)

�qε ⇀
2
�̄q in L2(ΩT )3.(5.28)

This entails that (u, w̄, �̄q) is a solution of Problem 5.1.

Proof. By Proposition 2.2, (4.13), (4.15), and (4.16) yield (5.26)–(5.28). It then
suffices to apply part (i) of Theorem 5.4.

6. Single nonlinearity, Kirchhoff transformation, and discussion. Ob-
viously the analysis of sections 3, 4, and 5 can be much simplified whenever either
of the two constitutive relations (1.2) and (1.3) is linear, for each of Problems 3.1ε,
4.1, and 5.1 is then reduced to a single variational inequality, so that existence of a
solution can be established without using compactness properties. In that case these
problems are actually well-posed.

Here we assume that (1.3) is linear w.r.t. ∇u but not w.r.t. u, and we retrieve the
homogenized conductivity tensor from the two-scale relation (4.5) via a well-known
procedure. Afterwards we show how a class of nonlinear conduction laws may be
reduced to linear form via a generalization of the classical Kirchhoff transformation.
So let

(6.1) �α(�z, v, x, y, t) = K(v, x, y, t) ·�z ∀(�z, v) ∈ R3 ×R for a.e. (x, y, t) ∈ ΩT ×Y,
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where K is a (possibly asymmetric) positive-definite 3 × 3-tensor function with en-
tries kij that are Caratheodory functions. The relation (4.5) and (4.8) then read,
respectively,

�q(x, y, t) = −K(u(x, t), x, y, t) · [∇xu(x, t) + ∇yu�(x, y, t)]

for a.e. (x, y, t) ∈ ΩT × Y,
(6.2)

∇y ·
{
K(u(x, t), x, y, t) · [∇xu(x, t) + ∇yu�(x, y, t)]

}
= 0

in H−1(Y) for a.e. (x, t) ∈ ΩT .
(6.3)

We claim that (6.2) and (6.3) entail a homogenized relation of the form

(6.4) �̂q(x, t) = −K0(u(x, t), x, t) · ∇xu(x, t) for a.e. (x, t) ∈ ΩT ,

where the tensor function K0 is determined as follows. Along the lines of [2] and
consistently with a classical approach to the homogenization of linear elliptic and
parabolic equations (see, e.g., the works quoted in the introduction), we search for a
family of auxiliary scalar functions w1(x, y, t), . . . , w3(x, y, t) such that

u�(x, y, t) =
∑

j=1,2,3

∂u

∂xj
(x, t)wj(x, y, t) for a.e. (x, y, t) ∈ ΩT × Y.

Denoting by �ej the unit vector of the axis yj (j = 1, 2, 3), (6.2) and (6.3) then read,
respectively,

�q(x, y, t) = −K(u(x, t), x, y, t) ·
∑

j=1,2,3

∂u

∂xj
(x, t)[�ej + ∇ywj(x, y, t)]

for a.e. (x, y, t) ∈ ΩT × Y,

(6.5)

∇y ·
{
K(u(x, t), x, y, t) ·

∑
j=1,2,3

∂u

∂xj
(x, t)[�ej + ∇ywj(x, y, t)]

}
= 0

in H−1(Y) for a.e. (x, t) ∈ ΩT ,

i.e., ∂
∂y�

{
k�m

∂u
∂xj

(δjm +
∂wj

∂ym
)
}

= 0, assuming that repeated indices are summed from

1 to 3 and denoting by {δjm} the 3 × 3 identity tensor. This equation is fulfilled
whenever w1, . . . , w3 solve the following three families of cell problems:

∇y ·
{
K(u(x, t), x, y, t) · [�ej + ∇ywj(x, y, t)]

}
= 0

in H−1(Y) for a.e. (x, t) ∈ ΩT for j = 1, 2, 3,
(6.6)

i.e., ∂
∂y�

{
k�m(δjm +

∂wj

∂ym
)
}

= 0. These linear elliptic problems have one and only one

solution w1, . . . , w3 ∈ L2
(
ΩT ;H1(Y)

)
such that

∫
Y wj(·, ·, y)dy = 0 a.e. in ΩT for

j = 1, 2, 3. By integrating (6.5) over Y, we then see that (6.4) is fulfilled if we define
the tensor function K0 with entries

k0ij(v, x, t) :=

∫
Y
�ei ·K(v, x, y, t) · [�ej + ∇ywj(x, y, t)] dy

=

∫
Y

[�ei + ∇ywi(x, y, t)] ·K(v, x, y, t) · [�ej + ∇ywj(x, y, t)] dy

=

∫
Y

[
δi� +

∂wi

∂y�
(x, y, t)

]
k�m(v, x, y, t)

[
δjm +

∂wj

∂ym
(x, y, t)

]
dy

(6.7)
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(still with the sum convention) for any v ∈ R, a.e. (x, t) ∈ ΩT , and i, j = 1, 2, 3.
Next let us consider two special cases. If K(v, x, y, t) might be factorized in the

form

(6.8) K(v, x, y, t) = K1(v) ·K2(x, y, t) ∀v ∈ R for a.e. (x, y, t) ∈ ΩT × Y,

then the problems (6.6) would be reduced to three families of cell problems that are
independent of the function u:

∇y ·
{
K2(x, y, t) · [�ej + ∇ywj(x, y, t)]

}
= 0

in H−1(Y) for a.e. (x, t) ∈ ΩT for j = 1, 2, 3.
(6.9)

Finally, if

(6.10) K(v, x, y, t) = K3(v, x, t) ·K4(y) ∀v ∈ R for a.e. (x, y, t) ∈ ΩT × Y,

then the wj ’s would be independent of (x, t) and the problems (6.6) would be reduced
to three linear problems in the cell Y:

(6.11) ∇y ·
{
K4(y) · [�ej + ∇ywj(y)]

}
= 0 in H−1(Y) for j = 1, 2, 3.

The reader will notice that the problems (6.9) and (6.11) are independent of the
solution u, at variance with (6.6). Moreover, the three linear problems (6.11) do not
contain the parameters (x, t), at variance with (6.9). One may thus solve them once
for all and then use the wj ’s to construct the homogenized conductivity tensor K0 via
(6.7).

Remarks. (i) The tensor K0 is symmetric whenever K is; however, the nondiag-
onal elements of K0 need not vanish even if K is a diagonal tensor. An anisotropic
medium may thus be the outcome of the homogenization of an isotropic one: this is
quite natural, for the fine-scale arrangement need not be isotropic.

(ii) The tensor K need not be symmetric; namely, the function �v �→ K · �v need
not be cyclically monotone. Nevertheless, Theorem 5.4 and Corollary 5.5 hold also in
this case, with (6.4) and (6.7) in place of (5.9) in Problem 5.1.

(iii) If K is independent of the temperature, then Problem 3.1ε is reduced to the
weak formulation of the multidimensional extension of the Stefan problem. The same
applies to the single-scale homogenized Problem 5.1 if (5.9) is replaced by (6.4) and
(6.7).

(iv) If K = k(y)I (k being a positive scalar function), we thus retrieve the results
of [38].

The Kirchhoff transformation. For an isotropic and homogeneous material
in the Fourier law (1.8), we have K(u, x) = k(u)I. In this case a simple but powerful
tool for handling the heat balance equation is provided by the classical Kirchhoff
transformation

(6.12) K : u �→ U :=

∫ u

0

k(ξ) dξ

that reduces (1.8) to a linear relation: �q = −∇U . Because of the strict monotonicity
of the operator K, (1.2) may be rewritten in the form w ∈ ∂ϕ̃(U, x), where ϕ̃(·, x)
is strictly convex whenever ϕ(·, x) is. One might then equivalently formulate the
system (1.1)–(1.3) in terms of the triplet (U,w, �q) and thus with a single nonlinear-
ity. However, in this paper we were concerned with an inhomogeneous material and
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hence with a space-dependent conductivity: k = k(u, x). In this case if both k and
∇xk(·, x) were uniformly bounded, then one might still deal with a weak solution via
the above transformation. But the boundedness of ∇xk(·, x) would exclude composite
materials, which were our main concern; this author does not see how the Kirchhoff
transformation might be used here without severe restrictions.

This transformation may also be extended to a class of anisotropic materials as
follows. If

(6.13) K(u, x) = G(x)h(u), i.e., kij(u, x) = gij(x)h(u) for j = 1, 2, 3,

with G = {gij} a positive-definite tensor function and h a positive real function, then

(6.14) �q = −G(x)h(u) · ∇u = −G(x) · ∇V, where V :=

∫ u

0

h(ξ) dξ.

Equation (1.1) then reads

(6.15)
∂w

∂t
−∇ · [G(x) · ∇V ] = f in D′(ΩT ),

and V and w are related by a subdifferential condition analogous to (1.2), so that the
developments of this paper are easily extended. This latter setting fits the framework
that was already addressed in [17, 38].

Phase-dependent conductivity. The latter formulation also applies if the
function h is discontinuous. As the phase depends discontinuously on the temper-
ature, this approach may also be used in the physically relevant case in which the
heat conductivity of the two phases are different, provided that the temperature u∗
of phase equilibrium is independent of x.

More specifically, denoting by φ̃ the pointwise content of latent heat (that we
denoted by L(x)), the function φ := φ̃/L(x) characterizes the phase, for
(6.16)
φ = 0 in the solid phase, 0 < φ < 1 in the mushy region, φ = 1 in the liquid phase.

Thus φ ∈ H̃(u− u∗) a.e. in ΩT , with H̃ being the Heaviside graph:

(6.17) H̃(v) = {0} ∀v ≤ 0, H̃(0) = [0, 1], H̃(v) = {1} ∀v > 0.

If K can be factorized in the form

(6.18) K(u, x) = G(x)h(u, φ) a.e. in ΩT ,

then K(u, x) ∈ G(x)h(u, H̃(u − u∗)) a.e. in ΩT . Assuming that u∗ is differentiable
and setting

(6.19) V :=

∫ u

0

h(ξ, H̃(ξ − u∗)) dξ ∀u ∈ R,

a simple computation yields ∇V = [h(u∗, 0)−h(u∗, 1)]∇u∗ +h(u, H̃(u−u∗))∇u. The
Fourier law (1.8) then reads
(6.20)
�q = −h(u, φ)G(x) · ∇u = −G(x) · ∇V +G(x) · [h(u∗, 0)− h(u∗, 1)]∇u∗ a.e. in ΩT .

The analysis of this work may thus easily be extended to this setting.
On the other hand, if K(u, x) cannot be factorized as in (6.18), it is not clear

how existence of a weak solution might be proved. Open questions also include the
extension of the downscaling result, i.e., Theorem 5.4, to a noncyclically monotone
function �α.
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Generalizations. Another class of doubly nonlinear parabolic problems also
seems of interest:

w + ∇ · �q = f in D′(ΩT ),(6.21)

w ∈ β(∂u/∂t, x) a.e. in ΩT ,(6.22)

�q = ∂ψ(−∇u, u, x) a.e. in ΩT ,(6.23)

here with β : R×Ω → R and ψ : R3 ×R×Ω → R ∪ {+∞}. (Notice the exchanged
role of the subdifferential and of the maximal monotone function here and in (1.1)–
(1.3).) Existence of a solution for associated initial- and boundary-value problems
were studied in several works; see, e.g., [5, 34, 35, 78]. The homogenization of this
system might be treated via techniques analogous to those of this work.

The developments of this paper might be extended in several directions. For
instance, one might insert a relaxation dynamics into the phase evolution equation
(1.2) and/or into the nonlinear conduction law (1.3):

∂w

∂t
+ w ∈ ∂ϕ(u, x, t) a.e. in ΩT ,(6.24)

∂�q

∂t
+ �q = �α(−∇u, u, x, t) a.e. in ΩT .(6.25)

The latter is a nonlinear extension of the classical Cattaneo–Fourier law. Existence
of a weak solution is known for either case; see, e.g., [78]; the homogenization is less
obvious but might be performed via techniques of [83].

It might also be of applicative interest to extend the present analysis to the
homogenization of phase transitions in binary mixtures, to account for two time scales,
and to homogenize a nonperiodic medium.
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ERRATUM: “GLOBAL SOLUTIONS OF NONLINEAR TRANSPORT
EQUATIONS FOR CHEMOSENSITIVE MOVEMENT” [SIAM J.

MATH. ANAL. 36 (2005), PP. 1177–1199]∗

HYUNG JU HWANG† , KYUNGKEUN KANG‡ , AND ANGELA STEVENS§

Abstract. The purpose of this erratum is to correct Assumption 4.2 in [H. J. Hwang, K. Kang,
and A. Stevens, SIAM J. Math. Anal., 36 (2005), pp. 1177–1199]. We also modify some errors caused
by the incorrectly stated assumption.

Key words. chemosensitive movement, drift-diffusion limit, Keller-Segel model
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First we correct Assumption 4.2 ([2], p. 1191, lines 3–4) by adding condition (0.3)
given below

(0.1) φS
ε [S] ≥ γ

(
1 − εΛ(‖∇S‖W 1,∞(R3))

)
FF ′,

(0.2)

∫
V

φA
ε [S]2

FφS
ε [S]

dv′ ≤ ε2Λ
(
‖∇S‖W 1,∞(R3)

)
,

(0.3)

∥∥∥∥ (∇φS
ε [S])2

φS
ε [S]

∥∥∥∥
L

q
2 (R3)

+

∥∥∥∥ (∇φA
ε [S])2

φS
ε [S]

∥∥∥∥
L

q
2 (R3)

≤ Cε2 ‖∇S‖2
W 2,q(R3) , 2 ≤ q ≤ ∞,

where φS
ε [S] and φA

ε [S] denote the symmetric and antisymmetric parts of the turning
kernel, respectively, i.e., φS

ε := 1
2 (Tε[S]F ′ + T ∗

ε [S]F ) and φA
ε := 1

2 (Tε[S]F ′ + T ∗
ε [S]F ),

and Λ ∈ L∞
loc([0,∞)) is a nondecreasing function. Here F indicates a bounded velocity

distribution satisfying (A0) in [1, p. 128, lines 18–23]. In what follows, we suppose,
for simplicity, that the bounded velocity distribution fulfills F = 1. These conditions
(0.1)–(0.3) hold for the example

(0.4) Tε[S] = C + h (S(x + εv, t) − S(x− εv′, t)) + h (∇S(x + εv, t) −∇S(x− εv′, t)) ,

where C > 0 and h is a nonnegative and differentiable function satisfying |h′(x)| ≤ M
and C1 |x| ≤ h(x) ≤ C2 |x| for some C2 > C1 > 0 (see the appendix for details).

Our main purpose of this erratum is to fix the error in the proof of Theorem 4.3
in [2], where the estimate of ∇S ([2], p. 1191, line 5 from the bottom) is not correct.
Here we consider only the case τ = 0, n = 3, and β = 0. For the other cases similar
arguments work.

Assume for the initial data f0
ε ,∇xf

0
ε ∈ Lq(V × R

3). Our model equation is

(0.5)
∂

∂t
fε +

1

ε
v · ∇xfε = − 1

ε2
T [Sε](fε),

∗Received by the editors January 23, 2007; accepted for publication (in revised form) May 3,
2007; published electronically October 19, 2007.
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with

T [Sε](fε) = −
∫
V

(T [Sε]f
′
ε − T ∗[Sε]fε) dv

′.

Let q > 3. Multiplying (0.5) with fq−1
ε and integrating over R

3 × V , we obtain

1

q

d

dt

∫
R3

∫
V

fq
ε dvdx +

1

4ε2

∫
R3

∫
V

∫
V

φS
ε [S](fε − f ′

ε)
(
fq−1 − (f ′)q−1

)
dv′dvdx

≤ 1

4ε2

∫
R3

∫
V

∫
V

φA
ε [S]2

φS
ε [S]

(fε + f ′
ε)

2
(
fε |fε|q−2 − f ′

ε |f ′
ε|
q−2

)
fε − f ′

ε

dv′dvdx

≤ CqΛ
(
‖∇Sε‖W 1,∞(R3)

)∫
R3

∫
V

fq
ε dvdx ≤ CqΛ

(
‖∇fε‖Lq(V×R3)

)∫
R3

∫
V

fq
ε dvdx.

Here (0.1), (0.2), and Lemma 1 in [1, p. 129] are used, and ‖∇Sε‖W 1,∞(R3) ≤
C ‖∇ρε‖Lq(R3) ≤ C ‖∇fε‖Lq(V×R3). Therefore, we obtain

(0.6)
d

dt
‖fε‖qLq(V×R3) ≤ CqΛ

(
‖∇fε‖Lq(V×R3)

)
‖fε‖qLq(V×R3) .

Now set gε = ∂xjfε, j = 1, 2, 3. Differentiating (0.5) with respect to xj , we get

∂

∂t
gε +

1

ε
v · ∇xgε = − 1

ε2
T [Sε](gε) −

1

ε2
(
∂xjT [Sε]

)
(fε),

where

(
∂xjT [Sε]

)
(fε) = −

∫
V

[(
∂xjT [Sε]

)
f ′
ε −

(
∂xjT

∗[Sε]
)
fε
]
dv′.

Let q > 3. Multiplying with |gε|q−2
gε and integrating over R

3 × V , we have

1

q

d

dt

∫
R3

∫
V

|gε|q = − 1

ε2

∫
R3

∫
V

T [Sε](gε) |gε|q−2
gε −

1

ε2

∫
R3

∫
V

(
∂xj

T [Sε]
)
(fε) |gε|q−2

gε

:= I + II.

Using again Lemma 1 in [1, p. 129], we note that I can be written as

I = − 1

2ε2

∫
R3

∫
V

∫
V

φS
ε [S](gε − g′ε)

(
gε |gε|q−2 − g′ε |g′ε|

q−2
)
dv′dvdx

+
1

2ε2

∫
R3

∫
V

∫
V

φA
ε [S](gε + g′ε)

(
gε |gε|q−2 − g′ε |g′ε|

q−2
)
dv′dvdx.

Following a similar procedure as before, we obtain

I ≤ − 1

4ε2

∫
R3

∫
V

∫
V

φS
ε [S](gε − g′ε)

(
gε |gε|q−2 − g′ε |g′ε|

q−2
)
dv′dvdx

(0.7) + Cq ‖∇fε‖Lq(R3×V )

∫
R3

∫
V

|gε|q dvdx.
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Next we estimate II:

II = − 1

2ε2

∫
R3

∫
V

∫
V

(
∂xjφ

S
ε [S]

)
(fε − f ′

ε)
(
gε |gε|q−2 − g′ε |g′ε|

q−2
)
dv′dvdx

+
1

2ε2

∫
R3

∫
V

∫
V

(
∂xj

φA
ε [S]

)
(fε + f ′

ε)
(
gε |gε|q−2 − g′ε |g′ε|

q−2
)
dv′dvdx

≤ 1

8ε2

∫
R3

∫
V

∫
V

φS
ε [S](gε − g′ε)

(
gε |gε|q−2 − g′ε |g′ε|

q−2
)
dv′dvdx

+
1

ε2

∫
R3

∫
V

∫
V

(
∂xjφ

S
ε [S]

)2
φS
ε [S]

(fε − f ′
ε)

2

∣∣∣∣∣∣
(
gε |gε|q−2 − g′ε |g′ε|

q−2
)

g − g′

∣∣∣∣∣∣ dv′dvdx

+
1

ε2

∫
R3

∫
V

∫
V

(
∂xjφ

A
ε [S]

)2
φS
ε [S]

(fε + f ′
ε)

2

∣∣∣∣∣∣
(
gε |gε|q−2 − g′ε |g′ε|

q−2
)

g − g′

∣∣∣∣∣∣ dv′dvdx
≤ 1

8ε2

∫
R3

∫
V

∫
V

φS
ε [S](gε − g′ε)

(
gε |gε|q−2 − g′ε |g′ε|

q−2
)
dv′dvdx

+
Cq

ε2

∫
R3

∫
V

∫
V

((
∂xj

φS
ε [S]

)2
φS
ε [S]

+

(
∂xj

φA
ε [S]

)2
φS
ε [S]

)(
fε

2 + f ′
ε
2
)(

|gε|q−2
+ |g′ε|

q−2
)
dv′dvdx.

For the last term, interchanging the order of integration and utilizing (0.3), Hölder’s
inequality, using the potential estimate for Sε (see, e.g., [2, Lemma 4.1]), and Sobolev’s
embedding theorem, we can estimate

1

ε2

∫
R3

∫
V

∫
V

((
∂xjφ

S
ε [S]

)2
φS
ε [S]

+

(
∂xjφ

A
ε [S]

)2
φS
ε [S]

)(
f2
ε + f ′

ε
2
)(

|gε|q−2
+ |g′ε|

q−2
)
dv′dvdx

=
1

ε2

∫
V

∫
V

∫
R3

((
∂xjφ

S
ε [S]

)2
φS
ε [S]

+

(
∂xjφ

A
ε [S]

)2
φS
ε [S]

)(
fε

2 + f ′
ε
2
)(

|gε|q−2
+ |g′ε|

q−2
)
dxdv′dv

≤ 1

ε2

∫
V

∫
V

‖fε + f ′
ε‖

2
L∞(R3)

∥∥∥∥∥
((

∂xjφ
S
ε [S]

)2
φS
ε [S]

)
+

((
∂xjφ

A
ε [S]

)2
φS
ε [S]

)∥∥∥∥∥
L

q
2 (R3)

×‖(|gε| + |g′ε|)‖
q−2
Lq(R3) dv

′dv

≤ C ‖∇Sε‖2
W 2,q(R3)

∫
V

∫
V

‖fε + f ′
ε‖

2
W 1,q(R3) ‖(|gε| + |g′ε|)‖

q−2
Lq(R3) dv

′dv

≤ C ‖∇ρε‖2
Lq(R3)

(
‖fε‖2

Lq(V×R3) + ‖∇fε‖2
Lq(V×R3)

)
‖gε‖q−2

Lq(V×R3)

≤ Cq

(
‖fε‖q+2

Lq(V×R3) + ‖∇fε‖q+2
Lq(V×R3)

)
.

Summing up, we obtain

1

q

d

dt

∫
R3

∫
V

|gε|q +
1

8ε2

∫
R3

∫
V

∫
V

φS
ε [S](gε − g′ε)

(
gε |gε|q−2 − g′ε |g′ε|

q−2
)
dv′dvdx

≤ Cq

(
‖fε‖q+2

Lq(V×R3) + ‖∇fε‖q+2
Lq(V×R3)

)
.
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The second term on the left-hand side of the above inequality is nonnegative, so it
can be omitted. Adding up for j = 1, 2, 3, we obtain

(0.8)
d

dt
‖∇fε‖qLq(V×R3) ≤ Cq

(
‖fε‖q+2

Lq(V×R3) + ‖∇fε‖q+2
Lq(V×R3)

)
.

Let X(t) := ‖fε‖qLq(V×R3) + ‖∇fε‖qLq(V×R3). Combining (0.6) and (0.8), we get

X ′(t) ≤ CΛ
(
X

1
q (t)

)
X(t) + X

q+2
q (t).

Since Λ ∈ L∞
loc([0,∞)), the above inequality ensures a short time existence of solutions,

independent of ε. This completes the correction of the proof of Theorem 4.3.
On p. 1195 of [2] the following assumption has to be added between lines 4 and

5 from the bottom:∥∥∥∥ (∇φS
ε [S])2

φS
ε [S]

∥∥∥∥
L

q
2 (R3)

+

∥∥∥∥ (∇φA
ε [S])2

φS
ε [S]

∥∥∥∥
L

q
2 (R3)

≤ Cε2 ‖∇S‖2
W 2,q(R3) , 2 ≤ q ≤ ∞.

Appendix. Here we show that the turning kernel (0.4) satisfies (0.1)–(0.3). Con-
ditions (0.1) and (0.2) are straightforward. To show condition (0.3), denote for sim-
plicity

Sv := S(x + εv) − S(x− εv′), Sv′ := S(x + εv′) − S(x− εv),

∇Sv := ∇S(x + εv) −∇S(x− εv′), ∇Sv′ := ∇S(x + εv′) −∇S(x− εv).

The symmetric and antisymmetric parts are given by

φS
ε [S] = C +

1

2
(h(Sv) + h(Sv′) + h(∇Sv) + h(∇Sv′)) ,

φA
ε [S] =

1

2
(h(Sv) − h(Sv′) + h(∇Sv) − h(∇Sv′)) .

Taking the derivative with respect to the x-variable, we get

∇φS
ε [S] =

1

2

(
h′(Sv)∇Sv + h′(Sv′)∇Sv′ + h′(∇Sv)∇2Sv + h′(∇Sv′)∇2SV ′

)
,

∇φA
ε [S] =

1

2

(
h′(Sv)∇Sv − h′(Sv′)∇Sv′ + h′(∇Sv)∇2Sv − h′(∇Sv′)∇2SV ′

)
.

By means of the mean value theorem, we have

∇Sv = ε(v − v′)∇2S (x + εθ1v − ε(1 − θ1)v
′) , 0 ≤ θ1 ≤ 1,

∇Sv′ = ε(v′ − v)∇2S (x + εθ2v
′ − ε(1 − θ2)v) , 0 ≤ θ2 ≤ 1,

∇2Sv = ε(v − v′)∇3S (x + εθ3v − ε(1 − θ3)v
′) , 0 ≤ θ3 ≤ 1,

∇2Sv = ε(v − v′)∇3S (x + εθ4v − ε(1 − θ4)v
′) , 0 ≤ θ4 ≤ 1.

Therefore, since ‖h′‖L∞ < M with a fixed constant M , we obtain∥∥∥∥ (∇φS
ε [S])2

φS
ε [S]

∥∥∥∥
L

q
2 (R3)

≤ Cε2
(∫

R3

∣∣∇2S
∣∣q +

∣∣∇3S
∣∣q dx) 2

q

≤ Cε2 ‖∇S‖2
W 2,q(R3) .

The estimate for ∇φA
ε [S] follows by a similar procedure.
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Abstract. We show that the perturbation theory for dual semigroups (sun-star-calculus) that
has proved useful for analyzing delay-differential equations is equally efficient for dealing with Volterra
functional equations. In particular, we obtain both the stability and instability parts of the principle
of linearized stability and the Hopf bifurcation theorem. Our results apply to situations in which
the instability part has not been proved before. In applications to general physiologically structured
populations even the stability part is new.

Key words. delay equations, dual semigroup, sun-star-calculus, Lipschitz perturbations, prin-
ciple of linearized stability, center manifold, Hopf bifurcation, physiologically structured populations
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1. Introduction. Delay equations are rules for extending (in one direction) a
function that is a priori defined on an interval. Usually, as in the books [23, 40], one
considers delay differential equations of the type

ẋ(t) = F (xt), t ≥ 0,(1.1)

where, for some given h > 0,

xt(θ) := x(t + θ)(1.2)

for θ ∈ [−h, 0]. Here, in contrast, we consider functional equations of Volterra type,
so the extension rule prescribes the value of the function itself, rather than that of its
derivative, in terms of the history. We thus study initial value problems of the form

(DE) x(t) = F (xt), t > 0,

(IC) x0(θ) = ϕ(θ), θ ∈ [−h, 0],

with ϕ being a given function on [−h, 0]. The formula labels (DE), (IC) stand for
delay equation and initial condition, respectively.

In [23], the main tool for analyzing the delay differential equation (1.1) is the
perturbation theory for dual semigroups developed in [9, 10, 11, 12, 20], which under
appropriate assumptions transforms the Cauchy problem (1.1) and (IC) into an ab-
stract semilinear problem. This theory has proved to be equally efficient for treating
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age-structured population models; see [9, 11] and various exercises in [23]. The aim
of this paper is to show in detail that the same theory applies to functional equations
of Volterra type (DE), the only difference being the choice of the underlying function
space.

To give a feeling for the problems involved, we make a few formal manipulations.
Let

u(t, θ) := xt(θ), t ≥ 0, −h ≤ θ ≤ 0.(1.3)

The problem (DE), (IC) is equivalent to the following PDE with boundary and initial
conditions:

∂u

∂t
− ∂u

∂θ
= 0, t > 0, −h ≤ θ ≤ 0,(1.4)

u(t, 0) = F (u(t, ·)), t ≥ 0,(1.5)

u(0, θ) = ϕ(θ), −h ≤ θ ≤ 0.(1.6)

If F = 0, the problem reduces to an elementary linear problem. Its solution semigroup
T0 = {T0(t)}t≥0 is simply translation to the left with extension by zero:

(T0(t)ϕ)(θ) :=

{
ϕ(t + θ) for t + θ ∈ [−h, 0],
0 for t + θ > 0,

t ≥ 0, θ ∈ [−h, 0].(1.7)

Next we have to specify the state space (history space) on which the semigroup
T0 acts. The continuous functions will not do, because as can be seen from (1.7),
C[−h, 0] is not invariant under T0. A natural choice is X = L1[−h, 0]. With this
choice of state space, the generator A0 of T0 is differentiation with the zero boundary
condition entering into the domain of definition:

D(A0) = {ϕ ∈ X : ϕ ∈ AC, ϕ(0) = 0},(1.8)

A0ϕ = ϕ′,(1.9)

where the notation ϕ ∈ AC means that ϕ is absolutely continuous [2, p. 11].
The nonlinear problem (1.4)–(1.6) with F �= 0 can now be written as the abstract

Cauchy problem

du(t)

dt
= A(u(t))u(t), t > 0,(1.10)

u(0) = ϕ(1.11)

for u(t) := u(t, ·) = xt, where the action of A(u(t)) is still differentiation, but the
domain depends on the solution itself in a nonlinear way:

D(A(u(t))) = {ϕ ∈ X : ϕ ∈ AC,ϕ(0) = F (u(t))} .(1.12)

So the problem is quasi-linear and hence notoriously difficult [49]. A small trick,
however, turns the quasi-linear problem into a semilinear one, that is, a problem in
which the nonlinearity appears as an additive and relatively bounded perturbation of
the linear operator A0. Next we explain how this is done.
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The space L1[−h, 0] can be embedded into NBV(−h, 0], the space of functions of
bounded variation on (−h, 0] normalized to be zero at zero and continuous from the
right, by integration j : L1[−h, 0]→NBV(−h, 0],

(jϕ)(θ) := −
∫ 0

θ

ϕ(τ)dτ, θ ∈ (−h, 0].(1.13)

The image of L1[−h, 0] in NBV(−h, 0] under j consists of all functions absolutely
continuous on [−h, 0] and vanishing at 0 [46, sections IX. 2–4].

Integrating (1.4) from θ to 0 and taking the boundary condition (1.5) into account,
one obtains the semilinear problem

d

dt
ju(t) = A�∗

0 ju(t) + F (u(t))H, t > 0,(1.14)

u(0) = ϕ,(1.15)

where the operator A�∗
0 is differentiation on NBV(−h, 0] with appropriate domain

of definition (the �∗-notation will be explained in section 2) and H is a Heaviside
function defined by

H(θ) :=

{
−1 for θ ∈ (−h, 0),
0 for θ = 0.

(1.16)

The price one has to pay for the transformation of the quasi-linear problem into a
semilinear one is that, while the unknown u(t) = xt belongs to L1[−h, 0], the range of
the perturbation lies in the bigger space NBV(−h, 0] and actually outside j

(
L1[−h, 0]

)
(note that H ∈ NBV(−h, 0], but because of the discontinuity in 0 it is not absolutely
continuous). The perturbation theory mentioned above was designed especially to
have a general framework for such problems.

A key step is to replace the Cauchy problem (1.14) and (1.15) by an abstract in-
tegral equation of the variation-of-constants type, which is obtained from (1.14) and
(1.15) by formal integration. The main point is that, in fact, this abstract integral
equation is equivalent to the original problem (DE), (IC), while at the same time, it
allows us to prove linearized stability and other properties in a standard manner. As
these proofs are provided in detail in [23], we can concentrate here on the equivalence.
Note, however, that in the present paper we shall always explicitly express the em-
bedding operator j, while in [23] it is often suppressed with the understanding that
one can identify X and X�� once and for all.

The mathematics of age-structured populations mentioned above has been exten-
sively treated, for instance, in the books [17, 56]. Our main motivation comes from the
theory of general physiologically structured populations [24, 25, 27, 45]. Individuals
are distinguished from one another by their i-state (i for individual), which belongs
to a measurable space Ω. The population state (p-state) is a measure m on Ω giving
the distribution of i-states. Deterministic structured population models are defined
in terms of ingredients prescribing i-state specific survival, reproduction, and i-state
development, given the course of the environmental condition (or input) I(t) and a
feedback mechanism, which often is of the form

I(t) =

∫
Ω

γ(ξ)m(t)(dξ).(1.17)
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From the basic ingredients one can calculate the quantities FI|[t−a,t]
(ξ, ω) and λI|[t−a,t]

(ξ, ω) with the following interpretations: Let I be a given function of time, let ξ ∈ Ω,
and let ω be a measurable subset of Ω. Then we have the following.

• FI|[t−a,t]
(ξ, ω) is the probability that an individual who was born at time t−a

with i-state ξ is still alive at time t (when it has age a) and then has i-state
in ω.

• λI|[t−a,t]
(ξ, ω) is the rate at which an individual who was born at time t − a

with i-state ξ produces offspring with state-at-birth in ω at time t (when it
has age a).

The subscripts I|[t−a,t] of F and λ indicate that the quantities depend on the restric-
tion of I to the interval [t− a, t]; that is, they depend only on the values of I during
the lifetime of the individual in question.

Let b(t)(ω) denote the rate at which individuals are born with i-state in ω at time
t. Assuming a maximal life span h, bookkeeping gives

b(t)(ω) =

∫ h

0

∫
Ω

b(t− a)(dξ)λI|[t−a,t]
(ξ, ω)da,(1.18)

m(t)(ω) =

∫ h

0

∫
Ω

b(t− a)(dξ)FI|[t−a,t]
(ξ, ω)da.(1.19)

Thus in this generality one has an abstract variant of (DE).

Often there is but one possible state-at-birth. Or, in particular when dealing
with several interacting populations, there may be a finite number of possible states-
at-birth. In such cases one may limit ω in (1.18) to points chosen from a finite set.
If, in addition, I(t) in (1.17) has only finitely many components, we can condense
the essential information concerning the population problem into a finite dimensional
equation (DE). Indeed, combining (1.18) and (1.19) with the feedback law (1.17), one
finds that the value

x(t) =

(
b(t)
I(t)

)
(1.20)

is a nonlinear function of the history of x on [t − h, t]; that is, x satisfies a delay
equation of the form (DE), with F being a function from L1

(
[−h, 0],RN

)
to RN for

some integer N ≥ 2.

The population dynamical applications also motivate our choice of L1
(
[−h, 0],RN

)
as the history space. The components of b are rates at which individuals are born with
certain i-states. While rates may be unbounded, numbers of individuals (integrals of
rates) must remain finite.

The idea to use the history of I is new. The fact that in this manner we can use
perturbation theory for dual semigroups to treat general physiologically structured
population models, and not just age-structured models, triggered the writing of this
paper. In a companion paper, to be written jointly with J. A. J. Metz, we shall
elaborate in detail how the results of the present paper apply to population models.

In the present paper we shall consider only the case of finite delay. The reason
is that in this case the semigroup defined by (1.7) has a desirable property called
sun-reflexivity, which is lost in the case of infinite delay. However, our results can
easily be extended to also encompass the case of infinite delay. In section 6 we briefly
indicate how this can be done.
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In this paper we follow a top-down approach. We start in section 2 by present-
ing the abstract perturbation theory for dual semigroups and then we formulate the
principle of linearized stability which says that, under appropriate assumptions, local
(in)stability of a steady state is completely determined by the spectral properties of
the generator of the linearized semigroup. Under the extra assumption of finite di-
mensional range of the nonlinear perturbation G, we derive a characteristic equation,
the roots of which are the spectral values of the generator of the linearized semigroup.
We then give results on the stable, unstable, and center manifolds and on Hopf bi-
furcation. The results of section 2 are either known or slight modifications of known
results. In section 3 we then specialize to the system (DE), (IC) and the associated
unperturbed semigroup T0 defined by (1.7) and verify that the assumptions made in
section 2 indeed hold true. Models of structured populations often lead to delay equa-
tions coupled with delay differential equations. In section 4 we therefore consider such
coupled systems. In section 5 we illustrate our theoretical results by two examples
from population dynamics. We conclude in section 6 by relating our results to results
by other authors and by discussing directions for future work.

2. Lipschitz perturbations in the sun-reflexive case. We start by briefly
recalling the basic facts about dual semigroups. The books [4, 42, 47] are good general
references, as are Chapter III and Appendix II of [23]. The theory of nonlinear Lip-
schitz continuous perturbations of generators of dual semigroups was first introduced
in [11], where the principle of linearized stability was proved following [19]. The
treatment of the stable, unstable, and center manifolds and of Hopf bifurcation follows
[23].

2.1. Sun-reflexive dual semigroups. Let X be a real Banach space and T0 :=
{T0(t)}t≥0 be a strongly continuous (i.e., the orbit t 	→ T0(t)ϕ is continuous with
respect to the norm topology on X for all initial values ϕ ∈ X) semigroup of bounded
linear operators on X with infinitesimal generator A0. Then T ∗

0 := {T ∗
0 (t)}t≥0, where

T ∗
0 (t) : X∗ →X∗ is the adjoint of T0(t), is a semigroup on the dual space X∗ of X. T ∗

0

is called the adjoint or dual semigroup of T0. If X is not reflexive, then T ∗ need not
be strongly continuous. All one can say in general is that the orbits are continuous
with respect to the weak∗ topology of X. At the level of generators this is reflected
in the fact that the adjoint A∗

0 of A0 need not have dense domain and that A∗
0 is the

weak∗-generator of T ∗
0 .

The maximal invariant subspace of X∗ on which T ∗
0 is strongly continuous is

denoted by X�, that is,

X� :=

{
ϕ∗ ∈ X∗ : lim

t↓0
‖T ∗

0 (t)ϕ∗ − ϕ∗‖ = 0

}
.(2.1)

Note that this so-called sun-subspace depends on the dynamical system one considers
on the original space. It is known that

X� = D(A∗
0),(2.2)

where the bar denotes closure with respect to the norm topology of X∗. The operators
T ∗

0 (t), t ≥ 0, leave X� invariant, and the restriction T�
0 (t) := T ∗

0 (t)|X� of T ∗
0 to X�

is a strongly continuous semigroup and its generator A�
0 is the part of A∗

0 in X�; that
is,

D(A�
0 ) := {ϕ� ∈ D(A∗

0) : A∗
0ϕ

� ∈ X�},(2.3)

A�
0 ϕ

� := A∗
0ϕ

�.(2.4)
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We now have on X� exactly the same situation as we had on X at the outset. So in
self-explanatory notation we obtain X�∗, T�∗

0 , A�∗
0 and X��, T��

0 , A��
0 .

As usual, we denote the duality pairing between a Banach space X and its normed
dual X∗ by 〈·, ·〉; that is, for ϕ ∈ X, ϕ∗ ∈ X∗ we write 〈ϕ,ϕ∗〉 instead of ϕ∗(ϕ). The
formula

〈ϕ�, jϕ〉 = 〈ϕ,ϕ�〉, ϕ ∈ X, ϕ� ∈ X�(2.5)

defines an embedding j of X into X�∗, the range of which lies in X��. Moreover,
one has T�∗

0 (t)j = jT0(t) for t ≥ 0.
Definition 2.1. A Banach space X is called sun-reflexive with respect to the

strongly continuous linear semigroup T0 if

j(X) = X��.

From now on we shall always assume that X is sun-reflexive with respect to the
unperturbed semigroup T0.

2.2. Lipschitz perturbations and the nonlinear semigroup. Let G : X→X�∗

be a nonlinear operator. The initial value problem

dju

dt
(t) = A�∗

0 ju(t) + G(u(t)), t > 0,(2.6)

u(0) = ϕ,(2.7)

where u is an X-valued function, can be formally integrated to yield the abstract
integral equation

(AIE) u(t) = T0(t)ϕ + j−1

(∫ t

0

T�∗
0 (t− s)G(u(s))ds

)
,

but we have to verify that the integral does indeed belong to j(X).
The integral in (AIE) is to be interpreted in the weak∗-sense. More precisely, if Z

is a Banach space and f : [a, b]→Z∗ is weakly∗-continuous, then
∫ b

a
f(t)dt is defined

as the continuous linear functional on Z which takes z ∈ Z to
∫ b

a
〈z, f(t)〉dt. Note

that
∫ b

a
f(t)dt is an element of Z∗. For weak∗ integrals of the form

v(t) =

∫ t

0

T�∗
0 (t− s)f(s)ds,

we have the following desirable result.
Proposition 2.2 (see [9, Theorem 3.2]). If f is weakly∗-continuous, then v is

weakly∗-continuous with values in X�∗. If f is norm continuous, then v is norm
continuous as well and takes values in X��.

We now consider (AIE). If G is globally Lipschitz continuous, then standard
contraction mapping arguments yield existence and uniqueness of a solution u(· ;ϕ) :
R+ →X of (AIE) for every ϕ ∈ X. The formula

Σ(t)ϕ := u(t;ϕ), t ≥ 0, ϕ ∈ X,(2.8)

defines a strongly continuous nonlinear semigroup Σ on X. The generator of Σ, which
we denote by C, is defined exactly as in the linear case: Its domain D(C) is the set
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of all ϕ ∈ X for which the limit limt↓0(Σ(t)ϕ − ϕ)/t exists in the norm topology of
X and Cϕ is equal to this limit. The weak∗ generator C× of Σ is defined as follows:
ϕ ∈ X belongs to D(C×) if (jΣ(t)ϕ − jϕ)/t converges to some ϕ�∗ ∈ X�∗ as t ↓ 0
and in this case C×ϕ = ϕ�∗.

Theorem 2.3 (see [11, Theorems 3.2–3.6]).
(a) j (D(C×)) = D(A�∗

0 ) and C×ϕ = A�∗
0 jϕ + G(ϕ).

(b) C is the part of C× in X, that is,

D(C) =
{
ϕ ∈ X : ϕ ∈ D(C×), C×ϕ ∈ j(X)

}
,

Cϕ = j−1
(
C×ϕ

)
.

(c) If ϕ ∈ D(C) and if G is continuously Fréchet differentiable, then t 	→ u(t;ϕ) =
Σ(t)ϕ is continuously differentiable and

d

dt
u(t;ϕ) = j−1

(
A�∗

0 ju(t;ϕ) + G(u(t;ϕ))
)
.

2.3. Linearization around a steady state. In what follows we assume that
the nonlinear operator G : X→X�∗ is continuously Fréchet differentiable.

Assume that ϕ ∈ X is a steady state of the nonlinear dynamical system; that is,

Σ(t)ϕ = ϕ(2.9)

for all t ≥ 0. Equivalently, jϕ ∈ D(A�∗
0 ) and

A�∗
0 jϕ + G(ϕ) = 0;(2.10)

cf. Theorem 2.3(c). Because G : X→X�∗ is Fréchet differentiable at ϕ, its Fréchet
derivative B := G′(ϕ) is a bounded linear operator from X to X�∗. Formal lineariza-
tion of (AIE) yields the following linear abstract integral equation:

(LAIE) T (t)ϕ = T0(t)ϕ + j−1

(∫ t

0

T�∗
0 (t− τ)BT (τ)ϕdτ

)
.

For such equations the following result is known.
Theorem 2.4 (see [9]). The linear abstract integral equation (LAIE) uniquely

defines a strongly continuous semigroup T = {T (t)}t≥0 of bounded linear operators
with generator A given by

D(A) = {ϕ ∈ X : jϕ ∈ D(A�∗
0 ), A�∗

0 jϕ + Bϕ ∈ j(X)},

Aϕ = j−1(A�∗
0 jϕ + Bϕ).

That the formal linearization yields the desired result is the content of the fol-
lowing theorem.

Theorem 2.5 (see [11]). Let (2.9) hold and assume that the nonlinear opera-
tor G : X→X�∗ is continuously Fréchet differentiable. Then for every t > 0 the
nonlinear operator Σ(t) is Fréchet differentiable at ϕ. Its Fréchet derivative

T (t) = (DΣ(t))(ϕ)(2.11)

defines a strongly continuous semigroup of bounded linear operators with generator A
given by

D(A) = {ϕ ∈ X : jϕ ∈ D(A�∗
0 ), A�∗

0 jϕ + G′(ϕ)ϕ ∈ j(X)},

Aϕ = j−1(A�∗
0 jϕ + G′(ϕ)ϕ).

Moreover, for every ϕ ∈ X, T (t)ϕ is the unique solution of (LAIE) with B = G′(ϕ).
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2.4. Eventual compactness and spectral analysis of the linearized semi-
group. In subsection 2.6 we shall deal with criteria for the stability of a steady state.
As is well known from the theory of ordinary differential equations (ODEs), spectral
analysis of the linearized system is a most efficient tool for investigating stability.
Therefore we shall in this subsection analyze the spectrum of the generator A of the
semigroup T defined by (LAIE).

Our original nonlinear problem is meaningful only for real Banach spaces, whereas
spectral analysis requires complex scalars. We therefore have to complexify X before
doing spectral analysis. In the infinite dimensional case and, in particular, in our
sun-star-framework, this is not a trivial task. We shall, however, omit the details
because they can all be found in [23, section III.7].

As usual, we denote the resolvent set and the spectrum of a linear operator L by

(L) and σ(L), respectively. The point spectrum of L, that is, the set of eigenvalues
of L, is denoted by Pσ(L). The identity operator is denoted by E (to follow the
tradition of Hilbert [14, formula (8), p. 5] and to avoid confusion with the input I of
(1.17)), and Laplace transformation is denoted by ̂:

f̂(λ) =

∫ ∞

0

e−λtf(t)dt.(2.12)

R(λ,L) denotes the resolvent operator of L:

R(λ,L) := (λE − L)
−1

, λ ∈ 
(L).(2.13)

Recall that λ 	→ R(λ,L) is a holomorphic operator-valued function on 
(L). As for
complex valued functions, an operator-valued function is entire if it is holomorphic in
the whole complex plane.

The growth bound ω0(T ) of a semigroup T is defined by

ω0(T ) = inf{ω ∈ R : ∃Mω ≥ 1 such that ‖T (t)‖ ≤ Mωe
ωt for all t ≥ 0},

and the spectral bound s(A) of its generator A is defined by

s(A) = sup {Reλ : λ ∈ σ(A)} .

One has σ(A) = σ(A∗) = σ(A�) = σ(A�∗), s(A) = s(A∗) = s(A�) = s(A�∗), and
ω0(T ) = ω0(T

∗) = ω0(T
�) = ω0(T

�∗) [26, Proposition 2.18, p. 262].
We start by characterizing the part of the point spectrum which belongs to 
(A0).
Proposition 2.6. Let A be the generator of the semigroup T defined by (LAIE);

cf. Theorem 2.4. Then λ ∈ 
(A0) is an eigenvalue of A if and only if 1 is an
eigenvalue of j−1R(λ,A�∗

0 )B and the corresponding eigenvectors are the same.
Proof. Let ψ ∈ X. Using Theorem 2.4 we see that in the following sequence of

identities, each implies both the preceding and the next one:

j−1R(λ,A�∗
0 )Bψ = ψ,

jψ ∈ D(A�∗
0 ) and Bψ =

(
λE −A�∗

0

)
jψ,

jψ ∈ D(A�∗
0 ) and A�∗

0 jψ + Bψ = λjψ,

jψ ∈ D(A�∗
0 ) and j−1

(
A�∗

0 jψ + Bψ
)

= λψ,

ψ ∈ D(A) and Aψ = λψ.
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If the semigroup T is eventually compact, that is, if the operators T (t) are compact
for all t greater than some t0 ≥ 0, then spectral analysis becomes as easy as one can
possibly expect from an infinite dimensional system.

Theorem 2.7. Let A generate an eventually compact C0-semigroup T on the
Banach space X. Then

σ(A) = Pσ(A),

s(A) = ω0(T ),

and every λ ∈ σ(A) is a pole of the resolvent R(λ,A) of finite algebraic multiplicity.
Every right half-plane {λ ∈ C : α ≤ Reλ} (−∞ < α) contains at most finitely many
eigenvalues of A.

For a proof of this well-known result, see, e.g., [2, Theorem 2.1, p. 209].
Next we give a criterion for the eventual compactness of the perturbed semigroup

which is easy to check and which applies to all our applications.
Theorem 2.8. Let T0 be an eventually compact C0-semigroup and let B :

X→X�∗ be compact. Then the C0-semigroup T defined by (LAIE) is eventually
compact.

The corresponding result for the case in which B maps X into X is known [26,
Proposition 1.14, p. 166], but Theorem 2.8 does not seem to have been stated in the
literature yet. We therefore give a complete proof in the appendix.

2.5. Perturbations with finite dimensional range. If, as in the case of the
delay problem (DE), (IC), the nonlinear perturbation G has finite dimensional range
in X�∗, much of the analysis becomes considerably simpler, in fact, essentially finite
dimensional. We therefore have a closer look at this special case. So let G : X→X�∗

have the form

G(ϕ) =

N∑
i=1

Fi(ϕ)r�∗
i , ϕ ∈ X,(2.14)

where F = (F1, F2, . . . , FN ) is a mapping from X to RN and {r�∗
1 , r�∗

2 , . . . , r�∗
N } is a

linearly independent set in X�∗.
Note. In what follows we shall use the letter j both as a summation index and,

as before, to denote the canonical embedding of X into X�∗, sometimes even in the
same formula. This should not lead to any misunderstanding.

Clearly G is Fréchet differentiable at ϕ if and only if F is Fréchet differentiable
at ϕ, which is the case if and only if all the components Fi are Fréchet differentiable
at ϕ. So when G is Fréchet differentiable at ϕ, there exist elements r∗1 , r

∗
2 , . . . , r

∗
N of

X∗ such that the derivative G′(ϕ) is the linear operator B : X→X�∗ given by

Bϕ =

N∑
i=1

〈ϕ, r∗i 〉r�∗
i , ϕ ∈ X.(2.15)

In order to exploit the finite dimensional structure of the perturbation we define

ri(λ) = j−1R(λ,A�∗
0 )r�∗

i , λ ∈ 
(A0),(2.16)

r�i (λ) = R(λ,A∗
0)r

∗
i , λ ∈ 
(A0),(2.17)
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and let M(λ) be the matrix with entries

Mij(λ) = 〈rj(λ), r∗i 〉, λ ∈ 
(A0).(2.18)

Note that the matrix-valued function M is defined in 
(A0) only. When the real part
of λ is greater than the growth bound of T0, we can express ri(λ) and r�i (λ) using
the Laplace transform representation of the resolvent [26, Theorem 1.10, p. 55]:

ri(λ) = j−1

∫ ∞

0

e−λtT�∗
0 (t)r�∗

i dt, Reλ > ω0(T0),(2.19)

r�i (λ) =

∫ ∞

0

e−λtT ∗
0 (t)r∗i dt, Reλ > ω0(T0).(2.20)

We start with a few lemmas.
Lemma 2.9. Let M be the matrix-valued function defined by (2.18). Then

Mij(λ) =
〈
r�i (λ), r�∗

j

〉
, λ ∈ 
(A0).(2.21)

Proof. We first prove the claim for Reλ > ω0(T0) using the representations (2.19)
and (2.20). If r∗i ∈ X�, the equality of the right-hand sides of (2.18) and (2.21) is
clear from the definition of the weak∗-integral. Next we approximate r∗i by

ϕ�
s =

1

s

∫ s

0

T ∗
0 (τ)r∗i dτ, s > 0.

It follows from Proposition 2.2 (just interchange the roles of X and X�) that ϕ�
s ∈ X�

for all s > 0. By the observation made above, one has〈
j−1

∫ ∞

0

e−λtT�∗
0 (t)r�∗

i dt, ϕ�
s

〉
=

〈∫ ∞

0

e−λtT�
0 (t)ϕ�

s dt, r
�∗
i

〉
(2.22)

for all s > 0. A straightforward calculation (see the proof of Lemma 2.17 in [23, p. 61]
for a very similar case) shows that the left-hand side of (2.22) converges to (2.18) and
that the right-hand side of (2.22) converges to the right-hand side of (2.21). This
proves the assertion for the case Reλ > ω0(T0). The general case follows from the
resolvent identity.

When B has finite dimensional range we get a more detailed description of the
point spectrum of A than we do in Proposition 2.6.

Lemma 2.10. Let A be the generator of the semigroup T defined by (LAIE) and
assume that B has the form (2.15). If λ ∈ 
(A0) and ψ ∈ X, then

Aψ = λψ(2.23)

if and only if

ψ =
N∑
i=1

ciri(λ),(2.24)

where the coefficients ci are the components of a vector c satisfying

M(λ)c = c(2.25)
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and M(λ) is the matrix defined by (2.18).
Proof. By Proposition 2.6, Aψ = ψ if and only if

j−1R(λ,A�∗
0 )Bψ = ψ.(2.26)

Because the vectors r�∗
1 , r�∗

2 , . . . , r�∗
N are linearly independent and j−1R(λ,A�∗

0 ) is
one-to-one, the definition (2.16) shows that also the vectors r1(λ), r2(λ), . . . , rN (λ) are
linearly independent. Equation (2.26) shows that ψ belongs to the subspace spanned
by the vectors ri(λ), i = 1, 2, . . . , N ; that is, ψ is of the form (2.24). Substituting
(2.24) into (2.26), one obtains (2.25).

The following dual version of Lemma 2.10 is proved analogously.
Lemma 2.11. Let A be the generator of the semigroup T defined by (LAIE) and

assume that B has the form (2.15). If λ ∈ 
(A0) and ψ� ∈ X�, then

A∗ψ� = λψ�(2.27)

if and only if

ψ� =

N∑
i=1

dir
�
i (λ),(2.28)

where the coefficients di are the components of a row vector d satisfying

dM(λ) = d(2.29)

and M(λ) is the matrix defined by (2.18).
Lemma 2.12. The mapping λ 	→ 〈rj(λ), r∗i 〉 is holomorphic in 
(A0) and

d

dλ
〈rj(λ), r∗i 〉 = −

〈
rj(λ), r�i (λ)

〉
, λ ∈ 
(A0).(2.30)

Proof. Using the resolvent identity, one finds that

1

λ− μ
(〈rj(λ), r∗i 〉 − 〈rj(μ), r∗i 〉) = −

〈
j−1R(λ,A�∗

0 )R(μ,A�∗
0 )r�∗

j , r∗i
〉

= −
〈
j−1R(μ,A�∗

0 )r�∗
j , R(λ,A∗

0)r
∗
i

〉
= −

〈
rj(μ), r�i (λ)

〉
,

which proves the assertion.
As a direct consequence of the three preceding lemmas we obtain the following

result.
Corollary 2.13. The matrix-valued function λ 	→ M(λ) is holomorphic in


(A0), and if λ is an eigenvalue of A with eigenvector ψ and adjoint eigenvector ψ�,
then 〈

ψ,ψ�〉 = −dM ′(λ)c, λ ∈ 
(A0),(2.31)

where c and d are as described in Lemmas 2.10 and 2.11, respectively.
Corollary 2.13 provides a convenient criterion for the simplicity of an eigenvalue,

which we shall use in the context of the Hopf bifurcation theorem to be treated
in subsection 2.8. In the present subsection we shall show that when B has finite
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dimensional range, there exists a so-called characteristic equation, the roots of which
are the eigenvalues of the generator of the perturbed semigroup. It turns out that the
order of λ as a root of the characteristic equation equals the algebraic multiplicity of
λ as an eigenvalue of A. An easy way to show this is to use the theory of Weinstein–
Aronszajn determinants; see [43, section IV.6] for an account of the general theory
and [22] for an application to perturbed dual semigroups. Before we can present the
Weinstein–Aronszajn formula we have to define the multiplicity functions for closed
operators and meromorphic functions.

Let L be a closed operator in a Banach space. For every isolated point λ of σ(L)
we denote the spectral projection onto the corresponding generalized eigenspace by
Pλ. The multiplicity function ν̃(λ,L) of L is defined as

ν̃(λ,L) =

⎧⎨
⎩

0 if λ ∈ 
(L),
dimR(Pλ) if λ is an isolated point of σ(L),
∞ in all other cases.

(2.32)

The multiplicity function of a (numerical) meromorphic function f is defined as

ν(λ, f) =

⎧⎨
⎩

k if λ is a zero of order k of f,
−k if λ is a pole of order k of f,
0 otherwise.

(2.33)

Theorem 2.14 (Weinstein–Aronszajn formula). Let A be the generator of the
semigroup T defined by (LAIE), assume that B has the form (2.15), and let M(λ) be
the matrix-valued function defined in (2.18). Then

ν̃(λ,A) = ν̃(λ,A0) + ν (λ,det (E −M(λ))) .(2.34)

Proof. Because B has finite dimensional range one can unambiguously define
the so-called Weinstein–Aronszajn determinant det

(
E −BR

(
λ,A�∗

0

))
as the deter-

minant of the restriction of E −BR
(
λ,A�∗

0

)
to R(B). The definition of M together

with Lemma 2.9 shows that

det
(
E −BR

(
λ,A�∗

0

))
= det (E −M(λ)) .

The Weinstein–Aronszajn formula [43, Theorem IV.6.2] now yields

ν̃(λ,A�∗) = ν̃(λ,A�∗
0 ) + ν (λ,det (E −M(λ))) .(2.35)

But A0 (resp., A) is the part of A�∗
0 (resp., A�∗) in j(X), and hence it follows from

[26, Lemma 1.15, p. 245 and Proposition 2.17, p. 261] that

ν̃(λ,A�∗
0 ) = ν̃(λ,A0),

ν̃(λ,A�∗) = ν̃(λ,A),

from which the conclusion (2.34) follows.
We are now ready to prove the following theorem.
Theorem 2.15. Let A be the generator of the semigroup T defined by (LAIE).

Suppose that B has the form (2.15) and let M be the corresponding matrix-valued
function defined by (2.18). Then λ ∈ 
(A0) is in σ(A) if and only if

det(E −M(λ)) = 0,(2.36)
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where E denotes the N×N identity matrix. Moreover, when this is the case, λ belongs
to Pσ(A) and the algebraic multiplicity of λ equals the order of λ as a root of (2.36).

In particular, if σ(A0) = ∅, then

σ(A) = Pσ(A) = {λ ∈ C : det (E −M(λ)) = 0} .(2.37)

Proof. Taking the Laplace transform of (LAIE), one obtains

R(λ,A) = R(λ,A0) + j−1R(λ,A�∗
0 )BR(λ,A)

or (
E − j−1R(λ,A�∗

0 )B
)
R(λ,A) = R(λ,A0).(2.38)

From (2.38) we deduce that if λ ∈ 
(A0), then λ ∈ σ(A) if and only if

E − j−1R(λ,A�∗
0 )B

is not invertible. But because j−1R(λ,A�∗
0 )B is a bounded linear operator X→X

with finite dimensional range, this is the case if and only if 1 is an eigenvalue of
j−1R(λ,A�∗

0 )B. According to Proposition 2.6, this in turn is equivalent to λ being
an eigenvalue of A, which by Lemma 2.10 is equivalent to 1 being an eigenvalue of
M(λ). This shows that λ ∈ σ(A) if and only if λ is a root of (2.36) and that then
λ ∈ Pσ(A).

Since ν̃(λ,A0) is zero, the assertion concerning the multiplicity of λ follows from
Theorem 2.14.

The final assertion is obvious, because if σ(A0) is empty, then the basic assumption
λ ∈ 
(A0) is automatically satisfied.

Equation (2.36) is called the characteristic equation.
Remark 2.16. It was shown in [9, Lemma 5.1] that there exists a matrix-valued

function k ∈ L∞
loc(R+,R

N×N ) such that〈
j−1

(∫ t

0

T�∗
0 (t− τ)r�∗

j η(τ)dτ

)
, r∗i

〉
=

∫ t

0

kij(t− τ)η(τ)dτ

for all η ∈ L1
loc(R+). From this it follows easily that

k̂(λ) = M(λ), λ ∈ 
(A0),

where M is the matrix-valued function defined by (2.18). The characteristic equation
can thus be rewritten as

det
(
E − k̂(λ)

)
= 0.(2.39)

In subsection 3.4 we shall compute the matrix k explicitly in the concrete case con-
nected to (DE).

Using properties of the Laplace transform and holomorphic functions (in par-
ticular, the Riemann–Lebesgue lemma and the fact that the zeros of holomorphic
functions have no limit points) it is possible to prove directly (in the case σ(A0) = ∅)
that there are only finitely many eigenvalues in each right half-plane. But because we
obtain this result from Theorem 2.7 in all our applications, we have refrained from
stating it in Theorem 2.15.
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As the proof of Theorem 2.15 shows, the existence of a characteristic equation
depends on two facts: the analyticity in the whole complex plane of the resolvent
of the generator A0 of the unperturbed semigroup and the finite dimensionality of
the range of the perturbation. We shall later encounter applications where R(λ,A0)
has a simple pole at the origin. Anticipating this situation, we next show that the
corresponding singularity of R(λ,A) is removable and that we still get a characteristic
equation.

Theorem 2.17. Let B be given by (2.15) and assume that

R(λ,A�∗
0 ) =

1

λ
PH1(λ) + (E − P )H2(λ),(2.40)

where P : X�∗ →X�∗ is a projection with finite dimensional range in j(X), H1 and
H2 are entire functions with values in L(X�∗), and the range of H2(λ) is in j(X).
Then σ(A) = Pσ(A), and there exists an entire matrix-valued function Δ such that
λ ∈ σ(A) if and only if

det Δ(λ) = 0.(2.41)

Proof. The assumption (2.40) implies that

j−1R(λ,A�∗
0 )B =

(
E − j−1Pj +

1

λ
j−1Pj

)
K(λ)(2.42)

for the entire function K defined by

K(λ)ϕ =

N∑
i=1

〈ϕ, r∗i 〉 j−1 (PH1(λ) + (E − P )H2(λ)) r�∗
i

with values in the subspace of finite rank operators of L(X). It follows (cf. (2.38))
that (

E −
(
E − j−1Pj +

1

λ
j−1Pj

)
K(λ)

)
R(λ,A)(2.43)

= j−1

(
1

λ
PH1(λ) + (E − P )H2(λ)

)
j.

If one multiplies (2.43) by E − j−1Pj + λj−1Pj, one obtains

(2.44)

(E − j−1Pj + λj−1Pj −K(λ))R(λ,A) = j−1 (PH1(λ) + (E − P )H2(λ)) j.

Because the right-hand side of (2.44) is entire, R(λ,A) is holomorphic everywhere
except at the points where (E − j−1Pj + λj−1Pj −K(λ)) is not invertible. Because
j−1Pj−λj−1Pj+K(λ) has finite dimensional range and is everywhere holomorphic,
it follows as in the proof of Theorem 2.15 that there is an entire matrix Δ(λ) such that
(E − j−1Pj + λj−1Pj −K(λ)) is not invertible if and only if Δ(λ) is not invertible,
that is, if and only if (2.41) holds.
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2.6. Linearized stability. Recall that a steady state ϕ of Σ is (locally) stable
if for every ε > 0 there exists a δ > 0 such that

‖Σ(t)ϕ− ϕ‖ ≤ ε for all t ≥ 0

whenever ‖ϕ − ϕ‖ ≤ δ. If ϕ is not stable, it is unstable. It is (locally) exponentially
stable if there exist numbers δ > 0, K > 0, α > 0 such that

‖Σ(t)ϕ− ϕ‖ ≤ Ke−αt, t ≥ 0,

for all ϕ with ‖ϕ− ϕ‖ ≤ δ.
The next result is called the principle of linearized stability. It has two parts. The

first states that if the growth bound of the linearized semigroup is negative, then the
steady state is exponentially stable. The second part states that if the generator of
the linearized semigroup has at least one eigenvalue of finite multiplicity with positive
real part, then the steady state is not stable.

Theorem 2.18 (see [19], [11, Theorems 4.2 and 4.3], [23, Corollary 5.12]). Let
Σ be a strongly continuous nonlinear semigroup. Let ϕ be a steady state of Σ and
assume that for each t ≥ 0, Σ(t) has a (uniform) Fréchet derivative T (t) at ϕ. Let A
be the infinitesimal generator of T . Assume further that X admits a decomposition

X = X− ⊕X+

into two T (t)-invariant subspaces X− and X+ such that
(i) X+ is finite dimensional,
(ii) the restriction of T (t) to X− converges exponentially to 0 as t→∞.

Then ϕ is
(a) (locally) exponentially stable if Re λ < 0 for all λ ∈ σ(A

∣∣
X+

),

(b) unstable if there exists a λ ∈ σ(A
∣∣
X+

) with Re λ > 0.

Note that if ω0(T ) < 0, then (i) and (ii) are satisfied with X+ equal to the trivial
subspace {0}, and hence ϕ is exponentially stable because σ(A

∣∣
X+

) is empty.

Theorem 2.5 shows that the differentiability assumption of Theorem 2.18 is indeed
satisfied for the semigroup Σ generated by the abstract integral equation (AIE).

When applied to the nonlinear semigroup Σ generated by the abstract integral
equation (AIE), Theorem 2.18 becomes particularly simple to apply if T0 is eventu-
ally compact and G′(ϕ) is compact (in particular if G has finite dimensional range).
Indeed, Theorem 2.7 immediately implies the following corollary.

Corollary 2.19. Assume that G : X→X�∗ is continuously Fréchet differen-
tiable. Let Σ be the nonlinear semigroup “generated” by (AIE) (i.e., defined through
(2.8)) and let A be the generator of the linearized semigroup T as in Theorem 2.5.
Let ϕ be a steady state of Σ.

If T0 is eventually compact and if G′(ϕ) is compact, then ϕ is locally exponentially
stable if all λ ∈ σ(A) have real part less than zero, whereas if there exists at least one
λ ∈ σ(A) with positive real part, then ϕ is unstable.

Proof. By Theorem 2.8 T is eventually compact, and hence the growth bound
equals the spectral bound (Theorem 2.7). Thus, if all λ ∈ σ(A) = Pσ(A) have
negative real part, then ω0(T ) < 0 and, as noted after Theorem 2.18, ϕ is exponentially
stable. If there exists an eigenvalue with positive real part, there exist finitely many
eigenvalues with positive real part, and they all have generalized eigenspaces of finite
dimension (Theorem 2.7). Therefore there exists a decomposition as in Theorem 2.18
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with X+ finite dimensional and a λ ∈ σ(A
∣∣
X+

) with Re λ > 0. An application of

Theorem 2.18 completes the proof.

We close this section by applying a version of the argument principle [52, Theorem
10.43(a)], also known as Nyquist’s theorem, to derive a very convenient criterion
for the (in)stability of steady states in the case where the perturbation has finite
dimensional range and we have a characteristic equation. Nyquist’s theorem states
that if the matrix-valued function k belongs to L1(R+) and satisfies det

(
E− k̂(iω)

)
�=

0 for all ω ∈ R, then the number of zeros of det
(
E− k̂(λ)

)
in the open right half-plane

Reλ > 0, counted according to their multiplicities, equals the index IndΓ(0) of the

curve Γ : ω 	→ det
(
E − k̂(iω)

)
, where ω runs from +∞ to −∞ [29, Theorem 6.3,

p. 61]. Recall the geometrical interpretation of the index IndΓ(0): it is the number
of times the curve Γ winds counterclockwise around the origin as ω runs from +∞ to
−∞.

Corollary 2.20. Assume in addition to the hypotheses of Corollary 2.19 that

T0 is nilpotent and that G has finite dimensional range. Let M(λ) = k̂(λ) be the
matrix-valued function as defined by (2.18) and Remark 2.16 and let Γ be the curve
defined above. If the characteristic equation (2.39) has no roots on the imaginary axis,
then ϕ is exponentially stable if IndΓ(0) = 0 and unstable if IndΓ(0) > 0.

Proof. The nilpotency of T0 implies that k has compact support and hence
(being locally L∞) belongs to L1(R+). The conclusion now follows from Nyquist’s
theorem.

The assumption that T0 is nilpotent is much stronger than is actually needed, but
it is a convenient assumption that is satisfied in many applications (including struc-
tured populations with a maximum individual life span). The key point is that when
we extend the argument principle from integration along closed curves to integration
along the imaginary axis, we need to control the behavior of the integrand at infinity.
The assumption k ∈ L1 makes the Riemann–Lebesgue lemma valid and gives an easy
estimate of the behavior at infinity.

The stability criterion of Corollary 2.20 is easy to implement numerically and even
graphically. By the Riemann–Lebesgue lemma, k̂(iω) tends to 0 as ω→ ± ∞, and

hence det
(
E−k̂(iω)

)
tends to 1 as ω→±∞. Choose ω0 so large that det

(
E−k̂(iω0)

)
is close to 1 for |ω| > ω0 and plot det

(
E − k̂(iω)

)
as ω runs from +iω0 to −iω0. If

the plotted curve does not wind around the origin, then ϕ is exponentially stable;
otherwise it is unstable. If the curve passes through the origin, the test does not give
any information.

2.7. The unstable, stable, and center manifolds. It is possible to give a
more detailed description of the behavior near an unstable steady state. For the
linearized semigroup, one has, provided that the characteristic equation has no roots
on the imaginary axis, a direct sum spectral decomposition into a finite dimensional
unstable subspace X+ and an infinite dimensional stable subspace X−. On X+ one
can go backwards in time. As a matter of fact, X+ is characterized by the property
that the orbit through a point in X+ can be extended in the negative time-direction
to −∞ and that the α-limit set equals {0}. Similarly, X− consists of precisely those
points that have {0} as ω-limit set. A general orbit shows saddle-point behavior: It
may come close to 0 but will eventually move far away and, if it can be extended in
the negative time-direction, it will also move far away in that direction.

One can construct a finite dimensional local unstable manifold Wu as the graph
of a smooth function from X+ to X−, shifted to ϕ. The manifold Wu is invariant,
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and the tangent space at ϕ is exactly X+. Moreover, an orbit starting in a sufficiently
small ball around ϕ can be extended to t = −∞ with α-limit set equal to {ϕ} if and
only if it starts (and hence remains) in Wu. We refer to [23, Chapter VIII] for precise
formulations (see in particular Theorems 4.4 and 4.7 and Corollary 4.11). Similarly,
one can construct and characterize the local stable manifold Ws [23, Chapter VIII,
Theorem 6.1].

If A does have a spectrum on the imaginary axis, the spectral decomposition in-
volves a third component X0, which in the setting of Theorem 2.15 or Theorem 2.17
is finite dimensional. The orbits of the linearized semigroup that start in X0 are
characterized by the fact that they grow at most polynomially as t→ ±∞ (note that
in X0 orbits can be extended to t = −∞). As this characterization is more difficult
to work with, the construction of the corresponding center manifold for the nonlin-
ear semigroup (and the proof of its smoothness) is much more involved. Moreover,
modification of the nonlinearity outside a small ball around ϕ plays a role in the con-
struction and as a consequence the center manifold is not unique (yet it will contain
all solutions which are defined for all times and remain inside the small ball for all
times). We refer to [23, Chapter IX] for detailed formulations and proofs that apply
verbatim to the setting of Theorem 2.15 or Theorem 2.17.

A situation of particular interest is the case that the nonlinear semigroup depends
on a parameter and that for a specific value of this parameter, the characteristic
equation (2.39) has a pair of simple roots on the imaginary axis (note that since the

kernel k takes on real values, k̂(−iω) = k̂(iω), and hence complex roots of (2.39)
occur in conjugate pairs). Under some further mild genericity conditions one then
finds periodic orbits for nearby parameter values. Chapter X of [23] gives a detailed
treatment of this so-called Hopf bifurcation in the setting of exactly the abstract
integral equation (AIE) that we consider here. We present the main result in the next
subsection and at the end of subsection 3.4 we shall briefly indicate how to obtain a
corollary for Volterra functional equations.

2.8. Hopf bifurcation. In this subsection we consider Hopf bifurcation under
the assumption that the nonlinear perturbation G : X→X�∗ has finite dimensional
range, which does not depend on the bifurcation parameter θ. So G is of the form

G(ϕ, θ) =

N∑
i=1

Fi(ϕ, θ)r
�∗
i ,(2.45)

and its derivative with respect to ϕ at 0 is

B(θ)ϕ =
N∑
i=1

〈ϕ, r∗i (θ)〉 r�∗
i .(2.46)

Note carefully that now the vector r∗i depends on the bifurcation parameter θ, as do
the vector r�i (λ) and the matrix M(λ) introduced in (2.17) and (2.18), respectively:

Mij(λ, θ) = 〈rj(λ), r∗i (θ)〉 =
〈
r�i (λ, θ), r�∗

j

〉
.(2.47)

In order to have Hopf bifurcation, we need to make sure that a conjugate pair ±iω0

of simple eigenvalues crosses the imaginary axis with positive speed as the bifurcation
parameter θ passes some value θ0. (Note: The real number ω0 used in this subsection
has of course nothing to do with the growth bound of a semigroup. We use the same



1040 ODO DIEKMANN, PHILIPP GETTO, AND MATS GYLLENBERG

symbol to denote two unrelated numbers because in both cases the usage conforms
with common practice. No confusion is expected to arise.)

The simplicity of the eigenvalues is, by Corollary 2.13 and Theorem 2.15, ensured
by the condition

〈
ψ(θ0), ψ

�(θ0)
〉

= −d(θ0)
∂M

∂λ
(iω0, θ0)c(θ0) �= 0.(2.48)

The condition of crossing the imaginary axis with positive speed means more precisely
that

Reλ′(θ0) �= 0,(2.49)

where λ(θ) is a branch of eigenvalues through iω0 at θ = θ0. To derive a verifiable
form of this condition, let c(θ) and d(θ) be the right and left eigenvectors, respectively,
of M(λ, θ) normalized by

|c(θ)| =

N∑
i=1

|ci(θ)| = 1,(2.50)

d(θ)c(θ) = 1.(2.51)

Differentiating the equation

d(θ)M(λ, θ)c(θ) = 1

implicitly with respect to θ, one obtains

d

dθ
(d(θ)c(θ)) + d(θ)

∂M

∂θ
c(θ) + d(θ)

∂M

∂λ
c(θ)λ′(θ) = 0.(2.52)

It now follows from (2.51) and Corollary 2.13 that

d(θ)
∂M

∂θ
(λ(θ), θ)c(θ) =

〈
ψ(θ), ψ�(θ)

〉
λ′(θ).(2.53)

From (2.48) and (2.53) we deduce that (2.49) holds if and only if

Re d(θ0)
∂M

∂θ
(iω0, θ0)c(θ0) �= 0.(2.54)

We are now ready to formulate the Hopf bifurcation theorem.
Theorem 2.21 (Hopf bifurcation theorem, [23, Theorem 2.6, p. 290]). Consider

the abstract integral equation

(AIE) u(t) = T0(t− s)u(s) + j−1

∫ t

s

T�∗
0 (t− τ)G(u(τ), θ)dτ, −∞ < s ≤ t < ∞,

and assume that the following hold:
(H1) G(ϕ, θ) =

∑N
i=1 Fi(ϕ, θ)r

�∗
i , F : X × R→RN is Ck, k ≥ 2.

(H2) F (0, θ) = 0 for all θ.
(H3) D1G(0, θ) = B(θ) with B(θ) defined by (2.46). The corresponding matrix

M(λ, θ) has for λ = ±iω0, θ = θ0, eigenvalue 1 with right eigenvector c(θ0)
and left eigenvector d(θ0) and d(θ0)

∂
∂λM(iω0, θ0)c(θ0) �= 0. For θ = θ0, no

root of the characteristic equation det(E −M(λ)) = 0 other than λ = ±iω0

belongs to iω0Z.
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(H4) Re d(θ0)
∂
∂θM(iω0, θ0)c(θ0) �= 0.

There exist Ck−1 functions ε 	→ θ̃(ε), ε 	→ ψ̃(ε), and ε 	→ ω̃(ε) with values in R,
X, and R, respectively, defined for ε sufficiently small, such that the solution of

(AIE) with u(0) = ψ̃(ε) is 2π/ω̃(ε) periodic. Moreover, θ̃ and ω̃ are even functions,

θ̃(0) = θ0, ω̃(0) = ω0, ψ̃(−ε) = ψ̃(ε + π
ω̃(ε) ). If u(t) is any small periodic solution of

(AIE) for θ close to θ0 and period close to 2π/ω0, then necessarily θ = θ̃(ε) for some

ε and there exists σ ∈ [0, 2π/ω̃(ε)) such that u(σ) = ψ̃(ε). If for θ = θ0 all roots λ of
the characteristic equation

det(E −M(λ, θ0)) = 0

other than ±iω0 lie in the left half-plane and Re d(θ0)
∂
∂θM(iω0, θ0)c(θ0) < 0, then

the periodic solution is, for ε sufficiently small, asymptotically stable with asymptotic
phase if θ̃(ε) > θ0 and unstable if θ̃(ε) < θ0.

Remark 2.22. In order to determine the direction of the bifurcation one has to
compute the second derivative of θ̃. How this is done is explained in [23, section X.3].

3. Volterra functional equations.

3.1. Unperturbed semigroup for systems of delay equations. We let h
denote a positive real number and N a positive integer. X = L1

(
[−h, 0];RN

)
is the

space of all (equivalence classes of) RN -valued measurable functions ϕ defined and
absolutely integrable on [−h, 0] (i.e., each component ϕi, i = 1, 2, . . . , N , is absolutely
integrable) with norm

‖ϕ‖1 :=

N∑
i=1

‖ϕi‖1.(3.1)

The dual space X∗ of X = L1
(
[−h, 0];RN

)
is represented by L∞ ([0, h];RN

)
, that

is, the space of (equivalence classes of) RN -valued essentially bounded measurable
functions g with norm

‖g‖∞ := max
1≤i≤N

‖gi‖∞(3.2)

via the duality pairing

〈ϕ, g〉 =

N∑
i=1

∫ 0

−h

ϕi(θ)gi(−θ)dθ, ϕ ∈ X, g ∈ X∗.(3.3)

In order to apply the general linear theory summarized in section 2, we take X
as above and consider the strongly continuous semigroup T0 defined by (1.7):

(T0(t)ϕ)(θ) :=

{
ϕ(t + θ) for t + θ ∈ [−h, 0],
0 for t + θ > 0,

ϕ ∈ X, t ≥ 0, θ ∈ [−h, 0].(3.4)

Note that T0 is nilpotent (T0(t) = 0 for t > h). In particular, T0 is eventually compact.
Remark 3.1. The explicit formula (3.4) makes it clear that equivalence classes

are mapped to equivalence classes, such that T0(t) is indeed an operator mapping
X into X. In line with common praxis, we will be sloppy when it comes to distin-
guishing elements of L1, namely equivalence classes, from their representatives. It
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is, however, important to note that an equivalence class is by definition absolutely
continuous if it contains an absolutely continuous function (that is, a function all the
components of which are absolutely continuous). We shall always use this absolutely
continuous function to represent an absolutely continuous equivalence class. As in
the introduction we shall use the notation ϕ ∈ AC to indicate that ϕ is absolutely
continuous.

The following characterization of the generator of T0 is well known, at least in
the case of scalar-valued functions [2, p. 11]. As the vector-valued case is not more
difficult, we present it without proof.

Proposition 3.2. The generator A0 of T0 is given by

D(A0) = {ϕ ∈ X : ϕ ∈ AC, ϕ(0) = 0},

A0ϕ = ϕ′.

Our next task is to characterize X�∗ and T�∗
0 and prove sun-reflexivity of X with

respect to T0 so that we can give a precise meaning to the abstract integral equation
(AIE) for the specific application we are considering. This is a rather straightforward
exercise. In the case of scalar-valued functions it is essentially carried out in [9], the
only difference being the way in which the spaces X∗, X�, X�∗ are represented. Be-
cause the smoothness and boundary conditions entering into the domains of definition
of the generators are defined componentwise, the vector-valued case does not present
any extra difficulties [27, Chapter 3]. We shall therefore give only a brief sketch of the
construction of X�∗ and T�∗

0 and a precise formulation of the result that we need.
With the chosen representation of X∗, the adjoint semigroup T ∗

0 is translation to
the left with extension by zero. Translation is clearly not continuous in L∞ (to see this,
just consider translation of any discontinuous function). The maximal subspace on
which T ∗

0 is strongly continuous is X� = C0

(
[0, h);RN

)
, the space of all continuous

RN -valued functions vanishing at h. This last condition derives, of course, from the
extension by zero of the translated function.

By the Riesz representation theorem, the dual X�∗ can be represented by
NBV((−h, 0]; RN ), the space of all RN -valued functions f , all the components of
which are of bounded variation, are continuous from the right, and vanish at 0. Note,
in particular, that f ∈ NBV

(
(−h, 0];RN

)
does not have a jump in −h and that this

is indicated by the half-open interval (−h, 0] of definition of f . The duality pairing
between X� = C0

(
[0, h);RN

)
and X�∗ = NBV

(
(−h, 0];RN

)
is given by the sum of

Riemann–Stieltjes integrals

〈g, f〉 =
N∑
i=1

∫ 0

−h

gi(−θ)fi(dθ), g ∈ X�, f ∈ X�∗,(3.5)

and the norm on X�∗ by

‖f‖NBV :=

N∑
i=1

‖fi‖NBV,(3.6)

where on the right-hand side ‖fi‖NBV denotes the total variation of fi.
The semigroup T�∗

0 is again translation to the left with extension by zero and
it is not strongly continuous on X�∗. It is strongly continuous precisely on X�� =
{f ∈ X�∗ : f ∈ AC} [4, 9]. By the definition (2.5) of the canonical injection j :
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X→X�∗ and the definitions (3.3) and (3.5) of the pairings between our particular
representations of X and X� and X� and X�∗, one obtains

N∑
i=1

∫ 0

−h

gi(−θ)(jϕ)i(dθ) = 〈g, jϕ〉 = 〈ϕ, g〉 =

N∑
i=1

∫ 0

−h

ϕi(θ)gi(−θ)dθ,

from which it follows that (jϕ)′ = ϕ or, equivalently,

j(ϕ)(θ) = −
∫ 0

θ

ϕ(τ)dτ, θ ∈ (−h, 0].(3.7)

Now it is well known [52, Theorem 8.18] that a function of bounded variation is
absolutely continuous if and only if it is the primitive of an L1-function. Thus j (X) =
X��; that is, X is sun-reflexive. We formulate the main conclusions as the following
proposition.

Proposition 3.3. The space X = L1
(
[−h, 0];RN

)
is sun-reflexive with respect

to the strongly continuous semigroup T0 of bounded linear operators defined by (3.4).
For ψ ∈ X�∗ = NBV((−h, 0];RN ), t ≥ 0, and θ ∈ [−h, 0] one has

(T�∗
0 (t)ψ)(θ) =

{
ψ(t + θ) for t + θ ∈ [−h, 0),
0 for t + θ ≥ 0.

(3.8)

The generator A�∗
0 of T�∗

0 is given by

D(A�∗
0 ) = {ϕ ∈ X�∗ : ϕ(θ) =

∫ 0

θ

ψ(α)dα for all θ ∈ [−h, 0]

and some ψ ∈ X�∗},(3.9)

A�∗
0 ϕ = −ψ(3.10)

or, in shorthand notation, A�∗
0 ϕ = ϕ′.

As a corollary to Proposition 3.3 we get a formula for the resolvent of A�∗
0 which

we state for later use.
Corollary 3.4. For f ∈ X�∗ = NBV((−h, 0];RN ) and λ ∈ C we have

(
j−1R

(
λ,A�∗

0

)
f
)
(θ) =

∫ 0

θ

eλ(θ−τ)f(dτ), θ ∈ [−h, 0].

Proof. By definition, R
(
λ,A�∗

0

)
f is the unique element ϕ ∈ D(A�∗

0 ) which
satisfies the equation

(λE −A�∗
0 )ϕ = f.(3.11)

By Proposition 3.3 there exists a ψ ∈ X�∗ such that

ϕ(θ) =

∫ 0

θ

ψ(α)dα, θ ∈ [−h, 0],(3.12)

and

A�∗
0 ϕ = −ψ.(3.13)
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Equation (3.11) therefore becomes

λ

∫ 0

θ

ψ(α)dα + ψ(θ) = f(θ), θ ∈ [−h, 0],(3.14)

which has the unique solution

ψ(θ) = −
∫ 0

θ

eλ(θ−τ)f(dτ), θ ∈ [−h, 0].(3.15)

The inverse of the canonical injection j defined by (3.7) is clearly differentiation.
Therefore

j−1R
(
λ,A�∗

0

)
f = j−1ϕ = ϕ′ = −ψ.(3.16)

The assertion now follows from (3.15) and (3.16).

3.2. The perturbed problem. In this subsection we show that with a specific
choice of perturbation G : X→X�∗, the perturbed problem, which, as we have
shown in section 2, amounts to the abstract integral equation (AIE), is equivalent to
the originally given delay equation (DE) and initial condition (IC). To this end, we
let F : X→RN be a nonlinear mapping and define G : X→X�∗ by

G(ϕ) =

N∑
i=1

Fi(ϕ)Hi,(3.17)

where Fi denotes the ith component of F for i = 1, . . . , N and Hi is defined by

Hi(θ) :=

{
ei for θ ∈ (−h, 0),
0 for θ = 0.

(3.18)

Here and in what follows {e1, e2, . . . , eN} is the standard basis of RN . Notice that G
has finite dimensional range spanned by {H1, H2, . . . , HN} in X�∗.

Next we compute the weak* integral in (AIE) when G is defined through (3.17)
and (3.18).

Lemma 3.5. Let T0 be the strongly continuous semigroup defined by (3.4). Then
for every η ∈ L1

loc(R+) and t ≥ 0 one has

(∫ t

0

T�∗
0 (t− τ)η(τ)Hidτ

)
(θ) = −ei

∫ t

t+max{−t,θ}
η(σ)dσ, θ ∈ (−h, 0].

Proof. First notice that for 0 ≤ s < h one has

(
T�∗

0 (s)Hi

)
(θ) =

{
−ei for −h ≤ θ < −s,
0 for −s ≤ θ ≤ 0.

(3.19)

The NBV function T�∗
0 (s)Hi thus has a unit jump at θ = −s, and hence

〈
T�∗

0 (t)Hi, g
〉

=

∫ 0

−h

g(−θ)
(
T�∗

0 (s)Hi

)
(dθ) = gi(s)(3.20)
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for any continuous g. It follows that for 0 ≤ t ≤ h

〈∫ t

0

T�∗
0 (t− s)η(s)Hids, g

〉
=

∫ t

0

η(s)gi(t− s)ds

=

∫ 0

−t

η(t + s)gi(−s)ds = 〈y, g〉 ,

where y is the absolutely continuous NBV function defined by

y(θ) =

{
−
∫ t

t+θ
η(s)ds for θ ≤ 0 ≤ 0,

−
∫ t

0
η(s)ds for −h ≤ θ < −t,

(3.21)

and the conclusion follows.
Applying this result to η(t) = Fi(u(t)), we get the following corollary.
Corollary 3.6. Let T0 be the strongly continuous semigroup defined by (3.4)

and let G : X→X�∗ be defined by (3.17) and (3.18). If u : [0, t)→X is continuous,
then (∫ t

0

T�∗
0 (t− s)G(u(s))ds

)
(θ) = −

∫ t

t+max{−t,θ}
F (u(s))ds(3.22)

for all θ ∈ [−h, 0].
Proof. Using Lemma 3.5, one computes

(∫ t

0

T�∗
0 (t− s)G(u(s))ds

)
(θ) =

N∑
i=1

(∫ t

0

T�∗
0 (t− s)Fi(u(s))Hids

)
(θ)

= −
N∑
i=1

ei

∫ t

t+max{−t,θ}
Fi(u(s))ds = −

∫ t

t+max{−t,θ}
F (u(s))ds.

We are now ready to prove equivalence of solutions of the abstract integral equa-
tion

(AIE) u(t) = T0(t)ϕ + j−1

(∫ t

0

T�∗
0 (t− s)G(u(s))ds

)

and the delay problem

(DE) x(t) = F (xt), t > 0,

(IC) x0(θ) = ϕ(θ), θ ∈ [−h, 0].

For ease of formulation we consider global solutions, i.e., solutions defined for all
future times. It should, however, be evident that one can formulate and prove an
analogous result concerning local solutions.

Theorem 3.7. Let ϕ ∈ X = L1
(
[−h, 0];RN

)
be given.

(a) Suppose that x ∈ L1
loc

(
[−h,∞);RN

)
satisfies (DE) and (IC). Then the func-

tion u : [0,∞)→X defined by u(t) := xt is continuous and satisfies (AIE).
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(b) Suppose that there is a continuous map u : [0,∞)→X that satisfies (AIE).
Then the function x defined as

x(t) :=

{
ϕ(t) for t ∈ [−h, 0),
u(t)(0) for t ≥ 0

(3.23)

is an element of L1
loc

(
[−h,∞);RN

)
and satisfies (DE) and (IC).

Proof. (a) First, note that the continuity assertion follows from the fact that
translation is continuous in L1. Then, by (DE) and (IC) we get

u(t)(θ) − (T0(t)ϕ)(θ) =

{
0 for t + θ ∈ [−h, 0),
x(t + θ) for t + θ ≥ 0

(3.24)

=

{
0
F (xt+θ)

=

{
0 for t + θ ∈ [−h, 0),
F (u(t + θ)) for t + θ ≥ 0.

On the other hand, by Corollary 3.6 one gets

j−1

(∫ t

0

T�∗
0 (t− s)G(u(s))ds)

)
(θ) =

{
0 for t + θ ∈ [−h, 0),
F (u(t + θ)) for t + θ ≥ 0,

which equals (3.24), and therefore (AIE) holds.
(b) Suppose now that u satisfies (AIE). Then by Corollary 3.6 for t ≥ 0 one has

x(t) = u(t)(0) = j−1

(∫ t

0

T�∗
0 (t− s)G(u(s))ds

)
(0)

= − d

da

∫ t

t+max{−t,a}
F (u(s))ds|a=0(3.25)

= F (u(t)).

Hence it remains to be shown that u(t) = xt. Using (AIE), Corollary 3.6, and (3.25),
one computes for θ ∈ [−h, 0] that

u(t)(θ) =

{
ϕ(t + θ) for t + θ ∈ [−h, 0),

j−1
(∫ t

0
T�∗

0 (t− s)G(u(s))ds
)

(θ) for t + θ ≥ 0

=

{
ϕ(t + θ) for t + θ ∈ [−h, 0),

j−1
(∫ t

t+max{−t,·} F (u(s))ds
)

(θ) for t + θ ≥ 0

=

{
ϕ(t + θ) for t + θ ∈ [−h, 0),
F (u(t + θ)) for t + θ ≥ 0.

Thus one has u(t) = xt, and (b) is also proved.
As is clear from the results of section 2, the abstract integral equation approach

is ideal for deriving results concerning the qualitative behavior of solutions, such as
stability and bifurcation. On the other hand, for proving regularity of solutions it is
usually easier to attack the problem (DE) and (IC) directly. This is shown in the proof
of the next theorem (which is not the sharpest possible result; indeed, the conclusion
holds even if F is only locally Lipschitz, but then the proof is a bit more technical).



STABILITY AND BIFURCATION OF VOLTERRA EQUATIONS 1047

One of the advantages of the equivalence result of Theorem 3.7 is that we can freely
choose between the abstract and the concrete, according to our needs.

Theorem 3.8. Let F : L1
(
[−h, 0];RN

)
→RN be globally Lipschitz continuous.

Then the unique solution x : [−h,∞)→RN of (DE), (IC) with ϕ ∈ L1
(
[−h, 0];RN

)
is continuous in [0,∞).

Proof. Let ϕ ∈ L1
(
[−h, 0];RN

)
and � > 0. Define

Z =
{
y ∈ C

(
[0, �];RN

)
: y(0) = F (ϕ)

}
.

Then Z is a closed subset of the Banach space C
(
[0, �];RN

)
and thus a complete

metric space. Define for each y ∈ Z the function Φ(y) on [0, �] by

(Φy) (t) = F (zyt ), 0 ≤ t ≤ �,

where zy is the function defined by

zy(τ) =

{
ϕ(τ) for −h ≤ τ < 0,
y(τ) for ≤ τ ≤ �

and zyt is the translate of zy as in (1.2). Clearly zy belongs to L1. Because translation
is continuous when regarded as a mapping from an interval to L1 and F is continuous
on L1, it follows that Φy is continuous. Moreover, (Φy) (0) = F (zy0 ) = F (ϕ), and
hence Φy belongs to Z. Next we show that Φ is a contraction on Z for � sufficiently
small. Because F is globally Lipschitz continuous we have for y1, y2 ∈ Z

|(Φy1) (t) − (Φy2) (t)| = |F (zy1

t ) − F (zy2

t )|

≤ L ‖zy1

t − zy2

t ‖L1([−h,0];RN )

≤ L

∫ 


0

|y1(τ) − y2(τ)| dτ.

Hence Φ has, for � sufficiently small, a unique fixed point. The fixed point is obviously
a solution of (DE) and (IC). This proves the assertion.

The present way to associate a dynamical system with a Volterra integral equation
is dual to the way studied in [21], where, of course, “dual” is precisely defined only
in the linear case. The advantage of the present approach is that we also cover au-
tonomous nonlinear problems that are not of convolution type, while [21] is restricted
to convolution equations (see subsection 3.5 below).

3.3. Steady states. In this subsection we characterize the steady states of the
nonlinear semigroup Σ generated by the abstract integral equation (AIE) in terms of
constant solutions of (DE) and (IC).

Theorem 3.9. (a) Suppose ϕ is a steady state of Σ. Then ϕ is a constant
function

ϕ(θ) = x, θ ∈ [−h, 0],(3.26)

and

x = F (ϕ) .(3.27)

(b) Conversely, if the constant function ϕ given by (3.26) satisfies (3.27), then it
is a steady state of Σ.
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Proof. (a) Let ϕ be a steady state of Σ, i.e., Σ(t)ϕ = ϕ for all t ≥ 0. From (AIE)
we then get

ϕ = T0(t)ϕ + j−1

(∫ t

0

T�∗
0 (t− τ)G(ϕ)dτ

)
, t ≥ 0.

Because T0(t) = 0 for t > h, it follows that

jϕ =

∫ t

0

T�∗
0 (t− τ)G(ϕ)dτ =

N∑
i=1

∫ t

0

T�∗
0 (τ)HiFi(ϕ)dτ.

Using Lemma 3.5 we then deduce that for t > h

(jϕ) =

N∑
i=1

−ei

∫ t

t+θ

Fi(ϕ)dθ =

N∑
i=1

eiθFi(ϕ).

But because j is integration, this means precisely that

ϕ(θ) =

N∑
i=1

eiFi(ϕ) = F (ϕ), θ ∈ [−h, 0];

that is, ϕ is a constant function and (3.27) holds.
The proof of (b) is similar.
From the equivalence of (AIE) and (DE), (IC) (Theorem 3.7) it is clear that a

function ϕ that takes the constant value x ∈ RN on [−h, 0] is a steady state of Σ if
and only if the constant function x(t) = x, t ∈ [−h,∞) is the solution of (DE), (IC).

Remark 3.10. In what follows we shall abuse notation and denote both the
constant function ϕ on [−h, 0] and the corresponding constant function on [−h,∞)
by the same symbol as the constant value they take, viz. x.

Because the constant solutions of (DE), (IC) are steady states of the dynamical
system Σ, we have well-defined notions of stability at our disposal. It follows immedi-
ately from Theorem 3.8 that the constant solution x of (DE), (IC) is (locally) stable
if and only if for every ε > 0 there exists a δ > 0 such that∫ 0

−h

|x(t) − x|dt ≤ δ ⇒ |x(t) − x| ≤ ε for all t > 0

and (locally) exponentially stable if there exist numbers δ > 0, K > 0, α > 0 such
that ∫ 0

−h

|x(t) − x|dt ≤ δ ⇒ |x(t) − x| ≤ Ke−αt for all t > 0.

3.4. The characteristic equation. In section 2.5 we showed that whenever
σ(A0) is empty (in particular, when T0 is nilpotent) and the perturbation has finite
dimensional range, the spectrum σ(A) of the perturbed generator consists entirely of
eigenvalues and there exists a characteristic equation

det(E −M(λ)) = 0,

the roots of which are exactly the eigenvalues. The characteristic equation contains
all the information about asymptotic behavior, Hopf bifurcation, etc. In this section
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we identify the matrix M(λ) for the special case in which the unperturbed semigroup
T0 is given by (3.4) and the perturbation G is of the form (3.17).

If G is differentiable at ϕ, there exist functions kij ∈ L∞([0, h];R) such that

G′(ϕ)ϕ =

N∑
i=1

⎛
⎝ N∑

j=1

∫ 0

−h

kij(−θ)ϕj(θ)dθ

⎞
⎠Hi.

B = G′(ϕ) is thus of the form (2.15), with r�∗
i = Hi and r∗i = ki = {kij}Nj=1.

Corollary 3.4 now yields

(rj(λ)) (θ) =
(
j−1R(λ,A�∗

0 )Hj

)
(θ)(3.28)

=

∫ 0

θ

eλ(θ−τ)Hj(dτ) = eλθej , θ ∈ [−h, 0],

and hence

Mij(λ) = 〈rj(λ), ki〉 =

∫ 0

−h

eλθkij(−θ)dθ =

∫ h

0

e−λθkij(θ)dθ = k̂ij(λ).

Denoting the matrix with entries kij by k, the characteristic equation thus takes the
form

det
(
E − k̂(λ)

)
= 0.(3.29)

The results of subsection 2.6 now tell us that if all the roots of the characteristic
equation (3.29) have negative real part, then the steady state is exponentially stable,
whereas it is unstable if at least one root has positive real part. Note that the
hypotheses of Corollary 2.20 are fulfilled, so Nyquist’s criterion for (in)stability is
applicable. It is also a straightforward fill-in exercise to translate Theorem 2.21 into
a result for delay equations (generalizing Theorem 11.1 in [21] to include equations
which are not of convolution type, and being the analogue of Theorem X.2.7 in [23],
which applies to delay differential equations).

3.5. Differentiability for three important classes of nonlinearity. In or-
der to apply the general results on stability and bifurcation to the system (DE), (IC)
we have to give conditions that ensure that the map G : X→X�∗ is Fréchet differ-
entiable with X = L1

(
[−h, 0];RN

)
and G of finite dimensional range given by (3.17)

or, more generally, by (2.14). As noted in subsection 2.5, G is differentiable if and
only if F is differentiable from L1

(
[−h, 0];RN

)
to RN . This leads us to have a closer

look at differentiability criteria for functions from L1
(
[−h, 0];RN

)
to RN .

There is one obvious class of differentiable mappings from L1
(
[−h, 0];RN

)
to RN ,

consisting of those mappings of the form ϕ 	→ (g◦Λ)ϕ, where Λ : L1
(
[−h, 0];RN

)
→RN

is a bounded linear map and g is a smooth function from RN to RN .

A map F that occurs frequently in applications is F = Λ ◦ Ng, where Λ is a
bounded linear map from L1

(
[−h, 0];RN

)
to RN and Ng is the Nemytskĭı operator

induced by a smooth function g : RN →RN as follows:

(Ng(ϕ)) (θ) = g(ϕ(θ)).(3.30)
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For instance, the nonlinear Volterra convolution equation

x(t) =

∫ h

0

k(s)g(x(t− s))ds, t > 0,(3.31)

x(t) = ϕ(t), −h ≤ t ≤ 0,(3.32)

is of the form (DE), (IC) with F = Λ ◦Ng and Λϕ =
∫ h

0
k(θ)ϕ(−θ)dθ.

It may come as a surprise that the Nemytskĭı operator from L1
(
[−h, 0];RN

)
to

L1
(
[−h, 0];RN

)
generated by a differentiable, globally Lipschitz continuous function

g : RN →RN is not Fréchet differentiable unless g is affine (a constant plus a linear
operator), but in hindsight this is easy to understand. An indication of the reason is
that in the formal Taylor series expansion

(Ng(ϕ)) (θ) = g(ϕ(θ))(3.33)

= g(ϕ(θ)) + g′(ϕ(θ))(ϕ(θ) − ϕ(θ)) +
1

2
g′′(ϕ(θ))(ϕ(θ) − ϕ(θ))2 + · · ·

around an element ϕ ∈ L1, the higher order terms contain powers of ϕ which need
not belong to L1. So showing that the higher order terms are small cannot be done
in the standard way (and, in fact, cannot be done at all).

The above result may seem disastrous for our theory because it appears as if the
important case of the nonlinear Volterra convolution equation (3.31) would not be
covered by it. Fortunately, a simple transformation saves our bacon.

Consider the Volterra functional equation

x(t) = ΛNg(xt)(3.34)

with initial condition

x0 = ϕ.(3.35)

Applying the function g to both sides of (3.34) and (3.35), one obtains

(g ◦ x)(t) = g (ΛNg(xt))(3.36)

and

g(x0) = g(ϕ).(3.37)

But

(g ◦ x)t(θ) = g(x(t + θ)) = g(xt(θ)) = (Ng(xt))(θ),

that is,

(g ◦ x)t = Ng(xt),(3.38)

and hence (3.36) and (3.37) take the form

y(t) = (g ◦ Λ) (yt) ,(3.39)

y0 = ψ(3.40)
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with

y(t) = (g ◦ x) (t),(3.41)

ψ = g ◦ ϕ.(3.42)

But g ◦ Λ is differentiable, and thus our theory applies to the transformed problem
(3.39), (3.40): A constant solution y of (3.39), (3.40) is exponentially stable if all the
roots λ of the characteristic equation

det
(
E − g′(x)k̂(λ)

)
= 0(3.43)

satisfy Reλ < 0 and unstable if there exists at least one root with positive real part.
We recover the solution x of our original problem (3.34), (3.35), because (3.34),

(3.41), and (3.38) together show that

x(t) = Λyt.(3.44)

It remains to be shown that the stability properties of the transformed problem de-
termine those of the original problem. For this the differentiability of g is irrelevant;
we assume only global Lipschitz continuity as this guarantees that the Nemytskĭı
operator Ng maps L1 into L1.

Theorem 3.11. Let Λ : L1
(
[−h, 0];RN

)
→RN be a bounded linear operator and

let g : RN →RN be globally Lipschitz continuous with Lipschitz constant L. Let x be
a constant solution of (3.34), (3.35) and let y = g(x) be the corresponding constant
solution of (3.39), (3.40). Then the following hold:

(a) If y is [exponentially] stable, then so is x.
(b) If y is unstable, then so is x.
Proof. The estimate

|x(t) − x| = |Λyt − Λg(x)| ≤ ‖Λ‖‖yt − y‖1(3.45)

proves (a). Assume now that x is stable and let y be the solution of (3.39), (3.40).
Define

x(t) = Λyt, t ≥ 0.(3.46)

We know by Theorem 3.8 that y is continuous for t ≥ 0; it follows that xh ∈
L1
(
[−h, 0];RN

)
. So, for t ≥ h, y may be regarded as the solution of (3.39) with

the initial condition (3.40) replaced by

yh = g ◦ xh.(3.47)

Because the mapping that takes ψ to yt is a strongly continuous (nonlinear) semigroup,
sup0≤t≤h ‖yt − y‖1 can be made arbitrarily small by choosing ‖ψ − y‖1 sufficiently
small. Now (3.45) shows that xh − x also can be made arbitrarily small.

Let ε > 0 be arbitrary. Because x is stable one can choose δ > 0 such that
‖xh − x‖ < δ implies |x(t) − x| < ε/L for all t > h. It follows that

|y(t) − y| = |g(x(t)) − g(x)| ≤ L|x(t) − x| < ε

for all t > 0 provided that ‖ψ − y‖1 is sufficiently small, that is, y is stable.
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Note that if we linearize the nonlinear Volterra integral equation (3.31) in RN

(as opposed to linearizing F : L1 →RN in the delay equation), we obtain

x(t) =

∫ t

0

k(s)g′(x)x(t− s)ds + G(x)(t),(3.48)

where G(x)(t) stands for the higher order terms. In the theory of Volterra integral
equations [29] one associates the characteristic equation

det
(
E − k̂(λ)g′(x)

)
= 0(3.49)

with (3.48). Clearly, (3.43) and (3.49) have exactly the same roots.
A third class of differentiable maps from L1

(
[−h, 0];RN

)
to RN is obtained by

composing a map from the space C
(
[0, �];RN

)
of continuous functions on some inter-

val [0, �] to RN with a linear (or affine) map from L1
(
[−h, 0];RN

)
to C

(
[0, �];RN

)
.

The reason for this detour via C
(
[0, �];RN

)
is that, roughly speaking, it is much

easier for a function to be differentiable if it is defined on C
(
[0, �];RN

)
than if it is

defined on L1. Indeed, the product of two continuous functions which are small in the
supremum norm is continuous, and the supremum norm of the product is of quadratic
order. In particular, the expansion (3.33) applied to a continuous function ϕ shows
that the Nemytskĭı operator is differentiable in C

(
[0, �];RN

)
and that

N ′
g(ϕ) = Ng′(ϕ).(3.50)

This observation is important in applications to, for instance, population dynamics.
Let us illustrate it by an age-structured model of the type first studied in [30]. Assume
that the age-specific per capita death rate depends on the present value I(t) of the
(one-dimensional) environmental condition in the following way:

μ(a, I(t)) = μ0(a) + μ1(a)I(t)(3.51)

(where μ0 and μ1 are nonnegative functions). Then the probability F(a;ϕ) that an
individual that was born a time units ago is still alive, given the history ϕ of the
environmental condition, is the solution of the ODE initial value problem

d

dα
F(α;ϕ) = −μ(α,ϕ(α− a))F(α,ϕ),(3.52)

F(0) = 1(3.53)

at α = a, that is,

F(a;ϕ) = exp

(
−
∫ a

0

(μ0(α) + μ1(α)ϕ(α− a)) dα

)
.(3.54)

The theory presented in this paper presupposes a maximum life span h. This is
achieved by assuming that μ0 has a nonintegrable singularity at h:∫ h

0

μ0(a)da = ∞,

because then the survival probability

F0(a) = exp

(
−
∫ a

0

μ0(α)dα

)
(3.55)
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with respect to density-independent effects vanishes at h.
If β(a, I(t)) is the age-specific fecundity, then the integral equations (1.18), (1.19)

combined with the feedback law (1.17) yield

b(t) =

∫ h

0

β(a, I(t))F(a; It)b(t− a)da,(3.56)

I(t) =

∫ h

0

γ(a)F(a; It)b(t− a)da,(3.57)

which is a delay equation of the type (DE). More specifically, we have(
b(t)
I(t)

)
= F

(
bt
It

)
(3.58)

with F given by

F

(
ψ
ϕ

)
=

( ∫ h

0
β
(
a,
∫ h

0
γ(α)F(α;ϕ)ψ(−α)dα

)
F(a;ϕ)ψ(−a)da∫ h

0
γ(a)F(a;ϕ)ψ(−a)da

)
.(3.59)

F is a well-defined mapping from L1
(
[−h, 0];R2

)
to R2 if γF0 ∈ L∞[0, h] and

β(·, I)F0 ∈ L∞[0, h] for all I ∈ R, and hence we make this assumption.
We want to show that F is differentiable. First notice that the argument of

the exponential function in formula (3.54) is an affine map taking ϕ ∈ L1[−h, 0] to
C[0, h]. The mapping ϕ 	→ F(·;ϕ) is thus obtained by composing the Nemytskĭı
operator induced in C[0, h] by the exponential function with an affine map. As we
already saw, this map is Fréchet differentiable. For fixed ψ, the second component F2

of F is now obtained by applying a continuous linear mapping to the differentiable
map ϕ 	→ F(·;ϕ). Hence F2 is differentiable in ϕ. Because F2 is linear in ψ it is
also differentiable in ψ. Because F2(ψ,ϕ) appears as the second argument of β in the
expression for F1, the chain rule implies that F2 also is differentiable provided that
β : R2 →R is differentiable in its second argument.

The derivative of F can be computed explicitly. A straightforward but tedious
computation yields F ′ at a steady state (b, I):[

F ′
(

b
I

)](
ψ
ϕ

)
=

∫ h

0

k(a)

(
ψ
ϕ

)
(−a)da,(3.60)

where k is a 2 × 2 matrix-valued function with entries

k11(a) =

(
γ(a)

∫ h

0

∂2β(τ, I)F(τ ; I)dτ b + β(a, I)

)
F(a; I),(3.61)

k12(a) =

∫ h

0

∂2β(τ, I)F(τ ; I)dτ b k22(a)(3.62)

−
∫ h−a

0

μ1(α)β(α + a, I)F(α + a; I)dα b,

k21(a) = γ(a)F(a; I),(3.63)

k22(a) = −
∫ h−a

0

μ1(α)γ(α + a)F(α + a; I)dα b.(3.64)
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The characteristic equation is (3.29) with the matrix k defined by (3.61)–(3.64). It is
easy to check that the resulting stability criterion is equivalent (as it should be) to
the one given in [30] for γ ≡ 1 and in [32] and [50] for the general case.

The steady environmental condition I of a nontrivial equilibrium (b, I) �= (0, 0) is
a solution (there may be many) of the steady state condition

1 =

∫ h

0

β(a, I)F(a; I)da.(3.65)

Once I has been solved from (3.65), the corresponding steady birth rate is obtained
from

b =
I∫ h

0
γ(a)F(a; I)da

.(3.66)

On the other hand, for the population-free, or trivial, steady state (b, I) = (0, 0), the
characteristic equation (3.29) reduces to the scalar equation

1 =

∫ h

0

e−λaβ(a, 0)F0(a)da.(3.67)

As a consequence, the population-free steady state is exponentially stable if

R0 :=

∫ h

0

β(a, 0)F0(a)da < 1

and unstable if

R0 > 1.

In subsection 5.1 we shall elaborate on this a bit more in the context of a model for
an age-structured population with cannibalistic behavior.

4. Volterra functional equations coupled with delay differential equa-
tions. In applications to structured population dynamics, one encounters models
that take the form of a Volterra functional equation coupled with a delay differential
equation [31, 32]. In this section we therefore briefly consider systems of the following
type:

x(t) = F1(xt, yt),(4.1)

ẏ(t) = F2(xt, yt).(4.2)

For the component x of the delay equation (4.1), we choose as before X =
L1
(
[−h, 0];RN

)
as state space, whereas the natural state space for the component y

of the delay differential equation (4.2) is Y = C
(
[−h, 0];RM

)
(see [23]). We therefore

have to assume that the mappings F1 : X×Y →RN and F2 : X×Y →RM are at least
Lipschitz continuous. Equations (4.1) and (4.2) must, of course, be supplemented by
initial conditions

x(θ) = ϕ(θ), −h ≤ θ ≤ 0,(4.3)

y(θ) = ψ(θ), −h ≤ θ ≤ 0.(4.4)
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In section 3 we showed in detail how a Volterra functional equation could be
written as a semilinear abstract integral equation. The same program has been carried
out for delay differential equations in the book [23] (see also [40]). It is now an easy
exercise to combine the two procedures for the coupled system (4.1)–(4.4).

Let T10 be the C0-semigroup defined on X by (3.4) and define the C0-semigroup
T20 on Y by

(T20(t)ψ)(θ) :=

{
ψ(t + θ) for t + θ ∈ [−h, 0],
ψ(0) for t + θ ≥ 0,

ψ ∈ Y, t ≥ 0, θ ∈ [−h, 0].(4.5)

The two semigroups T10 and T20 induce in an obvious way a semigroup T0 on X ×Y :

T0(t) =

(
T10(t) 0

0 T20(t)

)
.(4.6)

It was shown in [23] that Y �∗ has the representation RM × L∞ ([−h, 0];RM
)

and
that Y is �-reflexive with respect to T20. Because X is �-reflexive with respect to
T10, as shown in section 3, it is plain that X × Y is �-reflexive with respect to T0,
that (X×Y )�∗ is (isometrically isomorphic to) X�∗×Y �∗, and that jX×Y (X×Y ) =
jX(X)× jY (Y ) (here, of course, jZ denotes the canonical embedding of Z into Z�∗).
Note also that for t > h, the range of T20(t) lies in the subspace of Y consisting of
the constant functions, which is finite dimensional. In particular, T20(t) is eventually
compact. As T10 is nilpotent, the semigroup T0 on X × Y is eventually compact.

The system (4.1)–(4.4) is equivalent to the abstract integral equation

(AIE) u(t) = T0(t)

(
ϕ
ψ

)
+ j−1

(∫ t

0

T�∗
0 (t− s)G(u(s))ds

)
,

where G : X × Y →X�∗ × Y �∗ is defined by

G(ϕ,ψ) =

N∑
i=1

F1i(ϕ,ψ)

(
r�∗
i

0

)
+

M∑
i=1

F2i(ϕ,ψ)

(
0

s�∗
i

)
.(4.7)

Here r�∗
i ∈ X�∗ is the Heaviside function (3.18), and s�∗

i = (fi, 0) ∈ Y �∗, where
{f1, f2, . . . , fM} is the standard basis of RM and 0 is the zero element of
L∞ ([−h, 0];RM

)
. We are now exactly in the situation described in section 2.5.

The resolvent R
(
λ,A�∗

10

)
of T�∗

10 was calculated in Corollary 3.4 and the associated

vector ri(λ) in (3.28). An analogous computation for T�∗
20 shows that σ(A20) =

σ(A�∗
20 ) = {0} and that the resolvent of A�∗

20 is given by(
R
(
λ,A�∗

20

)
(α, ψ)

)
(θ)(4.8)

=
1

λ
eλθα +

∫ 0

θ

eλ(θ−τ)ψ(τ)dτ, (α, ψ) ∈ Y �∗, θ ∈ [−h, 0].

In particular,

si(λ) :=
(
j−1R

(
λ,A�∗

20

)
s�∗
i

)
(θ) =

1

λ
eλθfi, θ ∈ [−h, 0].(4.9)

If F is Fréchet differentiable, its derivative can be represented by the (N +M)×
(N + M) matrix (

k11 m12

k21 m22

)
,(4.10)
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where k11 and k21 are N ×N (resp., N ×M) matrices of elements of L∞([0, h] and
m12 and m22 are M × N (resp., M × M) matrices of elements in NBV [0, h]. The
interpretation of (4.10) is that

F ′(ϕ,ψ)

(
ϕ
ψ

)
=

( ∫ h

0
k11(θ)ϕ(−θ)dθ +

∫ h

0
m12(dθ)ψ(−θ)∫ h

0
k21(θ)ϕ(−θ)dθ +

∫ h

0
m22(dθ)ψ(−θ)

)
.(4.11)

Using the expressions (3.28) and (4.9) for ri(λ) and si(λ), respectively, and the defi-
nition (2.18) of the matrix M(λ), we deduce that

M(λ) =

(
k̂11(λ) 1

λ d̂m12(λ)

k̂21(λ) 1
λ d̂m22(λ)

)
, λ �= 0,(4.12)

where, as before, k̂ denotes the Laplace transform of k and d̂m denotes the Laplace–
Stieltjes transform of m,

d̂m(λ) =

∫ h

0

e−λθm(dθ).(4.13)

It now follows from Theorem 2.15 that λ �= 0 is an eigenvalue of the generator of
the linearized equation (LAIE) if and only if

det (E −M(λ)) = 0(4.14)

and that the algebraic multiplicity of λ coincides with the order of λ as a root of
(4.14). Clearly, for λ �= 0, (4.14) is equivalent to

det

((
E 0
0 λE

)
−
(

k̂11(λ) d̂m12(λ)

k̂21(λ) d̂m22(λ)

))
= 0.(4.15)

As Theorem 2.17 shows that the singularity at λ = 0 is removable, we conclude that
(4.15) is the characteristic equation for the (AIE) with T0 and G as specified above.

5. Examples.

5.1. Cannibalistic interaction. Even though size is the more natural individ-
ual state variable used to describe cannibalistic interaction, we shall here use age as
a substitute, while referring to [25, section 4.1] and [28] for size-structured models.
We assume that individuals turn adult and start to reproduce upon reaching age a.
Furthermore, only adults practice cannibalism and their victims are juveniles. The
vulnerability for intraspecific predation is defined by a function c of age, the support
of which lies in [0, a).

Let F0(a) be the survival probability to at least age a with respect to causes of
death other than cannibalism. Let b(t) be the population birth rate at time t and
I1(t) the total number of adults at time t. We assume that “standard” adult food
(that is, food other than juveniles of their own kind) is available at a constant density
and that an adult produces, from this food, offspring at a rate Z. Let I2(t) denote
the rate at which an adult produces offspring at time t on the basis of the energy
provided by its cannibalistic actions. Then, by definition,

b(t) = (Z + I2(t)) I1(t),(5.1)

I1(t) =

∫ ∞

a

b(t− a)F0(a)e
−
∫ a
0

c(α)I1(t−a+α)dαda.(5.2)
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To these equations we add

I2(t) =

∫ a

0

b(t− a)F0(a)e
−
∫ a
0

c(α)I1(t−a+α)dαc(a)E(a)da,(5.3)

expressing that the (instantaneous) offspring yield resulting from the consumption of
an individual of age a is given by E(a).

The system (5.1)–(5.3) is of the form (3.54)–(3.57) (albeit with two instead of one
interaction variable), and thus the arguments provided in section 3.5 establish that
the system is a (DE) on L1 with a C1-map F . To guarantee that the maximum delay
is finite, we assume that F0 drops to zero at a finite age h (or, equivalently, that the
μ0 of (3.55) has a nonintegrable singularity at h).

By elementary manipulations one can eliminate I2 and b from the equations for
nontrivial steady states to arrive at a single equation

Z =
eCI1∫ h

a
F0(a)da

(
1 − I1

∫ a

0

c(a)E(a)F0(a)e
−I1

∫ a
0

c(α)dαda

)
(5.4)

for the unknown I1. Here

C :=

∫ a

0

c(a)da.(5.5)

Next we consider Z (thus, in essence, the density of the standard food) as a
bifurcation parameter. The formula (5.4) is an explicit expression for Z as a function
of I1. If we insert I1 = 0 at the right-hand side of (5.4), we obtain the critical value

Zcrit =
1∫ h

a
F0(a)da

(5.6)

such that newborn individuals, on average, produce exactly one offspring. In the
absence of cannibalism (i.e., for c ≡ 0), a nontrivial steady state exists if and only
if Z > Zcrit. By computing the derivative of Z with respect to I1 from (5.4) and
evaluating at I1 = 0, one concludes that the condition∫ a

0

(E(a)F0(a) − 1) c(a)da > 0(5.7)

guarantees that the bifurcation from the trivial steady state is subcritical in the
sense that I1 is positive for values of Z slightly less than Zcrit. Thus if (5.7) holds,
cannibalism allows the population to persist at levels of the standard food that are,
by themselves, insufficient to sustain a consumer population. We refer once more to
[25, section 4.1] and [28] for the biological interpretation and further elaborations.

A characteristic equation can now be derived as for the system (3.54)–(3.57)
treated in section 3.5. The stability of the trivial steady state is governed by the
position of the roots of

1 = Z

∫ h

a

e−λaF0(a) da(5.8)

in the complex plane. Hence the trivial solution is stable for Z < Zcrit and unstable
for Z > Zcrit. According to the principle of exchange of stability (see [15, 16, 44]
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and [3] for an application to population dynamics), the branch of positive steady
states described by (5.4) is locally (i.e., for Z near Zcrit) stable if the bifurcation is
supercritical and unstable if it is subcritical.

For the nontrivial steady states a detailed analysis of the global shape of the
curve defined by (5.4) and the changes in the position of the roots of the associated
characteristic equation along this curve requires a considerable effort and is beyond
the scope of this paper. The point, however, is that the results of this paper allow one
to derive conclusions about (in)stability and Hopf bifurcation from the appropriate
information about these roots.

5.2. A structured metapopulation model. In this subsection we consider
a metapopulation model first introduced in [33] and later modified and analyzed in
[34, 35, 36, 37, 39, 41]. The model considers an infinite collection of identical patches
that can support local populations. The structuring variable is the size x of a local
population. Local populations may go extinct due to a catastrophe, but the vacated
patch is immediately recolonized by migrants arriving from other patches. In PDE-
formulation, the model is described by

∂

∂t
n(t, x) +

∂

∂x
(f(x,D(t))n(t, x)) = −μ(x)n(t, x), t > 0, x > 0,(5.9)

f(0, D(t))n(t, 0) =

∫
R+

μ(x)n(t, x) dx,(5.10)

d

dt
D(t) = −(α + ν)D(t) +

∫
R+

γ(x)n(t, x) dx, t > 0,(5.11)

supplemented, of course, by appropriate initial conditions.
In (5.9)–(5.11), n(t, ·) is the size-distribution of local populations at time t, and

D(t) is the density of dispersers at time t. γ(x) = k(x)x is the emigration rate (k(x)
is the per capita emigration rate), α is the rate at which dispersers immigrate into a
patch, and ν is the death rate during dispersal. f(x,D) is the growth rate of a local
population of size x when the density of dispersers is D. It is given by

f(x,D) = g(x) + αD = r(x)x− k(x)x + αD,(5.12)

where r(x) is the difference between the per capita birth and death rates when the
local population size is x. Finally, μ(x) is the size-specific catastrophe rate of local
populations.

Next we rewrite the equations (5.9)–(5.11) as a coupled system of the form (4.1)–
(4.2). By the age of the local population of a patch we shall mean the time elapsed
since the last catastrophe. Hence a local population of age a at time t had size zero
at time t− a. The dynamics of such a local population is therefore described by the
scalar ODE

d

dτ
x(τ) = g(x(τ)) + αDt(τ − a), 0 < τ ≤ a,(5.13)

x(0) = 0.(5.14)

For the solution of (5.13)–(5.14) we use the notation

x(τ) = X(τ, a,Dt), 0 ≤ τ ≤ a.(5.15)
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The probability that a local population survives to age a, given the history of D,
is

F(a,Dt) = e−
∫ a
0

μ(X(τ,a,Dt)) dτ .(5.16)

The results formulated in this paper require a finite maximum life span. In the
present model, this could be achieved by assuming that the catastrophe rate has a
nonintegrable singularity at some finite local population size. However, in nature it is
often the case that large local populations are much less prone to extinction than small
ones, which experience a high risk of extinction due to demographic stochasticity. If
this is the case, μ should rather be a decreasing function of local population size instead
of blowing up. Also, exponentially distributed lifetimes (corresponding to constant
catastrophe rates μ) occur frequently in applications. Fortunately, our theory carries
over almost verbatim to the case of infinite delay (see section 6). In this example we
shall therefore not make the assumption of a finite maximum life span. In particular,
we shall allow the catastrophe rate μ to be constant.

We can now express the age-distribution

m(t, a) = f(X(a, a,Dt), D(t))n(t,X(a, a,Dt))(5.17)

of local populations in terms of the histories of the disperser density D and the birth
rate

b(t) = f(0, D(t))n(t, 0)(5.18)

of local populations as follows:

m(t, a) = b(t− a)F(a,Dt) = bt(−a)F(a,Dt), t ≥ 0, 0 ≤ a.(5.19)

Equations (5.10) and (5.11) now yield the following system of a delay equation coupled
with a delay differential equation:

b(t) =

∫ ∞

0

μ(X(a, a,Dt))F(a,Dt)bt(−a) da,(5.20)

d

dt
D(t) = −(α + ν)D(t) +

∫ ∞

0

γ(X(a, a,Dt))F(a,Dt)bt(−a) da.(5.21)

Here D plays the role of the environmental interaction variable. As we saw in section 4,
the state space of bt should be taken as L1 and the space of Dt as C.

The steady state equation for (5.20), (5.21) is readily found. For constant func-
tions b and D, (5.20) becomes an identity because∫ ∞

0

μ(X(a, a,D))F(a,D)da = 1.(5.22)

The identity (5.22) reflects the conservation of local populations: After a catastrophe,
the patch is immediately recolonized. If we normalize the total amount of patches to
1, then

b =
1∫∞

0
F(a,D)da

(5.23)
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and the steady state condition becomes

D =
1

α + ν
·
∫∞
0

γ(X(a, a,D))F(a,D)da∫∞
0

F(a,D)da
.(5.24)

The numerator on the right-hand side of (5.24) is the expected number of dispersers
produced by a local population during its lifetime. When divided by the expected
lifetime

∫∞
0

F(a,D)da, it yields the average rate of dispersers produced by a patch,
and when this rate is multiplied by the expected sojourn time 1/(α + ν) in the
disperser pool, one gets the local population’s contribution to the disperser pool.
Equation (5.24) says that at equilibrium this contribution equals the steady disperser
density (i.e., dispersers per patch).

In order to derive a characteristic equation and apply our theory, we have to show
that the right-hand sides of (5.20) and (5.21) are differentiable in bt and Dt. As they
are linear in bt, we only have to prove differentiability of ϕ 	→ X(τ, a, ϕ) as a mapping
on C. The differentiability of ϕ 	→ F(a, ϕ) then follows immediately, and to obtain
the desired result we only have to assume differentiability of the real functions μ and
γ.

Assume that g is differentiable. Differentiating the integrated form of (5.13),
(5.14),

X(τ, a, ϕ) =

∫ τ

0

g(X(σ, a, ϕ)) dσ + α

∫ τ

0

ϕ(σ − a) dσ,(5.25)

with respect to ϕ at D, one obtains the linear equation

∂

∂ϕ
X(τ, a,D)ϕ =

∫ τ

0

g′(X(σ, a,D))
∂

∂ϕ
X(σ, a,D)ϕdσ+α

∫ τ

0

ϕ(σ−a) dσ,(5.26)

the solution of which is

∂

∂ϕ
X(τ, a,D)ϕ = α

∫ τ

0

e
∫ τ
σ

g′(X(s,a,D)) dsϕ(σ − a) dσ.(5.27)

Let us now assume that the catastrophe rate μ and the per capita emigration
rate k are constant. The survival probability then becomes independent of ϕ: F(a) =
exp(−μa), and the equations (5.20), (5.21) simplify to

b(t) =

∫ ∞

0

μe−μabt(−a) da,(5.28)

d

dt
D(t) = −(α + ν)D(t)

+ k

∫ ∞

0

X(a, a,Dt)e
−μabt(−a) da,(5.29)

while the steady state condition (5.24) simplifies to

D =
μk

α + ν

∫ ∞

0

X(a, a,D)e−μada.(5.30)

We take the per capita emigration rate k as a bifurcation parameter. Note that
X(a, a,D), being the solution of dx/da = r(x)x− kx + αD, x(0) = 0, depends on k,
so in general one cannot solve (5.30) explicitly for k as a function of D.
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Fig. 1. Equilibrium values for the immigration rate αD in the case of an Allee effect with
f(x,D) given by (5.32). Parameters: α = 0.5, μ = 0.2, ν = 0.1, H = 1, β = 18, c = 1, d = 8.

Next we assume that there is an Allee effect, that is, that small local populations
have a negative intrinsic growth rate [1] and therefore cannot persist without a suffi-
ciently large immigration rate. We model this by assuming that the per capita birth
rate depends on the local population size x as

βx

H + x
(5.31)

for some positive constants β and H. For a discussion of the rationale for this choice
and its biological interpretation we refer to [18, 38]. Furthermore, if we make the
standard assumption of density-dependent death rate as in the logistic equation, we
end up with

f(x,D) =

(
βx

H + x
− c− dx

)
x− kx + αD(5.32)

for some positive constants c and d.
It is clear that with the choice (5.32), the curve defined by (5.30) in the kD-plane

does not touch the axis D = 0. As a matter of fact, as shown in [39], equation
(5.30) defines a closed curve like the one depicted in Figure 1, at least for some
choices of parameter values. As seen in Figure 1, there is a saddle-node bifurcation at
k ≈ 0.2 and another one at k ≈ 4.9. In contrast to the situation with the transcritical
bifurcation treated in subsection 5.1, we cannot allude here to the principle of exchange
of stability to determine which of the two branches is stable and which is not. That
information has to be deduced from the characteristic equation, which we now derive.

The linearized version of (5.28), (5.29) is

ψ(t) =

∫ ∞

0

μe−μaψ(t− a) da,(5.33)
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d

dt
ϕ(t) = −(α + ν)ϕ(t) + k

∫ ∞

0

Y (a,D)ψ(t− a) da

+ αk

∫ ∞

0

Z(a,D)ϕ(t− a) da,(5.34)

where

Y (a,D) = X(a, a,D)e−μa,(5.35)

Z(a,D) = μ

∫ ∞

a

e
∫ σ
σ−a

g′(X(τ,σ,D))dτe−μσ dσ.(5.36)

Taking the Laplace transform of (5.33), (5.34), one obtains

ψ̂(λ) =
μ

μ + λ
ψ̂(λ),(5.37)

λϕ̂(λ) − ϕ(0) = −(α + ν)ϕ̂(λ) + kŶ (λ,D)ψ̂(λ) + αkẐ(λ,D)ϕ̂(λ).(5.38)

Hence the characteristic equation is

det

(
1 − μ

μ+λ 0

−kŶ (λ,D) λ + α + ν − αkẐ(λ,D)

)
= 0.(5.39)

λ = 0 is always a root of (5.39). The reason is the indeterminacy of b explained above.
The situation is analogous to the simple ODE SIS-model of mathematical epidemi-
ology. If one treats the SIS model as a two-dimensional ODE, zero is an eigenvalue,
which disappears after the substitution S = N − I (N is the total population). Simi-
larly, in our case the stability of the steady state is determined by the location in the
complex plane of the roots of the equation

λ + α + ν − αkẐ(λ,D) = 0.(5.40)

For λ �= −(α + ν), (5.40) is equivalent to

1 − αk
Ẑ(λ,D)

λ + α + ν
= 0,(5.41)

and to this equation we can apply Nyquist’s criterion (Corollary 2.20). The (numer-
ical) results show that the upper branch (the thick line in Figure 1) is stable, while
the lower branch (thin line) is unstable.

6. Discussion. The principle of linearized stability and the Hopf bifurcation
theorem are among the fundamental results of the theory of ODEs. In the past three
decades they have been generalized in various ways to infinite dimensional dynamical
systems. In this paper we have used perturbation theory of adjoint semigroups (sun-
star-calculus) to prove the principle of linearized stability and the Hopf bifurcation
theorem for Volterra functional equations. The sun-star-framework made it possible
to treat fully nonlinear functional equations as semilinear problems by transforming
the original equation into an abstract integral equation of variation-of-constants type.

The transformation of the fully nonlinear problem into a seminlinear problem
was made possible by extending the originally given state space. The idea that one
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should extend the state space when dealing with Hopf bifurcation for delay differential
equations was introduced by Chow and Mallet-Paret in 1977 in a pioneering paper
[7]. The sun-star-framework provides a functional analytic elaboration of this idea.

The principle of linearized stability consists of two parts. The first part concerns
stability and says that if all roots of the so-called characteristic equation associated
with a steady state have negative real part, then the steady state is exponentially
stable. The second part states that if at least one characteristic root has positive real
part, then the steady state is unstable.

The proof of the stability part of the principle of linearized stability is relatively
simple as it uses only standard estimates and Gronwall’s inequality, and therefore this
part can be rather easily generalized from the ODE setting to infinite dimensional
systems. In contrast, the proof of the instability part is geometric in nature and is
even in the finite dimensional case much more difficult than the proof of the stability
part. As a consequence, infinite dimensional generalizations of the instability part are
comparatively rare in the literature. In many cases authors hint that the instability
part is valid, but without giving a formal proof.

In the important paper [19], Desch and Schappacher proved both the stability
and instability parts of the principle of linearized stability for nonlinear perturbations
of generators of strongly continuous semigroups. Following their proof, Clément et al.
[11] proved both parts within the context of adjoint semigroups and Thieme [53] within
the framework of integrated semigroups. In the book [23] sun-star-calculus was sys-
tematically used for stability and bifurcation analysis of delay differential equations.

Our main motivation comes from structured population dynamics. In their sem-
inal paper [30], Gurtin and MacCamy proved the stability part of the principle of
linearized stability for age-structured populations but passed the instability part with
silence. The same applies to most of the papers published in the early 1980s (e.g.,
[31, 32]). In the first comprehensive book [56] on the mathematical theory of age-
structured population dynamics, Webb treated both the stability and instability parts
using semigroup methods. Finally, in a somewhat neglected paper [50], Prüß proved
both the stability and instability parts in a very general setting of several interacting
age-structured populations.

When one moves from age-structured models to general physiologically structured
models, even results on stability become rare. Tucker and Zimmermann [55] proved
the stability part for a class of models, which, however, did not allow for a finite
number of states-at-birth. Calsina and Saldaña [5] considered a size-structured model
in which all individuals are born with the same size and gave conditions for the
existence of a global attractor. They also gave sufficient conditions for conditional
convergence to a steady state. Here conditional convergence means that the size
distribution converges to a steady distribution in L1, given that the total population
converges.

There is also a vast literature on the stability of Volterra integral equations

x(t) =

∫ t

0

k(s)x(t− s)ds + G(x)(t);(6.1)

see [29] and the references and historical remarks therein. These results are usually
based on a classical theorem of Paley and Wiener [48] or generalizations thereof. In
its basic form, the Paley–Wiener theorem says that if the kernel k belongs to L1(R+),
then its resolvent kernel r is in L1(R+) if the characteristic equation

det
(
E − k̂(λ)

)
= 0(6.2)
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has no roots in the closed half-plane {λ ∈ C : Reλ ≥ 0}. Using the fact that the
solution x of (6.1) satisfies

x(t) = G(x)(t) +

∫ t

0

r(t− s)G(x)(s)ds,(6.3)

it is easy to show that if G(x) is of higher order, then the zero solution of (6.1)
is stable. If (6.2) has no roots in {λ ∈ C : Reλ ≥ −ε} for some ε > 0 (this is the
case, for instance, if k has compact support), then 0 is exponentially stable. So the
stability part of the principle of linearized stability is well known for Volterra integral
equations. On the other hand, a clear statement of the instability part seems to be
lacking in the literature (however, see [21]). In section 3.5 we showed that our general
theory applies to equations of the type (6.1) (at least if k has compact support), and
hence it provides the instability part of the principle of linearized stability for Volterra
integral equations.

In some respects the theory presented in this paper is not general enough. It does
not, for instance, encompass all population dynamical applications that we want to
consider. First of all, we have made the assumption of a finite delay h. In applications
to population dynamics this corresponds to the assumption of a maximum individual
life span. Although true in nature, it disregards the (mathematically) important case
of exponentially distributed lifetimes. However, this is not a serious defect. The as-
sumption was made to have sun-reflexivity, which simplified analysis for the following
reason: For a norm continuous function f : [0,∞)→X�∗, the weak∗- integral∫ t

0

T�∗
0 (t− σ)f(σ)dσ(6.4)

takes values in X�� (Proposition 2.2). The key advantage of assuming sun-reflexivity
is that then the integral automatically takes values in j(X), so that we can apply j−1

to obtain an element of X. If, by lack of compactness, we do not have sun-reflexivity,
it may still be the case that this integral takes values in j(X) if we restrict f to take
values in a certain subspace of X�∗. For (nonlinear) perturbation operators taking
values in such a subspace, the complete machinery retains its strength and all the
results carry through. We intend to elaborate on this very useful remark in detail in a
separate publication, with two motivating examples: infinite delay and a continuum
of birth states.

Secondly, the unknown x(t), which in population dynamical applications is a
vector consisting of the components of the birth rate and the environmental interaction
variables, is a vector in RN . There are important applications, for instance, models of
size-dependent cannibalism [8], which require an infinite dimensional environmental
condition. Prüß [50] treated an age-structured model, and Calsina and Saldaña [6] a
size-structured model with an infinite dimensional environmental condition by other
means, but it is unclear how the results of the present paper could be extended to
cover that situation.

Thirdly, because the Nemytskĭı operator from L1([−h, 0];RN ) to L1([−h, 0];RN )
generated by a smooth function g : RN →RN is Fréchet differentiable if and only
if g is affine, we have to assume in applications to population dynamics that, for
instance, the death rate is of the form μ(ξ, I) = μ0(ξ) + μ1(ξ)I, where ξ is the
individual state variable and I the interaction variable. Interestingly, this affine form,
which corresponds to mass action interaction, is biologically the most relevant. In the
future we shall investigate this aspect in detail in collaboration with J. A. J. Metz.
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Appendix. Proof of Theorem 2.8. In this appendix we prove that if T0 is
eventually compact and if the perturbation B : X→X�∗ is a compact operator, then
the semigroup T defined by (LAIE) is eventually compact. This does not seem to have
been stated in the literature yet. Clément et al. [13] proved the eventual compactness
of the perturbed semigroup under the slightly weaker assumption that R(λ,A�∗

0 )B is
compact, but in addition to that they needed the assumption that

t 	→
∫ t

0

T�∗
0 (t− τ)BT (τ)dτ

is eventually uniformly continuous (that is, continuous from [t0,∞) to L(X) equipped
with the uniform operator topology, for some t0).

The corresponding result for the case in which B maps X into X is known [26,
Proposition 1.14, p. 166]. Without the compactness assumption on B the statement
is false [26, Example 1.15, p. 166]. Therefore, the task in Exercise 2.5 of [23, p. 57 ]
is impossible.

The proof in [26] is rather opaque, as it is based on statements like “without
loss of generality . . . we may . . . assume that [X] is C[0, 1]” [26, p. 525]. The proof
provided here, which also covers the case in which the range of B lies in X, is more
straightforward as it depends only on basic properties of semigroups and integrals.

Note. After we had finished this paper, Horst Thieme pointed out to us that
Theorem 2.8 is an easy consequence of [54, Theorem 3], which he proved using the
theory of integrated semigroups.

Proposition A.1. Let B : X→X�∗ be compact. Then j−1
∫ t

0
T�∗

0 (τ)Bdτ is a
compact operator from X to X.

Proof. By Schauder’s theorem, B∗ : X�∗∗ →X∗ is compact, and hence so is its
“restriction” to X�. Because the composition of a compact operator and a bounded
operator is compact, it follows that B∗ ∫ t

0
T�

0 (τ)dτ : X� →X∗ is compact. Using
Schauder’s theorem once more, we conclude that

((
B∗
∫ t

0

T�
0 (τ)dτ

)∗)∣∣∣X = j−1

∫ t

0

T�∗
0 (τ)Bdτ

is compact, as asserted.

Let V be a subset of a Banach space. In what follows, conV denotes the closed
convex hull of V , that is, the smallest closed convex set that contains V . Without
any specifications, closedness refers to the norm topology. When other topologies are
considered, the topology is indicated by a subscript. For instance, if V ⊂ X∗, then
conσ(X∗,X) V is the smallest weakly∗ closed convex set that contains V .

The closed ball of radius r with center at x is denoted by U(x, r).

Theorem A.2. Let B : X→X�∗ be compact. Then j−1
∫ t

0
T�∗

0 (τ)BT (t− τ)dτ
is a compact operator from X to X.

Proof. Because T is a strongly continuous semigroup on X, the function y : τ 	→
T (t − τ)x is continuous from [0, t] to X, and its range belongs to U(0,M) for all

x ∈ U(0, 1) for some M ≥ 1. Because j−1
∫ t

0
T�∗

0 (τ)Bdτ is compact,

j−1

∫ t

0

T�∗
0 (τ)Bdτ(U(0,M))
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is relatively compact, and hence

con j−1

∫ t

0

T�∗
0 (τ)Bdτ(U(0,M))

is compact [51, Theorem 3.25, p. 72]. The proof is therefore completed if we can show
that

j−1

∫ t

0

T�∗
0 (τ)BT (t− τ)xdτ ∈ t con j−1

∫ t

0

T�∗
0 (τ)Bdτ(U(0,M)).

This last statement is proved in the next lemmas.
Lemma A.3. Let t 	→ x∗(t) be a weakly∗ continuous function from [a, b] to X∗.

Then ∫ b

a

x∗(t)dt ∈ (b− a) conσ(X∗,X) x
∗([a, b]).

Proof. First note that by the uniform boundedness principle a weakly∗ continu-
ous function is norm bounded on compact intervals. By the definition of the weak∗

integral, one has that
∫ b

a
x∗(t)dt belongs to the ball

U

(
0, (b− a) sup

a≤t≤b
‖x∗(t)‖

)
,

which is weakly∗ compact by the Banach–Alaoglu theorem. Clearly x∗([a, b]) ⊂
U
(
0, supa≤t≤b ‖x∗(t)‖

)
, which is convex and weakly∗ compact. Hence

conσ(X∗,X) x
∗([a, b])

is weakly∗ compact. Theorem 3.27 of [51] now implies the assertion.
Lemma A.4. Let y : [0, t]→X be continuous. Then

x0 := j−1

∫ t

0

T�∗
0 (τ)By(t− τ)dτ ∈ t con j−1

∫ t

0

T�∗
0 (τ)Bdτ y([0, t]).

Proof. Because j−1
∫ t

0
T�∗

0 (τ)Bdτ is a compact operator from X to X (Propo-

sition A.1), the set V := j−1
∫ t

0
T�∗

0 (τ)Bdτ y([0, t]) is relatively compact in X, and
hence t conV is compact [51, Theorem 3.25, p. 72]. It follows that t con j(V ) =
j(t conV ) is compact in X�∗. Because σ(X�∗, X�) is weaker than the norm topol-
ogy of X�∗, the set t con j(V ) is also σ(X�∗, X�)-compact.

Suppose x0 does not belong to t conV or, equivalently, jx0 /∈ t con j(V ). A version
of the Hahn–Banach theorem [51, Theorem 3.4, p. 58] then implies that there exist
x� ∈ X� and γ ∈ R such that

Re 〈x�, jx0〉 < γ < Re 〈x�, x�∗〉 for all x�∗ ∈ t con j(V ).

So {
x�∗ ∈ X�∗ : Re〈x�, x�∗ − jx0〉 < γ

}
is a σ(X�∗, X�)-neighborhood of jx0 which does not intersect t con j(V ). Hence
jx0 /∈ t conσ(X�∗,X�) j(V ). But this contradicts Lemma A.3.
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Theorem 2.8 is now an immediate corollary of Theorem A.2.
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Abstract. Nonlinear Schrödinger equations (NLSs) with focusing power nonlinearities have
solitary wave solutions. The spectra of the linearized operators around these solitary waves are
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1. Introduction. Consider the nonlinear Schrödinger equation (NLS) with fo-
cusing power nonlinearity,

(1.1) i∂tψ = −Δψ − |ψ|p−1ψ,

where ψ(t, x) : R × R
n → C and 1 < p < ∞. Such equations arise in many physical

settings, including nonlinear optics, water waves, and quantum physics. Mathemati-
cally, nonlinear Schrödinger equations with various nonlinearities are studied as basic
models of nonlinear dispersive phenomena. In this paper, we stick to the case of a
pure power nonlinearity for the sake of simplicity.

For a certain range of the power p (see below), the NLS (1.1) has special solutions
of the form ψ(t, x) = Q(x) eit. These are called solitary waves. The aim of this paper
is to study the spectra of the linearized operators which arise when (1.1) is linearized
around solitary waves. The main motivation for this study is that properties of these
spectra are intimately related to the problem of the stability (orbital and asymptotic)
of these solitary waves and to the long-time dynamics of solutions of NLSs.

Let us begin by recalling some well-known facts about (1.1). Standard references
include [5, 33, 34]. Many basic results on the linearized operators we study here were
proved by Weinstein [38, 39]. The Cauchy (initial value) problem for (1.1) is locally
(in time) well-posed in H1(Rn) if 1 < p < pmax, where

pmax := 1 + 4/(n− 2) if n ≥ 3; pmax := ∞ if n = 1, 2.

Moreover, if 1 < p < pc, where

pc := 1 + 4/n,
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the problem is globally well-posed. For p ≥ pc, there exist solutions whose H1-norms
go to ∞ (blow up) in finite time. In this paper, the cases p < pc, p = pc, and p > pc
are called subcritical, critical, and supercritical, respectively.

The set of all solutions of (1.1) is invariant under the symmetries of translation,
rotation, phase, Galilean transform, and scaling: if ψ(t, x) is a solution, then so is

ψ̃(t, x) := λ2/(p−1)ψ
(
λ2t, λRx− λ2tv − x0

)
exp

{
i

[
λRx · v

2
− λ2tv2

4
+ γ0

]}

for any constant x0, v ∈ R
n, λ > 0, γ0 ∈ R, and R ∈ O(n). When p = pc, there is an

additional symmetry called the “pseudoconformal transform” (see [34, p. 35]).
We are interested here in solutions of (1.1) of the form

(1.2) ψ(t, x) = Q(x) eit,

where Q(x) must therefore satisfy the nonlinear elliptic equation

(1.3) −ΔQ− |Q|p−1Q = −Q.

Any such solution generates a family of solutions by the above-mentioned symmetries,
called solitary waves. Solitary waves are special examples of nonlinear bound states,
which, roughly speaking, are solutions that are spatially localized for all time. More
precisely, one could define nonlinear bound states to be solutions ψ(t, x) which are
nondispersive in the sense that

sup
t∈R

inf
x0∈Rn

‖|x|ψ(t, x− x0)‖L2
x(Rn) < ∞.

Testing (1.3) with Q̄ and x.∇Q̄ and taking real parts, one arrives at the Pohozaev
identity [28]

(1.4)
1

2

∫
|Q|2 = b

1

p + 1

∫
|Q|p+1,

1

2

∫
|∇Q|2 = a

1

p + 1

∫
|Q|p+1,

where

a =
n(p− 1)

4
, b =

n + 2 − (n− 2)p

4
.

The coefficients a and b must be positive, and hence a necessary condition for existence
of nontrivial solutions is p ∈ (1, pmax).

For p ∈ (1, pmax), and for all space dimensions, there exists at least one nontrivial
radial solution Q(x) = Q(|x|) of (1.3) (existence goes back to [28]). This solution,
called a nonlinear ground state, is smooth, decreases monotonically as a function of
|x|, decays exponentially at infinity, and can be taken to be positive: Q(x) > 0. It
is the unique positive solution. (See [34] for references for the various existence and
uniqueness results for various nonlinearities.) The ground state can be obtained as the
minimizer of several different variational problems. One such result we shall briefly
use later is that, for all n ≥ 1 and p ∈ (1, pmax), the ground state minimizes the
Gagliardo–Nirenberg quotient

(1.5) J [u] :=

(∫
|∇u|2

)a (∫
u2
)b∫

up+1
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among nonzero H1(Rn) radial functions (see Weinstein [38]).
For n = 1, the ground state is the unique H1(R)-solution of (1.3) up to translation

and phase [5, Theorem 8.1.6, p. 259]. For n ≥ 2, this is not the case: there are
countably infinitely many radial solutions (still real-valued), denoted in this paper
by Q0,k,p(x), k = 0, 1, 2, 3, . . . , each with exactly k positive zeros as a function of |x|
(Strauss [32]; see also [2, 3]). In this notation, Q0,0,p is the ground state.

There are also nonradial (and complex-valued) solutions, for example, those sug-
gested by Lions [22] with nonzero angular momenta,

n = 2, Q = φ(r) eimθ in polar coordinates r, θ;

n = 3, Q = φ(r, x3) e
imθ in cylindrical coordinates r, θ, x3;

and similar definitions for n ≥ 4. When n = 2, some of these solutions are denoted
here by Qm,k,p, with p ∈ (1, pmax) and k = 0, 1, 2, . . . denoting their numbers of
positive zeros. See section 4 for more details.

We will refer to all the solitary waves generated by Q0,0,p as nonlinear ground
states and all others as nonlinear excited states. We are not aware of a complete
characterization of all solutions of (1.3) or of (1.1). For example, the uniqueness of
Qm,k,p with m, k ≥ 1 is apparently open. Also, we do not know if there are “breather”
solutions, analogous to those of the generalized KdV equations. In this paper we will
mainly study radial solutions (and in particular the ground state), but we will also
briefly consider nonradial solutions numerically in section 4.

To study the stability of a solitary wave solution (1.2), one considers solutions of
NLSs of the form

(1.6) ψ(t, x) = [Q(x) + h(t, x)] eit.

For simplicity, let Q = Q0,0,p be the ground state for the remainder of this introduction
(see section 4 for the general case). The perturbation h(t, x) satisfies an equation

(1.7) ∂th = Lh + (nonlinear terms),

where L is the linearized operator around Q:

(1.8) Lh = −i
{
(−Δ + 1 −Qp−1)h− p−1

2 Qp−1(h + h̄)
}
.

It is convenient to write L as a matrix operator acting on
[

Reh
Imh

]
,

(1.9) L =

[
0 L−

−L+ 0

]
,

where

(1.10) L+ = −Δ + 1 − pQp−1, L− = −Δ + 1 −Qp−1.

Clearly the operators L− and L+ play a central role in the stability theory.
They are self-adjoint Schrödinger operators with continuous spectrum [1,∞) and with
finitely many eigenvalues below 1. In fact, when Q is the ground state, it is easy to
see that L− is a nonnegative operator, while L+ has exactly one negative eigenvalue
(these facts follow from Lemma 2.2 below).

Because of its connection to the stability problem, the object of interest to us in
this paper is the spectrum of the non-self-adjoint operator L. The simplest properties
of this spectrum are the following:
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1. For all p ∈ (1, pmax), 0 is an eigenvalue of L.
2. The set Σc := {ir : r ∈ R, |r| ≥ 1} is the continuous spectrum of L.

(See the next section for the first statement. The second is easily checked.)
It is well known that the exponent p = pc is critical for stability of the ground

state solitary wave (as well as for blow-up of solutions). For p < pc the ground
state is orbitally stable, while for p ≥ pc it is unstable (see [40, 14]). These facts
have immediate spectral counterparts: for p ∈ (1, pc], all eigenvalues of L are purely
imaginary, while for p ∈ (pc, pmax), L has at least one eigenvalue with positive real
part.

The goal of this paper is to get a more detailed understanding of the spectrum
of L using both analytical and numerical techniques. See [13, 7, 8, 9] for related
work. This finer information is essential for understanding the long-time dynamics
of solutions of NLSs : (i) To prove asymptotic (rather than simply orbital) stability,
one often assumes either the linearized operator L has no nonzero eigenvalue, or its
nonzero eigenvalues are ±ri with 0.5 < r < 1. These assumptions need to be verified.
(ii) To determine the rate of relaxation to stable solitary waves when there is a unique
pair of nonzero eigenvalues ±ri with 0 < r < 1, heuristic arguments suggest that [1/r],
the smallest integer no larger than 1/r, may decide the rate. (iii) To construct stable
manifolds of unstable solitary waves, one needs to know if there are eigenvalues which
are not purely imaginary and to find their locations. These are highly active areas of
current research; see, e.g., [15, 18, 30] and the references therein.

Interesting questions with direct relevance to these stability-type problems include
the following:

(i) Can one determine (or estimate) the number and locations of the eigenvalues
of L lying on the segment between 0 and i?

(ii) Can ±i, the thresholds of the continuous spectrum Σc, be eigenvalues or
resonances?

(iii) Can eigenvalues be embedded inside the continuous spectrum?
(iv) Can the linearized operator have eigenvalues with nonzero real and imaginary

parts (this is already known not to happen for the ground state—see the next
section—and so we pose this question with excited states in mind).

(v) Are there bifurcations, as p varies, of pairs of purely imaginary eigenvalues
into pairs of eigenvalues with nonzero real part (a stability/instability tran-
sition)?

The detailed discussion of the numerical methods is postponed to the appendix.
Roughly speaking, we first compute the nonlinear ground state by iteration and renor-
malization and then compute the spectra of various suitably discretized linear opera-
tors.

Let us now summarize the main results and observations of this paper.
1. Numerics for spectra. When Q is the ground state, we compute numerically

the spectra of L, L+, and L− as functions of p; see Figures 1–5. In these
figures, the horizontal axis is the logarithm of p − 1. The vertical axis is
comprised of the following: Solid lines are purely imaginary eigenvalues of L
(without i) for p ∈ (1, pc); dashed lines are real eigenvalues of L; dotted lines
are eigenvalues of L+; dash-dot lines are eigenvalues of L−. We have ignored
imaginary eigenvalues of the discretized operators with modulus greater than
one, which correspond to the continuous spectra of the original operators.
Figure 1 is the one-dimensional case. Figures 2 and 3 are the spectra of these
operators restricted to radial functions for space dimensions n = 2 and 3.
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Fig. 1. Spectra of L, L+, and L− for n = 1 with logarithmic axis for the values of p−1. (Solid
line: purely imaginary eigenvalues of L; dashed line: real eigenvalues of L; dotted line: eigenvalues
of L+; dash-dot line: eigenvalues of L−).
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Fig. 2. Spectra of L, L+, and L− restricted to radial functions in the two-dimensional space
with logarithmic axis for the values of p− 1. (Solid line: purely imaginary eigenvalues of L; dashed
line: real eigenvalues of L; dotted line: eigenvalues of L+; dash-dot line: eigenvalues of L−).

Figures 4 and 5 are for n = 2 and are the spectra restricted to functions of
the form φ(r)eiθ and φ(r)ei2θ, respectively. These pictures shed some light
on questions (i), (iv), and (v) above and to a certain extent on question (ii).
Figures 10–15 are concerned with the spectra of excited states; see the dis-
cussion below.

2. One-dimensional phenomena. The case n = 1 is the easiest case to handle an-
alytically. In section 3, we undertake a detailed study of the one-dimensional
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Fig. 3. Spectra of L, L+, and L− restricted to radial functions in the three-dimensional space.
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Fig. 4. Spectra of L, L+, and L− restricted to functions of the form φ(r)eiθ in the two-
dimensional space.

problem, giving rigorous proofs of a number of phenomena observed in Fig-
ure 1. One simple such phenomenon is the (actually classical) fact that the
eigenvalues of L+ and L− exactly coincide, with the exception of the first
(negative) eigenvalue of L+ (note that this appears to be a strictly one-
dimensional phenomenon: the eigenvalues of L+ and L− are different for
n ≥ 2, as Figures 2–5 indicate). In fact, we are able to prove sufficiently
precise upper and lower bounds on the eigenvalues of L (lying outside the
continuous spectrum) to determine their number, and estimate their posi-
tions, as functions of p (see Theorem 3.8). We use two basic techniques: an
embedding of L+ and L− into a hierarchy of related operators, and a novel
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Fig. 5. Spectra of L, L+, and L− restricted to functions of the form φ(r)ei2θ in the two-
dimensional space.

variational problem for the eigenvalues, in terms of a fourth-order self-adjoint
differential operator (see Theorem 3.6). In this way, we get a fairly complete
answer to question (i) above for n = 1.

3. Variational characterization of eigenvalues. We present self-adjoint varia-
tional formulations of the eigenvalue problem for L in any dimension (see
Summary 2.5), including the novel n = 1 formulation mentioned above. In
principle, these provide a means of counting/estimating the eigenvalues of L
(and hence addressing question (i) above in higher dimensions), though we
obtain only such detailed information for n = 1.

4. Bifurcation at p = pc. In each of Figures 1–3, a pair of purely imaginary
eigenvalues for p < pc appears to collide at 0 at p = pc and becomes a pair
of real eigenvalues for p > pc. This is exactly the stability/instability tran-
sition for the ground state. We rigorously verify this picture, determining
analytically the spectrum near 0 for p near pc and making concrete a bifur-
cation picture suggested by M. I. Weinstein (personal communication); see
Theorem 2.6. This gives a partial answer to question (v) above. It is worth
pointing out that for n = 1, the imaginary part of the (purely imaginary)
eigenvalue bifurcating for p < pc is always larger than the third eigenvalue of
L+ (the first is negative and the second is zero)—this is proved analytically
in Theorem 3.8. For n ≥ 2, however, they intersect at p ≈ 2.379 for two
dimensions and p ≈ 2.046 for three dimensions, (see Figures 1–3).

5. Interlacing property. A numerical observation is that in all the figures, the
adjacent eigenvalues of L each seem to bound an eigenvalue of L+ and one of
L− (at least for p small enough). We are able to establish this “interlacing”
property analytically in dimension one (see Theorem 3.8).

6. Threshold resonance. An interesting fact observed numerically (Figure 1) is
that, in the one-dimensional case, as p → 3, one eigenvalue curve converges
to ±i, the threshold of the continuous spectrum. One might suspect that, at
p = 3, ±i corresponds to a resonance or embedded eigenvalue. It is indeed
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a resonance: we find an explicit nonspatially-decaying “eigenfunction” and
show numerically in section 3.7 that the corresponding eigenfunctions con-
verges, as p → 3, to this function. This observation addresses question (ii)
above for n = 1.

7. Excited states. In section 4 we consider the spectra of linearized operators
around excited states with nonzero angular momenta. We observe that, in
addition to the bifurcation mentioned above at p = pc, there are complex
eigenvalues which are neither real nor purely imaginary (addressing ques-
tion (iv) above; see Figures 10–15), symmetric w.r.t. both real and purely
imaginary axes. These complex eigenvalues also come from bifurcation: as p
decreases, a quadruple of complex eigenvalues will collide into the imaginary
axis away from 0 and then split into four purely imaginary eigenvalues. It
seems that all eigenvalues lie on the imaginary axis for p ∈ (1, p∗) for some p∗
close to 1. In other words, numerically these excited states are spectrally stable
for p close to 1. It is possible that the numerical error increases enormously
as p → 1+ due to the artificial boundary condition, since the spectrum is
approaching the continuous one for p = 1. This has to be verified analytically
in the future. Even if they are indeed spectrally stable, it is not clear if they
are nonlinearly stable.

It is worth mentioning some important questions we cannot answer:

1. We are so far unable to give precise rigorous estimates on the number and
positions of the eigenvalues of L for n ≥ 2 (question (i) above).

2. We cannot exclude the possible existence of embedded eigenvalues (question
(iii) above).

3. We do not know a nice variational formulation for eigenvalues of L when Q
is an excited state (this problem is also linked to question (i) above).

4. We do not have a complete characterization of solitary waves or, more gen-
erally, of nonlinear bound states.

We end this introduction by describing some related numerical work. Buslaev
and Grikurov [4] and Grikurov [12] study the linearized operators for solitary waves
of the following one-dimensional NLS with p < q:

iψt + ψxx + |ψ|pψ − α|ψ|qψ = 0.

They draw the bifurcation picture for eigenvalues near zero when the parameter α > 0
is near a critical value with the frequency of the solitary wave fixed. This picture is
similar to Weinstein’s picture, which we study in section 2.3.

Demanet and Schlag [9] consider the same linearization as us and study the super-
critical case n = 3 and p ≤ 3 near 3. In this case, it is numerically shown that both
L+ and L− have no eigenvalues in (0, 1] and no resonance at 1, a condition which
implies (see [30]) that L has no purely imaginary eigenvalues in [−i, 0)∪ (0, i] and no
resonance at ±i.

We outline the rest of the paper: in section 2 we consider general results for all
dimensions for ground states. In section 3 we consider one-dimensional theory. In
section 4 we discuss the spectra for excited states with angular momenta. In the
appendix we discuss the numerical methods.

Notation. For an operator A, N(A) =
{
φ ∈ L2| Aφ = 0

}
denotes the nullspace

of A. Ng(A) = ∪∞
k=1N(Ak) denotes the generalized nullspace of A. The L2-inner

product in R
n is (f, g) =

∫
Rn f̄g dx.
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2. Revisiting the general theory for ground states. In this section we
review mostly well-known results which are valid for all dimensions and for the ground
state Q(x) = Q0,0,p(x), and we give new proofs of some statements.

We begin by recalling some well-known results for the linearized operator L de-
fined by (1.8). As is well known for linearized Hamiltonian systems (and can be
checked directly), if λ is an eigenvalue, then so are −λ and ±λ̄. Hence if λ �= 0 is
real or purely imaginary, it comes in a pair. If it is complex with nonzero real and
imaginary parts, it comes in a quadruple. It follows from nonlinear stability and in-
stability results [40, 14] that all eigenvalues are purely imaginary if p ∈ (1, pc) and
that there is at least one eigenvalue with positive real part when p ∈ (pc, pmax). It is
also known (see, e.g., [8]) that the set of isolated and embedded eigenvalues is finite,
and the dimensions of the corresponding generalized eigenspaces are finite.

2.1. L+, L−, and the generalized nullspace of L. Here we recall the makeup
of the generalized nullspace Ng(L) of L. Easy computations give

(2.1) L+Q1 = −2Q, L−Q = 0, where Q1 := ( 2
p−1 + x · ∇)Q,

and

(2.2) L−xQ = −2∇Q, L+∇Q = 0.

In the critical case p = pc, we also have

(2.3) L−(|x|2Q) = −4Q1, L+ρ = |x|2Q

for some radial function ρ(x) (for which we do not know an explicit formula in terms
of Q). Denote

(2.4) δppc
=

{
1, p = pc,
0, p �= pc.

For 1 < p < pmax, the generalized nullspace of L is given by (see [39])

(2.5) Ng(L) = span

{[
0
Q

]
,

[
0
xQ

]
, δppc

[
0

|x|2Q

]
,

[
∇Q
0

]
,

[
Q1

0

]
, δppc

[
ρ
0

]}
.

In particular

dimNg(L) = 2n + 2 + 2δppc
.

The fact that the vectors on the right-hand side of (2.5) lie in Ng(L) follows immedi-
ately from the computations (2.1)–(2.3). That these vectors span Ng(L) is established
in [39, Theorems B.2 and B.3]. These theorems rely on the nondegeneracy of the ker-
nel of L+.

Lemma 2.1. For all n ≥ 1 and p ∈ (1, pmax),

N(L+) = span {∇Q} .

This lemma is proved in [39] for certain n and p (n = 1 and 1 < p < ∞, or n = 3
and 1 < p ≤ 3) and is completely proved later by a general result of [19]. We present
here a direct proof of this lemma, without referring to [19], relying only on oscillation
properties of Sturm–Liouville ODE eigenvalue problems. A similar argument (which
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in the present case, however, applies only for p ≤ 3) appears in [10, Appendix C]. For
completeness, we also include some arguments of [39].

A new proof. We begin with the cases n ≥ 2. Since the potential in L+ is
radial, any solution of L+v = 0 can be decomposed as v =

∑
k≥0

∑
j∈Σk

vk,j(r)Yk,j(x̂),
where r = |x|, x̂ = x

r is the spherical variable, and Yk,j denote spherical harmonics:
−ΔSn−1Yk,j = λkYk,j (a secondary multi-index j, appropriate to the dimension, runs
over a finite set Σk for each k). Then L+v = 0 can be written as Akvk,j = 0, where,
for k = 0, 1, 2, 3, . . . ,

A0 = −∂2
r − n− 1

r
∂r + 1 − pQp−1(r), Ak = A0 + λkr

−2, λk = k(k + n− 2).

Case 1. k = 1. Note that ∇Q = Q′(r)x̂. Since A1Q
′ = 0 and Q′(r) < 0

(monotonicity of the ground state) for r ∈ (0,∞), Q′(r) is the unique ground state of
A1 (up to a factor), and so A1 ≥ 0, A1|{Q′}⊥ > 0.

Case 2. k ≥ 2. Since Ak = A1 + (λk − λ1)r
−2 and λk > λ1, we have Ak > 0, and

hence Akvk = 0 has no nonzero L2-solution.
Case 3. k = 0. Note that the first eigenvalue of A0 is negative because (Q,A0Q) =

(Q,−(p − 1)Qp) < 0. The second eigenvalue is nonnegative due to (2.7) and the
minimax principle. Hence, if there is a nonzero solution of A0v0 = 0, then 0 is
the second eigenvalue. By Sturm–Liouville theory, v0(r) can be taken to have only
one positive zero, which we denote by r0 > 0. By (2.1), A0Q = −(p − 1)Qp and
A0Q1 = −2Q. Hence (Qp, v0) = 0 = (Q, v0). Let α = (Q(r0))

p−1. Since Q′(r) < 0
for r > 0, the function Qp − αQ = Q(Qp−1 − α) is positive for r < r0 and negative
for r > r0. Thus v0(Q

p −αQ) does not change sign, contradicting (v0, Q
p −αQ) = 0.

Combining all these cases gives Lemma 2.1 for n ≥ 2.
Finally, consider n = 1. Suppose L+v = 0. Since L+ preserves oddness and

evenness, we may assume v is either odd or even. If it is odd, it vanishes at the origin,
and so by linear ODE uniqueness, v is a multiple of Q′. So suppose v is even. As in
Case 3 above, since L+ has precisely one negative eigenvalue and has Q′ in its kernel,
v(x) can be taken to have two zeros at x = ±x0, x0 �= 0. The argument of Case 3
above then applies on [0,∞) to yield a contradiction.

We complete this section by summarizing some positivity estimates for the oper-
ators L+ and L−. These estimates are closely related to the stability/instability of
the ground state.

Lemma 2.2.

(2.6) L− ≥ 0, L−|{Q}⊥ > 0 (1 < p < pmax),

(2.7) (Q,L+Q) < 0, L+|{Qp}⊥ ≥ 0 (1 < p < pmax),

(2.8) L+|{Q}⊥ ≥ 0 (1 < p ≤ pc),

(2.9) L+|{Q,xQ}⊥ > 0, L−|{Q1}⊥ > 0 (1 < p < pc),

(2.10) L+|{Q,xQ,|x|2Q}⊥ > 0, L−|{Q1,ρ}⊥ > 0 (p = pc).

Proof. Most estimates here are proved in [39] except the second part of (2.7)
when p > pc. It can be proved for p ∈ (1, pmax) by modifying the proof of [39,
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Proposition 2.7] for (2.8) as follows. (It is probably also well known, but we do not
know a reference.)

Recall that the ground state Q is obtained by the minimization problem (1.5). If
a minimizer Q(x) is rescaled so that∫

|∇Q|2
2a

=

∫
Q2

2b
=

∫
Qp+1

p + 1
= constant k > 0,

i.e., (1.4) is satisfied, then Q(x) satisfies (1.3). The minimization inequality d2

dε2

∣∣
ε=0

J [Q+
εη] ≥ 0 for all real functions η is equivalent to

(2.11) k(η, L+η) ≥
1

a

(∫
ηΔQ

)2

+
1

b

(∫
Qη

)2

−
(∫

Qpη

)2

.

Thus (η, L+η) ≥ 0 if η ⊥ Qp. Note that, if η ⊥ Q, by (1.3) the right-hand side of
(2.11) is positive if a ≤ 1, i.e., p ≤ pc. In this way, we recover (2.8).

2.2. Variational formulations of the eigenvalue problem for L. In this
subsection we summarize various variational formulations for eigenvalues of L. The
generalized nullspace is given by (2.5). Suppose λ �= 0 is a (complex) eigenvalue of L
with corresponding eigenfunction [ uw ] ∈ L2:

(2.12)

[
0 L−

−L+ 0

] [
u
w

]
= λ

[
u
w

]
.

The functions u and w satisfy

(2.13) L+u = −λw, L−w = λu.

Therefore

(2.14) L−L+u = μu, μ = −λ2.

Since (μu,Q) = (L−L+u,Q) = (L+u, L−Q) = 0 and μ �= 0, we have u ⊥ Q.
Denote by Π the L2-orthogonal projection onto Q⊥. We can write L+u = ΠL+u+

αQ. Equation (2.14) implies L−ΠL+u = μu, and hence, using u ⊥ Q and (2.6),
ΠL+u = L−1

− μu. Thus

(2.15) (u,Q) = 0, L+u = μL−1
− u + αQ.

Since (2.14) is also implied by (2.15), these two equations are equivalent.
If Q(x) is a general solution of (1.3), then μ = −λ2 may not be real. However, it

must be real for the nonlinear ground state Q = Q0,0,p. This fact is already known
(see [29]). We will give a different proof.

Lemma. For Q = Q0,0,p, every eigenvalue μ of (2.14) is real.

A new proof. Multiply (2.13) by ū and w̄, respectively, and integrate. Then
we get

(2.16) (u, L+u) = −λ(u,w), (w,L−w) = λ(w, u) = λ(u,w).

Taking the product, we get

(u, L+u)(w,L−w) = −λ2|(u,w)|2 = μ|(u,w)|2.



SPECTRA FOR NLS SOLITARY WAVES 1081

If μ �= 0, then w is not a multiple of Q, and so by (2.6), (w,L−w) > 0. Hence
(u,w) �= 0 by (2.16). Thus

μ =
(u, L+u)(w,L−w)

|(u,w)|2 ∈ R.

This argument does not work when Q is an excited state, since (u,w) may be
zero (see, e.g., [37, equation (2.63)]). The fact that μ ∈ R implies that eigenvalues
λ of L are either real or purely imaginary. Thus L has no complex eigenvalues with
nonzero real and imaginary parts. This is not the case for excited states (see section
4 and [37]).

The proof of reality of μ in [29] uses the following formulation. For the nonlin-

ear ground state Q, L− is nonnegative and the operator L
1/2
− is defined on L2 and

invertible on Q⊥. A nonzero μ ∈ C is an eigenvalue of (2.14) if and only if it is also
an eigenvalue of the following problem:

(2.17) L
1/2
− L+L

1/2
− g = μg,

with g = L
−1/2
− u. The operator L

1/2
− L+L

1/2
− already appeared in [36]. Since it can be

realized as a self-adjoint operator, μ must be real.

Furthermore, the eigenvalues of L
1/2
− L+L

1/2
− can be counted using the minimax

principle. Note that Q is an eigenfunction with eigenvalue 0. For easy comparison
with other formulations, we formulate the principle on Q⊥. Let

(2.18) μj := inf
g⊥Q,gk,k=1,...,j−1

(g, L
1/2
− L+L

1/2
− g)

(g, g)
(j = 1, 2, 3, . . . )

with a suitably normalized minimizer denoted by gj (if it exists—the definition ter-
minates once a minimizer fails to exist). The corresponding definition for (2.15) is

(2.19) μj := inf
u⊥Q, (u, L−1

− uk)=0, k=1,...,j−1

(u, L+u)

(u, L−1
− u)

(j = 1, 2, 3, . . . )

with a suitably normalized minimizer denoted by uj (if it exists). In fact, the mini-
mizer uj satisfies

(2.20) L+uj = μjL
−1
− uj + αjQ + β1L

−1
− u1 + · · · + βj−1L

−1
− uj−1

for some Lagrange multipliers β1, . . . , βj−1. Testing (2.20) with uk, with k < j, we get
(uk, βkL

−1
− uk) = (uk, L+uj) = (L+uk, uj) = 0 by (2.20) for uk and the orthogonality

conditions. Thus βk = 0 and L+uj = μjL
−1
− uj + αjQ, and hence uj satisfies (2.15).

Lemma 2.3. The eigenvalues of (2.18) and (2.19) are the same, and

if 1 < p < pc : μ1 = · · · = μn = 0, μn+1 > 0;

if p = pc : μ1 = · · · = μn+1 = 0, μn+2 > 0;

if pc < p < pmax : μ1 < 0, μ2 = · · · = μn+1 = 0, μn+2 > 0.

The 0-eigenspaces are span L
−1/2
− {∇Q, δppc

Q1} for (2.18) and span{∇Q, δppc
Q1} for

(2.19), where δppc
is defined in (2.4).

Proof. The eigenvalues of (2.18) and (2.19) are seen to be the same by taking

g = L
−1/2
− u up to a factor. By estimate (2.8), μ1 ≥ 0 for p ∈ (1, pc]. For p ∈ (pc, pmax),
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using (1.4), ΠQ1 = Q1 − (Q1,Q)
(Q,Q) Q, and elementary computations (such as (2.22)

below), one finds that

(ΠQ1, L+ΠQ1) =
n2(p− 1)

4
(pc − p)

1

p + 1

∫
Qp+1,

which is negative for p > pc. Thus μ1 < 0. By estimate (2.7), μ2 ≥ 0 for p ∈ (1, pmax).

It is clear that u = ∂
∂xj

Q, j = 1, . . . , n, provides n 0-eigenfunctions. For p = pc,

another 0-eigenfunction is u = Q1, since Q1 ⊥ Q (see again (2.22) below), L−1
− ∇Q =

− 1
2xQ, and (Q1, L+Q1) = 0. It remains to show that μn+1 > 0 for p ∈ (1, pc) and

μn+2 > 0 for p ∈ [pc, pmax). If μn+2 = 0 for p ∈ (pc, pmax), the argument after (2.20)
shows the existence of a function un+2 �= 0 satisfying

L+un+2 = αQ for some α ∈ R, un+2 ⊥ Q, L−1
− u1, L

−1
− ∇Q = − 1

2xQ.

By Lemma 2.1, un+2 + α
2Q1 = c · ∇Q for some c ∈ R

d. The orthogonality conditions
imply un+2 = 0. The cases p ∈ (1, pc] are proved similarly.

Remark 2.4. The formulation (2.19) for μ1 has been used for the stability problem
(see, e.g., [34, equation (4.1.9), p. 73]), which can be used to prove that μ1 < 0 if
and only if p ∈ (pc, pmax) by a different argument. The latter fact also follows from
[39, 14] indirectly.

We summarize our previous discussion in the following.

Summary 2.5. Let Q(x) be the unique positive radial ground state solution
of (1.3), and let L, L+, and L− be as in (1.8) and (1.10). The eigenvalue prob-
lems (2.14), (2.15), and (2.17) for μ �= 0 are equivalent, and the eigenvalues μ must
be real. These eigenvalues can be counted by either (2.18) or (2.19). μ1 < 0 if and
only if p ∈ (pc, pmax). Furthermore, all eigenvalues of L are purely imaginary except
for an additional real pair when p ∈ (pc, pmax).

The last statement follows from the relation μ = −λ2 in (2.14).

2.3. Spectrum near 0 for p near pc. We now consider eigenvalues of L near 0
when p is near pc. It was suggested by Weinstein that as p approaches pc from below,
a pair of purely imaginary eigenvalues will collide at the origin and split into a pair
of real eigenvalues for p > pc. In the following theorem and corollary we prove this
picture rigorously and identify the leading terms of the eigenvalues and eigenfunctions.

Note that Comech and Pelinovsky [7] consider a different problem, where the
equation is fixed and the varying parameter is frequency ω rather than exponent p of
the nonlinearity. That problem has only U(1) symmetry and no translation, but its
situation is similar to ours, since we consider radial functions only in our proof. It
seems one can adapt their approach to give an alternative proof. They use an abstract
projection (Riesz projection) onto the discrete spectrum to reduce the problem to a
4 × 4 matrix problem (and exploit the complex structure), while we are more direct.

Theorem 2.6. There are small constants μ∗ > 0 and ε∗ > 0 so that for every
p ∈ (pc − ε∗, pc + ε∗), there is a solution of

(2.21) L+L−w = μw

of the form

w = w0 + (p− pc)
2g, w0 = Q + a(p− pc)|x|2Q, g ⊥ Q,
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μ = 8a(p− pc) + (p− pc)
2η, a = a(p) =

n(Q1, Q
p)

4(Q1, x2Q)
< 0,

with ‖g‖L2 , |η|, |a|, and 1/|a| uniformly bounded in p. Moreover, for p �= pc, this is
the unique solution of (2.21) with 0 < |μ| ≤ μ∗.

Proof. Set ε := p− pc. Computations yield

(2.22) (Q1, Q) =

(
2

p− 1
− n

2

)
(Q,Q) = − εn

2(p− 1)
(Q,Q),

(2.23) (Q1, Q
p) = − 1

p− 1
(L+Q,Q1) = − 1

p− 1
(Q,L+Q1) =

2

p− 1
(Q,Q),

and

(2.24) (Q1, |x|2Q) =

(
2

p− 1
− n + 2

2

)
(Q, |x|2Q) = −

(
1 +

εn

2(p− 1)

)
(Q, |x|2Q).

Since by (2.21) with μ �= 0

(Q1, w) = μ−1(Q1, L+L−w) = μ−1(L−L+Q1, w) = 0,

we require the leading term (Q1, w0) = 0, which decides the value of a using (2.22)
and (2.24). Thus we also need (Q1, g) = 0. That a < 0 (at least for ε sufficiently
small) follows from (2.23) and (2.24).

Using the computations

(2.25) L−|x|2Q = [L−, |x|2]Q = −4x · ∇Q− 2nQ = −4Q1 −
2n

p− 1
εQ

and

L+Q = [L− − (p− 1)Qp−1]Q = −(p− 1)Qp,

we find that

L+L−w0 = aεL+

[
−4Q1 −

2n

p− 1
εQ

]
= aε[8Q + 2nεQp].

Thus μ = 8aε + o(ε) and we need to solve

0 = [L+L− − 8aε− ε2η][w0 + ε2g],

which yields our main equation for g and η:

(2.26) L+L−g = 8a2(|x|2Q) − 2an(Qp) + ηw0 + (8aε + ε2η)g.

Recall that on radial functions (we will work only on radial functions here)

ker[(L+L−)∗] = ker[L−L+] = span{Q1}.

Let P denote the L2-orthogonal projection onto Q1 and P̄ := 1 − P . It is necessary
that

P [8a2(|x|2Q) − 2an(Qp) + ηw0 + (8aε + ε2η)g] = 0
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for (2.26) to be solvable. This solvability condition holds since (Q1, g) = (Q1, w0) = 0,
and, using the relations (2.24) and (2.23), (Q1, 8a

2(|x|2Q) − 2an(Qp)) = 0.
Consider the restriction (on radial functions)

T = L+L− : [kerL−]⊥ = Q⊥ −→ Ran(P̄ ) = Q⊥
1 .

Its inverse T−1 = (L−)−1(L+)−1 is bounded because (L+)−1 : Q⊥
1 → Q⊥ and

(L−)−1 : Q⊥ → Q⊥ are bounded. So our strategy is to solve (2.26) as

(2.27) g = T−1P̄ [8a2(|x|2Q) − 2an(Qp) + ηw0 + (8aε + ε2η)g]

by a contraction mapping argument, with η chosen so that (Q1, g) = 0. Specifically,
we define a sequence g0 = 0, η0 = 0, and

gk+1 = P̄ T−1P̄ [8a2(|x|2Q) − 2an(Qp) + ηkw0 + (8aε + ε2ηk)gk],

ηk+1 = − 1

(Q1, T−1w0)
(Q1, T

−1P̄ [8a2(|x|2Q) − 2an(Qp) + (8aε + ε2ηk)gk]).

We need to check that(Q1, T
−1w0) is of order one. Since w0 = Q+O(ε) and L+Q1 =

−2Q, we have (L+)−1w0 = − 1
2ΠQ1+O(ε), where Π denotes the orthogonal projection

onto Q⊥. Thus, using (2.25) and (2.22),

(Q1, T
−1w0) = −1

2
(Q1, (L−)−1ΠQ1) + O(ε)

=
1

8
(Q1,Π|x|2Q) + O(ε) =

1

8
(Q1, |x|2Q) + O(ε),

which is of order one because of (2.24). One may then check that Nk := ‖gk+1 − gk‖L2+
ε1/2|ηk+1 − ηk| satisfies Nk+1 ≤ Cε1/2Nk, and hence (gk, ηk) is indeed a Cauchy se-
quence.

Finally, the uniqueness follows from the invariance of the total dimension of gen-
eralized eigenspaces near 0 under perturbations.

Remark 2.7. To understand heuristically the leading terms in w and μ, consider
the following analogy. Let Aε = [ 00

1
ε ], which corresponds to L+L−. One has Aε [ 1

0 ] =
[ 0
0 ], Aε [ 0

1 ] = [ 1
ε ], and Aε [ 1

ε ] = ε [ 1
ε ]. The vectors [ 1

0 ], [ 0
1 ], and [ 1

ε ] correspond to Q,
|x|2Q, and w, respectively.

The theorem yields an eigenvalue μ with the same sign as pc − p. Since the
eigenvalues of L are given by λ = ±√−μ, we have the following corollary.

Corollary 2.8. With notation as in Theorem 2.6, L has a pair of eigenval-
ues λ = ±√−μ = ±

√
8|a|(p− pc) − (p− pc)2η with corresponding eigenvectors [ uw ]

solving (2.12) and

u = λ−1L−w = ∓
√

2|a|(p− pc)Q1 + O((p− pc)
3/2).

When p ∈ (pc − ε∗, pc) (stable case), λ and u are purely imaginary.
When p ∈ (pc, pc + ε∗) (unstable case), λ and u are real.
In deriving the leading term of u we have used (2.25). We solved for w before u

simply because w is larger than u.

3. One-dimensional theory. In this section we focus on the one-dimensional
theory. For n = 1, the ground state Q(x) has an explicit formula for all p ∈ (1,∞):

(3.1) Q(x) = cp cosh−β

(
x

β

)
, cp :=

(
p + 1

2

) 1
p−1

, β :=
2

p− 1
.

The function Q(x) satisfies (1.3) and is the unique H1(R)-solution of (1.3) up to
translation and phase [5, Theorem 8.1.6, p. 259].
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3.1. Eigenfunctions of L+ and L−. We first consider eigenvalues and eigen-
functions of L+ and L−. For n = 1,

(3.2) L+ = −∂xx + 1 − pQp−1, L− = −∂xx + 1 −Qp−1.

By (3.1), these operators are both of the form

−∂xx + 1 − C sech2(x/β).

Such operators have essential spectrum [1,∞) and finitely many eigenvalues below
1. A lot of information about such operators is available in the classical book [35,
p. 103]:

• all eigenvalues are simple and can be computed explicitly as zeros and poles
of an explicit meromorphic function;

• all eigenfunctions can be expressed in terms of the hypergeometric function.

We begin by presenting another way to derive the eigenvalues as well as different
formulas for the eigenfunctions. We will not prove right here that this set contains
all of the eigenvalues/eigenfunctions. This fact is a consequence of the more general
theorem, Theorem 3.4, proved later (and see also [35]).

Define

λm := 1 − k2
m, km :=

p + 1

2
− m(p− 1)

2
,

pm :=
m + 1

m− 1
for m > 1, p1 = ∞.

(3.3)

The following theorem agrees with the numerical observation Figure 1.

Theorem 3.1. For n = 1 and 1 < p < ∞, let Q(x) be defined by (3.1), L+ and
L− be defined by (3.2), and λm, km, pm be defined by (3.3). Suppose for M ∈ Z

+,

(3.4) pM+1 ≤ p < pM .

Then the operator L+ has eigenvalues λm, 0 ≤ m ≤ M , with eigenfunctions of the
form

ϕ2� =

�∑
j=0

c2�2jQ
k2j , ϕ2�−1 =

�∑
j=1

c2�−1
2j−1(Q

k2j−1)x,

and the operator L− has eigenvalues λm, 1 ≤ m ≤ M , with eigenfunctions of the form

ψ2�−1 =

�∑
j=1

d2�−1
2j−1Q

k2j−1 , ψ2� =

�∑
j=1

d2�
2j(Q

k2j )x.

In particular, all eigenvalues of L− are eigenvalues of L+, and L+ always has one
more eigenvalue (λ0 < 0) than L−.

Proof. It can be proved by induction, using

Qp−1 =
p + 1

2
cosh−2

(
x

β

)
, Qx = −Q tanh

(
x

β

)
, Q2

x = Q2

(
1 − 2

p + 1
Qp−1

)
,
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and

Q−kL+Q
k =

(k + p) (2k − p− 1)

p + 1
Qp−1 + (1 − k2),(3.5)

[(Qk)x]−1L+(Qk)x =
(k − 1)(2k + 3p− 1)

p + 1
Qp−1 + (1 − k2),

Q−kL−Q
k =

(k − 1)(2k + p + 1)

p + 1
Qp−1 + (1 − k2),(3.6)

[(Qk)x]−1L−(Qk)x =
(k + p)(2k + p− 3)

p + 1
Qp−1 + (1 − k2).

The coefficients of Qp−1 vanish when k = p+1
2 , 1, 1, 3−p

2 , respectively. It is why the

highest power of Q is Q
p+1
2 in ϕ2�, Qx in φ2�−1, Q in ψ2�−1, and (Q

3−p
2 )x in ψ2�.

3.2. Connection between L+ and L− and their factorizations. In light
of Theorem 3.1, it is natural to ask why all eigenvalues of L− are also eigenvalues of
L+. Is there a simple connection between their eigenfunctions? In this section we
prove this is indeed so.

We first look for an operator U of the form

U = ∂x + R(x) ( so U∗ = −∂x + R(x))

such that

(3.7) L−U = UL+ ( so U∗L− = L+U
∗).

It turns out that there is a unique choice of R(x):

R(x) = −p + 1

2

Qx

Q
=

p + 1

2
tanh

(
(p− 1)x

2

)
.

In fact, with this choice of R(x),

(3.8) U = ϕ0∂xϕ
−1
0 ( so U∗ = −ϕ−1

0 ∂xϕ0),

where ϕ0 = Q
p+1
2 is the ground state of L+ and is considered here as a multiplication

operator: Uf = ϕ0∂x(ϕ−1
0 f).

Suppose now ψ is an eigenfunction of L− with eigenvalue λ: L−ψ = λψ. By (3.7),

0 = U∗(L− − λ)ψ = (L+ − λ)U∗ψ.

Thus U∗ψ is an eigenfunction of L+ with the same eigenvalue λ (provided U∗ψ ∈ L2).
Therefore the map

ψ �→ U∗ψ

sends an eigenfunction of L− to an eigenfunction of L+ with the same eigenvalue.
This map is not onto because U∗ is not invertible. Specifically, the ground state ϕ0

is not in the range. In fact, Uϕ0 = ϕ0∂xϕ
−1
0 ϕ0 = 0. If ϕ0 = U∗ψ, then (ϕ0, ϕ0) =

(ϕ0, U
∗ψ) = (Uϕ0, ψ) = 0, a contradiction. We summarize our finding as the following

proposition.
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Proposition 3.2. Under the same assumptions and notation as Theorem 3.1,
the eigenfunctions ϕm and ψm of L+ and L− satisfy

ϕm = U∗ψm (m = 1, . . . ,M)

up to constant factors. Note that U∗ sends even functions to odd functions and vice
versa.

Proof. We need only verify that U∗ψm ∈ L2. This is the case, since U∗ =
−∂x + p+1

2 tanh(x/β), ψm(x) are sums of powers of Q and Qx and since tanh(x/β),
Qx/Q, and Qxx/Qx are bounded.

Analogous to the definition of U , we define

(3.9) S := Q∂xQ
−1 = ∂x − Qx

Q
( so S∗ = −Q−1∂xQ).

Clearly SQ = 0. Recall that λ0 is the first eigenvalue of L+ with eigenfunction ϕ0.
Hence L+−λ0 is a nonnegative operator. In fact we have the following factorizations.

Lemma 3.3. Let U and S be defined by (3.8) and (3.9), respectively. One has

(3.10) L+ − λ0 = U∗U, L− − λ0 = UU∗.

(3.11) L− = S∗S, SS∗ = −∂2
x + 1 +

p− 3

p + 1
Qp−1.

Moreover, SS∗ = L− + 2(p−1)
p+1 Qp−1 > 0.

The formula L− = S∗S was known; see, e.g., [34, equation (4.1.8), p. 73].
It is an example of the Darboux transformations; see, e.g., [23]. Factorization of
Schrödinger operators into first-order operators has been known since the times of
Darboux (1840s).

3.3. Hierarchy of operators. In this subsection we generalize Theorem 3.1
and Lemma 3.3 to a family of operators containing L+ and L−. As a reminder, we
have

Q′′

Q
= 1 −Qp−1,

(
Q′

Q

)2

= 1 − 2

p + 1
Qp−1,

(
Q′

Q

)′
=

Q′′

Q
−
(
Q′

Q

)2

= −p− 1

p + 1
Qp−1.

(3.12)

Let S(a) := Qa∂xQ
−a. We have

S(a) = ∂x − aQ′

Q
, S(a)∗ = −∂x − aQ′

Q
,

S(a)∗S(a) = −∂2
x + a2 − a

{
a +

p− 1

2

}
2

p + 1
Qp−1.

(3.13)

Define the following hierarchy of operators:

Sj := S(kj), where recall kj = 1 − (j − 1)
p− 1

2
,

Lj := Sj−1S
∗
j−1 + λj−1 = S∗

j Sj + λj , where recall λj = 1 − k2
j .

(3.14)
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Then we have

S0 = U, S1 = S, . . . ,

L0 = L+, L1 = L−, L2 = SS∗, . . . ,

SjLj = Lj+1Sj , LjS
∗
j = S∗

jLj+1.

(3.15)

More explicitly,

Lj = −∂2
x + 1 − kj−1kj

2

p + 1
Qp−1.(3.16)

Note that j here can be any real number.

Recall the definition pj := 1 + 2/(j − 1) for j > 1, and set pj = ∞ for j ≤ 1.
Then pj is a monotone decreasing function of j, kj > 0 for p < pj , kj = 0 for p = pj ,
and kj < 0 for p > pj . Let

(3.17) λ′
j :=

⎧⎪⎨
⎪⎩
λj (1 < p ≤ pj),

1 (pj < p < pj−1),

λj−1 (pj−1 ≤ p).

By the second identity of (3.14), and (3.16) together with the fact kj−1kj < 0 for
pj < p < pj−1, we have the lower bound

(3.18) Lj ≥ λ′
j .

In fact, this estimate is sharp: for p ∈ (1, pj)∪ (pj−1,∞), the ground state is obvious
from the second identity of (3.14):

(3.19)

{
LjQj = λjQj (1 < p < pj),

LjQ
∗
j−1 = λj−1Q

∗
j−1 (pj−1 < p),

where we denote

(3.20) Qj := Qkj , Q∗
j := Q−kj .

For p ∈ [pj , pj−1], there is no ground state. Thus we have completely determined
the ground state of Lj for all p > 1. The complete spectrum, together with explicit
eigenfunctions, is derived using the third identity of (3.15) as follows.

Theorem 3.4. For any j ∈ R and p > 1, the point spectrum of Lj consists of
simple eigenvalues

specp(Lj) ={λk | p < pk, k ∈ {j, j + 1, j + 2, . . . }}
∪ {λk | p > pk, k ∈ {j − 1, j − 2, j − 3, . . . }},

(3.21)

and the eigenfunction for the eigenvalue λk is given uniquely up to constant multiple
by

(3.22)

{
S∗
j · · ·S∗

k−1Qk (k ∈ {j, j + 1, . . . }),
Sj−1 · · ·Sk+1Q

∗
k (k ∈ {j − 1, j − 2, . . . }),
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each of which is a linear combination of

(3.23)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Qj , Qj+2, . . . Qk (k ∈ {j, j + 2, . . . }),
Qj+1R,Qj+3R, . . . QkR (k ∈ {j + 1, j + 3, . . . }),
Q∗

j−1, Q
∗
j−3, . . . Q

∗
k (k ∈ {j − 1, j − 3, . . . }),

Q∗
j−2R,Q∗

j−4R, . . . Q∗
kR (k ∈ {j − 2, j − 4, . . . }),

where R := Q′/Q.
Proof. The ground states have been determined. The third identity of (3.15)

implies that (3.22) belongs to the eigenspace of Lj with eigenvalue λk. Moreover,
each function is nonzero because S∗

k is injective for p < pk, and so is Sk for pk < p.
Since Sj annihilates only the ground state Qj for p < pj and S∗

j−1 annihilates only
the ground state Q∗

j−1 for p > pj , all the excited states of Lj for p < pj are mapped
injectively by Sj to bound states of Lj+1 and for p > pj by S∗

j−1 to those of Lj−1.
Hence we have (3.21), and all the eigenvalues are simple because so too are the ground
states. Equation (3.23) follows from the fact that Sj and S∗

j act on Qa like C(a, j)R,

while SjSj−1 and S∗
j−1S

∗
j act on Qa like C1(a, j) + C2(a, j)Q

p−1.

3.4. Mirror conjugate identity. The following remarkable identity has appli-
cation to estimating eigenvalues of L (see section 3.6):

(3.24) Sj(Lj−1 − λj)S
∗
j = S∗

j (Lj+2 − λj)Sj .

To prove this, start with the formula

(3.25) (∂x + R)(∂2
x + V )(∂x −R)

= ∂4
x + (−3R′ −R2 + V )∂2

x + (−3R′ −R2 + V )′∂x

−R′′′ − (V R)′ −RR′′ −R2V,

which implies that (∂x+R)(∂2
x+V+)(∂x−R) = (∂x−R)(∂2

x+V−)(∂x+R) is equivalent
to

(3.26) V± = −R′′/R± 3R′ −R2 + C/R.

Now set R := aQ′/Q. Plugging the identities

R2 = a2

(
1 − 2

p + 1
Qp−1

)
, R′ = −a

p− 1

p + 1
Qp−1,

R′′

R
= − (p− 1)2

p + 1
Qp−1

(3.27)

into (3.26), we get, for C = 0,

(3.28) V± = −a2 +
2

p + 1
(a± (p− 1))

(
a± (p− 1)

2

)
Qp−1.

Hence for a = kj we have

(3.29) V± = −k2
j +

2

p + 1
kj±2kj±1,

which gives the desired identity (3.24). The above proof also shows that Lj−1 and
Lj+2 are the unique choices for the identity to hold with Sj (modulo a constant
multiple of Q/Qx, which is singular).
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3.5. Variational formulations for eigenvalues of L. We considered two vari-
ational formulations for nonzero eigenvalues of L in general dimensions in section 2.2.
Here we present a new variational formulation for one dimension. Define the self-
adjoint operator

(3.30) H := SL+S
∗.

This is a fourth-order differential operator with essential spectrum [1,∞). By a direct
check, we have

HQ = SL+S
∗Q = SL+(−2Qx) = 0.

Thus Q is an eigenfunction with eigenvalue 0. Since (Q,S∗f) = (SQ, f) = 0 for any
f , we have

(3.31) Range S∗ ⊥ Q.

In particular, since L+|Q⊥ is nonnegative for p ≤ 5 by Lemma 2.2, so is H.
Lemma 3.5. The nullspace of H is

N(H) = span
{
Q, δppc

xQ
}
,

where, recall, δppc
is 0 if p �= pc and 1 if p = pc.

Remark. Note that dim N(H) = 1+δppc
, which is different from dim N(L

1/2
− L+L

1/2
− )

= 2 + δppc
. We will show below that H and L

1/2
− L+L

1/2
− have the same nonzero eigen-

values.

Proof. If Hf = 0, then L+S
∗f = −2cQ and S∗f = cQ1 + dQx for some c, d ∈ R

by Lemma 2.1. We have Q1 ⊥ Q if and only if p = pc = 5. Thus, if p �= 5, c = 0 by
(3.31), and S∗(f + d

2Q) = 0. We conclude that f = −d
2Q.

When p = 5, we have S∗xQ = −Q−1∂x(QxQ) = −2Q1. Thus S∗(f+ c
2Q1+

d
2Q) =

0 and f = − c
2Q1 − d

2Q.

Define eigenvalues of H as follows:

(3.32) μ̃j := inf
f⊥fk,k<j

(f,Hf)

(f, f)
, (j = 1, 2, 3, . . . )

with a suitably normalized minimizer denoted by fj if it exists. By standard varia-
tional arguments, if μ̃j < 1, then a minimizer fj exists. By convention, if μk is the
first of the μj ’s to hit 1 (and so fk may not be defined), we set μj := 1 for all j > k.

We can expand Summary 2.5 to the following.
Theorem 3.6 (equivalence). Let n = 1. Let μj be defined as in Summary 2.5 and

μ̃j be defined by (3.32). Then μj = μ̃j. When μj �= 0 and μj < 1, the eigenfunctions
of (2.19) and (3.32) can be chosen to satisfy

uj = S∗fj , fj =
1

μj
SL+uj .

Proof. First, we establish the equivalence of nonzero eigenvalues. Suppose f = fj
is an eigenfunction of (3.32) with eigenvalue μ̃ �= 0; then SL+S

∗f = μ̃f . Let u :=
S∗f �= 0, and apply S∗ on both sides. By L− = S∗S we get L−L+u = μ̃u. Thus u is
an eigenfunction satisfying (2.14) with μ = μ̃. On the other hand, suppose u satisfies
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L−L+u = μu with μ �= 0. Applying SL+ on both sides and using L− = S∗S, we get
SL+S

∗SL+u = μSL+u, i.e., Hf = μf for f = μ−1SL+u.
Now use Lemmas 2.3 and 3.5. If p ∈ (1, 5), then μ1 = μ̃1 = 0, corresponding to

Qx and Q, and μ2 = μ̃2 > 0. If p = 5, then μ1 = μ2 = μ̃1 = μ̃2 = 0, corresponding to
Qx, Q1, and Q, xQ, and μ3 = μ̃3 = 1. If p ∈ (5,∞), then μ1 = μ̃1 < 0, μ2 = μ̃2 = 0,
corresponding to Qx and Q, and μ3 = μ3 = 1. We have shown that μ̃j = μj .

In the following we will make no distinction between μj and μ̃j . By the minimax
principle, (3.32) has the following equivalent formulations:

(3.33) μj = inf
dimM=j

sup
f∈M

(f,Hf)

(f, f)
= sup

dimM=j−1
inf

f⊥M

(f,Hf)

(f, f)
.

Here M runs over all linear subspaces of L2(R) with the specified dimension.

3.6. Estimates of eigenvalues of L. In this subsection we prove lower and
upper bounds for eigenvalues of L, confirming some aspects of the numerical compu-
tations shown in Figures 1 and 6. Recall that, by Lemma 2.3, the first positive μj is
μ2 for p ∈ (1, pc) and μ3 for p ∈ [pc, pmax). The first theorem concerns upper bounds
for μ1 and μ2.

- 0.699 - 0.6 - 0.086 0 0.301 0.602
- 8.44

- 0.5

0   0   

0.5 

1   1   
7 5 3 2 1.82 1 1.2 

Fig. 6. p vs. μj .

Theorem 3.7. Suppose n = 1 and 1 < p < ∞.
(a) If p �= 3, then μ2 ≤ Cp for some explicitly computable Cp < 1. In particular,

f2 exists.
(b) μ1 < 0 if and only if p > 5. For any C > 0, we have μ1(p) ≤ −Cp3 for p

sufficiently large.
Proof. For part (a), we already know μ2 = 0 for p ≥ 5. Assume p ∈ (1, 5).

Consider test functions of the form f = SQk with k > 0. f is odd, and hence f ⊥ Q,
the 0-eigenfunction of H. Since H = SL+S

∗ and S∗S = L−, we have

μ2 ≤ (f,Hf)

(f, f)
=

(L−Q
k, L+L−Q

k)

(Qk, L−Qk)
.

By formulas (3.5) and (3.6),

L−Q
k = aQk+p−1 + bQk, a =

1

p + 1
(k − 1)(2k + p + 1), b = 1 − k2,

L+Q
k+p−1 = σQk+2p−2 + dQk+p−1,



1092 S.-M. CHANG, S. GUSTAFSON, K. NAKANISHI, AND T.-P. TSAI

σ =
1

p + 1
(k + 2p− 1)(2k + p− 3), d = 1 − (k + p− 1)2,

L+Q
k = cQk+p−1 + bQk, c =

1

p + 1
(k + p)(2k − p− 1).

Thus

(3.34)
(f,Hf)

(f, f)
=

a2σJ3 + a(ad + bc + bσ)J2 + b(ad + ab + bc)J1 + b3J0

aJ1 + bJ0
,

where

Jm =

∫
R

Q2k+m(p−1)(x) dx (m = 0, 1, 2, 3),

which are always positive. If k → 0+, then Jm converges to
∫

R
Qm(p−1) dx for m > 0,

and J0 = O(k−1). The above quotient can be written as

(3.34) = b2 +
J

aJ1 + bJ0
,

where

J = a2σJ3 + a(ad + bc + bσ)J2 + b(ad + bc)J1.

Note that Jm|k=0 = (p+1
2 )m 2

p−1

∫
R

sech2m(y) dy with
∫

R
sech2m(y) dy = 2, 4

3 ,
16
15 for

m = 1, 2, 3, respectively. Also, as k → 0+, a → −1, b → 1, c → −p, σ → (2p−1)(p−3)
p+1 ,

and d → 1 − (p− 1)2. Direct calculation shows that

lim
k→0+

J = − 2

15(p− 1)
(p + 1)2(p− 3)2.

Also note that b2 < 1 for k > 0. Thus, if 1 < p < ∞ and p �= 3, then J < 0 and the
quotient (3.34) is less than 1 for k sufficiently small. (If p = 3, the sign of J is unclear
and (3.34) may not be less than 1.) This proves μ2 < 1 and provides an upper bound
less than 1 for μ2. It also implies the existence of f2. This establishes statement (a).

For statement (b), the fact that μ1 < 0 if and only if p > 5 is part of Lemma 2.3.
We now consider the behavior of μ1 for p large. Fix k > 1 to be chosen later. As
p → ∞,

Jm =

(
p + 1

2

) 2k
p−1+m

· 2

p− 1
·
∫

R

( sechx)
4k

p−1+2m
dx ∼ Cmpm−1,

with Cm = 21−m
∫

R
( sechx)2mdx = 2, 2

3 ,
4
15 for m = 1, 2, 3, respectively, and

a ∼ k − 1, b = 1 − k2, c ∼ −p, σ ∼ 2p, d ∼ −p2.

Thus, by (3.34),

(f,Hf)

(f, f)
∼ aσJ3 + adJ2

J1
∼ 1 − k

15
p3 as p → ∞.
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Fig. 7. p vs. fj for j = 1, . . . , 5, where fj(p) =
λj+1λj+2

μj+1
for 1 < p < pj+2 and fj(p) =

λj+1

μj+1

for pj+2 ≤ p < pj+1.

By choosing k > 1 sufficiently large, we have shown that for any C, μ1 ≤ −Cp3 for p
sufficiently large.

The next theorem bounds eigenvalues of L by eigenvalues of L+ and L−. Recall
that pj and λj(p) are defined in (3.4) and (3.3).

Theorem 3.8 (interlacing of eigenvalues). Fix k ≥ 1 and p ∈ [pk+2, pk+1),
where, recall, pj = j+1

j−1 . Let λj(p) = 1 − 1
4 [(p + 1) − j(p− 1)]2 be as in (3.3), and so

λk+1 < 1 ≤ λk+2. For the eigenvalues μj defined by (3.32), we have

(3.35) λ2
j+1(p) < μj+1(p) < λ2

j+2(p) (1 ≤ j < k); λ2
k+1(p) < μk+1(p) ≤ 1.

In particular, there are K simple eigenvalues μ2, . . . , μK+1 in (0, 1), where K = k if
μk+1 < 1 and K = k − 1 if μk+1 = 1. Moreover, K is always 1 when k = 1. Finally,

μ2 ≥
{
λ2λ3 (1 < p ≤ 2),

λ2 (2 < p < 5),
μ3 ≥

⎧⎪⎨
⎪⎩
λ3λ4 (1 < p ≤ 5/3),

λ3 (5/3 < p ≤ 2),

1 (2 < p < ∞),

μ1 ≥ − 1

16
(p− 1)3(p− 5) (5 ≤ p < ∞).

Remark 3.9. In view of the above lower bounds for μ2 and μ3, we conjecture that

(3.36) μj+1 ≥ λj+1λj+2 (1 < p < pj+2); μj+1 ≥ λj+1 (pj+2 ≤ p < pj+1).

This is further confirmed numerically for j = 3, 4, 5 (see Figure 7). Note that

limp→pj+1−
λj+1

μj+1
= 1 because both λj+1 and μj+1 converge to 1. It also seems that

λj+1λj+2

μj+1
has a limit as p → 1+, but it is not clear even though we have (3.35) and

λj = (j − 1)(p− 1) + O((p− 1)2) as p → 1+.
Proof. We first prove the upper bound: For j < k, use the test functions

Sψ2, Sψ3, . . . , Sψj+2

(we cannot use Sψ1, since it is zero). Recall L−ψm = λmψm. Let a = (a2, . . . , aj+2)
vary over C

j+1 − {0}. By equivalent definition (3.33), H = SL+S
∗, L− = S∗S, and
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the orthogonality between the ψm’s, we have

μj+1 ≤ sup
a

(
∑

m amSψm, H
∑

� a�Sψ�)

(
∑

m amSψm,
∑

� a�Sψ�)
= sup

a

(
∑

m amψm, L−L+L−
∑

� a�ψ�)

(
∑

m amψm, L−
∑

� a�ψ�)

≤ sup
a

(
∑

m amψm, L−L−L−
∑

� a�ψ�)

(
∑

m amψm, L−
∑

� a�ψ�)
= sup

a

∑
m |am|2λ3

m∑
m |am|2λm

≤ max
m=2,...,j+2

λ2
m = λ2

j+2.

Since μj+1 ≤ λ2
j+2 < 1, it is attained at some function for which the second inequality

above cannot be replaced by an equality sign. Thus μj+1 < λ2
j+2.

For the lower bound of eigenvalues, we use only the special case j = 1 of (3.24):

(3.37) H = SL+S
∗ = SL0S

∗ = S∗L3S.

In particular, we have for 1 < p < 3,

(3.38) H ≥ S∗L2S = S∗SS∗S = L2
1 = L2

−,

which implies that

(3.39) λ2
j+1 ≤ μj+1 (1 < p < 3)

(and again, equality is impossible).
For the second eigenvalue μ2, we can get a more precise estimate by using (3.18)

for L3 ≥ λ′
3 together with

(3.40) L1|Q⊥ ≥ λ′
2,

which follows from spec(L1). Combining these estimates, we have for any f ⊥ Q and
p < 5,

(3.41) (Hf, f) ≥ λ′
3(Sf, Sf) ≥ λ′

3λ
′
2(f, f),

which implies that μ2 ≥ λ′
3λ

′
2, i.e.,

(3.42) μ2 ≥
{
λ2λ3 (1 < p ≤ 2),

λ2 (2 < p < 5).

For p > 3, we have L3 ≥ λ2 = −(p− 1)(p− 5)/4 and

(3.43) L3 − L2 ≥ −(p− 1)(p− 3)/2 =: −a.

Hence for any t ∈ [0, 1], we have

(3.44) L3 ≥ tL2 − at + (1 − t)λ2,

and so for b > 0, we have

(Hf, f) + b(f, f) ≥ (S∗(tL2 − at + (1 − t)λ2)Sf, f) + b(f, f)

= t‖L1f‖2 − (at− (1 − t)λ2)(L1f, f) + b‖f‖2,
(3.45)
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which is nonnegative if

(3.46) b ≥ (at− (1 − t)λ2)
2/(4t),

whose infimum is attained at t = −λ2/(a + λ2) = (p − 5)/(p − 1) ∈ (0, 1) for p > 5.
Plugging this back in, we obtain the lower bound

(3.47) μ1 ≥ λ2(a + λ2) = − 1

16
(p− 1)3(p− 5) (p > 5).

We have a similar bound on μ3 by using the even-odd decomposition L2(R) =
L2
ev(R) ⊕ L2

od(R). Let ψj , ξj be the eigenfunction of L1 and L3 such that

(3.48) L1ψj = λjψj , L3ξj = λjξj .

ψj starts from j = 1, and ξj starts with j = 3. They are even for odd j and odd for
even j. For any even function f ⊥ Q = ψ1, Sf is odd, and so we have f ⊥ ψ1 = Q,ψ2

and Sf ⊥ ξ3. Hence by spec(L3) and spec(L1), we have

(3.49) (Hf, f) = (L3Sf, Sf) ≥ λ̃4(Sf, Sf) = λ̃4(L1f, f) ≥ λ̃4λ̃3(f, f),

where we denote

(3.50) λ̃j :=

{
λj (1 < p < pj),

1 (pj < p).

Thus the second eigenvalue of H on L2
ev is ≥ λ̃4λ̃3. Next for any odd function f ⊥ ψ2,

we have f ⊥ ψ1, ψ2, ψ3. Hence we have

(3.51) (Hf, f) = (L3Sf, Sf) ≥ λ′
3(Sf, Sf) = λ′

3(L1f, f) ≥ λ′
3λ̃4(f, f).

Similarly, every odd function f ⊥ S∗ξ3 satisfies f ⊥ ψ1 and Sf ⊥ ξ3, ξ4, and so

(3.52) (Hf, f) ≥ λ̃5λ̃2(f, f).

Hence the second eigenfunction on L2
od is ≥ max(λ̃4λ

′
3, λ̃5λ̃2) ≥ λ̃4λ̃3. Therefore we

have μ3 ≥ λ̃3λ̃4, i.e.,

(3.53) μ3 ≥

⎧⎪⎨
⎪⎩
λ3λ4 (1 < p < 5/3),

λ3 (5/3 < p < 2),

1 (2 < p).

This argument, however, does not yield any useful estimates for the higher μj .

3.7. Resonance for p = 3. In the theory of dispersive estimates for the linear
Schrödinger evolution, it is important to know whether or not the endpoints of the
continuous spectrum of the linear operator are eigenvalues or resonances. For our L,
the endpoints are λ = ±i. Resonance here refers to a function φ which satisfies the
eigenvalue problem locally in space with eigenvalue i or −i but which does not belong
to L2(Rn). For dimension n = 1, one requires φ ∈ L∞(R). (Note for comparison’s
sake that in one dimension, the operator −d2/dx2 has a resonance—corresponding to
the constant function—at the endpoint 0 of its continuous spectrum.)
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Fig. 8. up(x) and w(up)(x) for p = 2.8, 2.9, 3, 3.1, and 3.2.

Before we made the numerical calculation, we did not expect to see any resonance.
However, from Figure 1, one sees that κ =

√
μ2 converges to 1 as p → 3. What does

the point κ = 1 at p = 3 correspond to? A natural conjecture is that it is a resonance
or an eigenvalue, since the p = 3 case is well known to be completely integrable and
special phenomena may occur.

This is indeed the case, since we have the following solution to the eigenvalue
problem (2.12) when p = 3:

(3.54) φ =

[
1 −Q2

i

]
, λ = i.

It is clear that φ ∈ L∞(R) but φ �∈ Lq(R) for any q < ∞.
Let up(x) denote the real-valued (and suitably normalized) solution of (2.14)

corresponding to μ = μ2. It is the first component of the eigenfunction of (2.12).
A natural question is: does up(x) converge in some sense to u3(x) := 1 − Q2(x) as
p → 3? Since up − u3 is not in Lq(R) for all q ∈ [1,∞), it seems natural to measure
the convergence in the following weighted norm,

‖f‖w :=

∫
R

w(f)2(x) dx,

where a weighting operator w is defined by w(f)(x) := f(x) 1√
1+x2 . This deemphasizes

the value of up − u3 for x large, and so it should converge to 0 as p goes to 3. This is
confirmed numerically as follows.

Let u3 := 1 − Q2 and δ := ‖u3‖w. In the appendix we will propose a numerical
method to solve for the eigenpair {λ, [up(x), wp(x)]�} of (2.12) corresponding to
μ2 = −λ2. Renormalize up(x) for p �= 3 so that it is real-valued, up(0) < 0, and
‖up‖w = δ. In Figure 8(c) we plot u3 in a large interval |x| < 130 with δ = 1.3588.
According to the numerical method in the appendix, we get u2.8, u2.9, u3.1, and u3.2

plotted in Figure 8(a), (b), (d), and (e), respectively. The vertical range is roughly
[−1, 1]. In Figure 8(f)–(j) we plot w(up) for p = 2.8, 2.9, 3, 3.1, and 3.2, for |x| < 130,
and with vertical range [−1, 0.5].

In Figure 9 we plot p vs. ‖up − u3‖w and observe that up(x) converge to u3(x)
in the weighted norm ‖·‖w as p → 3. In the numerical calculation for Figure 9, our
increment for p is 0.01.

Remark 3.10. For the operators L+L− and L−L+, and in general fourth-order
operators, it seems difficult to exclude the possibility that μ = 1 is an eigenvalue.
Consider the following example. Let H̃ := (L+)2 with p =

√
8 − 1. Note that −1 is
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Fig. 9. p vs. ‖up − u3‖w.

an eigenvalue of L+ when p =
√

8− 1. Hence 1 is an eigenvalue of H̃ at the endpoint
of its continuous spectrum.

It would be interesting to prove the above convergence analytically and charac-
terize the leading-order behavior near p = 3 as we did in Theorem 2.6.

4. Excited states with angular momenta. In this section we consider excited
states with angular momenta in R

n, n ≥ 2. Let k = [n/2], the largest integer no larger
than n/2. For x = (x1, . . . , xn) ∈ R

n, use polar coordinates rj and θj for each pair
x2j−1 and x2j , j = 1, . . . , k. Lions [22] considers solutions of the form

Q(x) = φ(r1, r2, . . . rk, xn) ei(m1θ1+···+mkθk), mj ∈ Z.

The dependence of φ in xn is dropped if n is even. He proves the existence of energy
minimizing solutions in each such class.

For the simplest case n = 2, Q(x) = φ(r) eimθ, and, by (1.3), φ = φ(r) satisfies

(4.1) −φ′′ − 1

r
φ′ +

m2

r2
φ + φ− |φ|p−1φ = 0 (r > 0).

The natural boundary conditions are

(4.2) lim
r→0

r−mφ(r) = α, lim
r→0

r−m+1φ′(r) = mα, lim
r→∞

φ(r) = 0

for some α ≥ 0. One can choose φ(r) real-valued. It is shown by Iaia and Warchall
[17] that (4.1)–(4.2) has countably infinite many solutions, denoted by φm,k,p(r), each
having exactly k positive zeros. They correspond to “m-equivariant” nonlinear bound
states of the form

(4.3) Qm,k,p = φm,k,p(r) e
imθ (k = 0, 1, 2, . . . ).

Note that Qm,k,p are radial if and only if m = 0, and the ground state Q = Q0,0,p

is considered in the previous sections. The uniqueness question of φm,k,p(r) is not
addressed in [17]. It is proved for the case k = 0 in [24].

Mizumachi [24], [25], [26], and [27] considered the stability problem for these
solutions. He showed the following:

1. under m-equivariant perturbations of the form ε(r)eimθ, Qm,0,p are stable for
1 < p < 3 and unstable for p > 3;

2. under general perturbations, Qm,k,p are unstable for p > 3 for any k;
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3. linear (spectral) instability implies nonlinear instability (it can also be ob-
tained by extending the results in [31] to higher dimensions using the method
of [1]);

4. for fixed p > 1, if m > M(p) is sufficiently large, Qm,k,p are linearly unstable
and its linearized operator has a positive eigenvalue.

We are most interested in the last result. Intuitively, for 1 < p < ∞, Qm,k,p

should be unstable for all (m, k) �= (0, 0), since they are excited states. Can this be
observed numerically? It turns out to be true for p away from 1 but false for p near
1.

In the following, we first describe our numerical methods for k = 0 and then
discuss their relations. We will discuss our numerical results in the end. We compute
only m = 1, 2, but the same methods work for other m.

Remark 4.1. Our numerical methods do not apply when k > 0. Indeed, for
m ≥ 0 and k > 0, the radial functions φm,k,p(r) are sign-changing and cannot be
numerically calculated using the method described in the appendix. In fact, it is
an open question whether they are unique. Assuming the uniqueness, one needs to
develop a new algorithm to compute them before one can compute the spectra of L
for Qm,k,p.

4.1. Numerical algorithms. There are two steps in our numerical method:
First, compute φm,0,p(r). Second, compute the spectra of the discretized linearized
operator around Qm,0,p. The second step is more involved, and we will present three
algorithms.

Step 1. Compute φ(r) = φm,0,p(r). It is energy minimizing among all solutions
of (4.1)–(4.2) for fixed m, p, and it is positive for r > 0. Since our algorithm in
the appendix is applicable to all positive (ground state) solutions, we can use it to
calculate the discretized vector of φ(r) with a small change of the code.

Step 2. Compute the spectra of the discretized linearized operator. The linearized
operator L has a slightly different form than (1.9) because Q = φm,0,p(r)e

imθ is no
longer real. With the same ansatz (1.6)–(1.7), the linearized operator L has the form

(4.4) Lh = i

(
Δh− h +

p + 1

2
|Q|p−1h +

p− 1

2
|Q|p−3Q2h̄

)
.

We have developed three algorithms for computing the spectrum of L.
Algorithm 1. Write Q = φ(r) eimθ = φ(r) cos(mθ) + iφ(r) sin(mθ). In vector

form with L acting on [Reh, Imh]�, we have

(4.5) L ∼
[

0 −Δ + 1
Δ − 1 0

]
+ |φ(r)|p−1

[
−(p− 1) cos sin − cos2 −p sin2

p cos2 + sin2 (p− 1) cos sin

]
(mθ).

It is convenient to use polar coordinates to discretize the operator. We use a
two-dimensional mesh:

(4.6) 2d mesh: r = 0 : δr : rmax, θ = 0 : δθ : 2π.

The discretized matrix has size NT by NT with N = rmax/δr and T = 2π/δθ. We
use zero boundary condition with rmax = 15, δr = 0.04, and T = 160.

Although the matrix operator (4.5) is slightly more complicated than (1.9) and
the mesh is two-dimensional, the same numerical routine can be applied to compute
the spectrum of the discretized matrix of (4.5). The only difference is that the matrix
size is much larger.
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Algorithm 2. By restricting the problem to some invariant subspaces of L,
as we did for the computation of Figures 4–5, we will reduce the problem to one
dimension.

Observe that functions of the form a(r)eijθ with a fixed integer j are not preserved
by L unless j = m, but the following L2-subspaces are invariant under L:

Xk = X
(m)
k =

{
h(r, θ) : h = a(r)ei(m+k)θ + b(r)ei(m−k)θ

}
, 0 ≤ j ∈ N.

If k = 0, we drop b(r) and X0 =
{
h(r, θ) : h = a(r)eimθ

}
. We will compute the

spectra of L limited to each subspace Xk. Define

V =
p− 1

2
φp−1, Hk = −Δr + 1 +

(m + k)2

r2
− p + 1

2
φp−1.

For k = 0, with a = a1 + ia2, and a1, a2 ∈ R, we have

L[a(r)eimθ] = −i [H0a− V ā] eimθ = [H0(a2 − ia1) + V (a2 + ia1)]e
imθ.

Thus, acting on [a1, a2]
�, L|X0 has the matrix form

LX0
=

[
0 H0 + V

−H0 + V 0

]
.

For k > 0, with a = a1 + ia2, b = b1 + ib2, and a1, a2, b1, b2 ∈ R, we have

L[a(r)ei(m+k)θ + b(r)ei(m−k)θ]

= [Hk(a2 − ia1) + V (b2 + ib1)]e
i(m+k)θ + [H−k(b2 − ib1) + V (a2 + ia1)]e

i(m−k)θ.

Thus, acting on [a1, a2, b1, b2]
�, L|Xk

has the matrix form

LXk
=

⎡
⎢⎢⎣

0 Hk 0 V
−Hk 0 V 0

0 V 0 H−k

V 0 −H−k 0

⎤
⎥⎥⎦ .

To discretize the operator, we use the one-dimensional mesh

(4.7) 1d mesh: r = 0 : δr : rmax, N = rmax/δr.

The matrix corresponding to X0 has size 2N by 2N . The matrix for Xk with k > 0
has size 4N by 4N . We use zero boundary condition with rmax = 30 and δr = 0.01.

Counting multiplicity, the set of eigenvalues of L is the union of eigenvalues of
L|Xk

with k = 0, 1, 2, . . . .
Algorithm 3. Instead of the form (1.6), include the phase eimθ in the lin-

earization: ψ = (φ + h)eimθ+it. Then the linearized operator acting on [Reh, Imh]�

is

L′ =

[
−2m/r2∂θ −Δ + 1 + m2/r2 − φp−1

−(−Δ + 1 + m2/r2 − pφp−1) −2m/r2∂θ

]
,

which is invariant on subspaces Zk =
{
[a1(r), a2(r)]

�eikθ
}

with integers k. We have

L′
[
a1(r)
a2(r)

]
eikθ = eikθLm,k

[
a1(r)
a2(r)

]
,
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where

Lm,k :=

[
− 2imk

r2 −Δr + 1 + m2+k2

r2 − φp−1

−(−Δr + 1 + m2+k2

r2 − pφp−1) − 2imk
r2

]

acting on radial functions. We use the same one-dimensional mesh (4.7) as in Algo-
rithm 2. For every k, the matrix size is 2N by 2N . We then compute the spectra of
Lm,k for each k.

Counting multiplicity, the set of eigenvalues of L is the union of eigenvalues of
Lm,k with k = 0,±1,±2, . . . .

4.2. Properties of these algorithms. We now address the relation between
these algorithms. First, note that Xk is essentially the sum of Zk and Z−k. Let us
make it more precise, and suppose k > 0. The case k = 0 is easier. A function
h = (a1 + ia2)(r)e

i(m+k)θ + (b1 + ib2)(r)e
i(m−k)θ in Xk ⊂ L2(R2) can be identified

with [a1, a2, b1, b2] ∈ X̃k = L2
rad(R

2; R4). The space X̃k is a subspace of L2
rad(R

2; C4)
on which we compute the spectrum. The function h can be also identified with[

a1(r)
a2(r)

]
eikθ +

[
b1(r)
b2(r)

]
e−ikθ,

the collection of which form a subspace of Zk ⊕ Z−k with real components.
Nullspace of L. The nullspace of L gives a good test of the correctness of our

numerical results. For k = 0, the 0-eigenfunction iQ of L corresponds to [0, φ]�eimθ in
X0 and [0, φ]� in Z0. The generalized eigenfunction Q1 = 2

p−1Q+x ·∇Q corresponds

to [Q1, 0]�eimθ in X0 and [ 2
p−1φ + rφ′, 0]� in Z0. Since X0 ⊂ L2(R2,C), they also

provide two (generalized) eigenvectors for Algorithm 1.
For k = ±1, the 0-eigenfunctions

2Qx1
= 2(φ′ cos θ − iψ sin θ)eimθ = (φ′ − ψ)ei(m+1)θ + (φ′ + ψ)ei(m−1)θ,

2Qx2
= 2(φ′ sin θ + iψ cos θ)eimθ = i(−φ′ + ψ)ei(m+1)θ + i(φ′ + ψ)ei(m−1)θ,

where ψ = mφ/r, belong to X1, and correspond to 0-eigenvectors [φ′−ψ, 0, φ′+ψ, 0]�

and [0,−φ′ +ψ, 0, φ′ +ψ]� of LX1 . For Algorithm 3, they correspond to the following
vectors in Z1 ⊕ Z−1:

2

[
φ′ cos θ
−ψ sin θ

]
= W+e

iθ + W−e
−iθ, 2

[
φ′ sin θ
ψ cos θ

]
= −iW+e

iθ + iW−e
−iθ,

where

W± =

[
φ′

±iψ

]
, Lm,±1W± =

[
0
0

]
.

Thus W+e
iθ is a 0-eigenvector of L′ in Z1, and W−e

−iθ is a 0-eigenvector of L′ in
Z−1.

The generalized eigenfunctions

ix1Q = irφ cos θeimθ = irφei(m+1)θ + irφei(m−1)θ,

ix2Q = irφ sin θeimθ = rφei(m+1)θ − rφei(m−1)θ
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also lie in X1 and correspond to generalized 0-eigenvectors [0, rφ, 0, rφ]� and [rφ, 0,
−rφ, 0]� of LX1 . For Algorithm 3, they correspond to [0, rφ cos θ]� and [0, rφ sin θ]�

in Z1 ⊕Z−1. By the same consideration as for Qx1 and Qx2 , their span over C is the
same as the span of [0, rφ]�eiθ ∈ Z1 and [0, rφ]�e−iθ ∈ Z−1. One can check that

(4.8) Lm,±1

[
0
rφ

]
= −2

[
φ′

±iψ

]
.

Thus, the multiplicity of 0-eigenvalue in each of X0, Z−1, Z0, and Z1 is at least
2. The multiplicity of 0-eigenvalue on X1 is at least 4.

Symmetry of spectra. If

Lm,k

[
A
B

]
= λ

[
A
B

]
,

then

Lm,−k

[
Ā
B̄

]
= λ̄

[
Ā
B̄

]
, Lm,−k

[
A
−B

]
= −λ

[
A
−B

]
, Lm,k

[
Ā
−B̄

]
= −λ̄

[
Ā
−B̄

]
.

In particular, if λ ∈ σ(Lm,k), then −λ̄ ∈ σ(Lm,k), and λ̄,−λ ∈ σ(Lm,−k). Thus
σ(Lm,k) itself is symmetric w.r.t. the imaginary axis, and σ(Lm,k) and σ(Lm,−k) are
symmetric w.r.t. the real axis.

Similarly, one can show that the spectra of LXk
are symmetric w.r.t. both real

and imaginary axes.
Equivalence of Algorithms 2 and 3. In Algorithm 2, for k > 0, we can write

LXk
=

[
HkJ V U
V U H−kJ

]
,

where

J =

[
0 1
−1 0

]
, U =

[
0 1
1 0

]
, I =

[
1 0
0 1

]
.

Let

M =

[
I −J
I J

]
, M−1 =

1

2

[
I I
J −J

]
, P =

⎡
⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦ , P−1 = P.

Noting that JU = −UJ , we have

M−1LXk
M =

[
αJ + cU −β

−β αJ + cU

]
=

⎡
⎢⎢⎣

0 α + c β 0
−α + c 0 0 β
−β 0 0 α + c
0 −β −α + c 0

⎤
⎥⎥⎦ ,

where

α =
1

2
(Hk + H−k) = H0 +

k2

r2
, β =

1

2
(Hk −H−k) =

2mk

r2
, c = V.
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Let

L′ := P−1M−1LXk
MP =

⎡
⎢⎢⎣

0 β α + c 0
−β 0 0 α + c

−α + c 0 0 β
0 −α + c −β 0

⎤
⎥⎥⎦ .

In Algorithm 3, Lm,k acts on [A(r), B(r)]�. If we write the enlarged matrix of
Lm,k acting on [ReA, ImA,ReB, ImB]�, the matrix is exactly L′. The matrix for
Lm,−k will be also L′ if it acts on [ReA,− ImA,ReB,− ImB]�. This amounts to a
choice of assigning J or −J to the complexification of i.

More precisely, if Lm,ku = λu with u = [A,B]�, then Lm,kiu = λiu. Write
A = A1 + iA2 and B = B1 + iB2, and suppose k > 0. These two equations are
equivalent to

L′

⎡
⎢⎢⎣
A1

A2

B1

B2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

ReλA
ImλA
ReλB
ImλB

⎤
⎥⎥⎦ , L′

⎡
⎢⎢⎣
−A2

A1

−B2

B1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
− ImλA
ReλA

− ImλB
ReλB

⎤
⎥⎥⎦ .

Adding the second equation multiplied by −i to the first equation, we get

L′w = λw, w = [A,−iA,B,−iB]�.

Taking conjugation we get L′w̄ = λ̄w̄. Thus λ and λ̄ are eigenvalues of L′ and hence
of LXk

. Since Lm,ku = λu if and only if Lm,−kū = λ̄ū, eigenvalues of Lm,−k also
correspond to eigenvalues of LXk

.
Counting eigenvalues. LXk

acts on L2
rad(R

2,C4) and Lm,±k on L2
rad(R

2,C2).
The set of eigenvalues of LXk

is the union of eigenvalues of Lm,k and Lm,−k. For
any ball BR on the complex plane disjoint from the continuous spectrum Σc =
{ir : r ∈ R, |r| ≥ 1},

#(σ(LXk
) ∩BR) = #(σ(Lm,k) ∩BR) + #(σ(Lm,−k)) ∩BR,

which is equal to 2#(σ(Lm,k) ∩BR) if the center of BR is on the real axis.
Numerical efficiency. Algorithm 1 is two-dimensional and thus more expensive

to compute and less accurate. Both Algorithms 2 and 3 are one-dimensional and more
accurate.

The benefit of Algorithm 3 rather than Algorithm 2 is that it further decomposes
the subspace of L2(R2,C4) corresponding to Xk to two subspaces. Although its matrix
size is only half that of Algorithm 2, its components are complex and hence require
more storage space. Numerically these two algorithms are not very different.

4.3. Numerical results. The results of our numerical computations of the spec-
tra of L for m = 1, 2 and various k and p are shown in Figures 10–15. As before, we
focus on eigenvalues in the square {a + bi : |a| < 1, |b| < 1}. Purely imaginary eigen-
values with modulus greater than 1 correspond to the continuous spectrum of L and
are discrete due to discretization.

Let us first describe some simple observations:
1. The distribution of eigenvalues (see Figures 10–11) is more complicated and

interesting than Figures 1–5. There are not only purely imaginary eigenvalues
and real eigenvalues but also complex eigenvalues, whose existence implies
instability.
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Fig. 10. Spectra of L in R
2 for m = 1 and 0 ≤ k ≤ 24 as p = 1.06, 1.1, 1.4, 1.55, 1.8, 2.3, 3, 3.1,

3.5 computed by Algorithm 3.

2. In Figures 12–13, we compare the results obtained from three algorithms.
For Algorithms 2 and 3 the parameter k ranges from 0 to 9. Results from
these algorithms have a high degree of agreement, except when p is near 3
and eigenvalues are near 0. We will discuss this exceptional case in the end.

3. For Algorithms 2 and 3, the numerical 0-eigenvalue occurs only when k =
0 and k = ±1. It agrees with our discussion in the previous subsection.
Their multiplicities also match, and there is no unaccounted eigenvector. In
particular, Ng(L) has dimension 6 if p �= 3 and 8 if p = 3, the same as the case
of ground states. We also numerically verified the nullspace; for example, the
discrete version of (4.8) is correct.

4. As p increases, two pairs of purely imaginary eigenvalues may collide away
from 0 and then split into a quadruple of complex eigenvalues which are
neither real nor purely imaginary. For m = 1, this bifurcation phenomenon
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Fig. 11. Spectra of L in R
2 for m = 2 and 0 ≤ k ≤ 28 as p = 1.06, 1.1, 1.3, 1.4, 1.8, 2.2, 2.6, 3, 3.5

computed by Algorithm 3.

appears three times before p = 1.55, and there are three complex quadruples
for p > 1.55. For m = 2, it occurs five times before p = 1.5, and there are
five quadruples for p > 1.5. These complex eigenvalues seem to move away
from the imaginary axis as p increases further.

5. As p increases to 3 (by Algorithms 2 and 3), a pair of purely imaginary
eigenvalues from the 0th subspace collides at 0 and then splits into a pair
of real eigenvalues as p increases further. This is the same picture as in the
ground state case in section 3. Indeed, Mizumachi [24] proves that Qm,0,p

are stable in the 0th subspace if p < 3 and unstable if p > 3. Thus p = 3 is
a bifurcation point. Also note that when p = 3 the NLS (1.1) has conformal
invariance, and explicit blow-up solutions can be found as in the ground state
case.

6. In Figures 14–15 we observe the bifurcation more closely. For m = 1, the
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Fig. 12. Spectra of L in R
2 for m = 1 and various p = 1.6, 2.1, 3, 3.2. Point “·” denotes the

spectra computed by Algorithm 1, and the other symbols denote the spectra computed by Algorithms
2 and 3.

bifurcation occurs when (k, p, λ) equal

(0, 3, 0), (1, 1.5276,−0.436i), (2, 1.0165,−0.016i), (3, 1.3495,−0.219i).

For m = 2, the bifurcation occurs when (k, p, λ) equal

(0, 3, 0), (1, 1.357, −0.180i), (2, 1.007, −0.027i), (3, 1.0245, −0.035i)

and

(4, 1.0455, −0.045i), (5, 1.3955, −0.347i).

7. Due to the existence of complex eigenvalues for m = 1, 2 and p ≥ 1.02,
Qm,0,p is spectrally unstable for these parameters. However, all these complex
eigenvalues bifurcate from some discrete eigenvalues ±bi with |b| < 1 and
p > 1.008. Our computation for both m = 1, 2 and

p = � · 0.001, � = 1, 2, 3, . . . , 8 (up to 15 if m = 1),
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Fig. 13. Spectra of L in R
2 for m = 2 and various p = 1.6, 2.1, 3, 3.2. Point “·” denotes the

spectra computed by Algorithm 1, and the other symbols denote the spectra computed by Algorithms
2 and 3.

does not find any complex eigenvalues. This suggests that the two excited
states φ1,0,p(r)e

iθ and φ2,0,p(r)e
i2θ are linearly stable when p is sufficiently

close to 1. It is possible that the numerical error increases enormously as p →
1+ due to the artificial boundary condition, since the spectrum is approaching
the continuous one for p = 1. This has to be verified analytically in the future.

We finally discuss the exceptional case when p is near 3 for eigenvalues near 0. In
this case Algorithm 1 produces a quadruple of complex eigenvalues ±0.0849±0.0836i,
and the 0-eigenvalue has multiplicity 4. We expect to see larger errors from Algorithm
1, but the error in this exceptional case is much larger. It is related to the large size
of a Jordan block for the 0-eigenvalue. As discussed in the previous subsection, the
nullspace is at least six-dimensional. The analysis in section 2.3 suggests that (we do
not claim a proof), as p goes to the bifurcation exponent pc = 3 from below, a pair
of imaginary eigenvalues merges into the Jordan block containing the eigenfunctions
iQ and Q1, and the Jordan block becomes size 4. As is well known in matrix analysis
(see [11, p. 324], [41]), if a matrix contains a Jordan block of size �, the computed
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Fig. 14. Bifurcation diagrams of Lm,k for m = 1 and 0 ≤ k ≤ 3.

eigenvalues corresponding to that block have errors of order ε1/�, where ε is the sum
of the machine zero, the truncation error from discretization, and the perturbation
(from varying p). Since δr = 0.04 for Algorithm 1 and the truncation error of a central
difference scheme for Δr has order O(δ2

r), the error for the zero eigenvalue near p = 3
could be

(δ2
r)

1/4 ≈ 0.2.

In contrast, for other bifurcation points on the imaginary axis, the Jordan block at the
bifurcation exponent is of size 2 and the error is of order (δ2

r)
1/2 = 0.04. In practice,

the error is smaller due to cancellation, and the numerical results by Algorithm 1 do
not differ too much from those by Algorithms 2 and 3. Also note that numerically the
0-eigenspace has dimension 4, accounting for Qxj and ixjQ. The complex quadruple
corresponds to iQ, Q1, and the joining pair of nonzero eigenvalues.

Appendix: Numerical method. In this appendix we describe a numerical
method to compute the spectrum of the linear operator L defined by (1.8) for p > 1
and space dimension n ≥ 1. There are two main steps in this method. First, we
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Fig. 15. Bifurcation diagrams of Lm,k for m = 2 and 0 ≤ k ≤ 5.
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will solve the nonlinear problem (1.3) for Q: we will discretize it into a nonlinear
algebraic equation and then solve it by an iterative method. Second, we will compute
the spectrum of L: we will discretize the operator L into a large-scale linear algebraic
eigenvalue problem and then use implicitly restarted Arnoldi methods to deal with
this problem.

Hereafter, we use the boldface letters or symbols to denote a matrix or a vector.
For A ∈ R

M×N , q = (q1, . . . , qN )� ∈ R
N , q©p = q ◦ · · · ◦ q denotes the p-time

Hadamard product of q, and [[q]] := diag(q) denotes the diagonal matrix of q.
Step I. We first discretize (1.3) into a nonlinear algebraic equation and consider

it on an n-dimensional ball Ω = {x ∈ R
n : |x| ≤ R,R ∈ R}. We rewrite the Laplace

operator −Δ in the polar coordinate system with a Dirichlet boundary condition.
Based on the recently proposed discretization scheme [20], the standard central finite
difference method, we discretize −Δq(x) into

(A.1) Aq = A[q1, . . . , qN ]�, A ∈ R
N×N ,

where q is an approximation of the function Q(x). The matrix A is irreducible and
diagonally dominant with positive diagonal entries. The discretization of the nonlinear
equation (1.3) can now be formulated as the following nonlinear algebraic equation:

(A.2) Aq + q − q©p = 0.

We introduce an iterative algorithm [16] to solve (A.2):

(A.3) Aq̃j+1 + q̃j+1 = q©p
j ,

where q̃j+1 and qj are the unknown and known discrete values of the function Q(x),
respectively. The iterative algorithm is shown below.

Iterative Algorithm for Solving Q(x).
Step 0 Let j = 0.

Choose an initial solution q̃0 > 0, and let q0 = q̃0

‖q̃0‖2
.

Step 1 Solve (A.3); then obtain q̃j+1.
Step 2 Let αj+1 = 1

‖q̃j+1‖2
and normalize q̃j+1 to obtain qj+1 = αj+1q̃j+1.

Step 3 If (convergent), then

Output the scaled solution (αj+1)
1

p−1 qj+1. Stop.
else

Let j := j + 1.
Goto Step 1.

end
If the components of q0 are nonnegative, this property is preserved by each iter-

ation qj and hence also by the limit vector if it exists (see [16, Theorem 3.1]). The
convergence of a subsequence of this iteration method to a nonzero vector is proved
in [16, Theorem 2.1]. Although the convergence of the entire sequence is not proved,
it is observed numerically to be very robust. See Chen, Zhou, and Ni [6] for a survey
on numerically solving nonlinear elliptic equations.

Step II. Next we discretize the operator L of (1.10) into a linear algebraic eigen-
value problem:

(A.4) L

[
u
w

]
= λ

[
u
w

]
,
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where

L =

[
0 A + I − [[q©γ ]]

−A − I + [[pq©γ ]] 0

]
,

γ = p − 1, u = (u1, . . . , uN )� ∈ R
N , w = (w1, . . . , wN )� ∈ R

N , and q is the output
of the previous step, and satisfies the equation in (A.2). We use ARPACK [21] in
MATLAB version 6.5 to deal with the linear algebraic eigenvalue problem (A.4) and
obtain eigenvalues λ of L near the origin for p > 1 and space dimension n ≥ 1.
Furthermore, the eigenvectors of L can be also produced.

Step II above can in principle be used to compute all eigenfunctions in L2(Rn).
However, in producing Figures 2–5, we look for eigenfunctions of the form φ(r)eimθ.
These problems can be reformulated as one-dimensional eigenvalue problems for φ(r),
which can be computed using the same algorithm and MATLAB code. This di-
mensional reduction saves a lot of computation time and memory. Even with this
dimensional reduction, and applying an algorithm for sparse matrices, the computa-
tion is still very heavy, and we cannot compute all eigenvalues in one step. We can
compute only a portion of them each time.
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1. Introduction and statement of the main result. The relations between
the shape of a domain and the eigenvalues of its Dirichlet or Neumann Laplacian
have been intensively investigated since the 1920s when Faber [5] and Krahn [12]
proved independently the famous eigenvalue isoperimetric inequality first conjectured
by Rayleigh (1877): the first Dirichlet eigenvalue λ1(Ω) of any bounded domain Ω ⊂
Rn satisfies

λ1(Ω) ≥ λ1(Ω
∗),

where Ω∗ is a ball having the same volume as Ω. We refer to the review papers of
Ashbaugh [1, 2] and Henrot [9] for a survey of recent results on optimization problems
involving eigenvalues.

The present work deals with the following eigenvalue optimization problem: Given
a bounded domain D, we want to place an obstacle (or a hole) B, of fixed shape, inside
D so as to maximize or minimize the fundamental eigenvalue λ1 of the Laplacian or
Schrödinger operator on D \B with zero Dirichlet conditions on the boundary.

In other words, the problem is to optimize the principal eigenvalue function ρ �→
λ1(D \ ρ(B)), where ρ runs over the set of rigid motions such that ρ(B) ⊂ D.

The first result obtained in this direction concerned the case where both D and B
are disks of given radii. Indeed, it follows from Hersch’s work [10] that the maximum
of λ1 is achieved when the disks are concentric (see also [14]). This result has been
extended to any dimension by several authors (see, e.g., Harrell, Kröger, and Kurata
[8] and Kesavan [11]). Actually, Harrell, Kröger, and Kurata [8] gave a more general
result showing that if the domain D satisfies an interior symmetry property with
respect to a hyperplane P passing through the center of the spherical obstacle B
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(which means that the image by the reflection with respect to P of one component
of D \ P is contained in D), then the Dirichlet fundamental eigenvalue λ1(D \ B)
decreases when the center of B moves perpendicularly to P in the direction of the
boundary of D. In the particular case where both the domain D and the obstacle B
are balls, this implies that the minimum of λ1(D \ B) corresponds to the limit case
where B touches the boundary of D.

Notice that when the obstacle B is a disk, only translations of B may affect the
eigenvalues of D \B, and the optimal placement problem reduces to the choice of the
center of B inside D.

In the present work we investigate a kind of dual problem in the sense that we
consider a nonspherical obstacle B whose center of mass is fixed inside D, and we
seek the optimal positions while turning B around its center.

It is of course hopeless to expect a universal solution to this problem. In fact,
we will restrict our investigation to a class of domains satisfying a dihedral symmetry
and monotonicity conditions.

Thus, let D be a simply connected plane domain and assume that the following
conditions are satisfied:

(i) (Dn-symmetry.) For an integer n ≥ 2, D is invariant under the action of the
dihedral group Dn of order 2n generated by the rotation ρ 2π

n
of angle 2π

n and
a reflection S. Such a domain admits n axes of symmetry passing through
the origin and such that the angle between 2 consecutive axes is π

n .
(ii) (Monotonicity of the boundary.) The distance d(O, x) from the origin to a

point x of the boundary of D is monotonous as a function of the argument
of x, in a sector delimited by two consecutive symmetry axes.

Notice that assumption (i) guarantees that the center of mass of D is at the
origin. Regular n-gones centered at the origin are the simplest examples of domains
satisfying these assumptions. More generally, if g is any positive even 2π

n -periodic
continuous function that is monotonous on the interval (0, π

n ), then the domain

D = {reiθ; θ ∈ [0, 2π), 0 ≤ r < g(θ)}

satisfies assumptions (i) and (ii). Actually, up to a rigid motion, any domain satisfying
assumptions (i) and (ii) can be parametrized in such a manner.

It is worth noticing that, due to the monotonicity condition, the “distance to
the origin” function on the boundary of D achieves its maximum and its minimum
alternatively at the intersection points of ∂D with the 2n half-axes of symmetry. The
n points of ∂D at maximal (resp., minimal) distance from the origin will be called
“outer vertices” (resp., “inner vertices”) of D.

Our main result is the following.
Theorem 1. Let D and B be two plane domains satisfying the assumptions

of Dn-symmetry and monotonicity (i) and (ii) above for an integer n ≥ 2. Assume
furthermore that B has C2 boundary and that ρ(B) ⊂ D for all ρ ∈ SO(2). Then the
fundamental Dirichlet eigenvalue λ1(D \ B) of D \ B is optimized exactly when the
axes of symmetry of B coincide with those of D.

The maximizing configuration corresponds to the case where the outer vertices of
B and D lie on the same half-axes of symmetry (we will then say that B occupies the
“ON” position in D).

The minimizing configuration corresponds to the case where the outer vertices of
B lie on the half-axes of symmetry passing through the inner vertices of D (this is
what will be called the “OFF” position).
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Fig. 1. Examples of maximal (left) and minimal (right) configurations with n = 2, 3, and 4,
respectively.

Actually, we will prove that, except for the trivial case where D or B is a disk,
the fundamental Dirichlet eigenvalue of D \ B decreases gradually when B switches
from “ON” to “OFF” (see Figure 1 for examples).

The main ingredients of the proof of Theorem 1 are Hadamard’s variation formula
for λ1 and the technique of domain reflection initiated by Serrin [17] in a PDE setting.

Extensions of Theorem 1 to the following situations can be obtained up to slight
changes in the proof (indeed, only the Hadamard formula should be replaced by the
variation formula corresponding to the new functional):

1. Soft obstacles. Instead of considering the Dirichlet Laplacian on D \ B, we
consider the Schrödinger-type operator

H(α,B) := Δ − αχB

acting on H1
0 (D), where α > 0 and χB is the indicator function of B. Opti-

mization problems related to the fundamental eigenvalue of operators of this
kind have been investigated in particular in [8] and [3]. Under the assump-
tions of Theorem 1 on D and B, for all α > 0, the fundamental eigenvalue
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of H(α,B) achieves its maximum at the “ON” position and its minimum at
the “OFF” position.

2. Wells. This case corresponds to the operator H(α,B) with α < 0. Under
the circumstances of Theorem 1, for all α < 0, the first eigenvalue of H(α,B)
achieves its maximum at the “OFF” position and its minimum at the “ON”
position.

3. Stationary problem. The problem now is to optimize the Dirichlet energy
J(D \B) :=

∫
D\B |∇u|2dx of the unique solution u of the problem{

Δu = −1 in D \B,
u = 0 on ∂(D \B).

This problem was treated in [11, section 2] in the case where both D and B
are balls. Under the assumptions of Theorem 1 on D and B, one can prove
that J(D \B) achieves its maximum when B is at the “ON” position and its
minimum when B is at the “OFF” position.

2. Proof of the main result. Without loss of generality, we may assume that
the domain D and the obstacle B are centered at the origin and are both symmetric
with respect to the x1-axis so that they can be parametrized in polar coordinates by

D = {reiθ; θ ∈ [0, 2π), 0 ≤ r < g(θ)},

B = {reiθ; θ ∈ [0, 2π), 0 ≤ r < f(θ)},

where f and g are two positive even 2π
n -periodic functions which are nondecreasing

on (0, π
n ). To avoid technicalities, we suppose throughout that g is continuous and f

is C2. Extensions of our result to a wider class of domains would certainly be possible
up to some additional technical difficulties.

The condition that the obstacle B can freely rotate around his center inside D,
that is, ρ(B̄) ⊂ D for all ρ ∈ SO(2), amounts to the following:

f
(π
n

)
= max

0≤θ≤2π
f(θ) < min

0≤θ≤2π
g(θ) = g(0).

Let us denote, for all t ∈ R, by ρt the rotation of angle t, that is, for all ζ ∈ R2 ∼=
C, ρt(ζ) = eitζ, and set

Bt := ρt(B) and Ω(t) := D \Bt.

Let λ(t) be the fundamental eigenvalue of the Dirichlet Laplacian on Ω(t). It is
well known that, since it is simple, the first Dirichlet eigenvalue λ(t) is a differentiable
function of t (see [6, 15]). We denote by u(t) the one parameter family of nonnegative
first eigenfunctions satisfying, for all t ∈ R,⎧⎨

⎩
Δu(t) = −λ(t)u(t) in Ω(t),
u(t) = 0 on ∂Ω(t),∫

Ω(t)
u2(t) = 1.

The derivative of λ(t) is then given by the following so-called Hadamard formula (see
[4, 6, 7, 16]):

(1) λ′(t) =

∫
∂Bt

∣∣∣∣∂u(t)

∂ηt

∣∣∣∣
2

ηt · v dσ,
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where ηt is the inward unit normal vector field of ∂Ω(t) (hence, along ∂Bt the vector
ηt is outward with respect to Bt) and v denotes the restriction to ∂Ω(t) = ∂D ∪ ∂Bt

of the deformation vector field. In our case, the vector v vanishes on ∂D and is given
by v(ζ) = iζ for all ζ ∈ ∂Bt.

Since both Ω and B are invariant by the dihedral group Dn, it follows that, for
all t ∈ R, Ω(t + 2π

n ) = Ωt. Moreover, if we denote by S0 the reflection with respect
to the x1-axis, then we clearly have ρ−t = S0 ◦ ρt ◦S0, which gives B−t = S0(Bt) and
Ω−t = S0(Ωt). Hence, as a function of t, the first Dirichlet eigenvalue of Ωt is even
and periodic of period 2π

n , that is, for all t ∈ R,

λ

(
t +

2π

n

)
= λ(t) and λ(−t) = λ(t).

Therefore, it suffices to investigate the variations of λ(t) on the interval
[
0, π

n

]
, and

Theorem 1 is a consequence of the following.
Theorem 2. Assume that neither D nor B is a disk.
(i) For all t ∈

(
0, π

n

)
, λ′(t) < 0. Hence, λ(t) is strictly decreasing on

(
0, π

n

)
.

(ii) For all k ∈ Z, λ′(k π
n ) = 0 and k π

n , k ∈ Z, are the only critical points of λ on
R.

Hence, λ(t) achieves its maximum for t = 0 mod 2π
n , which corresponds to the

“ON” position, and its minimum for t = π
n mod 2π

n , which corresponds to the “OFF”
position. Of course, if D or B is a disk, then the function λ(t) is constant.

In what follows we will denote, for any α ∈ R, by zα the θ = α axis, that is,
zα := {reiα; r ∈ R}, and by z+

α the half-axis {reiα; r ≥ 0}.
We start the proof with the following elementary lemma.
Lemma 1. Let K be a plane domain defined in polar coordinates by K = {reiθ; θ ∈

[0, 2π), 0 ≤ r < h(θ)}, where h is a positive 2π-periodic function of class C1, and let
v be a vector field whose restriction to ∂K is given by

v(θ) := v(h(θ)eiθ) = ih(θ)eiθ = h(θ)ei(θ+
π
2 ).

We denote by η the unit outward normal vector field of ∂K. One has, at any point
h(θ)eiθ of ∂K where η is defined, the following:

(i) η(θ) := η(h(θ)eiθ) = h(θ)eiθ−ih′(θ)eiθ√
h2(θ)+h′2(θ)

.

(ii) η · v(θ) = −h(θ)h′(θ)√
h2(θ)+h′2(θ)

. Hence, η.v(θ) has constant sign on an interval I If

and only if h is monotonous in I.
(iii) If for some α > 0, the domain K is symmetric with respect to the axis zα,

then the function η · v is antisymmetric with respect to this axis, that is,

η · v(α + θ) = −η · v(α− θ).

Proof. Assertions (i) and (ii) are direct consequences from the definition of K.
The fact that K is symmetric with respect to the axis zα implies that the function h
satisfies h(α + θ) = h(α− θ). Therefore, (iii) follows immediately from (ii).

We will denote by Sα the symmetry with respect to the axis zα. We will also
denote, for α < β, by σ (α, β) the sector delimited by z+

α and z+
β , that is,

σ (α, β) = {reiθ; r > 0 and α < θ < β}.

Lemma 2. Let D be as above. For all t ∈
(
0, π

n

)
, we have

Sπ
n+t

(
D ∩ σ

(
π

n
+ t,

2π

n
+ t

))
⊆ D ∩ σ

(
t,
π

n
+ t

)
.
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θ = 0

t

θ =

θ = 

2t

θ = π \n

θ =
 π\n

 +
t

θ 
= 

2π
\n

 

θ 
= 

2π
\n

 +
t

case 2t < π
n

θ = 0

t
θ = 

θ = π \n

θ 
= 

π
\n

 +
t

θ =
 2t

\n
 \n

 +
t

θ 
= 

2π

θ 
= 

2π

case 2t > π
n

Fig. 2.

Moreover, if D is not a disk, then

Sπ
n+t

(
∂D ∩ σ

(
π

n
+ t,

2π

n
+ t

))
∩D �= ∅.

Proof. The action of the symmetry Sπ
n+t is given in polar coordinates by Sπ

n+t(re
iθ)

= rei(2(
π
n+t)−θ). Hence,

Sπ
n+t

(
D ∩ σ

(
π

n
+ t,

2π

n
+ t

))
= Sπ

n+t(D) ∩ σ
(
t,
π

n
+ t

)
.

Moreover, the domain D being parametrized by a positive even 2π
n -periodic function

g(θ), that is, D = {reiθ; θ ∈ [0, 2π), 0 ≤ r < g(θ)}, its image Sπ
n+t (D) can be

parametrized in the same manner by the function g∗(θ) = g(θ − 2t). Thus

Sπ
n+t(D) ∩ σ

(
t,
π

n
+ t

)
=

{
reiθ; θ ∈

(
t,
π

n
+ t

)
, 0 ≤ r < g(θ − 2t)

}
.

Therefore, we need to prove that F (θ) = g(θ) − g∗(θ) is nonnegative for every θ in
the interval (t, π

n + t). This will be possible thanks to the assumptions of symmetry
(that is, g is even and 2π

n -periodic) and monotonicity (that is, g is nondecreasing on
[0, π

n ]). Indeed, these properties imply that on the interval
(
t, π

n + t
)
,

• g achieves its maximum at θ = π
n ,

• g∗ achieves its minimum at θ = 2t.

Four cases must be considered separately (see Figure 2):

- If t < θ ≤ min{2t, π
n}, we may write, since g is even, F (θ) = g(θ)− g(2t− θ),

with 0 ≤ 2t− θ < θ ≤ π
n . Since g is nondecreasing on [0, π

n ], we get F (θ) ≥ 0.
- If max{2t, π

n} ≤ θ < π
n + t, we may write, since g is even and 2π

n -periodic,
F (θ) = g(2π

n − θ)− g(θ− 2t) with 0 ≤ θ− 2t < 2π
n − θ ≤ π

n . Hence, F (θ) ≥ 0.
- If 2t < π

n and 2t ≤ θ ≤ π
n , then 0 ≤ θ − 2t < θ ≤ π

n and, then, F (θ) =
g(θ) − g(θ − 2t) ≥ 0.

- If 2t > π
n and π

n ≤ θ ≤ 2t, then 0 ≤ 2t − θ < 2π
n − θ ≤ π

n and, then,
F (θ) = g(2π

n − θ) − g(2t− θ) ≥ 0.
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Hence, F (θ) is nonnegative for all θ in (t, π
n + t).

Now, if D is not a disk, then g is nonconstant on [0, π
n ]. Following the arguments

above, we deduce that the function F (θ) is positive somewhere on (t, π
n + t), which

means that Sπ
n+t

(
∂D ∩ σ

(
π
n + t, 2π

n + t
))

meets the interior of D.

Proof of Theorem 2. Notice first that, since λ is an even and 2π
n -periodic function

of t, one immediately gets, for all k ∈ Z, λ(k π
n − t) = λ(k π

n + t) and, then,

λ′
(
k
π

n

)
= 0.

Alternatively, one can deduce that λ′ (k π
n

)
= 0 from Hadamard’s variation formula

(1) after noticing that the domain Ω(k π
n ) is symmetric with respect to the x1-axis

and that the first Dirichlet eigenfunction u(k π
n ) satisfies u ◦ S0 = u, where S0 is the

symmetry with respect to the x1-axis.
Let us fix a t in

(
0, π

n

)
and denote by u the nonnegative first Dirichlet eigenfunction

of Ω(t) satisfying
∫
Ω(t)

u2 = 1. The domain Ω(t) is clearly invariant by the rotation

ρ 2π
n

of angle 2π
n , and hence u ◦ ρ 2π

n
= u. On the other hand, the domain B being

parametrized by a positive even 2π
n -periodic function f(θ), that is, B = {reiθ; θ ∈

[0, 2π), 0 ≤ r < f(θ)}, one has

Bt = {reiθ; θ ∈ [0, 2π), 0 ≤ r < h(θ)},

with h(θ) = f(θ− t). Hence, the function ηt · v is invariant by ρ 2π
n

(Lemma 1) and we

have (Hadamard formula (1))

λ′(t) =

∫
∂Bt

∣∣∣∣ ∂u∂ηt
∣∣∣∣
2

ηt · v dσ = n

∫
∂Bt∩σ(t, 2πn +t)

∣∣∣∣ ∂u∂ηt
∣∣∣∣
2

ηt · v dσ.

Since Bt is symmetric with respect to the axis zπ
n+t, we have (Lemma 1) ηt · v(πn +

t + θ) = −ηt · v(πn + t − θ) or, equivalently, ηt · v(x) = −ηt · v(x∗), where x∗ denotes
the symmetric of x with respect to zπ

n+t. This yields

λ′(t) = n

∫
∂Bt∩σ(π

n+t, 2πn +t)

(∣∣∣∣ ∂u∂ηt (x)

∣∣∣∣
2

−
∣∣∣∣ ∂u∂ηt (x∗)

∣∣∣∣
2
)
ηt · v(x) dσ.

Notice that the function h(θ) is decreasing between π
n + t and 2π

n + t and, then, ηt · v
is nonnegative on ∂Bt ∩ σ(πn + t, 2π

n + t) (Lemma 1).
Let H(t) := Ω(t)∩σ(πn +t, 2π

n +t). Applying Lemma 2, and since Bt is symmetric
with respect to the axis zπ

n+t, one gets

Sπ
n+t(H(t)) ⊂ Ω(t) ∩ σ

(
t,
π

n
+ t

)
.

Hence, the function w(x) = u(x)−u(x∗) is well defined on H(t) and satisfies w(x) = 0
for all x in ∂H(t) ∩

(
∂Bt ∪ zπ

n+t ∪ z 2π
n +t

)
. Moreover, since u vanishes on ∂D and is

positive inside Ω(t), w(x) ≤ 0 for all x in ∂H(t) ∩ ∂D and w(x) < 0 for certain x in
∂H(t) ∩ ∂D (recall that D is not a disk and apply the second part of Lemma 2).

Therefore, the nonconstant function w satisfies the following:{
Δw = −λ(t)w in H(t),
w ≤ 0 on ∂H(t).
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Hence, w must be nonpositive on the whole of H(t). Otherwise, a nodal domain
V ⊂ H(t) of w would have the same first Dirichlet eigenvalue as Ω(t). But, due to
the invariance of Ω(t) by ρ 2π

n
, the domain Ω(t) would contain n copies of V lead-

ing to a strong contradiction with the domain monotonicity theorem for eigenval-
ues. Therefore, Δw ≥ 0 in H(t) and w achieves its maximal value (i.e., zero) on
∂Bt ∩ σ(πn + t, 2π

n + t) ⊂ ∂H(t). The Hopf maximum principle (see [13, Theorem 7,
Chapter 2]) then implies that, at any regular point x of ∂Bt ∩ σ(πn + t, 2π

n + t), one
has

∂w

∂ηt
(x) =

∂u

∂ηt
(x) − ∂u

∂ηt
(x∗) < 0.

It follows that λ′(t) ≤ 0 and that the equality holds if and only if ηt · v ≡ 0. By
Lemma 1, this last equality occurs if and only if f is constant, which means that B
is a disk.
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Abstract. We study steady states of Stefan-type problems in the plane with the Gibbs–Thomson
correction involving a general anisotropic energy density function. By a local analysis we prove the
global result showing that the solution is the Wulff shape. The key element is a stability result which
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1. Introduction. An important aspect of studying dynamical systems is deter-
mining steady states and their stability properties. We have in mind a class of models
of phase transitions involving the Gibbs–Thomson correction on the interface. They
include the Stefan (see [Lu], [AW], [CR], [Ra], [FR], [GR1]) and Hele–Shaw problems
(see [DE], [A]). In special cases the modeling system takes the following one-phase
quasi-stationary form:

(1.1)

Δp = 0 in Ω(t),
p = κγ on ∂Ω(t),
∂p
∂n = −V on ∂Ω(t).

This is a free boundary problem where we seek the time evolution of an open set Ω(t)
in R

n, n is the normal to the boundary, and V is the normal velocity of the interface
∂Ω(t). Here κγ is the weighted mean curvature, which is the most important object
for us; it will be explained below and in more detail in section 3.

This system is augmented with initial data for Ω. The interpretation of p depends
upon the phenomenon we wish to model with (1.1). In the Stefan problem this is the
temperature; in the Hele–Shaw problem p is the fluid pressure; in the tumor growth
model (see [FR]) p is the internal pressure of the proliferating tissue; in the crystal
growth from vapor (see [GR1]) p is the supersaturation of the diffusing water vapor.

We want to stress the important fact that κγ in (1.1) is the weighted (anisotropic)
mean curvature, i.e.,

(1.2) κγ = div∂Ω(∇ξγ̄|ξ=n).
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This formula is correct for sufficiently smooth γ̄. On the other hand, the case of low
smoothness γ̄ and singular ∂Ω will require special considerations.

Function γ̄ is related to the anisotropy of the modeled process. Here we assume
that function γ̄ : R

n → R is one-homogeneous, γ̄(x) > 0 for x �= 0, i.e.,

(1.3) γ̄(x) = |x|γ
(

x

|x|

)
if x �= 0, γ̄(0) = 0,

while function γ depends essentially on the orientation, i.e., γ : Sn−1 → R. In the
terminology of [Gu, Chapter 7], function γ is called the interfacial energy, while γ̄ is
the extended energy.

Our goal is to study static solutions to (1.1), i.e.,

(1.4)

Δp = 0 in Ω,
p = div∂Ω(∇ξγ̄|ξ=n) on ∂Ω,
∂p
∂n = 0 on ∂Ω.

|Ω| is given,

Momentarily, we are going to explain why the measure of Ω has to be fixed. By (1.1)1,3
we conclude that

∫
∂Ω(t)

V dHn−1 = 0, and hence the measure of Ω(t) is constant.

Additionally from (1.4)1,3 we conclude that p ≡ const, and thus, we get

div∂Ω(∇ξγ̄|ξ=n) = const and |Ω| is given.

By a simple rescaling we arrive at a geometric problem expressed as a differential
equation

(1.5) div∂Ω(∇ξγ̄|ξ=n) = 1.

At this moment we have to specify the assumptions on γ̄. A minimal hypothesis,
besides (1.3), which we impose is the convexity of γ̄. Thus, we immediately conclude
that γ̄ is Lipschitz continuous.

Under such broad assumptions on γ̄, making sense out of (1.5) requires some work.
For example, in [BNP] and [GR2] a separate variational problem was considered for
the definition of κγ . It is our desire to consider quite a general, as far as the smoothness
is concerned, surface energy density function γ.

In our paper we consider a two-dimensional case of (1.5). That is, we look for
a curve Γ which locally has a constant weighted mean curvature κγ . We show the
existence of such a curve, which turns out to be the boundary of a region (in particular
Γ is closed).

It is possible to adopt an energy point of view, interpret (1.5) as a critical point
of surface energy functional E(S) =

∫
S
γ(n(x)) dHn−1(x), and study its minimizers

under the volume constraint. In fact this approach has been carried out; see [T],
[FM], [Pa], [Mo], and references therein. In [T] Taylor gives the first rigorous proof
of Wulff’s theorem, stating that the only minimizer of E under the volume constraint
is the Wulff shape. Later, various proofs of this result were found; see [FM] and
references therein. Palmer [Pa] shows that the only stable smooth critical point of E
is the Wulff shape. Morgan [Mo] studied equilibria of E, and he dropped the stability
and smoothness assumptions. He showed that the only equilibrium is the Wulff shape.

An important assumption in the above papers is that they deal only with mani-
folds without boundary (e.g., closed curves). Here we adopt a different view, which
we may call a local one. Namely, we can regard (1.5) as a locally defined differential
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equation. By this we mean that if (1.5) is given some appropriate data, then there
exists a solution which is defined in a neighborhood of the data. Our goal, however,
is global, to show that one can glue up those local solutions, and, despite the apparent
freedom in choosing the data for the equation, one can obtain a uniquely defined
geometric object: a closed manifold, in this case a closed curve.

We stress that we set a restricted goal to consider only the two-dimensional case.
This leads to a significant simplification of (1.5) and the notion of its solution. How-
ever, thanks to this simplification we will be able to show interesting qualitative
properties of obtained solutions. A solution to this equation will be a curve of class
W 1

p , whose curvature satisfies (1.5) in an appropriate sense explained later; see section
3.

We may now state our main result.
Theorem 1.1. Let us suppose that γ̄ : R

2 → R is a one-homogeneous, con-
vex function. Then there exists a solution to (1.5). Moreover, the solution de-
fines a closed curve Γ, and it is unique up to a translation; namely, it is the Wulff
shape of γ̄.

Let us stress that compared to the literature we have already mentioned, the
closedness of curve Γ is a conclusion of our analysis, not its assumption. Moreover,
we consider the weakest possible regularity assumptions on γ, i.e., only convexity of γ̄.
A general notion of the solution is introduced in the definition of section 3 by (3.13).

In order to prove this theorem, we first consider the regular case (we will make
clear what this means for us). Careful analysis gives us a hint how to proceed for
general γ̄. We will see that it is easier to show the existence of local solutions to
(1.5) than to show that they can be glued up to form a closed curve. The last task is
simpler for regular curves, because we can use the power of the classical differential
geometry. Our goal is reached through an appropriate stability theorem, which is our
second important result.

Theorem 1.2. Let us assume that 1 ≤ p < ∞ and γ̄, γ̄ε : R
2 → R are convex,

one-homogeneous and γε : S1 → R are defined by (1.3) with γ̄ replaced by γ̄ε. We also
assume that Γε is a solution to

div∂Ω(∇ξγ̄ε|ξ=n) = 1

and Γ is a solution to (1.5). If γε → γ in W 1
p (S1) as ε → 0, then possibly after a

translation of Γε it is true that Γε → Γ in W 1
p as submanifolds in R

2.
Let us first explain that convergence of Γε means convergence of curves locally

treated as graphs. The W 1
p (S1)-space is the standard Sobolev space of functions,

defined on the unit circle S1 = {x ∈ R
2 : |x| = 1}, integrable with its derivative with

the pth power.
The last result enables us to approximate any low regularity problem by its suit-

able regularization. A crucial point here is the choice of a proper notion of conver-
gence. At first it seems that the measures are the best spaces, because the second
derivative of a convex function is in this space, or, equivalently, the first derivative
belongs to the TV -space. However, from our point of view this setting does not ap-
pear to be appropriate, because we are not able to find any smooth approximations
for the general case. Hence, we investigate the Lp-approach which implies a weaker
topology, but it provides sufficient information. The method developed here gives us
a tool to analyze the behavior of possible singularities appearing in our problem.

Let us draw a corollary from Theorem 1.2. If ‖x‖p is the usual p-norm in R
2, i.e.,

‖x‖p = (|x1|p + |x2|p)1/p for p < ∞, and ‖x‖∞ = max{|x1|, |x2|}, then we define γp
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by means of (1.3) as γp(x) = ‖x‖p for x ∈ S1. It is a well-known fact that Γp, which
is a solution to (1.5) with γp replacing γ, is given as a Wulff shape of ‖ · ‖p; i.e., Γp is
the unit ball of the norm ‖ · ‖q, where 1

p + 1
q = 1. Thus, Γp = {‖x‖q = 1}. We can

easily see that, for any r < ∞, if γp → γ∞ in W 1
r as p → ∞, then Γp → Γ∞ in W 1

r as
submanifolds in R

2.
We briefly describe the content of the paper. In section 2, we recall some well-

known facts from the classical differential geometry and explain the meaning of (1.5).
Moreover, we prove there Theorem 1.1 in the case of regular γ. This proof will be
the starting point for further considerations. Next, we reformulate the problem as
a differential inclusion in the case of general γ. In section 4 are the main results:
Theorems 1.1 and 1.2 are proved. Finally, we analyze the qualitative properties of
the obtained solutions.

2. Preliminary analysis. In this section we recall some facts and introduce
further notation. Namely, we shall start by writing

γ̄(x) = rγ(ϕ),

where r = |x| and ϕ are defined by the relation x = r(cosϕ, sinϕ).
Let us suppose that s 
→ x(s) is an arc-length parameterization of a given smooth

curve Γ, and then t(s) = dx
ds (s) is a unit vector tangent to Γ. If Γ is the boundary of

Ω, then we rewrite the left-hand side (LHS) of (1.5) to obtain

(2.1) div∂Ω(∇ξγ̄|ξ=n) = t · ∂

∂t
(∇γ̄(n)) ≡ t(s) · d

ds
[∇γ̄(n(s))].

While keeping in mind (2.1), we want to rewrite system (1.5) in a suitable coor-
dinate system. For this purpose, we use the normal angle and subsequently the angle
parameterization of Γ. Let us suppose first that n is a unit vector normal to Γ such
that moving frame {n, t} is a positively oriented basis of R

2. Then the normal angle
ϕ(s) is defined as a smooth function of s through

(2.2)
n = n(s) = (cosϕ(s), sinϕ(s)),
t = t(s) = (− sinϕ(s), cosϕ(s)).

We will refer to the range of the function s 
→ ϕ(s) as the angle set. With the help of
this function we define a parameterization of our curve by

(2.3) x(s) =

∫ s

s0

t(ϕ(t))dt + v0 =

∫ s

s0

(− sinϕ(t), cosϕ(t)) dt + v0,

where v0 is a fixed point in R
2. Let us write Γ = x(R). This formula is a direct result

of the fact that s is an arc-length parameter.
The function

(2.4)
dϕ

ds
(s) = κ(s)

is the Euclidean curvature of Γ. It obeys the Frenet formulas: dn
ds = κt, dt

ds = −κn.
In order to proceed, we assume for the moment that γ is at least C2-smooth. Then
(1.5) becomes

(2.5)

[
d

ds
ϕ

]
[t ·K(n) · t] = 1,
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where

(2.6) K =

[
γ̄11 γ̄12

γ̄21 γ̄22

]
=

1

r

(
d2

dϕ2
γ(ϕ) + γ(ϕ)

)
eϕ ⊗ eϕ = d2γ̄(rn)

and eϕ(ϕ(s)) = t(ϕ(s)). Convexity of γ̄ is equivalent to

(2.7)
d2

dϕ2
γ(ϕ) + γ(ϕ) ≥ 0.

In the simplest case we will rule out the possibility of equality above. Let us stress
that, because of one-homogeneity of γ̄, this function cannot be strictly convex in the
usual sense.

We shall call a smooth curve strictly convex if its curvature never vanishes (in the
literature such curves are often called convex). Let us notice that for strictly convex
curves an angle parameterization ϕ 
→ x(ϕ) is possible, because the function s 
→ ϕ(s)
is strictly increasing.

Finally, we shall call a surface energy density function γ strictly stable at ϕ0 if
d2γ
dϕ2 (ϕ0) + γ(ϕ0) > 0, and γ will be called strictly stable if d2γ

dϕ2 (ϕ) + γ(ϕ) > 0 holds
for all ϕ. The last condition is a substitute for strict convexity of γ̄. We shall call a
surface energy function γ regular if it is smooth and strictly stable.

We expect that (2.5) yields a well-posed differential equation having local solu-
tions. The main difficulty will be associated with proving that solutions can be glued
up to form a closed curve. Our tool in solving this problem will be the classical con-
cept of the support function. Let us supposes that Θ is the angle set of a curve Γ
for a point O. The support function P0 : Θ → R of Γ is defined by the formula (see
Figure 1).

The meaning of P0(ϕ) is the distance from the tangent to Γ at x(ϕ) to the origin.
One can easily check using the Frenet formula, (2.4), and dn

dϕ = t that P0 satisfies the
following equations:

(2.8) x(ϕ) = P0(ϕ)n(ϕ) +
dP0

dϕ
(ϕ)t(ϕ),

d2P0

dϕ2
(ϕ) + P0(ϕ) =

1

κ

(see also [Bl, section 94], [Gu, equation (1.10)]).
Lemma 2.1 ([Gu, Lemma 1A(b)]). If Γ is a convex curve with curvature κ(ϕ),

and if P0 is any solution to (2.8)2 on the angle set of Γ, then (2.8)1 is the angle
parameterization of a curve which differs from Γ by at most a translation.
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Proof. Identity (2.8)1 defines a curve uniquely up to a translation. Hence assum-
ing that the curves—mentioned in the lemma—are different, we conclude that they
have to intersect at least in one point. Let us consider the difference u between P0

and the support function of Γ. It satisfies d2u
dϕ2 + u = 0. The general solution to this

equation is u(ϕ) = a1 cosϕ + a2 sinϕ ≡ a · n(ϕ). However, (2.8)1 determined two
parameters for the intersection, and hence a1 = a2 = 0. Our claim follows.

We are now ready for our first local result.
Lemma 2.2. Let us suppose that γ is smooth and strictly stable. Then there exists

a unique local solution to (2.5) augmented with the initial condition ϕ(s0) = ϕ0.
Proof. The assumption of the strict stability of γ implies that there exist positive

numbers a1 and a2 such that, for each point p = (x(s), y(s)) of curve Γ defined by
(2.3), matrix K satisfies

(2.9) a1|ξ|2 ≤ ξ ·K(p) · ξ ≤ a2|ξ|2 for any ξ ∈ TΓp,

where TΓp denotes the tangent space to Γ at point p.
In this case the existence as well as the uniqueness of solutions are obvious since

we reduce the problem to the following elementary ordinary differential equation:

(2.10)
d

ds
ϕ(s) = (t ·K(n(ϕ(s))) · t)−1,

with initial data ϕ(s0) = ϕ0.
By the strict convexity of γ constants a1 and a2 in (2.9) are prescribed globally,

and the solution to (2.10) exists for all s ∈ R.
Subsequently, we will use the above lemma a number of times. It is the necessary

step to establishing our first goal, stated below.
Proposition 2.1. Let us suppose that γ is regular, i.e., smooth and globally

strictly stable. Then solutions to (2.5) yield a unique closed C2-curve, Γ being the
boundary of a domain Ω.

Proof. By Lemma 2.2 we have the local existence as well as the uniqueness of
solutions to (2.5) with initial data ϕ(s0) = ϕ0. Now we are going to show that the
solution to (2.10) yield a closed curve Γ. First, let us note that by (2.6) and (2.10)
we conclude that

(2.11)
d2

dϕ2
γ(ϕ) + γ(ϕ) =

1

κ(ϕ)
.

Because of the global strict stability of γ, function ϕ is an angle parameterization of
a strictly convex curve. Moreover, due to (2.9) there is an interval [s0, s0 + d) such
that ϕ is on [ϕ0, ϕ0 + 2π); i.e., the angle set of Γ is [0, 2π). Hence, by Lemma 2.1
we conclude that P0 and γ differ by a1 cosϕ+ a2 sinϕ. Since γ is periodic we deduce
that P0 is periodic as well. Thus, we infer that the curve, whose support function is
periodic, must be closed; see (2.8)1 and Lemma 2.1. Now we need to exclude self-
intersections of the sought curve Γ. This follows immediately from the fact that x(ϕ)
given by (2.8) is 2π-periodic.

Remarks. Let us stress that Lemma 2.2 yields angle parameterizations which are
solutions to a differential equation with arbitrary initial data. We showed that the
corresponding geometric object, i.e., a closed curve whose angle parameterization we
have constructed, exists, and it is unique. The uniqueness is a consequence of the fact
that the support functions coincide (up to a periodic function) with γ. Moreover, if
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γ is strictly stable, then the locus of the vector function given by (2.8), i.e.,

(2.12) x(ϕ) = γ(ϕ)n(ϕ) + γ′(ϕ)t(ϕ),

is the boundary of the Wulff shape Wγ (see [Gu, Theorem 7P]). We recall that, by
definition,

(2.13) Wγ = {p ∈ R
2 : p · n(ϕ) ≤ γ(ϕ)}.

In other words, we have proved Theorem 1.1 for smooth, globally stable γ’s.
Inequality (2.7) has a geometric interpretation. We recall that the Frank diagram

Fγ of a one-homogeneous function γ̄ is defined by

(2.14) Fγ = {p ∈ R
2 : γ̄(p) = 1} = {(r, ϕ) : r = γ−1(ϕ)}.

It is well-known fact that convexity of Fγ is equivalent to convexity of γ̄ (e.g., see
[Gu, Theorem 7B]). Moreover, one can see that the strict stability of γ is equivalent
to smoothness and convexity of Fγ .

We are now ready to discuss the weighted mean curvature (WMC) equation for
a general anisotropy.

3. The general case of the WMC equation for curves. The goal of this
section is to restate problem (1.5) for general γ and define a generalization of the
solution—see (3.13).

The approach presented in section 2 is not suitable for γ, which is not of class
C2. For this purpose we return to (2.1) and rewrite it again. Namely, we notice that
for smooth γ (1.5) is equivalent to

(3.1)
d

ds
[(∇ξγ̄|ξ=n) · t] − (∇ξγ̄|ξ=n)

d

ds
t = 1,

but due to (2.2) we see that d
dst = −( d

dsϕ)n; hence, the second term of the LHS of
(3.1) reads

(3.2) −(∇ξγ̄|ξ=n)
d

ds
t =

(
d

ds
ϕ

)
(∇ξγ̄|ξ=n) · n;

however, by one-homogeneity of γ̄—see (1.3)—we have (∇ξγ̄|ξ=n) · n = γ̄(n). Hence
we get

(3.3) −(∇ξγ̄|ξ=n)

(
d

ds
t

)
=

(
d

ds
ϕ

)
γ̄(n(ϕ)) =

d

ds

∫ ϕ(s)

ϑ

γ̄(n(t))dt,

where ϑ will be fixed later. Thus, (3.1) takes the following form:

(3.4)
d

ds

[
(∇ξγ̄|ξ=n) · t +

∫ ϕ(s)

ϑ

γ̄(n(t))dt

]
= 1.

We notice that the definition of the normal vector (2.2) implies that (∇ξγ̄|ξ=n) · t =
d
dϕ γ̄(n(ϕ)). Keeping this in mind we rewrite (3.4) as follows:

(3.5)
d

ds

d

dϕ

[
γ̄(n(ϕ)) +

∫ ϕ

ϑ

dψ

∫ ψ

ϑ

γ̄(n(t))dt

]
= 1
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or in a concise form

(3.6)
d

ds

d

dϕ
Iγϑ(ϕ) = 1,

where

(3.7) Iγϑ(ϕ) = γ̄(n(ϕ)) +

∫ ϕ

ϑ

dψ

∫ ψ

ϑ

γ̄(n(t))dt.

We will drop the superscript for fixed γ.
Equation (3.6) does not make sense for γ̄ which are only Lipschitz continuous.

However, we know that γ̄ is convex, and this property of γ̄ is equivalent to the following
distributional relation:

(3.8)
d2

dϕ2
γ(ϕ) + γ(ϕ) ≥ 0 in D′(S1).

Let us make the following observation.
Proposition 3.1. If one-homogeneous function γ̄ : R

2 → R is convex, then the
function

R  ϕ → Iϑ(ϕ) ∈ R

is also a convex function for fixed ϑ.
Proof. If γ̄ is as above, i.e., γ̄(x) = |x|γ(ϕ), where x = |x|(cosϕ, sinϕ), then by

(2.6) convexity of γ̄ is equivalent to inequality γ′′ +γ ≥ 0 in the sense of distributions

(see (3.8)). Once we notice that ∂2

∂ϕ2 Iϑ(ϕ) = γ′′ + γ, our claim follows.
Thus, the subdifferential ∂ϕIϑ of a convex function Iϑ is always well-defined.

Hence, our task consists of finding a suitable section of ∂ϕIϑ, and we can formally
write (3.5) as the following inclusion:

(3.9)
d

ds
∂ϕ

[
γ̄(n(ϕ)) +

∫ ϕ

ϑ

dψ

∫ ψ

ϑ

γ̄(n(t))dt

]
 1.

We will make it precise below. Let us first make some observations about Iϑ. If γ is
smooth, then d

dϕIϑ1
and d

dϕIϑ2
differ by a constant, i.e.,

(3.10)
d

dϕ
Iϑ1(ϕ) =

d

dϕ
Iϑ2(ϕ) +

∫ ϑ2

ϑ1

γ(t) dt.

Let us notice that this identity will remain valid if γ is Lipschitz continuous and we
replace d

dϕ with ∂ϕ. Mere continuity of γ yields

(3.11) Iϑ(2π + ϕ) = Iϑ(ϕ) + Iϑ(2π + ϑ) − γ(ϑ) + (ϕ− ϑ)

∫ 2π+ϑ

ϑ

γ(t) dt.

Indeed, for ϕ ≥ ϑ we have

Iϑ(2π+ϕ)−Iϑ(2π+ϑ) = γ(ϕ)−γ(ϑ)+

∫ 2π+ϕ

2π+ϑ

∫ 2π+ϑ

ϑ

γ(t) dtdψ+

∫ 2π+ϕ

2π+ϑ

∫ ψ

2π+ϑ

γ(t) dtdψ.

Hence, (3.11) follows.
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Suppose again that γ is smooth, and then we can infer from (3.10) that by an
appropriate choice of ϑ we may achieve ϕ(s̄) = ϕ̄ for arbitrary ϕ̄, s̄ ∈ R.

Furthermore, let us integrate (3.5) over [s̄, s], where s̄ is an arbitrary parameter
and s− s̄ is less than the length of the curve Γ we are looking for.

After integration we obtain

(3.12)
d

dϕ
Iϑ(ϕ(s)) − d

dϕ
Iϑ(ϕ̄) = s− s̄,

where ϕ̄ = ϕ(s̄) may be chosen at will.
If γ is smooth, then the LHS of (3.12) is well-defined for all ϕ ∈ R. However, this

is no longer the case if γ is merely Lipschitz continuous. For such a γ, the LHS of
(3.12) is well-defined only a.e.

Now we are in a position to define a notion of a generalized solution to (1.5) with
minimal assumptions on γ̄.

Definition 3.1. If γ is one-homogeneous and convex, then by a solution to
(1.5) we mean a closed curve Γ whose angle parameterization ϕ(·) is a monotone
(increasing) multivalued function, which can be treated locally as an L1 function, and
the following differential inclusion is valid:

(3.13) ∂ϕIϑ(ϕ)  s− s̄ + s
 a.e.,

with initial data ϕ|s=s̄ = ϕ̄ and s
 ∈ ∂ϕIϑ(ϕ̄). The inclusion (3.13) holds for such s
that ϕ(s) is single-valued.

Let us notice that (3.10) (with d
dϕ replaced by ∂ϕ) again yields the possibility of

choosing ϑ so that s̄ = s
 ∈ ∂ϕIϑ(ϕ̄) for any s̄, ϕ̄ ∈ R. Thus, (3.13) will read

(3.14) ∂ϕIϑ(ϕ)  s.

We note an expected result.
Corollary 3.1. Let us suppose that γ is smooth and a function ϕ : R → R such

that ϕ(s̄) = ϕ̄ is a solution to (3.13), and then ϕ is a solution to (3.12). Moreover, if
in addition γ is globally stable, then the solution is unique.

Proof. This fact is obvious, once we realize that, for smooth γ, the function Iϑ(·)
is also smooth and

∂ϕIϑ(ϕ) =

{
d

dϕ
Iϑ(ϕ)

}
,

where d
dϕIϑ(ϕ) is the usual derivative of Iϑ(ϕ). The uniqueness of the solutions follows

from strict monotonicity of ∂ϕIϑ(ϕ), provided that γ is strictly stable.

4. The general existence and stability. In this section we prove Theorems
1.1 and 1.2. We want to proceed in a manner similar to that of section 2. We first
show the local existence of solutions to (3.13), which replaces (2.5) for nonsmooth
γ. However, in order to complete the proof of Theorem 1.1, we have to show that
the solutions we have constructed yield closed curves. Indeed, this goal is achieved
through an approximation procedure. We show for this purpose Theorem 1.2. It
states that solutions to (3.13) depend continuously on γ̄. Thus, the approximation of
any energy density function γ by a sequence of smooth, strictly stable energy density
functions γε yields the desired result.

We begin with an analog of Lemma 2.2 for a nonsmooth energy density function.
Proposition 4.1. Let us suppose that γ̄ is convex and one-homogeneous and ϑ

is fixed. Then
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(a) the multivalued operator ∂Iϑ : R → R is maximal monotone;
(b) for any s ∈ R there exists ϕ ∈ R a solution to ∂Iϑ(ϕ)  s.
Proof. Part (a) is a conclusion from the general theory; see, e.g., [Ba] or [Br]. (b)

By (3.11) we notice

∂Iϑ(2π + ϕ) = ∂Iϑ(ϕ) + L(γ),

where L(γ) =
∫ 2π+ϑ

ϑ
γ(t) dt > 0. We recall that γ is 2π-periodic, and thus L(γ)

is independent from θ. Since R(∂Iϑ), the range of ∂Iϑ is connected and contains a
sequence which is neither bounded from below nor from above, and we conclude that
R(∂Iϑ) is equal to R.

Once we decide upon s̄ and ϕ̄, we fix ϑ, and we will drop for notational convenience
the subscript ϑ. The choice of value s̄ which is the beginning of counting the length
of the solution curve seems irrelevant; however, it is not quite so. We will explain it
momentarily. Since the function ϕ 
→ I(ϕ) is convex, then it has one-sided derivatives
everywhere. They are equal; i.e., I is differentiable at all points of R except at most

countably many where d−I
dϕ (ψ) < d+I

dϕ (ψ). In other words, the derivative dI
dϕ is well-

defined a.e., and its graph Γ( dI
dϕ ) is a subset of ∂I. Since ∂I is maximal monotone,

so is its inverse graph (∂I)−1. If we now consider any function h : R → R, with
h(x) ∈ (∂I)−1(x), i.e., Γ(h) ⊂ (∂I)−1, then it is monotone and hence continuous,
except possibly a countable number of points where h suffers jumps. For this reason,
any two such functions differ on a set of measure zero and define a unique element
of Lp(loc)(R). This observation permits us to identify (when necessary) ∂I or (∂I)−1

with monotone functions defining unique elements of Lp(loc)(R).
We are now ready for a definition. If we fix ϑ ∈ R and a one-homogeneous convex

γ, then we shall call s
 ∈ R a regular point of Iγϑ , if it is a continuity point of any
function h defined on R, such that Γ(h) ⊂ (∂Iγϑ)−1. This scant continuity of (∂Iγϑ)−1

will play an important role.
We stress that regularity of s
 depends upon ϑ; i.e., s
 may cease to be regular

if we change ϑ. In particular, we may assume that in (3.13) s0 = s
 − s̄ is a regular
point, possibly after adjusting ϑ and ϕ̄. In this case we obtain a unique definition of
the solution

(4.1) ϕ(·) = (∂I)−1(· + s0),

where ϕ is treated as a multivalued function, but we can write {ϕ0} = (∂I)−1(s0),
because (∂I)−1(s0) is a singleton.

Part (b) of Proposition 4.1 immediately yields the existence of a solution to (3.13),
that is, a function ϕ : R → R, ϕ(0) = ϕ0, which is an angle parameterization of a
curve Γ we seek. We recall that this curve is given (up to a translation) by (2.3).
We also notice that this formula yields the same result for all L1 equivalent functions
ϕ(·). We should comment on the domain of definition of x, i.e., the length of Γ. We
will also explain the meaning of L(γ) and the role of regular points. We have just
constructed a candidate for a solution.

Proposition 4.2. Let us suppose that s0, ϕ0 are fixed, and then
(a) (∂Iγϑ)−1[s0, s0 + L(γ)] contains an interval of length 2π;
(b) if 0 < b < L(γ) and s0 is a regular point of Iγϑ , then (∂Iγϑ)−1[s0, s0 + b] does

not contain any interval of length 2π.
Proof. Part (a) follows immediately from (3.11).
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(b) For a regular point s0 (3.11) takes the form

(4.2)
dI

dϕ
(ϕ0 + 2π) =

dI

dϕ
(ϕ0) + L(γ).

Hence, dI
dϕ (ϕ0 + 2π) > dI

dϕ (ϕ0) + b, and our claim follows.
We can draw some corollaries.
Corollary 4.1. Let us suppose that s0 is a regular point of Iγϑ and curve Γ

defined by (2.3), where ϕ(·) is given by (4.1).
(a) If γ is smooth and strictly stable, then the length of Γ, d(Γ), is equal to L(γ).
(b) If {γε} is a sequence of smooth, strictly stable functions converging to γ0 in

W 1
p (S1), then d(Γ0) is equal to L(γ0).

Proof. (a) By (4.2) we notice that ϕ(s0) + 2π = ϕ(s0 + L(γ)). Thus, we see that
d(Γ) = L(γ).

(b) If γε → γ0 in W 1
p (S1) and ϑε → ϑ0, then the parameterizations given by (2.3)

converge as well, i.e., xε → x0 in W 1
p . Thus,

L(γ0) = lim
ε→0

L(γε) = lim
ε→0

d(Γε) = d(Γ0),

and our claim follows.
The key point is to show that indeed Γ is a closed curve. The main step toward

this goal is the following result on the continuous dependence of solutions to (3.13) on
the anisotropy γ̄. For this purpose we will investigate solutions to (2.1), i.e., curves
parameterized by x(·) (see (2.3)), upon γ. The simple lemma below is our basic tool.

Lemma 4.1. Let 1 ≤ p < ∞ and γε(·) → γ0(·) in W 1
p (S1); then there exists a

sequence {ϑε}ε>0 converging to ϑ0, and for Iε := Iεϑε
we have

(4.3) (∂Iε)
−1(·) → (∂I0)

−1(·) in Lp(loc)(R).

Moreover, if s0 is a regular point of Iγ0

ϑ0
(i.e., {ϕ0} = (∂I0)

−1(s0)), then we can find

a sequence {sε} such that sε is a regular point of Iγε

ϑε
(i.e., {ϕε} = (∂Iε)

−1(sε)) and
sε → s0.

Proof. Since Iε = Iγε

ϑε
, then for a.e. convergence of d

dϕIε to d
dϕI0 it is necessary that

ϑε → ϑ0. To show (4.3) it is enough to recall the definition (3.7) and recall that all
(∂Iε)

−1 are monotone. The last fact implies that our functions are continuous except
at most countable sets, so the rest of Lemma 4.1 is clear, too. Once we realize that,
the remaining details become quite elementary, and they are left to the interested
reader.

Theorem 4.1. If 1 ≤ p < ∞ and γε → γ0 in W 1
p (S1), then Γε → Γ0 in W 1

p .
Proof. It is sufficient to show that ϕε (the angle parameterization of Γε) converges

to ϕ0, as long as v0
ε converges to v0; see (2.3). These functions are defined on

intervals of changing length d(Γε). However, due to convergence of d(Γε) to d(Γ0), we
may restrict our attention to functions ϕε and ϕ0 only on interval [0, d(Γ0)], which is
sufficient to prove convergence in the Lp-space. By Lemma 4.1 by a proper choice of
ϑ0 and ϑε we can make sure sε, s0 are regular points, in particular

{ϕ0(0)} = (∂I0)
−1(s0), {ϕε(0)} = (∂Iε)

−1(sε),

and moreover sε → s0. Subsequently we will identify (∂Iε)
−1 with its Lp-representative.

Let us note that
(4.4)

ϕε(s) − ϕ0(s) = ∂I−1
ε [s + sε] − ∂I−1

0 [s + s0]

= ∂I−1
ε [s + sε] − ∂I−1

0 [s + sε] + ∂I−1
0 [s + sε] − ∂I−1

0 [s + s0].



EQUILIBRIA IN STEFAN-TYPE PROBLEMS IN THE PLANE 1131

Since ∂I−1
ε → ∂I−1

0 in Lp on compact sets, we have
(4.5)

||∂I−1
ε [ · + sε] − ∂I−1

0 [ · + sε]||Lp(0,d(Γ0)) ≤
(∫ d(Γ0)

0

|∂I−1
ε (s + sε) − ∂I−1

0 (s + sε)|p ds
)1/p

=

(∫ d(Γ0)+sε

sε

|∂I−1
ε (s) − ∂I−1

0 (s)|p ds
)1/p

≤ ||∂I−1
ε − ∂I−1

0 ||Lp(s0−1,d(Γ0)+s0+1) → 0

as ε → 0. Next, we note that

(4.6) ||∂I−1
0 ( · + sε) − ∂I−1

0 ( · + s0)||Lp(0,d(Γ0)) → 0,

which follows from convergence of sε to s0 regularity of s0 and continuity of the shift
operator in the Lp-spaces for p < ∞.

As a consequence we get

(4.7) ϕε(·) → ϕ0(·) in Lp(0, d(Γ0)).

Lemma 4.1 implies Γε → Γ0 in W 1
p .

Once the above theorem is at hand, we conclude that the limiting curve Γ0 is
closed.

Lemma 4.2. Let us suppose that γ̄0 is one-homogeneous and convex and there
exists a sequence γ̄ε of one-homogeneous, convex, and strictly stable functions such
that γε → γ0 in W 1

p (S1). Then any curve Γ whose angle parameterization is a solution
to (3.13) is a closed curve, and moreover it is the Wulff shape of γ̄0, up to translation.

Proof. We have to prove that the curve Γ is closed. For smooth strictly convex
γ’s the answer is given by Proposition 2.1 in section 2.

Let us consider an arbitrary γ0(·) and a curve Γ0 given by solution ϕ to (3.13).
Let us assume that Γ0 is not closed; i.e., there exists ϕ0 ∈ [0, 2π) such that

x0(s(ϕ0)) �= x0(s(ϕ0 + 2π)),

in particular

(4.8) |x0(s(ϕ0) − x0(s(ϕ0 + 2π))| = T > 0

for a number T > 0. Since γε is a smooth approximation of γ0 after a proper selection
of v0

ε in (2.3), we guarantee that

(4.9) ||Γε − Γ||C(0,2π) < T/3.

This is always possible having Theorem 4.1 at hand. But by Proposition 2.1 we know
that Γε is closed, so by (4.9) we have
(4.10)
|x0(s(ϕ0)) − x0(s(ϕ0 + 2π))| ≤ |x0(s(ϕ0) − xε(s(ϕ0))| + |xε(s(ϕ0)) − xε(s(ϕ0 + 2π))|

+|xε(s(ϕ0 + 2π)) − x0(s(ϕ0 + 2π))| < T/3 + 0 + T/3 = 2/3T,

which contradicts (4.8). Finally, we know that Γε is the Wulff shape of γε. By (2.13)
and the uniform convergence of γε to γ0, we deduce that Γ0 defined by (4.1) and (2.3)
is the Wulff shape of γ0.

In order to finish the proofs of Theorems 1.1 and 1.2, it is enough to note that
finding a sequence approximating general function γ is elementary. For example, for
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a proper choice of smooth functions ρε : S1 → R converging to δ1 on the circle, we
may take

(4.11) γε(ϕ) = ε + γ � ρε(ϕ).

Here γ�ρε denotes the convolution on S1, and as a result γε is smooth and 2π-periodic.
Hence Lemma 4.2 implies the first of our main results, stated in Theorem 1.1, i.e.,

the existence of ϕ fulfilling the definition of the generalized solution (3.13). Theorem
1.2 follows from Theorem 4.1.

5. Properties of the solutions. Since our case concerns only plane domains,
Hessian K(n(·))—see (2.6)—can be zero on an interval, i.e., γ′′ + γ = 0 on (a, b).
This in turn is equivalent to Fγ containing a line segment between the angles a and b,
(see [Gu, Lemma 7D]). The Euclidean curvature of the Frank diagram is zero there.
We want to control precisely the behavior of the system at such points, because
singularities may appear there.

For general γ, we concentrate our attention only on the support of K, i.e., on the
following set:

(5.1) suppK := {ϕ ∈ S1 : t(ϕ) ·K(n(ϕ)) · t(ϕ) �= 0}.

It is implicitly understood that the points of nondifferentiability of γ belong to suppK.
Roughly speaking, suppK consists of points of strict stability of γ. Certainly, due
to our previous considerations (∂I)−1 is single-valued and continuous on this set. In
order to understand the whole structure of solutions we need to control the behavior
of intervals (a, b) ⊂ S1 such that

(5.2) t(ϕ) ·K(n(ϕ)) · t(ϕ) ≡ 0 for ϕ ∈ (a, b).

In order to make our considerations precise we introduce the following definition. We
call an interval (a, b) on which (5.2) holds maximal iff for any sufficiently small ε > 0
there exist a∗ and b∗ such that 0 < a− a∗ < ε, 0 < b∗ − b < ε and for all wa ∈ ∂I(a∗)
and wb ∈ ∂I(b∗) the following relations are satisfied:

(5.3) wa < ∂I(a + ε) and ∂I(b− ε) < wb.

Obviously, all points of interval (a, b) are continuity points of ∂I. However, we have
no control over the behavior of the ends of this interval, which explains the form of
(5.3). The above remarks imply that, to analyze the behavior on the interval (a, b),
it is enough to consider sets (a− ε, b + ε).

The control over these singularities is guaranteed by the following lemma.
Lemma 5.1. Let us suppose that γ is not strictly stable. If (5.2) holds, then for

any solution ϕ(·) of system (2.5) with the range in suppK and for each interval (a, b)
satisfying (5.2) there exists a parameter s0 such that

(5.4) lim
s→s0−

ϕ(s) ≤ a and lim
s→s+0

ϕ(s) ≥ b.

Moreover, if (a, b) is maximal (in the meaning of (5.3)), then

(5.5) lim
s→s0−

ϕ(s) = a and lim
s→s+0

= b.
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Proof. By considerations in the last section we can introduce a strictly stable
approximation of the studied γ. We put:

(5.6) t(ϕε) ·Kε(ϕε) · t(ϕε) = ε for ϕε ∈ (a, b)

for ε > 0 and

(5.7) t(ϕε) ·Kε(ϕε) · t(ϕε) = t(ϕε) ·K(ϕε) · t(ϕε) + ε for S1 \ (a, b).

By (2.6) we can put γε = γ+ε, getting (5.6) and (5.7). The above definition guarantees
that γε → γ in W 1

p at least on a neighborhood of interval (a, b), and hence the
application of Theorem 1.2 is possible.

Let us suppose that sa is defined by the following relation ϕε(sa) = a if (a, b) is
maximal. Otherwise, we require ϕε(sa) ≤ a in general. Then by (2.10) we see that
for the approximation satisfying (5.6) we have

(5.8)
d

ds
ϕε =

1

ε
as ϕ ∈ (a, b),

and hence, we are able to find sb such that ϕε(sb) = b in the “maximal” case or
ϕε(sb) ≥ b in general. Formula (5.8) yields ϕε(s) = 1

ε (s− sa)+a, so we conclude that
sb−sa = ε(b−a). Passing with ε to 0 we get at the limit sa = sb =: s0. Remembering
that ϕε and ϕ are monotone we easily deduce (5.4). From the definition (5.3) we
obtain (5.5). We can prove the same result by applying the approximation by regular
γε’s defined by (4.11). However, this approach yields additional technical difficulties.
Thus, one can conclude that any regular approximation of this case leads to (5.4) or
(5.5), respectively.

Remark. We are tempted to write formally at point s0, where function ϕ has a
jump, that

d

ds
ϕ

∣∣∣∣
s=s0

= (b− a)δ(s− s0).

From the geometrical point of view the sought curve Γ will have an interior angle of
measure (b− a) at point s0.

Examples. Here we present examples of solutions which are constructed by our
method. We present only the extreme cases: the isotropic and a crystalline γ̄.

(1) The isotropic energy density is given by γ̄(x) = |x|, i.e., γ(ϕ) = 1. Let us

take ϑ = 0, s0 = 0; hence, I(ϕ) = γ̄(n(ϕ)) +
∫ ϕ

0
dψ

∫ ψ

0
γ̄(n(t))dt = 1 + 1

2ϕ
2 and thus

∂ϕI(ϕ) = { d
dϕI(ϕ)} = {ϕ} and L(γ) = 2π. Equation (3.13) takes the form ϕ(s) = s.

Then we conclude that the solution is a circle, whose length is given by L(γ) = 2π.
(2) This case is sometimes called crystalline, because the Wulff shape is a polygon.

We may consider the following anisotropy: γ̄(x) = max{|x1|, |x2|}, and hence

γ(ϕ) = max{| cosϕ|, | sinϕ|}.

Elementary calculations, which are left to the interested reader (we may take s0 =
0, ϑ = 0 in I), and Lemma 5.1 lead us to a conclusion that d(Γ) = 4

√
2 and Γ is a

square (up to translation) with vertexes at (±1, 0), (0,±1).

Acknowledgment. The second author thanks professor Robert Gulliver for
pointing to his attention reference [Bl] and an enlightening discussion on the topic of
Lemma 2.1.
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WEAKLY COUPLED SCHRÖDINGER OPERATORS ON REGULAR
METRIC TREES∗

HYNEK KOVAŘÍK†

Abstract. Spectral properties of the Schrödinger operator Aλ = −Δ + λV on regular metric
trees are studied. It is shown that as λ goes to zero the asymptotical behavior of the negative
eigenvalues of Aλ depends on the global structure of the tree.
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1. Introduction. The spectrum of a Schrödinger operator

−Δ + λV, λ > 0, in L2(Rn)

is given by the disjoint union of the essential spectrum σess(−Δ+λV ) and the discrete
spectrum σd(−Δ+λV ). Under certain decay conditions on V at infinity the essential
spectrum covers the half-line [0,∞) so that the discrete spectrum consists of negative
eigenvalues of finite multiplicity. It is a well-known fact that the behavior of these
eigenvalues for small values of λ depends on the spacial dimension n [11]. Namely, for
n < 3 the negative eigenvalues of −Δ+λV appear for any λ > 0, provided

∫
Rn V < 0,

while for n ≥ 3 the negative spectrum of −Δ+λV remains empty for λ small enough.
Moreover for the lowest eigenvalue −ε(λ) of −Δ +λV the following asymptotics hold
true (see [11]):

n = 1 :ε(λ) ∼ λ2, λ → 0,(1)

n = 2 :ε(λ) ∼ e−λ−1

, λ → 0.(2)

In this paper we want to find the asymptotic behavior of ε(λ) for a Schrödinger
operator

Aλ = −Δ + λV, λ > 0, in L2(Γ)

defined on a regular metric tree Γ. Such a metric tree consists of the set of vertices
and the set of edges (branches), i.e., one-dimensional intervals connecting the vertices;
see section 2 for details. Metric trees form a special subclass of so-called quantum
graphs. The latter serve as mathematical models for nanotechnological devices that
consist of connected very thin strips. The motion of an electron in such a “web”
is then governed by the Schrödinger equation. Therefore the study of Laplace and
Schrödinger operators on these structures has recently attracted considerable atten-
tion; see, e.g., [4, 5, 6, 7, 8, 9, 12, 13], and references therein.
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We are interested in the spectral behavior of Aλ when λ → 0. The intuitive
expectation is that this should depend on the rate of the growth, or branching, of the
tree Γ. In order to quantify this branching, we assign to Γ a so-called global dimension
d; see Definition 2 below. Roughly speaking it tells us how fast the number of branches
of Γ increases as a function of the distance from its root. If the latter grows with the
power d − 1 at infinity, then we say, in analogy with the Euclidean spaces, that d is
the global dimension of Γ. We use the notation global in order to distinguish d from
the local dimension, which is of course one. Since d can be in general any real number
larger or equal to one, it is natural to ask how the weak coupling behavior looks for
noninteger values of d and what the condition on V is under which the eigenvalues
appear.

Our main result says (see Theorem 3 and section 5.2), that if d ∈ [1, 2] and∫
Γ
V < 0, then Aλ possesses at least one negative eigenvalue for any λ > 0, and for λ

small enough this eigenvalue is unique and satisfies

ε(λ) ∼ λ
2

2−d , 1 ≤ d < 2 ,(3)

ε(λ) ∼ e−λ−1

, d = 2.

As expected, the faster the branching of Γ, i.e., larger d, the faster the eigenvalue
tends to zero. The borderline is reached at d = 2, in which case ε(λ) converges to
zero faster than any power of λ similarly as in (2). Finally, if the tree grows too fast,
i.e., d > 2, then the discrete spectrum of Aλ generically remains empty for λ small
enough; see section 5.3. Note also that the condition

∫
Γ
V < 0 is almost optimal in

the sense that if
∫
Γ
V > 0, then Aλ has no negative eigenvalues for small λ as shown

in Theorem 3b.
To study the operator Aλ we make use of the decomposition (5), Theorem 1,

which was proved in [8, 9]; see also [4]. In section 3.1 we introduce certain auxiliary
operators, whose eigenvalues will give us the estimate on ε(λ) from above and from
below. In order to establish (3) we find the asymptotics of the lowest eigenvalues
of the auxiliary operators, which are of the same order. This is done in section 5.1.
In addition, in section 4 we give some estimates on the number of eigenvalues of
the individual operators in the decomposition (5), which might be of an independent
interest as well.

Throughout the text we will employ the notation α := d − 1 and ν := 2−d
2 . For

a real-valued function f and a real noninteger number μ, we will use the shorthand

fμ := sign f |f |μ =
f |f |μ
|f | .

Finally, given a self-adjoint operator T on a Hilbert space H we denote by N−(T ; s)
the number of eigenvalues, taking into account their multiplicities, of T on the left of
the point s. For s = 0 we will write N−(T ) instead of N−(T ; 0).

2. Preliminaries. We define a metric tree Γ with the root o following the con-
struction given in [8]. Let V(Γ) be the set of vertices and E(Γ) be the set of edges of
Γ. The distance ρ(y, z) between any two points y, z ∈ Γ is defined in a natural way
as the length of the unique path connecting y and z. Consequently, |y| is equal to
ρ(y, o). We write y � z if y lies on the unique simple path connecting o with z. For
y � z we define

〈y, z〉 := {x ∈ Γ : y � x � z}.
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If e = 〈y, z〉 is an edge, then y and z are its end points. For any vertex z its generation
Gen(z) is defined by

Gen(z) = #{x ∈ V : o ≺ x � z}.

For an edge e ∈ E(Γ) we define its generation as the generation of the vertex, from
which e is emanating. The branching number b(z) of the vertex z is equal to the
number of edges emanating from z. We assume that b(z) > 1 for any z �= o and
b(o) = 1.

Definition 1. A tree Γ is called regular if all of the vertices of the same gener-
ation have equal branching numbers and all of the edges of the same generation have
equal length.

We denote by tk > 0 the distance between the root and the vertices of the kth
generation and by bk ∈ N their corresponding branching number. For each k ∈ N we
define the so-called branching function gk : R+ → R+ by

gk(t) :=

⎧⎨
⎩

0 if t < tk,
1 if tk ≤ t < tk+1,
bk+1bk+2 . . . bn if tn ≤ t < tn+1, k < n,

and

g0(t) := b0 b1 . . . bn, tn ≤ t < tn+1.

It follows directly from the definition that

g0(t) = #{x ∈ Γ : |x| = t}.

Obviously g0(·) is a nondecreasing function, and the rate of growth of g0 determines
the rate of growth of the tree Γ. In particular, if one denotes by Γ(t) := {x ∈ Γ :
|x| ≤ t} the “ball” of radius t, then g0 tells us how fast the surface of Γ(t) grows with
t. This motivates the following.

Definition 2. If there exist positive constants a−, a+, and T0, such that for all
t ≥ T0 the inequalities

a− ≤ g0(t)

td−1
≤ a+

hold true, then we say that d is the global dimension of the tree Γ.
We note that in the case of the so-called homogeneous metric trees treated in [12]

the function g0(t) grows faster than any power of t. Formally, this corresponds to
d = ∞ in the above definition. From now on we will work under the assumption that
d < ∞.

3. Schrödinger operators on Γ. We will consider potential functions V which
satisfy the following assumption.

Assumption A. V : R+ → R is measurable and bounded and limt→∞ V (t) = 0.
For a given function V which satisfies Assumption A we define the Schrödinger

operator Aλ as the self-adjoint operator in L2(Γ) associated with the closed quadratic
form

Qλ[u] :=

∫
Γ

(
|u′|2 + λV (|x|) |u|2

)
dx,
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with the form domain D(Q) = H1(Γ) consisting of all continuous functions u such
that u ∈ H1(e) on each edge e ∈ E(Γ) and

∫
Γ

(
|u′|2 + |u|2

)
dx < ∞.

The domain of Aλ consists of all continuous functions u such that u′(o) = 0 , u ∈ H2(e)
for each e ∈ E(Γ) and such that at each vertex z ∈ V(Γ)\{o} the matching conditions

(4) u−(z) = u1(z) = · · · = ub(z)(z), u′
1(z) + · · · + u′

b(z)(z) = u′
−(z)

are satisfied, where u− denotes the restriction of u on the edge terminating in z and
uj , j = 1, . . . , b(z), denote, respectively, the restrictions of u on the edges emanating
from z; see [8] for details. Notice that Aλ satisfies the Neumann boundary condition
at the root o.

The following result by Naimark and Solomyak (see [8, 9]), also established by
Carlson in [4], makes it possible to reduce the spectral analysis of Aλ to the analysis
of one-dimensional Schrödinger operators in weighted L2(R+) spaces.

Theorem 1. Let V be measurable and bounded, and suppose that Γ is regular.
Then Aλ is unitarily equivalent to the following orthogonal sum of operators:

(5) Aλ ∼ Aλ,0 ⊕
∞∑
k=1

⊕A
[b1...bk−1(bk−1)]
λ,k .

Here the symbol A
[b1...bk−1(bk−1)]
λ,k means that the operator Aλ,k enters the orthog-

onal sum [b1 . . . bk−1(bk − 1)] times. For each k ∈ N the corresponding self-adjoint
operator Aλ,k acts in L2((tk,∞), gk) and is associated with the closed quadratic form

Qk[f ] =

∫ ∞

tk

(
|f ′|2 + λV (t) |f |2

)
gk(t) dt,

whose form domain is given by the the weighted Sobolev space D(Qk) = H1
0 ((tk,∞), gk),

which consists of all functions f such that

∫ ∞

tk

(
|f ′|2 + |f |2

)
gk(t) dt < ∞, f(tk) = 0.

The operator Aλ,0 acts in the weighted space L2(R+, g0) and is associated with the
closed form

Q0[f ] =

∫ ∞

0

(
|f ′|2 + λV (t) |f |2

)
g0(t) dt,

with the form domain D(Q0) = H1(R+, g0), which consists of all functions f such
that ∫ ∞

0

(
|f ′|2 + |f |2

)
g0(t) dt < ∞;

see also [13].
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3.1. Auxiliary operators. Let d be the global dimension of Γ. Definition 2
implies that there exist positive constants b− and b+ such that

(6) b− (1 + t)α =: g−k (t) ≤ gk(t) ≤ g+
k (t) := b+(1 + t)α , t ∈ [tk,∞).

Now assume that the Rayleigh quotient

∫∞
tk

(
|f ′|2 + λV (t) |f |2

)
gk(t) dt∫∞

tk
|f |2 gk(t) dt

of the operator Aλ,k, k ≥ 0 is negative for some f ∈ D(Qk). From (6) follows that

∫∞
tk

(
|f ′|2 + λV −

k (t) |f |2
)

(1 + t)α dt∫∞
tk

|f |2 (1 + t)α dt
≤

∫∞
tk

(
|f ′|2 + λV (t) |f |2

)
gk(t) dt∫∞

tk
|f |2 gk(t) dt

≤
∫∞
tk

(
|f ′|2 + λV +

k (t) |f |2
)

(1 + t)α dt∫∞
tk

|f |2 (1 + t)α dt
,(7)

where

V −
k (t) :=

gk(t)

g−k (t)
V (t), V +

k (t) :=
gk(t)

g+
k (t)

V (t).

It is thus natural to introduce the auxiliary operators A±
λ,k acting in the Hilbert space

L2((tk,∞), (1 + t)α) and associated with the quadratic forms

(8) Q±
k [f ] =

∫ ∞

tk

(
|f ′|2 + λV ±

k (t) |f |2
)

(1 + t)α dt, f ∈ D(Qk), k ∈ N0.

The variational principle (see, e.g., [3]) and (7) thus imply that

(9) N−(A+
λ,k; s) ≤ N−(Aλ,k; s) ≤ N−(A−

λ,k; s), s ≤ 0, k ∈ N0.

Let En,k(λ) be the nondecreasing sequence of negative eigenvalues of the operators
Aλ,k, and let E±

n,k(λ) be the analogous sequences corresponding to the operators

A±
λ,k, respectively. In all of these sequences each eigenvalue occurs according to its

multiplicity. Relation (9) and the variational principle then yield

(10) E−
n,k(λ) ≤ En,k(λ) ≤ E+

n,k(λ), k ∈ N0, n ∈ N,

and

(11) inf σess(A
−
λ,k) ≤ inf σess(Aλ,k) ≤ inf σess(A

+
λ,k) , k ∈ N0.

Next we introduce the transformation U by

(U f)(t) = (1 + t)α/2 f(t) =: ϕ(t),

which maps L2((tk,∞), (1+t)α) unitarily onto L2((tk,∞)). We thus get the following.
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Lemma 1. Let V satisfy the assumptions of Theorem 1. Then
(i) for each k ∈ N the operators A±

λ,k are unitarily equivalent to the self-adjoint

operators B±
λ,k in L2((tk,∞)), which act as

(12)
(
B±

λ,k ϕ
)

(t) = −ϕ′′(t) +
(d− 1)(d− 3)

4(1 + t)2
ϕ(t) + λV ±

k (t)ϕ(t),

and whose domains consist of all functions ϕ ∈ H2((tk,∞)) such that

ϕ(tk) = 0.

(ii) A±
λ,0 are unitarily equivalent to the self-adjoint operators B±

λ,0 in L2(R+),
acting as

(13)
(
B±

λ,0 ϕ
)

(t) = −ϕ′′(t) +
(d− 1)(d− 3)

4(1 + t)2
ϕ(t) + λV ±

0 (t)ϕ(t),

with the domain that consists of all ϕ ∈ H2(R+) such that

(14) ϕ′(0) =
d− 1

2
ϕ(0).

Proof. For each k ∈ N0 we have

B±
λ,k = U A±

λ,k U
−1, ‖f‖L2((tk,∞), (1+t)α) = ‖Uf‖L2((tk,∞)).

The statement of the lemma then follows by a direct calculation keeping in mind that
the functions f from the domain of the operators A±

λ,0 satisfy f ′(0) = 0.
Remark 1. If V satisfies Assumption A, then the inequalities (11) and standard

arguments from the spectral theory of Schrödinger operators (see, e.g., [10, Chap.
13.4]) imply that

inf σess(A
−
λ,k) = inf σess(Aλ,k) = inf σess(A

+
λ,k) = 0 ∀ k ∈ N0.

Moreover, constructing suitable Weyl sequences for the operators Aλ,k in the similar
way as it was done in [13] for the Laplace operator, one can easily show that

(15) σess(Aλ,k) = [0,∞) ∀ k ∈ N0.

4. Number of bound states. From Theorem 1 and (15) we can see that if V
satisfies Assumption A, then

(16) σess (Aλ) = [0,∞).

In order to analyze the discrete spectrum of Aλ we first study the number of bound
states of the individual operators in the decomposition (5).

We start by proving an auxiliary proposition. Given a real-valued measurable
bounded function Ṽ we consider the self-adjoint operator B̃λ acting in L2(R+) as

(17)
(
B̃λ ϕ

)
(t) = −ϕ′′(t) +

(d− 1)(d− 3)

4 t2
ϕ(t) + λṼ (t)ϕ(t)

with the Dirichlet boundary condition at zero. This operator is associated with the
closure of the quadratic form∫

R+

(
|ϕ′(t)|2 +

(d− 1)(d− 3)

4 t2
|ϕ(t)|2 + λṼ (t) |ϕ(t)|2

)
dt

defined on C∞
0 (R+).
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Proposition 1. Let d ∈ [1, 2). Assume that Ṽ satisfies Assumption A and that∫∞
0

t |Ṽ (t)| dt < ∞. Then

(18) N−(B̃λ) ≤ λ K̃(d)

∫ ∞

0

t |Ṽ (t)| dt,

where

K̃(d) =
π

2 sin(νπ)Γ(1 − ν)Γ(1 + ν)
.

Proof. We write

B̃λ = B̃0 + λ Ṽ , B̃0 := − d2

d t2
+

(d− 1)(d− 3)

4t2
.

Moreover, without loss of generality we may assume that Ṽ is negative and contin-
uous. The statement for the general case then follows by a standard approximation
argument.

By the Birman–Schwinger principle (see, e.g., [3]), the number of eigenvalues of
B̃λ to the left of the point −κ2 then does not exceed the trace of the operator

λ|Ṽ |1/2 (B̃0 + κ2)−1 |Ṽ |1/2.

The integral kernel G̃(t, t′, κ) of the operator (B̃0 + κ2)−1 can be calculated by using
the Sturm–Liouville theory. We get

(19) G̃(t, t′, κ) =

{
π i
4 v1(t, κ) v2(t

′, κ), t ≥ t′,

π i
4 v1(t

′, κ) v2(t, κ), t < t′,

with

v1(t, κ) =
√
t H(1)

ν (iκt),

v2(t, κ) =
√
tH(1)

ν (iκt) +
√
tH(2)

ν (iκt),

where H
(1)
ν (respectively, H

(2)
ν ) denote Hankel’s functions of the first (respectively, sec-

ond) kind; see, e.g., [14]. Since
∫∞
0

t |Ṽ (t)| dt < ∞, we can pass to the limit κ → 0 in
the corresponding integral, using the Lebesgue dominated convergence theorem, and
calculate the trace to get

(20) N−(B̃λ) ≤ λ

∫ ∞

0

|Ṽ (t)| |G̃(t, t, 0)| dt = λ K̃(d)

∫ ∞

0

t |Ṽ (t)| dt.

Here we have used the fact that G̃(t, t, κ) → t K̃(d) pointwise as κ → 0, which follows
from the asymptotic behavior of the Hankel functions at zero; see, e.g., [1].

Remark 2. For d = 1 we have K̃(1) = 1, and (18) gives the well-known Bargmann
inequality [2]. On the other hand, K̃(d) diverges as d → 2. This is expected because

the operator − d2

d t2 − 1
4t2 + λV with Dirichlet boundary conditions. at zero does have

at least one negative eigenvalue for any λ > 0 if the integral of V is negative.
Armed with Proposition 1 we can prove the following.
Corollary 1. Let 1 ≤ d < 2. Assume that V satisfies Assumption A and that∫∞

0
t |V (t)| dt < ∞. Then

(21) N−(Aλ,0) ≤ 1 + λK(d)

∫ ∞

0

|V (t)| g0(t) t
2−ddt.
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Proof. We introduce the operator AD
λ,0, which is associated with the quadratic

form

QD
0 [f ] :=

∫ ∞

0

(
|f ′|2 + λV (t) |f |2

)
g0(t) dt, D(QD

0 ) = H1
0 (R+, g0),

where H1
0 (R+, g0) := {f ∈ H1(R+, g0), f(0) = 0}. First we observe that

a td−1 ≤ g0(t), t ∈ R+,

for a suitable a > 0. We can thus mimic the analysis of section 3.1 and define the
operator Ãλ acting in L2(R+, t

d−1) associated with the quadratic form

(22) Q̃[f ] =

∫ ∞

0

(
|f ′|2 + λṼ (t) |f |2

)
td−1 dt, f ∈ D(Q),

where D(Q) = H1
0 ((R+), td−1) and Ṽ (t) := g0(t)

a td−1 V (t). Repeating the arguments of
section 3.1 we claim that

N−(AD
λ,0) ≤ N−(Ãλ)

and that Ãλ is unitarily equivalent to B̃λ by means of the transformation Ũ f(t) =
t(d−1)/2 f(t), which maps L2(R+, t

d−1) unitarily onto L2(R+). Since the codimension
of H1

0 (R+, g0) in H1(R+, g0) is equal to one, the variational principle gives

N−(Aλ,0) ≤ 1 + N−(AD
λ,0) ≤ 1 + N−(Ãλ) = 1 + N−(B̃λ).

Application of Proposition 1 with K̃(d) = aK(d) concludes the proof.
Corollary 2. Let 1 ≤ d < 2. Let V satisfy Assumption A, and assume that∫∞

0
t |V (t)| dt < ∞. Then there exists λc > 0, so that for λ ∈ [0, λc] the discrete

spectra of the operators Aλ,k, k ≥ 1, are empty. In particular we have

(23) σd (Aλ) = σd (Aλ,0) , 0 ≤ λ ≤ λc,

where the multiplicities of the eigenvalues are taken into account.
Proof. In view of Lemma 1 it suffices to show that the discrete spectra of the

operators B−
λ,k for k ≥ 1 are empty, provided λ is small enough. Since (d−1)(d−3) ≤ 0,

the following inequality holds true in the sense of quadratic forms:

(24) B−
λ,k ≥ Bλ,k := − d2

dt2
+

(d− 1)(d− 3)

4(t− tk)2
+ λV −

k (t),

where Bλ,k acts in L2((tk,∞)) with Dirichlet boundary conditions at tk. A simple
translation s = t− tk then shows that Bλ,k is unitarily equivalent to the operator

− d2

ds2
+

(d− 1)(d− 3)

4s2
+ λV −

k (s + tk) in L2(R+),

which is defined in the similar way as the operator B̃λ in (17). Since
∫∞
0

s |V −
k (s +

tk)| ds is uniformly bounded with respect to k, it follows from Proposition 1 that for
λ small enough we have N−(Bλ,k) = 0 for all k ≥ 1. In view of (24) this concludes
the proof.
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5. Weak coupling.

5.1. The case 1 ≤ d < 2. In this section we will show that if d ∈ [1, 2) and V
is attractive in a certain sense, then the operator Aλ possesses at least one negative
eigenvalue for any λ > 0. Since for small values of λ the discrete spectra of Aλ and
Aλ,0 coincide (see Corollary 2), we will focus on the operator Aλ,0 only. More exactly,
in view of (10), we will study the operators B±

λ,0. Clearly we have

B±
λ,0 = B0 + λV ±

0 , B0 := − d2

d t2
+

(d− 1)(d− 3)

4(1 + t)2
,

with the boundary condition v′(0) = d−1
2 v(0). Note that, by Lemma 1, the operator

B0 is nonnegative. We shall first calculate the Green function of B0 at a point
−κ2, κ > 0, using the Sturm–Liouville theory again. In the same manner as in the
previous section we obtain

(25) G(t, t′, κ) :=

{
π

4iβ(κ) v1(t, κ) v2(t
′, κ), t ≥ t′,

π
4iβ(κ) v1(t

′, κ) v2(t, κ), t < t′,

where

v1(t, κ) =
√

1 + t H(1)
ν (iκ(1 + t)),

v2(t, κ) =
√

1 + t
(
H(1)

ν (iκ(1 + t)) − β(κ)H(2)
ν (iκ(1 + t))

)
,

β(κ) =
H

(1)
ν−1(iκ)

H
(2)
ν−1(iκ)

.

Consider a function W which satisfies Assumption A. According to the Birman–
Schwinger principle the operator B0 + λW has an eigenvalue −κ2 if and only if the
operator

K(κ) := |W |1/2 (B0 + κ2)−1 W 1/2

has eigenvalue −λ−1. The integral kernel of K(κ) is equal to

K(t, t′, κ) = |W (t)|1/2 G(t, t′, κ) (W (t′))1/2.

We will use the decomposition

K(t, t′, κ) = L(t, t′, κ) + M(t, t′, κ),

with

L(t, t′, κ) :=
π 22ν−1 κ−2ν

(Γ(1 − ν))2 sin(νπ)
|W (t)|1/2 [(1 + t)(1 + t′)]−ν+ 1

2 W (t′)1/2,

and denote by L(κ) and M(κ) the integral operators with the kernels L(t, t′, κ) and
M(t, t′, κ) respectively. Furthermore, we denote by M(0) the integral operator with
the kernel

M(t, t′, 0) := CM (ν)
(
|W (t)|W (t′) (1 + t)(1 + t′)

) 1
2

(
1 + t

1 + t′

)ν sign (t−t′)

,
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where

CM (ν) := − π

2 sin(νπ)Γ(1 − ν)Γ(1 + ν)
.

Lemma 2 in the appendix says that M(κ) converges in the Hilbert–Schmidt norm to
the operator M(0) as κ → 0, provided W decays fast enough at infinity. This allows
us to prove the following.

Theorem 2. Let W satisfy Assumption A and let
∫∞
0

(1 + t)3−d |W (t)| dt < ∞,
where 1 ≤ d ≤ 2. Then the following statements hold true:

(a) If ∫ ∞

0

W (t) (1 + t)d−1 dt < 0,

then the operator B0 +λW has at least one negative eigenvalue for all λ > 0.
For λ small enough this eigenvalue, denoted by E(λ), is unique and satisfies

(26) (E(λ))
2−d
2 = C(ν)

(
λ

∫ ∞

0

W (t) (1 + t)d−1 dt + O(λ2)

)
,

where

C(ν) =
π 22ν−1

(Γ(1 − ν))2 sin(νπ)
.

(b) If ∫ ∞

0

W (t) (1 + t)d−1 dt > 0,

then the operator B0 + λW has no negative eigenvalues for λ positive and
small enough.

Proof. Part (a). The operator B0 + λW has eigenvalue E = −κ2 if and only if
the operator

λK(κ) = λM(κ) + λL(κ)

has an eigenvalue −1 for certain κ(λ). On the other hand, Lemma 1 and (9) imply
that

N−

(
B0 + λ

g0

g+
0

V

)
≤ N−(Aλ,0).

The uniqueness of E, and so of κ(λ), for λ small enough thus follows from (21) by

taking V =
g+
0

g0
W . Next we note that by Lemma 2 for λ small we have λ ‖M(κ)‖ < 1

and

(I + λK(κ))
−1

=
[
I + λ(I + λM(κ))−1 L(κ)

]−1
(I + λM(κ))−1.

Hence λK(κ) has an eigenvalue −1 if and only if λ(I + λM(κ))−1 L(κ) has an eigen-
value −1. Since λ(I + λM(κ))−1 L(κ) is of rank one we get the equation for κ(λ) in
the form

(27) tr
(
λ(I + λM(κ(λ))−1 L(κ(λ)))

)
= −1.
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Using the decomposition

(I + λM(κ))−1 = I − λM(0) − λ(M(κ) −M(0)) + λ2M2(κ)(I + λM(κ))−1,

we obtain

tr
(
λ(I + λM(κ))−1 L(κ)

)
= λC(ν)κ−2ν

(
|W (t)|1/2 (1 + t)−ν+ 1

2 , (I + λM(κ))−1W (t)1/2 (1 + t)−ν+ 1
2

)
= C(ν)κ−2ν

(
λ

∫ ∞

0

W (t) (1 + t)d−1 dt + O(λ2)

)
.

It thus follows from (27) that

(28) Eν(λ) = −κ2ν(λ) = C(ν)

(
λ

∫ ∞

0

W (t) (1 + t)d−1 dt + O(λ2)

)
.

To finish the proof of part (a) of the theorem, we mimic the argument used in [11]
and notice that if (ϕ, (B0 + λW )ϕ) < 0, then (ϕ,Wϕ) < 0, since B0 is nonnegative,
and therefore (ϕ, (B0 + λ̃W )ϕ) < 0 if λ < λ̃. So if B0 +λW has a negative eigenvalue
for λ small enough, then, by the variational principle, it has at least one negative
eigenvalue for all λ positive.

Part (b). From the proof of part (a) it can be easily seen that if∫ ∞

0

W (t) (1 + t)d−1 dt > 0,

then tr
(
λ(I + λM(κ))−1 L(κ)

)
is positive for λ small, and therefore K(κ) cannot have

an eigenvalue −1.
Remark 3. Note that if

W0 :=

∫
R

2
+

W (t)W (t′)(1 + t)1−ν(1 + t′)1−ν

(
1 + t

1 + t′

)ν sign (t−t′)

dt dt′ < 0,

then the operator B0 +λW has a negative eigenvalue for λ small, positive or negative,
also in the critical case when∫ ∞

0

W (t) (1 + t)d−1 dt = 0.

Moreover, it follows from the proof of Theorem 2 that this eigenvalue then satisfies

(29) Eν(λ) = C(ν)
(
−λ2 CM (ν)W0 + o (λ2)

)
, λ → 0.

As an immediate consequence of Theorem 2 and inequalities (10) we get the
following.

Theorem 3. Let V satisfy Assumption A, and let
∫∞
0

(1 + t)3−d |V (t)| dt < ∞,
where 1 ≤ d < 2. Then the following statements hold true:

(a) If ∫ ∞

0

V (t) g0(t) dt =

∫
Γ

V (|x|) dx < 0,
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then the operator Aλ has at least one negative eigenvalue E1,0(λ) for all λ > 0.
For λ small enough this eigenvalue is unique and satisfies

(30) C1

∣∣∣∣λ
∫

Γ

V (|x|) dx

∣∣∣∣
2

2−d

≤ |E1,0(λ)| ≤ C2

∣∣∣∣λ
∫

Γ

V (|x|) dx
∣∣∣∣

2
2−d

for suitable positive constants C1 and C2.
(b) If ∫ ∞

0

V (t) g0(t) dt =

∫
Γ

V (|x|) dx > 0,

then the discrete spectrum of Aλ is empty for λ positive and small enough.
Proof. Part (a). From (10) we get

E−
1,0(λ) ≤ E1,0(λ) ≤ E+

1,0(λ).

Moreover, by Lemma 1, E±
1,0(λ) are the lowest eigenvalues of operators B±

λ,0. The
existence and uniqueness of E1,0 thus follows from part (a) of Theorem 2 applied with
W (t) = V +

0 (t) and W (t) = V −
0 (t), respectively. At the same time, (26) implies (30).

Similarly, part (b) of the statement follows immediately from Lemma 1 and part
(b) of Theorem 2 applied with W (t) = V −

0 (t).
Remark 4. We note that the strong coupling behavior of Aλ is, contrary to

(30), typically one-dimensional, i.e., determined by the local dimension of Γ. Namely,
if V is continuous and compactly supported, then the standard Dirichlet–Neumann
bracketing technique shows that the Weyl asymptotic formula

lim
λ→∞

λ−γ− 1
2

∑
j

|Ej |γ = Lcl
γ,1

∫
Γ

|V |γ+ 1
2 dx, γ ≥ 0,

holds true, where Ej are the negative eigenvalues of Aλ and Lcl
γ,1 = Γ(γ+1)

2
√
π Γ(γ+3/2)

.

Remark 5. Notice that our result qualitatively agrees with the precise asymptotic
formula for ε(λ) on branching graphs with one vertex and finitely many edges which
was found in [5]. Such graphs correspond to d = 1 in our setting.

5.2. The case d = 2. For d = 2 one can mimic the above procedure by replacing

the Hankel functions H
(1,2)
ν by H

(1,2)
0 . The latter have a logarithmic singularity at

zero, and therefore it turns out that the lowest eigenvalue of Aλ then converges to
zero exponentially fast. Indeed, here instead of (26) one obtains

E(λ) ∼ −e−λ−1

, λ → 0,

as for the two-dimensional Schrödinger operator; see [11]. Since the analysis of this
case is completely analogous to the previous one, we skip it.

5.3. The case d > 2. Here we will show, under some assumptions on V , that
for d > 2 and λ small enough the discrete spectrum of Aλ remains empty no matter
what the sign of

∫
Γ
V is.

Proposition 2. Let d > 2, and let V satisfy Assumption A. If V ∈ L∞(R+) ∩
Lp/2(R+, g0), with p < d, then there exists λ0 > 0 such that the discrete spectrum of
Aλ is empty for all λ ∈ [0, λ0].
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Proof. From the definition of the function gk it follows that∫∞
tk

(
|f ′|2 + λV |f |2

)
gk(t) dt∫∞

tk
|f |2gk(t) dt

=

∫∞
tk

(
|f ′|2 + λV |f |2

)
g0(t) dt∫∞

tk
|f |2g0(t) dt

.

Since every function f ∈ H1
0 ((tk,∞), gk) can be extended by zero to a function in

H1(R+, g0), the variational principle shows that

σd(Aλ,0) = ∅ =⇒ σd(Aλ,k) = ∅ ∀ k ≥ 1.

Hence it suffices to prove the statement for the operator Aλ,0, i.e., to show that
Aλ,0 is nonnegative. Consider a function f ∈ D(Q0). Since f ∈ H1(R+), which is
continuously embedded in L∞(R+), it follows that f → 0 at infinity, and we can write

f(t) = −
∫ ∞

t

f ′(s) ds.

In view of (6) we have g−1
0 ∈ L1(R+). Using the Cauchy–Schwarz inequality we thus

find out that for any q > q0, where 1
q0

+ 1
d = 1

2 , the following estimate holds true:

(∫ ∞

0

|f(t)|q g0(t) dt

) 1
q

≤
(∫ ∞

0

(∫ ∞

t

|f ′(s)|ds
)q

g0(t) dt

) 1
q

≤
(∫ ∞

0

(∫ ∞

t

|f ′(s)|2g0(s) ds

) q
2
(∫ ∞

t

ds

g0(s)

) q
2

g0(t) dt

) 1
q

≤ C(q)

(∫ ∞

0

|f ′(s)|2 g0(s) ds

) 1
2

,(31)

with a constant C(q) independent of f . Take q such that 1
q + 1

p = 1
2 . The Hölder

inequality and (31) then give

∫ ∞

0

|V | |f |2g0(t) dt ≤
(∫ ∞

0

|V |p/2 g0(t) dt

) 2
p
(∫ ∞

0

|f |q g0(t) dt

) 2
q

≤ C2(q)

∫ ∞

0

|f ′|2 g0(t) dt

(∫ ∞

0

|V |p/2 g0(t) dt

) 2
p

,

which implies

Q0[f ] ≥
∫ ∞

0

|f ′|2 g0(t) dt

[
1 − λC2(q)

(∫ ∞

0

|V |p/2 g0(t) dt

) 2
p

]
.

To show that the negative spectrum of Aλ,0 is empty, it suffices to take λ small enough
so that Q0[f ] ≥ 0.

Appendix.
Lemma 2. Let W be bounded, and assume that

∫∞
0

(1 + t)1+2ν |W (t)| dt < ∞.
Then M(κ) converges in the Hilbert–Schmidt norm to the operator M(0) as κ → 0.

Proof. We first notice that M(0) is Hilbert–Schmidt, since∫ ∞

0

∫ ∞

0

|M(t, t′, 0)|2 dt dt′ < ∞
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by assumption. We will also need the asymptotic behavior of the Bessel functions
with a purely imaginary argument near zero:

(32) Jν(iκ(1 + t)) = eiπν/2 Iν(κ(1 + t)) ∼ eiπν/2
κν(1 + t)ν

2ν Γ(ν + 1)
, κ(1 + t) → 0;

see [1, 14]. From the definition of Hankel’s functions we thus get

β(κ) =
J1−ν(iκ) − ei(1−ν)π Jν−1(iκ)

ei(ν−1)π Jν−1(iκ) − J1−ν(iκ)
→ −e−2iνπ, κ → 0.

This together with the asymptotics (32) implies

(33) lim
κ→0

M(t, t′, κ) = M(t, t′, 0) .

Now using the asymptotic behavior of Hankel’s functions at infinity [1], we find out
that

G(t, t′, κ) ∼ ((1 + t)(1 + t′))
1/2 e−κ(t+t′) − β(κ) e−κ|t−t′|

κ (1 + t)(1 + t′)1/2
, κ2(1 + t)(1 + t′) → ∞.

Since |β(κ)| is bounded, we obtain the following estimates:
(i). For κ2(1 + t)(1 + t′) ≥ 1:

|K(t, t′, κ)|, |L(t, t′, κ)| ≤ C |W (t′)W (t)(1 + t)(1 + t′)|1/2 .

(ii). For κ2(1 + t)(1 + t′) < 1:

|M(t, t′, κ)| ≤ C ′ |W (t′)W (t) |
[
1 + ((1 + t)(1 + t′))ν+ 1

2

]
,

where we have used (33). Note that the constants C and C ′ may be chosen indepen-
dent of κ, which enables us to employ the Lebesgue dominated convergence theorem
to conclude that

lim
κ→0

∫
R

2
+

|M(t, t′, κ) −M(t, t′, 0)|2 dt dt′ = 0.
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TOTAL VARIATION REGULARIZATION FOR IMAGE DENOISING,
I. GEOMETRIC THEORY∗

WILLIAM K. ALLARD†

Abstract. Let Ω be an open subset of Rn, where 2 ≤ n ≤ 7; we assume n ≥ 2 because the
case n = 1 has been treated elsewhere (see [S. S. Alliney, IEEE Trans. Signal Process., 40 (1992),
pp. 1548–1562] and is quite different from the case n > 1; we assume n ≤ 7 because we will make use
of the regularity theory for area minimizing hypersurfaces. Let F(Ω) = {f ∈ L1(Ω)∩L∞(Ω) : f ≥ 0}.
Suppose s ∈ F(Ω) and γ : R → [0,∞) is locally Lipschitzian, positive on R ∼ {0}, and zero at zero.
Let F (f) =

∫
Ω γ(f(x) − s(x)) dLnx for f ∈ F(Ω); here Ln is Lebesgue measure on R

n. Note that
F (f) = 0 if and only if f(x) = s(x) for Ln almost all x ∈ R

n. In the denoising literature F would
be called a fidelity in that it measures deviation from s, which could be a noisy grayscale image.
Let ε > 0 and let Fε(f) = εTV(f) + F (f) for f ∈ F(Ω); here TV(f) is the total variation of f . A
minimizer of Fε is called a total variation regularization of s. Rudin, Osher, and Fatemi and Chan
and Esedoḡlu have studied total variation regularizations where γ(y) = y2 and γ(y) = |y|, y ∈ R,
respectively. As these and other examples show, the geometry of a total variation regularization
is quite sensitive to changes in γ. Let f be a total variation regularization of s. The first main
result of this paper is that the reduced boundaries of the sets {f > y}, 0 < y < ∞, are embedded
C1,μ hypersurfaces for any μ ∈ (0, 1) where n > 2 and any μ ∈ (0, 1] where n = 2; moreover, the
generalized mean curvature of the sets {f ≥ y} will be bounded in terms of y, ε and the magnitude of
|s| near the point in question. In fact, this result holds for a more general class of fidelities than those
described above. A second result gives precise curvature information about the reduced boundary of
{f > y} in regions where s is smooth, provided F is convex. This curvature information will allow
us to construct a number of interesting examples of total variation regularizations in this and in a
subsequent paper. In addition, a number of other theorems about regularizations are proved.

Key words. total variation, regularization, image denoising

AMS subject classifications. 49Q20, 58E30

DOI. 10.1137/060662617

1. Introduction and statement of main results. Throughout this paper, n
is an integer, 2 ≤ n ≤ 7, Ω is an open subset of R

n, and Ln is Lebesgue measure on
R

n.
We require n ≥ 2 because the problems we consider are very different in case

n = 1; see [Alli]. We require n ≤ 7 because we will be using the regularity theory of
mass minimizing integral currents in R

n of codimension one; as is well known, these
currents are free of interior singularities when n ≤ 7 but may possess singularities if
n > 7; see [FE, sect. 5.4.15]. This work is motivated by image denoising applications
in which it is often the case that 1 ≤ n ≤ 4.

After a fairly lengthy discussion of results which occur in a setting more general
than that of denoising, we treat denoising in section 1.8. See also sections 1.9, 8, and
10 as well as the examples in section 11 for more on denoising.

1.1. Some basic notation and conventions. Whenever E ⊂ Ω we frequently
identify “E” with “ 1E ,” the indicator function of E.

The first appearance of any term which is about to be defined will always appear
in italics or be displayed.
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We let

F(Ω) = {f ∈ L1(Ω) ∩ L∞(Ω) : f ≥ 0}

and

M(Ω) = {D : D ⊂ Ω and 1D ∈ F(Ω)} ;

thus a subset D of Ω belongs to M(Ω) if and only if D is Lebesgue measurable
and Ln(D) < ∞. We endow Lloc

1 (Ω) with the topology induced by the seminorms
Lloc

1 (Ω) � f 	→
∫
K
|f | dLn corresponding to compact subsets K of Ω. Whenever

f ∈ Lloc
1 (Ω) and K is a compact subset of Ω we let

k(f,K) = {g ∈ Lloc
1 (Ω) : g(x) = f(x) for Ln almost all x ∈ Ω ∼ K};

in other words, g ∈ k(f,K) if the support of the generalized function corresponding
to g − f is a subset of K. We let

k(f) = ∪{k(f,K) : K is a compact subset of Ω}.

Whenever D is a Lebesgue measurable subset of Ω and K is a compact subset of Ω
we let

k(D,K) = {E : E ⊂ Ω and 1E ∈ k(1D,K)}

and

k(D) = ∪{k(D,K) : K is a compact subset of Ω}.

Whenever A,D,E are Lebesgue measurable subsets of Ω we let

ΣA(D,E) = Ln(A ∩ ((D ∼ E) ∪ (E ∼ D))) =

∫
A

|1D − 1E | dLn;

note that M(Ω) ×M(Ω) � (D,E) 	→ ΣA(D,E) is a pseudometric on M(Ω).
Whenever a ∈ R

n and 0 < r < ∞ we let

Un(a, r) = {x ∈ R
n : |x− a| < r} and Bn(a, r) = {x ∈ R

n : |x− a| ≤ r}.

We let

int, cl, and bdry

stand for “interior,” “closure,” and “boundary,” respectively, with respect to Ω.
Whenever A ⊂ R

n and a is an accumulation point of A we let

Tan(A, a) =
⋂

0<r<∞
cl {t(x− a) : 0 < t < ∞ and x ∈ A ∩ (Bn(a, r) ∼ {a})}

and

Nor(A, a) =
⋂

w∈Tan(A,a)

{v ∈ R
n : v • w ≤ 0}.
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Whenever 0 ≤ m < ∞ we let

Hm

be an m-dimensional Hausdorff measure on R
n.

We let

X (Ω)

be the space of smooth compactly supported vector fields on Ω.
Whenever y, z ∈ R we let

y ∨ z = max{y, z}, y ∧ z = min{y, z},

and we note that y + z = y ∨ z + y ∧ z.

1.2. Total variation. This work is based on the notion of the total variation of
a locally summable function, which we now define.

Definition 1.1. Suppose f ∈ Lloc
1 (Ω). Then TV(f, ·), the total variation of f ,

is the largest Borel regular measure on Ω such that, for any open subset U of Ω,

TV(f, U) = sup

{∫
U

fdivX dLn : X ∈ X (U) and |X| ≤ 1

}
.

In particular, if f is C1 on Ω and B is a Borel subset of Ω, then

(1.1) TV(f,B) =

∫
B

|∇f | dLn.

Moreover, if E a Lebesgue measurable subset of Ω with Lipschitz boundary, then
TV(E,B) equals the (n−1)-dimensional Hausdorff measure of the intersection of the
boundary of E with B.

Suppose f ∈ Lloc
1 (Ω). We say f is of bounded variation on Ω if TV(f,Ω) is

finite. If TV(f, ·) is a Radon measure on Ω, which will be the case if and only if
TV(f,K) < ∞ whenever K is a compact subset of Ω, we say f is of locally bounded
variation on Ω. We let

BV(Ω) and BVloc(Ω)

be the vector spaces of those f ∈ L1(Ω) which are of bounded variation on Ω and
those f ∈ Lloc

1 (Ω) which are of locally bounded variation on Ω, respectively.
If E is a Lebesgue measurable subset of Ω, the perimeter of E is, by definition,

TV(E,Ω); we say E is of locally finite perimeter if E ∈ BVloc(Ω). As is well known,
if f ∈ BVloc(Ω), then {f > y} is of locally finite perimeter for L1 almost all y. As
is well known, sets of locally finite perimeter have nice rectifiability properties; see
section 2.8 below.

1.3. Total variation regularization.
Definition 1.2. Suppose F : F(Ω) → R and 0 < ε < ∞. We let

Fε : F(Ω) → R ∪ {∞},

the total variation regularization of F (with respect to ε), be defined by setting

Fε(g) = εTV(g) + F (g) for g ∈ F(Ω).
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We let

mloc
ε (F ) = {f ∈ F(Ω) ∩ BV(Ω) : Fε(f) ≤ Fε(g) whenever g ∈ F(Ω) ∩ k(f)}.

All of the statements and proofs of this paper, after straightforward modification,
go through with the condition “f ≥ 0,” omitted in the definition of F(Ω); however, the
modified statements and proofs often break into two cases because if f ∈ L1(Ω) and
y ∈ R, one can only be sure that Ln({f > y}) < ∞ if y > 0 and that Ln({f < y}) < ∞
if y < 0.

It will be useful to extend the foregoing notions to functionals defined on sets, as
follows.

Definition 1.3. Suppose M : M(Ω) → R and 0 < ε < ∞. We let

Mε : M(Ω) → R ∪ {∞},

the total variation regularization of M (with respect to ε), be defined by setting

Mε(E) = εTV(E) + M(E) for E ∈ M(Ω).

We let

nloc
ε (M) = {D ∈ M(Ω) ∩ BV(Ω) : Mε(D) ≤ Mε(E) whenever E ∈ M(Ω) ∩ k(D)}.

The main purpose of this paper is to study the geometry and regularity of the
sets {f > y} and {f ≥ y}, y ∈ (0,∞), when f ∈ mloc

ε (F ), provided F satisfies certain
conditions which we now describe. We will relate these results to certain methods for
image denoising.

1.4. Admissibility. Suppose

F : F(Ω) → R.

All our results will require F to be admissible, a notion we now define.
Definition 1.4. We say F is admissible if the restriction of F to any subset of

F(Ω) which is bounded with respect to || · ||L∞(Ω) is Lipschitz with respect to || · ||L1(Ω).
In other words, F is admissible if whenever 0 < Y < ∞ we have

l(F, Y ) < ∞,

where l(F, Y ) is the infimum of the set of L ∈ (0,∞) such that

|F (f) − F (g)| ≤ L

∫
Ω

|f − g| dLn

whenever f, g ∈ F(Ω) and max{||f ||L∞(Ω), ||g||L∞(Ω)} ≤ Y .
The notion of admissibility extends naturally to functionals on sets, as follows.
Definition 1.5. Suppose M : M(Ω) → R. We let

l(M)

be the infimum of the set of L ∈ (0,∞) such that

|M(D) −M(E)| ≤ LΣΩ(D,E) whenever D,E ∈ M(Ω).

We say M is admissible if l(M) < ∞.
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1.5. Bλ(Ω) and Cλ(Ω). These spaces will be indispensable in this work.

Definition 1.6. Suppose 0 ≤ λ < ∞. We let

Bλ(Ω)

be the set of those f ∈ BVloc(Ω) such that for each compact subset K of Ω we have

TV(f,K) ≤ TV(g,K) + λ

∫
Ω

|f − g| dLn whenever g ∈ k(f,K).

We let

Cλ(Ω)

be the set of those Lebesgue measurable subsets D of Ω with locally finite perimeter
such that for each compact subset K we have

TV(D,K) ≤ TV(E,K) + λΣΩ(D,E) whenever E ∈ k(D,K).

The following result is based on ideas found in [BDG].

Theorem 1.1. Suppose 0 ≤ λ < ∞ and f ∈ BVloc(Ω). Then

f ∈ Bλ(Ω) ⇒ {f > y} ∈ Cλ(Ω) for y ∈ R.

Conversely, if Y is a dense subset of R, then

{f > y} ∈ Cλ(Ω) for y ∈ Y ⇒ f ∈ Bλ(Ω).

An immediate corollary is that D ∈ Cλ(Ω) if and only if 1D ∈ Bλ(Ω).

More results on Cλ(Ω) and Bλ(Ω) may be found in section 5.1.

1.5.1. The regularity theorem for Cλ(Ω). The proof of the following theorem
is an exercise, carried out in section 5.4, in the use of techniques from geometric
measure theory which have been in the literature for over thirty years.

Note that in the following theorem, θ does not depend on D.

Theorem 1.2 (regularity). Suppose 0 < μ < ∞ and 0 < β < 1. There exists θ
such that 0 < θ < 1 and with the following property:

Suppose

(i) a ∈ R
n and 0 < R < ∞;

(ii) 0 ≤ λ < ∞, λR ≤ θ, and D ∈ Cλ(Un(a,R));
(iii) Γ is the interior of the support of the generalized function corresponding to

the indicator function of D and M is the boundary of Γ relative to Un(a,R).

Then ΣUn(a,R)(D,Γ) = 0 and M is an embedded hypersurface in Un(a,R) of
class C1,μ; moreover, if N is a continuous field of unit normals to M and r = θR,
then

|N(x) −N(w)| ≤ β (|x− w|/r)μ whenever x,w ∈ M ∩ Un(a, r);

finally, if L is a line perpendicular to Tan(M,a), then L intersects M ∩ Un(a, r) in
at most one point.

In case n = 2 we may take μ = 1.
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1.5.2. The relationship between admissibility and Cλ(Ω). The following
simple proposition relates the notion of admissibility to the spaces Bλ(Ω).

Proposition 1.1. Suppose F : F(Ω) → R, F is admissible, 0 < ε < ∞,
f ∈ mloc

ε (F ), Y = ||f ||L∞(Ω), and λ = l(F, Y )/ε.
Then f ∈ Bλ(Ω).
Proof. Suppose g ∈ k(f,K). Let h = (g ∧ Y ) ∨ 0. Then h ∈ k(f,K), so

ε (TV(f,K) − TV(h,K)) ≤ F (h) − F (f) ≤ l(F, Y )

∫
Ω

|f − h|.

As is well known and shown in Proposition 2.3 below, TV(h,K) ≤ TV(g,K), and it
is evident that

∫
Ω
|f − h| dLn ≤

∫
Ω
|f − g| dLn, so the proposition is proved.

We leave the even simpler proof of the following proposition to the reader.
Proposition 1.2. Suppose M : M(Ω) → R, M is admissible, 0 < ε < ∞,

D ∈ nloc
ε (M), and λ = l(M)/ε.

Then D ∈ Cλ(Ω).
Remark 1.1. Thus if f ∈ mloc

ε (F ), where F is admissible, the regularity theorem,
Theorem 1.2, for Cλ(Ω) applies to the sets {f > y}, 0 < y < ∞. In particular, if
n > 2 and 0 < μ < 1 or if n = 2 and 0 < μ ≤ 1, the boundaries of the support of
[{f > y}], 0 < y < ∞, are always embedded C1,μ hypersurfaces.

In order to obtain yet more information about {f > y} we need to assume more
about F , as follows.

1.6. Locality.
Definition 1.7. Suppose F : F(Ω) → R. We say F is local if F is admissible

and

F̂ (f + g) = F̂ (f) + F̂ (g) whenever f, g ∈ F(Ω) and fg = 0,

where we have set

F̂ (f) = F (f) − F (0) for f ∈ F(Ω).

The notion of locality extends naturally to functionals on sets, as follows.
Definition 1.8. Suppose M : M(Ω) → R. We say M is local if M is admissible

and

M̂(D ∪ E) = M̂(D) + M̂(E) whenever D,E ∈ M(Ω) and D ∩ E = ∅,

where we have set

M̂(E) = M(E) −M(∅) for E ∈ M(Ω).

The proofs of the following four propositions, which we carry out in section 6, are
exercises in real variable theory.

Proposition 1.3. Suppose M : M(Ω) → R, M is admissible, and

μ(x) = lim sup
r↓0

M̂(Bn(x, r))

Ln(Bn(x, r))
for x ∈ Ω.

Then M is local if and only if

(1.2) M(E) = M(∅) +

∫
E

mdLn for E ∈ M(Ω)
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for some bounded Borel function m : Ω → R, in which case m(x) = μ(x) for Ln

almost all x ∈ Ω.
Proposition 1.4. Suppose F : F(Ω) → R, F is admissible, and

κ(x, y) = lim sup
r↓0

F̂ (y1Bn(x,r))

Ln(Bn(x, r))
for (x, y) ∈ Ω × [0,∞).

Then F is local if and only if

(1.3) F (f) = F (0) +

∫
Ω

k(x, f(x)) dLnx whenever f ∈ F(Ω)

for some Borel function k : Ω × [0,∞) → R such that
(i) k(x, 0) = 0 for Ln almost all x ∈ Ω;
(ii) whenever 0 < Y < ∞ there is L ∈ [0,∞) such that if 0 ≤ y < z < Y , then

|k(x, y) − k(x, z)| ≤ L|y − z| for Ln almost all x ∈ Ω,

in which case, for each y ∈ [0,∞), k(x, y) = κ(x, y) for Ln almost x ∈ Ω.
Remark 1.2. Suppose β : R → R is locally Lipschitzian and

F (f) = β

(∫
Ω

f dLn

)
for f ∈ F(Ω).

It is evident that F is admissible but not local unless β is an affine function.
Perhaps a more interesting example is as follows. Suppose K, s ∈ L1(R

n) and

F (f) =

∫
Rn

|K ∗ f − s| dLn for f ∈ F(Rn).

Evidently, l(F, Y ) = ||K||L1(Rn) < ∞ whenever 0 < Y < ∞, so F is admissible. If κ
is as in Proposition 1.4, we find that κ(x, y) = |K(x)y− s(x)| for Ln almost all x and
all y ∈ (0,∞). It is easy to see that F is not local if both {K > 0} and {K < 0} have
positive Lebesgue measure.

Proposition 1.5. Suppose F : F(Ω) → R, F is admissible, κ is as in Proposition
1.4,

u(x, y) = lim sup
z→y

κ(x, z) − κ(x, y)

z − y
for (x, y) ∈ Ω × (0,∞),

and, for each y ∈ (0,∞),

Uy(E) = lim sup
z→y

F (z1E) − F (y1E)

z − y
for E ∈ M(Ω).

Then
(i) u is a Borel function and |u(x, y)| ≤ l(F, Y ) whenever x ∈ Ω and 0 < y <

Y < ∞;
(ii) |Uy(E)| ≤ l(F, Y )Ln(E) whenever 0 < y < Y and E ∈ M(Ω);
(iii) for any f ∈ F(Ω), (0,∞) � y 	→ Uy({f > y}) is a Borel function.
Moreover, if F is local, then
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(iv) for L1 almost all y ∈ (0,∞), Uy is local, l(Uy) ≤ l(F, Y ) whenever y < Y <
∞, and

Uy(E) =

∫
E

u(x, y) dLnx whenever E ∈ M(Ω);

(v) for any f ∈ F(Ω),

F (f) = F (0) +

∫ ∞

0

Uy({f > y}) dL1y.

Proposition 1.6. Suppose F : F(Ω) → R, F is local, κ is as in Proposition 1.4,
and Uy, 0 < y < ∞, and u are as in Proposition 1.5.

The following are equivalent:
(i) F is convex.
(ii) R � y 	→ F (y1E) is convex for any E ∈ M(Ω).
(iii) For any x ∈ Ω,

R � y 	→ κ(x, y) is convex.

(iv) R � y 	→ Uy(E) is nondecreasing for any E ∈ M(Ω).
(v) For any x ∈ Ω,

R � y 	→ u(x, y) is nondecreasing.

Moreover, if F is convex and 0 < y < ∞, then Uy is local and

(1.4) lim
z↓y

Uz(E) = Uy(E) whenever E ∈ F(Ω).

Remark 1.3. Suppose F : F(Ω) → R, F is admissible, κ is as in Proposition 1.4,

l(x, y) = lim inf
z→y

κ(x, z) − κ(x, y)

z − y
for (x, y) ∈ Ω × (0,∞),

and, for each y ∈ (0,∞),

Ly(E) = lim inf
z→y

F (z1E) − F (y1E)

z − y
for E ∈ M(Ω).

Modifying the proof of Proposition 1.5 in a straightforward way one finds that
this proposition holds with u and Uy, 0 < y < ∞, replaced by l and Ly, 0 < y < ∞,
respectively. Evidently, for any E ∈ M(Ω) we have

Ly(E) ≤ Uy(E) whenever 0 < y < ∞

with equality for L1 almost all y ∈ (0,∞).
Moreover, if F is local, one finds that by modifying the proof of Proposition 1.6 in

a straightforward way that this proposition holds with u and Uy, 0 < y < ∞, replaced
by l and Ly, 0 < y < ∞, respectively, except that (1.4) must be replaced by

(1.5) lim
z↑y

Lz(E) = Ly(E) whenever E ∈ F(Ω).

We will show at the end of section 6 that for all but countably many y ∈ (0,∞)

(1.6) Ly(E) = Uy(E) whenever E ∈ M(Ω).

See section 1.9 for a natural example where Ly �= Uy for some y ∈ (0,∞).
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1.6.1. When F is local and convex. Things get a lot more interesting when
F is local and convex. An important result, which will be proved in section 6, is the
following.

Theorem 1.3. Suppose F : F(Ω) → R, F is local and convex, and f ∈ mloc
ε (F ).

Then

{f ≥ y} ∈ nloc
ε (Ly) and {f > y} ∈ nloc

ε (Uy) whenever 0 < y < ∞.

When I wrote the initial version of this paper I thought this theorem was com-
pletely new. I was wrong. As a referee has pointed out, essentially the following result
appears as Proposition 2.2 of [CA2].

Suppose s ∈ F(Ω),

F (g) =
1

2

∫
Ω

|g − s|2 dL2 for g ∈ L2(Ω),

0 < ε < ∞, and f ∈ L2(Ω) is such that

εTV(f,Ω) + F (f) ≤ εTV(g,Ω) + F (g) for g ∈ L2(Ω).

Then f(x) ≥ 0 for Ln almost all x ∈ Ω and, whenever 0 < y < ∞,

εTV({f > y}) + Uy({f > y}) ≤ εTV(E) + Uy(E) for E ∈ M(Ω),

where Uy(E) =
∫
E
y − s dLn for E ∈ M(Ω).

Note that f above is a global minimizer of L2(Ω) � g 	→ εTV(g,Ω) + F (g). In
fact, the method used to prove this result in [CA2] can be extended to a very general
class of local and convex F ’s but still for global minimizers. For example, I do not
see how to apply this method to the case when Ω has Lipschitz boundary and one
minimizes in the class of f ’s with a given trace on the boundary of Ω, a situation in
which Theorem 1.3 clearly applies.

The following theorem, which will be proved in section 6, is more than a converse
of the preceding theorem. This result is of particular interest when γ(y) = |y| for
y ∈ R in section 1.8; it is the essential ingredient in the proof of Theorem 1.7.

Theorem 1.4. Suppose F : F(Ω) → R, F is local and convex, G is a Ln × L1

measurable subset of Ω × (0,∞) such that
(i) (Ln × L1)(G) < ∞;
(ii) {y ∈ (0,∞) : {(x, y) ∈ G} �= ∅} is bounded;
(iii) {x : (x, y) ∈ G} ∈ nloc

ε (Uy) for L1 almost all y ∈ (0,∞),
and f : Ω → [0,∞) is such that

f(x) = L1{y : (x, y) ∈ G} for x ∈ Ω.

Then f ∈ mloc
ε (F ).

It turns out that a set G as in the previous theorem is essentially unique, provided
F is strictly convex. Simple examples in [CE] show this is not the case if F is merely
convex. Bear in mind that f below is essentially unique because F is strictly convex.

Theorem 1.5. Suppose F , G, and f are as in the preceding theorem and F is
strictly convex. Then

(Ln × L1)((G ∼ {(x, y) : f(x) > y > 0}) ∪ ({(x, y) : f(x) > y > 0} ∼ G)) = 0.

See section 9.3 for the proof.
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1.7. Results on curvature. A good deal of the following theorem, which will
be proved in section 7, is well known. If one assumes that M below is of class C2,
the formula for H in (1.7) may be derived by a straightforward variational argument
which appears in [M]; in our case, in the light of the regularity theorem for Cλ(Ω) we
know only that M is of class C1,μ, 0 < μ < 1, so one must proceed a bit more carefully.
We represent M locally as a graph of a function which satisfies an elliptic equation
and appeal to higher regularity results for such equations as appear, for example, in
[GT]. One may then obtain the second variation formula (1.8) which, obviously, is a
global constraint on a member of nloc

ε (Z) to which it applies. I believe (1.8) is new; it
will be used in section 11 and [AW2] when we construct minimizers.

See section 4 for the definitions of mean curvature and second fundamental form
which we use.

Theorem 1.6. Suppose
(i) ζ ∈ L∞(Ω) and Z(E) =

∫
E
ζ dLn whenever E ∈ M(Ω);

(ii) U is an open subset of Ω, j is a nonnegative integer, 0 < μ < 1, and ζ|U is
of class Cj,μ;

(iii) 0 < ε < ∞ and D ∈ nloc
ε (Z);

(iv) Γ is the intersection of U with the interior of the support of the generalized
function corresponding to the indicator function of D and M is the boundary
of Γ relative to U .

Then ΣU (D,Γ) = 0, M is an embedded hypersurface of class Cj+2,μ, and

(1.7) H(x) = −1

ε
ζ(x)ν(x) for x ∈ M,

where H is the mean curvature vector of M and ν is the unit normal along M which
points out of Γ.

Moreover, if ζ is of class C1 on U and Q is the square of the length of the second
fundamental form of M , then

(1.8)

∫
M

ε
(
|∇Mφ(x)|2 − φ(x)2Q(x)

)
− φ(x)2∇ζ(x) • ν(x) dHn−1x ≥ 0

for any smooth compactly supported function φ on U ; here, for each x ∈ M , ∇Mφ(x)
is the orthogonal projection of ∇φ(x) on Tan(M,x).

In case n = 2 we may take μ = 1.
This theorem will apply in the context of denoising if s as in section 1.8 is suffi-

ciently regular in U .

1.8. Denoising. Suppose
(i) s ∈ F(Ω);
(ii) γ : R → [0,∞), γ is locally Lipschitzian, γ is decreasing on (−∞, 0), γ(0) = 0,

and γ is increasing on (0,∞);
(iii) F (f) =

∫
Ω
γ(f(x) − s(x)) dLnx for f ∈ F(Ω).

Here s could be a grayscale representation of a degraded image which we wish to
denoise. In the context of denoising F would be called a fidelity; it is a measure
of how much f differs from s. If 0 < ε < ∞, the members of mloc

ε (F ) would be
called total variation regularizations of s (with respect to the fidelity F and smoothing
parameter ε).

In the literature Fε is often replaced by Fε/ε and λ = 1/ε is thought of as a
Lagrange multiplier.
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For a very informative discussion of the use of total variation regularizations in
the field of image processing, see the introduction of [CE]. We will not discuss image
processing any further except to note that the notion of total variation regularization
in image processing is useful for other purposes besides denoising.

Evidently, F is admissible, so Proposition 1.1 holds and the results of section 1.5
apply. It is also evident that F is local.

Let us now assume γ is convex. It follows that F is convex. Set

α(y) = lim inf
z→y

γ(z) − γ(y)

z − y
and β(y) = lim sup

z→y

γ(z) − γ(y)

z − y
for y ∈ R

and let Ly and Uy, 0 < y < ∞, be as in Remark 1.3 and Proposition 1.5, respectively.
It is a simple matter to verify that if 0 < y < ∞ and E ∈ M(Ω), then

(1.9) Ly(E) =

∫
E

α(y − s(x)) dLnx and Uy(E) =

∫
E

β(y − s(x)) dLnx.

In view of Theorem 1.3 the results of section 1.7 apply when α or β and s are suffi-
ciently regular.

Of particular interest is when 1 ≤ p < ∞ and

(1.10) γ(y) =
1

p
|y|p whenever y ∈ R.

Rudin, Osher, and Fatemi [ROF] studied the case p = 2 and Chan and Esedoḡlu [CE]
studied the case p = 1. The results of section 1.7 will allow us to construct a number
of interesting examples of minimizers in [AW2], a sequel to this paper; we believe
these examples provide insights into the nature of total variation regularization. At
the end of this paper we will determine mloc

ε (F ) when Ω = R
2, s is the indicator

function of a square, and γ is as in (1.10). Note that F is strictly convex if p > 1 and
merely convex if p = 1.

Suppose K ∈ L1(R
n). Let

F (f) =

∫
Rn

γ(K ∗ f(x) − s(x)) dLnx for f ∈ F(Rn).

It is easy to see that F is admissible but not local except in degenerate situations.
Nonetheless, the results of section 1.5 apply.

1.9. Some results on the Chan–Esedoḡlu functional. Suppose s, γ, F are
as in section 1.8 with γ(y) = |y| for y ∈ R. Whenever 0 < y < ∞ and E ∈ M(Ω) we
use (1.9) to obtain

Ly(E) = Ln(E ∩ {y > s}) − Ln(E ∩ {y ≤ s}) = N̂{y≤s}(E),

Uy(E) = Ln(E ∩ {y ≥ s}) − Ln(E ∩ {y < s}) = N̂{y<s}(E),

where for each S ∈ M(Ω) we have set

NS(E) = ΣΩ(E,S) for E ∈ M(Ω).

We use Theorem 1.4 to obtain interesting results about NS , S ∈ M(Ω), one of
which is as follows; it was suggested by a similar result in a different context in [CA1]
and will be used in [AW2] in determining nloc

ε (NS), 0 < ε < ∞, for certain S, which
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in view of the above formulae for Ly and Uy, 0 < y < ∞, and Theorem 1.3 will allow
us to determine mloc

ε (F ), 0 < ε < ∞, where F (f) =
∫

R2 |f − 1S | dL2 for f ∈ F(R2).
Theorem 1.7. Suppose S ∈ M(Ω), 0 < ε < ∞, and A is a nonempty subfamily

of nloc
ε (NS). Then

∩A ∈ nloc
ε (NS) and, provided Ln(∪A) < ∞, ∪ A ∈ nloc

ε (NS).

2. Geometric measure theoretic background. We find the mathematical
infrastructure of normal and integral currents to be convenient in carrying out this
work. For that reason we will adopt, for the most part, the notation and terminology
of [FE]; note the extensive glossary, list of notation, and index starting on page 669
of that book. We avoided using that notation and terminology in the introduction in
order to make it more accessible to readers not familiar with [FE].

2.1. More notations and conventions. Suppose μ measures Ω, which is to
say μ maps the power set of Ω countably subadditively into [0,∞]; whenever A ⊂ Ω
we let

μ A(B) = μ(A ∩B) whenever B ⊂ Ω

and note that μ A measures Ω.
Whenever f is a function mapping a subset of a normed vector space into another

normed vector space, a is an interior point of the domain of f , and f is Fréchet
differentiable at a, we let

∂f(a)

be the Fréchet differential of f at a.
If V is a vector space, v ∈ V , and ψ belongs to the dual space of V , we frequently

write

〈v, ψ〉 instead of ψ(v).

We use spt as an abbreviation for “support.”

2.2. Spaces of smooth functions; currents. Whenever Y is a Banach space
we let

E(Ω, Y ) and D(Ω, Y )

be the space of smooth Y valued functions on Ω and the space of compactly supported
members of E(Ω, Y ), respectively, with the strong topologies as described in [FE,
sect. 4.1.1]. Thus X (Ω) = D(Ω,Rn).

We let

E(Ω) and D(Ω)

equal E(Ω,R) and D(Ω,R), respectively. For each nonnegative integer m we let

Em(Ω) and Dm(Ω)

equal E(Ω, Y ) and D(Ω, Y ), respectively, with Y =
∧m

R
n. Thus Em(Ω) is the space

of smooth differential m-forms on Ω, and Dm(Ω) is the space of those members of
Em(Ω) with compact support. We let

Em(Ω) and Dm(Ω)
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be the duals of Em(Ω) and Dm(Ω), respectively. Thus Dm(Ω) is the space of m
dimensional currents on Ω, and Em(Ω) is the space of m-dimensional currents with
compact support on Ω. We define the boundary operator

∂ : Dm(Ω) → Dm−1(Ω)

by setting ∂T (ω) = T (dω) whenever T ∈ Dm(Ω) and ω ∈ Dm−1(Ω); here d is exterior
differentiation.

Suppose T ∈ Dm(Ω). As in [FE, sect. 4.1.5] we let

||T ||,

the total variation measure of T , be the largest Borel regular measure on Ω such that

||T ||(G) = sup{|T (ω)| : ω ∈ Dm(Ω), ||ω|| ≤ 1 and sptω ⊂ G}

for each open subset G of Ω; here || · || is the comass which in case m ∈ {0, 1, n− 1, n}
is the Euclidean norm; these are the only cases we will encounter in this paper. It
follows immediately from this definition that

(2.1) ||T ||(G) ≤ lim inf
ν→∞

||Sν ||(G) for any open subset G of Ω

whenever S is a sequence in Dm(Ω) such that Sν(ω) → T (ω) as ν → ∞ whenever
ω ∈ Dm(Ω). We let

M(T ) = ||T ||(Ω)

and call this nonnegative extended real number the mass of T . We say T is repre-
sentable by integration if ||T || is a Radon measure which is equivalent to the statement

that ||T ||(K) < ∞ whenever K is a compact subset of Ω. If this is the case and
−→
T is

the ||T || measurable function with values in {ξ ∈
∧

m R
n : ||ξ|| = 1} defined in [FE,

sect. 4.1.7], there is a unique extension of T to the ||T || summable functions on Ω
with values in

∧m
R

n, which we continue to denote by T , such that

T (ω) =

∫
〈−→T (x), ω(x)〉 d||T ||x

whenever ω is a ||T || summable function on Ω with values in
∧m

R
n. If T ∈ Dm(Ω)

is representable by integration, l is a nonnegative integer not exceeding m, and η is a
bounded Borel function on Ω with values in

∧l
R

n, then we let

T η ∈ Dm−l(Ω)

be such that

T η(ω) =

∫
〈−→T (x), (η ∧ ω)(x)〉 d||T ||x for ω ∈ Dm−l(Ω).

2.3. The current corresponding to a locally summable function. We let

e1, . . . , en and e1, . . . , en

be the standard basis vectors and covectors for R
n and its dual space, respectively.

We let

En = e1 ∧ · · · ∧ en ∈
∧n

R
n
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be the standard orientation on R
n.

We let

(2.2) Vn ∈ Dn(Ω)

be such that Vn(x) = En for x ∈ Ω.
Definition 2.1. Whenever f ∈ Lloc

1 (Ω) we define

[f ] ∈ Dn(Ω)

by setting

[f ](φVn) =

∫
Ω

φf dLn whenever φ ∈ D(Ω).

Suppose f ∈ Lloc
1 (Ω). For any X ∈ X (Ω) we have d(X Vn) = (−1)n−1(divX)Vn

so that

(2.3) ∂[f ](X Vn) = (−1)n−1

∫
f divX dLn;

here is as in [FE, sect. 1.5.1]. It follows that

(2.4) TV(f,B) = ||∂[f ]||(B) whenever B is a Borel subset of Ω.

2.4. Mapping currents. Whenever T ∈ Dm(Ω) and F is a smooth map from
Ω to the open subset Γ of some Euclidean space whose restriction to the support of
T is proper, we let

F#T ∈ Dm(Γ)

be such that F#T (ω) = T (F#ω) for any ω ∈ Dm(Γ); here the pullback F# is as
in [FE, sect. 4.1.6]. If F carries Ω diffeomorphically onto Γ, T is representable by

integration, and
−→
T (x) is decomposable for ||T || almost all x ∈ Ω, then we have

(2.5)

∫
b(y) d||F#T ||y =

∫
b(F (x))

∣∣∣∧
m
∂F (x)(

−→
T (x))

∣∣∣ d||T ||x
for nonnegative Borel function b on Γ. By a simple approximation argument one need
only assume that F is of class C1 if T is representable by integration.

2.5. A mapping formula. Suppose Γ is an open subset of R
n; f ∈ Lloc

1 (Ω);
F : Ω → Γ is locally Lipschitzian; the restriction of F to the support of [f ] is proper;
A is the set of y ∈ Γ such that F−1[{y}] is finite and such that if F (x) = y, then F
is differentiable at x; and g : Γ → R is such that

g(y) =

{∑
x∈F−1[{y}] f(x) sgn det ∂F (x) if y ∈ A,

0 else.

Then g ∈ Lloc
1 (Γ) and

(2.6) F#[f ] = [g].

In particular, if F is univalent and det ∂F (x) > 0 for Ln almost all x ∈ Ω, then

F#[f ] = [f ◦ F−1].

See [FE, sect. 4.1.25] for the proof.
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2.6. Slicing. Suppose m, l are positive integers, m ≥ l, T ∈ Dm(Ω), T is locally
flat as defined in [FE, sect. 4.1.12], and f : Ω → R

l is locally Lipschitzian. Note that
if both T and ∂T are representable by integration, then T is locally flat; this will
always be the case when we apply slicing in this paper. For y ∈ R

l we follow [FE,
sect. 4.3.1] and define

〈T, f, y〉

the slice of T in f−1[{y}] to be that member of Dm−l(Ω) which, if it exists, satisfies

〈T, f, y〉(ψ) = lim
r↓0

T [f#(Bl(y, r) ∧ Vl)](ψ)

Ll(Bl(y, r))
whenever ψ ∈ Dm−l(Ω),

where T [f#(Bl(y, r)∧Vl)] is defined as in [FE, sect. 4.3.1]. Then, by [FE, sect. 4.3.1],
the slice 〈T, f, y〉 exists for Ll almost all y and satisfies

(2.7) spt 〈T, f, y〉 ⊂ f−1[{y}] and ∂〈T, f, y〉 = (−1)l〈∂T, f, y〉.

Moreover, we have from [FE, sect. 4.3.2] that

(2.8)

∫
Φ(y)〈T, f, y〉(ψ) dLly = [T f#(Φ ∧ Vl)](ψ)

whenever Φ is a bounded Borel function on R
l and ψ ∈ Dm−l(Ω) and that

(2.9)

∫ (∫
b||〈T, f, y〉||

)
dLly =

∫
b d||T f#Vl]||

whenever b is a nonnegative Borel function on Ω.
Proposition 2.1. Suppose K is a compact subset of Ω, u(x) = dist (x,K)

for x ∈ Ω, R is the supremum of the set of r ∈ (0,∞) such that {u ≤ r} ⊂ Ω,
f, g ∈ BVloc(Ω), and

hr = g1{u≤r} + f1{u>r} for each r ∈ (0, R).

Then hr ∈ BVloc(Ω) for L1 almost all r ∈ (0, R), and whenever 0 < r < s < R
we have

(2.10)

∫ s

r

||∂[hρ]||({u ≤ ρ}) dL1ρ ≤
∫
{r<u<s}

|f−g| dLn+

∫ s

r

||∂[g]||({u ≤ ρ}) dL1ρ.

Proof. From [FE, sect. 4.2.1] and [FE, sect. 4.3.4] we find that

∂[hρ] = 〈[g] − [f ], u, ρ〉 + (∂[g]) {u ≤ ρ} + (∂[f ]) {u > ρ}

for L1 almost all ρ ∈ (0, R). Now multiply by 1{u≤ρ}, integrate from r to s, and
invoke (2.9).

2.7. Densities and density ratios. Suppose μ measures Ω, m is a nonnegative
integer, and α(m) = Lm(Um(0, 1)). For each a ∈ Ω we set

Θm(μ, a, r) =
μ(B(a, r))

α(m)rm
whenever 0 < r < dist (a,Rn ∼ Ω)

and

Θm(μ, a) = lim
r→0

Θm(μ, a, r),

provided this limit exists.
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2.8. Sets of finite perimeter. Suppose E is a Lebesgue measurable subset of
Ω. Proceeding as in [FE, sect. 4.5.5], we say u ∈ R

n is an exterior normal to E at
b ∈ Ω if |u| = 1 and

Θn(Ln {x ∈ E : (x− b) • u > 0} ∪ {x ∈ Ω ∼ E : (x− b) • u < 0}, b) = 0.

We let

nE

be the set of (b, u) ∈ Ω×R
n such that either u is an exterior normal to E at b or u = 0

and there is no exterior normal to E at b; note that nE is a function with domain Ω.
We let

b(E),

the reduced boundary of E, be equal to the set of points b ∈ Ω such that there is an
exterior normal to E at b.

Theorem 2.1 (see [FE, sect. 4.5.6]). Suppose E is a subset of Ω with locally
finite perimeter. The following statements hold:

(i) b(E) is a Borel set which is countably (Hn−1, n− 1) rectifiable.
(ii) ||∂[E]|| = Hn−1 b(E).
(iii) For Hn−1 almost all b ∈ b(E) we have

∗nE(b) =
−−→
∂[E](b) and Θn−1(||∂[E]||, b) = 1;

here ∗ is the Hodge star operator as defined in [FE, sect. 1.7.8].
(iv) For Hn−1 almost all b ∈ Ω ∼ b(E), Θn−1(||∂[E]||, b) = 0 and

either Θn(Ln E, b) = 0 or Θn(Ln (Ω ∼ E), b) = 0.

It follows that if E is a subset of Ω with locally finite perimeter, then

(2.11) ∂[E](X Vn) = (−1)n−1

∫
X • nE d||∂[E]|| whenever X ∈ X (Ω).

Proposition 2.2. Suppose E is a subset of Ω with finite perimeter and C is a
closed convex subset of R

n. Then

(2.12) M(∂[C ∩ E]) ≤ M(∂[E]).

Proof. Let ρ : R
n → C be such that |x− ρ(x)| = dist (x,C) for x ∈ R

n. In case
spt [E] is compact we infer from (2.6) that [C ∩ E] = ρ#[E] so that, as Lip ρ ≤ 1,
(2.12) holds. In case spt [E] is not compact we let Er = E ∩ Un(0, r), 0 < r < ∞,
and apply the result just obtained together with (2.10) and (2.1).

2.9. Basic facts about functions of bounded variation. Proofs of the fol-
lowing formulae, which are absolutely fundamental for this work, may be found in
[FE, sect. 4.5.9, eq. (13)]. Suppose f ∈ BVloc(Ω); then R � y 	→ ∂[{f ≥ y}](ω) is L1

summable and

(2.13) ∂[f ](ω) =

∫
∂[{f > y}](ω) dL1y whenever ω ∈ Dn−1(Ω);
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moreover, if B is a Borel subset of Ω, then R � y 	→ ||∂[{f > y}||(B) is L1 measurable
and

(2.14) ||∂[f ]||(B) =

∫
||∂[{f > y}]||(B) dL1y.

The following well-known theorem follows from (2.1) and the discussion in [FE,
sect. 4.5.7] concerning locally flat currents of dimension n in Ω.

Theorem 2.2 (compactness theorem). Suppose C is a sequence of nonnegative
real numbers and K is a sequence of compact subsets of Ω such that ∪∞

ν=1Kν = Ω.
Then

∞⋂
ν=1

{
f ∈ BVloc(Ω) :

∫
Kν

|f | dLn + ||∂[f ]||(Kν) ≤ Cν

}

is a compact subset of Lloc
1 (Ω).

Proposition 2.3. Suppose f ∈ BVloc(Ω) and y ∈ R. Then f ∧ y, f ∨ y ∈
BVloc(Ω) and

(2.15) ||∂[f ∧ y]|| + ||∂[f ∨ y]|| = ||∂[f ]||.

Proof. Since f + y = f ∧ y + f ∨ y it is trivial that the right-hand side of (2.15)
does not exceed the left-hand side of (2.15). Using (2.13) one readily shows that

[f ∧ y](ω) =

∫ y

−∞
[{f ≥ z}](ω) dL1z and [f ∨ y](ω) =

∫ ∞

y

[{f > y}](ω) dL1y

whenever ω ∈ Dn(Ω). Applying ∂ one infers

||∂[f ∧ y]|| ≤
∫ y

−∞
||∂[{f > y}]|| dL1y and ||∂[f ∨ y]|| ≤

∫ ∞

y

||∂[{f > y}]|| dL1y.

By (2.14) the sum of the right-hand sides of these inequalities is ||∂[f ]||. Thus the
left-hand side of (2.15) does not exceed the right-hand side.

2.10. The “layer cake” formula. Chan and Esedoḡlu in [CE] call the following
elementary formula the “layer cake” formula; it is indispensable in this work.

Proposition 2.4. Suppose f, g are real valued Lebesgue measurable functions on
Ω. Then

(2.16)

∫
Ω

|f − g| dLn =

∫ ∞

−∞
ΣΩ({f > y}, {g > y}) dL1y.

Proof. Apply Tonelli’s theorem to calculate the Ln × L1 measure of {(x, y) ∈
Ω × R : g(x) < y ≤ f(x)} and {(x, y) ∈ Ω × R : f(x) < y ≤ g(x)} and add the
results.

3. Deformations and variations. We suppose throughout this section that
(i) X : Ω → R

n is continuously differentiable and K = sptX is compact;
(ii) I is an open interval containing 0 such that if t ∈ I and

ht(x) = x + tX(x) for x ∈ Ω,

then ht carries Ω diffeomorphically (in the C1 sense) onto itself;
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(iii) D is a Lebesgue measurable subset of Ω with locally finite perimeter and

Et = {ht(x) : x ∈ D} for t ∈ I;

(iv) for x ∈ b(D)

P (x) is orthogonal projection of R
n onto {v ∈ R

n : v • nD(x) = 0},

l1(x) = P (x) ◦ ∂X(x) ◦ P (x) and l2(x) = P (x)⊥ ◦ ∂X(x) ◦ P (x).

Note that given X as in (i) there is always I as in (ii).

3.1. Some useful variational formulae.
Proposition 3.1. Suppose

A(t) = ||∂[Et]||(K) for each t ∈ I.

Then A is smooth, and

Ȧ(0) =

∫
a1 d||∂[D]|| and Ä(0) =

∫
a2 d||∂[D]||,

where for x ∈ b(D) we have set

a1(x) = trace l1(x) and a2(x) = a1(x)2 + trace(l2(x)∗ ◦ l2(x) − l1(x) ◦ l1(x)).

Proof. It follows from (2.6) that [Et] = ht#[D] and therefore ∂[Et] = ht#∂[D]

for any t ∈ I. Now recall from Theorem 2.1(iii) that ∗nD(x) =
−−→
∂[D](x) for ||∂[D]||

almost all x, differentiate under the integral sign in (2.5), and use the formulae(
d

dt

)j ∧
n−1

∂ht(x)(
−−→
∂[D](x))

∣∣∣
t=0

= aj(x), j = 1, 2, x ∈ b(D),

proofs of which may be found in [FE, sect. 5.1.8].
Since [Et] − [D] is compactly supported, ([Et] − [D])(φVn) is well defined in the

following proposition.
Proposition 3.2. For any φ ∈ E(Ω) we have

([Et] − [D])(φVn) =

∫ t

0

(∫
φ(hτ (x))Wτ (x) d||∂[D]||x

)
dL1τ,

where, for each t ∈ I, we have set

Wt(x) =
〈
X(x) ∧

∧
n−1

∂ht(x)(∗nD(x)),En
〉

for x ∈ b(D).

Proof. For each t ∈ I let Jt = [0, t] ∈ D1(R) as in [FE, sect. 4.1.8]. From [FE,
sect. 4.1.8] we have ||Jt×∂[D]|| = ||Jt||×||∂[D]|| for each t ∈ I. From [FE, sect. 4.1.8]
and Theorem 2.1(iii) we have

−−−−−−→
Jt × ∂[D](τ, x) = (1, 0) ∧

−−→
∂[D](x) = (1, 0) ∧ ∗nD(x) for (τ, x) ∈ (0, t) × b(D).

Suppose t ∈ I. We obtain

[Et] − [D] = ht#[D] − [D] = h#(Jt × ∂[D])
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from the homotopy formula of [FE, sect. 4.1.9]; the formula to be proved now follows
from (2.5).

Proposition 3.3. Suppose Ln(D) < ∞, ζ ∈ L∞(Ω), and

B(t) =

∫
Et

ζ dLn for t ∈ I.

If ζ is continuous, then B is continuously differentiable and

(3.1) Ḃ(0) =

∫
ζ(X • nD) d||∂[D]||.

If ζ is continuously differentiable, then B is twice continuously differentiable and

(3.2) B̈(0) =

∫ (
ζY + (∇ζ •X)X

)
• nD d||∂[D]||,

where for x ∈ b(D) we have set

Y (x) = (trace l1(x))X(x) − l2(x)(X(x)).

Proof. Using straightforward approximations if necessary, we may assume that ζ
is smooth. For each t ∈ I and x ∈ b(D) let

ξt(x) =
∧

n−1
∂ht(x)(∗nD(x)) and Wt(x) = 〈ḣt(x) ∧ ξt(x),En〉.

Suppose x ∈ b(D). Let u1, . . . , un be an orthonormal sequence of vectors in R
n

such that u1 = nD(x) and ∗u1 = u2 ∧ · · · ∧ un; since 〈u1 ∧ ∗u1,E
n〉 = 1 we have

〈w ∧ u2 ∧ · · · ∧ un,E
n〉 = w • u1〈u1 ∧ ∗u1,E

n〉 = w • u1 for any w ∈ R
n;

see [FE, sect. 1.7.8] for the properties of ∗.
It should now be clear from Proposition 3.2 that (3.1) holds.
Let u1, . . . , un be the sequence of covectors dual to u1, . . . , un and let ω1, . . . , ωn

be those covectors such that ∂X(x) =
∑n

j=1 ωjuj . We have

d

dt
Wt(x)

∣∣
t=0

= X(x) ∧ d

dt
ξt(x)

∣∣
t=0

= X(x) ∧
n∑

i=2

∂X(x)(ui) ∧
(
ui ξ0(x)

)

= X(x) ∧
n∑

i=2

n∑
j=1

〈ui, ωj〉uj ∧
(
ui ξ0(x)

)

= X(x) ∧
n∑

i=1

〈ui, ωi〉ui ∧
(
ui ξ0(x)

)

+ X(x) ∧
n∑

i=2

〈ui, ω1〉u1 ∧
(
ui ξ0(x)

)
= ((trace l1(x)X(x) − l2(x)(X(x))) • nD(x))u1 ∧ ∗u1,

so (3.2) holds.
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4. Second fundamental forms and mean curvature. Suppose M is an em-
bedded hypersurface of class C2 in Ω.

The second fundamental form of M is the function Π on M whose value at a ∈ M
is a linear map from Nor(M,a) into the symmetric linear maps from Tan(M,a) to
itself characterized by the requirement that if U is an open subset of R

n, a ∈ U ∩M ;
N : U → R

n; N is of class C1; and N(x) ∈ Nor(M,x) whenever x ∈ U ∩M , then

Π(a)(N(a))(v) • w = ∂N(a)(v) • w for v, w ∈ Tan(M,a).

The mean curvature vector of M is, by definition, the function H on M whose
value at a point a of M is that member H(a) of Nor(M,a) whose inner product with
u ∈ Nor(M,a) is the trace of Π(a)(u). In the classical literature the mean curvature
vector is 1/(n − 1) times H as defined here, hence the word “mean.” It turns out
the factor 1/(n− 1) is inconvenient when one is working, as we will be, with the first
variation of area; for this reason we omit it. The direction of the mean curvature
vector, and not just its magnitude, will be important in this work.

If a ∈ M , the length of Π(a) is, by definition, the square root of the sum of the
squares of the eigenvalues of Π(a)(u) whenever u ∈ Nor(M,a) and |u| = 1.

Suppose f : Ω → R is C2; ∇f(x) �= 0 whenever x ∈ Ω; y is in the range of f ; and
M = {f = y}, so M is an embedded hypersurface of class C2 in Ω. It follows that if
a ∈ M then

Π(a)(∇f(a))(u) • v = ∂(∇f)(a)(u) • v whenever u, v ∈ Tan(M,a).

Suppose Ω = R
n ∼ {0}, f(x) = |x|2/2 for x ∈ Ω, 0 < R < ∞, and M = {x ∈

R
n : |x| = R}. Then ∇f(x) = x for x ∈ Ω. It follows that if a ∈ M then

Π(a)(a)(v) • w =
v • w
|a| whenever v, w ∈ Tan(M,a), H(a) =

n− 1

R2
a

and the length Π(a) equals the square root of (n− 1)/R2.

5. The spaces Bλ(Ω) and Cλ(Ω), 0 ≤ λ < ∞. We suppose throughout this
section that 0 ≤ λ < ∞, and we study the spaces Bλ(Ω) and Cλ(Ω).

5.1. Basic results on Bλ(Ω) and Cλ(Ω). In what follows we will frequently
make use of the following simple observation. Suppose f, g ∈ Lloc

1 (Ω), K is a compact
subset of Ω, g ∈ k(f,K), and y ∈ R. Then

(5.1) {g > y} ∈ k({f > y}).

Moreover, ≥ may be replaced by any of ≤, >, and <.
Remark 5.1. It is an elementary corollary of Theorem 5.1 below that if D is an

open subset of Ω with smooth boundary M and D ∈ Cλ(Ω), then the length of the
mean curvature vector of M does not exceed λ. The converse of this statement is
false as one sees in case λ = 0 by considering a set whose boundary is an unstable
minimal surface.

However, if f : Ω → R is smooth with nowhere vanishing gradient and, for each
y in the range of f , the length of the mean curvature vector of {f = y} never exceeds
λ, then a simple calibration argument shows that f ∈ Bλ(Ω).

Lemma 5.1. Suppose f ∈ Bλ(Ω), g ∈ BVloc(Ω), K is a compact subset of Ω,
u(x) = dist (x,K) for x ∈ Ω, 0 < h < ∞, and {u ≤ h} is a compact subset of Ω.
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Then

||∂[f ]||(K) ≤ ||∂[g]||({u ≤ h}) +

(
λ +

1

h

)∫
{u≤h}

|f − g| dLn.

In particular,

||∂[f ]||(K) ≤
(
λ +

1

h

)∫
{u≤h}

|f − y| dLn for y ∈ R.

Proof. For each r ∈ (0, h) let hr = g1{u≤r} + f1{u>r}. Then hr ∈ k(f, {u ≤ r})
and f − hr = (f − g)1{u≤r}, so

||∂[f ]||({u ≤ r}) ≤ ||∂[hr]||({u ≤ r}) + λ

∫
{u≤r}

|f − g|.

Now integrate this inequality from 0 to h and make use of (2.10) to prove the first
inequality; to obtain the second, set g(x) = y for x ∈ Ω.

Theorem 5.1. Suppose λ ∈ [0,∞), f ∈ Bλ(Ω), and y ∈ R. Then

{f + y, yf, f ∧ y, f ∨ y} ⊂ Bλ(Ω).

Proof. Suppose K is a compact subset of Ω. Obviously, 0f = 0 ∈ Bλ(Ω). Suppose
y ∈ R ∼ {0} and g ∈ k(yf,K). Then g/y ∈ k(f,K), so

||∂[yf ]||(K) = |y|||∂[f ]||(K)

≤ |y|
(
||∂[g/y]||(K) + λ

∫
Ω

|f − g/y| dLn

)

= ||∂[g]||(K) + λ

∫
Ω

|yf − g| dLn.

Thus yf ∈ Bλ(Ω).
Suppose g ∈ k(f + y,K). Then g − y ∈ k(f,K), so

||∂[f + y]||(K) = ||∂[f ]||(K)

≤ ||∂[g − y]||(K) + λ

∫
Ω

|f − (g − y)| dLn

= ||∂[g]||(K) + λ

∫
Ω

|(f + y) − g| dLn,

and thus f + y ∈ Bλ(Ω).
Suppose g ∈ k(f∧y,K). Let h = g+(f∨y)−y. Then f−h = f+y−(f∨y)−g =

f ∧ y − g, so h ∈ k(f,K). Using Proposition 2.3 we estimate

||∂[f ∧ y]||(K) + ||∂[f ∨ y]||(K)

= ||∂[f ]||(K)

≤ ||∂[h]||(K) + λ

∫
K

|f − h| dLn

≤ ||∂[g]||(K) + ||∂[f ∨ y]||(K) + λ

∫
K

|f ∧ y − g| dLn
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and conclude that f ∧ y ∈ Bλ(Ω).
Finally, f ∨ y = − ((−f) ∧ (−y)) ∈ Bλ(Ω).
Theorem 5.2. Suppose λ ∈ [0,∞), f is a sequence in Bλ(Ω), F ∈ Lloc

1 (Ω), and
fν → F in Lloc

1 (Ω). Then F ∈ Bλ(Ω) and

||∂[fν ]|| → ||∂[F ]|| weakly as ν → ∞.

Proof. Let K be a compact subset of Ω, let u(x) = dist (x,K) for x ∈ Ω, and let
R = sup{r ∈ (0,∞) : {u ≤ r} ⊂ Ω}.

Suppose h ∈ (0, R) and for each positive integer ν let yν be the average of fν on
{u ≤ h}. Let Y be the average value of F on {u ≤ h}. From Lemma 5.1 we obtain

||∂[fν ]||(K) ≤
(
λ +

1

h

)∫
{u≤h}

|fν − yν | dLn →
(
λ +

1

h

)∫
{u≤h}

|F − Y | dLn

as ν → ∞. Since K is arbitrary we infer from (2.1) that F ∈ BVloc(Ω).
For any r ∈ (0, R) we infer from Lemma 5.1 that

||∂[fν ]||(K) ≤ ||∂[F ]||({u ≤ r}) +

(
λ +

1

h

)∫
{u≤h}

|fν − F | dLn

for any positive integer ν. Keeping in mind (2.1) we conclude that ||∂[fν ]|| converges
weakly to ||∂[F ]|| as ν → ∞.

We now show that F ∈ Bλ(Ω). To this end, let G ∈ BVloc(Ω) ∩ k(F,K). For
each positive integer ν and each ρ ∈ (0, R) we let

gν,ρ = G {u ≤ ρ} + fν {u > ρ},

we note that gν,ρ ∈ k(fν , {u ≤ ρ}) and fν − gν,ρ = (fν −G)1{u≤ρ}, and we conclude
that

||∂[fν ]||({u ≤ ρ}) ≤ ||∂[gν,ρ||({u ≤ ρ}) + λ

∫
{u≤ρ}

|G− fν | dLn.

Suppose 0 < r < R and ν is a positive integer. Keeping in mind that G−fν = F −fν
at Ln almost all points of Ω ∼ K, we integrate this inequality from 0 to r and use
(2.10) to obtain

r||∂[fν ]||(K) ≤
∫ r

0

||∂[fν ]||({u ≤ ρ}) dL1ρ

≤
∫
{0<u<r}

|F − fν | dLn + r||∂[G]||({u ≤ r})

+ λr

∫
{u≤r}

|G− fν | dLn.

Letting ν → ∞ we find that

lim sup
ν→∞

||∂[fν ]||(K) ≤ ||∂[G]||({u ≤ r}) + λ

∫
{u≤r}

|G− F | dLn.

Letting r ↓ 0 we infer that

||∂[F ]||(K) ≤ ||∂[G]||(K) + λ

∫
K

|G− F | dLn,

as desired.
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Theorem 5.3. The following statements hold:
(i) If f ∈ Bλ(Ω) and y ∈ R, then {f > y} ∈ Cλ(Ω).
(ii) If f ∈ BVloc(Ω), D = {y ∈ R : {f > y} ∈ Cλ(Ω)}, and D is dense in R, then

f ∈ Bλ(Ω).
(iii) If E is a nonempty nested subfamily of Cλ(Ω), then ∪E and ∩E belong to

Cλ(Ω).
(iv) E ∈ Cλ(Ω) if and only if 1E ∈ Bλ(Ω) whenever E ⊂ Ω.
Proof. We begin with a lemma.
Lemma 5.2. Suppose f ∈ BVloc(Ω), D = {y ∈ R : {f > y} ∈ Cλ(Ω)}, and

L1(R ∼ D) = 0. Then f ∈ Bλ(Ω).
Proof. Suppose K is a compact subset of Ω and g ∈ BVloc(Ω)∩k(f,K). Keeping

in mind (5.1) we infer from (2.14) and (2.16) that

||∂[f ]||(K) =

∫ ∞

−∞
||∂[1{f>y}]||(K) dL1y

≤
∫ ∞

−∞

(
||∂[1{g>y}]||(K) + λ

∫
|1{f>y} − 1{g>y}| dLn

)
dL1y

= ||∂[g]||(K) + λ

∫
|f − g| dLn.

Suppose E ∈ Cλ(Ω). Evidently, {1E > y} ∈ Cλ(Ω) for all y ∈ R so, by the lemma,
1E ∈ Bλ(Ω). It being trivial that {E : 1E ∈ Bλ(Ω)} is a subset of Cλ(Ω), we find that
(iv) holds.

Suppose E is a nonempty nested subfamily of Cλ(Ω). Choose a nondecreasing
sequence A and a nonincreasing sequence B in E such that 1Aν → 1∪E and 1Bν

→ 1∩E
in Lloc

1 (Ω), as ν → ∞. From Theorem 5.2 we infer that the indicator functions of ∪E
and ∩E belong to Bλ(Ω), so (iii) now follows from (iv).

Suppose f and D are as in (ii). Since D is dense in R we have for any y ∈ R that

{f > y} = ∪z∈(y,∞)∩D{f > z},

so {f > y} ∈ Cλ(Ω) by (iii). The lemma now implies (ii).
Finally, suppose f ∈ Bλ(Ω) and y ∈ R. For each positive integer ν let

gν = ν

((
(f − y) ∧ 1

ν

)
∨ 0

)

and note that gν ∈ Bλ(Ω) by Theorem 5.1. One readily verifies that gν ↑ 1{f>y} as
ν ↑ ∞ so that, by Theorem 5.2, 1{f>y} ∈ Bλ(Ω), so {f > y} ∈ Cλ(Ω) by (iv), and
thus (i) holds.

5.2. Generalized mean curvature.
Proposition 5.1. Suppose λ ∈ [0,∞), D ∈ Cλ(Ω), and X ∈ X (Ω). Then∫

traceP (x) ◦ ∂X(x) ◦ P (x) d||∂[D]||x ≤ λ

∫
|X| d||∂[D]||,

where, for each x ∈ b(D), we have let P (x) be an orthogonal projection of R
n onto

{v ∈ R
n : v • nD(x) = 0}.

Remark 5.2. We restate this theorem in the language of [AW1]. Let V be the
(n− 1)-dimensional varifold in Ω naturally associated to ∂[D] as in [AW1, sect. 3.5];
the preceding theorem says that

||δV || ≤ λ||V ||,
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where δV is as in [AW1, sect. 4.2].

Proof. Let us adopt the notation of section 3. In particular, A(t) = ||∂[Et]||(K)
for t ∈ I. For any positive t ∈ I we infer from Proposition 3.2 that

A(t) −A(0)

t
≤ λ

t
||[Et] − [D]||(K) ≤ 1

t
λ

∫ t

0

(∫
|X|||∂ḣτ (x)||n−1 d||∂[D]||x

)
dL1τ.

The estimate to be proved now follows from Proposition 3.1.

5.3. Consequences of the monotonicity theorem.

Theorem 5.4. Suppose λ ∈ [0,∞), D ∈ Cλ(Ω), a ∈ Ω, and R = dist (a,Rn ∼
Ω). Then

(i) (0, R) � r 	→ eλrΘn−1(||∂[D]||, a, r) is nondecreasing;
(ii) Θn−1(||∂[D]||, a) exists and depends uppersemicontinuously on a;
(iii) Θn−1(||∂[D]||, a) ≥ 1 if a ∈ spt ∂[D];

if a ∈ spt [D], we have

(iv) e−λrα(n− 1)rn−1 ≤ ||∂[D]||(Un(a, r)) whenever 0 < r < R;

(v) e−λr α(n−1)
n rn ≤ (1 + λr)Ln(D ∩ Un(a, r)) whenever 0 < r < R.

Proof. In view of Remark 5.2, (i) follows from the monotonicity theorem of [AW1,
sect. 5.1]. (i) clearly implies (ii). (iii) is a consequence of Theorem 2.1(ii) and (iii).
(iv) follows directly from (i) and (iii).

Suppose 0 < r < R. For each ρ ∈ (0, r) let Eρ = D ∩ {u > ρ}, where we have set
u(x) = |x− a| for x ∈ Ω and note that Eρ ∈ k(E, {u ≤ ρ}), so

e−λrα(n− 1)ρn−1 ≤ e−λρα(n− 1)ρn−1

≤ ||∂[D]||({u ≤ ρ})
≤ ||∂[Eρ]||({u ≤ ρ}) + λΣΩ(Eρ, D).

Now integrate this inequality over (0, r) and make use of (2.10), with f and g there
equal to 1E and 0, respectively.

Remark 5.3. It follows from (iv) that if Ω = R
n and Ln(D) < ∞, then spt [D] is

compact.

Corollary 5.1. Suppose 0 < R < ∞, 0 < r < ∞, a ∈ Ω, R+ r ≤ dist (a,Rn ∼
Ω), f ∈ Bλ(Ω), and

Y = {y ∈ R : ||∂[{f > y}]||(Un(a,R)) > 0}.

Then

L1(Y )e−λrα(n− 1)rn−1 ≤ ||∂[f ]||(Un(a,R + r))

and

L1(Y )e−λrα(n− 1)

n
rn ≤ (1 + λr)

∫
Un(a,R+r)

|f | dLn.

Proof. For each y ∈ Y ∼ {0} we apply Theorem 5.4 with D there equal to {f > y}
to a ball of radius r with center at a point b, where Θn−1(||∂[{f > y}]||, b) = 1.
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5.4. Proof of the regularity theorem for Cλ(Ω). In view of the regularity
theorem of [AW1, sect. 8] the present regularity theorem, Theorem 1.2, will follow
from the following lemma.

Lemma 5.3. Suppose

1 < ζ < ∞.

There exists η ∈ (0, 1) such that if 0 ≤ λ < ∞, a ∈ R
n, 0 < R < ∞,

λR ≤ η, E ∈ Cλ(Un(a,R)), and a ∈ spt ∂[E],

then

Θn−1(||∂[E]||, a, ηR) ≤ ζ.

Proof. Due to the way the various entities in the lemma change under application
of homotheties and translations, we find that we may assume without loss of generality
that a = 0 and R = 1.

Suppose the lemma were false. Then there would exist ζ ∈ (1,∞); a sequence η
in (0, 1) with limit zero; and sequences E, λ such that, for each positive integer ν,

λν ≤ ην , Eν ∈ Cλν
(Un(0, 1)), and 0 ∈ spt ∂[Eν ]

but such that

(5.2) Θn−1(||∂[Eν ]||, 0, ην) > ζ.

From the monotonicity theorem we have

(5.3) (0, 1) � t 	→ eλνtΘn−1(||∂[Eν ]||, 0, t) is nondecreasing

for each positive integer ν.
Replacing E by a subsequence if necessary we may use Theorems 2.2 and 5.2 to ob-

tain a Lebesgue measurable subset F of Un(0, 1) such that Eν → F in Lloc
1 (Un(0, 1))

as ν → ∞,

(5.4) F ∈
∞⋂
ν=1

Cλν (Un(0, 1)) = C0(U
n(0, 1)),

and

(5.5) ||∂[Eν ]|| → ||∂[F ]|| weakly as ν → ∞.

Letting B equal the set of t ∈ (0, 1) such that ||∂[F ]||({x ∈ R
n : |x| = t}) is positive

we observed that B is countable and infer from (5.5) and (2.1) that

lim
ν→∞

Θn−1(||∂[Eν ], 0, t) = Θn−1(||∂[F ], 0, t) for any t ∈ (0, 1) ∼ B.

This together with (5.2), Theorem 5.4, and the fact that λν → 0 as ν → ∞ implies

(5.6) Θn−1(||∂[F ]||, 0, t) ≥ ζ whenever t ∈ (0, 1) ∼ B.

As F ∈ C0(U
n(0, 1)) we find that ∂[F ] is an absolutely area minimizing integral

current of dimension n− 1 in Un(0, 1). As Theorem 2.1 implies that

Θn−1(||∂[F ]||, x) = 1 for ||∂[F ]|| almost all x

it follows from the regularity theorem of [FE, sect. 5.4.15] that ∂[F ] is integration
over an oriented (n− 1)-dimensional real analytic hypersurface M of Un(0, 1). Con-
sequently, Θn−1(||∂[F ]||, 0) = 1, which is incompatible with (5.6).
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5.4.1. The case n = 2. One can do a little better than the preceding theorem if
n = 2, as follows. Let w(m) =

√
1 + m2 for m ∈ R. Suppose V and W are nonempty

open intervals, g : V → W is continuously differentiable, 0 ≤ λ < ∞, and

D = {(v, w) ∈ V ×W : w < g(v)} ∈ Cλ(V ×W ).

We will show that

(5.7) Lip(w′ ◦ g′) ≤ λ.

Note that if g is twice differentiable, then (w′ ◦ g′)′ is the curvature function of the
graph of g.

We prove (5.7) as follows. Suppose φ ∈ D(V ) and for each t ∈ R let gt = g + tφ.
Let I be an open interval containing 0 such that if t ∈ I, then gt(v) ∈ W whenever
v ∈ V . Let Et = {(v, w) ∈ V ×W : w < gt(v)} for t ∈ I. We have

(||∂[D]|| − ||∂[Et]||)(V ×W ) ≤ λΣV×W (D,Et).

Now

lim
t↓0

1

t
(||∂[D]|| − ||∂[Et]||)(V ×W ) = −

∫
I

d

dt
w(g′ + tφ′)

∣∣
t=0

dL1 = −
∫
I

(w′ ◦ g′)φ′ dL1

and

lim
t↓0

1

t
ΣV×W (D,Et) =

∫
V

|φ| dL1.

To obtain (5.7) we let φ approximate plus or minus one times the indicator function
of a compact subinterval of V .

6. Locality. Suppose M and μ are as in Proposition 1.3.

6.1. Proof of Proposition 1.3. If M has a representation as in (1.2) where m
is a bounded Borel function, it is trivial that M is local.

Suppose M is local. Then ||μ||L∞(Ω) ≤ l(M), which implies there is a unique
Radon measure on Ω whose restriction to M(Ω) equals M̂ . That (1.2) holds with
m = μ follows from the theory of symmetrical derivation; see, for example, [FE,
sect. 2.9].

6.2. Proof of Proposition 1.4. If F has a representation as in (1.3) where k
satisfies (i) and (ii) of Proposition 1.4, it is trivial that M is local, and it follows from
the theory of symmetrical derivation that for 0 < y < ∞ we have k(x, y) = κ(x, y)
for Ln almost all x ∈ Ω.

Suppose F is local. For any y ∈ (0,∞) we have that M(Ω) � E 	→ F̂ (y1E) is
local so that, by Proposition 1.3,

F̂ (y1E) =

∫
E

κ(x, y) dLnx for E ∈ M(Ω).

Given f ∈ F(Ω) and 0 = y0 < y1 < y2 < · · · < yN < ∞ we infer from the locality of
F that

F̂

(
N∑
i=1

yi1{yi−1<f≤yi}

)
=

N∑
i=1

F̂
(
yi1{yi−1<f≤yi}

)
=

N∑
i=1

∫
{yi−1<f≤yi}

κ(x, yi) dLnx,

from which the representation for F (f) in (1.3) easily follows using the admissibility
of F , and (i) and (ii) of Proposition 1.4 hold with k = κ.
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6.3. Proof of Proposition 1.5. (i), (ii), and (iii) are immediate.
For any x ∈ Ω we have that (0,∞) � y 	→ κ(x, y) is absolutely continuous so that

κ(x, f(x)) =

∫ f(x)

0

u(x, z) dL1z =

∫ ∞

0

u(x, z)1{f≥z}(x) dL1z.

Integrating this equation over Ω and invoking Fubini’s theorem, we infer that

(6.1)

∫
Ω

κ(x, f(x)) dLnx =

∫ ∞

0

(∫
{f≥z}

u(x, z) dLnx

)
dL1z.

For each E ∈ M(Ω) let ζ(E) be the set of y ∈ (0,∞) such that

Uy(E) =

∫
E

u(x, y) dLnx.

Since (0,∞) � y 	→ F̂ (y1E) is absolutely continuous we find that

F̂ (y1E) =

∫ y

0

Uy(E) dL1y whenever y ∈ (0,∞).

Now assume F is local. Applying Proposition 1.4 together with (6.1) with f equal
to y1E , we find that∫ y

0

(∫
E

u(x, z) dLnx

)
dL1z =

∫ y

0

Uz(E) dL1z for y ∈ (0,∞),

which implies that L1((0,∞) ∼ ζ(E)) = 0. Let E be a countable subfamily of M(Ω)
which is dense with respect to ΣΩ(·, ·) and let Z = ∩{ζ(E) : E ∈ E}. Since M(Ω) �
E 	→ Uy(E) and M(Ω) � E 	→

∫
E
u(x, y) dLnx are Lipschitzian with respect to

ΣΩ(·, ·), we find that

(6.2) Uy(E) =

∫
E

u(x, y) dLnx whenever y ∈ Z and E ∈ M(Ω).

Since L1((0,∞) ∼ Z) = 0 we find that (iv) of Proposition 1.5 holds.
Suppose f ∈ F(Ω). Use (1.3) with k = κ to represent F (f). (v) now follows from

(6.1) and (6.2).

6.4. Proof of Proposition 1.6. That (i) implies (ii) is immediate. That (ii)
implies (iii) is a direct consequence of the subadditivity of lim sup. That (iii) implies
(i) follows directly from (v) of Proposition 1.5. Thus (i), (ii), and (iii) are equivalent.

We leave the proof of the following elementary lemma to the reader.
Lemma 6.1. Suppose g : R → R, g is absolutely continuous, and

h(y) = lim inf
z→y

g(z) − g(y)

z − y
for y ∈ R.

Then g is convex if and only if h is nondecreasing. Moreover, if g is convex, then
h is right continuous.

The lemma implies that (iii) and (v) are equivalent. Since the admissibility of F
implies that R � y 	→ F̂ (yE) is locally Lipschitzian for any E ∈ M(Ω), the lemma
implies that (ii) and (iv) are equivalent.

The final assertion follows from the right continuity assertion of the lemma.
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6.5. The class G(Ω). Let

p : Ω × (0,∞) → Ω and q : Ω × (0,∞) → (0,∞)

carry (x, y) ∈ Ω × (0,∞) to x and y, respectively.
Whenever G is an Ln × L1 measurable subset of Ω × (0,∞) we let

[G] ∈ Dn+1(Ω × (0,∞))

be as in (2.2), with Vn there replaced by (p#Vn) ∧ dq; that is,

[G](ψ(p#Vn) ∧ dq) =

∫
G

ψ d(Ln × L1) whenever ψ ∈ D(Ω × (0,∞)).

Definition 6.1. We let

G(Ω)

be the family of Lebesgue measurable subsets G of Ω × (0,∞) such that

(Ln × L1)(G) < ∞ and q[spt [G]] is bounded.

Note that if G ∈ G(Ω), then for L1 almost all y ∈ (0,∞) we have {x : (x, y) ∈
G} ∈ M(Ω).

Definition 6.2. Whenever G ∈ G(Ω) we let

G↓ : Ω → R

be such that

G↓(x) =

{
L1({y : (x, y) ∈ G}) if {y : (x, y) ∈ G} ∈ M((0,∞)),

0 otherwise.

Note that G↓ ∈ F(Ω) and
∫
Ω
G↓ dLn = (Ln × L1)(G).

Definition 6.3. Whenever f : Ω → [0,∞) we let

f↑ = {(x, y) ∈ Ω × (0,∞) : f(x) > y}.

Suppose f : Ω → [0,∞). Evidently,

f ∈ F(Ω) ⇔ f↑ ∈ G(Ω).

Tonelli’s theorem implies that

[(f↑)↓] = [f ] whenever f ∈ F(Ω).

Proposition 6.1. Suppose G ∈ G(Ω), φ ∈ D(Ω), and Ψ ∈ E((0,∞)). Then

p# (∂[G] Ψ ◦ q) (φVn)

= (−1)n[G]
(
p#(φVn) ∧ (Ψ′ ◦ q)dq

)
= (−1)n

∫
Ω

φ(x)

(∫
{y:(x,y)∈G}

Ψ′ dL1

)
dLnx.

(6.3)
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Proof. The first equation follows from the fact that

d((Ψ ◦ q) ∧ p#(φVn)) = (Ψ′ ◦ q)dq ∧ p#(φVn),

and the second follows from Fubini’s theorem.
Corollary 6.1. Suppose G ∈ G(Ω). Then

[G↓] = (−1)np# ((∂[G]) q) and ∂[G↓] = (−1)n+1p#((∂[G]) dq).

Proof. Letting Ψ(y) = y for y ∈ R in the preceding proposition we deduce the
first equation; the second equation is an immediate consequence of the first.

Proposition 6.2. Suppose G ∈ G(Ω) and ∂[G] is representable by integration.
Then

||∂[G↓]||(B) ≤
∫ ∞

0

||∂[{x : (x, y) ∈ G}]||(B) dL1y for any Borel subset B of Ω.

Proof. Suppose U is an open subset of Ω, ω ∈ Dn−1(Ω), sptω ⊂ U , and |ω| ≤ 1.
For each y ∈ (0,∞) let iy(x) = (x, y) for x ∈ Ω. From [FE, sect. 4.3.8] we have

〈[G], q, y〉 = iy#[{x : (x, y) ∈ G}] for L1 almost all y.

From Corollary 6.1, (2.8), and (2.7) we find that

(−1)n+1∂[G↓](ω)| = ((∂[G]) dq)(p#ω)

=

∫ ∞

0

〈∂[G], q, y〉(p#ω) dL1y

= −
∫ ∞

0

∂[{x : (x, y) ∈ G}](ω) dL1y

≤
∫ ∞

0

||∂[{x : (x, y) ∈ G}]||(U) dL1y,

from which the inequality to be proved immediately follows.

6.6. Proof of Theorems 1.3 and 1.4. We now assume F : F(Ω) → R, F is
local, and F is convex. In order to prove the fundamental theorems, Theorems 1.3
and 1.4, we will use F to define a functional F ↑ on subsets of Ω × R, which will be
very useful in analyzing nloc

ε (F ). This is one of the main new ideas of the paper.
We leave to the reader the elementary proof of the following proposition.
Proposition 6.3. Suppose G ∈ G(Ω). Then

(0,∞) � y 	→ Uy({x : (x, y) ∈ G}) is L1 summable.

Definition 6.4. Let

F ↑ : G(Ω) → R

be such that

F ↑(G) = F (0) +

∫ ∞

0

Uy({x : (x, y) ∈ G}) dL1y whenever G ∈ G(Ω).

We have a useful comparison principle.
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Theorem 6.1. We have

F (G↓) ≤ F ↑(G) whenever G ∈ G(Ω).

Proof. As we shall see, the theorem will follow rather directly from the following
lemma.

Lemma 6.2. Suppose a ∈ Ω and E ∈ M((0,∞)). Then

κ(a,L1(E)) ≤
∫
E

u(a, y) dL1y.

Proof. Suppose φ ∈ D((0,∞)) and 0 ≤ φ ≤ 1. Let Φ ∈ E((0,∞)) be such that
Φ′ = φ and limy↓0 Φ(y) = 0. Then

(6.4) 0 ≤ Φ(y) ≤ y if 0 < y < ∞.

Thus, as (0,∞) � y 	→ κ(a, y) is absolutely continuous and (0,∞) � y 	→ u(a, y) is
nondecreasing, we have

κ(a,Φ(y)) =

∫ y

0

u(a,Φ(y))φ(y) dL1y ≤
∫ y

0

u(a, y)φ(y) dL1y for 0 < y < ∞.

We complete the proof by letting φ approximate the indicator function of E.
From the lemma we infer that

κ(x,G↓(x)) ≤
∫
{y:(x,y)∈G}

u(x, y) dL1y for Ln almost all x ∈ Ω.

Integrating this inequality over Ω we use (iv) and (v) of Proposition 1.5 to obtain

F (G↓) − F (0) ≤
∫ ∞

0

Uy({x : (x, y) ∈ G}) dL1y = F ↑(G) − F (0),

as desired.

6.7. Proof of Theorem 1.3. We may assume without loss of generality that
F = F̂ . For each y ∈ (0,∞) we let Dy = {f > y}.

Suppose 0 < b < ∞, K is a compact subset of Ω, and E ∈ k(Db,K). We need to
show that

(6.5) ε||∂[Db]||(K) + Ub(Db) ≤ ε||∂[E]||(K) + Ub(E).

Let u(x) = dist (x,K) for x ∈ Ω and let R be the supremum of the set of
r ∈ (0,∞) such that {v ≤ r} ⊂ Ω. For each (y, r) ∈ (0,∞) × (0, R) let

Cy,r = (E ∩ {v ≤ r}) ∪ (Dy ∩ {v > r}) ∈ M(Ω),

a(y, r) = ε||∂[Dy]||({v ≤ r}) + Uy(Dy),

b(y, r) = ε||∂[Cr,y]||({v ≤ r}) + Uy(Cr,y).

Let

W = {(y, r) ∈ (0,∞) × (0, R) : a(y, r) ≤ b(y, r)}.

Lemma 6.3. For L1 almost all y ∈ (0,∞) we have

a(y, r) ≤ b(y, r)} for L1 almost all r ∈ (0, R).
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Proof. Suppose r ∈ (0, R), B is a Borel subset of (0,∞), and

G = {(x, y) ∈ Ω × ((0,∞) ∼ B) : x ∈ Dy} ∪ {(x, y) ∈ Ω ×B : x ∈ Cy,r}.

Evidently, G↓(x) = f(x) for Ln almost all x ∈ {v > r}, from which it follows that

ε||∂[f ]||({v ≤ r}) + F (f) ≤ ε||∂[G↓]||({v ≤ r}) + F (G↓).

Let

P =

∫
(0,∞)∼B

||∂[Dy]||({v ≤ r}) dL1y and Q =

∫
(0,∞)∼B

Uy(Dy) dL1y.

We have

||∂[f ]||({v ≤ r}) = P+

∫
B

||∂[Dy||({v ≤ r}) dL1y and F (f) = Q+

∫
B

Uy(Dy) dL1y.

From Corollary 6.1 and Proposition 6.2 we obtain

||∂[G↓]||({v ≤ r}) ≤ ||∂[G] dq||({v ≤ r} × (0,∞))

=

∫
||∂[{x : (x, y) ∈ G}]||({v ≤ r}) dL1y

= P +

∫
B

||∂[Cy,r]||({v ≤ r}).

From (6.1) we obtain

F (G↓) ≤ F ↑(G) = Q +

∫
B

Uy(Cr,y) dL1y,

which implies ∫
B

a(y, r) dL1y ≤
∫
B

b(y, r) dL1y.

Owing to the arbitrariness of B we infer that a(y, r) ≤ b(y, r) for L1 almost all
y ∈ (0,∞), so the lemma follows from Tonelli’s theorem.

We have (Dy ∼ Db) ∪ (Db ∼ Dy) = {b < f ≤ y} whenever b < y < ∞, so that

(6.6) lim
y↓b

ΣΩ(Dy, Db) = 0.

This implies that

(6.7) lim
y↓b

ΣΩ∼K(Dy, E) = lim
y↓b

ΣΩ∼K(Dy, Db) = 0.

By Proposition 1.5(iv) we have

|Uy(Dy) − Ub(Db)| ≤ |Uy(Dy) − Uy(Db)| + |Ub(Dy) − Ub(Db)|
≤ l(F, Y )ΣΩ(Dy, Db) + |Ub(Dy) − Ub(Db)|

as well as

(6.8) |Uy(Cy,r) − Uy(E)| ≤ l(F, Y )Σ{u>r}(Dy, E) ≤ l(F, Y )ΣΩ∼K(Dy, Db)
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whenever 0 < y < Y < ∞. With the help of (6.6) and Proposition 1.6 we infer that

(6.9) lim
y↓b

Uy(Dy) = Ub(Db).

Suppose 0 < r < R. Since (6.6) and (2.1) imply that

||∂[Db]||(K) ≤ lim inf
y↓b

||∂[Dy]||({u ≤ ρ}) for 0 < ρ < R,

we infer from (6.9) that

(6.10) r (||∂[Db]||(K) + Ub(Db)) ≤ lim inf
y↓b

∫ r

0

a(y, ρ) dL1ρ.

Applying (2.10), with f there equal to 1Dy
and g there equal to 1E , and using

(6.6), (6.7), (6.8), and (6.9), we find that

∫ r

0

b(y, ρ) dL1ρ ≤ Σ{u>r}(Dy, E) +

∫ r

0

||∂[E]||({u ≤ ρ}) dL1ρ +

∫ r

0

Uy(Cy,ρ) dL1ρ

→
∫ r

0

||∂[E]||({u ≤ ρ}) + Ub(E) dL1ρ as y ↓ b.

(6.11)

Using Lemma 6.2 and Tonelli’s theorem we may choose a sequence y in (b,∞)
with limit b such that

L1({r ∈ (0, R) : (yν , r) �∈ W}) = 0 for ν = 1, 2, 3, . . . .

Thus ∫ r

0

a(yν , ρ) dL1ρ ≤
∫ r

0

b(yν , ρ) dL1ρ,

so (6.10) and (6.11) imply

r (||∂[Db]||(K) + Ub(Db)) ≤
∫ r

0

||∂[E]||({u ≤ ρ}) + Ub(E) dL1ρ;

dividing by r and letting r ↓ 0 we obtain (6.5).
We leave it to the reader to modify the proof just given in a straightforward way

to show that {f ≥ b} ∈ nloc
ε (Lb).

6.8. Proof of Theorem 1.4. Let K be a compact subset of Ω and let g ∈ F(Ω)
such that spt [G↓ − g] ⊂ K.

Suppose y ∈ (0,∞). Since G↓(x) = g(x) for Ln almost all x ∈ Ω ∼ K we find
that

spt [{G↓ > y}] − [{g > y}] ⊂ K,

so that if {x : (x, y) ∈ G} ∈ nloc
ε (Uy), we have

||∂[{G↓ > y}]||(K) + Uy({G↓ > y}) ≤ ||∂[{g > y}]||(K) + Uy({g > y}).
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Integrating over y ∈ (0,∞) with respect to L1 and using Proposition 6.2, Theorem
6.1, (2.6), and Proposition 1.5(v), we find that

||∂[G↓]||(K) + F (G↓)

≤
∫ ∞

0

||∂[{G↓ > y}]||(K) dL1y + F ↑(G)

=

∫ ∞

0

||∂[{G↓ > y}]||(K) + Uy({G↓ > y}) dL1y

≤
∫ ∞

0

||∂[{g > y}]||(K) + Uy({g > y}) dL1y

= ||∂[g]||(K) + F (g).

It remains to deal with (1.6). For each E ∈ M(Ω) let C(E) be the set of y ∈ (0,∞)
such that Ly(E) �= Uy(E). Since (0,∞) �	→ F (y1E) is convex we find that C(E) is
countable. Now choose a countable subfamily E of M(Ω) which is dense with respect
to the pseudometric ΣΩ(·, ·). By a straightforward approximation argument, which
we leave to the reader, we find that Ly(D) = Uy(D) whenever D ∈ M(Ω) and
y �∈ ∪{C(E) : E ∈ E}.

7. Proof of Theorem 1.6. Theorem 1.6 will be proved by calculating the ap-
propriate first and second variations, invoking the regularity theorem for Cλ(Ω), and
then utilizing higher regularity results for the minimal surface equation.

For each x ∈ b(D) we let P (x) equal the orthogonal projection of R
n onto {v ∈

R
n : v • nD(x) = 0}.

We may assume without loss of generality that U = Ω. It follows from Proposition
1.2 and Theorem 1.2 that ΣΩ(D,Γ) = 0, so [D] = [Γ].

Part 1. Suppose a ∈ M . From Proposition 1.2 and Theorem 1.2 there are Ψ, V, r, g
such that Ψ carries R

n−1 ×R isometrically onto R
n, Ψ(0, 0) = a, V is an open subset

of R
n−1, 0 ∈ V , 0 < r < ∞, g : V → (−r, r) is of class C1,μ, Ψ[V × (−r, r)] ⊂ Ω, and

Γ ∩ Ψ[V × (−r, r)] = Ψ[{(v, w) ∈ V × (−r, r) : w < g(v)}].

Suppose φ ∈ D(V ). Choose an open interval I such that 0 ∈ I and g(v) + tφ(v) ∈
(−r, r) whenever (v, t) ∈ V × I. For each t ∈ I let

Φ(t) = ε

∫
V

√
1 + |∇(g + tφ)|2 dLn−1 +

∫
V

(∫ (g+tφ)(v)

−r

ζ(Ψ(v, w)) dL1w

)
dLn−1v.

Then Φ(0) ≤ Φ(t) whenever t ∈ I since D ∈ nloc
ε (Z). Thus

0 = Φ′(0) = ε

∫
V

∇g • ∇φ√
1 + |∇g|2

dLn +

∫
V

ζ(Ψ(v, g(v)))φ(v) dLn.

That is, g is a weak solution of

−εdiv J−1∇g + ζ ◦ Ψ ◦G = 0,

where we have set J =
√

1 + |∇g|2 and G(v) = (v, g(v)) for v ∈ V .
Inasmuch as ∂g is Hölder continuous, standard results on regularity of weak so-

lutions of elliptic equations, as found, for example, in [GT, sect. 8.3], imply that g is
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of class Ck+2,μ. Since a is an arbitrary point of M we conclude that M is of class
Ck+2,μ, so M has a second fundamental form. Since H(a) • nΓ(a) = −div J−1∇g(0)
we find that (1.7) holds.

Part 2. We now suppose ζ is continuously differentiable. Let Π, Q,H be as in
section 4.

Since M is of class C2 by Part 1 there is a map N : Ω → R
n of class C1 such that

N |M = nΓ|M .
Suppose φ ∈ D(Ω). Let X = φN , and let K; I; ht, t ∈ I; Et, t ∈ I; P ; and a1 and

a2 be as in section 3. Let Y be as in Proposition 3.3. Since ∂X = (∂φ)N + φ(∂N)
we find that

l1 = P ◦ ∂(φN) ◦ P = φ (P ◦ ∂N ◦ P ),

l2 = P⊥ ◦ ∂(φN) ◦ P = ((∂φ) ◦ P )N,

trace l1 = φ(H •N),

trace l∗2 ◦ l2 = |(∂φ) ◦ P |2,
trace l1 ◦ l1 = φ2Q.

(7.1)

For each t ∈ I let

Φ(t) = ε||∂[Et]||(K) + Z(Et).

Let A and B be as in Propositions 3.1 and 3.3, respectively, so Φ(t) = εA(t) + B(t)
for t ∈ I. Since Φ(0) ≤ Φ(t) for t ∈ I we have

(7.2) 0 ≤ εA′′(0) + B′′(0).

We have

a2 = (trace l1)
2 + trace(l∗2 ◦ l2 − l1 ◦ l1)

= φ2(H •N)2 + |∂φ ◦ P |2 − φ2Q2

= φ2 ζ
2

ε2
+ |∂φ ◦ P |2 − φ2Q2.

Making use of (1.7) we obtain

(ζY + (∇ζ •X)X
)
•N

= (ζ(φ(H •N)φN) −∇ζ • (φN)φN) •N

= −ζ2

ε
φ2 + φ2(∇ζ •N).

So (1.8) now follows from (7.2) and Propositions 3.1 and 3.3.

8. The denoising case revisited. Suppose
(i) s, γ, and F are as in section 1.8;
(ii) γ is convex and β is as in section 1.8;
(iii) U is an open subset of Ω, z ∈ R, and

s(x) = z for x ∈ U ;

(iv) 0 < y < ∞ and β is continuously differentiable near y − z;
(v) 0 < ε < ∞ and f ∈ mloc

ε (F );
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(vi) Γ is the intersection of U with the interior of the support of [{f > y}], and
M is the intersection of U with the boundary of Γ;

(vii) H is the mean curvature vector of M , and Q is the square of the length of
the second fundamental form of M .

From Theorems 1.3 and 1.6 we find that [Γ] = [U ∩ {f > y}], that

H(x) = −1

ε
β(y − z)nΓ(x) whenever x ∈ M ,

and that ∫
M

|∇Mφ(x)|2 − φ(x)2Q(x) dHn−1x ≥ 0

for any φ ∈ D(Ω), where, for each x ∈ M , ∇Mφ(x) is the orthogonal projection of
∇φ(x) on Tan(M,x).

Now suppose n = 2, let a ∈ M , and let A be the connected component of a in M .
If β(y − z) = 0, then A is a subset of a straight line. Suppose β(y − z) �= 0 and let

R =
ε

|β(y − z)| .

Then A is an arc of a circle of radius R. Let c be the center of this circle. Then
for each a ∈ A, there is an open subset G of U containing a such that

Γ ∩G =

{
U2(c,R) ∩G if β(y − z) < 0,

(Rn ∼ U2(c,R)) ∩G if β(y − z) > 0.

Finally, let L be the length of A. Since Q(x) = 1/R2 for x ∈ M we find that

∫ L

0

φ′(σ)2 − 1

R2
φ(σ)2 dL1σ ≥ 0

for all continuously differentiable φ : [0, L] → R which are differentiable on (0, L) and
which vanish at 0 and L. Letting φ(σ) = sin(πσ/L) for σ ∈ [0, L] we infer that

L ≤ πR.

9. Some results for functionals on sets.

9.1. Proof of Theorem 1.7. We begin with a simple lemma.
Lemma 9.1. Suppose A is a nested sequence in nloc

ε (NS). Then ∩∞
ν=1Aν ∈

nloc
ε (NS) and, provided Ln(∪∞

ν=1Aν) < ∞, ∪∞
ν=1 ∈ nloc

ε (NS).
We leave to the reader the straightforward proof making use of (2.1) and cutoff

arguments like those used in the proof of Theorem 5.2.
Let

F (f) =

∫
Ω

|f − 1S | dLn for f ∈ F(Ω).

For each y ∈ R let Uy be as in Theorem 1.5. Recall from section 1.9 that

Uy =

{
0 if 1 ≤ y < ∞,

N̂S if 0 < y < 1.
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Suppose A,B ∈ A and 0 < a < b < c < 1. Let

G = (A× (0, b)) ∪ (B × (b, 1)) ∈ G(Ω).

Then {x : (x, y) ∈ G} ∈ nloc
ε (Uy) whenever 0 < y < ∞, so G↓ ∈ mloc

ε (F ) by Theorem
1.4. From Theorem 1.3 we infer that A ∪ B = {G↓ > a} ∈ nloc

ε (Ua) and A ∩ B
= {G↓ > c} ∈ nloc

ε (Uc), so A ∪B and A ∩B belong to nloc
ε (NS).

It follows that if F is a finite subfamily of A, then ∪F and ∩F belong to nloc
ε (NS).

Let B be a sequence in A such that

lim
ν→∞

Ln(Bν) = inf{Ln(A) : A ∈ A}.

Since each of ∩N
ν=1Bν belongs to nloc

ε (NS) we infer from the preceding lemma that
C = ∩∞

ν=1Bν ∈ nloc
ε (NS). It is clear that Ln(C ∼ ∩A) = 0, so ∩A ∈ nloc

ε (NS).
Let us now assume Ln(∪A) < ∞. Let D be a sequence in A such that

lim
ν→∞

Ln(Dν) = sup{Ln(A) : A ∈ A}.

Since each of ∪N
ν=1Dν belongs to nloc

ε (NS) we infer from the preceding lemma that
E = ∪∞

ν=1Dν ∈ nloc
ε (NS). It is clear that Ln(∪A ∼ E) = 0, so ∪A ∈ nloc

ε (NS).

9.2. A comparison principle. The following proposition and its proof were
suggested by a similar result found in [CA1] in a different context.

Proposition 9.1. Suppose M,N ∈ M(Ω), M and N are local, 0 < ε < ∞,
D ∈ nloc

ε (M), E ∈ nloc
ε (N), and spt [D ∪ E] is compact. Then

N̂(E ∼ D) ≤ M̂(E ∼ D).

In particular, if

M̂(G) < N̂(G) whenever G ∈ M(Ω) and Ln(G) > 0,

then

Ln(E ∼ D) = 0.

Proof. Without loss of generality we may assume M = M̂ and N = N̂ . Since
spt [D] ∪ spt [E] ⊂ spt [D ∪ E] we have

εM(∂[D]) + M(D) ≤ εM(∂[D ∪ E]) + M(D ∪ E)

and

εM(∂[E]) + N(E) ≤ εM(∂[D ∩ E]) + N(D ∩ E).

Also,

M(∂[D ∪ E]) + M(∂[D ∩ E])

=

∫ 1

0

M(∂[{1D + 1E > y}]) dL1y +

∫ 2

1

M(∂[{1D + 1E > y}]) dL1y

= M(∂[1D + 1E ])

≤ M(∂[D]) + M(∂[E]).
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Since M and N are local it follows that

ε(M(∂[D]) + M(∂[E])) + M(D ∼ E) + M(D ∩ E) + N(E ∼ D) + N(E ∩D)

= ε(M(∂[D]) + M(∂[E])) + M(D) + N(E)

≤ ε(M(∂[D ∪ E]) + M(∂[D ∩ E])) + M(D ∪ E) + N(D ∩ E)

≤ ε(M(∂[D]) + M(∂[E])) + M(D ∪ E) + N(D ∩ E)

= ε(M(∂[D]) + M(∂[E])) + M(D ∼ E) + M(D ∩ E) + M(E ∼ D) + N(E ∩D).

9.3. Proof of Theorem 1.5. Suppose 0 < y < z < ∞. Since F is strictly
convex we have

β(x, y) < β(x, z) for Ln almost all x ∈ Ω.

This in turn implies that Uy(D) < Uz(D) whenever D ∈ M(Ω). Applying Proposition
9.1 with M,N there equal to Uy, Uz and D,E there equal to {f > y}, {x : (x, z) ∈ G}
and {x : (x, y) ∈ G}, {f > z}, respectively, we infer that

(i) Ln({x : (x, z) ∈ G} ∼ {f > y}) = 0

and

(ii) Ln({f > z} ∼ {x : (x, y) ∈ G}) = 0.

Suppose 0 < w < ∞. Letting z = w and y ↑ w in (i) we find that

Ln({x : (x,w) ∈ G} ∼ {f ≥ w}) = 0.

Letting y = w and z ↓ w in (ii) we find that

Ln({f > w} ∼ {x : (x,w) ∈ G}) = 0.

Since Ln({f = w}) = 0 for all but countably many w ∈ (0,∞) we may use Tonelli’s
theorem to complete the proof.

10. Two useful theorems in the denoising case. We suppose throughout
this subsection that γ : R → R, γ is locally Lipschitzian, γ is decreasing on (−∞, 0),
and γ is increasing on (0,∞). We let

F (f) =

∫
Ω

γ(f(x) − s(x)) dLnx whenever f ∈ F(Ω).

10.1. A simple maximum principle.
Proposition 10.1. Suppose 0 < ε < ∞, f ∈ mloc

ε (F ), and

u = inf{||1Ω∼Kf ||L∞(Ω) : K is a compact subset of Ω}.
Then ||f ||L∞(Ω) ≤ u ∨ ||s||L∞(Ω).

Remark 10.1. It follows from Corollary 5.1 that u = 0 if Ω = R
n.

Proof. Suppose u∨ ||s||L∞(Ω) < M < ∞. Then K = spt [f − f ∧M ] is a compact
subset of Ω, so ∫

{f>M}
γ(f(x) − s(x)) − γ(M − s(x)) dLnx

= F (f) − F (f ∧M)

≤ ε(||∂[f ∧M ]||(K) − ||∂[f ]||(K))

= −
∫ ∞

M

||∂[{f > y}]||(K) dL1y

≤ 0.
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If f(x) > M > s(x), then f(x)−s(x) > M−s(x) > 0, so that γ(f(x)−s(x))−γ(M−
s(x)) > 0. Owing to the arbitrariness of M we find that the proposition holds.

Theorem 10.1. Suppose Ω = R
n, 0 < ε < ∞, f ∈ mloc

ε (F ), and, for each
y ∈ (0,∞),

C(y) equals the closed convex hull of spt [{s > y}].

Then

spt [{f > y}] ⊂ C(y) whenever 0 < y < ∞.

Proof. Suppose 0 < b < ∞. Let gb = f1{f<b} + b1{f≥b}∼C(b) + f1{f≥b}∩C(b) and
note that

{gb > y} =

{
{f > y} if y ≤ b,

{f > y} ∩ C(b) if y > b
whenever y ∈ R.

It follows from (2.12) that M(∂[{gb > y}]) ≤ M(∂[{f > y}]) whenever y ∈ R.
Let Kb = spt [f − gb]. Since {f − gb �= 0} ⊂ {f > b} we infer from Theorems 1.1

and 5.4(v) that Kb is compact. Since f ∈ mloc
ε (F ) we infer with the help of (5.1) that∫

{f>b}∼C(b)

γ(f(x) − s(x)) − γ(b− s(x)) dLnx

= F (f) − F (gb)

≤ ε(||∂[gb]||(Kb) − ||∂[f ]||(Kb))

= ε

∫ ∞

b

||∂[{gb > y}]||(Kb) − ||∂[{f > y}]||(Kb) dL1y

≤ 0,

which implies Ln({f > b} ∼ C(b)) = 0.

10.1.1. Convex containment.
Proposition 10.2. Suppose M ∈ M(Rn), M is local, C is a closed convex subset

of R
n, and

(10.1) M(E) ≥ M(∅) whenever E ∈ M(Rn) and Ln(E ∩ C) = 0.

Then spt [D] is a compact subset of C whenever D ∈ nloc
ε (M).

Remark 10.2. Evidently, (10.1) is equivalent to the statement that μ(x) ≥ 0 for
Ln almost all x ∈ R

n ∼ C, where μ is as in Proposition 1.3.
Proof. Suppose D ∈ nloc

ε (M). It follows from Proposition 1.2 and Theorem 5.4(iv)
that spt [D] is compact. From (2.12) we find that

M(∂[C ∩D]) ≤ M(∂[D]).

Moreover, as M is local and D ∈ nloc
ε (M),

ε(M(∂[D]) − M(∂[D ∩ C])) ≤ M(D ∩ C) −M(D) = M(∅) −M(D ∼ C) ≤ 0.

Thus M(∂[C ∩D]) = M(∂[D]), so the theorem now follows from (2.12).
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11. Some examples. Let

S = [−1, 1] × [−1, 1] ∈ M(R2),

suppose 1 ≤ p < ∞, and let

F (g) =
1

p

∫
|g − 1S |p dL2 whenever g ∈ M(R2).

We will determine mloc
ε (F ), 0 < ε < ∞.

11.1. The sets Ai,r. For each r ∈ (0, 1] let

A0,r = {(1 − r, 1 − r) + r{(cos θ, sin θ) : 0 ≤ θ ≤ π/2},

let Ai,r, i = 1, 2, 3, be a counterclockwise rotation about the origin of A0,r by iπ/2,
and let

C(r)

be the convex hull of ∪3
i=0Ai,r.

Theorem 11.1. Suppose 0 < ε < ∞ and

T = {[f ] : f ∈ mloc
ε (F )}.

If (1 +
√
π/2)ε > 1, then

T = {0}.

If (1 +
√
π/2)ε = 1 and p = 1, then

T = {t[1C(ε)] : 0 ≤ t ≤ 1}.

If (1 +
√
π/2)ε < 1 and p = 1, then

T = {[1C(ε)]}.

If (1 +
√
π/2)ε = 1 and p > 1, then

T = {0}.

If (1 +
√
π/2)ε < 1 and p > 1, then

T = {[G↓]},

where

Y = 1 −
(
1 +

√
π/2)ε

)1/(p−1)

and

G =

{
(x, y) : 0 < y < Y and x ∈ C

(
ε

(1 − y)p−1

)}
∈ G(R2).

Proof. For each y ∈ (0,∞) let

Qy = {[D] : D ∈ nloc
ε (Uy)},
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where Uy is as in Theorem 1.5.
Using (1.9) we find that Uy(E) > 0 whenever 1 < y < ∞, E ∈ M(Rn), and

L2(E) > 0; since Uy(∅) = 0 we find that

Qy = {0} if 1 < y < ∞.

Suppose 0 < y < 1, let

Z =

{
1 if p = 1,

(1 − y)p−1 if p > 1,
and let R =

ε

Z
.

Suppose R ≤ 1 and let

I = (Uy)ε (C(R)) = εM(∂[C(R)]) + Uy(C(R)).

We have

εM(∂[C(R)]) = ε(4(2 − 2R) + 2πR)

and

Uy(C(R)) = −ZL2(C(R)) = −Z(4 − (4 − π)R2),

so

I = ε(4(2 − 2R) + 2πR) − Z(4 − (4 − π)R2)

=
−4Z2 + 8εZ + (π − 4)ε2

Z

= −4
(Z − (1 +

√
π/2)ε)(Z − (1 −

√
π/2)ε)

Z
.

Since R ≤ 1 we have

Z = ε/R ≥ ε > (1 −
√
π/2)ε.

Thus

I

⎧⎪⎨
⎪⎩
< 0 = Uy(∅) ⇔ Z > (1 +

√
π/2)ε,

= 0 = Uy(∅) ⇔ Z = (1 +
√
π/2)ε,

> 0 = Uy(∅) ⇔ Z < (1 +
√
π/2)ε.

Suppose D ∈ nloc
ε (Uy), [D] �= 0, and D = spt [D]. We claim that

(11.1) R ≤ 1 and D = C(R).

From Proposition 10.2 we infer that D ⊂ S. Let U equal the interior of S and let
M = U ∩ bdryD. Then U ∩M �= ∅ since otherwise we would have D = S, in which
case M would have corners, which is incompatible with Theorem 1.2. Let A be a
connected component of M . We infer from section 8 that A is an arc of a circle of
radius R, the length of which does not exceed πR. Because D can have no corners we
find that A meets the interior of the boundary of S tangentially. Thus (11.1) holds.

The theorem now follows from Theorems 1.3 and 1.4.
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Abstract. We prove uniqueness in the Faber–Krahn inequality for the first eigenvalue of the
Laplacian with Robin boundary conditions, asserting that among all sufficiently smooth domains
of fixed volume, the ball is the unique minimizer for the first eigenvalue. The method of proof,
which avoids the use of any symmetrization, also works in the case of Dirichlet boundary conditions.
We also give a characterization of all symmetric elliptic operators in divergence form whose first
eigenvalue is minimal.
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1. Introduction. In this paper, we prove that the ball is the unique minimizer
in the Faber–Krahn inequality for the first eigenvalue of the Robin boundary value
problem

(1.1)

⎧⎨
⎩

−Δu = λu in Ω,

∂u

∂ν
+ βu = 0 on ∂Ω,

where Ω ⊂ R
N , N ≥ 2, is a bounded C2-domain with outward pointing unit normal

ν and β > 0 is a constant. We build on the work of Daners [9] and Bossel [6], who
proved a Faber–Krahn inequality for Robin problems, stating that among all Lipschitz
domains Ω of fixed measure, the ball minimizes the first eigenvalue λ1 = λ1(Ω) of (1.1).
The main purpose of this paper is to prove that the ball is the unique minimizer. More
precisely, we will prove the following theorem.

Theorem 1.1. Suppose Ω ⊂ R
N (N ≥ 2) is a bounded domain of class C2,

B ⊂ R
N is a ball with the same measure as Ω, and β ∈ (0,∞). Then λ1(B) ≤ λ1(Ω)

with equality if and only if Ω = B up to translation.
If β = ∞, then the boundary condition in (1.1) becomes u = 0 and we have the

Dirichlet problem

(1.2)

{
−Δu = λu in Ω,

u = 0 on ∂Ω.

Denote the first eigenvalue by λ1(Ω) as before. Our approach also allows us to recover
uniqueness in the classical Faber–Krahn inequality for Dirichlet boundary conditions.
Statements on uniqueness already appeared in [12, 18], although there were some
unresolved issues about rigor at the time. A discussion about the difficulties arising
in uniqueness theorems is given in [17, section II.8], where it is also noted that some

∗Received by the editors November 21, 2006; accepted for publication (in revised form) March
30, 2007; published electronically November 21, 2007.

http://www.siam.org/journals/sima/39-4/67562.html
†School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia

(D.Daners@maths.usyd.edu.au, J.Kennedy@maths.usyd.edu.au).

1191



1192 DANIEL DANERS AND JAMES KENNEDY

works, including the seminal book of Pólya and Szegö [21], omit the issue altogether.
Moreover, most sources stating a uniqueness result, including the recent book [15,
Remark 3.2.2], do not make precise assumptions on the domains. We therefore include
a proof of the following theorem.

Theorem 1.2 (Dirichlet problem). Suppose Ω ⊂ R
N (N ≥ 2) is an arbitrary

bounded domain and B ⊂ R
N a ball with the same measure as Ω. Then λ1(B) ≤ λ1(Ω)

with equality if and only if Ω is a ball up to a set of capacity zero.
Our proof of Theorem 1.1 makes use of a functional of the level sets of the first

eigenfunction ψ of (1.1). This functional was used in [6, 9] to obtain a lower bound
for λ1(Ω). In this paper (see section 2) we strengthen that bound, which is then the
critical ingredient in obtaining the uniqueness of the minimizer as stated in Theo-
rem 1.1. The main idea then is to use the uniqueness in the geometric isoperimetric
inequality to complete the proof of uniqueness. This is done in section 3. We will
set up the proof so that it works for both Robin and Dirichlet problems, providing a
new proof of uniqueness of the minimizer in case of the Dirichlet problem, at least if
Ω is Wiener regular, which is the case if and only if the first eigenfunction of (1.2) is
continuous in Ω.

In section 4 we provide an alternative proof of uniqueness. We show that if one
level set of the first eigenfunction is a ball, then the domain is already a ball. Then
we use the fact that λ1(Ω) = λ1(B) implies that most level sets are balls. We also
include a proof of Theorem 1.2 in full generality at the end of section 4 using results
on symmetrization from [7].

The final section is concerned with a classification of all elliptic operators which
have the same first eigenfunction as the Laplace operator with the corresponding
boundary conditions. We use this to classify all operators for which the first eigen-
value is minimal. This rectifies an error in [5, Theorem 3.8] and complements a coun-
terexample in [16, section 3] by giving a complete classification (see Theorem 5.4).

2. A lower bound for the first eigenvalue. We will start by considering a
problem with mixed Dirichlet and Robin boundary conditions, as was done in [9].
This is more general than what will ultimately be needed. We look at the mixed
boundary value problem

(2.1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−Δu = λu in Ω,

u = 0 on Γ0,

∂u

∂ν
+ βu = 0 on Γ1

on the C2-domain Ω, where Γ0, Γ1 are disjoint open and closed subsets of ∂Ω with
Γ0 ∪ Γ1 = ∂Ω. We assume that β ∈ C1(Γ1), with β(x) > 0 for all x ∈ Γ1. If Γ0 = ∅,
then we have a pure Robin problem, and if Γ1 = ∅ we have a pure Dirichlet problem.

For open sets U ⊂ Ω, we define the interior and exterior boundaries of U with
respect to Ω by

∂iU := ∂U ∩ Ω and ∂eU := ∂U ∩ ∂Ω,

respectively, so that ∂U = ∂iU ∪ ∂eU , and ∂iU ∩ ∂eU = ∅.
If U ⊂ Ω is open with U ∩ Γ0 = ∅, and ϕ ∈ C(Ω) is nonnegative, then as in [9,

section 2], we define the functional

(2.2) HΩ(U,ϕ) :=
1

|U |

(∫
∂iU

ϕdσ +

∫
∂eU

β dσ −
∫
U

|ϕ|2 dx
)
,
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where |U | denotes the Lebesgue measure of U and σ the (N−1)-dimensional Hausdorff
measure on ∂U . Since ϕ is continuous on ∂iU , these integrals are all well defined,
although the first and last could be infinite for some choices of U and ϕ.

In the case of a pure Robin problem, we restrict our choice of test functions ϕ to
a subset Mβ := Mβ(Ω) of C(Ω), namely

Mβ :=

{
u ∈ C(Ω): u ≥ 0 in Ω and lim sup

x→z
u(x) ≤ β(z) for all z ∈ ∂Ω

}
.

Observe that this restriction for Robin problems is a natural analogue of the unre-
stricted class {u ∈ C(Ω): u ≥ 0 in Ω} in the Dirichlet case, since in the latter case
where β = ∞, we have M∞ = C(Ω).

We are interested in the case where the subsets U are the level sets of the first
eigenfunction ψ of (2.1). The first eigenvalue is simple, and the first eigenfunction
can be chosen to be positive. We denote the level sets by

(2.3) Ut := {x ∈ Ω: ψ(x) > t}

and the level surfaces by

(2.4) St := {x ∈ Ω: ψ(x) = t}.

Then St coincides with the interior boundary ∂iUt of Ut for almost all t. Now it is
well known (see [1, Theorem 4.2]) that

ψ ∈ W 2
p (Ω) ∩ C∞(Ω)

for all p ∈ (1,∞), and in particular, the level sets Ut are open. Moreover, by standard
embedding theorems, ψ ∈ C1(Ω). We can choose ψ ≥ 0 and normalize it so that
‖ψ‖∞ = 1. We set

m := min
x∈Ω

ψ(x).

By the Hopf maximum principle, ψ(x) > 0 for all Ω ∈ Γ1, and ψ attains its minimum
m on ∂Ω. If Γ0 = ∅, then m > 0; otherwise m = 0. Finally, we observe that St = ∅ if
t /∈ (m, 1], and U t ∩ Γ0 = ∅ for all t ∈ (m, 1).

Let ϕ ∈ C(Ω) be nonnegative and set

w := ϕ− |∇ψ|
ψ

.

We will obtain a characterization of the functional HΩ in terms of λ1(Ω) and the
function

F (t) :=

∫ 1

t

1

τ

∫
Sτ

w dσ dτ.

Theorem 2.1. Let w,F be as defined above. Then F : (0, 1] → R is locally
absolutely continuous and

(2.5) HΩ(Ut, ϕ) = λ1(Ω) − 1

|Ut|

(
1

t

d

dt

(
t2F (t)
)

+

∫
Ut

|w|2 dx
)

for almost all t ∈ (m, 1).
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Proof. By [9, Lemma 3.3] the function F is absolutely continuous on [ε, 1) for all
ε ∈ (0, 1), and

(2.6) F ′(t) = −1

t

∫
St

w dσ

for almost all t ∈ (0, 1). Hence

1

t

d

dt

(
t2F (t)
)

=
1

t

(
2tF (t) + t2F ′(t)

)
= 2F (t) + tF ′(t)

= 2

∫ 1

t

1

τ

∫
Sτ

w dσ dτ −
∫
St

w dσ

for almost all t ∈ (0, 1). Therefore (2.5) is equivalent to the characterization

(2.7) HΩ(Ut, ϕ) = λ1(Ω) +
1

|Ut|

(∫
St

w dσ − 2

∫ 1

t

1

τ

∫
Sτ

w dσ dτ −
∫
Ut

|w|2 dx
)

for almost all t ∈ (m, 1), which was proved in [9, Theorem 2.2].
In the next two theorems we will use the characterization (2.5) of HΩ to estimate

the first eigenvalue from above. The theorems strengthen Theorems 3.1 and 3.5 of
[9], respectively, giving a strict inequality for a larger set of t ∈ (m, 1) rather than
just an inequality for some t ∈ (m, 1). That strict inequality is the key to proving the
uniqueness of the minimizing domain.

The first of the theorems deals with the pure Robin problem, while the second
deals with mixed or pure Dirichlet boundary conditions. Part of the proof of the
latter requires a different method.

Theorem 2.2. Suppose that Γ0 = ∅, and let ϕ ∈ Mβ. If ϕ = |∇ψ|/ψ, then there
exists a set S ⊂ (m, 1) of positive measure such that

HΩ(Ut, ϕ) < λ1(Ω)

for all t ∈ S.
Proof. We give a proof by contradiction. Assume that ϕ = |∇ψ|/ψ and that

HΩ(Ut, ϕ) ≥ λ1(Ω) for almost all t ∈ (m, 1). By Theorem 2.1,

(2.8)
d

dt

(
t2F (t)
)

= 2tF (t) + t2F ′(t) ≤ −t

∫
Ut

|w|2 dx ≤ 0

for almost all t ∈ (m, 1). Using (2.6) we can also write the above inequality as

(2.9) 2F (t) +

∫
Ut

|w|2 dx ≤
∫
St

w dσ

for almost all t ∈ (m, 1). Now the fundamental theorem of calculus for absolutely
continuous functions [22, Theorem 8.17] and (2.8) show that t2F (t) is nonincreasing
on (m, 1). By assumption ϕ = |∇ψ|/ψ, so w = ϕ − |∇ψ|/ψ = 0. As w ∈ C(Ω) and⋃

t∈(m,1] Ut = Ω, there exists t ∈ (m, 1) such that

(2.10)

∫
Ut

|w|2 dx > 0.
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Moreover, since the Ut are level sets, the map

t �→
∫
Ut

|w|2 dx

is nonincreasing, while ∫
U1

|w|2 dx = 0

since U1 = ∅ by definition. We now let

t∗ = sup

{
t ∈ (m, 1) :

∫
Ut

|w|2 dx > 0

}
.

From (2.10) we know that t∗ ∈ (m, 1], and thus

d

dt

(
t2F (t)
)
≤ −t

∫
Ut

|w|2 dx < 0

for almost all t ∈ (m, t∗). Hence t2F (t) is strictly decreasing on (m, t∗). We showed
earlier that t2F (t) is nonincreasing on [t∗, 1) and that F is continuous with F (1) = 0.
It follows that there exist η > 0 and t0 ∈ (m, t∗) such that F (t) > η for all t ∈ (m, t0].
By [9, Lemma 2.3], there exist t1 ∈ (m, t0] and c > 0 such that σ(St) < cσ(∂Ω) for
all t ∈ (m, t1]. If we set

ε :=
η

cσ(∂Ω)
,

then by [9, Lemma 3.4], there exists δ > 0 such that w(x) ≤ ε for all x ∈ Ω with
dist(x, ∂Ω) < δ. Since ψ attains a strict minimum on ∂Ω, there exists t ∈ (m, t1] such
that dist(x, ∂Ω) < δ for all x ∈ St. For such t, using (2.9), and by our choice of ε, η,

0 < 2η < 2F (t) ≤
∫
St

w dσ ≤ εσ(St) ≤ η,

which is obviously a contradiction. Hence the assertion of the theorem follows.
We next prove a similar result for problems involving Dirichlet boundary condi-

tions on at least part of the boundary.
Theorem 2.3. Suppose Γ0 = ∅, and suppose ϕ ∈ C(Ω) is nonnegative. If

ϕ = |∇ψ|/ψ, then there exists a set S ⊂ (0, 1) of positive measure such that

HΩ(Ut, ϕ) < λ1(Ω)

for all t ∈ S.
Proof. As with Theorem 2.2, we give a proof by contradiction. We assume that

ϕ = |∇ψ|/ψ and that HΩ(Ut, ϕ) ≥ λ1(Ω) for almost all t ∈ (0, 1). As in the proof of
Theorem 2.2, there exists t∗ ∈ (0, 1] satisfying

t∗ = sup

{
t ∈ (0, 1) :

∫
Ut

|w|2 dx > 0

}
,

so that G(t) := t2F (t) and F (t) are positive and strictly decreasing on (0, t∗) with
G(t∗) = G(1) = 0. Hence

g(t) :=
1

G(t)
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is well defined and strictly increasing on (0, t∗). Since F (t) ≥ 0 and

G′(t) =
d

dt

(
t2F (t)
)
≤ −t

∫
Ut

|w|2 dx ≤ 0

as with (2.9), it follows that∫
St

w dσ ≥ 2F (t) +

∫
Ut

|w|2 dx ≥ 0

for almost all t ∈ (0, 1). Hence, by the coarea formula (see [11, section 3.4.3] or [20,
section 1.2.4]) and the Cauchy–Schwarz inequality,

G(t) = t2F (t) = t

∫ 1

t

t

τ

∫
Sτ

w dσ dτ

≤ t

∫ 1

t

∫
Sτ

w dσ dτ = t

∫
Ut

w|∇ψ| dx

≤ t

(∫
Ut

|w|2 dx
)1/2(∫

Ut

|∇ψ|2 dx
)1/2

for all t ∈ (0, 1). By choice of t∗,

G′(t) =
d

dt

(
t2F (t)
)
≤ −t

∫
Ut

|w|2 dx < 0

for almost all t ∈ (0, t∗). Combining these inequalities, we get

tg′(t) = − tG′(t)

(G(t))2
≥
(∫

Ut

|∇ψ|2 dx
)−1

≥ c :=
1

‖∇ψ‖2

for almost all t ∈ (0, t∗). If we fix t1 ∈ (0, t∗), we therefore have g′(t) > ct−1 for
almost all t ∈ (0, t1]. Since G is absolutely continuous and positive on [ε, t∗) for all
ε ∈ (0, t∗), so is g. By the fundamental theorem of calculus for such functions (see
[22, Theorem 8.17]),

g(t1) ≥ g(t1) − g(ε) =

∫ t1

ε

g′(τ) dτ ≥ c

∫ t1

ε

1

τ
dτ = c(log t1 − log ε)

for all ε ∈ (0, t1]. Hence − log ε is bounded from above as ε → 0, which is a contra-
diction. This completes the proof of the theorem.

Remark 2.4. It was a consequence of Theorem 3.5 in [9] that for the Dirichlet
case,

λ1(Ω) = max
ϕ∈C(Ω)
ϕ≥0

(
ess-inf
t∈(0,1)

HΩ(Ut, ϕ)

)
= max

ϕ∈C(Ω)
ϕ≥0

⎛
⎝ ess-inf

U⊂Ω open
U∩Γ0=∅

HΩ(U,ϕ)

⎞
⎠ ,

where the maximum is achieved by ϕ := |∇ψ|/ψ. Theorem 2.3 shows that in fact
|∇ψ|/ψ is the unique maximizer.
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3. Proof of uniqueness. In this section we give a proof of the main uniqueness
result stated in Theorem 1.1. We start with a brief discussion of (1.1) in the case
where Ω is a ball. Assume that β ∈ (0,∞) is constant and that B is a ball of radius
R centered at the origin. We will denote the first eigenvalue of (1.1) on B by λ1(B)
and the corresponding eigenfunction by ψ∗. We choose ψ∗ ≥ 0 and normalize it so
that ‖ψ∗‖∞ = 1. Since B is a ball, the eigenfunction is radially symmetric; that is,
there exists a function v ∈ C1([0, R]) satisfying ψ∗(x) = v(|x|). Set

ϕ∗ :=
|∇ψ∗|
ψ∗ .

In fact, the eigenfunction is explicitly given in terms of Bessel functions by

(3.1) ψ∗(x) = c|x|−(N/2−1)JN/2−1

(√
λ1(B)|x|

)

for some normalizing constant c. Since ψ∗ is radially symmetric, it is constant on ∂Ω,
and hence by [9, Remark 3.2] we have ϕ∗ ∈ Mβ . Also by the radial symmetry of ψ∗,

g(|x|) := ϕ∗(x),

where x ∈ B. It is shown in [9, Lemma 4.1] that the function g : (0, R) → (0,∞) is
strictly increasing. Similar statements hold for Dirichlet boundary conditions, that
is, (1.2).

In what follows, we will deal only with pure Robin boundary conditions. The proof
for pure Dirichlet boundary conditions is very similar, with obvious modifications. The
principal difference is that Theorem 2.3 is used in place of Theorem 2.2.

Suppose that Ω is a bounded C2-domain for the problem (1.1), and let B be
the ball having the same measure as Ω. As in [6, 9], we define a function ϕ ∈ Mβ

by constructing a rearrangement of ϕ∗. Continuing with the notation of the previous
section, we consider the level sets Ut and St as defined by (2.3) and (2.4), respectively.
We will denote by Br the ball of radius r centered at the origin, and let r(t) be the
radius of the ball with the same measure as Ut, that is, so that |Br(t)| = |Ut|. Since
Ω and B have the same measure and Um = Ω, we have r(m) = R. Given t ∈ (m, 1]
we define

ϕ(x) := g(r(t))

for all x ∈ St. Since Ω is a disjoint union of the sets St, t ∈ (m, 1], the function
ϕ : Ω → (0,∞) is well defined. From [9, Lemma 4.2] we have the following result.

Lemma 3.1. The function ϕ constructed above lies in Mβ(Ω) and

(3.2) λ1(B) = HB(Br(t), ϕ
∗) ≤ HΩ(Ut, ϕ)

for all t ∈ (m, 1).

The next two lemmas will allow us to conclude that almost all level sets Ut are
concentric balls if λ1(Ω) = λ1(B). Theorem 2.2 will be essential for that.

Lemma 3.2. Suppose that Ω is a bounded C2-domain such that λ1(Ω) = λ1(B).
If we let ϕ denote the rearrangement of ϕ∗ = |∇ψ∗|/ψ∗ as defined above, then ϕ =
|∇ψ|/ψ, and HΩ(Ut, ϕ) = λ1(B) for almost all t ∈ (m, 1).
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Proof. If λ1(Ω) = λ1(B), then by Lemma 3.1, λ1(Ω) = λ1(B) ≤ HΩ(Ut, ϕ) for all
t ∈ (m, 1). Hence by Theorem 2.2, ϕ = |∇ψ|/ψ, and hence by Theorem 2.1,

(3.3) HΩ(Ut, ϕ) = λ1(Ω) = λ1(B)

for almost all t ∈ (m, 1).
The following lemma makes the link to the uniqueness of the ball in the geo-

metric isoperimetric inequality. Since it shows how the uniqueness in the geometric
isoperimetric inequality is used, we repeat the proof given in [9, Remark 4.3].

Lemma 3.3. Suppose Ut is a Lipschitz domain for some t ∈ (m, 1), and let ϕ be
the rearranged function as above. Then HΩ(Ut, ϕ) = λ1(B) if and only if Ut is a ball
and σ(∂eUt) = 0.

Proof. We know that λ1(B) = HB(Br(t), ϕ
∗) for all t ∈ (m, 1). Also, since by

construction the level sets of ϕ∗ and ϕ have the same measure,∫
Ut

|ϕ|2 dx =

∫
Br(t)

|ϕ∗|2 dx

for all t ∈ (m, 1] (see [20, section 1.2.3]). Hence, using the definition of HΩ and ϕ,

HΩ(Ut, ϕ) =
1

|Ut|

(∫
St

ϕdσ +

∫
∂eUt

β dσ −
∫
Ut

|ϕ|2 dx
)

=
1

|Br(t)|

(
g(r(t))σ(St) + βσ(∂eUt) −

∫
Br(t)

|ϕ∗|2 dx
)
.

If Ut is a ball with σ(∂eUt) = 0, then σ(St) = σ(∂Br(t)), and

HΩ(Ut, ϕ) =
1

|Br(t)|

(
g(r(t))σ(∂Br(t)) −

∫
Br(t)

|ϕ∗|2 dx
)

= HB(Br(t), ϕ
∗) = λ1(B).

Conversely, if HΩ(Ut, ϕ) = λ1(B), then for this t,

g(r(t))σ(St) + βσ(∂eUt) = g(r(t))σ(∂Br(t)).

Since t ∈ (m, 1) and 0 < g(r(t)) < β, this is only possible if∫
∂eUt

β dσ = 0

and σ(St) = σ(∂Br(t)). As β > 0 on ∂Ω by assumption, we conclude that σ(∂eUt) = 0.
Now since ∂Ut is the disjoint union of St and ∂eUt, if σ(∂eUt) = 0, then we get
σ(∂Ut) = σ(∂Br(t)). But we know that the ball is the unique minimizer of the
isoperimetric inequality, at least among Lipschitz domains (see [8, Theorem 10.2.1]).
Hence Ut = Br(t) + z for some z ∈ R

N .
The last ingredient we need in the proof of the main result is the following lemma,

which will allow us to conclude that if Ut is a ball for some t ∈ (m, 1), then all level
sets interior to Ut are concentric balls.

Lemma 3.4. Assume −Δu = λu in Ω for some λ > 0. Suppose that for some
t ≥ 0, the level set {x ∈ Ω : u(x) > t} = B(x0, r) for some x0 ∈ Ω and r > 0. If
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u ∈ C(B(x0, r)) and σ(∂eB(x0, r)) = 0, then u is radially symmetric with respect to
x0 in B(x0, r).

Proof. Set v(x) := u(x) − t. Then

−Δv = −Δu = λu = λ(u− t) + λt = λv + λt

in B(x0, r). Since u ∈ C(B(x0, r)) and σ(∂eB(x0, r)) = 0, we get u(x) = t for all
x ∈ ∂B(x0, r), so v = 0 on ∂B(x0, r). Hence if we set f(v) := λv + λt, then v is a
positive solution of the Dirichlet problem{−Δv = f(v) in B(x0, r),

v = 0 on ∂B(x0, r).

Clearly f(v) ≥ 0 if v ≥ 0, and by assumption, in B(x0, r), u > t, so v = u − t > 0.
Hence by a result of Gidas, Ni, and Nirenberg (see [14, Corollary 3.5]), v is radially
symmetric on B(x0, r) with respect to x0.

Remark 3.5. We could state Lemma 3.4 in greater generality. If the level set Ut

is Steiner symmetric (see [14, Definition 3.2]), then the solution u will have the same
symmetry. The proof is the same as the one we have given above, except that we
refer to [14, Corollary 3.4].

We are now in a position to prove the main uniqueness theorem stated in the
introduction.

Proof of Theorem 1.1. By Lemma 3.2, HΩ(Ut, ϕ) = λ1(B) for almost all t ∈
(m, 1), and so by Lemma 3.3, Ut is a ball for almost all t ∈ (m, 1). (Here we also
use the property that Ut is Lipschitz for almost all t as shown in [9, Lemma 2.3].)
For every such t, Lemma 3.3 also tells us that σ(∂eUt) = 0, and so Lemma 3.4
applies. Hence the eigenfunction ψ corresponding to λ1(Ω) is radially symmetric
inside Ut, and all interior level sets Uτ , τ ∈ (t, 1], are concentric balls. In particular,
for all t ∈ (m, 1], the level sets Ut are concentric balls, and so Ω =

⋃
t∈(m,1] Ut is a

ball.
The proof of equality in the case of Dirichlet boundary conditions in Theorem 1.2

is very similar to the one given above. We note that ψ ∈ C(Ω) if and only if Ω is
Wiener (Dirichlet) regular (see [2, Corollary 2.5]). Hence in that case the level surfaces
St are contained in Ω for all t > 0, and therefore the assertion of Theorem 2.3 is valid
as is Lemma 3.3.

4. An alternative approach to uniqueness. In this section we show that if
one of the level sets of the first eigenfunction of (1.1) is a ball, then Ω is already a ball.
Combining that result with Lemma 3.3, we get an alternative proof for Theorem 1.1.
Throughout this section we use the same notation as in the previous section.

Proposition 4.1. Suppose that Ut ⊂ Ω is a ball for some t with σ(∂eUt) = 0 and
that B is a ball concentric to Ut. If x0 ∈ ∂Ω ∩ ∂B is such that the outward pointing
unit normals to B and Ω coincide at x0, then λ1(Ω) = λ1(B).

Proof. Suppose that Ut is a ball with σ(∂eUt) = 0. Without loss of generality,
we can assume that it is centered at x = 0. By Lemma 3.4 the function ψ is radially
symmetric in Ut. Similarly to (3.1), ψ is therefore given by

ψ(x) = ψ̃(x) := c|x|−(N/2−1)JN/2−1

(√
λ1(Ω)|x|

)
in Ut for some normalizing constant c > 0. By the unique continuation property of
solutions to elliptic equations (see [4]), ψ(x) = ψ̃(x) for all x ∈ Ω. Moreover,

−Δψ̃ = λ1(Ω)ψ̃



1200 DANIEL DANERS AND JAMES KENNEDY

Ω

Ut

B2

B1

Fig. 4.1. The balls B1 and B2.

on R
N . Now let B be a ball concentric to Ut and x0 ∈ ∂Ω ∩ ∂B such that the unit

normals to B and Ω coincide at x0. Note that ψ(x0) > 0, so, if νB is the outer unit
normal to B, then by the boundary conditions in (1.1),

β = − 1

ψ(x0)

∂ψ

∂ν
(x0) = − 1

ψ̃(x0)

∂ψ̃

∂νB
(x0).

Since ψ̃ is radially symmetric, ψ̃ satisfies the eigenvalue problem⎧⎨
⎩

−Δu = λ1(Ω)u in B,

∂u

∂νB
+ βu = 0 on ∂B.

As ψ > 0 and ψ = ψ̃ on Ω and x0 ∈ ∂Ω ∩ ∂B, it follows that ψ̃ > 0 on B by the
radial symmetry. As λ1(B) is the only eigenvalue with a positive eigenfunction, we
get λ1(Ω) = λ1(B).

From the above we get as a corollary that if Ut is a ball for some t, then Ω is
already a ball.

Theorem 4.2. Suppose that Ut ⊂ Ω is a ball for some t with σ(∂eUt) = 0. Then
Ω is a ball.

Proof. Suppose that Ut ⊂ Ω is a ball with σ(∂eUt) = 0 for some t. Assume
without loss of generality that its center is at x = 0. Denote by Br the open ball with
radius r. We set

r1 := sup{r > 0: Br ⊂ Ω} and r2 := inf{r > 0: Ω ⊂ Br}

and let Bi := Bri for i = 1, 2. Then

(4.1) Ut ⊂ B1 ⊂ Ω ⊂ B2

as shown in Figure 4.1. Since Ω is smooth, ∂Bi is tangential to ∂Ω at some point on
∂Ω ∩ ∂Bi, so the outward pointing unit normals to Bi and Ω coincide at that point.
Now Proposition 4.1 implies that λ1(B1) = λ1(Ω) = λ1(B2). But λ1(Br) is strictly
decreasing in r, so B1 = B2. By (4.1) we conclude that Ω is a ball.
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Remark 4.3. The above also works for Dirichlet boundary conditions. We need
only assume that Ω ⊂ R

N is a bounded open connected set and conclude that Ω is
a ball up to a set of capacity zero. To see this, suppose that Ut is a ball for some
t > 0. As before, we assume its center is x = 0. We know that the eigenfunction ψ
is discontinuous only at the irregular points, so Ut ∩ ∂Ω consists of irregular points
if nonempty. The set of irregular points has capacity zero (see [19, page 232]), so in
particular it has surface measure zero on ∂Ut. Since Ut is a ball it follows that ψ is
continuous on U t, so by the arguments in the proof of Lemma 3.4 the eigenfunction
ψ is radially symmetric in Ut. Then as in the proof of Proposition 4.1, ψ = ψ̃ on Ω,
and therefore ψ is continuous on Ω. Now let B be the smallest ball with center x = 0
containing Ω. Then since ψ > 0 in Ω and ψ̃ is radially symmetric, ψ̃ > 0 on B. Hence
λ1(Ω) = λ1(B), and thus by [3, Theorem 3.1] the set Ω coincides with the ball B up
to a set of capacity zero.

We can now give an alternative proof of Theorem 1.1.

Alternative proof of Theorem 1.1. Suppose that λ1(Ω) = λ1(B), where B is a ball
of the same measure as Ω. By Lemma 3.3 there is a level set Ut, which is a ball, and
also U t ⊂ Ω. Then Theorem 4.2 implies that Ω is a ball as claimed.

The above proof also applies in the case of Dirichlet boundary conditions, provided
ψ is continuous on Ω. The reason that we use continuity is that otherwise we do
not know whether Lemma 3.2 applies. There is, however, another proof based on
symmetrization that works for arbitrary domains.

Proof of Theorem 1.2. Let Ω be a bounded domain and ψ the first eigenvalue of
(1.2) normalized such that ψ(x) > 0 for all x ∈ Ω and ‖∇ψ‖2 = 1. We know that
ψ ∈ H1

0 (Ω), so if we extend ψ by zero outside Ω, we may consider ψ as an element
of H1(RN ). Denote by ψ∗ the spherical symmetric rearrangement of ψ (see [7, 21]).
By the results in [7] we have ψ∗ ∈ H1(RN ) with ‖ψ∗‖2 = 1 and ‖∇ψ∗‖2 ≤ ‖∇ψ‖2.
By construction, ψ∗ has support in the closure of a ball B of the same measure as Ω.
Here we use that a function in H1

0 (Ω) is zero on Ωc almost everywhere. As B has a
smooth boundary, ψ∗ ∈ H1

0 (B), and thus by the variational characterization of the
first eigenvalue,

λ1(B) ≤ ‖∇ψ∗‖2
2 ≤ ‖∇ψ‖2

2 = λ1(Ω).

If λ1(B) = λ1(Ω), then from the above, ‖∇ψ∗‖2
2 = ‖∇ψ‖2

2. Also note that ∇ψ = 0
almost everywhere in Ω by Remark 5.2(b) below. Hence [7, Theorem 1.1] implies that
ψ = ψ∗ up to translation almost everywhere. Therefore, possibly after a translation,
Ω = B up to a set of measure zero. We claim that Ω ⊂ B. If not, then there exists a
point x0 ∈ Ω∩Bc. This is not possible since Ω is open, and therefore Ω∩Bc has non-
zero measure. Hence Ω ⊂ B. But then λ1(Ω) = λ1(B) if and only if cap(B \ Ω) = 0
by [3, Theorem 3.1], completing the proof of Theorem 1.2.

5. Operators other than the Laplace operator. For the remainder of the
paper, we will consider the eigenvalue problem

(5.1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−div
(
A(x)∇u(x)

)
= λu in Ω,

u = 0 on Γ0,

∂u

∂νA
+ βu = 0 on Γ1,
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where Ω ⊂ R
N is an open set, Γ0 a closed subset of ∂Ω and Γ1 = ∂Ω \ Γ0 Lipschitz,

and

∂u

∂νA
:=
(
A(x)∇u(x)

)
· ν

is the conormal derivative of u associated with the coefficient matrix A. Further
assume that A ∈ L∞(Ω,RN×N ) is such that A(x) is symmetric and uniformly positive
definite, that is, there exists α > 0 such that

0 < α ≤ inf
|ξ|=1

ξTA(x)ξ

for almost all x ∈ Ω. By replacing A with α−1A, we can assume without loss of
generality that α = 1, that is,

(5.2) 1 ≤ inf
|ξ|=1

ξTA(x)ξ

for almost all x ∈ Ω. Finally, assume that β ∈ L∞(Γ1) is nonnegative. Note that here
we allow β = 0, that is, Neumann boundary conditions. The form associated with
(5.1) is given by

a(u, v) =

∫
Ω

(
A(x)∇u(x)

)
· ∇v(x) dx +

∫
Γ1

β(x)u(x)v(x) dσ.

It is well known that the above problem has a first eigenvalue, which is given by the
variational characterization

μ1 = inf
u∈V
u �=0

a(u, u)

‖u‖2
2

,

where V is the closure of C∞
c (Ω ∪ Γ1) in H1(Ω). The eigenvalue is simple and the

corresponding eigenfunctions the only minimizers for the above quotient. We want to
compare this eigenvalue to the first eigenvalue of

(5.3)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−Δu = λu in Ω,

u = 0 on Γ0,

∂u

∂ν
+ βu = 0 on Γ1,

that is, the case where A(x) = I. The corresponding form is

b(u, v) :=

∫
Ω

∇u(x) · ∇v(x) dx +

∫
Γ1

β(x)u(x)v(x) dσ.

Let λ1 be the first eigenvalue of (5.3) and μ1 the first eigenvalue of (5.1). By (5.2),

b(v, v)

‖v‖2
2

≤ a(v, v)

‖v‖2
2

for all v ∈ V , and thus by the variational characterization of λ1 and μ1,

(5.4) λ1 ≤ μ1.
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We now characterize those matrices A for which the first eigenvalues of (5.1) and (5.3)
are equal.

Theorem 5.1. Suppose Ω ⊂ R
N is a bounded domain. Let λ1 and ψ be the first

eigenvalue and eigenfunction of (5.3), and let μ1 and ϕ be the first eigenvalue and
eigenfunction of (5.1). Then the following assertions are equivalent:

(1) λ1 = μ1;
(2) λ1 = μ1 and ϕ = cψ for some c ∈ R;
(3) A(x)∇ψ(x) = ∇ψ(x) almost everywhere in Ω.

Proof. Throughout the proof we normalize the eigenfunctions such that they are
positive and that ‖ϕ‖2 = ‖ψ‖2 = 1. Suppose that λ1 = μ1. Then by the variational
characterization of the eigenvalues and (5.2),

λ1 ≤ b(ϕ,ϕ) ≤ a(ϕ,ϕ) = μ1 = λ1.

Hence λ1 = b(ϕ,ϕ), and thus by the simplicity and normalization of the eigenvalue
λ1, it follows that ϕ = ψ. Hence (1) implies (2).

If (2) holds, then by the variational characterization of λ1 and μ1,

b(ψ,ψ) = λ1 = μ1 = a(ψ,ψ)

or equivalently, using the definitions of the form a(· , ·) and b(· , ·),
∫

Ω

(
A(x)∇ψ(x) −∇ψ(x)

)
· ∇ψ(x) dx = 0.

Since A(x)− I is positive semidefinite by (5.2), it follows that the above integrand is
nonnegative, and thus

(
A∇ψ −∇ψ

)
· ∇ψ = 0

almost everywhere. Since A(x) − I is positive semidefinite and symmetric almost
everywhere, we conclude that

A∇ψ −∇ψ = 0

almost everywhere in Ω, proving that (2) implies (3).

To prove that (3) implies (1), we again use the variational characterization of the
first eigenvalue. By (3) we have

b(ψ,ψ) − a(ψ,ψ) = 0,

so by (5.4) and the variational characterization of the eigenvalues,

μ1 ≥ λ1 = b(ψ,ψ) = b(ψ,ψ) − a(ψ,ψ) + a(ψ,ψ) = a(ψ,ψ) ≥ μ1,

and thus λ1 = μ1 as claimed.

Remark 5.2. (a) If we have pure Neumann boundary conditions, the above the-
orem is, of course, trivial since then λ1 = μ1 = 0 and the eigenfunctions ϕ = ψ are
constant. Hence every matrix A satisfies the conditions. In what follows we therefore
assume that λ1 > 0, and thus the eigenfunction is not constant.
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(b) We also note that ψ ∈ C∞(Ω) always, so ∇ψ ∈ C∞(Ω) as well. There
is even a stronger statement, namely, that ψ is real analytic in Ω always (see [10,
section V.4.2]). Moreover, if λ1 > 0, then ψ and also ∇ψ(x) are nonconstant. By the
real analyticity, ∇ψ = 0 almost everywhere (see [13, section 3.1.24]).

Next we characterize those matrices A for which (3) of the above theorem is
satisfied. For that purpose we look at a domain Ω ⊂ R

2 in the plane and let ψ
denote the first eigenvalue of (5.3). Since ∇ψ = 0 almost everywhere as shown
above, A0(x) := A(x) − I must have rank strictly less than two. Note that the set of
symmetric positive semidefinite (2 × 2)-matrices having a given nonzero vector (a, b)
in their null space are precisely the matrices

t

[
b2 −ab
−ab a2

]
, t ≥ 0.

Hence, as ∇ψ = 0 almost everywhere,

A0(x)∇ψ(x) = 0

if and only if

A0(x) := m(x)

⎡
⎢⎢⎢⎢⎣

(
∂ψ

∂y

)2

−∂ψ

∂x

∂ψ

∂y

−∂ψ

∂x

∂ψ

∂y

(
∂ψ

∂x

)2

⎤
⎥⎥⎥⎥⎦

almost everywhere in Ω for some measurable function m : Ω → [0,∞). If we set
A(x) := I(x) + A0(x), then A(x) satisfies the condition in part (3) of Theorem 5.1.
Hence there are many nontrivial operators having the same eigenvalue as the Laplace
operator on Ω.

Remark 5.3. We can generalize the above to R
N . We let M denote the set of

real symmetric N ×N matrices. Given a nonzero vector ξ ∈ R
N , we are interested in

the kernel of the map S : M → R given by A → ξTAξ. Now dimM = (N + 1)N/2,
and therefore

dim(kerS) =
N(N + 1)

2
− 1 =

N(N − 1)

2
.

Let 1 ≤ k < � ≤ N and ξ = (ξ1, . . . , ξN ). If ξk and ξ� are not both zero, define the
matrices Ak� with entries akk = ξ2

j , ajj = ξ2
k, and akl = alk = −ξkξ�, and aij = 0

otherwise. If ξk = ξ� = 0, let akk = a�� = 1 and akl = alk = −1, and aij = 0
otherwise. Then the set of matrices Ak�, 1 ≤ k < � ≤ N , is a linearly independent
subset of kerS. Since there are precisely N(N −1)/2 such matrices, they form a basis
of kerS.

Note that the matrices Ak� are positive semidefinite, and by construction Ak�ξ =
0. It follows that every positive semidefinite matrix A with Aξ = 0 can be written in
the form

A =
∑

1≤k<�≤N

mk�Ak�

for mk� ≥ 0.
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We now use this to characterize the operators for which λ1 = μ1. To do so, we
set ξ = ∇ψ(x) and look at the corresponding set of matrices Ak�(x) as constructed
above. This can be done since ∇ψ = 0 almost everywhere in Ω as shown in Remark 5.2.
Hence, by Theorem 5.1 we have λ1 = μ1 if and only if there exist measurable functions
mk� : Ω → [0,∞) such that

A(x) = I +
∑

1≤k<�≤N

mk�(x)Ak�(x)

for almost all x ∈ Ω.
We next apply the above to the special case where Ω is a ball, complementing a

result in [16, section 3], giving a complete characterization of all symmetric operators
in divergence form for Robin and Dirichlet problems having the same first eigenvalue
as the Laplacian with the corresponding boundary conditions on a domain of the same
measure.

Theorem 5.4. Suppose that β ∈ (0,∞) is constant and that μ1 is the first
eigenvalue of

(5.5)

⎧⎪⎨
⎪⎩

−div
(
A∇u
)

= λu in Ω,

∂u

∂νA
+ βu = 0 on ∂Ω,

where Ω is a domain of class C2 and A satisfies (5.2). Let B be a ball of the same
measure as Ω. Finally, denote the first eigenvalue of (5.5) by μ1(Ω) and a first
eigenvalue of λ1(B) by ψ∗. Then μ1(Ω) = λ1(B) if and only if Ω = B + z for some
z ∈ R

N and A(x− z)∇ψ∗(x) = ∇ψ∗(x) almost everywhere.
Proof. First suppose that λ1(B) = μ1(Ω). By Theorem 1.1 and (5.4) we have

λ1(B) ≤ λ1(Ω) ≤ μ1(Ω) = λ1(B),

implying that λ1(Ω) = μ1(Ω) = λ1(B). From Theorem 1.1 we conclude that Ω = B+z
for some z ∈ R

n, and then Theorem 5.1 implies that A(x− z)∇ψ∗(x) = ψ∗(x) almost
everywhere in B. To prove the converse we again use Theorem 5.1 to conclude that
λ1(B) = μ1(B) as claimed.

Remark 5.5. Statements similar to the ones in Theorem 5.4 hold for Dirichlet
boundary conditions. The only difference is that we can assume that Ω is an arbitrary
bounded domain. Also a rather precise characterization of those operators for which
μ1(Ω) = λ1(B) follows from Remark 5.3.

Remark 5.6. We could look at even more general operators and characterize those
for which μ1(Ω) = λ1(B). We could look at⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−div
(
A(x)∇u(x)

)
+ b(x)u = λu in Ω,

u = 0 on Γ0,

∂u

∂νA
+ b0u = 0 on Γ1,

with b ∈ L∞(Ω) nonnegative and b0 ∈ L∞(∂Ω) such that b0 ≥ β > 0 (β ∈ (0,∞)
constant). If μ1 denotes the first eigenvalue of the above problem, then μ1(Ω) =
λ1(Ω) implies that b = 0 and b0 = β almost everywhere. Clearly μ1(Ω) ≥ λ1(Ω)
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by the variational characterization. Suppose now that b > 0 or b0 > β on a set of
positive measure, and let ϕ denote the first eigenvalue of the above problem. The
form corresponding to the above is

a1(u, v) :=

∫
Ω

(
A∇u
)
· ∇v + buv dx +

∫
Γ1

b0uv dσ.

By the variational characterization

λ1(Ω) ≤ b(ϕ,ϕ)

‖ϕ‖2
2

≤ a(ϕ,ϕ)

‖ϕ‖2
2

<
a1(ϕ,ϕ)

‖ϕ‖2
2

= μ1(Ω)

as claimed. Here we use that ϕ > 0 on Ω ∪ Γ1.

Acknowledgment. We thank E. N. Dancer for helpful discussions on section 5.
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DIFFUSION MEDIATED TRANSPORT IN MULTIPLE STATE
SYSTEMS∗

STUART HASTINGS† , DAVID KINDERLEHRER‡ , AND J. BRYCE MCLEOD†

Abstract. Intracellular transport in eukarya is attributed to motor proteins that transduce
chemical energy into directed mechanical motion. Nanoscale motors like kinesins tow organelles and
other cargo on microtubules or filaments, have a role separating the mitotic spindle during the cell
cycle, and perform many other functions. The simplest description gives rise to a weakly coupled
system of evolution equations. The transport process, to the mind’s eye, is analogous to a biased
coin toss. We describe how this intuition may be confirmed by a careful analysis of the cooperative
effect among the conformational changes and potentials present in the equations.

Key words. Fokker–Planck, weakly coupled systems, molecular motor, transport
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1. Introduction. Motion in small live systems has many challenges, as famously
discussed in Purcell [25]. Prominent environmental conditions are high viscosity and
warmth. Not only is it difficult to move, but maintaining a course is rendered diffi-
cult by immersion in a highly fluctuating bath. Intracellular transport in eukarya is
attributed to motor proteins that transduce chemical energy into directed mechanical
motion. Proteins like kinesin function as nanoscale motors, towing organelles and
other cargo on microtubules or filaments, have a role separating the mitotic spindle
during the cell cycle, and perform many other functions. Because of the presence of
significant diffusion, they are sometimes referred to as Brownian motors. Since a spe-
cific type tends to move in a single direction, for example, anterograde or retrograde
to the cell periphery, these proteins are sometimes referred to as molecular ratchets.
How do they overcome the issues posed by Purcell to provide the transport necessary
for the activities of the cell?

There are many descriptions of the function of these proteins, or aspects of
their thermodynamical behavior, beginning with Ajdari and Prost [1], Astumian [2],
Doering, Ermentrout, and Oster [6], and Peskin, Ermentrout, and Oster [23]. For more
recent work, note the review paper [26] and [27, Chapter 8]. Additional description
is given in [8], [13], [17], [18], [21], [28]. The descriptions consist either in discus-
sions of stochastic differential equations, which give rise to the distribution functions
via the Chapman–Kolmogorov equation, or of distribution functions directly. In [5],
we have suggested a dissipation principle approach for motor proteins like conven-
tional kinesin, motivated by Howard [12]. The dissipation principle, which involves a
Kantorovich–Wasserstein metric, identifies the environment of the system and gives
rise to an implicit scheme from which evolution equations follow; see [3], [14], [15],
[16], [19], [20], and more generally [29]. Most of these formulations consist, in the end,
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of Fokker–Planck-type equations coupled via conformational change factors, typically
known as weakly coupled parabolic systems. Our own is also distinguished because it
has natural boundary conditions. To investigate transport properties, our attention
is directed toward the stationary solution of such a system, as we explain below.

A special collaboration among the potentials and the conformational changes in
the system must be present for transport to occur. To investigate this, we introduce
the n-state system. Suppose that ρ1, . . . , ρn are partial probability densities defined
on the unit interval Ω = (0, 1) satisfying

d

dx

(
σ
dρi
dx

+ ψ′
iρi

)
+

∑
j=1,...,n

aijρj = 0 in Ω,

σ
dρi
dx

+ ψ′
iρi = 0 on ∂Ω, i = 1, . . . n,(1.1)

ρi � 0 in Ω,

∫
Ω

(ρ1 + · · · + ρn)dx = 1.

Here σ > 0, ψ1, . . . , ψn are smooth nonnegative functions of period 1/N , and A = (aij)
is a smooth rate matrix of period 1/N , that is,

(1.2)
aii � 0, aij � 0 for i �= j,∑
i=1,...,n aij = 0, j = 1, . . . , n.

We shall also have occasion to enforce a nondegeneracy condition,

(1.3) aij �≡ 0 in Ω, i, j = 1, . . . , n.

The conditions (1.2) mean that P = 1 + τA, for τ > 0 small enough, is a probability
matrix. The condition (1.3), we shall see, ensures that none of the components of ρ
are identically zero passive placeholders in the system. In this context, the potentials
ψ1, . . . , ψn describe interactions among the states, the elements of the protein’s struc-
ture, and the microtubule track, and the matrix A describes interchange of activity
among the states. The system (1.1) are the stationary equations of the evolution
system

∂ρi
∂t

=
∂

∂x

(
σ
∂ρi
∂x

+ ψ′
iρi

)
+

∑
j=1,...,n

aijρj in Ω, t > 0,

σ
∂ρi
∂x

+ ψ′
iρi = 0 on ∂Ω, t > 0, i = 1, . . . n,(1.4)

ρi � 0 in Ω,

∫
Ω

(ρ1 + · · · + ρn)dx = 1, t > 0.

Before proceeding further, let us discuss what we intend by transport. In a
chemical or conformational change process, a reaction coordinate (or coordinates)
must be specified. This is the independent variable. In a mechanical system, it is
usually evident what this coordinate must be. In our situation, even though both
conformational change and mechanical effects are present, it is natural to specify
the distance along the motor track, the microtubule, here the interval Ω, as the
independent variable. We interpret the migration of density to one end of the track
during the evolution as evidence of transport.
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We shall show in section 4 that the stationary solution of the system (1.1), which
we denote by ρ�, is globally stable: given any solution ρ(x, t) of (1.4),

(1.5) ρ(x, t) → ρ�(x) as t → ∞.

So the migration of density we referred to previously may be ascertained by inspection
of ρ�. In what follows, we simply set ρ = ρ�.

If the preponderance of mass of ρ is distributed at one end of the track, our domain
Ω, then transport is present. Our main result, stated precisely later in section 3, is
that with suitable potentials ψ1, . . . , ψn and with favorable coupling between them
and the rate matrix A, there are constants K and M , independent of σ, such that

(1.6)

n∑
i=1

ρi

(
x +

1

N

)
� Ke−

M
σ

n∑
i=1

ρi(x), x ∈ Ω, x < 1 − 1

N
,

for sufficiently small σ > 0. So from one period to the next, total mass decays
exponentially as in Bernoulli trials with a biased coin.

In summary, transport results from functional relationships in the system (1.1)
or (1.4). The actual proof is technical, as most proofs are these days, and a detailed
explanation of the conditions we impose is given after Theorem 3.2, when the notation
has been introduced. Here we briefly consider the main elements of our thinking. We
also refer to [10] for a more extended discussion.

To favor transport, we wish to avoid circumstances that permit decoupling in
(1.1), for example,

Aρ = 0, where ρ = (ρ1, . . . , ρn),

since in this case the solution vector is periodic. Such circumstances may be related
to various types of detailed balance conditions. In detailed balance, we would find
that

aijρj = ajiρi for all i, j = 1, . . . , n,

implying that Aρ = 0. For example, if it is possible to find a solution ρ of (1.1) that
minimizes the free energy of the system

F (η) =
∑

i=1···n

∫
Ω

{
ψiηi + σηi log ηi

}
dx,

then Aρ = 0.
But avoiding these situations is not nearly sufficient. First we require that the

potentials ψi have some asymmetry property. Roughly speaking, to favor transport
to the left, toward x = 0, a period interval must have some subinterval where all the
potentials ψj are increasing. In addition every point must have a neighborhood where
at least one ψi is increasing. Some coupling among the n states must take place.

Now we explain the nature of the coupling we impose, the properties of the
matrix A. As mentioned above, in any neighborhood in Ω, at least one ψi should
be increasing to promote transport toward x = 0. Density tends to accumulate near
the minima of the potentials, which correspond to attachment sites of the motor to
the microtubule and its availability for conformational change. This typically would
be where the matrix A is supported. In a neighborhood of such a minimum, states
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which are not favored for left transport should have the opportunity to switch to state
i, so we impose aij > 0 for all of these states. The weaker assumption, insisting only
that the state associated with potential achieving the minimum have this switching
opportunity, is insufficient. This is a type of ergodic hypothesis saying that there must
be mixing between at least one potential which transports left and all the ones which
may not. Our hypothesis is not optimal, but some condition is necessary. One may
consider, for example, simply adding new states to the system which are uncoupled
to the original states. In fact, it is possible to construct situations where there is
actually transport to the right by inauspicious choice of the supports of the aij , as we
show in section 5.

Here we consider only (1.1), although many other and more complex situations are
possible. One example is a system where there are many conformational changes, not
all related to movement. For example, one may consider the system whose stationary
state is

d

dx

(
σ
dρi
dx

+ ψ′
iρi

)
+

∑
j=1,...,n

aijρj = 0 in Ω, i = 1, . . .m,

∑
j=1,...,n

aijρj = 0 in Ω, i = m + 1, . . . n,(1.7)

σ
dρi
dx

+ ψ′
iρi = 0 on ∂Ω, i = 1, . . .m,

ρi � 0 in Ω,

∫
Ω

(ρ1 + · · · + ρn)dx = 1.

One such example is in [10]. We leave additional such explorations to the in-
terested reader. In Chipot, Hastings, and Kinderlehrer [4] (cf. also [9]), the two-
component system was analyzed. As well as being valid for an arbitrary number of
active components, our proof here is based on a completely different and more widely
applicable approach.

2. Existence. There are several ways to approach the existence question for
(1.1). In [4], we gave existence results based on the Schauder fixed point theorem
and a second proof based on an ordinary differential equations shooting method. The
Schauder proof extends to the current situation, and to higher dimensions, but the
shooting method was limited to the two-state case. Here we offer a new ordinary
differential equations method proof which is of interest because it separates existence
from uniqueness and positivity, showing that existence is a purely algebraic property
depending only on the second line in (1.2),

(2.1)
∑

i=1,...,n

aij = 0, j = 1, . . . , n,

while positivity and uniqueness rely on the more geometric nature of the inequalities.
We shall prove Theorem 2.1 below, followed by a brief discussion of a stronger result
whose proof is essentially the same. Recall that Ω = (0, 1).

Theorem 2.1. Assume that ψi, aij ∈ C2(Ω), i, j = 1, . . . , n, and that (2.1) holds.
Then there exists a (nontrivial) solution ρ = (ρ1, . . . , ρn) to the equations and bound-
ary conditions in (1.1). Assume furthermore that (1.2) and (1.3) hold. Then ρ is
unique and

ρi(x) > 0 in Ω and ρi ∈ C2(Ω), i = 1, . . . , n.
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Proof. Introduce

φi = σ
dρi
dx

+ ψ′
iρi in Ω, i = 1, . . . , n.

Our system may be written as the system of 2n ordinary differential equations, where
(2.1) holds:

(2.2)
σ
dρi
dx

=φi − ψ′
iρi, i = 1, . . . , n,

dφi

dx
=−

∑
j=1,...,n aijρj , i = 1, . . . , n.

Let Φ denote the 2n × 2n fundamental solution matrix of (2.2) with Φ(0) = 1.
Let Ψ be the 2n× n matrix consisting of the first n columns of Φ. Then

Ψ =

(
R
S

)
,

where R and S are n× n matrix functions with R(0) = 1 and S(0) = 0. We wish to
obtain a solution (

ρ
φ

)
= Φc

such that φ(0) = φ(1) = 0. To have φ(0) = 0, we need the last n components of c to
be zero, so (

ρ
φ

)
= Ψd,

where d is the vector consisting of the first n components of c. We then need the last
n components of Ψ(1)d to be zero, namely,

(2.3) S(1)d = 0.

Now in this setup, we have φi(0) = 0, i = 1, . . . , n, for each column of S and from
(2.1),

∑
i=1,...,n

dφi

dx
(x) = 0, x ∈ Ω,

whence ∑
i=1,...,n

φi(x) = 0, x ∈ Ω.

But this simply means that for each j∑
i=1,...,n

Sij(x) = 0,

so the sum of the rows of S is zero for every x ∈ Ω, i.e., det S(x) = 0, and so S is
singular. Hence we can find a (nontrivial) solution to (2.3).
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Now we assume (1.2) and (1.3). If the solution is positive, it is the unique solution.
This follows a standard argument. Suppose that ρ is a positive solution and that ρ∗

is a second solution. Then ρ+μρ∗ is a solution for any constant μ and ρ+μρ∗ > 0 in
Ω for sufficiently small |μ|. Increase |μ| until we reach the first value for which some
ρi has a zero, say at x0 ∈ Ω. For this value of i we have that for f = ρ + μρ∗, fi has
a minimum at x0 and

− d

dx

(
σ
dfi
dx

+ ψ′
ifi

)
− aiifi =

∑
j=1,...,n

j �=i

aijfj � 0,(2.4)

σ
dfi
dx

+ ψ′
ifi = 0.(2.5)

By an elementary maximum principle [24] (cf. also [4]), we have that fi ≡ 0.
We now claim that f ≡ 0. Choose any fj and assume that it does not vanish

identically. Using the maximum principle as before, fj > 0. Now choose a point x0

such that aij(x0) > 0. Substituting onto (2.4) we now have a contradiction because
fi ≡ 0. Thus there is at most one solution satisfying (1.1).

It now remains to show that there is a positive solution. We employ a continu-
ation argument. Note that there is a particular case where ψ′

i(x) ≡ 0 for all i and
aii(x) = 1 − n, and aij(x) = 1 for j �= i. The solution in this case is ρi(x) = 1

n , with
our normalization in (1.1). For the moment, it is convenient to use a different nor-
malization in terms of the vector d found above: choose the unique d = (d1, . . . , dn)T

satisfying maxi di = 1.
For the special case above with

ψ′
i = 0, aii = 1 − n, and aij = 1, i �= j,

we find that d = (1, . . . , 1)T . To abbreviate the system in vector notation, let ψ′
0 and

ψ′ be the diagonal matrices of potentials ψ′
i = 0 and ψ′

i, respectively, and let A0 and
A denote the matrices of lower order coefficients. For each λ, 0 � λ � 1, we solve the
problem

(2.6)
σ
d2ρ

dx2
+

d

dx
((λψ′ + (1 − λ)ψ′

0)ρ) + (λA + (1 − λ)A0)ρ= 0 in Ω,

σ
dρ

dx
+ (λψ′ + (1 − λ)ψ′

0)ρ= 0 at x = 0, 1.

For λ = 0, (2.6) has a unique solution satisfying maxi ρi(0) = 1, and this solution
is positive. As long as the solution is positive, the argument given above shows that
it is unique. As we increase λ from 0, the solution is continuous as a function of λ,
since the vector d will be continuous as long as it is unique.

Let Λ denote the subset of λ ∈ [0, 1] for which there is a positive solution of (2.6).
To show that Λ ⊂ [0, 1] is open, consider λ0 ∈ Λ and a sequence of points in Λc, the
complement of Λ, convergent to λ0. For each of these there is a nonpositive solution
of (2.6), and we may assume that the initial conditions d are bounded. Hence a
subsequence converges to the initial condition for a nonpositive solution with λ = λ0,
which contradicts the uniqueness of the positive solution.

To show Λ is closed, again suppose the contrary and that λ̂ is a limit point of
Λ not in Λ. Now some component ρ̂i must have a zero, and ρ̂i � 0 in Ω. Then by
the maximum principle used above, ρ̂i ≡ 0. We now repeat the argument above to
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conclude that ρ̂j ≡ 0 in Ω for all j = 1, . . . , n. But this is impossible because we have
imposed the condition that maxi ρ̂i(0) = 1. This implies that Λ is open, so Λ = [0, 1].

Renormalizing to obtain total mass 1 completes the proof.
Condition (1.3) is more restrictive than necessary for uniqueness and positivity

of the solution. For an improved result, recall that Pτ = 1 + τA, τ > 0 small,
is a probability matrix when (1.2) is assumed. A probability matrix P is ergodic
if some power P k has all positive entries. In this case it has an eigenvector with
eigenvalue 1 whose entries are positive, corresponding to a unique stationary state
of the Markov chain it determines and other well-known properties from the Perron–
Frobenius theory. Such matrices are often called irreducible and sometimes even
“regular.” We may now state an improvement of Theorem 2.1

Theorem 2.2. In Theorem 2.1 replace condition (1.3) with∫ 1

0

Pτ (x)dx is ergodic.

Then the conclusions of Theorem 2.1 hold.
We outline the changes which must be made to prove this result. The previous

proof relied on showing that if for some i, ρi ≡ 0, then ρj ≡ 0 for every j. This
followed from the maximum principle and the feature of the equations that each
constituent was nontrivially represented near at least one point x0 ∈ Ω. But suppose
that aij ≡ 0 for some j. In this case we could have ρj > 0, and this has no effect
on ρi.

Under the assumption that
∫ 1

0
Pτ (x)dx is ergodic, some nondiagonal element in

the ith row of A is not identically zero. This means that there is a π(i) �= i such that
ρi ≡ 0 implies that ρπ(i) ≡ 0. We may repeat this argument since ergodicity implies
that the permutation π can be chosen so that πm(i) cycles around the entire set of
integers 1, . . . , n.

This completes the proof of existence of a unique solution of the stationary system
with maxi di = 1. This solution is also positive. Renormalizing to obtain total mass
1 completes the proof.

3. Transport. As we observed in the existence proof of the last section, the
condition (1.1) implies that

∑
i=1,...,n

d

dx

(
σ
dρi
dx

+ ψ′
iρi

)
= 0,

so that ∑
i=1,...,n

(
σ
dρi
dx

+ ψ′
iρi

)
= γ = const.

In the case of interest of kinesin-type models, the boundary condition of (1.1) implies
that γ = 0. In other words,

(3.1)
∑

i=1,...,n

(
σ
dρi
dx

+ ψ′
iρi

)
= 0.

A simulation of typical behavior in a two-species system is given in Figure 3.1.
Theorem 3.1. Suppose that ρ is a positive solution of (1.1), where the coefficients

aij , i, j = 1, . . . , n, and the ψi, i = 1, . . . , n, are smooth and 1/N -periodic in Ω.
Suppose that (1.2) holds and also that the following conditions are satisfied:
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Fig. 3.1. Transport in a two-species system with period 16. The abscissa shows the total
density ρ1 + ρ2. In this computation, ψ2 is a one-half period translate of ψ1, and the support of the
aij , i, j = 1, 2, is a neighborhood of the minima of the ψi, i = 1, 2. The simulation was executed with
a semi-implicit scheme. Additional details are given at the conclusion of section 5.

(i) Each ψ′
i has only a finite number of zeros in Ω.

(ii) There is some interval in which ψ′
i > 0 for all i = 1, . . . , n.

(iii) In any interval in which no ψ′
i vanishes, ψ′

j > 0 in this interval for at least
one j.

(iv) If I, |I| < 1/N, is an interval in which ψ′
i > 0 for i = 1, . . . , p and ψ′

i < 0 for
i = p + 1, . . . , n, and a is a zero of at least one of the ψ′

k which lies within ε
of the right-hand end of I, then for ε sufficiently small, there is at least one
index i, i = 1, . . . , p, for which aij > 0 in (a − η, a) for some η > 0 and for
all j = p + 1, . . . , n.

Then there exist positive constants K,M independent of σ and depending on the
potentials ψi, i = 1, . . . , n, and the coefficients aij , i, j = i, . . . , n, such that

(3.2)
n∑

i=1

ρi

(
x +

1

N

)
� Ke−

M
σ

n∑
i=1

ρi(x), x ∈ Ω, x < 1 − 1

N
,

for sufficiently small σ.
Note that (3.1) holds under the hypotheses of the theorem. Also note that from

(iv), where aij > 0, j = p + 1, . . . , n, necessarily, aii < 0 according to (1.2). We shall
prove Theorem 3.2 below. For this, it is convenient to consider a single-period interval
rescaled to be [0, 1]. Theorem 3.1 then follows by rescaling and applying Theorem 3.2
to period intervals.

Theorem 3.2. Suppose that ρ is a positive solution of (1.1), where the coefficients
aij , i, j = 1, . . . , n, and the ψi, i = 1, . . . , n, are smooth in [0, 1]. Suppose that (1.2)
holds and also that the following conditions are satisfied:

(i) Each ψ′
i has only a finite number of zeros in [0, 1].
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(ii) There is some interval in which ψ′
i > 0 for all i = 1, . . . , n.

(iii) In any interval in which no ψ′
i vanishes, ψ′

j > 0 in this interval for at least
one j.

(iv) If I is an interval in which ψ′
i > 0 for i = 1, . . . , p and ψ′

i < 0 for i =
p + 1, . . . , n, and a is a zero of at least one of the ψ′

k which lies within ε of
the right-hand end of I, then for ε sufficiently small, there is at least one i,
i = 1, . . . , p, for which aij > 0 in (a− η, a) for some η > 0, j = p + 1, . . . , n.

Then there exist positive constants K,M independent of σ and depending on the
potentials ψi, i = 1, . . . , n, and the coefficients aij , i, j = i, . . . , n, such that

(3.3)

n∑
i=1

ρi(1) � Ke−
M
σ

n∑
i=1

ρi(0)

for sufficiently small σ.
The conclusion of Theorem 3.2 is that the magnitude of the solution ρ,

∑n
i=1 ρi, is

much smaller at x = 1 than at x = 0, or in terms of Theorem 3.1, that it is bounded
above by an exponentially decreasing function for small σ. There is no suggestion
that

∑n
i=1 ρi is itself exponentially decreasing, and it is not. Indeed, the core of the

mathematical argument is that
∑

ρi is exponentially decreasing on intervals where all
ψ′
i are positive, while not significantly increasing in the remainder of [0,1]. The

∑
ρi

may increase, even exponentially, in regions within δ of a zero of a ψ′
i, but because the

total length of these intervals is very small, the increase is outweighed by the decrease
elsewhere. The argument in intervals where the signs of the ψ′

i are mixed is more
delicate and relies on the coupling, as spelled out in (iv), the nonvanishing of some
aij near the minima of ψi, and we briefly describe it below.

First let us assess how, essentially, the constants K,M depend on the parameters,
especially the potentials ψi, by examining an interval where ψ′

i > 0 for all i. Such an
interval exists by condition (ii) of the theorem. Let [a, b] be such an interval and set

q(x) = min
i=1,...,n

ψ′
i(x).

From (3.1),

d

dx
(ρ1 + · · · + ρn)(x) � − 1

σ
q(x)(ρ1 + · · · + ρn)(x),

so that by integrating,

(ρ1 + · · · + ρn)(b) � e−
1
σ

∫ b
a
qds(ρ1 + · · · + ρn)(a).

If there are several such intervals, we just combine the effects, and this is the essence
of how K,M (particularly M) depend on the ψ′

i. In other words, a Gronwall-type
argument is successful here.

Now let us try to explain the role of the coupling. This comes into play when
condition (iv) of the hypotheses holds. Suppose that ν ∈ {1, . . . , p} is a favorable
index in the interval I and consider the νth equation

(3.4) σρ′′ν + ψ′
νρ

′
ν + ψ′′

νρν + aννρν +

n∑
j �=ν

aνjρj = 0.

Equation (3.4) represents a balance between ρν and the other ρj . As seen in what
follows, since the items in the Σ are nonnegative, they may be discarded and (3.4)
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can be employed to find an upper bound for ρν on I, because ψν is increasing. We
can then exploit (3.4) to impede the growth of the unfavorable ρj , j = p + 1, . . . , n.
Namely, {ρj} cannot be too large without forcing ρν to be negative. But this can be
ensured only if the coupling is really there, namely, if aνj > 0. This is the motivation
for the ergodic-type hypothesis in (iv).

Proof of Theorem 3.2. Since each ψ′
i has only finitely many zeros, we can enclose

these zeros with intervals of length 2δ, where δ > 0 and small will be chosen later. The
remainder of [0,1] consists of a finite number of closed intervals Jm,m = 1, . . . ,M , in
which no ψ′

i vanishes, and so we have that ψ′
i � k(δ) > 0 or ψ′

i � −k(δ) < 0 for each
i and some positive k(δ). From (iii), k(δ) may be chosen so that in at least one Jm,
ψ′
i � k(δ) for all i.

First we establish the exponential decay which governs the behavior of the solution.
This will be a simple application of Gronwall’s lemma. Consider an interval I0 = Jm
for one of the m’s where ψ′

i ≥ k(δ) for all i. Suppose that

sup
I0

{
inf
i
ψ′
i(x)

}
= K0,

where, of course, K0 is independent of δ for small δ. So there is a point x0 ∈ I0 where

ψ′
i(x0) � K0, i = 1, . . . , n,

and

ψ′
i(x) � 1

2
K0, |x− x0| < L0, i = 1, . . . , n,

for

L0 =
1

2

K0

maxi=1...n{sup[0,1] |ψ′′
i |}

.

Hence, from (3.1),

d

dx

n∑
i=1

ρi � −K0

2σ

n∑
i=1

ρi in |x− x0| < L0,

so that

n∑
i=1

ρi(x0 + L0) � e−
1
σK0L0

n∑
i=1

ρi(x0 − L0).

Since
∑n

i=1 ρ
′
i � 0 in I0, we have that

(3.5)

(
n∑

i=1

ρi

)
(ξ∗) � e−

1
σK0L0

(
n∑

i=1

ρi

)
(ξ), where I0 = [ξ, ξ∗].

Indeed, we could extend I0 to an interval in which we demand only that all ψ′
i � 0.

Next consider an interval, say I1, of length 2δ centered on a zero a of one of the
ψ′
i. From (3.1) we have that∣∣∣∣∣ ddx

(
n∑

i=1

ρi

)∣∣∣∣∣ ≤ K1

σ

n∑
i=1

ρi in I1,
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where

K1 = max
i=1..n

sup
0�x�1

|ψ′
i|,

so that

(3.6)

(
n∑

i=1

ρi

)
(a + δ) � e

1
σ 2K1δ

(
n∑

i=1

ρi

)
(a− δ).

There may be N such intervals, but over them all the exponential growth is only
2
σNK1δ, and we can choose δ sufficiently small, which does not affect K0, L0 so that

2NK1δ < K0L0.

Finally, with δ so chosen, we consider an interval I2 = [α, β] where, say,

(3.7)
ψ′
i � k(δ), i = 1, . . . , p,

ψ′
i � −k(δ), i = p + 1, . . . , n.

We may assume that there is some overlap, that the endpoints α, β of I2 are in
2δ intervals considered above. In the interval I2, we shall bound ρ1, . . . , ρp on the
basis of (3.7) above. We shall then argue that ρp+1, . . . , ρn are necessarily bounded
or, owing to the coupling of the equations, the positivity of ρ1, . . . , ρp would fail.

Write the equation for ρ1 in the form

(3.8) σρ′′1 + ψ′
1ρ

′
1 + ψ′′

1ρ1 + a11ρ1 +

n∑
j=2

a1jρj = 0,

so that

d

dx

(
ρ′1e

1
σ (ψ1(x)−ψ1(α)

)
= − 1

σ

⎧⎨
⎩(a11 + ψ′′

1 )ρ1 +

n∑
j=2

a1jρj

⎫⎬
⎭ e

1
σ (ψ1(x)−ψ1(α)),

and carrying out the integration,
(3.9)

ρ′1(x) = ρ′1(α)e
1
σ (ψ1(α)−ψ1(x) − 1

σ

∫ x

α

⎧⎨
⎩(a11 + ψ′′

1 )ρ1 +

n∑
j=2

a1jρj

⎫⎬
⎭ e

1
σ (ψ1(s)−ψ1(x))ds.

Now the a1j , j � 2, and the ρi are all nonnegative, so that we may neglect the large
sum and find a constant K2 for which

(3.10) ρ′1(x) � ρ′1(α)e
1
σ (ψ1(α)−ψ1(x)) +

K2

σ

∫ x

α

ρ1(s)e
1
σ (ψ1(s)−ψ1(x))ds.

Note that for small σ,

(3.11)

∫ x

α

e
1
σ (ψ1(s)−ψ1(x))ds �

∫ x

α

e
k(δ)
σ (s−x)ds � σ

k(δ)
.
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Integrating (3.10),

ρ1(x) − ρ1(α) � ρ′1(α)

∫ x

α

e
1
σ (ψ1(α)−ψ1(s))ds +

K2

σ

∫ x

α

∫ t

α

ρ1(s)e
1
σ (ψ1(s)−ψ1(t))dsdt

� K(δ)σ|ρ′1(α)| + K(δ)

∫ x

α

max
[α,t]

ρ1dt,

so that

max
[α,x]

ρ1 � ρ1(α) + K(δ)σ|ρ′1(α)| + K(δ)

∫ x

α

max
[α,t]

ρ1dt.

We may now use Gronwall’s lemma to obtain

(3.12) ρ1(x) � K(δ)
{
ρ1(α) + σ|ρ′1(α)|

}
, α � x � β.

If we insert this into (3.10), we obtain

(3.13) ρ′1(x) � |ρ′1(α)| + K(δ)
{
ρ1(α) + σ|ρ′1(α)|

}
, α � x � β.

Similar estimates hold for ρ2, . . . , ρp.
Our attention is directed to ρp+1, . . . , ρn. Our first step is lower bounds for

ρ′1, . . . , ρ
′
p, for which it suffices to carry out the details for ρ′1. We can use (3.12) to

modify our formula (3.9). Using (3.11),

ρ′1(x) � ρ′1(α)e
1
σ (ψ1(α)−ψ1(x)) − 1

σ
max
I2

ρ1(max
I2

|a11 + ψ′′
1 |)

∫ x

α

e
1
σ (ψ1(s)−ψ1(x))ds

− 1

σ
max
[α,x]

(ρ2 + · · · ρp + ρp+1 + · · · + ρn) max
1�i�n,i �=1

max
I2

a1i

∫ x

α

e
1
σ (ψ1(s)−ψ1(x))ds.

So, since by (3.12) we have bounds for ρ2, . . . , ρp, we can write

(3.14)
ρ′1(x) � ρ′1(α)e

1
σ (ψ1(α)−ψ1(x)) −K(δ)

{
ρ1(α) + σ|ρ′1(α)|

}
−K(δ) max[α,x](ρp+1 + · · · + ρn), α � x � β.

Similarly for ρ′2, . . . , ρ
′
p.

With our technique we can handle only the sum ρp+1 + · · ·+ρn and not individual
ρi, p+ 1 � i � n. From (3.1), and taking into account (3.12), (3.13), and the signs of
the ψ′

i,

d

dx
(ρp+1 + · · · + ρn) = − d

dx
(ρ1 + · · · + ρp) −

1

σ
(ψ′

1ρ1 · · · + ψ′
pρp)

− 1

σ
(ψ′

p+1ρp+1 + · · · + ψ′
nρn)

� − K1(δ)

σ

p∑
i=1

(
ρi(α) + σ

∣∣∣∣dρidx
(α)

∣∣∣∣
)

+
K2(δ)

σ

n∑
i=p+1

ρi in I2.(3.15)

Let

C(α) =

p∑
i=1

(
ρi(α) +

∣∣∣∣dρidx
(α)

∣∣∣∣
)
,
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which means (3.15) assumes a fortiori the form

(3.16)
d

dx
(ρp+1 + · · · + ρn) � −K1(δ)

σ
C(α) +

K2(δ)

σ
(ρp+1 + · · · + ρn).

We assert that

(3.17) ρp+1 + · · · + ρn � K1(δ)

K2(δ)
C(α), α � x � β − δ.

Suppose the contrary and that

(3.18)

A > 1 and

(ρp+1 + · · · + ρn)(x∗) >
AK1(δ)C(α)

K2(δ)
for some x∗ ∈ [α, β − δ].

This continues to hold in [x∗, β], since at a first x ∈ I2, where it fails, (3.16) would
imply that ρp+1 + · · ·+ ρn were increasing, which is not possible. Indeed, integrating
(3.16) between points x∗, x ∈ I2 with x∗ < x, we have that

(ρp+1 + · · · + ρn)(x) � (ρp+1 + · · · + ρn)(x∗)e
K2(δ)

σ (x−x∗)

+
K1(δ)

K2(δ)
C(α)(1 − e

K2(δ)
σ (x−x∗))

� AK1(δ)

K2(δ)
C(α)e

K2(δ)
σ (x−x∗) +

K1(δ)

K2(δ)
C(α)(1 − e

K2(δ)
σ (x−x∗))

= (A− 1)
K1(δ)

K2(δ)
C(α)e

K2(δ)
σ (x−x∗) +

K1(δ)

K2(δ)
C(α), x∗, x ∈ I2.(3.19)

Now let us suppose, without loss of generality, that (iv) holds for i = 1, that is,
we can find a K3(δ) > 0 such that

(3.20)

n∑
i=p+1

a1jρj � K3(δ)(ρp+1 + · · · + ρn) in [β − δ, β].

Keep in mind that

e
K2(δ)

σ (x−x∗) � e
K2(δ)

σ
1
4 δ = e

K4(δ)
σ for β − 1

4
δ � x � β.

Then we have from (3.9)

dρ1

dx
(x) � dρ1

dx
(α)e−

1
σ (ψ1(x)−ψ1(α)) +

K(δ)

σ
C(α)

∫ x

α

e
1
σ (ψ1(s)−ψ1(x))ds

− (A− 1)K1(δ)K3(δ)C(α)

K2(δ)
e

1
σK4(δ)

� dρ1

dx
(α)e−

1
σ (ψ1(x)−ψ1(α)) + K(δ)C(α)

− (A− 1)K1(δ)K3(δ)C(α)

K2(δ)
e

1
σK4(δ) for β − 1

4
δ � x � β.
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Above, ψ1(x) > ψ1(α), so the exponential in the first term on the right may be
neglected. From the trivial inequality

0 � ρ1(x) = ρ1(α) +

∫ x

α

ρ′1(s)ds

� C(α) +

∫ x

α

ρ′1(s)ds,

we have that

0 � ρ1(x)

C(α)
� 1 +

∫ x

α

(1 + K(δ))ds−
∫ β− 1

8 δ

β− 1
4 δ

(A− 1)
K1(δ)

K2(δ)
K3(δ)e

K4(δ)
σ ds

� 1 + (1 + K(δ))(β − α) − (A− 1)
K1(δ)

K2(δ)
K3(δ)e

K4(δ)
σ

1

8
δ(3.21)

for β − 1

8
δ � x � β.

Since A > 1, the above cannot hold for arbitrarily small σ independent of δ
because the extreme right-hand side of (3.21) becomes negatively infinite as σ → 0.
This proves (3.17). Note that the size of σ determined by (3.21) depends on the
geometrical features of the potentials ψi, i = 1, . . . , n, but not on C(α), that is, the
magnitude of the solution ρ.

The theorem now follows by concatenating the three cases.

4. Stability of the stationary solution. In this section we discuss the trend
to stationarity of solutions of the time-dependent system (1.4). We have the following
stability theorem.

Theorem 4.1. Let ρ(x, t) denote a solution of (1.4) with initial data

(4.1) ρ(x, 0) = f(x)

satisfying

fi(x) � 0, i = 1, . . . , n, and
∑

i=1,...,n

∫
Ω

fidx = 1.

Then there are positive constants K and ω such that

(4.2) |ρ(x, t) − ρ0(x)| � Ke−ωt as t → ∞,

where ρ0 is the stationary positive solution obtained in Theorem 2.1.
Thus the stationary positive solution is globally stable. One proof of this was

given in [4] for n = 2, and this proof may be extended to general n. A proof based on
monotonicity of an entropy function is given in [22]. A different type of monotonicity
result showing that the solution operator is an L1-contraction is given in [11]. Here we
outline a different way of viewing the problem based on inspection of the semigroup
generated by the operator, written in vector form,

(4.3) Sρ = σ
∂2ρ

∂x2
+

∂

∂x
(ψ′ρ) + Aρ,

with natural boundary conditions. All the methods known to us are based on ideas
from positive operators via Perron–Frobenius–Krein–Rutman generalizations or on
closely related monotonicity methods.
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We need the result that (4.3) has a real eigenvalue λ0, which is simple and has an
associated positive eigenfunction, and that all other eigenvalues λ satisfy Re λ < λ0.

This is a standard result (see, for example, Zeidler [30]) obtained using the ideas
of positive operators, but to assist the reader and for completeness we give a sketch
of the proof. We define eS by writing the solution of (1.4) in terms of (4.3) as

(4.4) ρ(x, t) = etSf(x).

This is consistent with the notions of exponent, since

e(t+s)S = etSesS

just expresses the fact that the solution at time t + s is just the solution after time
s followed by a further time t. We note that eS is a positive operator, since f � 0
implies ρ ≥ 0, making use of the maximum principle [24], and it is compact, since
it is essentially an integration. And so eS has a real eigenvalue, eλ0 , which is simple
and has a positive eigenfunction. Further, it is simple to see, for example, by solving
the equation explicitly, that if S has an eigenvalue λ, then eS has an eigenvalue eλ,
and vice versa. Thus S has a real eigenvalue λ0, which is simple and has a positive
eigenfunction. Further, the fact that all the other eigenvalues eλ of eS have |eλ| < eλ0

implies that all other eigenvalues λ of S have Re λ < λ0, as required.
We assume that the positive initial data f is normalized so that

(4.5)
∑

i=1,...,n

∫
Ω

fidx = 1,

as in (1.1).
Now form the Laplace transform

ρ̂ (x, λ) =

∫ ∞

0

e−λtρ (x, t) dt, Reλ > 0,

and (4.4) gives

(4.6) ρ̂ (·, λ) = (λI − S)
−1

f,

and ρ̂ is analytic in λ for Reλ > 0, but (4.6) allows us to extend this into the left
half plane except for an isolated singularity at λ = 0, for in our problem the fact that
we have a positive stationary solution implies that the real eigenvalue λ0 is given by
λ0 = 0. The usual inversion formula gives

(4.7) ρ(x, t) =
1

2πi

∫ γ+i∞

γ−i∞
eλtρ̂(x, λ)dλ, γ > 0.

Now for finite γ and ν, with ν large, and with λ = γ + iν,

(4.8) ‖(λI − S)−1‖ = O

(
1

ν

)
.

For we can write

−(Tρ)i = σ
d2ρi
dx2

+
d

dx
(ψ′

iρi) + (Aρ)i

= σ
d

dx
(e−

1
σψiφ′

i) − (a′φ)i

= −(Mφ)i,
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where φi = e
1
σψiρi and a′ij = aije

− 1
σψi . The boundary conditions here are

φ′
i(0) = φ′

i(1) = 0, i = 1, . . . , n.

Now consider

λI − S = λI + T = λI + M

and

(4.9) ((M + λI)φ, φ) =
∑

i=1,...,n

∫
Ω

[(M + λI)φ]i φ̄idx.

The first term in M is self-adjoint, which gives a real contribution, and the second
contribution in (4.9) is certainly

O

{ ∑
i=1,...,n

∫
Ω

|φi|2dx
}
.

Thus if ν is sufficiently large,

im((M + λI)φ, φ) � 1

2
ν

∑
i=1,...,n

∫
Ω

|φi|2dx,

from which (4.8) follows easily.
Given the initial data f, we write

f = cρ0 + ρ∗,

where ρ∗ is orthogonal to the positive eigenfunction, say ρ∗0, of the adjoint operator
of S. This determines c uniquely, since

c(ρ0, ρ
∗
0) = (f, ρ∗0),

and (ρ0, ρ
∗
0) �= 0 inasmuch as ρ0,i > 0, ρ∗0,i > 0. Then by the Fredholm alternative, we

can solve, for any small λ,

(S − λI)φ = ρ∗,

uniquely if we insist that the solution is orthogonal to ρ0. Then (S − λI)
−1

ρ∗ is
bounded, and

(S − λI)
−1

f = c (S − λI)
−1

ρ0 + O (1)

= −λ−1cρ0 + O (1)

as λ → 0, showing that the pole of (S − λI)
−1

at λ = 0 has residue −cρ0 so that we
can now move the line of integration in (4.7) from γ > 0 to γ < 0. The contribution
from the pole is cρ0, and the contribution from large λ is small by (4.8). Further,
once this move is made, the contribution from the vertical line is of the form O(e−ωt).
In all, therefore,

ρ (x, t) = cρ0 + O
(
e−ωt

)
,

as required. Note that c = 1 since∑
i=1,...,n

∫
Ω

ρidx =
∑

i=1,...,n

∫
Ω

ρ0,idx.
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5. Discussion and some conditions for “reverse” transport. We now
investigate what may happen if the conditions on the ψi in Theorem 3.1 are sat-
isfied but those on the aij are not. In particular, we note that condition (iv) of
Theorem 3.1 requires that if a is the minimum of one of the ψk, then some aij has
support containing an interval (a− η, a) to the left of a. We will show that without
this condition, aij can be found such that the direction of transport is in the oppo-
site direction from that described in Theorem 3.1. We remark that the necessity of
some positivity condition on the aij to get transport is obvious, for if the aij are all
identically zero, for example, or satisfy conditions that permit the functional F of
the introduction to be minimized, then the solutions of (1.1) are periodic. What we
look for in the following example is a situation in which there is transport, but in the
opposite direction from that predicted by Theorem 3.1 even though the conditions on
the ψi in that theorem are satisfied.

In constructing our example, we will specialize to n = 2, a two-state system. We
also reverse direction. By this we mean that conditions (ii) and (iii) in Theorem 3.1,
for n = 2, will be replaced by the following:

(ii′) There is some interval in which ψ′
i < 0 for i = 1, 2.

(iii′) In any interval in which neither ψ′
i vanishes, ψ′

j < 0 in this interval for at
least one j.

For (iv) we substitute a simpler condition which could be used in Theorem 3.1 as
well, as it implies (iv).

(iv′) There is a neighborhood of each local minimum of ψ1 or ψ2 in which aij �= 0
for all (i, j).

Figure 5.1 shows potentials satisfying (ii′) and (iii′).
We then have the following corollary of Theorem 3.1.
Corollary 5.1. If the hypotheses of Theorem 3.1 when n = 2 are satisfied,

except that (ii′), (iii′), and (iv′) replace (ii), (iii), and (iv), then there exist constants
K1,K2 independent of σ such that

2∑
i=1

ρi (x) ≤ K1e
−K2

σ

2∑
i=1

ρi

(
x +

1

N

)
for x ∈ Ω, x ≤ 1 − 1

N
.

We will now construct an example for the case N = 1 where conditions (i),
(ii′), and (iii′) are satisfied, but not condition (iv′). Figure 5.1 shows conformation
coefficients which do not satisfy (iv), and Figure 5.2 shows the resulting solution. Our
example is constructed initially using δ-functions for the aij , and with this class of
rate coefficients we are able to show that there is a c > 0 such that for sufficiently
small σ,

(5.1) ρ1 (1) + ρ2 (1) < e−
c
σ (ρ1 (0) + ρ2 (0)) .

At the end we briefly discuss a slightly weaker form of reverse transport which we can
then obtain for continuous coefficients.

Assume that ψ1 has a minimum at y1 = 0 followed by a maximum at z1 ∈ (0, 1)
and then a second minimum at 1, with ψ1 (0) = ψ1 (1). Further assume that ψ2 has a
minimum at y2 ∈ (z1, 1) followed by a maximum at z2 ∈ (y2, 1), and ψ2 (0) = ψ2 (1).
Finally assume that ψ′

i �= 0 except at the minima and maxima specified above. Then
0 = y1 < z1 < y2 < z2 < 1. There is no point where both ψ′

1 � 0 and ψ′
2 � 0, and

so when the aij are all nonzero on [0, 1], transport will be to the right as given in
Corollary 5.1.
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Fig. 5.1. A period interval showing potentials and conformation coefficients which do not satisfy
hypothesis (iv′) of Corollary 3.2.

Fig. 5.2. Reverse transport computed using the potentials and conformation coefficients shown
in Figure 5.1. The simulation was done with XPP [7].

But we will now choose new aij to give transport to the left.
Obviously, condition (iv′) must be violated. Choose a point x1 ∈ (y1, z1) and a

point x2 ∈ (y2, z2) . Then

(5.2) 0 = y1 < x1 < z1 < y2 < x2 < z2 < 1.
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We consider the system

(5.3)
(σρ′1 + ψ′

1ρ1)
′
= (δ (x− x1) + δ (x− x2)) (ρ1 − ρ2) ,

(σρ′2 + ψ′
2ρ2)

′
= (δ (x− x1) + δ (x− x2)) (ρ2 − ρ1) ,

with boundary conditions

(5.4) σρ′i + ψ′
iρi = 0 at x = 0, 1 for i = 1, 2.

We wish to find further conditions which imply inequality (5.1) for some c > 0
and sufficiently small σ.

We follow the technique in [4] and let φi = σρ′i + ψ′
1ρi. Adding the equations

in (5.3) shows that φ1 + φ2 is constant, and applying the boundary conditions shows
that φ1 + φ2 = 0. This leads to the system

(5.5)

σρ′1 = φ− ψ′
1ρ1,

σρ′2 = −φ− ψ′
2ρ2,

φ′ = (δ (x− x1) + δ (x− x2)) (ρ1 − ρ2) ,

where φ = φ1 = −φ2.
Having obtained (5.5) under the conditions φi = 0 at x = 0, 1, we now weaken

these conditions, assuming only that φ1 + φ2 = 0. In this way, the same analysis
applies to any period interval of the functions ψi, thus showing that if N > 1, decay
occurs in each period interval. Therefore in (5.5) it is not assumed that φ(0) or φ(1)
vanish. The only assumption made is that ρi > 0 on the entire interval, for i = 1, 2.

Observe that φ takes a jump of amount ρ1 (xj)− ρ2 (xj) at each xj . Further, φ is
constant in the intervals [0, x1), (x1, x2), (x2, 1]. Let φj = φ(yj). Then

ρi (xj) = ρi (yj) e
ψi(yj)−ψi(xj)

σ + (−1)
i−1

φj

∫ xj

yj

1

σ
e

ψi(s)−ψi(xj)
σ ds,

i = 1, 2. Hence,

ρ1 (xj) − ρ2 (xj) = ρ1 (yj) e
ψ1(yj)−ψ1(xj)

σ − ρ2 (yj) e
ψ2(yj)−ψ2(xj)

σ

+ φj

∫ xj

yj

1

σ

(
e

ψ1(s)−ψ1(xj)
σ + e

ψ2(s)−ψ2(xj)
σ

)
ds.

For i = 1, 2 let

(5.6)

ai =
ψi (y1)

σ
, bi =

ψi (x1)

σ
, ci =

ψi (x2)

σ
,

Ai =

∫ x1

0

1

σ
e

ψi(s)
σ ds, Bi =

∫ x2

x1

1

σ
e

ψi(s)
σ ds, Ci =

∫ 1

x2

1

σ
e

ψi(s)
σ ds.

Since ψi (0) = ψi (1) , we eventually obtain (computation facilitated by Maple)

ρ1 (1) = k11ρ1 (0) − k12ρ2 (0) + k13φ(0),

ρ2 (1) = −k21ρ1 (0) + k22ρ2 (0) − k23φ(0),
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where

k11 = 1 + e−b1B1 + e−b1C1 + e−c1C1 + e−b1−c1B1C1 + e−b1−c2B2C1

and k12, . . . , k23 are similar expressions in terms of the constants defined in (5.6).
As in [4], we solve each of the inequalities ρ1 (1) > 0, ρ2 (1) > 0 for φ(0) and

substitute the result into the other of these two relations. We find that

ρ1 (1) ≤ k11k23 − k21k13

k23
ρ1 (0) +

k13k22 − k12k23

k23
ρ2 (0) ,

ρ2 (1) ≤ k11k23 − k13k21

k13
ρ1 (0) +

k13k22 − k12k23

k13
ρ2 (0) .

The desired decay relation (5.1) follows by showing that under certain additional
conditions the four fractional coefficients

(5.7)
k11k23 − k21k13

k13
,

k11k23 − k21k13

k23
,

k13k22 − k12k23

k13
,

k13k22 − k12k23

k23

tend to zero exponentially as σ → 0.
Further Maple computation (checked with Scientific Workplace) shows, for exam-

ple, that

k11k23 − k21k13 =
A2

ea2
+

B2

ea2
+

C2

ea2
+ A2

B1

ea2eb1
+ A2

C1

ea2eb1
+ A2

B2

ea2eb2
+ A2

C1

ea2ec1

+A2
C2

ea2eb2
+ B2

C1

ea2ec1
+ A2

C2

ea2ec2
+ B2

C2

ea2ec2
+ A2B1

C1

ea2eb1ec1
+ A2B1

C2

ea2eb1ec2

+A2B2
C1

ea2eb2ec1
+ A2B2

C2

ea2eb2ec2
.

Many cancellations have occurred, eliminating terms in which four or five integrals
are multiplied. Similar formulas are obtained for the other expressions in (5.7).

In estimating the integrals, first consider B1. We will say that f ∝ g if there are
positive numbers α and β such that for sufficiently small σ, α < f

g < β. We then
have

B1 =

∫ x2

x1

e
ψ1(s)

σ ds ∝ σke
ψ1,max

σ

for some k > 0 and with ψ1,max = ψ1 (z1) = maxx ψ1 (x). Also, for possibly different
values of k,

A1 ∝ σkeb1 , A2 ∝ σkea2 ,

B2 ∝ σk
(
eb2 + ec2

)
, C1 ∝ σk (ec1 + ea1) , C2 ∝ σke

ψ2,max
σ .

From (5.6) and (5.2), we see that for small σ the two largest terms among
A1, A2, B1, B2, C1, C2, e

a1 , ea2 , eb1 , eb2 , ec1 , and ec2 are B1 and C2.
For the moment we let di =

ψi,max

σ and set

A1 = eb1 , A2 = ea2 ,

B1 = ed1 , B2 = eb2 + ec2 ,

C1 = ec1 + ea1 , C2 = ed2 .
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We will find also that to get the desired backward transport, we need to take x2 close
to the maximum of ψ2. Therefore for now we will set x2 = z2, so that c2 = d2. Finally,
we can assume without loss of generality that a1 = 0. The additional conditions we
will give for backwards transport for small σ are that the inequalities (5.8) and (5.9)
below hold and that x2 is sufficiently close to y2.

We then have

k11k23 − k21k13 =
1

eb1
+

2

ec1
+

3

ea2
eb2 +

1

eb1
ec1 +

3

eb1
ed1 +

4

ea2
ed2 +

4

eb2
ed2

+
1

ea2

eb2

ec1
+

1

eb1ec1
ed1 +

1

ea2ec1
ed2 +

1

eb2ec1
ed2 + 6

and similar expressions for k22k13 − k12k23, k13, and k23.
We now assume that d1 > max {b1, c1}, a1 = 0 < min {b1, c1}, and d2 >

max {a2, b2}. We compare terms pairwise wherever possible, eliminating the term
which is necessarily smaller as σ → 0. This results in the asymptotic relations

k11k23 − k21k13 ∝ 3

eb1
ed1 +

4

ea2
ed2 +

4

eb2
ed2 ,

k22k13 − k12k23 ∝ 6ed1 + 4
eb1

eb2
ed2 ,

k13 ∝ 4ed1 + 2
ea2

eb2
ed1 ,

k23 ∝ 2

ea2ec1
ed1ed2 +

1

eb2ec1
ed1ed2 .

From these we conclude that the four fractions in question are exponentially small
as σ → 0 if in addition to the previous assumptions we have

(5.8) d2 − a2 < d1 − b1 < d2 − b2

and

(5.9) d1 > b1 + c1.

(If a1 �= 0, this becomes d1 + a1 > b1 + c1.)
By continuity we see that these inequalities will also suffice if c2 is sufficiently

close to d2. The conclusions also hold with the factors σk included in the asymptotic
expressions, since these don’t affect the exponential limits.

Finally we wish to obtain a result with continuous functions for the aij . Here
we don’t have a limit result as σ → 0. But suppose that ε > 0 is given, and for
(5.3)–(5.4), we choose σ so small that for any positive solution,

n∑
i=1

ρi (1) < ε

n∑
i=1

ρi (0) .

Then for this σ, the same inequality will hold for continuous functions aij sufficiently
close in the L1 norm to the δ-functions in (5.3)–(5.4).

In this paragraph we discuss the simulation parameters for Figure 3.1. Simula-
tions, of which this is a sample, were executed with a semi-implicit scheme and run
in Maple. In this case, for potentials we took ψ1(x) = ψ0

1(24x) and ψ2(x) = ψ0
2(24x)

with ψ0
1(ξ) = 1

4 (cos(π( 2ξ
ξ+1 )))2 and ψ0

2(ξ) = ψ0
1(ξ − 1

2 ). The matrix elements were
−a11 = a12 = a21 = −a22 with a12(x) = a0(24x), where a0(ξ) = 1

2 (cos 2π(ξ − 1
4 ))6.

The diffusion constant σ = 2−7.
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SYNCHRONIZATION OF DISCRETE-TIME DYNAMICAL
NETWORKS WITH TIME-VARYING COUPLINGS∗

WENLIAN LU†‡ , FATIHCAN M. ATAY† , AND JÜRGEN JOST†§

Abstract. We study the local complete synchronization of discrete-time dynamical networks
with time-varying couplings. Our conditions for the temporal variation of the couplings are rather
general and include variations in both the network structure and the reaction dynamics; the reactions
could, for example, be driven by a random dynamical system. A basic tool is the concept of the Hajnal
diameter, which we extend to infinite Jacobian matrix sequences. The Hajnal diameter can be used to
verify synchronization, and we show that it is equivalent to other quantities which have been extended
to time-varying cases, such as the projection radius, projection Lyapunov exponents, and transverse
Lyapunov exponents. Furthermore, these results are used to investigate the synchronization problem
in coupled map networks with time-varying topologies and possibly directed and weighted edges.
In this case, the Hajnal diameter of the infinite coupling matrices can be used to measure the
synchronizability of the network process. As we show, the network is capable of synchronizing some
chaotic map if and only if there exists an integer T > 0 such that for any time interval of length T ,
there exists a vertex which can access other vertices by directed paths in that time interval.

Key words. synchronization, dynamical networks, time-varying coupling, Hajnal diameter,
projection joint spectral radius, Lyapunov exponents, spanning tree
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1. Introduction. Synchronization of dynamical processes on networks is pre-
sently an active research topic. It represents a mathematical framework that on the
one hand can elucidate—desired or undesired—synchronization phenomena in diverse
applications. On the other hand, the synchronization paradigm is formulated in such
a manner that powerful mathematical techniques from dynamical systems and graph
theory can be utilized. A standard version is

(1.1) xi(t + 1) = f i(x1(t), x2(t), . . . , xm(t)), i = 1, 2, . . . ,m,

where t ∈ Z
+ = {0, 1, 2, . . .} denotes the discrete time, xi(t) ∈ R denotes the state

variable of unit (vertex) i, and for i = 1, 2, . . . ,m, f i : R
m → R is a C1 function. This

dynamical systems formulation contains two aspects. One of them is the reaction
dynamics at each node or vertex of the network. The other one is the coupling
structure, that is, whether and how strongly the dynamics at one node is directly
influenced by the states of the other nodes.

Equation (1.1) clearly is an abstraction and simplification of synchronization prob-
lems found in applications. On the basis of understanding the dynamics of (1.1),
research should then move on to more realistic scenarios. Therefore, in the present
work, we address the question of synchronization when the right-hand side of (1.1) is
allowed to vary in time. Thus, not only the dynamics itself is a temporal process, but
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also the underlying structure changes in time, albeit in some applications that may
occur on a slower time scale.

The essence of the hypotheses on f = [f1, . . . , fm] needed for synchronization
results (to be stated in precise terms shortly) is that synchronization is possible as
an invariant state, that is, when the dynamics starts on the diagonal [x, . . . , x], it will
stay there, and that this diagonal possesses a stable attracting state. The question
about synchronization then is whether this state is also attracting for dynamical states
[x1, . . . , xm] outside the diagonal, at least locally, that is, when the components xi are
not necessarily equal but close to each other. This can be translated into a question
about transverse Lyapunov exponents, and one typically concludes that the existence
of a synchronized attractor in the sense of Milnor. In our contribution, we can already
strengthen this result by concluding (under appropriate assumptions) the existence
of a synchronized attractor in the strong sense instead of only in the weaker sense
of Milnor. (We shall call this local complete synchronization.) This comes about
because we achieve a reformulation of the synchronization problem in terms of Hajnal
diameters (a concept to be explained below).

Our work, however, goes beyond that. As already indicated, our main contri-
bution is that we can study the local complete synchronization of general coupled
networks with time-varying coupling functions, in which each unit is dynamically
evolving according to

xi(t + 1) = f i
t (x

1(t), x2(t), . . . , xm(t)), i = 1, 2, . . . ,m.(1.2)

This formulation, in fact, covers both aspects described above, the reaction dynamics
as well as the coupling structure. The main purpose of the present paper then is to
identify general conditions under which we can prove synchronization of the dynam-
ics (1.2). Thus, we can handle variations of the reaction dynamics as well as those of
the underlying network topology. We shall mention below various applications where
this is of interest.

Before that, however, we state our technical hypothesis on the right-hand side
of (1.2): for each t ∈ Z

+, f i
t : R

m → R is a C1 function with the following hypothesis.
(H1) There exists a C1 function f(s) : R → R such that

f i
t (s, s, . . . , s) = f(s)

holds for all s ∈ R, t ∈ Z
+, and i = 1, 2, . . . ,m. Moreover, for any compact set

K ⊂ R
m, f i

t and the Jacobian matrices [∂f i
t/∂x

j ]mi,j=1 are all equicontinuous in K
with respect to t ∈ Z

+ and the latter are all nonsingular in K.
This hypothesis ensures that the diagonal synchronization manifold

S =

{
[x1, x2, . . . , xm]� ∈ R

m : xi = xj , i, j = 1, 2, . . . ,m

}

is an invariant manifold for the evolution (1.2). If x1(t) = x2(t) = · · · = xm(t) = s(t)
denotes the synchronized state, then

s(t + 1) = f(s(t)).(1.3)

For the synchronized state (1.3), we assume the existence of an attractor, as follows.
(H2) There exists a compact asymptotically stable attractor A for (1.3). That

is, (i) A ⊂ R is a forward invariant set; (ii) for any neighborhood U of A there
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exists a neighborhood V of A such that fn(V ) ⊂ U for all n ∈ Z
+; (iii) for any

sufficiently small neighborhood U of A, fn(U) converges to A, in the sense that for
any neighborhood V, there exists n0 such that fn(U) ⊂ V for n ≥ n0; (iv) there exists
s∗ ∈ A for which the ω-limit set is A.

Let Am denote the Cartesian product A × · · · × A (m times). Local complete
synchronization (synchronization for simplicity) is defined in the sense that the set
S ∩ Am = {[x, . . . , x] : x ∈ A} is an asymptotically stable attractor in R

m. That is,
for the coupled dynamical system (1.2), differences between components converge to
zero if the initial states are picked sufficiently near S ∩ Am, i.e., if the components
are all close to the attractor A and if their differences are sufficiently small. In order
to show such a synchronization, one needs a third hypothesis (H3) that in technical
terms is about Lyapunov exponents transverse to the diagonal. That is, while the
dynamics on the attractor may well be expanding (the attractor might be chaotic),
the transverse directions need to be suitably contracting to ensure synchronization.
The corresponding hypothesis (H3) will be stated below (see (3.2)) because it requires
the introduction of crucial technical concepts.

It is an important aspect of our work that we shall derive the attractivity here
in the classical sense, and not in the sense of Milnor, i.e., not only some set of pos-
itive measure, but a full neighborhood is attracted. For details about the difference
between Milnor attractors and asymptotically stable attractors, see [1, 2]. Usually,
when studying synchronization, one derives only the existence of a Milnor attractor;
see [3].

The motivation for studying (1.2) comes from the well-known coupled map lat-
tices (CML) [4], which can be written as follows:

xi(t + 1) = f(xi(t)) +

m∑
j=1

Lijf(xj(t)), i = 1, 2, . . . ,m,(1.4)

where f : R → R is a differentiable map and L = [Lij ]
m
i,j=1 ∈ R

m×m is the
diffusion matrix, which is determined by the topological structure of the network
and satisfies Lij ≥ 0 for all i �= j, and

∑m
j=1 Lij = 0 for all i = 1, 2, . . . ,m.

Letting x = [x1, x2, . . . , xm]� ∈ R
m, F (x) = [f(x1), f(x2), . . . , f(xm)]� ∈ R

m, and
G = Im + L, where Im denotes the identity matrix of dimension m, the CML (1.4)
can be written in the matrix form

x(t + 1) = GF (x(t)),(1.5)

where G = [Gij ]
m
i,j=1 ∈ R

m×m denotes the coupling and satisfies Gij ≥ 0 for i �= j

and
∑m

j=1 Gij = 1 for all i = 1, 2, . . . ,m. So, if Gii ≥ 0 holds for all i = 1, 2, . . . ,m,
then G is a stochastic matrix.

Recently, synchronization of CML has attracted increasing attention [3, 5, 6,
7, 8]. Linear stability analysis of the synchronization manifold was proposed and
transverse Lyapunov exponents were used to analyze the influence of the topological
structure of networks. In [1], conditions for generalized transverse stability were
presented. If the transverse (normal) Lyapunov exponents are negative, a chaotic
attractor on an invariant submanifold can be asymptotically stable over the manifold.
In [9, 10] it was shown that chaos synchronization in a network of nonlinear continuous-
time or discrete-time dynamical systems, respectively, is possible if and only if the
corresponding graph has a spanning tree. However, synchronization analysis has so
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far been limited to autonomous systems, where the interactions between the vertices
(state components) are static and do not vary through time.

In the social, natural, and engineering real world, the topology of the network
often varies through time. In communication networks, for example, one must consider
dynamical networks of moving agents. Since the agents are moving, some of the
existing connections can fail simply due to occurrence of an obstacle between agents.
Also, some new connections may be created when one agent enters the effective region
of other agents [11]. On top of that, randomness may also occur. In a communication
network, the information channel of two agents at each time may be random [12].
When an error occurs at some time, the connections in the system will vary. In [11,
12, 13], synchronization of multiagent networks was considered where the state of each
vertex is adapted according to the states of its connected neighbors with switching
connecting topologies. This multiagent dynamical network can be written in discrete-
time form as

xi(t + 1) =

m∑
j=1

Gij(t)x
j(t), i = 1, 2, . . . ,m,(1.6)

where xj(t) ∈ R is the state variable of vertex j and [Gij(t)]
m
i,j=1, t ∈ Z

+, are stochastic
matrices. In [14] a convexity-conserving coupling function was considered that is
equivalent to the linear coupling function in (1.6). It was found that the connectivity
of the switching graphs plays a key role in the synchronization of multiagent networks
with switching topologies. Also, in the recent literature [15, 16, 17], synchronization of
continuous-time dynamical networks with time-varying topologies was studied. The
time-varying couplings investigated, however, are specific, with either symmetry [15],
node balance [16], or fixed time average [17].

Therefore, it is natural to investigate the synchronization of CML with general
time-varying connections as

x(t + 1) = G(t)F (x(t)),(1.7)

where G(t) = [Gij(t)]
m
i,j=1 ∈ R

m×m denotes the coupling matrix at time t and F (x) =

[f(x1), . . . , f(xn)]� is a differentiable function. We shall address this problem in the
context of the general coupled system (1.2).

Let

x(t) =

⎡
⎢⎢⎢⎣

x1(t)
x2(t)

...
xm(t)

⎤
⎥⎥⎥⎦ and Ft(x(t)) =

⎡
⎢⎢⎢⎣

f1
t (x1(t), · · · , xm(t))
f2
t (x1(t), · · · , xm(t))

...
fm
t (x1(t), · · · , xm(t))

⎤
⎥⎥⎥⎦ .

Equation (1.2) can be rewritten in matrix form:

x(t + 1) = Ft(x(t)).(1.8)

The time-varying coupling can have a special form and may be driven by some
other dynamical system. Let Y = {Ω,F , P, θ(t)} denote a metric dynamical system
(MDS), where Ω is the metric state space, F is the σ-algebra, P is the probability
measure, and θ(t) is a semiflow satisfying θ(t+s) = θ(t) ◦ θ(s) and θ(0) = id, where id
denotes the identity map. Then the coupled system can be regarded as a random
dynamical system (RDS) driven by Y:

x(t + 1) = F (x(t), θ(t)ω), t ∈ Z
+, ω ∈ Ω.(1.9)
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In fact, one can regard the dynamical system (1.9) as a skew product semiflow,

Θ : Z
+ × Ω × R

m → Ω × R
m,

Θ(t)(ω, x) = (θ(t)ω, x(t)).

Furthermore, the coupled system can have the form

x(t + 1) = F (x(t), u(t)), t ∈ Z
+,(1.10)

where u belongs to some function class U and may be interpreted as an external input
or force. Then, defining [θ(t)u](τ) = u(t + τ) as a shift map, the system (1.10) has
the form of (1.9). In this paper, we first investigate the general time-varying case of
the system (1.8) and also apply our results to systems of the form (1.9).

To study synchronization of the system (1.8), we use its variational equation by
linearizing it. Consider the difference δxi(t) = xi(t) − f (t−t0)(s0). This implies that
δxi(t) − δxj(t) = xi(t) − xj(t) holds for all i, j = 1, 2, . . . ,m. We have

δxi(t + t0) =

m∑
j=1

∂f i
t+t0−1

∂xj
(f (t−1)(s0))δx

j(t + t0 − 1), i = 1, 2, . . . ,m,(1.11)

where for simplicity we use the notation
∂fi

t+t0−1

∂xj (f (t−1)(s0)) to denote
∂fi

t+t0−1

∂xj (f (t−1)

(s0), . . . , f
(t−1)(s0)). Let

δx(t) =

⎡
⎢⎣

δx1(t)
...

δxm(t)

⎤
⎥⎦ , Dt(s) =

[
∂f i

t

∂xj
(s)

]m
i,j=1

.

The variational equation (1.11) is written in matrix form,

δx(t + t0) = Dt+t0−1(f
(t−1)(s0))δx(t + t0 − 1).(1.12)

For the Jacobian matrix, the following lemma is an immediate consequence of
hypothesis (H1).

Lemma 1.1.

m∑
j=1

∂f i
t

∂xj
(s, s, . . . , s) = f ′(s), i = 1, 2, . . . ,m and t ∈ Z

+.

Namely, all rows of the Jacobian matrix [∂f i
t/∂xj ]

m
i,j=1 evaluated on the synchro-

nization manifold S have the same sum, which is equal to f ′(s).
As a special case, if the time variation is driven by some dynamical system

Y = {Ω,F , P, θ(t)}, then the variational system does not depend on the initial time
t0, but only on (s0, ω). Thus, the Jacobian matrix can be written in the form
D(f (t)(s0), θ

(t)ω) = Dt(f
(t)(s)), by which the variational system can be written as

δx(t + 1) = D(f (t)(s0), θ
(t)ω)δx(t).(1.13)

In this paper, we first extend the concept of the Hajnal diameter to general matri-
ces. A matrix with Hajnal diameter less than one has the property of compressing the
convex hull of {x1, . . . , xm}. Consequently, for an infinite sequence of time-varying



1236 WENLIAN LU, FATIHCAN M. ATAY, AND JÜRGEN JOST

Jacobian matrices, the average compression rate can be used to verify synchronization.
Since the Jacobian matrices have identical row sums, the (skew) projection along the
diagonal synchronization direction can be used to define the projection joint spectral
radius, which equals the Hajnal diameter. Furthermore, we show that the Hajnal
diameter is equal to the largest Lyapunov exponent along directions transverse to the
synchronization manifold; hence, it can also be used to determine whether the coupled
system (1.2) can be synchronized.

Second, we apply these results to discuss the synchronization of the CML with
time-varying couplings. As we shall show, the Hajnal diameter of infinite coupling
stochastic matrices can be utilized to measure the synchronizability of the coupling
process. More precisely, the coupled system (1.7) synchronizes if the sum of the
logarithm of the Hajnal diameter and the largest Lyapunov exponent of the uncou-
pled system is negative. Using the equivalence of the Hajnal diameter, projection
joint spectral radius, and transverse Lyapunov exponents, we study some particular
examples for which the Hajnal diameter can be computed, including static coupling,
a finite coupling set, and a multiplicative ergodic stochastic matrix process. We also
present numerical examples to illustrate our theoretical results.

The connection structure of the CML (1.5) naturally gives rise to a graph, where
each unit can be regarded as a vertex. Hence, we associate the coupling matrix G
with a graph Γ = (V,E), with the vertex set V = {1, 2, . . . ,m} and the edge set
E = {eij}, where there exists a directed edge from vertex j to vertex i if and only
if Gij > 0. The graphs we consider here are assumed to be simple (that is, without
loops and multiple edges) but are allowed to be directed and weighted. That is, we
do not assume a symmetric coupling scheme.

We extend this idea to an infinite graph sequence {Γ(t)}. That is, we regard
a time-varying graph as a graph process {Γ(t)}t∈Z+ . Define Γ(t) = [V,E(t)], where
V = {1, 2, . . . ,m} denotes the vertex set and E(t) = {eij(t)} denotes the edge set of
the graph at time t. The time-varying coupling matrix G(t) might then be regarded as
a function of the time-varying graph sequence, i.e., G(t) = G(Γ(t)). A basic problem
that arises is determining which kind of sequence can ensure the synchrony of the
coupled system for some chaotic synchronized state s(t + 1) = f(s(t)). As we shall
show, the property that the union of the Γ(t) contains a spanning tree is important
for synchronizing chaotic maps. We prove that under certain conditions, the coupling
graph process can synchronize some chaotic maps if and only if there exists an integer
T > 0 such that there exists at least one vertex j from which any other vertex can be
accessible within a time interval of length T .

This paper is organized as follows. In section 2, we present some definitions
and lemmas on the Hajnal diameter, projection joint spectral radius, projection Lya-
punov exponents, and transverse Lyapunov exponents for generalized Jacobian matrix
sequences as well as stochastic matrix sequences. In section 3, we study the synchro-
nization of the generalized coupled discrete-time systems with time-varying couplings
(1.2). In section 4, we discuss the synchronization of the CML with time-varying
couplings (1.7) and study the relation between synchronizability and coupling graph
process topologies. In addition, we present some examples where synchronizability is
analytically computable. In section 5, we present numerical examples to illustrate the
theoretical results, and we conclude the paper in section 6.

2. Preliminaries. In this section we present some definitions and lemmas on
matrix sequences. First, we extend the definitions of the Hajnal diameter and the
projection joint spectral radius, introduced in [18, 19, 20] for stochastic matrices,
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to generalized time-varying matrix sequence. Furthermore, we extend Lyapunov
exponents and projection Lyapunov exponents to the general time-varying case and
discuss their relation. Second, we specialize these definitions to stochastic matrix
sequences and introduce the relation between a stochastic matrix sequence and graph
topology.

2.1. General definitions. We study the generalized time-varying linear system

u(t + t0 + 1) = Lt+t0(�
(t)(φ))u(t + t0),(2.1)

where �(t) is defined by a random dynamical system {Φ,B, P, �(t)}, where Φ denotes
the state space, B the σ-algebra on Φ, P the probability measure, and �(t) a semiflow.
Studying the linear system (2.1) comes from the variational system of the coupled
system (1.2). For the variational system (1.12), �(t)(·) represents the synchronized
state flow f (t)(·). And, if Lt(·) is independent of t, then the linear system (2.1) can
be rewritten as

u(t + 1) = L(�(t)(φ))u(t).(2.2)

Thus, it can represent the variational system (1.13) as a special case, where �(t) is the
product flow (f (t)(·), θ(t)(·)). Hence, the linear system (2.1) can unify the two cases
of variational systems (1.12), (1.13) of the coupled system (1.2), (1.9).

For this purpose, we define a generalized matrix sequence map L from Z
+ ×Φ to

2R
m×m

,

L : Z
+ × Φ → 2R

m×m

(t0, φ) 	→ {Lt+t0(�
(t)φ)}t∈Z+ ,(2.3)

where 2R
m×m

denotes the set containing all subsets of R
m×m. In [18, 19], the concept

of the Hajnal diameter was introduced to describe the compression rate of a stochastic
matrix. We extend it to general matrices below.

Definition 2.1. For a matrix L with row vectors g1, . . . , gm and a vector norm
‖ · ‖ in R

m, the Hajnal diameter of L is defined by

diam(L, ‖ · ‖) = max
i,j

‖gi − gj‖.

We also introduce the Hajnal diameter for a matrix sequence map L.
Definition 2.2. For a generalized matrix sequence map L, the Hajnal diameter

of L at φ ∈ Φ is defined by

diam(L, φ) = lim
t→∞

sup
t0≥0

{
diam

(
t0+t−1∏
k=t0

Lk(�
(k−t0)φ

)} 1
t

,

where
∏

denotes the left matrix product:
∏n

k=1 Ak = An ×An−1 × · · · ×A1.
The Hajnal diameter for the infinite matrix sequence map L does not depend on

the choice of the norm. In fact, all norms in a Euclidean space are equivalent and any
additional factor is eliminated by the power 1/t and the limit as t → ∞.

Let H ⊂ R
m×m be a class of matrices having the property that all row sums are

the same. Thus, all matrices in H share the common eigenvector e0 = [1, 1, . . . , 1]�,
where the corresponding eigenvalue is the row sum of the matrix. Then the projection
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joint spectral radius can be defined for a generalized matrix sequence map L, similar
to that introduced in [20] as follows.

Definition 2.3. Suppose L(t0, φ) ⊂ H for t0 ∈ Z
+ and φ ∈ Φ. Let E0 be the

subspace spanned by the synchronization direction e0 = [1, 1, . . . , 1]�, and let P be any
(m−1)×m matrix with exact kernel E0. We denote by L̂ ∈ R

(m−1)×(m−1) the (skew)
projection of matrix L ∈ H as the unique solution of

PL = L̂P.(2.4)

The projection joint spectral radius of the generalized matrix sequence map L is defined
as

ρ̂(L, φ) = lim
t→∞

sup
t0≥0

∥∥∥∥
t0+t−1∏
k=t0

L̂k(�
(k−t0)φ)

∥∥∥∥
1
t

.

One can see that ρ̂(L, φ) is independent of the choice of the matrix norm ‖ · ‖
induced by the vector norm. The following lemma shows that it is also independent
of the choice of the matrix P .

Lemma 2.4. Suppose L(t0, φ) ⊂ H for all t0 ≥ 0 and φ ∈ Φ. Then

ρ̂(L, φ) = diam(L, φ).

A proof is given in the appendix.
The Lyapunov exponents are often used to study evolution of the dynamics [5, 6].

Here, we extend the definitions of Lyapunov exponents to general time-varying cases.
Definition 2.5. For the coupled system (1.2), the Lyapunov exponent of the

matrix sequence map L initiated by φ ∈ Φ in the direction u ∈ R
m is defined as

λ(L, φ, u) = lim
t→∞

1

t
sup
t0≥0

log

∥∥∥∥
t+t0−1∏
k=t0

Lk(�
(k−t0)φ)u

∥∥∥∥.(2.5)

The projection along the synchronization direction e0 can also define a Lyapunov
exponent, called the projection Lyapunov exponent:

λ̂(L, φ, v) = lim
t→∞

1

t
sup
t0≥0

log

∥∥∥∥
t+t0−1∏
k=t0

L̂k(�
(k−t0)φ)v

∥∥∥∥,(2.6)

where L̂k(�
kφ) is the projection of matrix Lk(�

kφ) as defined in Definition 2.3.
It can be seen that the definition of the generalized Lyapunov exponent above sat-

isfies the basic properties of Lyapunov exponents.1 For more details about generalized
Lyapunov exponents, we refer to [22].

Lemma 2.6. Suppose L(t0, φ) ⊂ H for all φ ∈ Φ and t0 ≥ 0. Then

sup
v∈Rm−1,v 
=0

λ̂(L, φ, v) = log ρ̂(L, φ) = log diam(L, φ).

A proof is given in the appendix.

1This kind of definition of characteristic exponent is similar to the Bohl exponent used to study
uniform stability of time-varying systems in [21].
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This lemma implies that the projection joint spectral radius gives the largest
Lyapunov exponent in directions transverse to the synchronization direction e0 of the
matrix sequence map L.

When the time dependence arises from being totally driven by some random
dynamical system, we can write the generalized matrix sequence map L as L(φ) =
{L(�(t)φ)}t∈Z+ since it is independent of t0 and is just a map on Φ. As introduced
in [23], we have specific definitions for Lyapunov exponents of the time-varying sys-
tem (2.2) as follows.

For the linear system (2.2), the Lyapunov exponent of the matrix sequence map
L initiated by φ ∈ Φ in the direction u ∈ R

m is defined as

λ(L, φ, u) = lim
t→∞

1

t
log

∥∥∥∥
t−1∏
k=0

L(�(k)φ)u

∥∥∥∥.(2.7)

If L(φ) ⊂ H for all φ ∈ Φ, then the Lyapunov exponent in the synchronization
direction e0 is

λ(L, φ, e0) = lim
t→∞

1

t
log

t−1∑
k=0

|c(k)|,(2.8)

where c(k) denotes the corresponding common row sum at each time k. The projection
along the synchronization direction e0 can also define a Lyapunov exponent, called
the projection Lyapunov exponent:

λ̂(L, φ, v) = lim
t→∞

1

t
log

∥∥∥∥
t−1∏
k=0

L̂k(�
(k)φ)v

∥∥∥∥,(2.9)

where L̂(�kω) is the (skew) projection of matrix L(�kω). Also, the Hajnal diameter
and projection joint spectral radius become

diam(L, φ) = lim
t→∞

{
diam

(
t−1∏
k=0

L(�(t)φ)

)} 1
t

, ρ̂(L, φ) = lim
t→∞

∥∥∥∥
t−1∏
k=0

L̂(�(k)φ)

∥∥∥∥
1
t

.

According to Lemmas 2.4 and 2.6, log diam(L, φ) = log ρ̂(L, φ) = supv∈Rm−1,v 
=0 λ̂
(L, φ, v). Let λ0 be the Lyapunov exponent along the synchronization direction e0

and let λ1, λ2, . . . , λm−1 be the remaining Lyapunov exponents for the initial condition
φ, counted with multiplicities.

Lemma 2.7. Suppose that L(φ) ⊂ H is time-independent. Let the matrix D(t) =
[Dij(t)]

m
i,j=1 denote the matrix L(�(t)φ) and let c(t) denote the corresponding common

row sum of D(t). If

1. limt→∞ 1/t
∑t−1

k=0 log |c(k)| = λ0,
2. limt→∞1/t log+ |Dij(t)| ≤ 0 for all i, j = 1, 2, . . . ,m, where log+(z) = max

{log z, 0},
then

log diam(L, φ) = log ρ̂(L, φ) = sup
i≥1

λi.

A proof is given in the appendix.
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Using the concept of the Hajnal diameter, we can define (uniform) synchronization
of the nonautonomous system (1.2) as follows.

Definition 2.8. The coupled system (1.2) is said to be (uniformly locally com-
pletely) synchronized if there exists η > 0 such that for any ε > 0 there exists T > 0
such that the inequality

diam
(
[x1(t), x2(t), . . . , xm(t)]�

)
≤ ε(2.10)

holds for all t > t0 + T, t0 ≥ 0, and xi(t0), i = 1, 2, . . . ,m, in the η neighborhood of
s(t0) of a synchronized state s(t).

2.2. Stochastic matrix sequences. The above definitions can also be used to
deal with stochastic matrix sequences.

Definition 2.9. A matrix G ∈ R
m×m is said to be a stochastic matrix if its

elements are nonnegative and each row sum is 1.
We consider here the general time-varying case without the assumption of an

underlying random dynamical system and write a stochastic matrix sequence as G =
{G(t)}t∈Z+ . The case that the time variation is driven by some dynamical system can
be regarded as a special one.

Definition 2.10. The Hajnal diameter of G is defined as

diam(G) = lim
t→∞

sup
t0≥0

(
diam

t0+t−1∏
k=t0

G(k)

) 1
t

(2.11)

and the projection joint spectral radius for G is

ρ̂(G) = lim
t→∞

sup
t0≥0

∥∥∥∥
t0+t−1∏
k=t0

Ĝ(k)

∥∥∥∥
1
t

,(2.12)

where Ĝ(t) is the projection of G(t), as in Definition 2.3.
Then, from Lemma 2.4, we have the following.
Lemma 2.11. diam(G) = ρ̂(G).
To estimate the Hajnal diameter of a product of stochastic matrices, we use the

concept of scrambling introduced in [20].
Definition 2.12. A stochastic matrix G = [Gij ]

m
i,j=1 ∈ R

m×m is said to be
scrambling if for any i, j there exists an index k such that Gik �= 0 and Gjk �= 0.

For gi = [gi,1, . . . , gi,m] ∈ R
m and gj = [gj,1, . . . , gj,m] ∈ R

m, define

gi ∧ gj =
[
min(gi,1, gj,1), . . . ,min(gi,m, gj,m)

]
.

We use the following quantity introduced in [18, 19] to measure scramblingness:

η(G) = min
i,j

‖gi ∧ gj‖1,

where ‖ · ‖1 is the norm given by ‖x‖1 =
∑m

i=1 |xi| for x = [x1, . . . , xm] ∈ R
m. It is

clear that 0 ≤ η(G) ≤ 1 and that η(G) > 0 if and only if G is scrambling. Thus, the
well-known Hajnal inequality has the following generalized form.

Lemma 2.13 (generalized Hajnal inequality [20, Theorem 6]). For any vector
norm in R

m and any two stochastic matrices G and H,

diam(GH) ≤ (1 − η(G))diam(H).(2.13)
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The concepts of projection joint spectral radius and the Hajnal diameter are
linked to the ergodicity of stochastic matrix sequences. We can extend the ergodicity
for a matrix set [20, 24] to a matrix sequence as follows.

Definition 2.14 (ergodicity [14, Definition 1]). A stochastic matrix sequence
Σ = {G(t)}t∈Z+ is said to be ergodic if for any t0 and ε > 0 there exists T > 0 such
that for any t > T and some norm ‖ · ‖,

diam

(
t0+t−1∏
s=t0

G(s)

)
≤ ε.(2.14)

Moreover, if for any ε > 0 there exists T > 0 such that inequality (2.14) holds for all
t ≥ T and t0 ≥ 0, G is said to be uniformly ergodic.

A stochastic matrix G = [Gij ]
m
i,j=1 can be associated with a graph Γ = [V,E],

where V = {1, 2, . . . ,m} denotes the vertex set and E = {eij} the edge set, in
the sense that there exists an edge from vertex j to i if and only if Gij > 0. Let
Γ1 = [V,E1] and Γ = [V,E2] be two simple graphs with the same vertex set. We
also define the union Γ1

⋃
Γ2 = [V,E1

⋃
E2] (merging multiple edges). It can be seen

that for two stochastic matrices G1 and G2 with the same dimension and positive
diagonal elements, the edge set of Γ1

⋃
Γ2 is contained in that of the corresponding

graph of the product matrix G1G2. In this way, we can define the union of the graph
sequence {Γ(t)}t∈Z+ across the time interval [t1, t2] by

⋃t2
k=t1

Γ(k) = [V,
⋃t2

k=t1
E(k)].

The following concepts for graphs can be found, e.g., in [25].
Definition 2.15. A graph Γ is said to have a spanning tree if there exists a

vertex, called the root, such that for each other vertex j there exists at least one
directed path from the root to vertex j.

It follows that {Γ(t)}t∈Z+ has a spanning tree across the time interval [t1, t2] if
the union of {Γ(t)}t∈Z+ across [t1, t2] has a spanning tree. This is equivalent to the
existence of a vertex from which all other vertices can be accessible across [t1, t2].

Definition 2.16. A graph Γ is said to be scrambling if for any different vertices
i and j there exists a vertex k such that there exist edges from k to i and from k to j.

It follows that a stochastic matrix G is scrambling if and only if the corresponding
graph Γ is scrambling.

Lemma 2.17 (see [24, Lemma 4]). Let G(1), G(2), . . . , G(m − 1) be stochastic
matrices with positive diagonal elements, where each of the corresponding graphs Γ(1),

Γ(2), . . . , Γ(m− 1) have spanning trees. Then
∏m−1

k=1 G(k) is scrambling.
Suppose now that the stochastic matrix sequence G is driven by some metric

dynamical system Y = {Ω,F , P, θ(t)}. We write G as {G(t) = G(θ(t)ω)}t∈Z+ , where
ω ∈ Ω. Then, as stated in section 2.1, we can define the Lyapunov exponents.

Definition 2.18. The Lyapunov exponent of the stochastic matrix sequence G is
defined as

σ(G, ω, u) = lim
t→∞

1

t
log

∥∥∥∥
t−1∏
k=0

G(θtω)u

∥∥∥∥.
The projection Lyapunov exponents is defined as

σ̂(G, ω, u) = lim
t→∞

1

t
log

∥∥∥∥
t−1∏
k=0

Ĝ(θtω)u

∥∥∥∥,
where Ĝ(·) is the projection of G(·) as defined in Definition 2.3.



1242 WENLIAN LU, FATIHCAN M. ATAY, AND JÜRGEN JOST

For a given ω ∈ Ω, one can see that diam(G) and ρ̂(G) both equal the largest
Lyapunov exponent of G in directions transverse to the synchronization direction
under several mild conditions.

In closing this section, we list some notation to be used in the remainder of the
paper. The matrix L̂ denotes the (skew) projection of the matrix L along the vector
e introduced in Definition 2.3, and L̂ is the (skew) projection of the matrix sequence
map L along e. For x = (x1, . . . , xm)� ∈ R

m, the average 1
m

∑m
i=1 x

i of x is denoted
by x̄. The notation ‖·‖ denotes some vector norm in the linear space R

m, and also the
matrix norm in R

m×m induced by this vector norm. f (t)(s0) denotes the t-iteration of
the map f with initial condition s0. We let x(t, t0, x0) be the solution of the coupled
system (1.2) with initial condition x(t0) = x0, which we sometimes abbreviate as x(t).

3. Generalized synchronization analysis. For the variational system (1.12),
similar to subsection 2.1, we denote by D the Jacobian sequence map in the generalized
sense; i.e., D is a map from Z

+ ×R to 2R
m×m

: D(t0, s0) = {Dt+t0(f
(t)(s0))}t∈Z+ ⊂ H

for all t0 ∈ Z
+ and s0 ∈ A. Furthermore, letting

B(t, t0) =

t+t0−1∏
k=t0

Dk(f
(k−t0)(s0)),

we can rewrite the variational system (1.12) as follows:

δx(t + t0) = Dt+t0−1(f
(t−1)(s0))δx(t + t0 − 1) = B(t, t0)δx(t0).(3.1)

From Definitions 2.2 and 2.3, we have

diam(D, s0) = lim
t→∞

sup
t0≥0

{
diam

(
t0+t−1∏
k=t0

Dk(f
(k−t0)(s0))

)} 1
t

,

ρ̂(D, s0) = lim
t→∞

sup
t0≥0

∥∥∥∥
t0+t−1∏
k=t0

D̂k(f
(k−t0)(s0))

∥∥∥∥
1
t

.

We will also refer to the following hypothesis.
(H3)

sup
s0∈A

diam(D, s0) < 1.(3.2)

Theorem 3.1. If hypotheses (H1)–(H3) hold, then the compact set Am
⋂
S is a

uniformly asymptotically stable attractor of the coupled system (1.2) in R
m; i.e., the

coupled system (1.2) is uniformly locally completely synchronized.
Proof. Let

diam(D, t0, t, s0) = diam

(
t0+t−1∏
k=t0

Dk

(
f (k−t0)(s0)

))
,

diam(D, t, s0) = sup
t0≥0

{
diam

(
t0+t−1∏
k=t0

Dk(f
(k−t0)(s0))

)}
.

According to (H3), letting 1 > d > sups0∈A diam(D, s0) and n0 satisfy dn0 < 1
3 ,

for any s0 ∈ A, there exists n(s0) ≥ n0 such that diam(D, t, s0) < d holds for
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all t ≥ n(s0). By equicontinuity (H1) and compactness (H2), there must exist a
finite integer set V = {n1, n2, . . . , nv} satisfying ni ≥ n0 for all i = 1, 2, . . . , v and
a neighborhood U of A such that for any s0 ∈ U there exists nj ∈ V such that

diam
(∏t0+nj−1

k=t0
Dk(f

(k−t0)(s0))
)
< dnj < 1

3 holds for all t0 ≥ 0.
By hypothesis (H2), there exists a compact neighborhood W of A such that

U ⊃ W ⊃ A, f(W ) ⊂ W , and
⋂

n≥0 f
(n)(W ) = A [26]. Let

a = min
n∈V

dH(f (n)(W ),W ) > 0,

where dH(·, ·) denotes the Hausdorff metric in R . Then define a compact set

Wα =

{
x = (x1, . . . , xm) ∈ R

m : max
1≤i≤m

|xi − x̄| ≤ α and x̄ ∈ W

}
.

By the mean value theorem, we have

f i
k(x

1(k), . . . , xm(k)) − f(s(k), . . . , s(k)) =

m∑
j=1

∂f i
k

∂xj
(ξijk ),

where ξijk belongs to the closed interval induced by the two ends xi(k) and s(k).

Denote by Dk(ξk) the matrix [∂f i
k(ξ

ij
k )/∂xj ]mi,j=1.

Let α > 0 be sufficiently small so that for each x0 ∈ Wα with s(t0) = x̄0 and
x(t0) = x0, there exists t1 ∈ V such that

|xi(t1, t0, x0) − f (t1−t0)(x̄0)| ≤
a

2
,

diam

( t0+t1−1∏
k=t0

Dk(ξk)

)
<

1

2

hold for all t0 ≥ 0. Then, for any x0 ∈ Wα, x̄0 ∈ W , we have

δx(t1 + t0) =

t1+t0−1∏
k=t0

Dk(ξ(k))δx0 = B̃(t1, t0)δx0,

where B̃(t1, t0) =
∏t1+t0−1

k=t0
Dk(ξ(k)). Then

|δxi(t1 + t0) − δxj(t1 + t0)| ≤
m∑

k=1

|B̃ik(t1, t0) − B̃jk(t1, t0)||δxj
0|

≤ diam(B̃(t1, t0)) max
1≤i≤m

|xi
0 − x̄0|.

Thus, we conclude that

max
1≤i,j≤m

|xi(t1 + t0) − xj(t1 + t0)| ≤
1

2
max

1≤i,j≤m
|xi

0 − xj
0|.

By the definition of Wα, we see that x(t1 + t0) ∈ Wα/2. With initial time t0 + t1, we
can continue this phase and afterwards obtain

lim
t→∞

|xi(t) − xj(t)| = 0, i, j = 1, 2, . . . ,m,
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uniformly with respect to t0 ∈ Z
+ and x0 ∈ Wα. Therefore, the coupled system (1.2)

is uniformly synchronized. Furthermore, we obtain that Am
⋂
S is a uniformly asymp-

totically stable attractor for the coupled system (1.2), and the convergence rate can
be estimated by O({sups0∈A diam(D, s0)}t) since d is chosen arbitrarily greater than
sups0∈A diam(D, s0). The theorem is proved.

Remark 1. The idea of the above proof comes from that of Theorem 2.12 in [1],
with a modification for the time-varying case. In Theorem 2.12 in [1], the authors used
normal Lyapunov exponents to prove asymptotic stability of the original autonomous
system for the case when it is asymptotically stable in an invariant manifold. In this
paper, we directly use the Hajnal diameter of the left product of the infinite Jacobian
matrix sequence map to measure the transverse differences of the collections of spatial
states. Furthermore, we consider a nonautonomous system here due to time-varying
couplings.

Following Lemma 2.4 gives us the following.
Corollary 3.2. If sups0∈A ρ̂(D, s0) < 1, then the coupled system (1.2) is uni-

formly synchronized.
Consider the special case that the coupled system (1.9) is an RDS on an MDS

Y = {Ω,F , P, θ(t)}. We can write this coupled system (1.9) as a product dynamical
system {A×Ω,F,P,Θ(t)}, where F is the product σ-algebra on A×Ω, P denotes the
probability measure, and Θ(t)(s0, ω) = (θ(t)ω, f (t)(s0)). Let D(f (t)(s0), θ

(t)ω) denote
the Jacobian matrix at time t. By Definition 2.5, the Lyapunov exponents for the
coupled system (1.9) can be written as follows:

λ(u, s0, ω) = lim
t→∞

1

t
log

∥∥∥∥
t−1∏
k=0

D(f (k)(s0), θ
(k)ω)u

∥∥∥∥.
It can be seen that the Lyapunov exponent along the diagonal synchronization direc-
tion e0 is

λ(e0, s0, ω) = lim
t→∞

1

t

t−1∑
k=0

log |c(k)|,

where c(k) is the common row sum of D(f (k)(s0), θ
(k)ω). Let λ0 = λ(e0, s0, ω),

λ1, . . . , λm−1 be the Lyapunov exponents (counting multiplicity) of the dynamical
system L with the initial condition (s0, ω). From Lemma 2.7, we conclude that
supi≥1 λi = log ρ̂(F, s0, ω) = log diam(F, s0, ω). If the probability P is ergodic, then
the Lyapunov exponents exist for almost all s0 ∈ A and ω ∈ Ω, and furthermore they
are independent of (s0, ω).

Corollary 3.3. Suppose that hypotheses (H1)–(H2) and the assumptions in
Lemma 2.7 hold. Suppose further that A× Ω is compact in the weak topology defined
in this RDS, the semiflow Θ(t) is continuous, the Jacobian matrix D(·, ·) is nonsingular
and continuous on A× Ω, and

sup
P∈ErgΘ(A×Ω)

sup
i≥1

λi < 0,

where ErgΘ(A × Ω) denotes the ergodic probability measure set supported in {A ×
Ω,F,Θ(t)}. Then the coupled system (1.9) is uniformly locally completely synchronized.

Proof. By Theorem 2.8 in [1], we have

sup
P∈ErgΘ(A×Ω)

λmax(D̂,P) = sup
‖u‖=1,(s0,ω)∈A×Ω

lim
t→∞

1

t
log

∥∥∥∥
t−1∏
k=0

D̂(f (k)(s0), θ
(k)ω)u

∥∥∥∥,
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where D̂ is the projection of the intrinsic matrix sequence map D and λmax(D̂,P)
denotes the largest Lyapunov exponent of D̂ according to the ergodic probability P
(the value for almost all (s0, ω) according to P). From Lemmas 2.4, 2.6, and 2.7, it
follows that

sup
P∈ErgΘ(A×Ω)

sup
i≥1

λi = sup
P∈ErgΘ(A×Ω)

λmax(D̂,P) = sup
(s0,ω)∈A×Ω

λmax(D̂, s0, ω)

= sup
(s0,ω)∈A×Ω

log ρ̂(D, s0, ω) = sup
(s0,ω)∈A×Ω

log diam(D, s0, ω).

The corollary is proved as a direct consequence from Theorem 3.1.
Remark 2. If λ0 is the largest Lyapunov exponent, then V = {u : λ(u) < λ0}

constructs a subspace of R
m which is transverse to the synchronization direction e0.

Corollary 3.3 implies that if all Lyapunov exponents in the transverse directions are
negative, then the coupled system (1.2) is synchronized. Otherwise, if λ0 is not the
largest Lyapunov exponent, then supi≥1 λi < 0 implies that the largest exponent
is negative, which means that the synchronized solution s(t) is itself asymptotically
stable through the evolution (1.9).

Remark 3. From Lemma 2.7, it can also be seen that when computing ρ(D), it is
sufficient to compute the largest Lyapunov exponent of D̂. In [1], the authors proved
for an autonomous dynamical system that if all Lyapunov exponents of the normal
directions, namely, the Lyapunov exponents for D̂, are negative, then the attractor in
the invariant submanifold is an attractor in R

m (or a more general manifold). In this
paper, we extend the proof of Theorem 2.12 in [1] to the general time-varying coupled
system (1.2) by discussing the relation between the Hajnal diameter and transverse
Lyapunov exponents. In the following sections, we continue the synchronization anal-
ysis for nonautonomous dynamical systems.

4. Synchronization analysis of CML with time-varying topologies. Con-
sider the following coupled system with time-varying topologies:

xi(t + 1) =

m∑
j=1

Gij(t)f(xj(t)), i = 1, 2, . . . ,m, t ∈ Z
+,(4.1)

where f(·) : R → R is C1 continuous and G(t) = [Gij(t)]
m
i,j=1 is a stochastic matrix.

In matrix form,

x(t + 1) = G(t)F (x(t)).(4.2)

Since the coupling matrix G(t) is a stochastic matrix, the diagonal synchronization
manifold is invariant and we have the uncoupled (or synchronized) state as

s(t + 1) = f(s(t)).(4.3)

We suppose that for the synchronized state (4.3), there exists an asymptotically stable
attractor A with the (maximum) Lyapunov exponent

μ = sup
s0∈A

lim
t→∞

1

t

t−1∑
k=0

log |f ′(s(k))|.

System (4.1) is a special form of (1.2) satisfying the equicontinuous condition (H1).
Linearizing system (4.1) about the synchronized state yields the variational equation

δxi(t + 1) =

m∑
j=1

Gij(t)f
′(s(t))δxi(t), i = 1, 2, . . . ,m,



1246 WENLIAN LU, FATIHCAN M. ATAY, AND JÜRGEN JOST

and

diam

( t0+t−1∏
k=t0

G(k)f ′(f (k−t0)(s0))

)
= diam

( t0+t−1∏
k=t0

G(k)

)∣∣∣∣
t∏

l=0

f ′(f (l)(s0))

∣∣∣∣.
Denote the stochastic matrix sequence {G(t)}t∈Z+ by G. Thus, the Hajnal diameter
of the variational system is diam(G)eμ. Using Theorem 3.1, we have the following
result.

Theorem 4.1. Suppose that the uncoupled system s(t + 1) = f(s(t)) satisfies
hypothesis (H2) with Lyapunov exponent μ. Let G = {G(t)}t∈Z+ . If

diam(G)eμ < 1,(4.4)

then the coupled system (4.1) is synchronized.
From Theorem 4.1, one can see that the quantity diam(G) as well as other equiva-

lent quantities such as the projection joint spectral radius and the Lyapunov exponent,
can be used to measure the synchronizability of the time-varying coupling, i.e., the
coupling stochastic matrix sequence G. A smaller value of diam(G) implies a better
synchronizability of the time-varying coupling topology. If the uncoupled system (4.3)
is chaotic, i.e., μ > 0, then the necessary condition for synchronization condition (4.4)
is diam(G) < 1. So, it is important to investigate under what conditions diam(G) < 1
holds.

Suppose that the stochastic matrix set M satisfies the following hypotheses.
(H4) M is compact and there exists r > 0 such that for any G = [Gij ]

m
i,j=1 ∈ M,

Gij > 0 implies Gij ≥ r and all diagonal elements Gii > r, i = 1, 2, . . . ,m.
We denote the graph sequence corresponding to the stochastic matrix sequence

G by Γ = {Γ(t)}t∈Z+ . Then we have the following result.
Theorem 4.2. Suppose that the stochastic matrix sequence G ⊂ M satisfies

hypothesis (H4). Then the following statements are equivalent:
1. diam(G) < 1;

2. there exists T > 0 such that for any t0 the graph
⋃t0+T

k=t0
Γ(k) has a spanning

tree;
3. the stochastic matrix sequence G is uniformly ergodic.

Proof. We first show that (3) ⇒ (2) by reduction to absurdity. Let B(t0, t) =∏t0+t−1
k=t0

G(k). Since G is uniformly ergodic, there must exist T > 0 such that

diam(B(t0, T )) < 1/2 holds for any t0 ≥ 0. So, v =
∏t0+T−1

k=t0
G(k)u satisfies

max
1≤i,j≤m

|vi − vj | ≤ diam(B(t0, T ))‖u‖∞ ≤ 1

2
‖u‖∞.(4.5)

If the second condition does not hold, then there exists tT such that the union⋃tT +T−1
k=tT

Γ(k) does not have a spanning tree. That is, there exist two vertices v1

and v2 such that for any vertex z there is either no directed path from z to v1 or
no directed path from z to v2. Let U1 (U2) be the vertex set which can reach v1

(v2, respectively) across [tT , tT + T − 1]. This implies that U1 and U2 are disjoint
across [tT , tT + T − 1] and no edge starts outside of U1 (U2) and ends in U1 (U2).
Furthermore, considering the Frobenius form of G(t), one can see that the elements in
the corresponding rows of U1 (U2) with columns associated with the complementary
set of U1 (U2) are all zeros. Let

ui =

⎧⎨
⎩

1, i ∈ U1,
0, i ∈ U2,
any value in (0, 1), otherwise.
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We have

vi =

⎧⎨
⎩

1, i ∈ U1,
0, i ∈ U2,
∈ [0, 1], otherwise.

This implies that max1≤i,j≤m |vi−vj | ≥ 1 = ‖u‖∞, which contradicts (4.5). Therefore,
(3) ⇒ (2) can be concluded.

We next show (2) ⇒ (1). Applying Lemma 2.17, there exists T > 0 such that∏t0+T−1
k=t0

G(k) is scrambling for any t0. There exists δ > 0 such that η(B(T, t0)) >
δ > 0 for all t0 ≥ 0 because of the compactness of the set M. So,

diam(B(t, t0)) = diam

⎧⎨
⎩B

(
mod(t, T ), t0 +

[
t

T

]
T

) [ t
T ]∏

k=1

B(T, t0 + (k − 1)T )

⎫⎬
⎭

≤ diam

⎧⎨
⎩

[ t
T ]∏

k=1

B(t0 + kT − 1, t0 + (k − 1)T )

⎫⎬
⎭

≤ 2(1 − δ)[
t
T ](4.6)

holds for any t0 ≥ 0. Here, [t/T ] denotes the largest integer less than t/T and
mod(t, T ) denotes the modulus of the division t÷ T . Thus,

diam(G) ≤ (1 − δ)
1
T < 1.

This proves (2) ⇒ (1). Since (1) ⇒ (3) is clear, the theorem is proved.
Remark 4. According to Lemma 2.17, it can be seen that the union of graphs

across any time interval of length T has a spanning tree if and only if a union of
graphs across any time interval of length (m− 1)T is scrambling.

Moreover, from [27], we conclude more results on the ergodicity of stochastic
matrix sequences as follows.

Proposition 4.3. The implication (1) ⇒ (2) ⇒ (3) holds for the following
statements:

1. diam(G) < 1;
2. G is ergodic;
3. for any t0 ≥ 0, the union

⋃
k≥t0

Γ(k) has a spanning tree.
Remark 5. It should be pointed out that the implications in Proposition 4.3

cannot be reversed. Counterexamples can be found in [14]. However, in [14], it is also
proved under certain conditions that if the stochastic matrices have the property that
Gij > 0 if and only if Gji > 0, then statement 2 is equivalent to statement 3.

Assembling Theorem 4.2, Proposition 4.3, and the results in [14], it can be shown
that, for G ⊂ M, the implications

A1 ⇔ A2 ⇔ A3 ⇒ A4 ⇒ A5

hold regarding the following statements:
• A1: diam(G) < 1.
• A2: there exists T > 0 such that the union across any T -length time interval

[t0.t0 + T ]:
⋃t0+T

k=t0
Γ(k) has a spanning tree.

• A3: G is uniformly ergodic.
• A4: G is ergodic.
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• A5: for any t0, the union across [t0,∞):
⋃

k≥t0
Γ(k) has a spanning tree.

In the following, we present some special classes of examples of CML with time-
varying couplings. These classes were widely used to describe discrete-time networks
and were studied in some recent papers [5, 6, 20, 27]. The synchronization criterion
for these classes can be verified by numerical methods. Thus, the synchronizability
diam(G) of the time-varying couplings can also be computed numerically.

4.1. Static topology. If G(t) is a static matrix, i.e., G(t) = G for all t ∈ Z
+,

then we can write the coupled system (4.1) as

x(t + 1) = GF (x(t)).(4.7)

Proposition 4.4. Let 1 = σ0, σ1, σ2, . . . , σm−1 be the eigenvalues of G ordered
by 1 ≥ |σ1| ≥ |σ2| ≥ · · · ≥ |σm−1|. If |σ1|eμ < 1, then the coupled system (4.7) is
synchronized.

Proof. Let v0 = e0 and choose column vectors v1, v2, . . . , vm−1 in R
m such that

v0, v1, . . . , vm−1 is an orthonormal basis for R
m. Let A = [v0, v1, . . . , vm−1]. Then

A−1GA =

[
1 α

0 Ĝ

]
,

where the eigenvalues of Ĝ are σ1, . . . , σm−1. By the Householder theorem (see The-
orem 4.2.1 in [28]), for any ε > 0, there must exist a norm in R

m such that with its
induced matrix norm,

|σ1| ≤ ‖Ĝ‖ ≤ |σ1| + ε.

Since ε is arbitrary, for the static stochastic matrix sequence G0 = {G,G, . . . , }, it can
be concluded that ρ̂(G0) = |σ1|. Using Theorem 4.1, the conclusion follows. Moreover,
it can also be obtained that the convergence rate is O((|σ1|eμ)t).

Remark 6. Similar results have been obtained by several papers concerning syn-
chronization of CML with static connections (see [5, 6, 8, 29]). Here, we have proved
this result in a different way as a consequence of our main result.

4.2. Finite topology set. Let Q be a compact stochastic matrix set satisfying
(H4). Consider the following inclusions:

x(t + 1) ∈ QF (x(t)),(4.8)

i.e.,

x(t + 1) = G(t)F (x(t)),(4.9)

G(t) ∈ Q.(4.10)

Then the synchronization of the coupled system (4.8) can be formulated as follows.
Definition 4.5. The coupled inclusion system (4.8) is said to be synchronized if,

for any stochastic matrix sequence G ⊂ Q, the coupled system (4.9) is synchronized.
In [20], the authors defined the Hajnal diameter and projection joint spectral

radius for a compact stochastic matrix set.
Definition 4.6. For the stochastic matrix set Q, the Hajnal diameter is given by

diam(Q) = lim
t→∞

sup
G(k)∈Q

{
diam

(
t−1∏
k=0

G(k)

)} 1
t

,
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and the projection joint spectral radius is

ρ̂(Q) = lim
t→∞

{
sup

G(k)∈Q

∥∥∥∥
t−1∏
k=0

Ĝ(k)

∥∥∥∥
} 1

t

.

The following result is from [20].
Lemma 4.7. Suppose Q is a compact set of stochastic matrices. Then

diam(Q) = ρ̂(Q).

Using Theorem 4.1, we have the following.
Theorem 4.8. If diam(Q)eμ < 1, then the coupled system (4.8) is synchronized.
Moreover, we conclude that the synchronization is uniform with respect to t0 ∈ Z

+

and stochastic matrix sequences G ⊂ Q. Furthermore, we have the following result
on synchronizability of the stochastic matrix set Q.

Proposition 4.9. Let Q be a compact set of stochastic matrices satisfying
hypothesis (H4). Then the following statements are equivalent:

• B1: diam(Q) < 1.
• B2: for any stochastic matrix sequence G ⊂ Q, G is ergodic.
• B3: each corresponding graph of a stochastic matrix G ∈ Q has a spanning

tree.
Proof. The implication B1 ⇒ B2 ⇒ B3 is clear by Proposition 4.3. And B3 ⇒ B1

can be obtained by the proof of Theorem 4.2 since Q is a finite set of stochastic
matrices satisfying hypothesis (H4).

Remark 7. By the methods introduced in [30, 31, 32], ρ̂(Q) can be computed to
arbitrary precision for a finite set Q despite a large computational complexity.

4.3. Multiplicative ergodic topology sequence. Consider the stochastic
matrix sequence G = {G(t)}t∈Z+ driven by some dynamical system Y = {Ω,F , P, θ(t)},
i.e., G = {G(θ(t)ω)} for some continuous map G(·). Recall the Lyapunov exponent
for G:

σ(v, ω) = lim
t→∞

1

t
log

∥∥∥∥
t−1∏
k=0

G(θ(k)ω)v

∥∥∥∥.
It is clear that σ(e0, ω) = 0 for all ω and σ(v, ω) ≤ 0 for all ω and v ∈ R

m. So, the
linear subspace

Lω = {v, σ(v, ω) < 0}

denotes the directions transverse to the synchronization manifold. If P is an ergodic
measure for the MDS Y, then σ(u, ω) and L(ω) are the same for almost all ω with
respect to P [33]. Then we can let σ1 be the largest Lyapunov exponent of G transverse
to the synchronization direction e0. By Theorem 4.1 and Corollary 3.3, we have the
following.

Theorem 4.10. Suppose that θ(t) is a continuous semiflow, G(·) is continuous
on all ω ∈ Ω and nonsingular, and Ω is compact. If

sup
Erfθ(Ω)

σ1 + μ < 0,
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then the coupled system (4.1) is synchronized.
Remark 8. There are many papers discussing the computation of multiplicative

Lyapunov exponents; for example, see [34, 35]. In particular, [36] discussed the Lya-
punov exponents for the product of infinite matrices. By Lemma 2.7, we can compute
the largest projection Lyapunov exponent which equals σ1. We will illustrate this in
the following section.

5. Numerical illustrations. In this section, we will numerically illustrate the
theoretical results on synchronization of CML with time-varying couplings. In these
examples, the coupling matrices are driven by random dynamical systems which can
be regarded as stochastic processes. Then the projection Lyapunov exponents are
computed numerically by the time series of coupling matrices. In this way, we can
verify the synchronization criterion and analyze synchronizability numerically. Con-
sider the following coupled map network with time-varying topology:

xi(t + 1) =
1

m∑
k=1

Aik(t)

m∑
j=1

Aij(t)f(xj(t)), i = 1, 2, . . . ,m,(5.1)

where xi(t) ∈ R and f(s) = αs(1− s) is the logistic map with α = 3.9, which implies
that the Lyapunov exponent of f is μ ≈ 0.5. The stochastic coupling matrix at
time t is

G(t) = [Gij(t)]
m
i,j=1 =

⎡
⎢⎢⎣ Aij(t)

m∑
j=1

Aij(t)

⎤
⎥⎥⎦
m

i,j=1

.

5.1. Blinking scale-free networks. The blinking scale-free network is a model
initiated by a scale-free network and evolves with malfunction and recovery. At time
t = 0, the initial graph Γ(0) is a scale-free network introduced in [37]. At each time
t ≥ 1, every vertex i malfunctions with probability p � 1. If vertex i malfunctions,
all edges linked to it disappear. In addition, a malfunctioned vertex recovers after a
time interval T and then causes the reestablishment of all edges linked to it in the
initial graph Γ(0). The coupling Aij(t) = Aji(t) = 1 if vertex j is connected to i at
time t; otherwise, Aij(t) = Aji(t) = 0 and Aii(t) = 1 for all i, j = 1, 2, . . . ,m.

In Figure 1, we show the convergence of the second Lyapunov exponent σ1 during
the topology evolution with different malfunction probability p. We measure synchro-
nization by the variance K = 1/(m − 1)〈

∑m
i=1(x

i(t) − x̄(t))2〉, where 〈·〉 denotes the
time average, and we denote W = σ1+μ. We pick the evolution time length to be 1000
and choose initial conditions randomly from the interval (0, 1). In Figure 2, we show
the variation of K and W with respect to the malfunction probability p. It can be
seen that the region where W is negative coincides with the region of synchronization,
i.e., where K is near zero.

5.2. Blurring directed graph process. A blurring directed graph process is
one where each edge weight is a modified Wiener process. In details, the graph process
is started with a directed weighted graph Γ(0) of which for each vertex pair (i, j), one
of two edges Aij(0) and Aji(0) is a random variable uniformly distributed between 1
and 2, and the other is zero with equal probability, for all i �= j; Aii(0) = 0 for all
i = 1, 2, . . . ,m. At each time t ≥ 1, for each Aij(t − 1) �= 0, i �= j we denote the
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Fig. 1. Convergence of the second Lyapunov exponent σ1 for the blinking topology during
the topology evolution with the same recovery time T = 3 and different malfunction probabilities
p = 10−1, p = 10−2, and p = 10−4. The initial scale-free graph is constructed by the method
introduced in [37] with network size 500 and average degree 12.
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Fig. 2. Variation of K and W with respect to p for the blinking topology.

difference Aij(t)−Aij(t−1) by a Gaussian distribution N (0, r2) which is statistically
independent for all i �= j and t ∈ Z

+. If this results in Aij(t) being negative, a
weight will be added to the reversal orientation, i.e., Aji(t) = |Aij(t)| and Aij(t) = 0.
Moreover, if as a result of the process above there exists some index i such that
Aij = 0 holds for all j = 1, 2, . . . ,m, then pick Aii(t) = 1.

In Figure 3, we show the convergence of the second Lyapunov exponent σ1 during
the topology evolution for different values of the Gaussian distribution variance r.
Picking r = 0.05, we show the synchronization of the coupled system (5.1). Let
K(t) = 1/(m − 1)〈

∑m
i=1(x

i(t) − x̄(t))2〉t, where 〈·〉t denotes the time average from
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Fig. 3. Convergence of the second Lyapunov exponent σ1 for the blurring graph process during
the topology evolution with Gaussian variance r = 0.5, 0.05, 0.005, and the size of the network
m = 100.
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Fig. 4. Variation of K(t) with respect to time for the blurring graph process.

0 to t. Since W = σ1 + μ is about −0.6, i.e., less than zero, the coupled system is
synchronized. Figure 4 shows in logarithmic scale the convergence of K(t) to zero.

6. Conclusion. In this paper, we have presented a synchronization analysis for
discrete-time dynamical networks with time-varying topologies. We have extended
the concept of the Hajnal diameter to generalized matrix sequences to discuss the
synchronization of the coupled system. Furthermore, this quantity is equivalent to
other widely used quantities such as the projection joint spectral radius and transverse
Lyapunov exponents, which we have also extended to the time-varying case. Thus,
these results can be used to discuss the synchronization of the CML with time-varying
couplings. The Hajnal diameter is utilized to describe synchronizability of the time-
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varying couplings and obtain a criterion guaranteeing synchronization. Time-varying
couplings can be regarded as a stochastic matrix sequence associated with a sequence
of graphs. Synchronizability is tightly related to the topology. As we have shown,
the statement that diam(G) < 1, i.e., that chaotic synchronization is possible, is
equivalent to saying that there exists an integer T such that the union of the graphs
across any time interval of length T has a spanning tree. The methodology will be
similarly extended to higher-dimensional maps elsewhere.

Appendix.
Proof of Lemma 2.4. The proof of this lemma comes from [20] with a minor

modification. First, we show diam(L, φ) ≤ ρ̂(L, φ). Let J be any complement of E0 in
R

m with a basis u0, . . . , um−1 such that u0 = e0. Let A = [u0, u1, . . . , um−1], which
is nonsingular. Then, for any t > t0 and t0 ≥ 0,

A−1Lt(�
(t−t0)φ)A =

[
c(t) αt

0 L̂t(�
(t−t0)φ)

]
,

where c(t) denotes the row sum of Lt(�
(t−t0)φ) which is also the eigenvalue corre-

sponding eigenvector e, and L̂t(�
(t−t0)φ) can be the solution of linear equation (2.4)

with P composed of the rows of A−1 except the first row. For any d > ρ̂(L, φ), there
exists T > 0 such that the inequality∥∥∥∥∥

t0+t−1∏
k=t0

L̂k(�
(k−t0)φ)

∥∥∥∥∥ ≤ dt

holds for all t ≥ T and t0 ≥ 0. Let

A−1
t0+t−1∏
k=t0

Lk(�
(k−t0)φ)A =

⎡
⎢⎢⎣

t0+t−1∏
k=t0

c(k) αt

0
t0+t−1∏
k=t0

L̂k(�
(k−t0)φ)

⎤
⎥⎥⎦ .

Then ∥∥∥∥∥∥∥∥∥
A−1

t0+t−1∏
k=t0

Lk(�
(k−t0)φ)A−

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦
(

t0+t−1∏
k=t0

c(k), αt

)∥∥∥∥∥∥∥∥∥
=

∥∥∥∥
[

0 0

0
∏t0+t−1

k=t0
L̂k(�

(k−t0)φ)

]∥∥∥∥ ≤ Cdt

holds for some constant C > 0. Therefore,∥∥∥∥∥∥∥∥∥
t0+t−1∏
s=t0

Lk(�
(k−t0)φ) −A

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦
(

t0+t−1∏
k=t0

c(k), αt

)
A−1

∥∥∥∥∥∥∥∥∥
≤ C1d

t,

∥∥∥∥∥
t0+t−1∏
k=t0

Lk(�
(k−t0)φ) − e · q

∥∥∥∥∥ ≤ C1d
t,
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where q =
[∏t0+t−1

k=t0
c(k), αt

]
A−1 and C1 is a positive constant. It says that all row

vectors of
∏t0+t−1

k=t0
Lk(�

(k−t0)φ) lie inside the C1d
m neighborhood of q. Hence,

diam

( t0+t−1∏
k=t0

Lk(�
(k−t0)φ)

)
≤ C2d

t

for some constant C2 > 0, all t ≥ T , and t0 ≥ 0. This implies that diam(L, φ) ≤ d.
Since d is arbitrary, diam(L, φ) ≤ ρ̂(L, φ) can be concluded.

Second, we show that ρ̂(L, φ) ≤ diam(L, φ). For any d > diam(L, φ), there exists
T > 0 such that

diam

( t0+t−1∏
k=t0

Lk(�
(k−t0)φ)

)
≤ dt

holds for all t ≥ T and t0 ≥ 0. Letting q be the first row of
∏t0+t−1

k=t0
Lk(�

(k−t0)φ), we
have ∥∥∥∥∥

t0+t−1∏
k=t0

Lk(�
(k−t0)φ) − e · q

∥∥∥∥∥ ≤ C3d
t

for some positive constant C3. Let A be defined as above. Then∥∥∥∥∥A−1
t0+t−1∏
k=t0

Lk(�
(k−t0)φ)A−A−1e · qA

∥∥∥∥∥ ≤ C4d
t,

i.e., ∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣

t0+t−1∏
k=t0

c(k) αt

0
t0+t−1∏
k=t0

L̂k(�
(k−t0)φ)

⎤
⎥⎥⎦−

[
γ β
0 0

]∥∥∥∥∥∥∥∥
≤ C4d

t

holds for some γ and β. This implies that∥∥∥∥∥
t0+t−1∏
k=t0

L̂k(�
(k−t0)φ)

∥∥∥∥∥ ≤ C5d
t

holds for all t ≥ T , t0 ≥ 0, and some C5 > 0. Therefore, ρ̂(L, φ) ≤ d. The proof is
completed since d is chosen arbitrarily.

Proof of Lemma 2.6. Let λ̂max = supv∈Rm−1 λ̂(L, φ, v). First, it is easy to see

that log ρ̂(L, φ) ≥ λ̂max. We will show log ρ̂(L, φ) = λ̂max. Otherwise, there exists d ∈
(exp(λ̂max), ρ̂(L, φ)). By the properties of Lyapunov exponents, for any normalized

orthogonal basis u1, u2, . . . , um−1 ∈ R
m−1 with Lyapunov exponent λ̂(L, φ, ui) = λ̂i,

we have, for any u ∈ R
m−1, λ̂(L, φ, u) = λ̂iu , where iu ∈ {1, 2, . . . ,m−1}. ρ̂(L, φ) > d

implies that there exist t0 ≥ 0 and a sequence tn with limn→∞ tn = +∞ such that∥∥∥∥∥
tn+t0−1∏
k=t0

L̂k(�
(k−t0)φ)

∥∥∥∥∥ > dtn
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for all n ≥ 0. That is, there also exists a sequence vn ∈ R
m−1 with ‖vn‖ = 1 such

that ∥∥∥∥∥
tn+t0−1∏
k=t0

L̂k(�
(k−t0)φ)vn

∥∥∥∥∥ > dtn .

There exists a subsequence of vn (still denoted by vn) with limn→∞ vn = v∗. Let
δvn = vn − v∗. We have∥∥∥∥∥

tn+t0−1∏
k=t0

L̂k(�
(k−t0)φ)v∗

∥∥∥∥∥ ≥
∥∥∥∥∥
tn+t0−1∏
k=t0

L̂k(�
(k−t0)φ)vn

∥∥∥∥∥−
∥∥∥∥∥
tn+t0−1∏
k=t0

L̂k(�
(k−t0)φ)δvn

∥∥∥∥∥ .
Note that we can write δvn =

∑m−1
i=1 δxi

nui, where δxi
n ∈ R with limn→∞ δxi

n = 0. So,

there exists an integer N such that
∥∥∏tn+t0−1

k=t0
L̂k(�

(k−t0)φ)δvn
∥∥ ≤ (∑m−1

i=1 |δxi
n|
)
dtn

holds for all n ≥ N . Then we have∥∥∥∥∥
tn+t0−1∏
k=t0

L̂k(�
(k−t0)φ)v∗

∥∥∥∥∥ ≥ dtn − dtn
(m−1∑

i=1

|δxi
n|
)

≥ Cdtn

for all n ≥ N and some C > 0. This implies maxv∈Rm λ̂(L, φ, v) ≥ log d, which

contradicts the assumption d ∈ (exp(λ̂max), ρ̂(L, φ)). Hence, λ̂max = log ρ̂(L, φ).
Proof of Lemma 2.7. Recall that {Φ,B, P, �(t)} denotes a random dynamical

system, where Φ denotes the state space, B denotes the σ-algebra, P denotes the
probability measure, and �(t) denotes the semiflow. For a given φ ∈ Φ we denote
L(�(t)φ) by L(t). Let A = [u1, u2, . . . , um] ∈ R

m×m, where u1, . . . , um denotes a basis
of R

m and u1 = e,

A−1 =

⎡
⎢⎢⎢⎣

v1

v2

...
vm

⎤
⎥⎥⎥⎦ ∈ R

m×m

is the inverse of A with

L̄(t) = A−1L(t)A =

[
c(t) α�(t)

0 L̂(t)

]
, L̂(t) = A∗

1D(t)A1, α�(t) = v1L(t)A1,

where A1 = [u2, . . . , um] ∈ R
m×(m−1), and

A∗
1 =

⎡
⎢⎣

v2

...
vm

⎤
⎥⎦ ∈ R

(m−1)×m.

One can see that the set of Lyapunov exponents of the dynamical system {L̄(t)}t∈Z+

are the same as those of {L(t)}t∈Z+ . For any z(0) = [x(0), y(0)] ∈ R
m, where x(0) ∈ R

and y(0) ∈ R
m−1, this evolution z(t + 1) = L̄(t)z(t) leads to

z(t) =

[
x(t)
y(t)

]
=

[
c(t− 1)x(t− 1) + α�(t− 1)y(t− 1)

L̂(t− 1)y(t− 1)

]
.
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So, we have

y(t) =

t−1∏
k=0

L̂(k)y(0),

(A.1)

x(t) =

t−1∏
k=0

c(k)x(0) +

t∑
k=1

t−1∏
p=t−k+1

c(p)α�(t− k)

t−k−1∏
q=0

L̂(q)y(0).

If the upper bound is less than the lower bound for the left matrix product
∏

, then
the product should be the identity matrix. In the following, we denote by L̂ the
projection sequence map of L and will prove this lemma for two cases.

Case 1. λ0 ≤ log ρ̂(L, φ). Since ρ̂(L, φ) is just the largest Lyapunov exponent of

L̂ defined by λ̂, from conditions 1 and 2, one can see that for any ε > 0, there exists

T > 0 such that for any t ≥ T it holds that |α(t)| ≤ eεt,
∥∥∏t−1

k=0 L̂(k)
∥∥ ≤ e(λ̂+ε)t, and

e(λ0−ε)t ≤ |
∏t−1

k=0 c(k)| ≤ e(λ0+ε)t. Thus, we can obtain

t−1∏
k=t−k+1

|c(p)| =

t−1∏
p=0

|c(p)| × 1
t−k∏
p=0

|c(p)|

=

⎧⎪⎨
⎪⎩

e(λ0+ε)(t)e−(λ0−ε)(t−k+1), k ≤ t− T + 1,

e(λ0+ε)(t−1) max
T≥q≥0

(
q∏

p=0
|c(p)|

)−1

, t− 1 ≥ k ≥ t− T.

Then we have

|x(t)| ≤
t−1∏
k=0

|c(k)||x(0)| +
t−T+1∑
k=1

t−1∏
p=t−k+1

|c(p)||α�(t− k)|
t−k−1∏
q=0

‖L̂(q)‖‖y(0)‖

+

t−1∑
k=t−T

t−1∏
p=t−k+1

|c(p)|‖α�(t− k)‖
t−k−1∏
q=0

‖L̂(q)‖‖y(0)‖

≤ e(λ0+ε)t +

t−T+1∑
k=1

e(λ0+ε)(t−1)eεte−(λ0−ε)(t−k)e(λ̂+ε)(t−k) + M1e
(λ0+ε)(t−1)

≤ e(λ̂+ε)t + e(λ̂+4ε)te−(λ0+ε)
t−T+1∑
k=1

e(−λ̂+λ0−3ε)k + M1e
(λ0+ε)t

≤ M2e
(λ̂+4ε)t,

where

M1 = (T + 1) max
T≥q≥0

( q∏
p=0

|c(p)|
)−1

eεT
( q∏

p=0

‖L̂(p)‖
)
‖y(0)‖,

M2 = 1 + M1 + e−(λ0+ε)
∞∑
k=1

e−3εk.



SYNCHRONIZATION OF TIME-VARYING NETWORKS 1257

So,

lim
t→∞

1

t
log ‖z(t− 1)‖ ≤ λ̂ + 4ε

holds for all z(0) ∈ R
m. Noting that λ̂ must be less than the largest Lyapunov

exponent of L, we conclude that λ̂ is the largest Lyapunov exponent. This implies
the conclusion of the lemma.

Case 2. λ0 > λ̂. Note that for any ε ∈ (0, (λ0 − λ̂)/3) there exists T such that

t∏
k=0

|c−1(k)|‖α�(t)‖
t∏

l=0

‖L̂(l)‖ ≤ Ce(−λ0+λ̂+3ε)t(A.2)

for all t ≥ T and some constant C > 0. Let

x = −
∞∑
t=0

t∏
k=0

c−1(k)α�(t)

t−1∏
l=0

L̂(l)y,

which in fact exists and is finite according to inequality (A.2). Then let

Vφ =

{
z =

[
x
y

]
: x +

∞∑
t=0

t∏
k=0

c−1(k)α�(t)

t−1∏
l=0

L̂(l)y = 0

}

be the transverse space. For any
[ x(0)
y(0)

]
∈ Vφ,

x(t) = −
∞∑
k=t

k∏
p=t

c−1(p)α�(k)

k−1∏
q=0

L̂(q)y(0).

Noting that there exists T > 0 such that
∏k

p=t |c−1(p)| ≤ e(−λ0+ε)(k−t)+2εt for all
t ≥ T , we have

|x(t)| ≤
∞∑
k=t

k∏
p=t

|c−1(p)|‖α�(k)‖
∥∥∥∥

k−1∏
q=0

L̂(q)

∥∥∥∥‖y(0)‖

≤
∞∑
k=t

e(−λ0+ε)(k−t)e2εteεke(λ̂+ε)k

≤
{ ∞∑

k=t

e(−λ0+λ̂+3ε)(k−t)

}
e(λ̂+4ε)t ≤ M2e

(λ̂+4ε)t

for all t ≥ Tand some constants M2 > 0. So, it can be concluded that

lim
t→∞

1

t
log ‖z(t− 1)‖ ≤ λ̂ + 4ε.

Since ε is chosen arbitrarily, there exists an (m− 1)-dimensional subspace Vφ = {z =

[x y]� : x = −
∑∞

t=0

∏t
k=0 c

−1(k)α�(t)
∏t−1

l=0 L̂(l)y} of which the largest Lyapunov

exponent is less than λ̂. The largest Lyapunov exponent of Vφ is clearly greater than

λ̂. Therefore, we conclude that λ̂, i.e., log(ρ̂(L)), is the largest Lyapunov exponent of
L except for λ0. The proof is completed.
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ON DIFFUSION INDUCED SEGREGATION IN TIME-DEPENDENT
DOMAINS∗

THOMAS BLESGEN†

Abstract. This article is concerned with the derivation and analysis of a model for diffusion
induced segregation phenomena in the physically relevant case that the domain representing the
crystal grows in time. A mathematical model is formulated where the phase parameter is a function of
bounded variation and the equations are completed with the Gibbs–Thomson law. Based on suitable
a priori bounds, methods from geometric measure theory are applied to derive suitable compactness
properties which allow us to show the existence of weak solutions in three space dimensions.

Key words. phase transitions, dynamics of phase boundary, Gibbs–Thomson law
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1. Introduction. Diffusion induced segregation (DIS) processes represent a par-
ticular class of phase change problems in solids that has been widely studied in min-
eralogy and crystallography. Typical of DIS is that the segregation starts only after
the concentration of one selected component that diffuses into the single crystal from
outside exceeds a certain threshold. DIS phenomena are very interesting for geolog-
ical applications, as the segregation is irreversible and rock samples with DIS can
be regarded as a natural geological clock. One prominent application of DIS is the
attempt to estimate the time scale for magma ascending from the mantle of the earth
by the investigation of a specimen with the so-called chalcopyrite disease within spha-
lerite. Mineralogical experiments on this particular example were first carried out
in [5] and [6] under isothermal conditions. These articles explain conclusively the
rearrangement of the lattice as well as the qualitative mechanism responsible for DIS.
A collection of experiments revealing DIS phenomena is available in [5] and [6], and
the results are compared with geological observations of DIS.

In order to get a better understanding of chalcopyrite disease within sphalerite, a
first phase-field model based on partial differential equations with a modified Allen–
Cahn equation was developed in [10]. More advanced simulations on the related
ternary system of sphalerite, chalcopyrite, and cubanite are done in [11]. A general
existence and uniqueness result for the mathematical formulation derived in [10] is
contained in [7]. More sophisticated numerical simulations can be found in [8], where
ab initio methods are used on a large scale to approximately compute the physical
free energies. The results of the ab initio computations are validated with quantum
mechanical and molecular dynamics calculations. In particular, the results in [8]
provide quantitative predictions.

As is explained in [10], the mathematical model developed in earlier articles
neglects the attachment of sulphur ions which lead to a growth of the crystal during
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Community DFG for the financial support within the priority program 1095, Analysis, Modeling and
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the experiments. Instead, the domain Ω representing the crystal was assumed to be
time-independent.

In this article we will close this gap. In the model presented in section 2, boundary
conditions on the chemical potential are assumed which are close to the physical reality
and which allow the domain to grow. These boundary conditions are connected to a
generalized Gibbs–Thomson law. The rest of the paper is devoted to the proof of the
existence of weak solutions. We follow the ansatz in [2] which is classical by now. In
section 4, a time-discrete scheme is introduced.

We apply methods from geometric measure theory to show suitable a priori
bounds and to establish the compactness in space and time of the time-discrete
solution. The central argument is Lemma 7.7. In the subset of large discrete-interface
velocities its proof is based on the construction of a Besicovitch-type covering that fails
for space dimensions n > 3. In the set of a small discrete-interface velocity the proof
relies on Bernstein’s theorem, which is known to hold for space dimensions n ≤ 8.
The other key argument in the proof is Lemma 6.4, which requires n ≥ 3; see the
essential estimate (6.11). Due to these restrictions, the main lemmas are formulated
for n = 3.

We mention that the employed techniques and results are related to the Stefan
problem and the Mullins–Sekerka flow (see in particular the articles [18], [19], [17], [28],
and [25]) and also can be transferred to applications in shape optimization problems.

For h > 0, time-discrete solutions are constructed in section 4, and it is shown in
Theorem 7.4 that for a subsequence χh (the characteristic function of a set ΩI

h) and
a function χ ∈ L1(ΩT , {0, 1}),

χh → χ in L1(ΩT )

as h ↘ 0. Unfortunately, this does not imply that

|∇χh| ⇀ |∇χ| in rca(ΩT ).

(Here rca(ΩT ) denotes the space of all regular countable measures on ΩT .) Therefore
we require the following technical assumption from (8.1):∫

ΩT

|∇χh| →
∫

ΩT

|∇χ| as h ↘ 0,

which is needed to prevent a loss of area when passing to the limit. Condition (8.1)
is not new. In connection to the Stefan problem with Gibbs–Thomson law, it was
stated previously in [19]. Condition (8.1) can also be found in [1].

In general, (8.1) does not hold and is violated because of the following concentra-
tion or oscillation effects at the reduced boundary:

1. Several parts of the boundary ∂∗ΩI
h meet in the limit.

2. Oscillations of the boundary reduce the area in the limit.
One possible way to avoid condition (8.1) is to construct varifold solutions. For a
two-phase flow described by the Navier–Stokes equations, this has been done in [22].

Finally, we remark that for the investigated mathematical system, we cannot
expect the uniqueness of solutions. The reason is the same as for the Stefan problem
with the Gibbs–Thomson law; see [18] for a proof.

2. Derivation of the model. Let Ω ⊂ R
n be a box chosen large enough such

that for times 0 ≤ t ≤ T with given stop time T > 0 a time-dependent set ΩI =
ΩI(t) ⊂ R

n is contained in Ω. For the proof of existence of weak solutions, we will set
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n = 3. We assume that Ω is a bounded domain with Lipschitz boundary. We call the
set ΩI(t) the inner domain, as it represents the growing crystal at time t surrounded

by a second copper rich mineral. This second phase occupies ΩII := Ω \ΩI which we
call the outer domain.

We introduce the two space-time cylinders ΩT := Ω×(0, T ), ΩI
T := ΩI(t)×(0, T ),

and by θ > 0 we denote the constant temperature.
We introduce for 1 ≤ i ≤ 4 functions ni : ΩT → N which determine the number

of lattice positions in ΩT occupied by species i. The ni are related to the species by

n1 . . .Fe3+, n2 . . .Fe2+, n3 . . .Zn2+, n4 . . .Cu+.

Similarly, by nv we denote the number of vacant lattice positions.
We point out that even though the crystal grows due to the attachment of sulphur

ions, the mathematical model does not require a variable for the sulphur concentration.
This is because the attachment of S2− is a consequence of the oxidation of Fe, leading
to Shottky defects in the crystal. This is explained in detail in [7].

We introduce the vector m = (m1, . . . ,m4), where

mi(x, t) :=
ni(x, t)∑4

j=1 nj(x, t) + nv(x, t)
, 1 ≤ i ≤ 4,

is the number density of the ith constituent in ΩT . We assume that we have a perfect
crystal without impurities such that no further constituents need to be considered.

The variable m5 specifies the electron density. The condition of electric neutrality
leads to the formula

m5 = 3m1 + 2m2 + 2m3 + m4 − 2.(2.1)

The coefficients of mi in (2.1) refer to the positive ionization of the ith constituent,
and 2 is subtracted in the formula due to the attachment of S2− ions.

In ΩI
T the free energy density is given by

fI(m) = kBθ

[
4∑

i=1

mi lnmi+

(
1 −

4∑
i=1

mi

)
ln

(
1 −

4∑
i=1

mi

)]
(2.2)

+

4∑
i=1

4∑
j=1

αijmimj +

4∑
i=1

βimi.

The matrix A := (αij)1≤i,j≤4 is symmetric and positive definite with constant coeffi-
cients, βi are positive enthalpic constants, and kB denotes the Boltzmann constant.
The first term

∑
i mi lnmi in (2.2) is the entropic contribution to the free energy as it

counts all possible configurations with a given vector m. The second summand with
coefficients αij = αji measures the elastic energy; i.e., αijmimj is the contribution
due to the interaction of ion i with ion j; see [10] for further details.

For the free energy of the outer phase and for given small δ > 0, we make the
ansatz

fII(m) = kBθ

[
4∑

i=1

mi lnmi − (ln δ + 1)

2∑
i=1

mi

]
.(2.3)
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The chemical potential of the ith constituent fulfills for 1 ≤ i ≤ 4 (see (2.13) below)

μi =
∂fI
∂mi

(m) in ΩI , μi =
∂fII
∂mi

(m) in ΩII .(2.4)

Ansatz (2.3) is chosen such that μi = kBθ ln(mi/δ) and μi is positive in ΩII for mi > δ
and i = 1, 2.

The oxidation process Fe3++e− ↔ Fe2+ in ΩI
T is formally modeled as a reaction.

The reaction vector rI in ΩI is given by (see [15] for a general explanation)

rI = (rI1 ,−rI1 , 0, 0), rI1 = rI1(m) = k1m2 − k2m5(2.5)

with positive reaction rates k1, k2.
The conservation of mass leads to the formulation ∂tmi = −div(Ji) + ri(m).

Onsager’s postulate [20], [21] states that the thermodynamic flux J is linearly related
to the thermodynamic force. In our case, the thermodynamic forces are the negative
chemical potential gradients, and we obtain the phenomenological equations (see [16,
p. 137])

Ji = −
4∑

j=1

Lij∇μj , 1 ≤ i ≤ 4,(2.6)

with a mobility tensor L = (Lij)1≤i,j≤M that may depend on μ. The Onsager reci-
procity law [20], [21], [16] states that L has to be symmetric, which we assume in the
following. To simplify the existence theory, we will further assume that L is positive
definite.

The coefficients of L depend on the domain as L = LI in ΩI and L = LII in ΩII .
The diffusion rates measured for Cu+ and Zn2+ are of the same order and are about
1000 times larger than the diffusivities of Fe3+ and Fe2+. Mathematically, we look at
an idealized situation, where we set LII

ij := 0 for i 
= j (this means no cross diffusion)

and LII
11, L

II
22 ∼ ε and LII

33, L
II
44 ∼ 1

ε . For small ε > 0, this gives rise to the following
boundary conditions on ∂ΩI :

−
4∑

j=1

LI
ij(μ)∇μj
n = miv for i = 1, 2,(2.7)

μi = ϕi for i = 3, 4.(2.8)

The parameter v denotes the speed with which the interface moves outward, 
n is the
unit outer normal to ΩI , and ϕ1, ϕ2 are two given constants invariant in time and
space.

We have the diffusion equations

∂tmi = div

⎛
⎝ 4∑

j=1

LI
ij∇μj

⎞
⎠+ rIi (m) in ΩI ,(2.9)

∂tmi = div
(
LII
ii ∇μi

)
+ rIIi (μ) in ΩII .(2.10)

Experimentally it is observed that the outer domain contains only a very small amount
of Fe3+, Fe2+ except in a small strip near ΩI . To ensure this condition for the
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mathematical system if the free boundary ∂ΩI ∩ ∂ΩII moves inward, i.e., if v < 0, we
make the ansatz

rII(μ) = − 1

γ
(μ1, μ2, 0, 0),(2.11)

where γ > 0 is a small constant related to the thickness of the Fe-containing strip
close to ΩI .

The model is formulated for small positive parameters γ, δ, and ε, but we will
show in sections 5 and 7 that the existence theory remains valid in the limit γ, δ, ε ↘ 0;
see in particular the assumptions (A1)–(A4) in section 6 on the time-discrete problem.

We postulate that the set ΩI
0 := ΩI(t = 0) has a finite perimeter. For the

characteristic function χ(·, 0) : Ω → {0, 1} of ΩI(t = 0), this means∫
Ω

|∇χ(t = 0)| = ‖χ(t = 0)‖BV (Ω) < ∞.

The condition ‖χ‖BV (Ω) < ∞ means that χ is a function of bounded variation in Ω;
see [29], [30]. The symbol H1,2(Ω) ⊂ L2(Ω) denotes the Sobolev space of functions
with first weak derivatives in the Hilbert space L2(Ω).

We consider a physical system with surface tension, so the total free energy F is
given by

F (χ, μ) :=

∫
Ω

|∇χ| +
∫
∂ΩI

v +

∫
Ω

(χf∗
I (μ) + (1 − χ)f∗

II(μ)).(2.12)

Here, f∗
I (μ), f∗

II(μ) are the Legendre–Fenchel transforms of fI(μ), fII(μ) defined by

f∗
I (μ) := sup

m
{μ ·m− fI(m)}, f∗

II(μ) := sup
m

{μ ·m− fII(m)}.

In these definitions, · denotes the inner product, i.e., μ ·m =
∑4

i=1 μimi. If there can
be no ambiguity, we drop · and simply write μm in this article.

The use of f∗
I and f∗

II exploits duality properties of the problem and allows us to
formulate the free energy F as a function of μ and not of m. The Legendre–Fenchel
transformation is a frequently used tool in mechanics and originates from convex
analysis. General references to the Legendre–Fenchel transformation are [24] and [3].
In the context of diffusion problems, the ansatz (2.12) goes back to [4].

The mathematical description of the system is completed with the condition

F (χ, μ) → min,(2.13)

where μ is fixed and fulfills the constraints (2.9), (2.10) and the minimum is sought
for χ ∈ BV (Ω; {0, 1}). When restricting to smooth deformations of ∂ΩI(t), the sta-
tionarity of F with respect to characteristic functions χ ∈ BV (Ω; {0, 1}) for fixed μ
leads to the Gibbs–Thomson law

H + v = f∗
II(μ) − f∗

I (μ),(2.14)

and H is the mean curvature of the interface ∂ΩI(t). Below, (2.14) is replaced by the
weaker condition (W2) from section 3 that requires less regularity on χ.

The vector m is obtained from μ by the splitting

m = χmI + (1 − χ)mII ,(2.15)
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where the mass vector mI in the inner domain ΩI(t) and the mass vector mII in the
outer domain are determined implicitly by

μ =
∂fI
∂m

(mI) in ΩI(t), μ =
∂fII
∂m

(mII) in Ω \ ΩI(t).(2.16)

The free energy densities fI and fII are strictly convex functions, so (2.16) is mean-
ingful. The decomposition (2.15), (2.16) is essential for the further understanding of
this article.

In summary, we are concerned with the free energy minimization (2.13) under the
constraints

∂t(χm) = div(χLI(μ)∇μ) + χrI(m) in Ω, t > 0,(2.17)

∂t((1 − χ)m) = div((1 − χ)LII(μ)∇μ) + (1 − χ)rII(μ) in Ω, t > 0,(2.18)

with rI , rII given by (2.5), (2.11), where m(t) fulfills (2.15), (2.16), and equipped
with the initial conditions

χ(·, 0) = χ0 in Ω,(2.19)

μ(·, 0) = μ0 in Ω.(2.20)

Equation (2.20) also determines m(t = 0) with (2.16). Motivated by (2.7) and (2.8),
the functions of initial data χ0 ∈ BV (Ω) and μ0 ∈ H1,2(Ω) must fulfill the compati-
bility conditions

μ01 = μ02 = 0 in
{
x ∈ Ω

∣∣∣ dist(x,ΩI(t = 0)) ≥
√
ε
}
,(2.21)

μ03 = ψ3, μ04 = ψ4 in Ω \ ΩI(t = 0),(2.22)

where ψ3, ψ4 ∈ H1,2(Ω \ ΩI(t = 0)). As the free energy in the outer phase depends
on the parameter δ > 0, we demand that, for a constant C independent of δ,∫

Ω\ΩI(t=0)

fII(m(t = 0)) ≤ C uniformly in δ > 0.(2.23)

The system is subject to the boundary conditions (2.7), (2.8), and

μi = 0 for i = 1, 2 on ∂Ω × (0, T ),(2.24)

μi = ϕi for i = 3, 4 on ∂Ω × (0, T ).(2.25)

For later use we want to introduce some notation. Let

μN := (μ1, μ2), μD := (μ3, μ4).

The vector m is decomposed in mN , mD accordingly.
We define f̂D,∗

II (mN , μD) as the partial Legendre–Fenchel transformation of fII(m)
with respect to m, that is,

f̂D,∗
II (mN , μD) := sup

mD

{
μDmD − fII((m

N ,mD))
}
.
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Due to the form of fII , we may write

f̂D,∗
II (mN , μD) = fD,∗

II (μD) − fN
II(m

N ),

where we introduced the functions

fN
II(m

N ) := kBθ

(
2∑

i=1

mi lnmi −
2∑

i=1

(ln δ + 1)mi

)
,

fD,∗
II (μD) := sup

mD

{
μDmD − fD

II(m
D)
}
,

fD
II(m

D) := kBθ

(
4∑

i=3

mi lnmi

)
.

As a prerequisite to the existence theory, we mention the validity of the second
law of thermodynamics, which in the isothermal setting reads

d

dt
F (χ, μ) ≤ 0.

For a direct proof of this inequality see [7]. So it holds that

∂t

∫
Ω

[
χ(fI(m) −mϕ) + (1 − χ)(fII(m) −mϕ)

]
(2.26)

≥ ∂t

∫
Ω

|∇χ| + ∂t

∫
∂ΩI

v +

∫
Ω

(
χLI(μ) + (1 − χ)LII(μ)

)
|∇μ|2

−
∫

Ω

(χrI(m) + (1 − χ)rII(μ))μ.

In (2.26) it holds that

−
∫

Ω

rμ := −
∫

Ω

(χrI + (1 − χ)rII)μ ≥ 0.(2.27)

Physically, −
∫
Ω
rμ is the production of entropy due to chemical reactions.

In order to show (2.27), we compute with (2.5)

−
4∑

i=1

rIi μi = rI1(μ2 − μ1) = qI(r
I
1 ,m2) + q∗I (μ

N ,m2),(2.28)

where

qI(r
I
1 ,m2) := kBθ

[
(k1m2 − rI1) ln

(
1 − rI1

k1m2

)
+ rI1

]
,

q∗I (μ
N ,m2) := k1m2

[
μ2 − μ1 + kBθ

(
exp

(
μ1 − μ2

kBθ

)
− 1

)]
.

The function q∗I denotes, as above, the Legendre–Fenchel transform of qI . We can
check elementarily that the functions qI and q∗I are nonnegative, which proves (2.27).
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Motivated by (2.11), we define for further use (see (2.26) and (4.3))

q∗II (μ
N ) := − 1

2γ
|μN |2.

With (2.28) we have found a general formulation for the reaction terms based
on duality. We remark that condition (2.27) can also be derived from an Arrhenius
ansatz for the reaction rates; see [7], [9].

Integrating (2.26) with respect to time, we get the a priori estimate

sup
t∈(0,T )

|∇χ(t)| +
∫

ΩT

(χLI(μ) + (1 − χ)LII(μ))|∇μ|2(2.29)

−
∫

ΩT

(χrI(m) + (1 − χ)rII(μ))μ +

∫ T

0

∫
∂ΩI(t)

v

≤
∫

Ω

(
χfI(m) + (1 − χ)fII(m)

)
(t = T ) +

∫
Ω

m(0)ϕ−
∫

Ω

m(T )ϕ

−
∫

Ω

(
χfI(m) + (1 − χ)fII(m)

)
(t = 0).

Since fII(t = 0) is bounded due to estimate (2.23), we get the boundedness of the
right-hand side of (2.29). As LI , LII are positive definite, we obtain estimates for the
functions χ, μ and velocity v. These estimates will be improved later.

3. Weak solutions. We want to briefly specify the class of solutions we are
looking for. We call the triple (m,μ, χ) a weak solution of the system (2.17)–(2.25)
if (2.13) holds, m = m(μ) is given by (2.15), (2.16), and if (μ, χ) solve the following
weak formulations:

(W1) For all ξ ∈ C1([0, T ] × Ω; R
3) with ξ(T ) = 0, it holds that

−
∫

ΩT

χm∂tξ = −
∫

ΩT

χLI(μ)∇μ∇ξ +

∫
ΩT

χrI(m)ξ +

∫
Ω

χ(t=0)m(t=0)ξ(t=0),

−
∫

ΩT

(1 − χ)m∂tξ = −
∫

ΩT

(1 − χ)LII(μ)∇μ∇ξ +

∫
ΩT

(1 − χ)rII(μ)ξ

+

∫
Ω

(1 − χ(t = 0))m(t = 0)ξ(t = 0).

(W2) For all ζ ∈ C1([0, T ] × Ω; R
3) with ζ = 0 on ∂Ω × (0, T ), it holds that∫

ΩT

(
divζ − ∇χ

|∇χ|∇ζ
∇χ

|∇χ|

)
|∇χ| +

∫
ΩT

vζ∇χ =

∫
ΩT

(f∗
II(μ) − f∗

I (μ))ζ∇χ.

(W3) For all ξ ∈ C1([0, T ] × Ω; R) with ξ = 0 on ∂Ω × (0, T ) and ξ(T ) = 0, it
holds that ∫

ΩT

χ∂tξ +

∫
Ω

χΩI
0
ξ(0) = −

∫
ΩT

vξ|∇χ|.

In [19], further explanations can be found concerning (W2) and (W3).
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4. Time-discrete scheme. For fixed h > 0, we consider in Ω the time-discrete
scheme

χ(t)m(t) − χ(t− h)m(t− h) = hdiv[χ(t− h)LI(μ(t− h))∇μ(t)]

+ χ(t− h)hrI(m(t)),(4.1)

(1 − χ(t))m(t) − (1 − χ(t− h))m(t− h) = hdiv[(1 − χ(t− h))LII(μ(t− h))∇μ(t)]

+ (1 − χ(t− h))hrII(μ(t)).(4.2)

This is an implicit time discretization, except for the coefficients LI(μ), LII(μ), and χ
which are treated explicitly. Also we briefly wrote μ(t) for μ(χ(t)) and set χ(t) := χ0,
m(t) := m(t = 0) for −h ≤ t < 0.

For given χ(t− h), μ(t− h), let the discrete free energy functional be given by

Fh(χ(t), μ(t)) =

∫
Ω

|∇χ(t)| +
∫

ΩI(t)�ΩI(t−h)

1

h
dist(·, ∂ΩI(t− h)) +

∫
Ω

m(t− h)μ(t)

+

∫
Ω

[
χ(t)f∗

I (μ(t)) + (1 − χ(t))f∗
II(μ(t))

]

+h

∫
Ω

[
χ(t−h)LI(μ(χ(t−h)))+(1−χ(t−h))LII(μ(χ(t−h)))

]
|∇μ(t)|2

+

∫
Ω

χ(t− h)hq∗I (μ
N (t),m2(t)) −

∫
Ω

(1 − χ(t− h))hq∗II(μ
N (t)).(4.3)

Here we used the notation A�B := (A \B) ∪ (B \A) for the symmetrized difference
of two sets A and B.

We construct the time-discrete solution χh ∈ L∞(0, T ; BV (Ω; {0, 1})) in the fol-
lowing way. Let T = hN . At time t = 0, ΩI(t = 0) and μ0 are given. For discrete-time
values t = kh, k = 1, . . . , N , the function χh(t) with μh(t) = μh(χh(t)) fulfilling the
constraints (4.1), (4.2) iteratively solves the energy minimization problem

Fh(χh(t), μh) → min(4.4)

in the class BV (Ω; {0, 1}). The discrete mapping mh is computed from χh, μh with
the help of (2.15), (2.16). We continue χh to arbitrary t ∈ (0, T ) by setting

χh(t) := χh(kh) for t ∈ ((k − 1)h, kh].

We introduce the discrete velocity of the interface by

vh(x) :=
1

h
dist(x, ∂ΩI(t− h)).(4.5)

The following lemma is a modification of an argument which was used (but not proved)
in [19].

Lemma 4.1 (weak mean curvature equation). The minimum (χh, μh) of Fh

satisfies the weak mean curvature equation∫
Ω

(
divζ − ∇χh

|∇χh|
∇ζ

∇χh

|∇χh|

)
|∇χh| +

∫
Ω

vhζ∇χh

=

∫
Ω

(
f∗
II(μh(χh)) − f∗

I (μh(χh))
)
ζ∇χh
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for all ζ ∈ C1
0 (Ω; R

3).
Proof. We compute the first variation of Fh with respect to deformations of ΩI(t);

i.e., we compute

d

ds
Fh(χh ◦ ζs, μh(χh ◦ ζs))

∣∣∣
s=0

for all ζ ∈ C1
0 (Ω; R

3) with ζ0(x) = x, ∂sζs(x) = ζ(ζs(x)). With χh := χh(t) we obtain∫
Ω

(
divζ − ∇χh

|∇χh|
∇ζ

∇χh

|∇χh|

)
|∇χh| +

∫
Ω

vhζ∇χh

+

∫
Ω

(
f∗
I (μh(χh)) − f∗

II(μh(χh))
)
ζ∇χh

= −
∫

Ω

mhμζ +

∫
Ω

mh(t− h)μζ

+ h

∫
Ω

div
[(
χh(t−h)LI(μh(χh(t−h)))+(1−χh(t−h))LII(μh(χh(t−h)))

)
∇μh(χh)

]
μζ

+ h

∫
Ω

(
χh(t− h)rI(mh) + (1 − χh(t− h))rII(μh(χh))

)
μζ ,

where μζ := μh(χh(ζ(ζs))). As the right-hand side is zero, the lemma is proved.

5. A priori estimates. In this section we show a priori estimates for the time-
discrete solution. Together with the compactness results, they are the main ingredi-
ents for the existence proof.

Generically, we denote by C various constants that may change from estimate to
estimate.

Lemma 5.1 (a priori estimates for the time-discrete solution).

(i) The following a priori estimate holds:

(5.1)

sup
t∈(0,T )

∫
Ω

|∇χh(t)| + 1

h2

∫ T

0

∫
ΩI(t)�ΩI(t−h)

dist(·, ∂ΩI(t− h))

+
1

2γ

∫
ΩT

(1 − χh(t− h))|μN
h |2

+

∫
ΩT

(
χh(t− h)LI(μh(χh(t− h)))+(1 − χh(t− h))LII(μh(χh(t− h)))

)
|∇μh(χh)|2

≤
∫

Ω

(
χhfI(mh) + (1 − χh)fII(mh)

)
(t = T )

−
∫

Ω

(
χhfI(mh) + (1 − χh)fII(mh)

)
(t = 0).

(ii) For the chemical potential and the time derivative of m, it holds that∫
ΩT

χh(t− h)|∇μh(t)|2 ≤ C,(5.2)
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ΩT

(1 − χh(t− h))|∇μN
h (t)|2 ≤ Cε−1,(5.3)

∫
ΩT

(1 − χh(t− h))|∇μD
h (t)|2 ≤ Cε,(5.4)

∫
ΩT

(1 − χh(t− h))|μN
h (t)|2 ≤ Cγ,(5.5)

∫
ΩT

‖χh∂
h
t mh‖2

H−1(Ω) ≤ C.(5.6)

Proof. (i) Due to the minimality of (χh, μh) with respect to Fh, we have

Fh(χh(t), μh(t)) ≤ Fh(χ̃, μh(χ̃)) for all χ̃ ∈ BV (Ω; {0, 1}).(5.7)

When choosing χ̃ := χh(t− h) in (5.7), we find∫
Ω

|∇χh(t)| +
∫

ΩI(t)�ΩI(t−h)

1

h
dist(·, ∂Ω(t− h)) +

∫
Ω

mh(t− h)μh(χh(t))

−
∫

Ω

[
χhfI(mh(t)) + (1 − χh(t))fII(mh(t)) −mh(t)μh(χh(t))

]

+h

∫
Ω

[
χh(t−h)LI(μh(χh(t−h)))+(1−χh(t−h))LII(μh(χh(t−h)))

]
|∇μh(χh(t))|2

+h

∫
Ω

χh(t− h)q∗I (μ
N
h (χh(t)),mh,2(t)) − h

∫
Ω

(1 − χh(t− h))q∗II(μ
N
h (χh(t)))

≤
∫

Ω

|∇χh(t− h)| −
∫

Ω

[
χh(t− h)fI(mh(t− h)) + (1 − χh(t− h))fII(mh(t− h))

]

+h

∫
Ω

[
χh(t−h)LI(μh(χh(t−h)))+(1−χh(t−h))LII(μh(χh(t−h)))

]
|∇μh(χh(t−h))|2

+h

∫
Ω

χh(t−h)q∗I (μ
N
h (χh(t−h)),mh,2(t−h)) − h

∫
Ω

(1−χh(t−h))q∗II(μ
N
h (χh(t−h))).

We rewrite this and first observe that qI , q
∗
I ≥ 0, q∗II ≤ 0. Additionally,

−
∫

Ω

χh(t)fI(mh(t)) − χh(t− h)fI(mh(t− h))

−
∫

Ω

(1 − χh(t))fII(mh(t)) − (1 − χh(t− h))fII(mh(t− h))

= −
∫

Ω

[
χh(t)

(
fI(mh(t))−fI(mh(t−h))

)
+ (1−χh(t))

(
fII(mh(t))−fII(mh(t−h))

)]

−
∫

Ω

h∂h
t χh(t)

(
fI(mh(t− h)) − fII(mh(t− h))

)
.
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The second integral on the right is nonnegative due to (4.4). The first integral on the
right, from the definition of the chemical potential μ, can be estimated from above by

−
∫

Ω

μh(χh(t))mh(t− h).

With this result, Fh(χh(t), μh(t)) ≤ Fh(χh(t− h), μh(χh(t− h))) finally becomes

(5.8)

∂h
t

∫
Ω

|∇χh| +
1

h2

∫
ΩI(t)�ΩI(t−h)

dist(·, ∂Ω(t− h)) +
1

2γ

∫
Ω

(1 − χh(t− h))|μN
h |2

+

∫
Ω

(
χh(t− h)LI(μh(χh(t− h))) + (1 − χh(t− h))LII(μh(χh(t− h)))

)
|∇μh(χh)|2

≤ ∂h
t

(∫
Ω

χhfI(mh) +

∫
Ω

(1 − χh)fII(mh)

)
.

Integration in time proves (i).
(ii) This follows directly from (i) and (4.1), (4.2).

6. A density lemma. Now we show a density lemma that establishes a strong
geometric property of the sets ΩI(t).

Lemma 6.1. For any μ ∈ H1,2(Ω; R4), it holds that

‖f∗
II(μ) − f∗

I (μ)‖L∞(ΩT ) ≤ ‖fI‖L∞((0,T )×R4) + ‖fII‖L∞((0,T )×R4).

Proof. Directly from the definitions of f∗
I and f∗

II , we see that

f∗
II(μ) − f∗

I (μ) = sup
m̃

{m̃ · μ− fII(m̃)} − sup
m̃

{m̃ · μ− fI(m̃)} ≤ fI(m) − fII(m).

The analogous estimate of f∗
I (μ) − f∗

II(μ) gives

‖f∗
II(μ) − f∗

I (μ)‖L∞ ≤ ‖fI‖L∞ + ‖fII‖L∞ ,

which proves the lemma.
We recall the following results from geometric measure theory. For a proof see,

for instance, [29], [13].
Theorem 6.2 (trace operator in BV). Let Ω ⊂ R

n be an open bounded set and
let ∂Ω be Lipschitz. Then there exists a trace operator tr : BV (Ω) → L1(∂Ω, dHn−1)
such that for given f ∈ BV (Ω),∫

Ω

fdivϕ = −
∫

Ω

ϕ · ∇f +

∫
∂Ω

tr f(ϕ · 
n)dHn−1 for all ϕ ∈ C1(Rn,Rn),

where 
n is the unit outer normal to ∂Ω. Furthermore,

lim
�↘0

(
�−n

∫
B�(x)∩Ω

|f(y) − tr f(x)|dy
)

= 0 for dHn−1 − almost all x ∈ ∂Ω.

If E ⊂⊂ Ω is an open set with a Lipschitz boundary, then f|E ∈ BV (E) and

f|Ω\E ∈ BV (Ω \ E) have traces on ∂E. In what follows, we write f−
E := tr(f|E) and

f+
E := tr(f|Ω\E). We mention for later use the equality∫

∂E

|f−
E − f+

E |dHn−1 =

∫
∂E

|∇f |dHn−1.(6.1)
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Finally, by χE we denote the characteristic function of a set E.

Theorem 6.3 (isoperimetric inequalities). Let Ω ⊂ R
n be a bounded set with

χΩ ∈ BV (Rn). Then it holds that

γn

(∫
Rn

χΩ

)n−1
n

≤
∫

Rn

|∇χΩ|,(6.2)

(6.3)

min

⎧⎨
⎩
(∫

B�(x)

χΩ

) n
n−1

,

(∫
B�(x)

χc
Ω

) n
n−1

⎫⎬
⎭ ≤ C(n)

∫
B�(x)

|∇χΩ| for all B�(x) ⊂ R
n,

where γn := nω
1
n
n and ωn := Ln(B1(0)) are dimensional constants.

Now we show the following geometric property of the sets ΩI(t).

Lemma 6.4 (density lemma). Let κ1 := 1
43 and let χh(t) be a minimizer of the

functional Fh(χh(t), μh(χh(t))). Then for all x ∈ ∂ΩI(t) and for all � > 0 which
satisfy

� ≤ γ3

2ω
1
3
3 (‖fI‖L∞ + ‖fII‖L∞ + h−1‖dist(·, ∂ΩI(t− h))‖L∞(ΩI(t)�ΩI(t−h)))

(6.4)

it holds that

κ1 ≤ ω−1
3 �−3

∫
B�(x)

χh(t) ≤ 1 − κ1.(6.5)

Proof. (i) Estimate from below.

Let � > 0 satisfy (6.4) and x ∈ ∂ΩI(t) be given. Recall that χΩI(t) = χh(t) and

recall the notions χ+
h , χ−

h introduced after Theorem 6.2. Consider generally Ω ⊂ R
n.

First, we show that ΩI(t) ∩B�(x) consists of only one radial component, i.e.,

∫
∂Br(x)

χ−
h dHn−1 +

∫
∂Br(x)

χ+
h dHn−1 > 0 for all 0 < r < �.(6.6)

Assume (6.6) does not hold for a radius r ∈ (0, �). We use (5.7) with χ̃ := χΩI(t)\Br(x)

and find∫
Ω

|∇χh(t)| −
∫

Ω

|∇χ̃| ≤
∫
Br(x)

1

h
‖dist(·, ∂ΩI(t− h))‖L∞(ΩI�ΩI(t−h))χh(t)

+

∫
Br(x)

(
f∗
II(μh(χh(t))) − f∗

I (μh(χh(t)))
)
χh(t)

≤
∫
Br(x)

C1(h)χh(t),(6.7)

where, led by Lemma 6.1, we introduced the constant

C1(h) := ‖fI‖L∞ + ‖fII‖L∞ + h−1‖dist(·, ∂ΩI(t− h))‖L∞(ΩI(t)�ΩI(t−h)).
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Now we use the equalities

∫
Rn

|∇χΩI(t)∩Br(x)| =

∫
Br(x)

|∇χΩI(t)| +
∫
∂Br(x)

χ−
ΩI(t)

dHn−1,

∫
Rn

|∇χΩI(t)\Br(x)| =

∫
Rn\Br(x)

|∇χΩI(t)| +
∫
∂Br(x)

χ+
ΩI(t)

dHn−1

and the isoperimetric inequality (6.2) to conclude that

∫
Br(x)

C1(h)χΩI(t)

≥
∫

Rn

|∇χΩI(t)| −
∫

Rn\Br(x)

|∇χΩI(t)| −
∫
∂Br(x)

χ+
ΩI(t)

dHn−1

=

∫
Br(x)

|∇χΩI(t)| −
∫
∂Br(x)

χ+
ΩI(t)

dHn−1

=

∫
Rn

|∇χΩI(t)∩Br(x)| −
∫
∂Br(x)

χ+
ΩI(t)

dHn−1 −
∫
∂Br(x)

χ−
ΩI(t)

dHn−1

≥ γn

(∫
Br(x)

χΩI(t)

)n−1
n

−
∫
∂Br(x)

χ+
ΩI(t)

dHn−1 −
∫
∂Br(x)

χ−
ΩI(t)

dHn−1.

Since we assumed that (6.6) is false, the last two boundary integrals on the right can
be estimated from below by zero, and we end up with

γn ≤ C1(h)

(∫
Br(x)

χΩI(t)

) 1
n

≤ C1(h)ω
1
n
n �.

This is a contradiction to (6.4), so (6.6) is proved.

A similar technique is now used for proving the bound from below in (6.5). This
time, we use in (5.7) the comparison function

χ̃ := χΩI(t)\(B �
2

+σ(x)\B �
2
−σ(x))

with 0 < σ < �
2 . Let

V (σ) := Ln
(
ΩI(t) ∩ (B �

2 +σ(x) \B �
2−σ(x))

)
.

With this choice of χ̃, (5.7) yields

∫
Ω

|∇χΩI(t)| −
∫

Ω

|∇χ̃| ≤ C1(h)V (σ).(6.8)
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Similar to the above, we have the identities∫
Rn

|∇χΩI(t)∩(B �
2

+σ(x)\B �
2
−σ(x))|

=

∫
B �

2
+σ(x)\B �

2
−σ(x)

|∇χΩI(t)| +
∫
∂B �

2
+σ(x)

χ−
ΩI(t)

dHn−1

+

∫
∂B �

2
−σ(x)

χ+
ΩI(t)

dHn−1,

∫
Rn

|∇χΩI(t)\(B �
2

+σ(x)\B �
2
−σ(x))|

=

∫
Rn\(B �

2
+σ(x)\B �

2
−σ(x))

|∇χΩI(t)| +
∫
∂B �

2
+σ(x)

χ+
ΩI(t)

dHn−1

+

∫
∂B �

2
−σ(x)

χ−
ΩI(t)

dHn−1.

With these two equalities and (6.8), we compute with (6.2)

C1(h)V (σ) ≥ γnV (σ)
n−1
n −

∫
∂B �

2
+σ(x)

χ−
ΩI(t)

dHn−1 −
∫
∂B �

2
−σ(x)

χ+
ΩI(t)

dHn−1

−
∫
∂B �

2
+σ(x)

χ+
ΩI(t)

dHn−1 −
∫
∂B �

2
−σ(x)

χ−
ΩI(t)

dHn−1(6.9)

= γnV (σ)
n−1
n − 2

d

dσ
V (σ).(6.10)

The last equality holds for almost all 0 < σ < �
2 .

From the definition of V (σ) and the upper bound (6.4) on �, we directly find

V (σ) ≤ ωn�
n ≤ γn

n

((n− 1)C1(h))n
,

implying at once

C1(h) ≤ γn

(n− 1)V (σ)
1
n

.

Using the last inequality in (6.10) finally shows the crucial estimate

d

dσ
V (σ) ≥ γn

2
V (σ)

n−1
n − γn

2(n− 1)
V (σ)

n−1
n =

γn
2

n− 2

n− 1
V (σ)

n−1
n .(6.11)

We integrate (6.11) from 0 < σ < �
2 . We see directly

∫ �
2

0

d

dσ
V (σ) dσ = V (�/2) − V (0) =

∫
B�(x)

χh(t).
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For n = 3 the integration of (6.11) therefore yields∫
B�(x)

χh(t) ≥ ω3

43
�3 = κ1ω3�

3,

which proves the lower bound in (6.5).
(ii) The upper bound in (6.5) can be derived in the same way as in (i) by replacing

ΩI(t) with its complement. Obviously,∫
Ω

|∇χΩI(t)| =

∫
Ω

|∇χRn\ΩI(t)|.

Now we consider minimizers χ̃(t) of F̃h(χ̃, μ̃(χ̃)), where the functional F̃h is defined
as Fh in (4.3), but with χ replaced by 1 − χ and 1 − χ replaced by χ.

Then we redo the proof of (i) for the functional F̃h. We obtain

ω−1
n �−n

∫
B�(x)

χh(t) ≤ 1 − κ1.

This shows the bound from above in (6.5) and ends the proof.
Corollary 6.5. Let χh := χΩI(t) be a minimizer of the functional Fh(χ, μ(χ))

and let κ2 := 1
23 . Then for any � > 0 and any pair (x, y) with x ∈ ∂ΩI(t), y ∈

B�(x), and

‖fI‖L∞ + ‖fII‖L∞ ≤ 1

h
dist(y, ∂ΩI(t− h)),(6.12)

it holds that

κ2 ≤ ω−1
3 �−3

∫
B�(x)

χh(t) if x ∈ ΩI(t) \ ΩI(t− h),

ω−1
3 �−3

∫
B�(x)

χh(t) ≤ 1 − κ2 if x ∈ ΩI(t− h) \ ΩI(t).

The assertion remains valid if the assumption x ∈ ∂ΩI(t) is replaced by x ∈ Ω.
Proof. The proof is again similar to the proof of Lemma 6.4. Let � > 0 satisfy

(6.12). First, we consider the case x ∈ ΩI(t) \ ΩI(t − h) and show that (6.6) holds.
First consider generally Ω ⊂ R

n. We exploit (5.7) with χ̃ := χΩI(t)\B�(x). Assuming

that (6.6) is violated for a radius r ∈ (0, �), we obtain, analogous to (6.7),∫
Ω

|∇χΩI(t)| −
∫

Ω

|∇χ̃| ≤
∫
Br(x)

C2(h, y)χΩI(t)dy ≤ 0,(6.13)

where we have, according to (6.12),

C2(h, y) := ‖fI‖L∞ + ‖fII‖L∞ − 1

h
dist(y, ∂ΩI(t− h)) ≤ 0.

From (6.13) and (6.2) we conclude that

γn

(∫
B�(x)

χΩI(t)

)n−1
n

≤ 0,
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which is a contradiction.
The analogue to (6.9) is

γnV (σ)
n−1
n −

∫
∂B �

2
+σ(x)

(
χ−

ΩI(t)
+ χ+

ΩI(t)

)
dHn−1

−
∫
∂B �

2
−σ(x)

(
χ−

ΩI(t)
+ χ+

ΩI(t)

)
dHn−1 ≤ 0,

and from that we can proceed as in the proof of Lemma 6.4.
The other case, x ∈ ΩI(t − h) \ ΩI(t), is treated similarly by considering the

functional F̃ on the complementary set (ΩI(t))C .
Corollary 6.6. Under the assumptions of Corollary 6.5 there exists a constant

C independent of h such that for all � > 0,∫
B�(x)

|∇χh| ≤ C�2.(6.14)

Proof. The proof is analogous to Corollary 6.5. Let x ∈ ΩI(t) \ΩI(t−h). We use
(5.7) with χ̃ := χΩI(t)\Ω(t−h). With condition (6.12) we find

∫
B�(x)

|∇χΩI(t)| ≤
∫
∂B�(x)

χ+
ΩI(t)

dH2,

and therefore ∫
B�(x)

|∇χΩI(t)| ≤ H2(∂B�(x)) ≤ C�2.

The other case, x ∈ ΩI(t− h) \ ΩI(t), can be proved in the same way.
The model (2.17)–(2.25) was formulated for small positive parameters γ, δ, and ε.

As will become clear in what follows, the existence theory remains valid if γ = γ(h),
δ = δ(h), and ε = ε(h) are functions that tend to 0 as h ↘ 0. The convergence of
the discrete solution to the limit problem can be ensured, provided the following four
conditions are met.

The functions δ(h) > 0 and ε(h) > 0 fulfill

(A1) limh↘0 h
1
2 ln(δ(h)) = 0,

(A2) limh↘0(δ(h)ε−1(h) = 0,

(A3) limh↘0(h
1
4 ε−

3
4 (h)) = 0,

(A4) limh↘0(h
1
3 ε−1) = 0.

Now we can formulate an estimate on the discrete velocity of the interface.
Lemma 6.7 (L∞-bound on the discrete velocity). For any h > 0, there exists a

positive constant C independent of h such that

∥∥∥ 1

h
dist(·, ∂Ω(t− h))

∥∥∥
L∞(ΩI(t)�ΩI(t−h))

< Ch− 1
2

uniformly in time.
Proof. Without loss of generality, we restrict our attention to the case x ∈ ΩI(t)\

ΩI(t− h). The other case, x ∈ ΩI(t− h) \ ΩI(t), is treated in the same way.
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The proof is done by contradiction. Assume that there exists an x ∈ ∂ΩI(t) such
that

1

h
dist(x, ∂ΩI(t− h)) ≥ lh− 1

2 for all l ∈ N.(6.15)

We use again (5.7) with χ̃ := χΩI(t)\B l
2

√
h
(x) to find

∫
Ω

|∇χ̃| −
∫

Ω

|∇χΩI(t)| ≥
∫

ΩI(t)∩B l
2

√
h
(x)

1

h
dist(·, ∂ΩI(t− h))

−
∫
B l

2

√
h
(x)

(
‖fI‖L∞ + ‖fII‖L∞

)
χΩI(t).(6.16)

The left-hand side of (6.16) can be estimated from above as follows:∫
Ω

|∇χΩI(t)\B l
2

√
h
(x)| −

∫
Ω

|∇χΩI(t)|

= −
∫
B l

2

√
h
(x)

|∇χΩI(t)| +
∫
∂B l

2

√
h
(x)

χ+
ΩI(t)

dHn−1

≤ Hn−1(∂B l
2

√
h(x)) = n

(
l

2

√
h

)n−1

ωn.

By Assumption (6.15), the last estimate applied to (6.16) yields

l

2
h− 1

2

∫
B l

2

√
h
(x)

χΩI(t) ≤ n

(
l

2

√
h

)n−1

ωn +
(
‖fI‖L∞ + ‖fII‖L∞

)( l

2

√
h

)n

.

From assumption (A1), it follows that condition (6.12) is fulfilled. For n = 3, we
apply Corollary 6.5 and find

l

2
h− 1

2κ2

(
l

2

√
h

)3

ω3 ≤ 3

(
l

2

√
h

)2

ω3 +
(
‖fI‖L∞ + ‖fII‖L∞

)( l

2

√
h

)3

.

This is a contradiction for sufficiently large l.
Lemma 6.8 (improved density lemma). Let χh(t) be a minimizer of the functional

Fh(χh, μh(χh)). Then there exists a constant C independent of h such that for all
� > 0 with � ≤ C

√
h,

κ1 ≤ ω−1
3 �−3

∫
B�(x)

χh(t) ≤ 1 − κ1 for all x ∈ ∂ΩI(t).(6.17)

Proof. This follows directly from Lemmas 6.4 and 6.7.

7. Compactness properties of the discrete solution. We proceed with com-
pactness properties of the time-discrete solution χh.

Lemma 7.1 (compactness in space). For every unit vector e ∈ R
3, it holds

uniformly in h that

lim
s↘0

∫
ΩT

|χh(x + se, t) − χh(x, t)| = 0.(7.1)
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Proof. The claim follows from the a priori estimate (5.1) after observing that∫
Ω

|χ(· + se) − χ| ≤ s

∫
Ω

|∇χ|

for arbitrary functions χ ∈ BV (Ω).
Lemma 7.2 (compactness of χh in time I). There exists a constant C such that

the discrete solution χh satisfies∫ T−τ

0

∫
Ω

|χh(x, t + τ) − χh(x, t)| < cτ for any τ > 0.

Proof. First, we consider the case τ = kh for k ∈ N. Writing the integrand as a
telescopic sum, we see that∫ T−τ

0

∫
Ω

|χh(x, t+τ)−χh(x, t)|

≤
∫ T−τ

0

∫
Ω

k∑
l=1

|χh(x, t+lh)−χh(x, t+(l−1)h)|

=

∫ T−τ

0

∫
Ω

k∑
l=1

h|∂−h
t χh(x, t+lh)| ≤ τ

∫ T

0

∫
Ω

|∂−h
t χh(x, t)|.

Consequently, the proof is finished if we can show that∫
ΩT

|∂−h
t χh| =

N∑
k=1

|ΩI(kh)�ΩI((k − 1)h)| < C(7.2)

for a constant C which is independent of h. In order to prove (7.2), we notice that

ΩI(t)�ΩI(t− h) ⊂
{
x ∈ ΩI(t)�ΩI(t− h)

∣∣∣ dist(x, ∂Ω(t− h)) > c1h
}

∪
{
x ∈ ΩI(t)�ΩI(t− h)

∣∣∣ dist(x, ∂Ω(t− h)) ≤ c1h
}

=: E1(t) ∪ E2(t),

where c1 is a small positive constant. It remains to shows that the sets E1(t), E2(t)
for t = lh and 1 ≤ l ≤ N are bounded. For E1(t) we have, as a consequence of the
free energy inequality (2.26),

|E1(t)| <
1

2c1

∫
ΩI(t)�ΩI(t−h)

dist(·,ΩI(t− h))

≤ h∂h
t

[∫
Ω

(
χhfI(mh) + (1 − χh)fII(mh)

)]
(t).

Discrete integration in time gives

N∑
l=1

|E1(lh)| ≤
∫

Ω

(
χhfI(mh) + (1 − χh)fII(mh)

)
(t = T )

−
∫

Ω

(
χhfI(mh) + (1 − χh)fII(mh)

)
(t = 0) ≤ C.
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In order to show that E2(t) is bounded, we cover E2(t) with a family B of balls with
radius 2c1h and center points x ∈ ∂ΩI(t−h). The Besicovitch covering lemma ensures
that the covering can be chosen such that any point in E2(t) is contained in at most
M different balls in B, where M ∈ N is a fixed number.

With the help of the density lemma, Lemma 6.8, we see that there exists a constant
c2 > 0 such that∫

B�(x)

χΩI(t)�ΩI(t−h) ≤ ω3�
3(7.3)

≤ c2�min

⎧⎨
⎩
(∫

B�(x)

χΩI(t−h)

) 2
3

,

(∫
B�(x)

χR3\ΩI(t−h)

) 2
3

⎫⎬
⎭ .

The right-hand side of (7.3) can be bounded with the help of the isoperimetric in-
equality (6.3) which proves∫

B�(x)

χΩI(t)�ΩI(t−h) ≤ c2�

∫
B�(x)

|∇χΩI(t−h)|.

This estimate holds for each ball B ∈ B, and the union over all elements of B yields

|E2(lh)| ≤ c1c2 Mh

∫
Ω

|∇χΩI((l−1)h)|.

After summation, we get

N∑
l=1

|E2(lh)| ≤
N∑
l=1

c2h

∫
Ω

|∇χΩI((l−1)h)| ≤ C.

The generalization to arbitrary τ ∈ (0, T ) is straightforward.
Lemma 7.3 (compactness of χh in time II). The discrete solution χh fulfills∫

Ω

|χh(x, t + τ) − χh(x, t)| ≤ Cτ
1
2

for all h ≤ τ ≤ T − t.
Proof. Assume that τ = kh and t = mh for k,m ∈ N. As in Lemma 7.2, we

conclude that

∫
Ω

|χh(x, t + τ) − χh(x, t)| ≤
∫

Ω

k−1∑
l=0

|χh(x, (m + l + 1)h) − χh(x, (m + l)h)|

=

k−1∑
l=0

|ΩI((m + l + 1)h)�ΩI((m + l)h)|.

Therefore it is enough to prove

k−1∑
l=0

|ΩI((m + l + 1)h)�ΩI((m + l)h)| ≤ Cτ
1
2 .
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Here we consider the decomposition

ΩI(t)�ΩI(t− h) ⊂
{
x ∈ ΩI(t)�ΩI(t−h)

∣∣∣ dist(x, ∂Ω(t−h)) >
c2
4
h

3
2

}

∪
{
x ∈ ΩI(t)�ΩI(t−h)

∣∣∣ dist(x, ∂Ω(t−h)) ≤ c2
4
h

3
2

}
,

where c2 is the constant of (7.3). The proof follows as in Lemma 7.2, where we can

invoke Lemma 6.8 with � = c2
2 h

1
2 . We obtain

k−1∑
l=0

|ΩI((m + l + 1)h)�ΩI((m + l)h)| ≤ c2h
1
2 ≤ Cτ

1
2 .

The generalization to arbitrary τ and t is straightforward.
Theorem 7.4 (compactness of χh). There exist a subsequence of χh and a

function χ ∈ L1(ΩT , {0, 1}) such that

χh → χ in L1(ΩT ).

For almost all t ∈ (0, T ), the function χ(t) is in BV (Ω) and is a characteristic function
of a set ΩI(t) ⊂ Ω. Additionally, we have the convergence of the Radon measures

∇χh ⇀ ∇χ in rca(ΩT ).

Proof. This is a direct consequence of the compactness properties established in
Lemmas 7.1 and 7.2.

Lemma 7.5 (estimate of the discrete velocity I). There exists a constant C such
that for sufficiently large speed s,∫

{|vh|>s}∩ΩT

|vh||∇χh| < Cs−1.

Proof. We restrict the proof to the case x ∈ ΩI(t) \ ΩI(t − h); case x ∈ ΩI(t −
h) \ ΩI(t) can be proved accordingly.

Let t = kh with k ∈ N. For given s > 0, we fix l ∈ N and consider those
x ∈ ∂ΩI(t) with x ∈ ∂ΩI(t) ∩ {2ls < |vh| ≤ 2l+1s}.

We cover the set

∂ΩI(t) ∩
{
z ∈ Ω

∣∣∣ 2ls < |vh(z, t)| ≤ 2l+1s
}

with a family of balls B ∈ Bl, each ball having a center x ∈ ∂ΩI(t) and a radius hs
2 .

By construction it holds that∫
(ΩI(t)\ΩI(t−h))∩Bhs

2
(x)

|vh| ≥
∫

(ΩI(t)\ΩI(t−h))∩Bhs
2

(x)

(
2ls− 1

2
sh

)

>

∫
(ΩI(t)\ΩI(t−h))∩Bhs

2
(x)

C2ls

=

∫
ΩI(t)∩Bhs

2
(x)

C2ls = C2ls

∫
Bhs

2
(x)

χh(t).
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With Corollary 6.5 this implies the estimate∫
(ΩI(t)\ΩI(t−h))∩Bhs

2
(x)

|vh| > C2ls4h3.

With |vh| < 2l+1s and Corollary 6.6 we find the upper estimate∫
Bhs

2
(x)

|vh||∇χh| <
∫
Bhs

2
(x)

2l+1s|∇χh| ≤ C2l+1s3h2.

Consequently,∫
Bhs

2
(x)

|vh||∇χh| < Ch−1s−1

∫
(ΩI(t)\ΩI(t−h))∩Bhs

2
(x)

|vh|

for every ball B ∈ Bl. When taking the union of all balls in Bl, we arrive at∫
{2ls<|vh|≤2l+1s}

|vh||∇χh| < Cs−1h−1

∫
{(2l− 1

2 )s<|vh|<(2l+1+ 1
2 )s}∩(ΩI(t)�ΩI(t−h))

|vh|.

Summation over all l ∈ N yields∫
{|vh|>s}∩ΩI(t)

|vh||∇χh| < Ch−1s−1

∫
ΩI(t)�ΩI(t−h)

|vh|,

and after integration in time,∫
{|vh|>s}∩ΩT

|vh||∇χh| < Ch−1s−1

∫ T

0

∫
ΩI(t)�ΩI(t−h)

|vh| ≤ Cs−1.

The last inequality follows from the a priori estimate (5.1) in Lemma 5.1.
Lemma 7.6 (estimate on the discrete velocity II). There exists a constant C such

that ∫
ΩT

v2
h|∇χh| < C.

Proof. We need only prove the assertion if |vh| > s for some s > 0 chosen large.
As in Lemma 7.5, let t = kh for k = 1, . . . , N and x ∈ ∂ΩI(t) ∩ {2ls < |vh| ≤ 2l+1s}
for fixed l ∈ N. Again we restrict the proof to the case x ∈ ΩI(t) \ ΩI(t− h).

We cover the set ∂ΩI(t) ∩ {2ls < |vh| ≤ 2l+1s} by a family of balls B ∈ Bl each
with radius 2l−1sh and center points x ∈ ∂ΩI(t). As in Lemma 7.5, we find∫

(ΩI(t)\ΩI(t−h))∩B
2l−1sh

(x)

|vh| >
∫

(ΩI(t)\ΩI(t−h))∩B
2l−1sh

(x)

C2ls ≥ C24l−3h3s4.

On the other hand,∫
B

2l−1sh
(x)

v2
h|∇χh| ≤ C(2l+1s)2(2l−1sh)2 = C24l−6h2s4.

A comparison yields∫
B

2l−1sh
(x)

v2
h|∇χh| < Ch−1

∫
(ΩI(t)\ΩI(t−h))∩B

2l−1sh
(x)

|vh|.
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Now we can proceed as in Lemma 7.5.
Lemma 7.7 (error in the discrete velocity). For all test functions ξ ∈ C0

0 (ΩT ; R),
it holds that

lim
h↘0

∫
ΩT

(
1

h
dist(·, ∂ΩI(t− h))|∇χh| − ∂−h

t χh

)
ξ = 0.

Proof. The principle of the proof is taken from [19]; see also [27] and [26].
We subdivide the proof into two parts. The first part studies the region where the

discrete velocity is high. We will show the lemma for Ω ⊂ R
3; however, the following

proof fails for space dimensions n ≥ 4.
We cover the set ΩI(t)�ΩI(t− h) by a family B(t) of balls, each with radius h

1
2

and with center x ∈ ΩI(t)�ΩI(t− h). Let

B := B(h) ∪ B(2h) ∪ · · · ∪ B(Nh).

(i) By B1 ⊂ B we denote that subfamily of B with the property that for every
ball B in B1 there exists a z ∈ B ∩ (ΩI(t)�ΩI(t− h)) with

dist(z,ΩI(t− h)) > h
9
16 .(7.4)

Again it is enough to consider the case x ∈ ΩI(t) \ ΩI(t− h). We fix a ball B in B1.
With Corollary 6.5 and (7.4) we obtain

∫
B 1

2
h9/16 (x)∩(ΩI(t)\ΩI(t−h))

|vh| > C
h− 7

16

2

(
h

9
16

2

)3

= Ch
5
4 .

This implies∫
B√

h(x)

|∂−h
t χh| ≤ C

∫
B√

h(x)

1

h
≤ Ch

1
2 ≤ Ch− 3

4

∫
B 1

2
h9/16 (z)∩(ΩI(t)\ΩI(t−h))

|vh|

≤ ch− 3
4

∫
B2

√
h(x)∩(ΩI(t)\ΩI(t−h))

|vh|.(7.5)

The last estimate, (7.5), holds because

B 1
2h

9/16(z) ⊂ B2
√
h(x).

A further bound can be obtained from Lemma 6.7 and Corollary 6.6:∫
B√

h(x)

|vh||∇χh| ≤ Ch− 1
2 (h

1
2 )2 ≤ Ch

1
2

≤ Ch− 3
4

∫
B2

√
h(x)∩(ΩI(t)\ΩI(t−h))

|vh|.(7.6)

When combining estimates (7.5) and (7.6) we obtain, after taking the union of all
balls B ∈ B1 and after integration in time,∫ T

0

∫
B1

(
|∂−h

t χh| + |vh||∇χh|
)
≤ Ch− 3

4

∫ T

0

∫
ΩI(t)\ΩI(t−h)

|vh| ≤ Ch
1
4 .(7.7)
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The last inequality in (7.7) is a consequence of the a priori estimate on vh found in
Lemma 5.1. With (7.7) the lemma is shown for the regions with fast discrete velocity

vh and x ∈ ΩI(t) \ ΩI(t− h).
(ii) Now we discuss the regions in Ω with small discrete velocity. Let B2 := B\B1.

By construction,

dist(z, ∂ΩI(t− h)) ≤ h
9
16(7.8)

for any ball B ∈ B2 and any z ∈ B. Let β := 17
32 .

For t = kh, 1 ≤ k ≤ N , we consider the subcover B̃2(t) of B2(t) with balls of

radius hβ = h
17
32 and center x ∈ ∂ΩI(t). Also, let B̃2 := ∪N

k=1B̃2(kh).
The following strong assumption is sufficient to prove part (ii).
For every ball B ∈ B̃2 there exists a ν ∈ S2 such that

max
{
‖ν1 − ν‖L∞(B), ‖ν2 − ν‖L∞(B)

}
≤ ω(h),(7.9)

where ν1, ν2 denote the unit outer normals to ΩI(t) and ΩI(t− h), respectively. The
function ω(h) converges uniformly to 0 in every ball B ∈ B̃2.

It is evident that (7.9) implies the assertion of the lemma. Indeed, (7.9) is a
very strong condition as it controls the variation of the normals, and thus we obtain
directly ∣∣∣∣

∫
B

∂−h
t χh − vh|∇χh|

∣∣∣∣ ≤ ω(h)

∫
B

|∂−h
t χh|

for all balls B ∈ B̃2. Taking the union over all balls in B̃2(t) and using discrete
integration in time yields, for test functions ξ ∈ C0(ΩT ; R),∣∣∣∣∣

∫ T

0

∫
B2(t)

(
∂−h
t χh − vh|∇χh|

)
ξ

∣∣∣∣∣ ≤ ‖ξ‖L∞(ΩT ) ω(h)

∫
ΩT

|∂−h
t χh| ≤ Cω(h).

The last estimate follows from the bound on ‖∂−h
t χh‖L1(ΩT ) provided in Lemma 7.2.

So it remains to prove (7.9). We will use Bernstein’s theorem (see [14], [13],
and [12]) for n = 8.

Assume that (7.9) does not hold. Then there exists a subsequence of balls Bhβ (xh)
such that for all ν the norms ‖νΩI(t) − ν‖L∞(B), ‖νΩI(t−h) − ν‖L∞(B) do not converge

to 0. We blow up the balls B√
h(xh) with a factor h−β and shift them such that

we obtain a sequence of balls with radius h
1
2−β and center at 0. These scaled and

translated balls will be denoted by Ωβ
h(t). The characteristic functions to Ωβ

h(t) are
minimizers of the scaled functional Fh given by (4.3). The compactness of BV (Ω)
with respect to L1-convergence implies that we can find a subsequence of χΩβ

h(t) and

a subsequence of χΩβ
h(t−h) (both denoted as the original sequence) such that

χβ
h(t) := χΩβ

h(t) → χT1
, χΩβ

h(t−h) → χT2
in L1

loc(R
3)

for two sets T1, T2. Since the velocity term in the rescaled functional is scaled by a
factor h2β , due to Lemma 6.7 we find

h2β

∫
Ωβ

h(t)�Ωβ
h(t−h)

1

h
dist(·, ∂Ωβ(t− h)) ≤ Ch2βh− 1

2h−β = Chβ− 1
2 .
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This shows that the velocity term in the rescaled functional converges to 0 for h ↘ 0.
Due to (5.9), this also holds for the other terms in the scaled functional, except for

the area term
∫
Ωβ

h
|∇χβ

h|. This implies that the sets T1, T2 are area-minimizing in R
3.

Bernstein’s theorem thus yields that Ti are half-spaces.
From the bound on the discrete velocity (7.8) we learn that

dist(·, ∂Ωβ
h(t− h)) ≤ h

9
16h−β → 0 on B

h
1
2
−β (xh) ∩ (Ωβ

h(t)�Ωβ
h(t− h)).

This gives T1 = T2 =: T and 0 ∈ ∂T . Without loss of generality, we may assume

T = {z ∈ R
3 | z3 < 0},

implying ν = (0, 0, 1) for the normal to the minimizing set T .
Let � > 0 be fixed. Our construction implies

lim
h↘0

�−3

∫
B�(z)

|ν1 − ν|2|∇χβ
h| = 0 uniformly for z ∈ B1(0) ∩ ∂Ωβ

h(t).

Now we apply the excess-decay-lemma; see, for instance, [29]. It states that

lim
h↘0

|ν1(z) − ν| = 0 uniformly for z ∈ B1(0) ∩ ∂Ωβ
h(t).

The same statement holds for ν2 and Ωβ
h(t− h). Thus, after rescaling with factor hβ ,

this gives a contradiction, and (7.9) is proved.

8. Convergence of the discrete solution. We still have to verify that the
discrete solutions converge to the solution of the continuous equations. We will prove
this in a series of lemmas.

From Theorem 7.4 it does not follow that

|∇χh| ⇀ |∇χ| in rca(ΩT ).

For the proofs of this section we therefore make the assumption∫
ΩT

|∇χh| →
∫

ΩT

|∇χ| as h ↘ 0,(8.1)

where χ is the function of Theorem 7.4.
First, we show the existence of a velocity v that satisfies (W3).
Lemma 8.1 (existence of a limit velocity). Let χ be the characteristic function

specified in Theorem 7.4. Then there exists a velocity function v which satisfies

v ∈ L1((0, T ); L1(Ω; |∇χ(t)|))

such that (W3) is fulfilled.
Proof. Discrete integration by parts yields

∫
ΩT

ξ∂−h
t χh +

1

h

∫
Ω

∫ h

0

χΩI
0
ξ = −

∫
ΩT

χh∂
h
t ξ(8.2)

for all ξ ∈ C∞(Ω × [0, T ]; R) with ξ(T ) = 0.
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As was shown in Lemma 7.2, there exists a constant C independent of h such
that ∫

ΩT

|∂−h
t χh| < C.

Therefore there exists a subsequence of ∂−h
t χh with

∂−h
t χh ⇀ ν in rca(ΩT ).

With Lemma 7.7 we find at once that

vh|∇χh| ⇀ ν in rca(ΩT ).(8.3)

We prove now that ν is absolutely continuous with respect to the measure |∇χ|.
Let E ⊂ ΩT with |∇χ(E)| = 0. From our assumption (8.1) we infer that there exists
a function g : R → R with g(h) ↘ 0 as h ↘ 0 such that

|∇χh(E)| ≤ g(h).

Due to Lemma 7.5 it follows that∫
E

|vh||∇χh| =

∫
{|vh|≤s}∩E

|vh||∇χh| +
∫
{|vh|>s}∩E

|vh||∇χh|

≤ sg(h) + Cs−1.

The right-hand side of this estimate can be made arbitrarily small for small h, and
thus

lim
h↘0

∫
E

|vh||∇χh| = 0.

This shows that ν(E) = 0 and proves the absolute continuity of ν. The existence of
v ∈ L1(0, T ); L1(Ω; |∇χ(t)|) satisfying

ν = v|∇χ|(8.4)

follows now from the Radon–Nikodym theorem.
The measures vh|∇χh| and v|∇χ| are absolutely continuous in time, and further-

more we can approximate ξ in (8.2) by functions with compact support. Passing to
the limit h ↘ 0 gives (W3).

Lemma 8.2 (convergence of the advection term in the weak curvature equation).

Let χ be the characteristic function specified in Theorem 7.4 and v be the function
specified in Lemma 8.1. Then it holds that

lim
h↘0

∫
ΩT

vhζ∇χh =

∫
ΩT

vζ∇χ

for all ζ ∈ C1([0, T ] × Ω; R
3) with ζ = 0 on ∂Ω × (0, T ).

Proof. As |∇χ| is a Radon measure, there exists for any ε > 0 a vector-valued
mapping gε ∈ C0(ΩT ; R

3), |gε| ≤ 1, such that∫
ΩT

|∇χ| −
∫

ΩT

gε∇χ < ε.
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Consequently,

lim
h↘0

(∫
ΩT

|∇χh| −
∫

ΩT

gε∇χh

)
=

∫
ΩT

|∇χ| −
∫

ΩT

gε∇χ < ε.(8.5)

With the notation

νh :=
∇χh

|∇χh|
, ν :=

∇χ

|∇χ| ,

we find∫
ΩT

(νh − gε)
2|∇χh| =

∫
ΩT

(1 − 2gενh + g2
ε)|∇χh| =

∫
ΩT

(2 − 2gενh + g2
ε − 1)|∇χh|

≤ 2

∫
ΩT

(1 − gενh)|∇χh|.

This estimate in combination with (8.5) yields

lim
h↘0

∫
ΩT

(νh − gε)
2|∇χh| < 2ε.(8.6)

This result, together with Hölder’s inequality and the boundedness of (
∫
ΩT

|∇χh|)
1
2 ,

implies

lim
h↘0

∫
ΩT

|νh − gε||∇χh| ≤ C lim
h→0

(∫
ΩT

(νh − gε)
2|∇χh|

) 1
2

≤ C(2ε)
1
2 .

In the same way, we compute with Lemma 7.6 and Hölder’s inequality

lim
h↘0

∫
ΩT

|vh||gε − νh||∇χh| ≤
(∫

ΩT

|vh|2|∇χh|
) 1

2
(∫

ΩT

(νh − gε)
2|∇χh|

) 1
2

≤ C(2ε)
1
2 .(8.7)

Now we are prepared to show the assertion of the lemma. We see that∣∣∣∣∣
∫

ΩT

vhζ∇χh − vζ∇χ
∣∣∣ =

∣∣∣∣∣
∫

ΩT

vhζνh|∇χh| − vζν|∇χ|
∣∣∣∣∣

≤
∣∣∣∣∣
∫

ΩT

vhζνh|∇χh| − vζgε|∇χ|
∣∣∣∣∣+
∣∣∣∣∣
∫

ΩT

vζgε|∇χ| − vζν|∇χ|
∣∣∣∣∣

=: I1(ε, h) + I2(ε).

We estimate I1 and I2 independently. For the first integral, we have

I1(ε, h) ≤
∫

ΩT

|vh||ζ||νh − gε||∇χh| +
∣∣∣∣∣
∫

ΩT

vhζgε|∇χh| − vζgε|∇χ|
∣∣∣∣∣.(8.8)
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Estimate (8.7) confirms the convergence of the first integral in (8.8), the properties
(8.3) and (8.4) lead to the convergence of the second integral, and thus

lim
ε↘0

lim
h↘0

I1(ε, h) ≤ lim
ε↘0

Cε
1
2 = 0.

For the integral I2(ε) we get directly

I2(ε) ≤ ω(ε)

for a function ω(ε) that tends to 0 as ε tends to 0. In conclusion we have found that

lim
h↘0

∣∣∣∣∣
∫

ΩT

vhζ∇χh − vζ∇χ

∣∣∣∣∣ = 0,

and the proof is finished.
Lemma 8.3 (convergence of the weak curvature term). Let χ be the characteristic

function specified in Theorem 7.4. Then it holds that

lim
h↘0

∫
ΩT

νh∇ζνh|∇χh| =

∫
ΩT

ν∇ζν|∇χ|

for all ζ ∈ C1([0, T ] × Ω; R
3) with ζ = 0 on ∂Ω × (0, T ).

Proof. For ε > 0 and the family gε of mappings introduced in Lemma 8.2, one
has∣∣∣∣∣
∫

ΩT

νh∇ζνh|∇χh| −
∫

ΩT

ν∇ζν|∇χ|
∣∣∣∣∣ ≤

∣∣∣∣∣
∫

ΩT

νh∇ζνh|∇χh| −
∫

ΩT

gε∇ζgε|∇χh|
∣∣∣∣∣

+

∣∣∣∣∣
∫

ΩT

gε∇ζgε|∇χh| −
∫

ΩT

gε∇ζgε|∇χ|
∣∣∣∣∣

+

∣∣∣∣∣
∫

ΩT

gε∇ζgε|∇χ| −
∫

ΩT

ν∇ζν|∇χ|
∣∣∣∣∣.

With the help of (8.6) and (8.1) we see that the right-hand side of this estimate
converges to 0 as h ↘ 0 and ε ↘ 0.

It is well known that condition (8.1), together with the convergence of χh → χ
in L1(ΩT ) as stated in Theorem 7.4, implies the convergence of the mean curvature
term. This is a consequence of the lemma of Reshetnyak, which we state for the
reader’s convenience.

Lemma 8.4 (lemma of Reshetnyak). Let μh be a sequence of vector-valued mea-
sures in Ω ⊂ R

n with

μh → μ in rca(Ω; R
n)

and

|μh|(Ω) → |μ|(Ω).

Then for all bounded continuous functions in Sn−1 × Ω it holds that

f

(
μh

|μh|
, ·
)
|μh| ⇀ f

(
μ

|μ| , ·
)
|μ| in rca(Ω; R

n),
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where μ
|μ| is defined by the Radon–Nikodym theorem.

Proof. The proof is similar to the proof of Lemma 8.3; see [23].

Now we discuss the convergence of the discrete chemical potentials.

Lemma 8.5 (convergence of μD
h ). There exists a function μD ∈ L2(0, T ; H1,2(Ω))

and a subsequence μD
h such that for h ↘ 0,

μD
h ⇀ μD in L2(0, T ; H1,2(Ω))

and

(1 − χ)μD = (1 − χ)ϕ for almost every (x, t) ∈ ΩT .

We recall that ϕ are the boundary conditions on μD given by (2.25).

Proof. Due to the a priori estimates, we have for a constant C independent of h
that

∫
ΩT

|∇μD
h |2 ≤ C.

Together with the boundary conditions for μD
h and the Poincaré inequality, this yields

‖μD
h ‖L2(0,T ;H1,2(Ω)) ≤ C.

The second assertion of the lemma follows directly from the a priori estimate, which
ensures

∫
ΩT

(1 − χh(t− h))|∇μD
h |2 → 0 for h ↘ 0.

This proves the lemma.

Lemma 8.6 (convergence of μN
h ). There exists a function μN ∈ L2(0, T ;H1, 32 (Ω))

and a subsequence μN
h such that for h ↘ 0,

μN
h ⇀ μN in L2(0, T ; L

3
2 (Ω)),

with

(1 − χ)μN = 0 for almost every (x, t) ∈ ΩT .

Proof. For any h > 0, let α = α(h) > 0 be a small real number with α(h) ↘ 0 as

h ↘ 0. We define the mapping μN,α
h by

μN,α
h :=

{
(|μN

h | − α)+
μN
h

|μN
h | if μN

h 
= 0,

0 else.



DIS IN TIME-DEPENDENT DOMAINS 1289

For this truncated chemical potential, we compute with the chain rule∫
ΩT

(1 − χh(t− h))|∇μN,α
h | 32

=

∫
ΩT∩{|μN,α

h |>α}
(1 − χh(t− h))|∇μN,α

h | 32

≤
∫

ΩT∩{|μN,α
h |>α}

(1 − χh(t− h))|∇
(
(μN,α

h )
5
4

)
| 32α− 3

8

=
5

4
α− 3

8

∫
ΩT∩{|μN,α

h |>α}
(1 − χh(t− h))|μN,α

h | 38 |∇μN,α
h | 32

≤ 5

4
α− 3

8

(∫
ΩT

(1 − χh(t− h))|∇μN,α
h |2

) 3
4
(∫

ΩT

(1 − χh(t− h))|μN,α
h | 32

) 1
4

,

where Hölder’s inequality was used to get the last line.
We apply the a priori estimates (5.3) and (5.5) and obtain∫

ΩT

(1 − χh(t− h))|∇μN,α
h | 32 ≤ Cα− 3

8 ε−
3
4 γ

3
16 ≤ C.

Here we choose α(h) such that α− 3
8 ε−

3
4 γ

3
16 is bounded uniformly in h. So we have

found that ∫
ΩT

|∇μN,α
h | 32 ≤ C.

With the boundary conditions for μN
h , this ensures the existence of a subsequence,

again denoted by μN,α
h , and the existence of a function μN,α ∈ L2(0, T ; H1, 32 (Ω)) with

μN,α
h ⇀ μN,α in L2(0, T ; H1, 32 (Ω)).

Also we can pick a subsequence α(h) with

μN,α ⇀ μN in L2(0, T ; H1, 32 (Ω))

for a suitable μN ∈ L2(0, T ; H1, 32 (Ω)).

Finally, by definition of μN,α
h , we have for every α ≥ 0 and every h > 0,

‖μN
h − μN,α

h ‖
L2(0,T ;L

3
2 (Ω))

≤ Cα.

By construction it thus holds for h ↘ 0 that

μN
h ⇀ μN in L2(0, T ; L

3
2 (Ω)).

The second claim of the lemma is again a consequence of the a priori estimate (5.5),
which shows as γ(h) ↘ 0 for h ↘ 0,∫

ΩT

(1 − χh(t− h))|μN
h |2 → 0 as h ↘ 0.
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This ends the proof.
Lemma 8.7. Let χ be the characteristic function specified in Theorem 7.4. Then

it holds that

lim
h↘0

∫
ΩT

f∗
II(μh)ζ∇χh =

∫
ΩT

Kζ∇χ

for all ζ ∈ C1([0, T ] × Ω; R
3) with ζ = 0 on ∂Ω × (0, T ), where K := fD,∗

II (ϕ).
Proof. We reformulate the left-hand side. For a test function ζ ∈ C1([0, T ] ×

Ω; R
3) with ζ = 0 on ∂Ω × (0, T ), we compute∫
ΩT

f∗
II(μh)ζ∇χh =

∫
ΩT

(1 − χh)fD,∗
II (μD

h )div(ζ) +

∫
ΩT

(1 − χh)mD
h ∇μD

h ζ

+

∫
ΩT

(1 − χh)fN,∗
II (μN

h )div(ζ) +

∫
ΩT

(1 − χh)mN
h ∇μN

h ζ

=: I1 + I2 + I3 + I4.

Using the convexity of fD,∗
II and Lemma 8.5, we have for I1,

lim
h↘0

∫
ΩT

(1 − χh)fD,∗
II (μD

h )div(ζ) =

∫
ΩT

(1 − χ)fD,∗
II (ϕ)div(ζ).

So it remains to show that Ik → 0 as h ↘ 0 for k = 2, 3, 4. For I2 this results from

|I2| ≤ C

∫
ΩT

|χh(t− h) − χh||∇μD
h ||ζ| +

∫
ΩT

(1 − χh(t− h))|∇μD
h ||ζ|,

and the a priori estimates and Lemma 7.2 yield, as desired, |I2| ↘ 0 as h ↘ 0.

From μ = ∂fII
∂m in Ω \ ΩI we get

mN
i = exp(μN

i )δ for i = 1, 2

and consequently,

fN,∗
II (μN

h ) = kBθδ

2∑
i=1

exp

(
μN
h,i

kBθ

)
.

Lemma 8.6 therefore implies |I3| ↘ 0 as δ(h) ↘ 0.
Finally,

|I4| = C

∣∣∣∣∣
∫

ΩT

δ(1 − χh) exp(μN )∇μN
h

∣∣∣∣∣ ≤ Cδε−1,

where we use again the a priori estimates and Hölder’s inequality. With assump-
tion (A2) we obtain |I2| ↘ 0 as h ↘ 0, and the lemma is proved.

Lemma 8.8. Let χ be the characteristic function specified in Theorem 7.4. Then
it holds that

lim
h↘0

∫
ΩT

f∗
I (μh)ζ∇χh =

∫
ΩT

f∗
I (μ)ζ∇χ



DIS IN TIME-DEPENDENT DOMAINS 1291

for all ζ ∈ C1([0, T ] × Ω; R
3) with ζ = 0 on ∂Ω × (0, T ), where μ = (μN , μD).

Proof. We reformulate the left-hand side. For a test function ζ ∈ C1([0, T ] ×
Ω; R

3) with ζ = 0 on ∂Ω × (0, T ), we compute∫
ΩT

f∗
I (μh)ζ∇χh = −

∫
ΩT

χhf
∗
I (μh)div(ζ) −

∫
ΩT

χhmh∇μhζ.(8.9)

From the convexity of f∗
I together with Lemmas 8.5 and 8.6, it follows directly that

lim
h↘0

∫
ΩT

χhf
∗
I (μh)div(ζ) =

∫
ΩT

χhf
∗
I (μN , μD)div(ζ).

The proof is finished if we can show the convergence of the second integral on the
right-hand side in (8.9) for h ↘ 0, but this is quite involved.

We use the definition

mβ
h :=

{
mh if β < |mh| < 1 − β,

0 else

to reformulate the second integral on the right in (8.9). Since
∂f∗

I

∂μ (μ) is locally a
Lipschitz function, we have for arbitrary vectors μ1, μ2,∣∣∣∣∣∂f

∗
I

∂μ
(μ1) −

∂f∗
I

∂μ
(μ2)

∣∣∣∣∣ ≤ C|μ1 − μ2|,

where C depends on μ1, μ2 and C → ∞ for μ1, μ2 → ∞. So we can estimate∫
ΩT

χh|∇mβ
h|

3
2

≤
∫

ΩT

χh(t− h)|∇mβ
h|

3
2 +

∫
ΩT

|χh − χh(t− h)| |∇mβ
h|

3
2

≤ C

(∫
ΩT

χh(t− h)|∇mβ
h|2
) 3

4

+C

(∫
ΩT

|χh − χh(t− h)|
) 1

4
(∫

ΩT

|∇mβ
h|2
) 3

4

≤ C(ε−
3
4h

1
4 + 1).

Due to assumption (A3) the right-hand side converges to 0 as h ↘ 0.
For functions ϕ,ψ ∈ C∞(B1(0); R

+) we introduce mollifiers ϕ� and ψσ by set-
ting ϕ�(x) := �−3ϕ(x/�) and ψσ(t) := σ−3ψ(t/σ). It holds that suppϕ� ⊂ B�(0),

suppψσ ⊂ Bσ(0). We consider sequences (�, σ) with σ
1
2 �−1 → 0. Then we have the

estimate∫
ΩT

|(χhm
β
h) ∗ ϕ� ∗ ψσ − χhm

β
h|

≤
∫

ΩT

|(χhm
β
h) ∗ ϕ� ∗ ψσ − (χhm

β
h) ∗ ϕ�| +

∫
ΩT

|(χhm
β
h) ∗ ϕ� − χhm

β
h|

≤ Cσ
1
2 �−1‖∂h

t (χhm
β
h)‖L2(0,T ;H−1,2(Ω))+C�

(∫
ΩT

|∇(χhm
β
h)|+1

)
.
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Taking (5.6) into account, we arrive at∫
ΩT

|(χhm
β
h) ∗ ϕ� ∗ ψσ − χhm

β
h| ≤ C(σ

1
2 �−1 + �),

which holds uniformly in h. It follows that there exists a subsequence of χhm
β
h

(denoted as the original sequence) and a function Γ ∈ L1(ΩT ) such that

χhm
β
h → Γ in L1(ΩT ).(8.10)

Additionally,

‖χhmh − Γ‖L1(ΩT ) ≤ ‖χhmh − χhm
β
h‖L1(ΩT ) + ‖χhm

β
h − Γ‖L1(ΩT ),

and the right side of this estimate converges to 0 for h ↘ 0. With (8.10) this ensures
the strong convergence of a subsequence χhmh in L1(ΩT ). Furthermore we know that
there exists a subsequence of mh such that for any 1 ≤ p < ∞,

mh → m in Lp(ΩT ) for h ↘ 0.

This yields χhmh ⇀ χm in Lp(ΩT ) and finally,

χhmh → χm in Lp(ΩT ) for h ↘ 0.(8.11)

Next we will show that

χh∇μhζ ⇀ χ∇μζ in L2(0, T ; L
6
5 (Ω)).

We use again the mapping μN,α
h from the proof of Lemma 8.6. We define the mapping

μN
h,α by

μN
h,α :=

⎧⎨
⎩

min{α, |μN,α
h |} μN

h

|μN
h | if μN

h 
= 0,

0 else.

From the definition of μN
h,α we find

∣∣∣∣∣
∫

ΩT

χh(t− h)∇μN
h,αζ

∣∣∣∣∣ ≤ C

∫
ΩT

|μN
h,α||∇(χh(t− h)ζ)|

≤ Cα

∫
ΩT

|∇(χh(t− h)ζ)| ≤ Cα.(8.12)

Since α(h) ↘ 0 as h ↘ 0, we have for h ↘ 0 the convergence∫
ΩT

χh(t− h)∇μN,α
h ζ →

∫
ΩT

χ∇μNζ,

which with (8.12) leads to∫
ΩT

χh(t− h)∇μN
h ζ →

∫
ΩT

χ∇μNζ for h ↘ 0.(8.13)
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From the a priori estimates, we can deduce

χh(t− h)∇μN
h ⇀ Λ in L2(0, T ; L2(Ω)),

and therefore ∫
ΩT

χh(t− h)∇μN
h ζ →

∫
ΩT

Λζ for h ↘ 0.(8.14)

From (8.13) and (8.14) we obtain∫
ΩT

(χ∇μN − Λ)ζ = 0 for all ζ ∈ C1([0, T ] × Ω; R
3) with ζ = 0 on ∂Ω × (0, T ).

Consequently,

χ∇μN = Λ for almost every (x, t) ∈ ΩT .

So we have shown that

χh(t− h)∇μN
h ζ ⇀ χ∇μNζ in L2(0, T ; L2(Ω)) for h ↘ 0.

Fix an arbitrary g ∈ L2(0, T ; L6(Ω)). We rewrite the integrand in the form∫
ΩT

χh∇μN
h ζg =

∫
ΩT

(χh − χh(t− h))∇μN
h ζg +

∫
ΩT

χh(t− h)∇μN
h ζg.

With Lemma 7.3 and Hölder’s inequality, we can find the estimate∣∣∣∣∣
∫

ΩT

(χh−χh(t−h))∇μN
h ζg

∣∣∣∣∣
≤ C

(∫
Ω

|χh−χh(t−h)|
) 2

3
(∫

ΩT

|μN
h |2
) 1

2

‖g‖L2(0,T ;L6(Ω))

≤ Ch
1
3 ε−1‖g‖L2(0,T ;L6(Ω)).

With assumption (A4) this yields

χh∇μN
h ζ ⇀ χ∇μNζ in L2(0, T ; L

6
5 (Ω)) for h ↘ 0.(8.15)

Statements (8.11) and (8.15) combined give∫
ΩT

χhm
N
h ∇μN

h ζ →
∫

ΩT

χmN∇μNζ for h ↘ 0.

The proof of convergence for the Dirichlet data is analogous. Now we can pass to the
limit h ↘ 0 in (8.9).

The following theorem is now a direct consequence of the lemmas shown above.
Theorem 8.9 (existence of weak solutions). Let Ω ⊂ R

3 be an open bounded
set with Lipschitz boundary and let the no-loss-of-area condition (8.1) hold. Let χ0 ∈
BV (Ω), μ0 ∈ H1,2(Ω). Then there exists (m,μ, χ, v) with

χ ∈ L∞(0, T ; BV (Ω; {0, 1})), supp χ(t) ⊂⊂ Ω for all 0 < t < T,

v ∈ L1(0, T ; L1(Ω; R; |∇χ(t)|)),

μ = (μN , μD), μN ∈ L2(0, T ; H1, 32 (Ω)), μD ∈ L2(0, T ; H1,2(Ω)),

(1 − χ)μN = 0, (1 − χ)μD = (1 − χ)ϕ for almost all (x, t) ∈ ΩT

such that (m,μ, χ) is a weak solution in the sense of section 3.
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THE BOUNDARY BEHAVIOR OF BLOW-UP SOLUTIONS
RELATED TO A STOCHASTIC CONTROL PROBLEM WITH STATE

CONSTRAINT∗

TOMMASO LEONORI† AND ALESSIO PORRETTA†

Abstract. We consider solutions of the equation −Δu + λu + |∇u|q = f , which blow up
uniformly at the boundary of a smooth domain, that can be interpreted as the value function of a
state constraint control problem for a Brownian motion. We prove a complete asymptotic expansion
of the gradient at the boundary, giving the precise behavior of normal and tangent components. The
result is achieved by proving Lipschitz regularity for u− S, where S is an explicit singular corrector
term. As the main motivation and application of our result, we characterize the behavior of the
singular optimal control law and of the constrained dynamics near the boundary.

Key words. nonlinear elliptic equations, boundary blow-up solutions, asymptotic expansion,
state constraint problem for the Brownian motion
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1. Introduction. In this work we study the solutions of the following elliptic
equation:

(1.1) −Δu + |∇u|q + λu = f(x) in Ω

which satisfy the singular boundary condition

(1.2) u(x) → +∞ as x → ∂Ω,

where Ω is a bounded smooth subset in R
N , N ≥ 2. In (1.1), we assume that

1 < q ≤ 2, λ > 0, and f satisfies suitable regularity conditions.
Let us stress that the condition 1 < q ≤ 2 is necessary in order that solutions

satisfying (1.2) exist. Indeed, if q > 2, any solution of (1.1) can be proved to be
bounded (universally) and Hölder continuous up to the boundary (see [17]); hence,
the maximal trace in that case is bounded: This explains why the study of (1.1) for
q > 2 needs, in general, a completely different approach.

The study of solutions of (1.1)–(1.2) was suggested in a pioneering paper by Lasry
and Lions [15] motivated by a state constraint problem for the Brownian motion, which
was roughly presented in an intuitive way as the problem of “constraining a Brownian
motion in a given domain by controlling its drift.” More precisely, given a Brownian
motion Bt (on a standard probability space) and a diffusion process Xt which solves
the stochastic differential equation

(1.3)

{
dXt = atdt + dBt,

X0 = x ∈ Ω,

they considered the problem of finding optimal feedback controls (i.e., controls at =
a(Xt), where a ∈ C(Ω; RN )) such that Xt never leaves the domain Ω. Clearly, as

∗Received by the editors January 30, 2007; accepted for publication (in revised form) August 7,
2007; published electronically December 12, 2007.
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1295



1296 TOMMASO LEONORI AND ALESSIO PORRETTA

explained in [15], a control has to be singular (at ∂Ω) in order to realize a similar
state constraint (for a nondegenerate diffusion). The criterion for optimality was given
by the cost functional

(1.4) J(x, a) = E

∫ ∞

0

{
f(Xt) + Cq |a(Xt)|q

′}
e−λ tdt,

where E is the expected value, q′ = q
q−1 , Cq = (q − 1)q−

q
q−1 , and e−λt is a discount

factor. Then the value function

(1.5) u(x) = inf
a∈A

J(x, a), A = {a ∈ C(Ω) : Xt ∈ Ω ∀t > 0, a.s.}

was proved to be the maximal solution of (1.1). We note that here there was no
restriction on q, but for q > 1. Then, in the case 1 < q ≤ 2, they proved that u is
the unique solution of (1.1)–(1.2) (in the sense that u ∈ W 2,p

loc (Ω) for any p < ∞ and
satisfies (1.2) uniformly) and moreover that the optimal feedback state control law is
given by

(1.6) a(·) = −q|∇u(·)|q−2∇u(·);

i.e., a(Xt) is the unique optimal control. Some asymptotic estimates for u were also
proved (in [15] and also in [2]) and in particular that

(1.7)

{
u(x) ∼ C∗d(x)−

2−q
q−1 as d(x) → 0 if 1 < q < 2,

u(x) ∼ − log(d(x)) as d(x) → 0 if q = 2,

where, for x ∈ Ω, d(x) denotes the distance to the boundary of Ω and C∗ is a universal

constant, precisely C∗ = (q−1)
− 2−q

q−1

2−q .
Let us note that the rate of explosion decreases as q gets close to 2, which is

consistent with the fact that, when q > 2, solutions of (1.1) are bounded. Further
results for the case q > 2 can be found in [15], although a characterization of the
optimal control law such as (1.6) is missing in that case.

Once more, we stress that we will restrict to the range 1 < q ≤ 2, when blow-up
solutions exist, and moreover, after the results in [15], the unique optimal control
a(Xt) is explicitly given through (1.6). In particular, this gives significant motiva-
tion for studying the asymptotic behavior of ∇u, which locally determines, near the
boundary, the constrained dynamics (1.3). A first estimate in this sense has been
proved in [18], using (1.7) and scaling and blow-up arguments, precisely that

(1.8) lim
x→x0∈∂Ω

d(x)
1

q−1∇u(x) = (q − 1)−
1

q−1 ν(x0),

where ν(x) is the outward unit vector on ∂Ω . Note that (q − 1)−
1

q−1 = C∗ 2−q
q−1 , so

that (1.8) is the expected “derivation” of (1.7). Moreover, from (1.7) and (1.8) we
observe that the first order asymptotic behavior of u and ∇u depends only on q and
is described by the one-dimensional solution of the corresponding ODE.

The aim of the present paper is to give a more precise description of the blow-up of
∇u in order both to point out the influence of the geometry of the domain (by looking
at second order effects) and to get a complete picture of the local behavior, near the
boundary, of the controlled dynamics. In particular, by studying the asymptotic
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expansion of ∇u, we are able to detail the roles of normal and tangential directions
and the influence of the boundary curvature in the behavior of the optimal control
law defined in (1.6). To give a rough idea of the main consequence of our results,
we are going to prove that the optimal control is tangentially bounded, it blows up
pointing in the inward normal direction, and it achieves its maximum in those points
(close to the boundary) where the domain has a maximal mean curvature. Actually
this proves (as intuition suggests, when a uniform diffusion is constrained) that the
control has to be “stronger” where the domain is more curved.

The above-mentioned properties are contained in the following result on the
asymptotic behavior of the optimal (feedback state) control law:

(1.9) a(x) = −q|∇u(x)|q−2∇u(x).

Notation. Let us stress that from now on we will denote by d(x) (often simply
d) a positive smooth function such that d(x) ≡dist(x, ∂Ω) in a suitable inner neigh-
borhood of ∂Ω. Moreover, we will indicate by ν(x) = −∇d(x) (hence ν(x) is the
outward unit normal vector if x ∈ ∂Ω) and by τ(x) any unit vector field at x which
satisfies τ(x) · ν(x) = 0.

Observe that, since Ω will be assumed to be at least of class C2, any x ∈ Ω lying
in a sufficiently small neighborhood of the boundary admits a unique projection onto
∂Ω, denoted as x = Proj∂Ω(x). Moreover, for ς ∈ ∂Ω, we denote by H(ς) the mean
curvature of ∂Ω computed at ς.

Finally, we write f(x) = O(g(x)) in order to say that |f(x)| ≤ C |g(x)| in Ω.
Theorem 1.1. Let Ω be a smooth bounded open subset of R

N , and let H(x) be
the mean curvature of ∂Ω computed at x, where x is the projection of x on ∂Ω.

Let f ∈ W 1,∞(Ω), let u be the unique solution of (1.1)–(1.2) and a(x) be the
optimal control law (1.9). Then for any 1 < q < 2 we have, as d(x) → 0,

(1.10) a(x) = − q′

d(x)
ν(x) − q′(N − 1)

2
H(x)ν(x) + η(x),

where η(x) is such that

|η(x)| =

⎧⎪⎪⎨
⎪⎪⎩

O(d
2−q
q−1 (x)) if 3

2 < q < 2,

O(d(x) log d(x)) if q = 3
2 ,

O(d(x)) if 1 < q < 3
2 .

If q = 2, we have, as d(x) → 0,

(1.11) a(x) = − 2

d(x)
ν(x) − (N − 1)[H(x) + o(1)]ν(x) + ψ(x)τ(x),

where τ(x) ∈ R
N , |τ | = 1, τ · ν = 0, and ψ ∈ L∞(Ω).

To our knowledge, such characterization of the behavior of singular feedback con-
trols related to (1.3)–(1.5) is new in the literature. Actually, similar state constraint
problems have been considered in previous works mainly in the case of degenerate
diffusions and bounded controls and for a bounded value function (see also, e.g.,
[7], [6], [13], [14], and references therein), while the case of nondegenerate diffusions
and a singular value function seems not to have been developed since the reference
work [15].
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The results in Theorem 1.1 are the main consequence of our study of second
order terms in the asymptotics of the gradient of solutions of (1.1)–(1.2). Note that

the estimate (1.8) already implies that ∂u(x)
∂τ = o(∂u(x)

∂ν ) as d(x) → 0, and hence that
tangential effects are of lower order. Actually we improve that estimate by proving
the following.

Theorem 1.2. Let Ω be a smooth bounded open subset of R
N and f ∈ W 1,∞(Ω),

and let u be the unique solution of (1.1)–(1.2). Then we have, as d(x) → 0, (with the
above notations):

(1.12)
∂u(x)

∂ν
=

(q − 1)−
1

q−1

d(x)
1

q−1

[
1 +

(N − 1)H(x)

2
d(x) + o(d(x))

]
∀ 1 < q ≤ 2,

and

(1.13)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u(x)
∂τ ∈ L∞(Ω) if 3

2 < q ≤ 2,

∂u(x)
∂τ = O (| log d|) if q = 3

2 ,

∂u(x)
∂τ = O

(
d

2q−3
q−1

)
if 1 < q < 3

2 .

Note that if q ≤ 3
2 one has that ∂u

∂τ blows up, but the optimal control law (1.9),
which is the only relevant quantity for the dynamics, always remains tangentially
bounded. Actually, the precise behavior of the tangential gradient represents a signif-
icant improvement with respect to the estimate (1.8) and, together with the second
order terms of normal gradient, allows one to regard the dyamics near the boundary
as {

dXt = V (Xt)dt + dBt,

X0 = x ∈ Ω,

where V (x) = −[ q′

d(x) + q′(N−1)
2 H(x)]ν(x) (here q < 2). Note that this corresponds

to a linearization of (1.1), and the behavior of the process can then be described
explicitly. In particular, observe how the drift acts differently on points which have
the same distance to the boundary but different curvatures.

Let us point out that curvature effects in the boundary blow-up of solutions of
elliptic equations were already observed previously in the case of semilinear equations
with absorption zeroth order terms. In that context, it was recently proved in [10],
[4] (see also references therein) how second order terms in the blow-up of u precisely
depend on the mean curvature of the boundary. These results, which also motivated
our work, are obtained through a refined construction of sub- and supersolutions.
However, in the context of solutions of (1.1)–(1.2), the main local features of the blow-
up are observed in the asymptotic behavior of ∇u, which cannot be studied using only
comparison functions. Therefore, in some sense our results extend those proved in a
different context in [10], [4], although we use a completely different method. Indeed,
our estimates on ∇u in (1.12)–(1.13) are not derived by some asymptotic estimate on
u, as was the case, for instance, for (1.8), which is proved in [18] using (1.7) and a
scaling argument. A similar technique based on second order estimates for u is not
possible here unless it is restricted to a smaller range of values of q (see section 3.2
for more details). We develop instead a totally different approach which, through a
regularity result for solutions of (1.1)–(1.2), directly leads to a complete asymptotic
expansion of ∇u as a vector field.
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More precisely, we introduce as a corrector term the formal asymptotic expansion

S = d(x)−
2−q
q−1

∑m
k=0 σkd(x)k (note that u rescales like d(x)−

2−q
q−1 from (1.7); this is

for q < 2), and we prove that u − S is Lipschitz in Ω, up to a suitable (unique and
explicit) choice of the coefficients σk. As a consequence, we obtain all singular terms
in the asymptotic expansion of ∇u. In order to give a proper statement of this result,
which is the main content of the article, we denote by α the following number:

(1.14) α =
2 − q

q − 1
,

and we observe that ⎧⎪⎨
⎪⎩
α = 0 ⇐⇒ q = 2 ,

0 < α < 1 ⇐⇒ 3
2 < q < 2,

α ≥ 1 ⇐⇒ 1 < q ≤ 3
2 .

Theorem 1.3. Let 1 < q ≤ 2 and u(x) be the solution of (1.1)–(1.2). Assume
that ∂Ω ∈ Cr, r = [α] + 5, and f(x) is a W 1,∞(Ω) function. Then there exist smooth
functions σ0, σ1, . . . , σ[α]+1, which can be explicitly determined, such that setting

(1.15)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
S =

∑[α]+1
k=0 σkd

k−α if α ∈ N,

S =
∑α−1

k=0 σkd
k−α + σα log d + σα+1d log d if α ∈ N, α ≥ 1,

S = − log d if α = 0,

we have

u− S ∈ W 1,∞(Ω).

As a consequence, we have for any α > 0:
• if α /∈ N:

(1.16)

⎧⎨
⎩

∂u(x)
∂ν − αC∗

dα+1 +
∑[α]+1

k=1

[
(k−α)σk(x)
dα−k+1(x)

− ∇σk−1(x)·ν
dα−k+1(x)

]
∈ L∞(Ω),

∂u(x)
∂τ −

∑[α]
k=1

∇σk(x)·τ
dα−k ∈ L∞(Ω);

• if α ∈ N:

(1.17)⎧⎨
⎩

∂u(x)
∂ν − αC∗

dα+1 +
∑α−1

k=1

[
(k−α)σk(x)
dα−k+1(x)

− ∇σk−1(x)·ν
dα−k+1(x)

]
+ (σα−∇σα−1·ν)

d(x) ∈ L∞(Ω),

∂u(x)
∂τ −

∑α−1
k=1

∇σk(x)·τ
dα−k − (∇σα · τ) log d(x) ∈ L∞(Ω).

[Let us observe, with respect to the above statement, that, due to (1.14), one has
α ∈ N ⇐⇒ q

q−1 ∈ N; i.e., the case α ∈ N corresponds to having a cost of integer

power type in the functional (1.4).]
The proof of Theorem 1.3 will be given in section 2, consisting of two main ideas.

The first one is to look at the equation satisfied by the function z = u−S, keeping in
mind the first estimate (1.8). Indeed, thanks to (1.8) we have that, near the boundary,
|∇z| = o(|∇S|), which suggests us to write the equation of z as

−Δz + λz + |∇z + ∇S|q − |∇S|q = f + F,
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where F = ΔS − λS − |∇S|q. Here we can prove that |∇z + ∇S|q − |∇S|q behaves
similarly as q|∇S|q∇z · ∇S

|∇S|2 ∼ −C∇z·∇d
d , so that the left-hand side is a singular but

regularizing operator with respect to z. Second, choosing the coefficients of S in a way
that F is smooth, we obtain gradient estimates depending only on the regularity of
f . These gradient estimates, which are the crucial point in our proof, are obtained by
using the classical Bernstein method (see [8]) largely developed by Serrin and Lions
(see, e.g., [19], [17], [16], [5]), although we use here a slightly different approach which
is more adapted to our situation. Last but not least, we are interested in getting global
estimates for the gradients in the whole of Ω and not merely local interior estimates.
Following ideas in [17], [16], we make it possible by working with a Neumann-type
condition at the boundary. Thus we introduce a regular approximation un of the
solution u of (1.1)–(1.2), constructed through the following Neumann-type problems:

⎧⎪⎨
⎪⎩
−Δun + λun + |∇un|q = fn in Ω,

∂un

∂ν
=

∂Sn

∂ν
on ∂Ω,

where Sn =
∑m

k=0 σk(d(x)+ 1
n )k−α (which, for n fixed, is not singular). Here we prove

a uniform (in n) version of the preliminary estimates (1.7) and (1.8), and then we
prove the Bernstein-type estimates on zn = un−Sn, obtaining the Lipschitz regularity
claimed in Theorem 1.3.

Note that the results of Theorems 1.1 and 1.2 immediately follow from (1.16)–
(1.17) by computing σ0 and σ1 (in particular, one has σ0 = C∗). Only in the case
where q = 2 we need more information in order to get (1.12) (and then (1.11)), which
will be proved with a simple blow-up argument. In fact, we will show that the normal
derivative of u−S tends to zero on the boundary, refining the result in Theorem 1.3.

Finally, let us point out that the regularity condition on f in Theorem 1.3 (and
consequently in Theorems 1.1–1.2) can be highly weakened, thanks to our approach to
Bernstein’s estimates. This will be detailed in section 3, where we prove an extended
version of Theorem 1.3 in the case of f singular at the boundary (see Theorem 3.2)
as well as an intermediate result (such as Hölder-type regularity for u − S) in cases
where the singularity of f does not allow u− S to be Lipschitz.

2. Proof of Theorem 1.3. In order to simplify some expressions, we set λ = 1
in (1.1); in fact, our results are not really affected by changing the values of λ (see
also Remark 2.8).

2.1. The case 1 < q < 2: Preliminary results. Let us introduce some
notations: For 1 < q < 2 we set

(2.1) α =
2 − q

q − 1
and C∗ =

(q − 1)−α

2 − q
,

and we will often use the following properties of α and C∗:

(2.2) q(α + 1) = α + 2 and (αC∗)q = α(α + 1)C∗.

Moreover from now on we denote

dn(x) = d(x) +
1

n
,
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and we will indicate by C various constants (independent on n) whose value may
vary from line to line. Finally, we will write f(x) = O(g(x)) in order to say that
|f(x)| ≤ C |g(x)| in Ω.

Since we need a suitable smooth approximation of the solution of (1.1)– (1.2), we
will consider the sequence {un} of solutions of the Neumann problem:

(2.3)

⎧⎪⎨
⎪⎩
−Δun + un + |∇un|q = fn(x) in Ω,

∂un

∂ν
=

∂Sn

∂ν
on ∂Ω,

where fn is a suitable regular approximation of f and

Sn = C∗dn(x)−α + ψ(x)dn(x)1−α,

with ψ(x) smooth (to be precised later).
Observe that, for fixed n, fn and Sn being smooth, the existence of a classical

solution un ∈ C2(Ω) is a standard result (see, e.g., [16]). The goal of this subsection
is to prove the following preliminary result.

Proposition 2.1. Let un be a solution of (2.3), with 1 < q < 2. Assume that
fn = O(d−α−1

n ), |∇fn| ≤ C d−α−2
n , and Sn = C∗d−α

n + ψ(x)d1−α
n , with ψ(x) smooth.

Then we have

(2.4) |∇un| ≤ Cd−α−1
n in Ω,

and

(2.5) lim
dn(x)→0

|dα+1
n (x)∇un(x) − αC∗ν(x)| = 0.

Note that, since dn(x) = d(x) + 1
n , the limit as dn(x) → 0 means that both n

tends to ∞ and d(x) → 0, as a two-variable limit.
The proof of Proposition 2.1 will be achieved through the following lemmas, which

contain first order (uniform) estimates for un of the same kind as (1.7) and (1.8) proved
in [15] and in [18], respectively.

Lemma 2.2. Let un be a solution of (2.3). Then there exists C > 0 such that:
• for 0 < α < 1

(2.6) |un − C∗d−α
n | ≤ C,

• for α = 1

(2.7)

∣∣∣∣un − C∗

dn

∣∣∣∣ ≤ C
∣∣ log dn

∣∣,
• for α > 1,

(2.8) |un − C∗d−α
n | ≤ Cd1−α

n ,

where α and C∗ have been defined in (2.1).
Proof. Let us first consider 0 < α < 1 and

ψn(x) = C∗d−α
n −M0d

1−α
n + M1,



1302 TOMMASO LEONORI AND ALESSIO PORRETTA

where M0, M1 > 0. We have

−Δψn + |∇ψn|q + ψn − fn(x)

= −α(α + 1)C∗d−α−2
n + ΔdαC∗d−α−1

n − αM0(1 − α)d−α−1
n + M0(1 − α)d−α

n

+ (αC∗)qd−q(α+1)
n

∣∣∣∣1 +
M0(1 − α)

αC∗ dn

∣∣∣∣
q

+ C∗d−α
n −M0d

1−α
n + M1 − fn(x).

Thus, using (2.1)–(2.2), after standard computations (here we use that, in a neigh-
borhood of t = 0, (1 + t)q = 1 + qt + O(t2)) we find

(2.9)
−Δψn+|∇ψn|q+ψn−fn(x) ≥ [2M0(1 − α) + αC∗Δd] d−α−1

n −fn(x)+O(d−α
n )+M1.

Moreover

(2.10)
∂ψn

∂ν
= αC∗nα+1 + (1 − α)M0n

α on ∂Ω.

Hence, by choosing M0 and M1 large enough we get that the right-hand side of (2.9)
is positive and, by (2.10), ∂νψn ≥ ∂νSn on ∂Ω, so that ψn(x) turns out to be a
supersolution for (2.3).

Similarly, arguing as above, there exist M2, M3 > 0 such that

ψ
n
(x) = C∗d−α

n + M2d
1−α
n −M3

is a subsolution for (2.3). Hence by the maximum principle we deduce that

ψ
n
(x) ≤ un(x) ≤ ψn(x),

so that (2.6) holds true.
In the same way we prove estimates (2.7) and (2.8) by choosing, respectively,

ψn(x) =
4

dn
−M0 log dn + M1, ψ

n
(x) =

4

dn
+ M2 log dn −M3, if α = 1,

and

ψn(x) = C∗d−α
n + M0d

1−α
n + M1, ψ

n
(x) = C∗d−α

n −M2d
1−α
n −M3, if α > 1,

where Mi > 0 are large enough, for i = 0, 1, 2, 3.
Remark 2.3. Let us note that (2.6), (2.7), and (2.8) imply

(2.11) lim
dn(x)→0

|dαn(x)un(x) − C∗| = 0.

We will often use this weaker result later. We also remark that in order to obtain
(2.11) it is enough to ask that fn = O(d−γ

n ), with γ < α + 2. The proof is similar
but for a different choice of the sub and supersolutions; for instance, it is enough to
choose ψn(x) = C∗dn(x)−α + ρn(x), where ρn(x) = O(dn(x)2−γ).

The next lemma will be very useful in getting global Bernstein-type estimates,
as, for instance, in [17], [16]. Indeed it allows us to get information about the normal
derivative of a weighted power of the gradient of a solution of (2.3). Observe that the
homogeneous Neumann condition is crucial in order to prove such a result.
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Lemma 2.4. Let η be a smooth (say, C2(Ω)) function such that

∂η

∂ν
= 0 on ∂Ω,

and let Φ(s) ∈ C1(0, a), a > 0, be a positive increasing function such that,

(2.12) ∀0 < s < a, Φ′(s) − C0Φ(s) > 0,

where C0 = 2‖D2d‖∞. Then

(2.13)
∂

∂ν

[
|∇η|2Φ(d)

]
≤ 0 on ∂Ω.

Remark 2.5. Let us observe that both Φ(s) = sβ and Φ(s) = eθ(s) satisfy
condition (2.12) for any β > 0 and for any increasing θ(s) such that θ(0) = 0 and
θ′(0) > C0, respectively. Moreover, we remark that if Φ(s) satisfies (2.12), the same
is true for Φ(s + 1

n ) if n is large enough.
Proof. Let us compute

∂|∇η|2Φ(d)

∂ν
= −Φ′(d)|∇η|2 + 2Φ(d) (D2η∇η ν) ;

since η satisfies the homogeneous Neumann boundary condition, there exists μ(x)
such that on ∂Ω we have

μν = D(∇η · ν) = D2η ν + Dν∇η.

Thus using again the boundary condition ∂η
∂ν = 0 and since Dν = −D2d, we get

∂|∇η|2Φ(d)

∂ν
= −Φ′(d)|∇η|2 + 2Φ(d)D2d∇η∇η ≤ |∇η|2

[
2Φ(d)‖D2d‖∞ − Φ′(d)

]
,

and by (2.12) we deduce (2.13).
Here we prove a first estimate on the gradient of the solution of the problem (a

suitable translation of (2.3)):

(2.14)

⎧⎨
⎩
−Δzn + zn + |∇zn + Gn|q = Fn in Ω,

∂zn
∂ν

= 0 on ∂Ω.

Lemma 2.6. Let zn ∈ C2(Ω) be a solution of (2.14), where Gn and Fn are a
vector field and a function, respectively, such that

(2.15) |Gn| ≤ Cd−α−1
n , |DGn| ≤ Cd−α−2

n , |Fn| ≤ Cd−α−2
n , |∇Fn| ≤ Cd−α−3

n .

Then we have

(2.16) |∇zn| ≤ Cd−α−1
n .

Proof. Observe first that the maximum principle and the assumptions on Fn and
Gn imply |zn| ≤ C d−α−2

n . Let us define wn = |∇zn|2eθdn , where θ is a positive
number. By Lemma 2.4 we have, for θ and n large enough,

(2.17)
∂wn

∂ν
≤ 0 on ∂Ω.



1304 TOMMASO LEONORI AND ALESSIO PORRETTA

On the other hand,

Δwn = θ2wn + θΔdwn + 2θ∇wn · ∇d− 2θ2wn + 2eθdn
[
∇Δzn · ∇zn + |D2zn|2

]
,

and so, since by the Cauchy–Schwarz inequality

|D2zn|2 ≥ 1

N
(Δzn)2,

we have, recalling that Δzn = zn + |∇zn + Gn|q − Fn,

(2.18)

Δwn ≥ (−θ2 + θΔd)wn + 2θ∇wn · ∇d + 2eθdn

[
1

N
(|∇zn + Gn|q + zn − Fn)

2

+ q∇zn · (D2zn + DGn)
∇zn + Gn

|∇zn + Gn|2−q
−∇Fn · ∇zn + |∇zn|2

]
.

Since |zn| ≤ C d−α−2
n , we have

1

N
(|∇zn + Gn|q + zn − Fn)

2 ≥ cN |∇zn + Gn|2q − C d−2(α+2)
n − |Fn|2.

Moreover, the Young inequality with exponents ( 2q
q−1 ,

2q
q+1 ) implies

∣∣∣∣ ∇zn + Gn

|∇zn + Gn|2−q
·
(
D2zn + DGn

)
∇zn

∣∣∣∣

≤ cN
2q

|∇zn + Gn|2q + C

∣∣∣∣12∇|∇zn|2 + DGn∇zn

∣∣∣∣
2q

q+1

,

and similarly, for all δ > 0, we have

|∇Fn · ∇zn| ≤ δ|∇zn|2q +
C

δ
1

2q−1

|∇Fn|
2q

2q−1 .

Thus we get from (2.18)

(2.19)

−Δwn + cNeθdn |∇zn + Gn|2q ≤ (θ2 − 2 − θΔd)wn

− 2θ∇wn · ∇d + 2eθdn

[
δ|∇zn|2q +

C

δ
1

2q−1

|∇Fn|
2q

2q−1

+C

∣∣∣∣12∇|∇zn|2 + DGn∇zn

∣∣∣∣
2q

q+1

+ C d−2(α+2)
n + |Fn|2

]
.
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Let us note that, since 2q
q+1 > 1 (q > 1) and ∇|∇zn|2 = e−θdn(∇wn − θwn∇d), we

have

(2.20)∣∣∣∣12∇|∇zn|2 + DGn∇zn

∣∣∣∣
2q

q+1

≤ C̃

[
|∇wn|

2q
q+1 + |wn|

2q
q+1 +

(
|DGn||∇zn|

) 2q
q+1

]

≤ C̃
[
|∇wn|

2q
q+1 + |wn|

2q
q+1

]
+ η|∇zn|2q + Cη−

1
q |DGn|2,

where η is any positive constant. Using that, by convexity,

|∇zn + Gn|2q ≥ 1

22q−1
|∇zn|2q − |Gn|2q,

we deduce from (2.19) and (2.20), choosing δ and η small enough:

−Δwn + C̃N |∇zn|2q ≤ wn(θ2 − 2 − θΔd) − 2θ∇wn · ∇d + Ceθdn

[
|∇Fn|

2q
2q−1

+ |∇wn|
2q

q+1 + w
2q

q+1
n + |DGn|2 + |Gn|2q + C d−2(α+2)

n + |Fn|2
]
.

Finally, since 2q
q+1 < q, using the Young inequality and that 1 ≤ eθdn ≤ CΩ, we

conclude that there exists τ > 0 and constants C0, C1 > 0 such that

−Δwn+τwq
n−C0|∇wn|

2q
q+1 ≤ C1

(
|∇Fn|

2q
2q−1 + |DGn|2 + |Gn|2q + |Fn|2 + d−2(α+2)

n

)
.

The above inequality and (2.17) say that wn is a subsolution for the problem⎧⎪⎨
⎪⎩
−Δψ + τψq − C0|∇ψ|

2q
q+1 = F̃n in Ω,

∂ψ

∂ν
= 0 on ∂Ω,

where

F̃n = C1

(
|∇Fn|

2q
2q−1 + |DGn|2 + |Gn|2q + |Fn|2 + d−2(α+2)

n

)
.

Let us note that from (2.15), using that

(2.21)
2q

2q − 1
(α + 3) = 2q(α + 1) = 2(α + 2),

we obtain that |F̃n| ≤ CF d
−2(α+2)
n . In order to prove (2.16), let us prove that ϕ =

td
−2(α+1)
n is a supersolution for large t ∈ R

+. First let us observe that ∂ϕ
∂ν ≥ 0;

moreover

−Δϕ + τϕq − C0|∇ϕ|
2q

q+1

= −t(2α+2)(2α+3)d−2(α+2)
n +t(2α+2)d−2α−3

n Δd+τtqd−2q(α+1)
n −C0t

2q
q+1 d

− 2q
q+1 (2α+3)

n ,

and using (2.21), recalling once again that q > 2q
q+1 , we have, for t large,

−Δϕ + τϕq − C0|∇ϕ|
2q

q+1 − CF d
−2(α+2)
n ≥ 1

2
tqd−2(α+2)

n − CF d
−2(α+2)
n − C.
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Thus there exists t∗ > 0 such that the right-hand side of the previous inequality
is positive and the maximum principle lets us conclude that wn ≤ ϕ and finally
(2.16).

Our next step consists in a refinement of (2.16) which sounds like the asymptotic
estimate (1.8) proved in [18], though here we need a uniform estimate with respect to
n as well. We will use for this purpose a scaling and blow-up argument for which we
need a suitable localization near the boundary. Let us denote Σ = ∂Ω and

Ωρ = {x ∈ Ω : d(x) < ρ} .

Given a generic point on ∂Ω, let us denote by (σ1, . . . , σN−1) its coordinates in some
local chart and by x(σ) its representation in Cartesian coordinates. It is well known
(see, e.g., [12]) that if Ω is of class Ck, k > 1, then there exists a positive number ρ
such that any point x in Ωρ can be represented as

x = δn̂ + x,

where x is the projection of x onto ∂Ω, n̂ is the inward normal computed at x, and
δ = d(x) =dist(x, ∂Ω). Since x and n̂ are functions of σ, we have x = δn̂(σ) + x(σ),
and the mapping x → (δ, σ) is a Ck−1 diffeomorphism of Ωρ onto (0, ρ) × U , where
U ⊂ R

N−1 is an open set. If we denote by T (x) this mapping, in the new coordinates
(δ, σ) the Laplace operator takes the form

(2.22) Δx =
1

|det(DT−1)| div δ,σ (A(δ, σ)∇δ,σ) ,

where A(δ, σ) = (aij) is defined by aij = |det(DT−1)| ∇Ti · ∇Tj (see, e.g., [9]).
However, since ∇d(x) · ∇σj(x) = 0 for any j = 1, . . . , N − 1 (the projection of x
is invariant along the normal), then we have a1i = ai1 = 0 for i = 2, . . . , N , while
a11 = |∇d(x)|2 and aij = ∇σi−1 · ∇σj−1 for i, j = 2, . . . , N . Let us note that A has
regular coefficients since Ω is smooth, and moreover A is uniformly elliptic. In order
to fix the ideas, we may consider that the curve Σ is locally the graph of a smooth
function f and hence that x(σ) = (σ, f(σ)), f : U ⊂ R

N−1 �→ R. In that case one
explicitly computes |det(DT−1)| =

√
1 + |∇f |2 + O(δ), which shows that the map T

and T−1 are nondegenerate and yields the ellipticity of A (in a neighborhood of the
boundary).

In the next lemma, we are going to use such a local change of coordinates x �→
(δ, σ) in order to straighten the boundary: The main advantage is that the matrix
A(δ, σ) has zeros in the first row and column but for the term a11. The reader familiar
with differential geometry will also recognize in (2.22) the form of the Laplacian in
curvilinear coordinates, since it can be rewritten as

(2.23) Δx =
1
√
g

∂

∂δ

(
√
g
∂

∂δ

)
+

1
√
g

N−1∑
i=1

∂

∂σi

(
√
g gij

∂

∂σj

)
,

where the last part, when δ = 0, is nothing but the Laplace–Beltrami operator. Let
us recall (see also [12]) that (2.23) may be used to compute the mean curvature at a
given point x0 ∈ ∂Ω in terms of the distance function. Indeed, by choosing σi as the
principal directions at x0 (hence the matrix A is diagonal at x0), one can verify that

(2.24) Δd |∂Ω = −(N − 1)H(σ),

where we indicate by H(σ) the mean curvature of Σ at σ.
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Lemma 2.7. Let zn ∈ C2(Ω) be a solution of (2.14) such that

(2.25) lim
dn(x)→0

zn(x)dαn(x) = 0.

Assume moreover that (2.15) holds true. Then

(2.26) lim
dn(x)→0

dα+1
n (x)|∇zn(x)| = 0.

Proof. We argue by contradiction: Let us suppose that there exists ε and a
sequence xj ∈ Ω such that d(xj) + 1

nj
< 1

j and

(2.27) dα+1
nj

(xj)|∇znj (xj)| > ε.

Let us denote δj = d(xj); we can extract a subsequence jk such that xjk → x0 ∈ ∂Ω
and

(2.28)
1

1 + δjknjk

→ l ∈ [0, 1].

We localize then around x0 using the system of local coordinates introduced above: In
a neighborhood J of x0 (with {xj} ⊂ J∩Ω) we define a map T : J∩Ω → (0, ρ0)×U for
some ρ0 > 0, U ⊂ R

N−1 such that, if y = (y1, y
′) = T (x), we have y1 = d(x) ∈ (0, ρ0)

and y′ ∈ U denotes the local coordinates in R
N−1 of the projection of x on the

boundary. With respect to the above presentation, we changed only the notations,
setting y = (δ, σ), δ = y1, σ = y′. Moreover we set T (x0) = (0, y′0), and without loss
of generality, we may assume that U = B(y′0, R) for some R > 0.

Define now vn(y) = zn(x) = zn(T−1(y)), so that ∇zn(x) = DT (x)∇vn(y). Then
the map T changes (2.14) into

(2.29)⎧⎪⎨
⎪⎩
− 1

|det(T−1)| div (A∇vn) + |DT ∇vn + G̃n|q + vn = F̃n in (0, ρ0) ×B(y′0, R),

A∇vn · e1 = 0 on {y1 = 0} ×B(y′0, R),

where A(y) is the matrix defined as in (2.22), F̃n(y) = Fn(x), and G̃n(y) = Gn(x).
Clearly from (2.25) we know that

(2.30) lim
dn(y)→0

vn(y)dαn(y) = 0, where dn(y) = y1 +
1

n
.

Moreover we are in the hypotheses of Lemma 2.6 so that |∇zn| ≤ Cd−α−1
n , which in

turn yields

(2.31) |DT ∇vn(y)| ≤ C

(
y1 +

1

n

)−α−1

.

We will contradict (2.27) by proving that

(2.32)

(
δjk +

1

njk

)α+1

∇vnjk
(yjk) → 0,

where yjk = T (xjk) = (δjk , y
′
jk

), which converges toward (0, y′0).
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For simplicity, we denote henceforth δk = δjk , nk = njk , and y′k = y′jk . Let us
introduce the rescaled variable ξ = (ξ1, ξ

′) defined by

y =

⎧⎪⎨
⎪⎩
y1 =

(
δk + 1

nk

)
ξ1,

y′ =
(
δk + 1

nk

)
ξ′ + y′k.

Then ξ belongs to a domain Dk such that Dk(ξ) ⊂ R
N
+ and{

ξ ∈ R
N
+ : ξ = (ξ1, ξ

′), 0 < ξ1 <
ρ0

δk + 1
nk

, ξ′ ∈ B

(
0,

R

2(δk + 1
nk

)

)}
⊂ Dk(ξ);

hence Dk(ξ) tends to R
N
+ as k → ∞. Now we set

(2.33)

vk(ξ) =

(
δk +

1

nk

)α

vnk
(y)

=

(
δk +

1

nk

)α

vnk

((
δk +

1

nk

)
ξ1,

(
δk +

1

nk

)
ξ′ + y′k

)
.

Since, using assumption (2.15), (2.31), and that q(α + 1) = α + 2, we have

|DT ∇vn + G̃n|q + |vn| + |F̃n| ≤ C

(
y1 +

1

n

)−α−2

,

by rescaling (2.29) we get that vk solves an equation of the type

− div
(
Ak(ξ)∇vk(ξ)

)
= Hk(ξ) in Dk(ξ),

where Ak(ξ) = A(y) and Hk is a sequence satisfying, in Dk,

(2.34) |Hk| ≤ C

(
δk +

1

nk

)α+2 (
y1 +

1

nk

)−α−2

= C

[
1

ξ1 + 1
nkδk+1

]α+2

.

Note that, since

(2.35) dnk
(y) = y1 +

1

nk
=

(
δk +

1

nk

)[
ξ1 +

1

nkδk + 1

]
,

(2.28) implies

(2.36)

(
δk + 1

nk

)
dnk

(y)
=

1

ξ1 + 1
nkδk+1

→ 1

ξ1 + l
.

In particular, by (2.30) and (2.33), vk(ξ) converges to 0 in C0
loc(R

N
+ ) if l > 0 or in

C0
loc(R

N
+ ) if l = 0.

Observe that the points yk = (δk, y
′
k) correspond to ξk = ( nkδk

δknk+1 , 0), so that

ξk → (1 − l, 0) and ξk reaches the boundary of R
N
+ only if l = 1. We distinguish

henceforth two cases: If l = 1, the sequence ξk is contained in a fixed compact
K ⊂ R

N
+ , so we only need to reason away from ξ1 = 0. Since from (2.34) we have that
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Hk is locally uniformly bounded in R
N
+ , Theorem 9.11 in [12] allows us to obtain a

local W 2,p
loc (RN

+ ) bound for any p > 1 and consequently the C1
loc(R

N
+ ) compactness for

vk(ξ). Then we deduce that vk(ξ) → 0 in C1
loc(R

N
+ ), and computing ∇vk on ξk we get

(2.37) ∇vk(ξk) =

(
δk +

1

nk

)α+1

∇vnk
(δk, y

′
k) −→ 0,

which is (2.32).
If l = 1, the sequence ξk = ( nkδk

δknk+1 , 0) → (0, 0), and hence we need a C1 com-
pactness up to the boundary. This can be done, for instance, in the same spirit of
[11], by extending through reflection the problem on the whole of R

N . Thus set v∗k(ξ)
as

v∗k(ξ) =

{
vk(ξ1, ξ

′) if ξ ∈ Dk,

vk(−ξ1, ξ
′) if ξ ∈ D∗

k,

where D∗
k = {(ξ1, ξ′) : (−ξ1, ξ

′) ∈ Dk}, and similarly the matrix A∗
k(ξ) and the datum

H∗
k(ξ) as

A∗
k(ξ) =

{
Ak(ξ1, ξ

′) if ξ ∈ Dk,

Ak(−ξ1, ξ
′) if ξ ∈ D∗

k,
and H∗

k(ξ) =

{
Hk(ξ1, ξ

′) if ξ ∈ Dk,

Hk(−ξ1, ξ
′) if ξ ∈ D∗

k.

Note that in the reflected problem the mixed terms a1k(ξ1, ξ
′), with k = 1, change into

−a1k(−ξ1, ξ
′): However, our change of coordinates gives a1k = 0 for k = 1 and hence

we really have A∗
k(ξ1, ξ

′) = Ak(−ξ1, ξ
′) for ξ1 < 0. This allows us to deduce that A∗

k

is continuous across the hyperplane ξ1 = 0, and actually A∗
k is Lipschitz continuous

on R
N with the same Lipschitz constant as Ak.
Using the boundary condition

A∇vn · e1 = 0 on {ξ1 = 0},

then v∗k(ξ) solves

− div (A∗
k(ξ)∇v∗k(ξ)) = H∗

k(ξ) in Dk ∪D∗
k

o
.

Clearly we have Dk ∪D∗
k → R

N as k → +∞. Moreover, since l = 1, we deduce
from (2.28) and (2.34) that H∗

k is locally uniformly bounded in R
N , in particular in

any compact neighborhood of ξ = 0. Similarly (2.30) and (2.33) imply, using (2.36)

with l = 1, that vk → 0 in C0
loc(R

N
+ ), and hence v∗k converges to zero uniformly on

compact sets. Finally, by regularity of Ak and by definition of A∗
k we deduce that A∗

k

is equi-Lipschitz continuous, so that Calderon–Zygmund regularity applies. Applying
again Theorem 9.11 in [12] to v∗k, we obtain a local W 2,p

loc (RN ) bound for any p > 1
and then the C1

loc(R
N ) compactness for v∗k(ξ). Consequently vk(ξ) converges to 0 in

C1
loc(R

N
+ ), and therefore ∇vk(ξk) → 0, where ξk = ( nkδk

δknk+1 , 0). Thus we obtain (2.37),

and hence (2.32) holds in any case. This contradicts (2.27).
Collecting the results of Lemmas 2.2, 2.6, and 2.7, we have all of the ingredients

for the proof of Proposition 2.1.
Proof of Proposition 2.1 Let us observe that since Sn = C∗d−α

n +ψ(x)d1−α
n , with

ψ(x) smooth,

|Sn| ≤ Cd−α
n , |∇Sn| ≤ Cd−α−1

n , |D2Sn| ≤ Cd−α−2
n , and |D3Sn| ≤ Cd−α−3

n ,
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and moreover zn = un − Sn solves⎧⎪⎨
⎪⎩
−Δzn + zn + |∇zn + ∇Sn|q = fn(x) + ΔSn − Sn in Ω,

∂zn
∂ν

= 0 on ∂Ω.

We can first apply Lemma 2.2 to un, which implies (see (2.11) and the definition of
Sn) that znd

α
n → 0 as dn → 0. Subsequently Lemmas 2.6 and 2.7 applied to zn give

that |∇zn| ≤ Cd−α−1
n and dα+1

n ∇zn → 0 as dn → 0. By the definition of Sn, we
deduce (2.4) and (2.5).

2.2. Bernstein-type estimates. Now we come to the proof of Theorem 1.3; to
this purpose, we consider the solutions un of (2.3), and we look for Lipschitz estimates
on the translated function

zn = un − Sn.

The choice of the “corrector term” Sn will be explained below; unfortunately, this
choice (uniquely determined) will be slightly different according to whether α = 2−q

q−1
belongs to N or not, so that we have to treat separately some details of the two
situations. However, in any case the function Sn will satisfy the assumptions of
Proposition 2.1, in particular Sn = C∗d−α

n + O(d1−α
n ) and, what is more important,

∇Sn = −αC∗d−α−1
n ∇d+O(d−α

n ). Therefore, estimate (2.5) implies that dα+1
n ∇un −

dα+1
n Sn → 0 as dn → 0, which means that |∇zn| = o(d−α−1

n ) = o(|∇Sn|). This fact
plays a crucial role in the estimates below, and this is why we needed the preliminary
Proposition 2.1 (except for q = 2, i.e., α = 0).

Proof of Theorem 1.3. Case 1: α ∈ N. Let us set

Sn =

m∑
k=0

σkd
k−α
n ,

where m = [α] + 1, σ0 = C∗ (defined in (2.2)), and σk, k = 1, . . . ,m, are smooth
functions we will fix later. Let also fn be a smooth approximation of f . Then let un

be the solution of (2.3), and define zn = un − Sn so that zn satisfies

(2.38)
∂zn
∂ν

= 0 on ∂Ω

and the following equation:

(2.39) −Δzn + zn + |∇zn + ∇Sn|q − |∇Sn|q = fn − Fn in Ω,

where

(2.40) Fn = −ΔSn + Sn + |∇Sn|q.

Applying Proposition 2.1, and rephrasing (2.4) and (2.5) in terms of zn, we get

(2.41) |∇zn| ≤ Cd−α−1
n in Ω,

(2.42) dα+1
n ∇zn → 0 as dn → 0.
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Step 1. We apply Bernstein’s method on |∇zn|2 weighted with a suitable power
of dn, so let us define

wn = |∇zn|2dβn,

where β is a positive number. First, by Lemma 2.4 and (2.38), we deduce the condition
on the normal derivative of wn on the boundary, namely,

∂wn

∂ν
≤ 0 on ∂Ω.

Moreover, computing the Laplacian of wn we observe that it satisfies

(2.43) Δwn = −β(β + 1)dβn
|∇zn|2
d2
n

+ βdβ−1
n Δd|∇zn|2 + 2β

∇wn · ∇d

dn
+ dβn[Δ|∇zn|2],

and

(2.44) Δ|∇zn|2 = 2
(
∇zn · ∇Δzn + |D2zn|2

)
.

Using (2.39) we have

(2.45) ∇zn · ∇Δzn = |∇zn|2 + H · ∇zn + ∇Fn · ∇zn −∇fn · ∇zn,

where, recalling that q(α + 1) = α + 2,

H = ∇(|∇zn + ∇Sn|q − |∇Sn|q) = ∇
(
|dα+1

n ∇zn + dα+1
n ∇Sn|q − |dα+1

n ∇Sn|q

dα+2
n

)
.

Now let us compute

∇Sn =

m∑
k=0

(k − α)σkd
k−α−1
n ∇d + dk−α

n ∇σk,

and we set

T = dα+1
n ∇Sn =

m∑
k=0

(k − α)σkd
k
n∇d + dk+1

n ∇σk; ξ = dα+1
n ∇zn + T.

Note that, since σ0 = C∗, T can be written more explicitly as

(2.46) T = −αC∗∇d +

m∑
k=1

(k − α)σkd
k
n∇d + dk+1

n ∇σk = −αC∗∇d + O(dn).

In particular both |T | and |ξ| (due to (2.42)) do not vanish in a suitable neighborhood
of ∂Ω, and we have

(2.47) |T |q−2 = (αC∗)q−2 + o(1) and |ξ|q−2 = (αC∗)q−2 + o(1).

We compute then

H · ∇zn = ∇
(
|ξ|q − |T |q

dα+2
n

)
· ∇zn =

− (∇d · ∇zn)
(α + 2)

dα+3
n

[|ξ|q − |T |q] +
q

dα+2
n

|ξ|q−2Dξ ξ∇zn − q

dα+2
n

|T |q−2DT T ∇zn ;
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since by the definition of ξ (we use now the notation (a⊗ b)cd = (a · c)(b ·d) for vector
fields)

|ξ|q−2Dξξ∇zn = |ξ|q−2
[
(α + 1)dαn∇zn ⊗∇d + dα+1

n D2zn

]
ξ∇zn

+ |ξ|q−2DT (dα+1
n ∇zn + T )∇zn,

we obtain

H · ∇zn = −(∇d · ∇zn)
(α + 2)

dα+3
n

[|ξ|q − |T |q]

+
q|ξ|q−2

dα+2
n

[
(α + 1)(∇d · ∇zn)(∇zn · ξ)dαn +

dα+1
n

2
∇|∇zn|2 · ξ

]

+
q|ξ|q−2DT∇zn∇zn

dn
+

q

dα+2
n

[
|ξ|q−2 − |T |q−2

]
DT T ∇zn.

Let us observe that∣∣|ξ|q − |T |q − qdα+1
n |T |q−2∇zn · T

∣∣ ≤ C|∇zn|2d2α+2
n

and

(2.48)
∣∣|ξ|q−2 − |T |q−2

∣∣ ≤ C|∇zn|dα+1
n ,

so that

H · ∇zn ≥ −q
(α + 2)

d2
n

(∇d · ∇zn)(∇zn · T )|T |q−2 − C|∇d · ∇zn|
|∇zn|2d2α+2

n

dα+3
n

+
q(α + 1)

d2
n

(∇d · ∇zn)(∇zn · ξ)|T |q−2 − C

d2
n

|∇d · ∇zn| |∇zn · ξ||∇zn|dα+1
n

+
q|ξ|q−2

2dn
∇|∇zn|2 · ξ +

q|ξ|q−2DT∇zn∇zn
dn

− C
|∇zn|2
dn

.

In the third term on the right, we write that ξ = T + dα+1
n ∇zn. Then, using (2.42)

and (2.47), we can simplify the previous inequality by writing

H · ∇zn ≥ − q

d2
n

(∇d · ∇zn)(∇zn · T )|T |q−2

+
q|ξ|q−2

2dn
∇|∇zn|2 · ξ −

|∇zn|2
d2
n

ωn,

where (here and later) ωn is some function satisfying

(2.49) |ωn| ≤ C(dn + |∇zn|dα+1
n ).

Note that (2.42) implies ωn → 0 as dn → 0. Now we use (2.46), (2.47), and the
algebraic relations in (2.2) (i.e., (C∗α)q−1 = α+ 1, q(α+ 1) = α+ 2), and we deduce

H · ∇zn ≥ (α + 2)

(
∇d · ∇zn

dn

)2

+
q|ξ|q−2

2dn
∇|∇zn|2 · ξ −

|∇zn|2
d2
n

ωn.
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Substituting the previous inequality into (2.45) we finally get

(2.50)

∇zn · ∇Δzn ≥ |∇zn|2 + ∇Fn · ∇zn −∇fn · ∇zn

+ (α + 2)

(
∇d · ∇zn

dn

)2

+
q|ξ|q−2

2dn
∇|∇zn|2 · ξ −

|∇zn|2
d2
n

ωn.

Moreover since

(2.51) ∇|∇zn|2 =
∇wn

dβn
− β

|∇zn|2
dn

∇d

we have, recalling that ξ = dα+1
n ∇zn + T ,

q|ξ|q−2

2dn
∇|∇zn|2 · ξ = −β

q|ξ|q−2

2d2
n

|∇zn|2∇d · T

−β
q|ξ|q−2

2

|∇zn|2
d2
n

∇d · ∇zn d
α+1
n +

q|ξ|q−2

2
d−β−1
n ∇wn · ξ.

Then using (2.42) we get from (2.50)

(2.52)

∇Δzn · ∇zn ≥ |∇zn|2 + ∇Fn · ∇zn −∇fn · ∇zn + (α + 2)

(
∇d · ∇zn

dn

)2

−β
q|ξ|q−2

2d2
n

|∇zn|2∇d · T +
q|ξ|q−2

2
d−β−1
n ∇wn · ξ − |∇zn|2

d2
n

ωn.

Here we use again (2.46), (2.47), and (2.2), so that

−β
q|ξ|q−2

2d2
n

|∇zn|2∇d · T = β
(α + 2)

2d2
n

|∇zn|2[1 + o(1)].

We conclude then from (2.52), since ωn = o(1) as dn → 0,

(2.53)
∇Δzn · ∇zn ≥ |∇zn|2 + ∇Fn · ∇zn −∇fn · ∇zn

+ (α + 2)

(
∇d · ∇zn

dn

)2

+ β
(α + 2)

2d2
n

|∇zn|2[1 + o(1)] +
q|ξ|q−2

2
d−β−1
n ∇wn · ξ.

Using the above inequality in (2.43) and (2.44), we finally obtain

(2.54)

−Δwn + 2wn + β(α + 1 − β)dβn
|∇zn|2
d2
n

(1 + o(1)) + 2(α + 2)

(
∇d · ∇zn

dn

)2

dβn

+ 2β
∇wn · ∇d

dn
+

q|ξ|q−2

dn
∇wn · ξ

+ 2dβn∇Fn · ∇zn − 2dβn∇fn · ∇zn + 2dβn|D2zn|2 ≤ 0.

Now let us write explicitly the term Fn defined in (2.40), i.e.,

(2.55)
Fn = −ΔSn + Sn + |∇Sn|q

= −
m∑

k=0

(k − α)
[
(k − α− 1)σkd

k−α−2
n + (Δd + 2∇σk · ∇d)dk−α−1

n

]
+ Δσkd

k−α
n

+

m∑
k=0

σkd
k−α
n +

1

dα+2
n

∣∣∣∣∣
m∑

k=0

(k − α)σkd
k
n∇d + dk+1

n ∇σk

∣∣∣∣∣
q

.
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Recall that σ0 = C∗ is a constant: Then we can write last term as

1

dα+2
n

∣∣∣∣∣
m∑

k=0

(k − α)σkd
k
n∇d + dk+1

n ∇σk

∣∣∣∣∣
q

=

m∑
k=0

lkd
k−α−2
n + O(dm−α−1

n ),

where l0 = (ασ0)
q and lk, k = 1, . . . ,m are coefficients that depend on σ0, . . . , σk,

precisely

lk = −q(k − α)(ασ0)
q−1σk + l̃k(σ0, . . . , σk−1), 1 ≤ k ≤ [α] + 1.

Hence, since q(ασ0)
q−1 = α + 2 (see (2.2)) and m = [α] + 1, we have from (2.55)

Fn =

m∑
k=1

[(α− k)(k + 1)σk + ψk(σ0, . . . , σk−1)] d
k−α−2
n + O(d[α]−α

n )

for some functions ψk. Then by induction we can choose σk = −ψk(σ0,...,σk−1)
(α−k)(k+1) in order

to have

|Fn| =
∣∣− ΔSn + Sn + |∇Sn|q

∣∣ = O
(
d[α]−α
n

)
and

|∇Fn · ∇zn| ≤ Cd[α]−α−1
n (|∇d · ∇zn| + dn |∇zn|) .

Consequently, by Young’s inequality we have

(2.56) |∇Fn · ∇zn| ≤
(α + 2)

2

|∇d · ∇zn|2
d2
n

+ C
(
d2([α]−α)
n + |∇zn|2

)
.

Thus in a suitable neighborhood Ωδ0 of ∂Ω, we have that wn solves

(2.57)

−Δwn + 2wn + β(α + 1 − β)
wn

d2
n

(1 + o(1)) + (α + 2)

(
∇d · ∇zn

dn

)2

dβn

+
q|ξ|q−2

dn
∇wn · ξ + 2β

∇wn · ∇d

dn
− 2dβn∇fn · ∇zn ≤ C dβ+2([α]−α)

n .

By Young’s inequality, we have for all ε > 0

(2.58) 2dβn|∇fn · ∇zn| ≤ ε
wn

d2
n

+ Cεd
2+β
n |∇fn|2 ≤ ε

wn

d2
n

+ Cε.

Here we set β < α+ 1 and δ0, n0 such that in Ωδ0 and for n > n0 we have β(α+ 1−
β) (1 + o(1)) ≥ c > 0: Hence, fixing ε small enough and dropping positive terms, we
get for some constants c0, C0 > 0

(2.59)

−Δwn+2wn+c0
wn

d2
n

+2β
∇wn · ∇d

dn
+
q|ξ|q−2

dn
∇wn·ξ ≤ C0

(
1 +

dβn

d
2(α−[α])
n

)
in Ωδ0 ,

with the condition

∂wn

∂ν
≤ 0 on ∂Ω.
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Since

C0

(
1 +

dβn

d
2(α−[α])
n

)
≤ C1

d2
n

,

the maximum principle implies that

max
Ωδ0

wn ≤ C1

c0
+ max

∂Ωδ0
\∂Ω

wn,

and last term is uniformly bounded thanks to (2.41): Then,

(2.60) ∀ 0 < β < α + 1, |∇zn|2 ≤ Cd−β
n in Ω.

Step 2. In order to get a uniform L∞(Ω) estimate on ∇zn, now we deal with

(2.61) wn = eθ(dn)|∇zn|2,

where θ(s) is a positive increasing function such that θ(0) = 0. Then wn satisfies in Ω

(2.62)
−Δwn +

[
θ′′(dn) + θ′(dn)2 + θ′(dn)Δd

]
wn

+ 2eθ(dn)θ′(dn)∇|∇zn|2 · ∇d + 2eθ(dn)(|D2zn|2 + ∇zn · ∇(Δzn)) = 0.

Following previous computations we obtain (2.50); then since

(2.63) ∇|∇zn|2 = ∇wne
−θ(dn) − θ′(dn)|∇zn|2∇d

we get

∇zn · ∇Δzn ≥ |∇zn|2 + ∇Fn · ∇zn −∇fn · ∇zn + (α + 2)

(
∇d · ∇zn

dn

)2

+
q|ξ|q−2

2dn
e−θ(dn)∇wn · ξ − θ′(dn)

q|ξ|q−2

2dn
|∇zn|2∇d · ξ − |∇zn|2

d2
n

ωn.

Here recall that ξ = dα+1
n ∇zn +T ; we use (2.46), (2.47), and the relations between q,

α, C∗ in (2.2), and we obtain, similarly as we did for (2.53), that

∇Δzn · ∇zn ≥ |∇zn|2 + ∇Fn · ∇zn −∇fn · ∇zn +
α + 2

d2
n

(∇d · ∇zn)2

+
q|ξ|q−2

2dn
e−θ(dn)∇wn · ξ +

(α + 2)θ′(dn)

2dn
|∇zn|2[1 + o(1)] − ωn

|∇zn|2
d2
n

,

where ωn satisfies (2.49). Choosing σ1, . . . , σm as before we have

(2.64) ∇Fn · ∇zn ≥ −α + 2

2

(∇zn · ∇d)2

d2
n

− C
[
d2([α]−α)
n + |∇zn|2

]
,

so we conclude that

∇Δzn · ∇zn ≥ |∇zn|2 −∇fn · ∇zn +
α + 2

2d2
n

(∇d · ∇zn)2

+
q|ξ|q−2

2dn
e−θ(dn)∇wn · ξ +

(α + 2)θ′(dn)

2dn
|∇zn|2[1 + o(1)] − ωn

|∇zn|2
d2
n

− Cd2([α]−α)
n .
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Substituting the above inequality into (2.62) and using (2.63), we find

(2.65)

−Δwn + 2wn +

[
(α + 2)θ′(dn)

dn
+ θ′′(dn) − θ′(dn)2 + θ′(dn)Δd− 2ωn

d2
n

]
wn

+
α + 2

d2
n

(∇d · ∇zn)2eθ(dn) +
q|ξ|q−2

dn
∇wn · ξ + 2θ′(dn)∇wn · ∇d

+ 2eθ(dn)|D2zn|2 ≤ 2eθ(dn)[∇fn · ∇zn + Cd2([α]−α)
n ].

Several choices of functions θ(s) are now possible (see also the results in section 3):
For instance, if we take θ(s) = sη, η > 0, we get

(α + 2)θ′(dn)

dn
+ θ′′(dn)− θ′(dn)2 + θ′(dn)Δd− 2ωn

d2
n

≥ η(α + 1 + η)

d2−η
n

(1 + o(1))− 2ωn

d2
n

.

However, by the definition of ωn in (2.49), using now (2.60) with β ≤ α implies that

(2.66) ωn ≤ C(dn + |∇zn|dα+1
n ) ≤ C dn,

and hence, for any η < 1,[
(α + 2)θ′(dn)

dn
+ θ′′(dn) − θ′(dn)2 + θ′(dn)Δd− 2ωn

d2
n

]
≥ η(α + 1 + η)

d2−η
n

(1 + o(1)).

Using Young’s inequality to take care of the term with fn, we deduce from (2.65)

(2.67)

−Δwn + 2wn +
η(α + 1 + η)

d2−η
n

(1 + o(1))wn +
α + 2

d2
n

(∇d · ∇zn)2eθ(dn)

+
q|ξ|q−2

dn
∇wn · ξ + 2θ′(dn)∇wn · ∇d ≤ C[1 + d2([α]−α)

n ].

Observe that for any η > 0 the function es
η

satisfies Lemma 2.4, and hence

∂wn

∂ν
≤ 0 on ∂Ω.

Therefore, by applying the maximum principle we easily conclude from (2.67) as soon
as η < 1 + [α] − α:

|∇zn| ≤ C

[
1 + max

∂Ωδ0
\∂Ω

|∇zn|
]

in Ωδ0 ,

and the last term is uniformly bounded by (2.41). This proves a uniform Lipschitz
estimate for zn (recall that zn is locally uniformly bounded). Then standard results
imply that zn converges to a function z such that z+S is a solution of (1.1)–(1.2), and
hence the uniqueness result implies that z = u−S. We conclude that u−S is Lipschitz,
and this regularity, decomposed on normal and tangentials directions, yields (1.16).

Case 2: α ∈ N, α = 0. The only difference between the two cases lies in the
formal expansion of un. Indeed we have to modify Sn as follows:

(2.68) Sn =

α−1∑
k=0

σk(x)dk−α
n + σα(x) log dn + σα+1(x)dn log dn + σ̃α+1(x)dn,
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where again σ0 = C∗ and σ̃α+1, σi, i = 0, . . . , α+1, are smooth functions to be fixed.
Hence now we have (after standard computations)

(2.69) T = dα+1
n ∇Sn = −αC∗∇d+

α−1∑
k=1

dkn[(k−α)σk∇d+∇σk−1]+dαn(σα∇d+∇σα−1)

+ dα+1
n [log dn(∇σα + σα+1∇d) + (σα+1 + σ̃α+1)∇d + dn log dn∇σα+1 + dn∇σ̃α+1] .

Then, as in (2.46), we have that T = −αC∗∇d + O(dn) and (2.47) still holds, so
we can argue as above until we obtain (2.54). The choice of Sn is involved in the
regularity of Fn defined in (2.40): In fact we find

−ΔSn + Sn + |∇Sn|q

= −
α−1∑
k=0

(k − α)
[
(k − α− 1)σkd

k−α−2
n + (Δd + 2∇σk · ∇d)dk−α−1

n

]
+ Δσkd

k−α
n

+σα d−2
n − [σαΔd + ∇σα∇d + σα+1] d

−1
n + τ(x) log dn

+

α−1∑
k=0

σkd
k−α
n +

1

dα+2
n

∣∣dα+1
n ∇Sn

∣∣q ,
where τ is smooth (say, W 1,∞(Ω)). From the expression in (2.69), we notice that by
choosing σα+1 = −∇σα · ∇d we can write the last term as

1

dα+2
n

∣∣dα+1
n ∇Sn

∣∣q =

α+1∑
k=0

lkd
k−α−2
n + τ1(x) log dn,

where τ1 is smooth, l0 = (αC∗)q and the lk, k = 1, . . . , α + 1, are coefficients that
depend on σ0, . . . , σk as follows:

lk = −q(k − α)(αC∗)q−1σk + l̃(σ0, . . . , σk−1), 1 ≤ k ≤ α− 1,

lα = q(αC∗)q−1σα + l̃(σ0, . . . , σα−1),

lα+1 = q(αC∗)q−1(σα+1 + σ̃α+1) + l̃(σ0, . . . , σα).

Hence, using q(αC∗)q−1 = α + 2, as in Case 1 we can choose by induction σk, k =
1, . . . , α (which are the same as in the previous case), and σ̃α+1 in a way that

|Fn| = O(| log dn|)

and

|∇Fn · ∇zn| ≤ Cd−1
n (|∇zn · ∇d| + dn| log dn||∇zn|) .

Then, by Young’s inequality,

(2.70) |∇Fn · ∇zn| ≤
(α + 2)

2

(
|∇zn · ∇d|

dn

)2

+ C(| log dn|2 + |∇zn|2),

which replaces (2.56). We conclude as in the previous case by getting estimate (2.60),
and then, using again (2.70), as in Step 2 we obtain the Lipschitz estimate and the
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claimed regularity for u − S. We deduce the asymptotic development (1.17) (using
again that σα+1 = −∇σα · ∇d).

Case 3: α = 0. We recall that α = 0 means q = 2: This case in fact is much
simpler than the previous ones, since (2.39) reads as

−Δzn + zn + |∇zn|2 + 2∇zn · ∇Sn = fn − Fn

and there is no need to use Taylor’s expansion of the nonlinearity (this is why Lemma
2.7 is not needed). In particular, the computation of ∇zn∇Δzn is straightforward,
and one can easily follow the previous steps. As far as the choice of Sn is concerned,
this is exactly as in (2.68), which here assumes the simple form Sn = − log(dn) +
Δd
2 dn.

We observe that the computation of the functions σk in the previous theorem can
be done explicitly. In particular, it turns out that

σ1(x) =
(q − 1)−

1
q−1

1 − α

Δd(x)

2
if α = 1, σ1(x) =

(q − 1)−
1

q−1 Δd(x)

2
if α = 1,

and hence, recalling (2.24),

(2.71)

σ1(x) =
(q − 1)−

1
q−1

1 − α

(N − 1)

2
H(x) if α = 1,

σ1(x) =
(q − 1)−

1
q−1 (N − 1)

2
H(x) if α = 1.

Remark 2.8. Nothing really changes in the proof of Theorem 1.3 according to the
value of λ appearing in (1.1), but for the possibly different values of the coefficients σk

defining the corrector term S. However, the first two terms σ0 = C∗ and σ1 defined
in (2.71) would remain the same for solutions of (1.1), independently of the value of
λ, and so the conclusions of Theorems 1.2 and 1.1. In particular, let us stress that
the gradient estimates remain valid for the solution of the ergodic problem, which is
well defined from the results in [15].

2.3. The case q = 2 and Theorem 1.3 refined. Let us complete here the
proof of Theorems 1.2 and 1.1 by getting an improved asymptotic estimate for the
case q = 2.

Proposition 2.9. Let Ω ∈ C5 and f be in W 1,∞(Ω). Let u(x) be the unique
solution of

(2.72)

{
−Δu + u + |∇u|2 = f(x) in Ω,

u(x) → +∞ as d(x) → 0.

Then

(2.73) lim
d(x)→0

∂u(x)

∂ν
−
(

1

d(x)
− Δd(x)

2

)
= 0.

Proof. Let us set S = − log d(x) + Δd
2 d(x) and z = u− S. Applying Theorem 1.3

we have that z is Lipschitz continuous, which implies

(2.74) |∇(u(x) + log d(x))| ≤ C in Ω.
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From (2.74), u + log d can be extended continuously to ∂Ω and for all x0 ∈ ∂Ω,

(2.75) |u(x) + log d(x) − ρ(x0)| ≤ C|x− x0|,

where ρ(x0) = (u+log d)|x0
. Let us consider now a point P0 ∈ Ω close to the boundary

such that its projection on ∂Ω coincides with x0, and let us introduce in B(P0, d0),
d0 = |x0 − P0|, a new system of coordinates (η1, . . . , ηN ) = (η1, η

′) such that the
origin O coincides with x0 and the η1-axis coincides with ∇d(x0) = −ν(x0). Since
the equation is invariant with respect to rotations and translations, u(η) still solves
(2.72), and estimate (2.75) holds true. We introduce the rescaled variable ξ = η

δ , i.e.,

ξ1 =
η1

δ
, ξ′ =

η′

δ
∀δ > 0,

and we define

(2.76) vδ(ξ) =
u(δξ) + log d(δξ) − Δd(x0)d(δξ)

2 − ρ(x0)

δ
.

Hence vδ(ξ) solves the following equation:

(2.77)

−Δvδ + δ2vδ − 2δ
∇vδ · ∇d(δξ)

d(δξ)
+ δ|∇vδ|2 + δΔd(x0)∇vδ · ∇d(δξ)

+
δ

d(δξ)
(Δd(δξ) − Δd(x0)) + δ

(
Δd(x0)

2

)2

− δ
Δd(x0)Δd(δξ)

2
− δ log d(δξ)

+ δ
Δd(x0)

2
d(δξ) + δρ(x0) − δf(δξ) = 0,

in the domain Dδ, where

Dδ =

{
(ξ1, ξ

′) :

(
ξ1 −

d0

δ

)2

+ |ξ′|2 ≤
(
d0

δ

)2
}
.

Note that Dδ → R
N
+ as δ → 0. Moreover, from (2.74) and (2.75), we have |vδ| ≤ C|ξ|

and |∇vδ| ≤ C, and hence vδ is bounded in W 1,∞
loc (RN

+ ). Now, by regularity of the
function d(x), we have d(η) = η1 + O(|η|2), and hence

d(δξ) = δξ1 + δ2O(|ξ|2),

so that both d(δξ)
δ and δ

d(δξ) are locally bounded in Dδ. Then we can apply the

Calderon–Zygmund theorem to (2.77) which implies that vδ is bounded in W 2,p
loc (RN

+ ),
for all p > 1, and consequently, by Sobolev embedding, it is locally relatively compact
in C1(RN

+ ). Letting δ → 0, since ∇d(δξ) converges toward e1 = (1, 0, . . . , 0), we find
that, up to subsequences, vδ converges toward a solution v of the equation

(2.78) −Δv − 2
∇v · e1

ξ1
= 0 in R

N
+ ,

with the additional information that |∇v| ≤ C and |v(ξ)| ≤ c|ξ|. We claim now that
∂ξ1v = 0 for any solution v of (2.78) having these properties. Indeed, let us derive
(2.78) with respect to the ξ1 direction so that z = ∂ξ1v solves

(2.79) −Δz − 2
∇z · e1

ξ1
+ 2

z

ξ2
1

= 0 in R
N
+ , z ∈ L∞(RN

+ ),
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and, say, |z| ≤ M . Standard arguments imply that (2.79) has a maximal and a
minimal solution in the class |z| ≤ M . Indeed, if we take a sequence Dε of smooth
bounded domains with d(Dε, ∂R

N
+ ) = ε, Dε1 ⊂ Dε2 , for all ε2 < ε1 such that Dε →

R
N
+ as ε → 0, then we can construct a maximal solution Z(ξ) as the limit of solutions

in Dε of the problem⎧⎨
⎩−Δzε − 2

∇zε · e1

ξ1
+ 2

zε
ξ2
1

= 0 in Dε,

zε = M on ∂Dε.

Note that by the strong maximum principle, 0 ≤ zε ≤ M and z ≤ zε for any other
solution of (2.79) with |z| ≤ M , and hence the limit Z is maximal in this class. Since
the equation is invariant with respect to translations along ξ2, . . . , ξN , the maximality
of Z implies that Z(ξ) = Z(ξ1). In the same way, since the equation is linear, we
construct a minimal solution that depends only on ξ1. However, the associated ODE

ψ′′(s)s2 + 2sψ′(s) − 2ψ = 0, s ∈ (0,+∞),

is a standard Euler equation which admits a unique bounded solution ψ = 0. There-
fore the maximal and minimal solutions are zero, and hence z ≡ 0.

As a consequence, whatever subsequence vδ is converging in C1
loc(R

N
+ ), we find

that ∂ξ1vδ → 0, which yields, by the definition of vδ and since e1 = ∇d(x0) =
∇d(δξ) + O(δ),

(2.80) ∇vδ · ∇d(δξ) = ∇u(δξ) · ∇d(δξ) +
1

d(δξ)
− Δd(x0)

2
→ 0.

Now observe that in a neighborhood of ∂Ω any point x ∈ Ω can be represented as x =
x0 + δ∇d(x0) for some x0 ∈ ∂Ω, with δ = d(x). This corresponds to ξ = (1, 0 . . . , 0)
in the previous framework, and using (2.80) with ξ = (1, 0 . . . , 0) we can deduce
(2.73).

We can now complete the results stated in the introduction.
Proof of Theorem 1.2. The result is a consequence of Theorem 1.3 and Proposition

2.9, with the characterization of σ1 in (2.71).
Proof of Theorem 1.1. Both (1.10) and (1.11) follow straightforward from Theo-

rem 1.2, expanding

a(x) = −q|∇u(x)|q−2∇u(x)

near the boundary of Ω.
Remark 2.10. Let us remark that if q = 2 the optimal control law a(x) in general

is not tangentially zero (differently than for 1 < q < 2). Indeed, it is enough to take
Ω as the unit ball in R

N and, in polar coordinates, define u(x) = ψ(ρ)+ϕ(θ), where ρ
is the radial coordinate and θ is the angular one. If ψ is the radial explosive solution
of −Δψ + ψ + |∇ψ|2 = 0, then u solves

−Δu + u + |∇u|2 = f, u(x) → +∞ as x → ∂Ω,

where f = 1
ρ2

[
−Δθϕ + |∇θϕ|2

]
+ ϕ. Here a(x) = 2∇u(x), and its tangential com-

ponent may not vanish on the boundary. Note that f can be taken as smooth as
desired.
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Similarly one can show that the results in Theorem 1.2 are optimal both in the
normal and in the tangential components and that these latter ones have not in general
a universal behavior (independent of f) as is the case for the normal derivative.

The idea of the proof of Proposition 2.9 can be used in order to improve the result
of Theorem 1.3 concerning the normal derivative of u: Indeed from Theorem 3.2 we
have that u − S is Lipschitz continuous, so that we can look at the equation solved
by the rescaled function

vδ(ξ) =
u(δξ) − S(δξ) − ρ(x0)

δ
,

where x0 ∈ ∂Ω, ρ(x0) = (u(x) − S(x))|x0 , and we are using the same notations as
in the above proof. Arguing as before, we can prove that ∂ξ1vδ → 0 and hence that
∂(u−S)

∂ν tends to zero at the boundary. This allows us to refine the estimate on the
normal component of ∇u.

Corollary 2.11. Let the assumptions of Theorem 1.3 hold true. Then we have

∇(u− S)∇d → 0 as d(x) → 0,

which yields in particular, for any 1 < q < 2,⎧⎪⎨
⎪⎩

∂u(x)
∂ν = αC∗

dα+1 −
∑[α]+1

k=0

[
(k−α)σk(x)
dα−k+1(x)

− ∇σk−1(x)·ν
dα−k+1(x)

]
+ o(1) if α ∈ N,

∂u(x)
∂ν = αC∗

dα+1 −
α−1∑
k=1

[
(k−α)σk(x)
dα−k+1(x)

− ∇σk−1(x)·ν
dα−k+1(x)

]
− (σα−∇σα−1·ν)

d(x) + o(1) if α ∈ N.

3. Extensions and remarks.

3.1. The case of singular data f . Here we extend the results of Theorem
1.3 (and consequently those of Theorems 1.1 and 1.2) by considering data f possibly
singular at the boundary. This is possible by taking full advantage of our use of
weighted Bernstein-type estimates in the proof of Theorem 1.3, which allows us to
treat data f with weighted regularity. A first result in this sense was essentially
contained in the intermediate estimate (2.60) given in the proof of Theorem 1.3,
which can be used to get Hölder-type estimates when a Lipschitz regularity cannot
be expected.

Theorem 3.1. Let u(x) be the solution of (1.1)–(1.2), and for any 0 < β < α+1
set

mβ
α =

[
α− β

2

]
+ 1.

Let

(3.1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
S =

∑mβ
α

k=0 σkd
k−α if α ∈ N,

S =
∑min(α−1,mβ

α)
k=0 σkd

k−α + σβ
α log d if α ∈ N, α ≥ 1,

S = − log d if α = 0,

where the coefficients σk are as in Theorem 1.3, σβ
α = σα if mβ

α = α and σβ
α = 0 if

mβ
α ≤ α− 1.

Assume that ∂Ω ∈ Cr, r = mβ
α + 4, and f(x) ∈ W 1,∞

loc (Ω) satisfies

(3.2) |∇f | ≤ C

d2+ β
2

.
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Then we have

(i) |∇u−∇S| ≤ C

d
β
2

,(3.3)

(ii) If β < 2, then u− S belongs to C0,1− β
2 (Ω).(3.4)

Proof. We come back to Step 1 of the proof of Theorem 1.3, with the same
notations. Now, if f satisfies (3.2), we can construct (e.g., by convolution) a smooth
approximation fn satisfying a similar estimate

|∇fn| ≤
C

d
2+ β

2
n

in Ω,

where dn = d(x) + 1
n as before. Then instead of (2.58) we obtain

(3.5) 2dβn|∇fn · ∇zn| ≤ ε
wn

d2
n

+ Cεd
2+β
n |∇fn|2 ≤ ε

wn

d2
n

+
Cε

d2
n

,

where wn = dβn|∇zn|2. Note that now S is truncated so that Fn defined in (2.40)

satisfies Fn = O(d
mβ

α−α−1
n ). Then similarly as in (2.59) we obtain, in a neighborhood

Ωd0 near the boundary, that un solves

−Δwn+2wn+c0
wn

d2
n

+2β
∇wn · ∇d

dn
+
q|ξ|q−2

dn
∇wn·ξ ≤ C0

(
1 + d

−2(α− β
2 −[α− β

2 ])
n +

1

d2
n

)

equipped with the boundary condition

∂wn

∂ν
≤ 0 on ∂Ω.

The maximum principle still allows one to conclude that |∇zn| ≤ Cd
− β

2
n , which yields

(3.3). In the particular case that β
2 < 1, one can prove (see, e.g., [17]) that (3.3)

implies the global Hölder regularity of u− S stated in (ii).
Note that, in terms of the asymptotic expansion for solutions of (1.1)–(1.2), (3.3)

implies that ∇u = ∇S + O(d−
β
2 ), which is a sort of truncation of the complete

expansion (1.16)–(1.17).
Let us see now that Theorem 1.3 can be extended even to cases when f blows up

at the boundary.
Theorem 3.2. Let u(x) be the solution of (1.1)–(1.2). Assume that ∂Ω ∈ Cr,

r = [α] + 5, and f(x) is a W 1,∞
loc (Ω) function such that

(3.6) |∇f | ≤ γ(d)

d2
,

where γ(s) is a positive nondecreasing function satisfying
∫ 1

0
γ(s)
s ds < ∞.

Let S(x) be defined in (1.15). Then we have that

u− S ∈ W 1,∞(Ω).

In particular, the conclusion of Theorem 1.3 holds true.
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Proof. We use the same notations and closely follow the proof of Theorem 1.3;
hence zn is solution of (2.38)–(2.39), where fn is an approximation of f satisfying

|∇fn| ≤ C
γ(dn)

d2
n

.

First note that the conclusion of Step 1 (estimate (2.60)) follows as in Theorem 3.1,
since (3.6) implies (3.2) for any β > 0. Set now

wn = eθ(dn)|∇zn|2

as in Step 2 of the proof of Theorem 1.3. By choosing θ(s) =
∫ s

0
γ(t)
t dt we obtain from

(2.65)

(3.7)

−Δwn +

[
(α + 2)γ(dn)

d2
n

+
γ′(dn)dn − γ(dn)

d2
n

− γ(dn)2

d2
n

+
γ(dn)

dn
Δd− ω(dn)

d2
n

]
wn

+ 2wn +
α + 2

d2
n

eθ(dn)(∇d · ∇zn)2 +
q|ξ|q−2

dn
∇wn · ξ + 2

γ(dn)

dn
∇wn · ∇d

+2eθ(dn)|D2zn|2 ≤ 2eθ(dn)
[
∇fn · ∇zn + C max

(
d2([α]−α)
n , | log(dn)|

)]
,

where max(d
2([α]−α)
n , | log(dn)|) depends only whether α ∈ N or not. Observe that,

since γ(0) = 0 and γ is nondecreasing,[
(α + 2)γ(dn)

d2
n

+
γ′(dn)dn − γ(dn)

d2
n

− γ(dn)2

d2
n

+
γ(dn)

dn
Δd− ω(dn)

d2
n

]

≥
[
(α + 1 + o(1))γ(dn)

d2
n

− ω(dn)

d2
n

]
.

Now we use (3.6) to deduce

|2eθ(dn)∇fn · ∇zn| ≤ ε
γ(dn)

d2
n

eθ(dn)|∇zn|2 + Cε|∇fn|2
d2
n

γ(dn)
≤ ε

γ(dn)

d2
n

wn + Cε
γ(dn)

d2
n

.

Therefore, by choosing ε small we finally get from (3.7)

−Δwn + 2wn +

[
(α + 1)γ(dn)

d2
n

(1 + o(1)) − ω(dn)

d2
n

]
wn + (α + 2)eθ(dn)

(
∇d · ∇zn

dn

)2

+ 2
γ(dn)

dn
∇wn · ∇d +

q|ξ|q−2

dn
∇wn · ξ ≤ C0

[
γ(dn)

d2
n

+ max
(
d2([α]−α)
n , | log(dn)|

)]
.

Without loss of generality we may assume that γ(s) ≥ max(s2([α]+1−α), sη) with η < 1:
In particular, by using (2.66) as in Theorem 1.3, we have ω(dn) = o(γ(dn)). Therefore
we obtain for positive constants c0, C1:

−Δwn + 2wn +
c0 γ(dn)

d2
n

wn + 2
γ(dn)

dn
∇wn · ∇d +

q|ξ|q−2

dn
∇wn · ξ ≤ C1

γ(dn)

d2
n

.

Moreover, since for s small, γ(s)
s − 2‖D2d‖∞ > 0, Lemma 2.4 can be applied, and we

have

∂wn

∂ν
≤ 0 on ∂Ω.
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Using the maximum principle we conclude that

wn = eθ(dn)|∇zn|2 ≤ C,

which yields |∇zn|2 ≤ C, and then in the limit as n → +∞ the Lipschitz regularity
of z = u− S.

Remark 3.3. Several variants of the results above could be done by varying the
weight function, i.e., by reasoning on w = Φ(d)|∇z|2 with possibly different functions
Φ rather than those used above. An example is given by using Φ(d) = | log d|−2: In
this case, assuming f such that |∇f | ≤ C

d2 , one can prove that |∇(u− s)| ≤ C| log d|.
Remark 3.4. A different approach to the results of Theorem 3.1 or 3.2 can be

done if we can expand f as

(3.8) f(x) =

mf∑
j=0

ϕjd
j−γ ,

where ϕj are smooth functions and γ < α + 2. In this case we can modify the so-
called “corrector term” S to get rid of the singular part of f . Indeed we can define
S as

S =

m∑
k=0

σkd
k−α +

mf∑
j=0

ψjd
j+2−γ

and choose the functions ψj (depending on the ϕj ’s) to reduce the problem to the
case of smooth data f . Actually requiring (3.8) means that dγf is smooth, which
is a stronger assumption than |∇f | ≤ C

dγ+1 : For instance, if x0 ∈ ∂Ω, then f(x) =
|x− x0|−γ satisfies |∇f | ≤ Cd−γ−1 but dγf ∈ C0(Ω).

In particular, if we assume the condition that d(x)f is smooth (which is more
demanding than (3.6) as regards the tangential behavior but possibly less strong in
the normal component), then the result of Theorem 3.2 still holds true. This suggests
that (3.6) may possibly be relaxed as far as the normal derivative of f is concerned, but
we suspect it to be optimal due to tangential effects. On the other hand, we observe
that the assumption (3.2) in Theorem 3.1 is optimal in order to get the intermediate
estimate (3.3).

Remark 3.5. In the case of data f singular at the boundary, the method of
proof of Theorem 1.3 may be used (although this extension is not trivial) to obtain a
stabilization result as follows: Let u1 and u2 be solutions of (1.1)–(1.2) corresponding
to different data f1 and f2 such that |∇fi| = O(d−γ), with γ < α + 2. Then one has
‖∇(u1 − u2)‖L∞(Ω) ≤ C(1 + ‖∇(f1 − f2)‖L∞(Ω)).

3.2. Expansion of ∇u via blow-up argument. As pointed out in the intro-
duction, the typical approach used in previous papers (see, e.g., the works [1], [3],
[18], and references therein) for the asymptotic development of the gradient of explo-
sive solutions consists in deriving the behavior of ∇u via scaling and blow-up once a
precise estimate on the asymptotics of u has been established. In the present context,
one could rephrase this method as follows: If one knows that

(3.9) u(x) − Sk(x) = o(dk−α),

where Sk(x) are the first k + 1 terms in the formal expansion of u introduced in
(1.15), then one can expect to prove that ∇u − ∇Sk(x) = o(dk−α−1). Indeed, this
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is the method used in [18] to get estimate (1.8) for solutions of (1.1)–(1.2), which
the reader has also found in Lemma 2.7 in a similar version for the approximating
solutions. Let us point out that this alternative approach works provided α > k, i.e., if
the translated function u(x)−Sk(x) is still explosive. Recalling the value of α = 2−q

q−1 ,

this means, for instance, that the second order terms of the expansion (k = 1 in
(3.9)) can be recovered with this method provided q < 3

2 . Thus, although the result
of Theorem 1.3 is clearly more general and complete, in some particular cases the
approach via blow-up may still provide some intermediate results on the expansion
of ∇u at the boundary, with the advantage of requiring slightly weaker assumptions
on f (namely, no assumption on ∇f is required) and on ∂Ω. It may be of interest to
state explicitly this result.

Theorem 3.6. Let Ω be of class Ck+3, and let u(x) be the unique solution of
(1.1)–(1.2). Let f be such that dα+2−k|f | is bounded and tends to zero at the boundary,
and suppose α > k, k ∈ N, k ≥ 1. Then

(3.10) dα+1−k(x)

(
∂u(x)

∂ν
− ∂Sk(x)

∂ν

)
→ 0 as d(x) → 0,

and

(3.11) dα+1−k(x)

(
∂u(x)

∂τ
− ∂Sk(x)

∂τ

)
→ 0 as d(x) → 0,

where Sk(x) are the first k + 1 terms in the formal expansion introduced in (1.15).
The result of the above theorem generalizes, in some sense, the first order estimate

proved in [18] (that is, (3.10)–(3.11) for k = 0). We also stress that from (3.10)–(3.11)
with k = 1 we already can deduce an estimate on the control law which is weaker than
(1.10) but requires weaker hypotheses, i.e., ∂Ω ∈ C4 and f(x) = o(d−α−1); namely,
we have for α > 1 (i.e. q < 3

2 )

a(x) = − q′

d(x)
ν(x) − q′(N − 1)

2
H(x) ν(x) + o(1) as d(x) → 0.

Sketch of the proof. Suppose α ∈ N (otherwise, the proof is slightly different).
It is easy to prove, via sub- and supersolutions, that if α > k, k ∈ N, then (3.9)
holds true. Note that, in order to get such an estimate, we use the regularity of the
boundary and the assumption on f(x). Then we use the same blow-up framework as
in Proposition 2.9: We fix x0 ∈ ∂Ω, d0 > 0 (small) and P0 = x0 + d0∇d(x0), and
we denote by (η1, η

′) a system of coordinates (obtained by translation and rotation)
such that the origin O ≡ x0 and the η1-axis coincides with ∇d(x0) = −ν(x0). Let
η ∈ B(P0, d0 − δ), and, for any 0 < δ < d0, define the rescaled variable ξ = η−Oδ

δ ,
where Oδ = (δ, 0, . . . , 0), and the rescaled function

vδ(ξ) =
u(η) − Sk−1(η)

δ−α+k
=

u(δξ + Oδ) − Sk−1(δξ + Oδ)

δ−α+k
.

Since u solves (1.1), by computing we find that vδ solves for ξ in a domain Dδ → R
N
+ :

(3.12) −Δvδ + δ2vδ + H(ξ,∇vδ) = Fδ(δξ + Oδ),

where (recall that η = δξ + Oδ)

H(ξ, p) = δα+2−k
(∣∣p δk−α + ∇Sk−1(η)

∣∣q − |∇Sk−1(η)|q
)

and

−δk−α−2Fδ(η) = −ΔSk−1(η) + Sk−1(η) + |∇Sk−1(η)|q − f(η).
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Now by choosing σj as in Theorem 1.3 and using also the hypotesis on f , we have
that the right-hand side is O(d(η)k−2−α); moreover, since d(x) is smooth, we have

d(η) = δ(1+ξ1)+δ2O(|ξ|2), and consequently both d(η)
δ and δ

d(η) are locally uniformly

bounded on R
N
+ . Therefore we deduce that Fδ(η) is a locally uniformly bounded

function. Similarly, if we write

H(ξ,∇vδ) = ∇vδ ·Gδ(ξ), where Gδ(ξ) =

∫ 1

0

Hp(ξ, t∇vδ(ξ))dt,

by computing Hp(ξ, tp) and using that |∇vδ| = o(δ−1) (in consequence of (1.8)) and
the growth of Sk−1, we have that Gδ(ξ) is locally bounded in R

N
+ . Since (by (3.9)) vδ(ξ)

is locally bounded as well, we can use the Calderon–Zygmund regularity for (3.12),
and with a bootstrap argument and the Sobolev embedding theorem we deduce that

vδ(ξ) is compact in C1
loc(R

N
+ ). However, thanks to (3.9) we have that (d(η)

δ )α−kvδ(ξ) →
σk(x0); hence ∇vδ(ξ) → (k − α)(1 + ξ1)

k−α−1σk(x0)∇d(x0). Estimates (3.10) and
(3.11) are a consequence of this convergence.

3.3. Generalizations. With the approach of the present paper, it is possible to
get similar results as in Theorem 1.3 for possibly more general examples than (1.1),
as, for instance, if we consider

−Δu + ψ(x,∇u) + u = f(x) in Ω,

always coupled with explosive boundary condition (1.2). Let us mention that the
method of proof of Theorem 1.3 still works if, for instance, we assume that ψ(x, ξ) =
|ξ|q + H(x, ξ), where H(x, ξ) is a C1 function satisfying, for |ξ| large enough, the
growth conditions

|Hξ| ≤ C|ξ|rd(x)−γ ,

|Hξ(x, ξ) −Hξ(x, η)| ≤ (|ξ| + |η|)r−1|ξ − η|d(x)−γ , with r
q−1 + γ < 1,

|Hx(x, ξ) −Hx(x, η)| ≤ (|ξ| + |η|)s|ξ − η|d(x)−t−1, with s
q−1 + t < 1,

provided we choose the corrector term S in a way that −ΔS + S + ψ(x,∇S) is not
too singular at the boundary. Of course, this last step may turn out to be rather
complicated and may change drastically the form of the expansion S depending on
the structure of ψ(x, ξ). However, if we have that |H(x, ξ)| ≤ C|ξ|q−1, then one can
take S of the same form as in (1.15) but for possibly different coefficients σk; this
happens, for instance, in the example ψ(x, ξ) = |ξ|q +B(x) · ξ, with B(x) smooth. In
this latter case the influence of B on the solution can be seen even in the second term in
the expansion of the gradient (which will not depend merely on the mean curvature).
Similarly, we can also consider an example of an absorption-reaction term of the type
ψ(x, ξ) = |ξ|q − |ξ|p: If 0 < p ≤ q − 1, then the same result as in Theorem 1.3 holds
true, with the same corrector function S defined in (1.15). On the other hand, if we
have q − 1 < p < q, the same method of proof can be applied, but the construction
of S needs to be suitably adapted (with quite long and tedious computations due to
the superposition of the two terms).

Acknowledgment. We warmly thank J. Droniou for his kind advice concerning
Lemma 2.7 and for pointing out to us the related reference [11].
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AN INVERSE PROBLEM FOR A DYNAMICAL LAMÉ SYSTEM
WITH RESIDUAL STRESS∗
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Abstract. In this paper we prove Hölder and Lipschitz stability estimates for determining all
coefficients of a dynamical Lamé system with residual stress, including the density, Lamé parameters,
and the residual stress, by three pairs of observations from the whole boundary or from a part of
it. These estimates imply first uniqueness results for determination of all parameters in the residual
stress systems from few boundary measurements. Our essential assumptions are that the Lamé
system possesses a suitable pseudoconvex function, residual stress is small, and three sets of the
initial data satisfy some independence condition.
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1. Introduction. We consider an elasticity system with residual stress. This
system is anisotropic; i.e., it exhibits elastic properties with different values when
measured in various directions. The assumption about isotropy is too restrictive
in most important applications, although it allows deeper mathematical analysis of
direct, and especially inverse, problems. While the theory of the unique solvability
of direct problems in a quite general anisotropic case is relatively well developed [3],
almost nothing is known about determination of anisotropic elastic parameters from
additional boundary value data (i.e., about inverse problems).

We handle the simplest anisotropy, known as the Lamé system with residual
stress, which is a small perturbation of the classical isotropic Lamé system, by a
scalar anisotropic second order operator. Smallness of perturbation is motivated by
applications to material science [14]. Assuming that speeds of propagation of shear
and compression waves in an unperturbed system satisfy some pseudoconvexity-type
conditions (which exclude trapped elastic rays) and that three sets of initial con-
ditions are in a certain sense independent, we obtain first uniqueness and stability
results about identification of all nine elastic parameters of an isotropic medium with
residual stress from lateral boundary observations. When observation time and the
observed part of the boundary are arbitrary, we explicitly describe a domain where
coefficients are guaranteed to be unique, and we give a Hölder stability estimate.
When observation time is sufficiently large and observation is from the whole lateral
boundary, we derive Lipschitz stability estimates. These estimates indicate the possi-
bility of a numerical solution of an inverse problem with high resolution and therefore
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a substantial applied potential.
While our assumptions exclude zero initial data (most natural in many appli-

cations), recent progress in generating wave fields by interior sources in geophysics,
material sciences, and medicine, and also by a substantial amount of historical seis-
mic data from earthquakes (which are interior sources), make our assumptions more
realistic.

Let Ω be an open bounded domain in R
3 with boundary ∂Ω ∈ C8. The residual

stress is modeled by a symmetric second-rank tensor R(x) = (rjk(x))3j,k=1 ∈ C7(Ω)
which is divergence free

(1.1) divR = 0 in Ω

and satisfies the boundary condition

(1.2) Rν = 0 on ∂Ω,

where divR is a vector-valued function with components given by

(divR)j =

3∑
k=1

∂krjk, 1 ≤ j ≤ 3.

In this paper, x = (x1, x2, x3) ∈ R3 and ν = (ν1, ν2, ν3)
� is the unit outer normal

vector to ∂Ω. Here and below, differential operators ∇ and Δ, without subscripts,
are with respect to x variables. Let Q = Ω× (−T, T ) and u = (u1, u2, u3)

� : Q → R
3

be the displacement vector in Q. We note that ε(u) = (∇u + ∇u�)/2 is the strain
tensor. We consider the initial boundary value problem

(1.3)
AEu := ρ∂2

t u−μΔu−(λ+μ)∇(div u)−(∇λ)div u−2ε(u)∇μ−div((∇u)R) = 0 in Q,

(1.4) u = u0, ∂tu = u1 on Ω × {0},

(1.5) u = g on ∂Ω × (−T, T ),

where ρ is density and λ and μ are Lamé parameters depending only on x and satis-
fying inequalities

(1.6) ε1 < μ, ε1 < ρ, ε1 < λ + μ on Ω

for some positive constant ε1. Hereafter, we use E to represent the set of elastic
coefficients in (1.3), i.e., E = (ρ, λ, μ,R). We will assume that ρ ∈ C6(Ω) and
λ, μ ∈ C7(Ω). The system (1.3) can be written as

ρ ∂2
t u − div σ(u) = 0,

where σ(u) = λ(tr ε)I+2με+R+(∇u)R is a stress tensor. Note that the term div R
does not appear in (1.3) due to (1.1). Also, due to the same condition, we can see
that

(div((∇u)R))i =

3∑
j,k=1

rjk∂j∂kui, 1 ≤ i ≤ 3.
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To make sure that problem (1.3) with (1.4) and (1.5) is well-posed, it suffices to
assume that

(1.7) ‖R‖C1(Ω) < ε0

for some (small) constant ε0 > 0. Assumption (1.7) is also motivated by mate-
rial science applications [14]. Indeed, residual stress of interest to engineers is due
to past thermal changes in steel production which do not significantly change the
elastic properties of steel. It is not hard to see that if ε0 is sufficiently small, then
the boundary value problem (1.3)–(1.5) is hyperbolic, and hence for any initial data
(u0,u1) ∈ H1(Ω) × L2(Ω) and lateral Dirichlet data g ∈ C1([−T, T ];H1(Ω)), u0 = g
on ∂Ω × {0}, there exists a unique solution u(·;E;u0,u1,g) ∈ C([−T, T ];H1(Ω)) to
(1.3)–(1.5).

In this paper we are interested in the following inverse problem: Let Γ be an
open subset of ∂Ω with ∂Γ ∈ C1. Determine density ρ, Lamé parameters λ, μ, and
the residual stress R (a total of nine functions) from Cauchy-type data (u, σ(u)ν) on
Γ × (−T, T ), where u = u(·;E;u0,u1,g), given for a finite number of pairs of initial
data (u0,u1).

We will address uniqueness and stability issues. Our main focus is on stability,
since stability implies uniqueness. This work is a sequel to our recent paper [11], where
we demonstrated uniqueness of only R assuming known constant ρ, λ, μ. Our method
is based on Carleman estimates techniques initiated by Bukhgeim and Klibanov [2].
For works on Carleman estimates and related inverse problems for scalar equations,
we refer to books [1] and [12] for further details and references. The method of [2] was
modified for scalar equations in the paper of Imanuvilov and Yamamoto [6]. It was
found by Imanuvilov, Isakov, and Yamamoto [8] that this modification allows one to
obtain uniqueness and stability for coefficients of systems of equations; in particular,
in [8] there is a first uniqueness result for all three elastic parameters ρ, λ, μ of isotropic
elasticity. For further results on identification of the isotropic Lamé system we refer
to [7]. For Carleman estimates and uniqueness of the continuation for the residual
stress system (1.3) and for identification of the source term and R with given constant
ρ, λ, μ, we refer to [10], [11], [13]. In the case of many boundary measurements and
zero initial data, there are only partial results on identification of residual stress [5],
[15]. In the present work we will show that we can determine all nine parameters in
(1.3)–(1.5) by three pairs of Cauchy data. We will derive a Hölder stability estimate
in the convex hull of the observation surface Γ and a Lipschitz stability estimate for
(ρ, λ, μ,R) in Ω when Γ = ∂Ω and observation time T is large.

We are now ready to state our main results. Let d = inf |x| and D = sup |x| over
x ∈ Ω. We will assume that

(1.8) 0 < d.

Let θ be a positive number. For a function c ∈ C1(Ω) we introduce the condition

(1.9) θ2 < c and θ2c + Dθ
√
c|∇c| + 1

2
c x · ∇c < c2 on Ω.

Let ε0 > 0 be given as in (1.7), M > 0 be arbitrarily fixed, and Eε0,M be the class
of functions (elastic parameters) defined by

Eε0,M = {(ρ, λ, μ,R) : ‖ρ‖C6(Ω) + ‖λ‖C7(Ω) + ‖μ‖C7(Ω) + ‖R‖C6(Ω) < M :

ρ, λ, μ satisfy (1.6) and c =
μ

ρ
, c =

λ + 2μ

ρ
satisfy (1.9),

R is symmetric and satisfies (1.1), (1.2), and (1.7)}.
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To study the inverse problem, we need not only the well-posedness of (1.3)–(1.5)
but also some extra regularity of the solution u. To achieve the latter property,
the initial and Dirichlet data (u0,u1,g) are required to satisfy some smoothness and
compatibility conditions. More precisely, we will assume that u0 ∈ H9(Ω),u1 ∈
H8(Ω), and g ∈ C8([−T, T ];H1(∂Ω)) ∩ C5([−T, T ];H4(∂Ω)) and that they satisfy
standard compatibility conditions of order 8 at ∂Ω × {0}. By using energy estimates
[3] and Sobolev embedding theorems as in [8], one can show that

(1.10) ‖∂α
x ∂

β
t u‖C0(Q) ≤ C

for |α| ≤ 2 and 0 ≤ β ≤ 5. We will use three sets of initial data (u0(·; j),u1(·; j)),
j = 1, 2, 3. To guarantee uniqueness in the inverse problem, we impose some nonde-
generacy condition on the initial data. Namely, let M denote the 18 × 13 matrix⎛
⎜⎜⎜⎜⎜⎜⎝

μΔu0(·; 1) + (λ + μ)∇(divu0(·; 1)) divu0(·; 1)I3 2ε(u0(·; 1)) R(u0(·; 1))
μΔu1(·; 1) + (λ + μ)∇(divu1(·; 1)) divu1(·; 1)I3 2ε(u1(·; 1)) R(u1(·; 1))
μΔu0(·; 2) + (λ + μ)∇(divu0(·; 2)) divu0(·; 2)I3 2ε(u0(·; 2)) R(u0(·; 2))
μΔu1(·; 2) + (λ + μ)∇(divu1(·; 2)) divu1(·; 2)I3 2ε(u1(·; 2)) R(u1(·; 2))
μΔu0(·; 3) + (λ + μ)∇(divu0(·; 3)) divu0(·; 3)I3 2ε(u0(·; 3)) R(u0(·; 3))
μΔu1(·; 3) + (λ + μ)∇(divu1(·; 3)) divu1(·; 3)I3 2ε(u1(·; 3)) R(u1(·; 3))

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where I3 is the 3 × 3 identity matrix, and where R(v) is a 3 × 6 matrix defined by

(1.11) R(v) =
(
∂2
1v 2∂1∂2v 2∂1∂3v ∂2

2v 2∂2∂3v ∂2
3v

)
.

We will assume that

(1.12)
there exists a 13 × 13 minor of M such that the absolute value of
its determinant is greater than some constant ε2 > 0 on Ω.

One can check that u0(·; 1) = (x1x2, 0, 0)�, u1(·; 1) = (0, 0, 0)�, u0(·; 2) = (x1, x2, x3)
�,

u1(·; 2) = (0, x2, x3), u0(·; 3) = (x2
1, x

2
2, x

2
3)

�, and u1(·; 3) = (x2x3, x1x3, x1x2)
� sat-

isfy (1.12). Here, 13 row vectors from rows 2 and 7–18 are linearly independent on
Ω. In fact, the direct calculations yield that the absolute value of the determinant
of 13 × 13 minor is 210(λ(x) + μ(x)), and we can choose ε2 = 210ε1 in (1.12), where
ε1 > 0 is given in (1.6).

Condition (1.12) does not hold physically, but for the identification of the residual
stress, the density, and the Lamé coefficients we have to set up the system by choosing
initial values artificially, e.g., in a laboratory. The above example of such initial values
suggests that there may be many choices for it.

We will use the following notation.
C, γ are generic constants depending only on Ω, T, δ, ε0, ε1, ε2,M,u0(·; j),u1(·; j),

j = 1, 2, 3 (any other dependence will be indicated). ‖ · ‖(k)(Q) is the norm in the

Sobolev space Hk(Q). Q(ε) = Q ∩ {ε < |x|2 − θ2t2 − d2
1} and Ω(ε) = Ω ∩ {ε <

|x|2 − d2
1}, where d1 ≥ d. Let u(; 1; j) and u(; 2; j) be solutions of (1.3), (1.4) with

initial data (u0(; j),u1(; j)), for j = 1, 2, 3, corresponding to sets of coefficients E1 =
(ρ1, λ1, μ1, R1) and E2 = (ρ2, λ2, μ2, R2), respectively. We will consider the Dirichlet
data (displacements) as measurements (observations). We introduce the norm of the
differences of the data as

F =

3∑
j=1

4∑
β=2

(‖∂β
t (u(; 2; j) − u(; 1; j))‖( 5

2 )(Γ × (−T, T ))

+‖∂β
t σ(u(; 2; j) − u(; 1; j))ν‖( 3

2 )(Γ × (−T, T ))).
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This data norm includes the fourth order time derivatives and is technically necessary
for our proof of the Lipschitz stability in the inverse problem. Because we have to
obtain a suitable number of equations in 13 unknown functions ρ, λ, μ, rjk (1 ≤ j ≤
k ≤ 3) in terms of data, we will use also ∂3

t u( ; k; j), j = 1, 2, 3 at t = 0 (see (3.9)).
For that, we need L2-estimates of ∂4

t u in (x, t) in the Carleman estimate, which yield
estimates of ∂3

t u( ; k; j) at t = 0 (see (3.12)).
We first state the Hölder-type estimate for determining coefficients in Ω(ε).
Theorem 1.1. Assume that the domain Ω satisfies (1.8) and for some d1 (≥ d),

(1.13) |x|2 − d2
1 < 0 when x ∈ (∂Ω \ Γ) and D2 − θ2T 2 − d2

1 < 0.

Let the initial data (u0(; j),u1(; j)), j = 1, 2, 3, satisfy (1.12) with λ = λ1, μ = μ1.
Then there exist ε0 and constants C, γ ∈ (0, 1) such that for E1, E2 ∈ Eε0,M with

(1.14) λ1 = λ2 and μ1 = μ2 on Γ,

one has

(1.15)
‖ρ1−ρ2‖(0)(Ω(ε))+‖λ1−λ2‖(0)(Ω(ε))+‖μ1−μ2‖(0)(Ω(ε))+‖R1−R2‖(0)(Ω(ε)) ≤ CF γ .

Remark 1.2. If d1 < D, then the second condition in (1.13) implies that

D2 − d2
1

θ2
< T 2.

In other words, the observation time T needs to be sufficiently large. In this case, we
can determine elastic parameters in the domain Ω(ε). The domain Ω(ε) is discussed
in [9, section 3.4].

If Γ is the whole lateral boundary and T is sufficiently large, then a much stronger
(and in a certain sense the best possible) Lipschitz stability estimate holds.

Theorem 1.3. Let d1 = d. Assume that

(1.16)
D2 − d2

θ2
< T 2 <

d2

θ2
.

Let the initial data (u0(; j),u1(; j)), j = 1, 2, 3, satisfy (1.12) with λ = λ1, μ = μ1,
and Γ = ∂Ω.

Then there exists ε0 in (1.7) and C such that for E1, E2 ∈ Eε0,M satisfying the
conditions

(1.17) ρ1 = ρ2, R1 = R2, ∂αλ1 = ∂αλ2, and ∂αμ1 = ∂αμ2 on Γ when |α| ≤ 1,

one has

(1.18) ‖ρ1 −ρ2‖(0)(Ω)+ ‖λ1 −λ2‖(0)(Ω)+ ‖μ1 −μ2‖(0)(Ω)+ ‖R1 −R2‖(0)(Ω) ≤ CF.

Remark 1.4. Condition (1.16) is needed for pseudoconvexity of weight function
ϕ in Carleman estimates in the next sections and generally cannot be removed. Exis-
tence of T is guaranteed by the condition D2 < 2d2. Under the additional assumption
e · ∇c(x) ≤ 0, x ∈ Ω for some direction e, the condition D2 < 2d2 can be achieved by
using translation x = y + Le with large L.

As mentioned previously, the proofs of these theorems rely on Carleman estimates.
We briefly describe the needed Carleman estimates in section 2. Using this estimate
we will prove in section 3 the Hölder stability estimate (1.15). In section 4, we derive
the Lipschitz stability estimate for our inverse problem.
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2. Carleman estimate. In this section we will collect Carleman estimates
needed to solve our inverse problem. Their proofs can be found in [10] and [11].
Let ψ(x, t) = |x|2 − θ2t2 − d2

1 and ϕ(x, t) = exp(η2ψ(x, t)). Due to conditions (1.9)
and (1.13) and known sufficient conditions of pseudoconvexity [9, Theorem 3.4.1], we
can fix (large) η > 0 so that the phase function ϕ is strongly pseudoconvex on Q(0)
with respect to

ρ

μ
∂2
t − Δ,

ρ

λ + 2μ
∂2
t − Δ.

Similarly, (1.9) and the second inequality in (1.16) guarantee strong pseudoconvexity
of ϕ on Q̄.

Theorem 2.1. There are constants ε0 and C such that under the conditions of
Theorem 1.3 for E ∈ Eε0,M ,

(2.1)∫
Q

(τ |∇x,tu|2 + τ |∇x,tdivu|2 + τ |∇x,tcurlu|2 + τ3|u|2 + τ3|divu|2 + τ3|curlu|2)e2τϕ

≤ C
∫
Q

(|AEu|2 + |∇(AEu)|2)e2τϕ

for all u ∈ H3
0 (Q), and under the conditions of Theorem 1.1,

(2.2)

∫
Q(0)

(τ2|u|2 + |divu|2 + |curlu|2 + τ−1|∇u|2)e2τϕ ≤ C

∫
Q(0)

|AEu|2e2τϕ

for all u ∈ H2
0 (Q(0)).

The Carleman estimates of Theorem 2.1 form our basic tool for treating the
inverse problem. The basic idea in proving Theorem 2.1 is to reduce (1.3) to an
extended system of dimension 7 for (u,divu, curlu). The resulting new system is not
principally diagonalized. However, when the residual stress R is small, the second
derivatives of u can be bounded by first derivatives of divu and curlu. We refer to
[10] and [11] for detailed computations. For the case considered here, we need only
verify the strong pseudoconvexity of ϕ on Q or on Q̄. Under conditions (1.9), (1.13)
or (1.16) one can check that ϕ satisfies the required property when ε0 is small and η
is large (see [9] or [10]). An estimate similar to (2.2) was also derived in [8].

In order to use (2.1), it is required that the Cauchy data of the solution and the
source term vanish on the lateral boundary. To handle nonvanishing Cauchy data,
the following lemma is useful.

Lemma 2.2. For any pair of (g0,g1) ∈ H
5
2 (∂Ω× (−T, T ))×H

3
2 (∂Ω× (−T, T )),

we can find a vector-valued function u∗ ∈ H3(Q) such that

u∗ = g0, σ(u∗)ν = g1, AEu∗ = 0 on ∂Ω × (−T, T ),

and

(2.3) ‖u∗‖(3)(Q) ≤ C(‖g0‖( 5
2 )(∂Ω × (−T, T )) + ‖g1‖( 3

2 )(∂Ω × (−T, T )))

for some C > 0, provided ε0 in (1.7) is sufficiently small.

Proof. By standard extension theorems for any g2 ∈ H
1
2 (∂Ω × (−T, T )) we can

find u∗∗ ∈ H3(Q) so that

u∗∗ = g0, σ(u∗∗)ν = g1, ∂2
νu

∗∗ = g2 on ∂Ω × (−T, T )
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and

‖u∗∗‖(3)(Q) ≤ C(‖g2‖( 1
2 )(∂Ω × (−T, T )) + ‖g1‖( 3

2 )(∂Ω × (−T, T ))

+ ‖g0‖( 5
2 )(∂Ω × (−T, T ))).

Since ∂Ω× (−T, T ) is noncharacteristic with respect to AE provided (1.6) holds and
ε0 is small, the condition AEu∗∗ = 0 on ∂Ω×(−T, T ) is equivalent to the fact that g2

can be written as a linear combination (with C1 coefficients) of ∂2
t g0 and tangential

derivatives of g0 (up to second order) and of g1 (up to first order) along ∂Ω. In
particular,

‖g2‖( 1
2 )(∂Ω × (−T, T )) ≤ C(‖g1‖( 3

2 )(∂Ω × (−T, T )) + ‖g0‖( 5
2 )(∂Ω × (−T, T ))).

Choosing g2 as this linear combination, we obtain (2.3).
To handle ∇λ and ∇μ in (1.3), we need other Carleman estimates. We first derive

the estimate needed in the proof of Theorem 1.1. Let d1 be given as in Theorem 1.1.
Then we can see that ∂Ω(ε) = (Γ ∪ {|x|2 = d2

1 + ε}) ∩ Ω̄.
Lemma 2.3. Let f ∈ C1(Ω) satisfy f |Γ = 0. Then

(2.4) τ

∫
Ω(ε)

|f(x)|2e2τϕ(x,0)dx ≤ C

∫
Ω(ε)

|∇f(x)|2e2τϕ(x,0)dx.

Proof. Denote ϕ0(x) = ϕ(x, 0). Let g = eτϕ0f ; then eτϕ0∇f = ∇g − τ∇ϕ0g.
Note that g|Γ = 0. We observe that ∇ϕ0(x) = ηxϕ0(x), and thus on ∂Ω(ε) \ Γ with
the unit outer normal ν(= −x/|x|),

(2.5) ∂νϕ0(x) = ∇ϕ0 · ν = −η|x|ϕ0(x).

Using integration by parts and (2.5), we have that∫
Ω(ε)

|∇g − τ∇ϕ0g|2

=

∫
Ω(ε)

|∇g|2 + τ2

∫
Ω(ε)

|∇ϕ0g|2 − 2τ

∫
Ω(ε)

∇g · ∇ϕ0g

≥ −τ

∫
Ω(ε)

∇ϕ0 · ∇(g2)

= −τ

∫
∂Ω(ε)\Γ

∂νϕ0g
2 + τ

∫
Ω(ε)

Δϕ0g
2

= τ

∫
∂Ω(ε)\Γ

η|x|ϕ0(x)g2(x)dΓ(x) + τ

∫
Ω(ε)

(3η + η2|x|2)ϕ0g
2(x)dx

≥ C

∫
Ω(ε)

g2,

which implies (2.4).
The following estimate is useful in proving Theorem 1.3 (see also [8, Lemma 3.6]).
Corollary 2.4. Let f ∈ C1(Ω) and f = 0 on ∂Ω. Then we have

τ

∫
Ω

|f(x)|2e2τϕ(x,0)dx ≤ C

∫
Ω

|∇f(x)|2e2τϕ(x,0)dx.
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3. Hölder stability for the determination of coefficients. In this section
we prove the first main result of the paper, Theorem 1.1. Let us denote u(; j) =
u(; 2; j) − u(; 1; j) for j = 1, 2, 3, and F = (f1, f2, . . . , f9, R)�, where f1 = ρ1 − ρ2,
f2 = λ1 − λ2, f3 = μ1 − μ2, (f4, f5, f6)

� = ∇f2, (f7, f8, f9)
� = ∇f3, and

R� =

⎛
⎜⎜⎜⎜⎜⎜⎝

r11
r12
r13
r22
r23
r33

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

r1,11 − r2,11
r1,12 − r2,12
r1,13 − r2,13
r1,22 − r2,22
r1,23 − r2,23
r1,33 − r2,33

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Subtracting equations (1.3) for u(; 1; j) from the equations for u(; 2; j) yields

(3.1) AE2u(; j) = A(u(; 1; j))F on Q,

where

A(v)F = −f1∂
2
t v + (f2 + f3)∇(divv) + f3Δv + divv(f4, f5, f6)

�

+ 2ε(v)(f7, f8, f9)
� +

3∑
j,k=1

rjk∂j∂kv

and

(3.2) u(; j) = ∂tu(; j) = 0 on Ω × {0}.

Differentiating (3.1) in t and using the time-independence of the coefficients of the
system, we get

(3.3) AE2
U(; j) = A(U(; 1; j))F on Q,

where

U(; j) =

⎛
⎝∂2

t u(; j)
∂3
t u(; j)

∂4
t u(; j)

⎞
⎠ , U(; 1; j) =

⎛
⎝∂2

t u(; 1; j)
∂3
t u(; 1; j)

∂4
t u(; 1; j)

⎞
⎠ ,

and

A(U(; 1; j)) =

⎛
⎝A(∂2

t u(; 1; j))
A(∂3

t u(; 1; j))
A(∂4

t u(; 1; j))

⎞
⎠ .

By extension theorems for Sobolev spaces, there exists U∗(; j) ∈ H2(Q) such that

(3.4) U∗(; j) = U(; j), σ(U∗(; j))ν = σ(U(; j))ν on Γ × (−T, T )

and

(3.5)
‖U∗(; j)‖(2)(Q) ≤ C(‖U(; j)‖( 3

2 )(Γ× (−T, T )) + ‖σ(U)(; j)ν‖( 1
2 )(Γ× (−T, T ))) ≤ CF

for all j = 1, 2, 3 due to the definitions of u(; j),U(; j), and F . We now introduce
V(; j) = U(; j) − U∗(; j). Then

(3.6) AE2
V(; j) = A(U(; 1; j))F − AE2

U∗(; j) on Q
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and

(3.7) V(; j) = σ(V)(; j)ν = 0 on Γ × (−T, T ).

To use the Carleman estimate (2.2), we introduce a cut-off function χ ∈ C2(R4)
such that 0 ≤ χ ≤ 1, χ = 1 on Q( ε2 ), and χ = 0 on Q \Q(0). By the Leibniz formula,

AE2(χV(; j)) = χAE2(V(; j)) + A1V(; j) = χAF − χAE2U
∗(; j) + A1V(; j)

due to (3.6). Here (and below) A1 denotes a first order matrix differential operator
with coefficients uniformly bounded by C(ε). By the choice of χ, A1V(; j) = 0 on
Q( ε2 ). It is not hard to see that (3.7) implies that V(; j) = ∂νV(; j) = 0 on Γ×(−T, T ).
Hence due to the first condition of (1.13), the function χV(; j) ∈ H2

0 (Q(0)) (see, for
example [4, Corollary 1.5.1.6, p. 39]). Observe, that χ = 0 is zero near the non-C8-
smooth part of ∂Q(0), and therefore we can use results for C8-smooth domains by
slightly extending Q(0). So we can apply to χV(; j) the Carleman estimate (2.2) to
get ∫

Q

τ |χV(; j)|2e2τϕ

≤ C

∫
Q

(|F|2 + |AE2(U
∗(; j))|2)e2τϕ + C

∫
Q\Q( ε

2 )

|A1V(; j)|2e2τϕ

(3.8) ≤ C

(∫
Q

|F|2e2τϕ + F 2e2τΦ + C(ε)e2τε1

)
,

where Φ = sup ϕ over Q and ε1 = e
ηε
4 . To get the last inequality, we used the bounds

(3.5) and (1.10).
On the other hand, from (1.3), (3.1), (3.2) we have

ρ2∂
2
t u(; j) = A(u(; 1; j))F,

ρ2∂
3
t u(; j) = A(∂tu(; 1; j))F

on Ω×{0}. We now want to rearrange the formulas above. Let akj = −∂2+k
t u(0; 1; j),

bkj = ∇(divuk(; j)), ckj = Δuk(; j)+∇divuk(; j), Bkj = divuk(; j), Ckj = 2ε(uk(; j)),
and Rkj = R(uk(; j)) (see the definition of R in (1.11)), where k = 0, 1 and j = 1, 2, 3.
Using that u(; 1; j) = u0(; j), ∂tu(; 1; j) = u1(; j) on Ω × {0}, we have

(3.9)

⎛
⎜⎜⎜⎜⎜⎜⎝

a01 B01I3 C01 R01

a11 B11I3 C11 R11

a02 B02I3 C02 R02

a12 B12I3 C12 R12

a03 B03I3 C03 R03

a13 B13I3 C13 R13

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1

f4

...
f9

r11
...

r33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ρ2

⎛
⎜⎜⎜⎜⎜⎜⎝

∂2
t u(, 0; 1)

∂3
t u(, 0; 1)

∂2
t u(, 0; 2)

∂3
t u(, 0; 2)

∂2
t u(, 0; 3)

∂3
t u(, 0; 3)

⎞
⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎝

b01 c01

b11 c11

b02 c02

b12 c12

b03 c03

b13 c13

⎞
⎟⎟⎟⎟⎟⎟⎠

(
f2

f3

)



AN INVERSE PROBLEM FOR A DYNAMICAL LAMÉ SYSTEM 1337

on Ω. From the system (1.3) at t = 0 and from this system differentiated in t and
taken at t = 0, we obtain

(3.10)

akj = −μ1

ρ1
Δuk(; j) −

λ1 + μ1

ρ1
∇(divuk(; j)) − divuk(; j)

∇λ1

ρ1

−2ε(uk(; j))
∇μ1

ρ1
−

3∑
�,m=1

r1,�m∂�∂muk(; j)

= −μ1

ρ1
Δuk(; j) −

λ1 + μ1

ρ1
∇(divuk(; j)) − Bkj

∇λ1

ρ1

−Ckj
∇μ1

ρ1
−

3∑
�,m=1

r1,�m∂�∂muk(; j)

when k = 0, 1 and j = 1, 2, 3.
We now consider the matrix on the left-hand side of (3.9). Using (3.10), one

can add to the first column the remaining columns multiplied by suitable factors such
that −divuk(; j)

∇λ1

ρ1
, −2ε(uk(; j))

∇μ1

ρ1
, and −

∑3
�,m=1 r1,�m∂�∂muk(; j) are eliminated

from the first column of this matrix. Then we multiply the first column of the new
matrix by −ρ1. We end up with the matrix M defined in section 1. Obviously,
determinants of corresponding minors of the matrix on the left side of (3.9) and of
the matrix M are the same. It follows from condition (1.12) and bounds (1.10) that

(3.11) |F|2 ≤ C

⎛
⎝ 3∑

j=1

3∑
β=2

|∂β
t u(0; j)|2 + |f2|2 + |f3|2

⎞
⎠ on Ω.

Since χ(·, T ) = 0,∫
Ω

|χ∂β
t u(; j)|2(x, 0)e2τϕ(x,0)dx = −

∫ T

0

∂t

(∫
Ω

|χ∂β
t u(; j)|2(x, t)e2τϕ(x,t)dx

)
dt

≤
∫
Q

2χ2(|∂β+1
t u(; j)||∂β

t u(; j)|+τ |∂tϕ||∂β
t u(; j)|2)e2τϕ+2

∫
Q\Q( ε

2 )

|∂β
t u(; j)|2χ|∂tχ|e2τϕ,

where β = 2, 3. The right side does not exceed

C

(∫
Q

τ |χU(; j)|2e2τϕ + C(ε)

∫
Q\Q( ε

2 )

|U(; j)|2e2τϕ

)

≤ C

(∫
Q

τ |χV(; j)|2e2τϕ + C(ε)

∫
Q\Q( ε

2 )

|U(; j)|2e2τϕ + τ

∫
Q

|U∗(; j)|2e2τϕ

)

because U(; j) = V(; j) + U∗(; j). Using that χ = 1 on Ω( ε2 ), ϕ < ε1 on Q \ Q( ε2 ),
and ϕ < Φ on Q from these inequalities, from (3.8), (3.5), and (1.10) we set

(3.12)

∫
Ω( ε

2 )

|∂β
t u(0; j)|2e2τϕ(,0) ≤ C

(∫
Q

|F|2e2τϕ + C(ε)e2τε1 + τe2τΦF 2

)

for β = 2, 3 and j = 1, 2, 3. Using that χ = 1 on Ω( ε2 ), from (3.11) and (3.12) we
obtain
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∫
Ω( ε

2 )

|F|2e2τϕ(,0) ≤ C

(∫
Q( ε

2 )

|F|2e2τϕ + τe2τΦF 2 + C(ε)e2τε1(3.13)

+

∫
Ω( ε

2 )

(|f2|2 + |f3|2)e2τϕ(,0)

)
,

where we also split Q in the right side of (3.12) into Q( ε2 ) and its complement and
used that |F| ≤ C and ϕ < ε1 on the complement.

To eliminate the first integral in the right side of (3.13), we observe that

∫
Q( ε

2 )

|F|2(x)e2τϕ(x,t)dxdt ≤
∫

Ω( ε
2 )

|F|2(x)e2τϕ(x,0)

(∫ T

−T

e2τ(ϕ(x,t)−ϕ(x,0))dt

)
dx.

Due to our choice of function ϕ, we have ϕ(x, t) − ϕ(x, 0) < 0 when t �= 0. Hence by
the Lebesgue theorem the inner integral (with respect to t) converges to 0 as τ goes
to infinity. By reasons of continuity of ϕ, this convergence is uniform with respect to
x ∈ Ω. Choosing τ > C we therefore can absorb the integral over Q( ε2 ) in the right
side of (3.13) by the left side and arrive at the inequality

(3.14)

∫
Ω( ε

2 )

|F|2e2τϕ(,0) ≤ C

(
τe2τΦF 2 + C(ε)e2τε1 +

∫
Ω( ε

2 )

(|f2|2 + |f3|2)e2τϕ(,0)

)
.

On the other hand, to eliminate the last integral on the right side of (3.14), we use
Lemma 2.3 with condition (1.14) to get

(3.15)

∫
Ω( ε

2 )

(|f2|2 + |f3|2)e2τϕ(,0) ≤ C

τ

∫
Ω( ε

2 )

(|∇f2|2 + |∇f3|2)e2τϕ(,0).

Using (3.15) with large τ and the inequality τ ≤ eτ , we absorb the last integral in the
right side of (3.14) into the left side and obtain

∫
Ω( ε

2 )

|F|2e2τϕ(,0) ≤ C(e2τ(Φ1+1)F 2 + C(ε)e2τε1).

Letting ε2 = e
ηε
2 ≤ ϕ on Ω(ε) and dividing both parts by e2τε2 yields

(3.16)∫
Ω(ε)

|F|2 ≤ C(τe2τ(Φ+1−ε2)F 2 + e−2τ(ε2−ε1)) ≤ C(ε)(e2τ(Φ+1)F 2 + e−2τ(ε2−ε1))

since τe−2τε2 < C(ε). If 1
C ≤ F , then bound (1.15) is obvious because the left side

in (1.15) is less than C. So to prove (1.15) it suffices to assume that F < 1
C . Then

τ = −logF
Φ+1+ε2−ε1

> C, and we can use this τ in (3.16). Due to the choice of τ ,

e−2τ(ε2−ε1) = e2τ(Φ+1)F 2 = F 2
ε2−ε1

Φ+1+ε2−ε1 ,

and from (3.16) we obtain (1.15) with γ = ε2−ε1
Φ+1+ε2−ε1

. The proof of Theorem 1.1 is
now complete.
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4. Lipschitz stability for the determination of coefficients. In this section
we will prove Theorem 1.3. The key ingredient is the following Lipschitz stability
estimate for the Cauchy problem for the system AEu = f .

Theorem 4.1. Suppose that Ω and T satisfy the assumptions of Theorem 1.3.
Let u ∈ (H3(Q))3 solve the Cauchy problem

(4.1)

{
AEu = f in Q,

u = σν(u) = 0 on ∂Ω × (−T, T )

with f ∈ L2((−T, T );H1(Ω)) and f = 0 on ∂Ω × (−T, T ). Furthermore, assume that
(1.7) holds for sufficiently small ε0.

Then there exists a constant C > 0 such that

(4.2) ‖u‖2
H1(Q) + ‖divu‖2

H1(Q) + ‖curlu‖2
H1(Q) ≤ C‖f‖2

L2((−T,T );H1(Ω)).

This estimate was proved in [11].
By virtue of (4.2) and an equivalence of the norms ‖u‖(1)(Ω) and of

‖divu‖(0)(Ω) + ‖curlu‖(0)(Ω) + ‖u‖(0)(Ω)

in H1
0 (Ω) (e.g., [3, pp. 358–359]), it is not hard to derive the following.
Corollary 4.2. Under the conditions of Theorem 4.1,

(4.3) ‖u‖(0)(Q) + ‖∇x,tu‖(0)(Q) + ‖∂t∇u‖(0)(Q) ≤ C‖f‖L2((−T,T );H1(Ω)).

Now we are ready to prove Theorem 1.3. We will use the notations in section 3.
Recall that

AE2U(; 1; j) = A(U(; 1; j))F,

where

A(U(; 1; j))F = −f1∂
2
t U(; 1; j) + (f2 + f3)∇(divU(; 1; j)) + f3ΔU(; 1; j)

+ divU(; 1; j)(f4, f5, f6)
� + 2ε(U(; 1; j))(f7, f8, f9)

�

+

3∑
j,k=1

rjk∂j∂kU(; 1; j).

So, from (1.17) we have

(4.4) AE2U(; j) = 0 on ∂Ω × (−T, T ).

Furthermore, in view of Lemma 2.2, there exists U∗(; j) ∈ H3(Q) such that

(4.5)
U∗(; j) = U(; j), σ(U∗(; j))ν = σ(U(; j))ν, AE2U

∗(; j) = 0 on ∂Ω × (−T, T )

and

(4.6)
‖U∗(; j)‖(3)(Q) ≤ C(‖U(; j)‖( 5

2 )(∂Ω×(−T, T ))+‖σ(U)(; j)ν‖( 3
2 )(∂Ω×(−T, T ))) ≤ CF

due to the definition of F . As before, we set V(; j) = U(; j) − U∗(; j). Due to (4.4)
and (4.5), we get

(4.7) V(; j) = σ(V)(; j)ν = 0, AE2
V(; j) = 0 on ∂Ω × (−T, T ).
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With (4.7), applying Corollary 4.2 to (3.6), (3.7) and using (4.6) gives

(4.8) ‖V(; j)‖2
(0)(Q)+‖∇x,tV(; j)‖2

(0)(Q)+‖∂t∇V(; j)‖2
(0)(Q) ≤ C(‖F‖(1)(Ω)2+F 2)

for j = 1, 2, 3.

On the other hand, as in the proof of Theorem 1.1 we will bound the right side of
(4.8) by V. To use the Carleman estimate (2.1) we need to cut off V(; j) near t = T
and t = −T . We first observe that from the definition,

1 ≤ ϕ(x, 0), x ∈ Ω,

and from condition (1.16),

ϕ(x, T ) = ϕ(x,−T ) < 1 when x ∈ Ω.

So there exists a δ > 1
C such that

(4.9) 1 − δ < ϕ on Ω × (0, δ), ϕ < 1 − 2δ on Ω × (T − 2δ, T ).

We now choose a smooth cut-off function 0 ≤ χ0(t) ≤ 1 such that χ0(t) = 1 for
−T + 2δ < t < T − 2δ and χ(t) = 0 for |t| > T − δ. As in the argument before
(3.8) (see also Lemma A.1 in [13]), from (4.7) we derive that V(; j) = ∂νV(; j) = 0
on ∂Ω × (−T, T ). Then since ∂Ω × (−T, T ) is not characteristic with respect to AE

the third equation in (4.7) implies that ∂2
νV(; j) = 0 on ∂Ω × (−T, T ). Summing up,

V(; j) = ∂νV(; j) = ∂2
νV(; j) = 0 on ∂Ω × (−T, T ). Now from known results about

traces in Sobolev spaces [4], as above we conclude that χ0V(; j) ∈ H3
0 (Q). Using the

Leibniz formula

AE2
(χ0V(; j)) = χ0A(U(; 1; j))F−χ0AE2

U∗(; j)+2ρ2(∂tχ0)∂tV(; j)+ρ2(∂
2
t χ0)V(; j)

and Carleman estimate (2.1) yields

∫
Q

χ2
0(τ

3|V(; j)|2 + τ |∇V(; j)|2)e2τϕ

≤ C

(∫
Q

(|F|2 + |∇F|2 + |AE2U
∗(; j)|2 + |∇(AE2U

∗)(; j)|2)e2τϕ

+

∫
Ω×{T−2δ<|t|<T}

(|V(; j)|2 + |∇x,tV(; j)|2 + |∂t∇V(; j)|2
)
e2τϕ)

≤ C

(∫
Q

(|F|2 + |∇F|2)e2τϕ + e2τΦF 2 + e2τ(1−2δ)

∫
Ω

(|F|2 + |∇F|2)
)
,
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where we let Φ = supQ ϕ and used (4.6), (4.8), (4.9). Since U(; j) = V(; j) + U∗(; j),
from (4.6) we obtain ∫

Q

χ2
0(τ

3|U(; j)|2 + τ |∇U(; j)|2)e2τϕ

(4.10) ≤ C

(
τ3e2τΦF 2 +

∫
Ω

(∫ T

−T

e2τϕ(x,t)dt + e2τ(1−2δ)

)
(|F|2 + |∇F|2)(x)

)
dx.

Utilizing (3.2) and (1.12), similarly to deriving (3.11), we get from (3.9) that

(4.11) |F|2 + |∇F|2 ≤ C

⎛
⎜⎜⎝

3∑
j=1

∑
β=2,3;
k=0,1

|∂β
t ∇ku(0; j)|2 +

∑
k=0,1

(|∇kf2|2 + |∇kf3|2)

⎞
⎟⎟⎠ .

Therefore, by (4.11) and Corollary 2.4 (with conditions (1.17) for Lamé coefficients),
we have ∫

Ω

(|F|2 + |∇F|2)e2τϕ(,0)

≤ C

⎛
⎜⎜⎝
∫

Ω

3∑
j=1

∑
β=2,3;
k=0,1

|∂β
t ∇ku(0; j)|2e2τϕ(,0) +

∫
Ω

∑
k=0,1

(|∇kf2|2 + |∇kf3|2)e2τϕ(,0)

⎞
⎟⎟⎠

≤ −C

∫ T

0

∂t

⎛
⎜⎜⎝
∫

Ω

3∑
j=1

∑
β=2,3;
k=0,1

χ2
0|∂

β
t ∇ku(; j)|2(x, t)e2τϕ(x,t)dx

⎞
⎟⎟⎠ dt

+
C

τ

∫
Ω

(|F|2 + |∇F|2)e2τϕ(;0).

Choosing τ large, we eliminate the last term and obtain∫
Ω

(|F|2 + |∇F|2)e2τϕ(,0)

≤ C

∫
Q

χ2
0

3∑
j=1

∑
β=2,3;
k=0,1

(|∂β
t ∇ku(; j)||∂β+1

t ∇ku(; j)| + τ |∂tϕ||∂β
t ∇ku(; j)|2)e2τϕ

+C

∫
Ω×(T−2δ,T )

χ0|∂tχ0|
3∑

j=1

∑
β=2,3;k=0,1

|∂β
t ∇ku(; j)|2e2τϕ.
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Now as in the proofs of section 3, the right side is less than

C

(∫
Q

τχ2
0(|U(; j)|2 + |∇U(; j)|2)e2τϕ +

∫
Ω×(T−2δ,T )

(|U(; j)|2 + |∇U(; j)|2)e2τϕ

)

≤ C

(∫
Q

τχ2
0(|U(; j)|2 + |∇U(; j)|2)e2τϕ + e2τ(1−2δ)(‖F‖2

(1)(Ω) + F 2)

)
,

where we used equality U(; j) = U∗(; j) + V(; j) and (4.6), (4.8). From the two
previous bounds and (4.10) we conclude that

∫
Ω

(|F|2 + |∇F|2)e2τϕ(,0)(4.12)

≤ C

(
τ3e2τΦF 2 +

∫
Ω

(∫ T

−T

e2τϕ(,t)dt + e2τ(1−2δ)

)
(|F|2 + |∇F|2)

)
.

Due to our choice of ϕ, 1 ≤ ϕ(, 0), ϕ(, t)−ϕ(, 0) < 0 when t �= 0. Thus by the Lebesgue
theorem as in the proofs of section 3, we have

2C

(∫ T

−T

e2τϕ(,t)dt + e2τ(1−δ)

)
≤ e2τϕ(,0)

uniformly on Ω when τ > C. Hence choosing and fixing such large τ , we eliminate the
second term on the right side of (4.12). The proof of Theorem 1.3 is now complete.

5. Conclusion. While natural in some applications, the assumption about the
smallness of residual stress is restrictive. In our opinion it can be relaxed by using
the methods of papers [8], [11], and this paper. More restrictive and much more diffi-
cult to remove is the condition that the initial data are not zero. At present, even for
scalar isotropic hyperbolic equations, global uniqueness of the speed of propagation or
of the potential from few lateral boundary measurements is an open and outstanding
research problem (see, for example, [9]). Moreover, in the case of zero initial data,
general anisotropic hyperbolic operators (and hence systems) cannot be uniquely de-
termined by all lateral boundary measurements (Dirichlet-to-Neumann map). In fact,
a large gauge transformation group changes equations inside Ω without affecting the
lateral boundary data. Hence (special) nonzero initial data are necessary for the
complete identification of such equations and systems.

Of substantial interest is uniqueness in inverse problems for more general anisotropic
systems, for example, for dynamical elasticity systems with transversal isotropy. For
such systems there are no Carleman estimates or uniqueness of the continuation re-
sults. On the other hand, such systems are quite important for applications to geo-
physics, material science, and medicine, and they are notorious mathematical chal-
lenges.
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EXISTENCE AND UNIQUENESS OF GLOBAL STRONG
SOLUTIONS FOR ONE-DIMENSIONAL COMPRESSIBLE

NAVIER–STOKES EQUATIONS∗

A. MELLET† AND A. VASSEUR†

Abstract. We consider Navier–Stokes equations for compressible viscous fluids in one dimension.
It is a well-known fact that if the initial datum are smooth and the initial density is bounded by
below by a positive constant, then a strong solution exists locally in time. In this paper, we show that
under the same hypothesis, the density remains bounded by below by a positive constant uniformly
in time, and that strong solutions therefore exist globally in time. Moreover, while most existence
results are obtained for positive viscosity coefficients, the present result holds even if the viscosity
coefficient vanishes with the density. Finally, we prove that the solution is unique in the class of weak
solutions satisfying the usual entropy inequality. The key point of the paper is a new entropy-like
inequality introduced by Bresch and Desjardins for the shallow water system of equations. This
inequality gives additional regularity for the density (provided such regularity exists at initial time).

Key words. Navier–Stokes, compressible, nonconstant viscosity coefficients, strong solutions,
uniqueness, mono-dimensional

AMS subject classifications. 76N10, 35Q30
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1. Introduction. This paper is devoted to the existence of global strong solu-
tions of the following Navier–Stokes equations for compressible isentropic flow:

ρt + (ρu)x = 0,(1.1)

(ρu)t + (ρu2)x + p(ρ)x = (μ(ρ)ux)x, (x, t) ∈ R × R+,(1.2)

with possibly degenerate viscosity coefficient.
Throughout the paper, we will assume that the pressure p(ρ) obeys a gamma type

law

(1.3) p(ρ) = ργ , γ > 1,

(though more general pressure laws could be taken into account).
The viscosity coefficient μ(ρ) is often assumed to be a positive constant. However,

it is well known that the viscosity of a gas depends on the temperature, and thus on
the density (in the isentropic case). For example, the Chapman–Enskog viscosity
law for hard sphere molecules predicts that μ(ρ) is proportional to the square root
of the temperature (see [7]). In the case of monoatomic gas (γ = 5/3), this leads
to μ(ρ) = ρ1/3. More generally, μ(ρ) is expected to vanish as a power of the ρ on
the vacuum. In this paper, we consider degenerate viscosity coefficients that vanish
for ρ = 0 at most like ρα for some α < 1/2. In particular, the cases μ(ρ) = ν and
μ(ρ) = νρ1/3 (with ν positive constant) are included in our result (see conditions
(2.3)–(2.4) for details).
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One-dimensional Navier–Stokes equations have been studied by many authors
when the viscosity coefficient μ is a positive constant. The existence of weak solutions
was first established by Kazhikhov and Shelukhin [16] for smooth enough data close
to the equilibrium (bounded away from zero). The case of discontinuous data (still
bounded away from zero) was addressed by Shelukhin [24, 25, 26] and then by Serre
[22, 23] and Hoff [12]. First results concerning vanishing initial density were also
obtained by Shelukhin [27]. In [14], Hoff proved the existence of global weak solutions
with large discontinuous initial data, possibly having different limits at x = ±∞.
Moreover, he proved that the constructed solutions have strictly positive densities
(vacuum states cannot form in finite time). In dimension greater than two, similar
results were obtained by Matsumura and Nishida [19] for smooth data and Hoff [13]
for discontinuous data close to the equilibrium. The first global existence result for
initial density that are allowed to vanish was due to Lions (see [17]). The result was
later improved by Feireisl [10] and Feireisl, Novotný, and Petzeltová [11].

Another question is that of the regularity and uniqueness of the solutions. This
problem was first analyzed by Solonnikov [29] for smooth initial data and for small
time. However, the regularity may blow-up as the solution gets close to vacuum. This
leads to another interesting question of whether vacuum may arise in finite time. Hoff
and Smoller [15] show that any weak solution of the Navier–Stokes equations in one
space dimension do not exhibit vacuum states, provided that no vacuum states are
present initially. More precisely, they showed that if the initial data satisfies∫

E

ρ0(x) dx > 0

for all open subsets E ⊂ R, then ∫
E

ρ(x, t) dx > 0

for every open subset E ⊂ R and for every t ∈ [0, T ].
The main theorem of this paper states that the strong solutions constructed by

Solonnikov in [29] remain bounded away from zero uniformly in time (i.e., vacuum
never arises) and are thus defined globally in time. This result can be seen as the
equivalent of the result of Hoff in [13] for strong solutions instead of weak solutions.
Another interest of this paper is the fact that unlike all the references mentioned
above, the result presented here is valid with degenerate viscosity coefficients.

Note that compressible Navier–Stokes equations with degenerate viscosity coeffi-
cients have been studied before (see, for example, [18, 21, 31, 32]. All of those papers,
however, are devoted to the case of compactly supported initial data and to the de-
scription of the evolution of the free boundary. We are interested here in the opposite
situation in which vacuum never arises.

The new tool that allows us to obtain those results is an entropy inequality that
was derived by Bresch and Desjardins in [2] for the multi-dimensional Korteweg system
of equations (which corresponds to the case μ(ρ) = ρ and with an additional capillary
term) and later generalized by the same authors (see [4]) to include other density-
dependent viscosity coefficients. In the one dimensional case, a similar inequality was
introduced earlier by Văıgant [30] for flows with constant viscosity (see also Shelukhin
[28]).

The main interest of this inequality is to provide further regularity for the density.
When μ(ρ) = ρ, for instance, it implies that the gradient of

√
ρ remains bounded for all
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time, provided it was bounded at time t = 0. This has very interesting consequences
for many hydrodynamic equations. In [28], Shelukhin establishes the existence of a
unique weak solution for one-dimensional flows with constant viscosity coefficient. In
higher dimension, Bresch, Desjardin, and Lin use this inequality to establish the sta-
bility of weak solutions for the Korteweg system of equations in [6] and Bresch and
Desjardin use this inequality for the compressible Navier–Stokes equations with an
additional quadratic friction term in [3]. In [20], we establish the stability of weak
solutions for the compressible isentropic Navier–Stokes equations in dimension 2 and
3 (without any additional terms). We also refer to [5] for recent developments con-
cerning the full system of compressible Navier–Stokes equations (for heat conducting
fluids).

At this point, we want to stress the fact that in dimension 2 and higher, this
inequality holds only when the two viscosity coefficients satisfy a relation that con-
siderably restricts the range of admissible coefficients (and in particular implies that
one must have μ(0) = 0). This necessary condition disappears in dimension 1, as the
two viscosity coefficients become one (the derivation of the inequality is also much
simpler in one dimension).

Another particularity of the dimension 1, is that the inequality gives control on
some negative powers of the density (this is not true in higher dimensions). This will
allow us to show that vacuum cannot arise if it was not present at time t = 0.

Finally, we point out that the present result is very different from that of [20]
where the density was allowed to vanish (and the difficulty was to control the velocity
u on the vacuum). Naturally, a result similar to that of [20] holds in dimension one,
though it is not the topic of this paper.

Our main result is made precise in the next section. Section 3 is devoted to
the derivation of the fundamental entropy inequalities and a priori estimates. The
existence part of Theorem 2.1 is proved in section 4. The uniqueness is addressed in
section 5.

2. The result. Following Hoff in [14], we work with positive initial data having
(possibly different) positive limits at x = ±∞: We fix constant velocities u+ and u−
and constant positive density ρ+ > 0 and ρ− > 0, and we let u(x) and ρ(x) be two
smooth monotone functions satisfying

(2.1) ρ(x) = ρ± when ± x ≥ 1 , ρ(x) > 0 ∀x ∈ R,

and

(2.2) u(x) = u± when ± x ≥ 1.

We recall that the pressure satisfies p(ρ) = ργ for some γ > 1 and we assume that
there exists a constant ν > 0 such that the viscosity coefficient μ(ρ) satisfies

(2.3)
μ(ρ) ≥ νρα ∀ρ ≤ 1 for some α ∈ [0, 1/2),
μ(ρ) ≥ ν ∀ρ ≥ 1,

and

(2.4) μ(ρ) ≤ C + Cp(ρ) ∀ρ ≥ 0.

Note that (2.4) is only a restriction on the growth of μ for large ρ. Examples of
admissible viscosity coefficients include μ(ρ) = ν and μ(ρ) = ρ1/3.
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Our main theorem is the following.
Theorem 2.1. Assume that the initial data ρ0(x) and u0(x) satisfy

(2.5)
0 < κ0 ≤ ρ0(x) ≤ κ0 < ∞,

ρ0 − ρ ∈ H1(R),
u0 − u ∈ H1(R),

for some constants κ0 and κ0. Assume also that μ(ρ) verifies (2.3) and (2.4). Then
there exists a global strong solution (ρ, u) of (1.1)–(1.3) on R

+×R such that for every
T > 0:

ρ− ρ ∈ L∞(0, T ;H1(R)),
u− u ∈ L∞(0, T ;H1(R)) ∩ L2(0, T ;H2(R)).

Moreover, for every T > 0, there exist constants κ(T ) and κ(T ) such that

0 < κ(T ) ≤ ρ(x, t) ≤ κ(T ) < ∞ ∀(t, x) ∈ (0, T ) × R.

Finally, if μ(ρ) ≥ ν > 0 for all ρ ≥ 0, if μ is uniformly Lipschitz and if γ ≥ 2,
then this solution is unique in the class of weak solutions satisfying the usual entropy
inequality (3.7).

Note that the assumption (2.5) on the initial data implies, in particular, that the
initial entropy (or relative entropy) is finite.

When the viscosity coefficient μ(ρ) satisfies

(2.6) μ(ρ) ≥ ν > 0 ∀ρ ≥ 0,

the existence of a smooth solution for small time is a well-known result. More precisely,
we have the following proposition.

Proposition 2.2 (see [29]). Let (ρ0, u0) satisfy (2.5) and assume that μ satisfies
(2.6), then there exists T0 > 0 depending on κ0, κ0, ||ρ0−ρ||H1 , and ||u0−u||H1 such
that (1.1)–(1.3) has a unique solution (ρ, u) on (0, T0) satisfying

ρ− ρ ∈ L∞(0, T1, H
1(R)) , ∂tρ ∈ L2((0, T1) × R) ,

u− u ∈ L2(0, T1;H
2(R)) , ∂tu ∈ L2((0, T1) × R)

for all T1 < T0.
Moreover, there exist some κ(t) > 0 and κ(t) < ∞ such that κ(t) ≤ ρ(x, t) ≤ κ(t) for
all t ∈ (0, T0).

In view of this proposition, we see that if we introduce a truncated viscosity
coefficient μn(ρ),

μn(ρ) = max(μ(ρ), 1/n),

then there exist approximated solutions (ρn, un) defined for small time (0, T0) (T0

possibly depending on n). To prove Theorem 2.1, we only have to show that (ρn, un)
satisfies the following bounds uniformly with respect to n and T large:

κ(T ) ≤ ρn ≤ κ(T ) ∀t ∈ [0, T ],

ρn − ρ ∈ L∞(0, T ;H1(R)),

un − u ∈ L∞(0, T ;H1(R)).

In the next section, we derive the entropy inequalites that will be used to obtain
the necessary bounds on ρn and un.
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3. Entropy inequalities. In its conservative form, (1.1)–(1.3) can be written
as

∂tU + ∂x[A(U)] =

[
0

(μ(ρ)ux)x

]

with the state vector

U =

[
ρ
ρ u

]
=

[
ρ
m

]

and the flux

A(U) =

[
ρ u

ρ u2 + ργ

]
=

⎡
⎣ m

m2

ρ
+ ργ

⎤
⎦ .

It is well known that

H (U) = ρ
u2

2
+

1

γ − 1
ργ =

m2

2ρ
+

1

γ − 1
ργ

is an entropy for the system of equations (1.1)–(1.3). More precisely, if (ρ, u) is a
smooth solution, then we have

(3.1) ∂tH (U) + ∂x
[
F (U) − μ(ρ)uux

]
+ μ(ρ)u2

x = 0

with

F (U) = ρu
u2

2
+

γ

γ − 1
uργ .

In particular, by integrating (3.1) with respect to x, we immediately see that

(3.2)
d

dt

∫
R

[
ρ
u2

2
+

1

γ − 1
ργ

]
dx +

∫
R

μ(ρ)|ux|2 dx ≤ 0.

However, since we are looking for solutions ρ(x, t) and u(x, t) which converge to
ρ± and u± at ±∞, we do not expect the entropy to be integrable. It is thus natural
to work with the relative entropy instead of the entropy.

The relative entropy is defined for any functions U and Ũ by

H (U |Ũ) = H (U) − H (Ũ) −DH (Ũ)(U − Ũ)

= ρ(u− ũ)2 + p(ρ|ρ̃),

where p(ρ|ρ̃) is the relative entropy associated to 1
γ−1ρ

γ :

p(ρ|ρ̃) =
1

γ − 1
ργ − 1

γ − 1
ρ̃γ − γ

γ − 1
ρ̃γ−1(ρ− ρ̃).

Note that, since p is strictly convex, p(ρ|ρ̃) is nonnegative for every ρ and p(ρ|ρ̃) = 0
if and only if ρ = ρ̃.

We recall that ρ(x) and u(x) are smooth functions satisfying (2.1) and (2.2), and
we denote

U =

[
ρ
ρ u

]
.
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It is easy to check that there exists a positive constant C (depending on inf ρ) such
that for every ρ and for every x ∈ R, we have

ρ + ργ ≤ C[1 + p(ρ|ρ)],(3.3)

lim inf
ρ→0

p(ρ|ρ) ≥ C−1 .(3.4)

The first inequality we will use in the proof of Theorem 2.1 is the usual relative
entropy inequality for compressible Navier–Stokes equations.

Lemma 3.1. Let ρ, u be a solution of (1.1)–(1.3) satisfying the entropy inequality

∂tH (U) + ∂x[F (U) − μ(ρ)uux] + μ(ρ)|ux|2 ≤ 0.(3.5)

Assume that the initial data (ρ0, u0) satisfies

(3.6)

∫
R

H (U0|U) dx =

∫
R

[
ρ0

(u0 − u)2

2
+ p(ρ0|ρ)

]
dx < +∞.

Then, for every T > 0, there exists a positive constant C(T ) such that

(3.7) sup
[0,T ]

∫
R

[
ρ
(u− u)2

2
+ p(ρ|ρ)

]
dx +

∫ T

0

∫
R

μ(ρ)|ux|2 dx dt ≤ C(T ).

The constant C(T ) depends only on T > 0, U , the initial value U0, γ, and the constant
C appearing in (2.4).

Note that when both ρ and ρ0 are bounded above and below away from zero, it
is easy to check that

p(ρ0|ρ) ≤ C(ρ0 − ρ)2,

and thus (3.6) holds under the assumptions of Theorem 2.1.

Proof of Lemma 3.1. First, we have (by a classical but tedious computation; see
[8]) that

∂tH (U |U) =
[
∂tH (U) + ∂x(F (U) − μ(ρ)u∂xu)

]
− ∂tH (U)

−∂x[F (U) − μ(ρ)u∂xu] + ∂x[DF (U)(U − U)]

−D2H (U)[∂tU + ∂xA(U)](U − U)

−DH (U)[∂tU + ∂xA(U)]

+DH (U)[∂tU + ∂xA(U)]

+DH (U)∂x[A(U |U)],

where the relative flux is defined by

A(U |U) = A(U) −A(U) −DA(U) · (U − U)

=

[
0

ρ(u− u)2 + (γ − 1)p(ρ|ρ)

]
.

Since U is a solution of (1.1)–(1.3) and satisfies the entropy inequality, and using
the fact that U = (ρ, ρu) satisfies (2.1) and (2.2) (and, in particular, ∂tU = 0), we
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deduce that

∂tH (U |U) ≤ −μ(ρ)|∂xu|2

−D2H (U)[∂xA(U)](U − U)

−D2H (U)[∂x(μ(ρ)∂xu)]

+DH (U)∂x[A(U |U)]

+DH (U)[∂xA(U)]

−∂x[F (U) − μ(ρ)uux] + ∂x[DF (U)(U − U)],

where D2H (U) = u. We now integrate with respect to x ∈ R, using the fact that
supp (∂xU) ∈ [−1, 1], and we get

d

dt

∫
R

H (U |U) dx +

∫
R

μ(ρ)|∂xu|2

≤ −
∫ 1

−1

D2H (U)[∂xA(U)](U − U) dx

+

∫ 1

−1

(∂xu)μ(ρ)∂xu dx

−
∫ 1

−1

∂x[DH (U)]A(U |U) dx

−
∫ 1

−1

∂x[DH (U)]A(U) dx.

Writing

∣∣∣∣
∫ 1

−1

(∂xu)μ(ρ)∂xu dx

∣∣∣∣ ≤ ‖∂xu‖2
L∞

∫ 1

−1

μ(ρ) dx +
1

2

∫ 1

−1

μ(ρ)|∂xu|2 dx ,

it follows that there exists a constant C depending on ||U ||W 1,∞ such that

d

dt

∫
R

H (U |U) dx +
1

2

∫
R

μ(ρ) |∂xu|2

≤ C + C

∫ 1

−1

|U − U | dx + C

∫ 1

−1

|A(U |U)| dx

+C

∫ 1

−1

μ(ρ) dx.(3.8)

To conclude, we need to show that the right-hand side can be controlled by
H (U |U). First, we note that

|A(U |U)| ≤ max(1, (γ − 1))H (U |U),

and that (3.3) and (2.4) yield

(3.9)

∫ 1

−1

μ(ρ) dx ≤ C +

∫
R

p(ρ|ρ) dx.
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Next, using (3.3) we get

∫ 1

−1

|U − U | dx ≤
∫ 1

−1

|ρ− ρ| dx +

∫ 1

−1

ρ|u− u| dx +

∫ 1

−1

|u(ρ− ρ)| dx

≤ C

∫ 1

−1

(1 + p(ρ|ρ)) dx

+

(∫ 1

−1

ρ dx

)1/2 (∫ 1

−1

ρ(u− u)2 dx

)1/2

≤ C

∫ 1

−1

(1 + p(ρ|ρ)) dx

+

(∫ 1

−1

(1 + p(ρ|ρ)) dx
)1/2 (∫ 1

−1

H (U |U) dx

)1/2

≤ C

∫ 1

−1

H (U |U) dx + C.

So (3.8) becomes

d

dt

∫
R

H (U |U) dx +
1

2

∫
R

μ(ρ) |∂xu|2 ≤ C + C

∫ 1

−1

|H (U |U)| dx,

and Gronwall’s lemma gives Lemma 3.1.
For further reference, we note that this also implies that

(3.10)
d

dt

∫
R

H (U |U) dx ≤ C(T ).

Unfortunately, it is a well-known fact that the estimates provided by Lemma 3.1
are not enough to prove the stability of the solutions of (1.1)–(1.3). The key tool of
this paper is thus the following lemma.

Lemma 3.2. Assume that μ(ρ) is a C2 function, and let (ρ, u) be a solution of
(1.1)–(1.3) such that

(3.11) u− u ∈ L2((0, T );H2(R)), ρ− ρ ∈ L∞((0, T );H1(R)), 0 < m ≤ ρ ≤ M.

Then there exists C(T ) such that the following inequality holds:

sup
[0,T ]

∫ [
1

2
ρ
∣∣(u− u) + ∂x(ϕ(ρ))

∣∣2 + p(ρ|ρ)
]
dx

+

∫ T

0

∫
R

∂x(ϕ(ρ))∂x(ργ) dx dt ≤ C(T ),(3.12)

with ϕ such that

(3.13) ϕ′(ρ) =
μ(ρ)

ρ2
.

The constant C(T ) depends only on T > 0, (ρ, u), the initial value U0, γ, and the
constant C appearing in (2.4).
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Since the viscosity coefficient μ(ρ) is nonnegative, (3.13) implies that ϕ(ρ) is
increasing. The lemma thus implies that

sup
[0,T ]

∫ [
1

2
ρ
∣∣(u− u) + ∂x(ϕ(ρ))

∣∣2 + p(ρ|ρ)
]
dx ≤ C(T ),

which, together with Lemma 3.1, yields

||√ρ∂x(ϕ(ρ))||L∞(0,T ;L2(Ω)) = 2||μ(ρ)(ρ−1/2)x||L∞(0,T ;L2(Ω)) ≤ C(T ).

This inequality will be the cornerstone of the proof of Theorem 2.1 which is detailed
in the next section.

As mentioned in the introduction, Lemma 3.2 relies on a new mathematical en-
tropy inequality that was first derived by Bresch and Desjardins in [2] and [4] in
dimension 2 and higher. Of course, the computations are much simpler in dimension
1.

We stress the fact that it is important to know exactly what regularity is needed
on ρ and u to establish this inequality. Indeed, unlike inequality (3.7) which is quite
classical, there is no obvious way to regularize the system (1.1)–(1.3) while preserving
the structure necessary to derive (3.12). Fortunately, it turns out that (3.11), which
is the natural regularity for strong solutions, is enough to justify the computations,
as we will see in the proof.

Proof. We have to show that

d

dt

∫ [
1

2
ρ|u− u|2 + ρ(u− u)(ϕ(ρ))x +

1

2
ρ(ϕ(ρ))2x

]
dx +

d

dt

∫
p(ρ|ρ) dx

is bounded
Step 1. From the proof of the previous lemma (see (3.10)), we already know that

(3.14)
d

dt

∫ [
1

2
ρ|u− u|2

]
dx +

d

dt

∫
p(ρ|ρ) dx ≤ C(T ).

Step 2. Next we show that

d

dt

∫
ρ
(ϕ(ρ))2x

2
dx = −

∫
ρ2ϕ′(ρ)(ϕ(ρ))xuxx dx

−
∫

(2ρϕ′(ρ) + ρ2ϕ′′(ρ))ρx(ϕ(ρ))xux dx.(3.15)

This follows straightforwardly from (1.1) when the second derivatives of the density
are bounded in L2((0, T )×R). In that case, it is worth mentioning that the right-hand
side can be rewritten as ∫

ρ2ϕ′(ρ)(ϕ(ρ))xxux dx.

However, we do not have any bounds on ρxx. It is thus important to justify the
derivation of (3.15).

First, we point out that (3.15) makes sense when (ρ, u) satisfies only (3.11) (we
recall that since ρ and u are constant outside (−1, 1), (3.11) implies that ρx ∈
L∞((0, T );L2(R)) and ux ∈ L2((0, T );H1(R))). Moreover, we note that the com-
putation only makes use of the continuity equation. The rigorous derivation of (3.15)
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(under assumption (3.11)) can thus be achieved by carefully regularizing the continu-
ity equation. The details are presented in the appendix (see Lemma A.1).

Step 3. Next, we evaluate the derivative of the cross-product:

d

dt

∫
ρ(u− u)∂x(ϕ(ρ)) dx

=

∫
∂x(ϕ(ρ))∂t(ρ(u− u)) dx +

∫
ρ(u− u)∂t∂x(ϕ(ρ)) dx

=

∫
∂x(ϕ(ρ))∂t(ρ(u− u)) dx−

∫
(ρ(u− u))xϕ

′(ρ)∂tρ dx .(3.16)

Multiplying (1.2) by ∂xϕ(ρ), we get∫
∂x(ϕ(ρ))∂t(ρ(u− u)) dx =

∫
∂x(ϕ(ρ))∂t(ρu) dx−

∫
∂x(ϕ(ρ))(∂tρ)u dx

=

∫
(ϕ(ρ))x(μ(ρ)ux)x dx

−
∫

∂x(ϕ(ρ))∂x(ργ) dx

−
∫

∂x(ϕ(ρ))∂x(ρu2) dx

+

∫
ϕ′(ρ)(ρu)xρxu dx.

The continuity equation easily yields∫
(ρ(u− u))xϕ

′(ρ)∂tρ dx = −
∫

((ρu)x)2ϕ′(ρ) dx +

∫
(ρu)x(ρu)xϕ

′(ρ) dx.

Note that those equalities hold as soon as ρ and u satisfy (3.11).

Step 4. If ϕ and μ satisfy (3.13), then we have∫
(ϕ(ρ))x(μ(ρ)ux)x dx =

∫
ρ2ϕ′(ρ)(ϕ(ρ))xuxx dx∫
(2ρϕ′(ρ) + ρ2ϕ′′(ρ))ρx(ϕ(ρ))xux dx,

so (3.15) and (3.16) yield

d

dt

{∫
ρ(u− u)∂xϕ(ρ) + ρ

|∂xϕ(ρ)|2
2

dx

}
+

∫
∂xϕ(ρ)∂x(ργ) dx

= −
∫

∂x(ϕ(ρ))∂x(ρu2) dx +

∫
((ρu)x)2ϕ′(ρ) dx

+

∫
(ρu)xϕ

′(ρ)[ρxu− (ρu)x] dx

=

∫
ϕ′(ρ)[−ρx(ρu2)x + ((ρu)x)2] dx−

∫
(ρu)xϕ

′(ρ)ρux dx

=

∫
ρ2ϕ′(ρ)u2

x dx−
∫

(ρu)xϕ
′(ρ)ρux dx,
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and using (3.13), we deduce

d

dt

{∫
ρ(u− u)∂xϕ(ρ) + ρ

|∂xϕ(ρ)|2
2

dx

}
+

∫
∂xϕ(ρ)∂x(ργ) dx

=

∫
μ(ρ)(ux)2 dx−

∫
μ(ρ)uxux dx−

∫
ρ ∂x(ϕ(ρ))uux dx.(3.17)

Moreover, since ux has support in (−1, 1) and using the bounds given by Lemma 3.1
and inequality (3.9), it is readily seen that the right-hand side in this equality is
bounded by

C

∫
R

μ(ρ)|ux|2 dx + C

∫ 1

−1

μ(ρ) dx + C

∫
ρ|∂xϕ(ρ)|2 dx + C

∫ 1

−1

ρu2 dx

≤ C

∫
μ(ρ)|ux|2 dx + C

∫
R

p(ρ, ρ) dx + C

∫
R

ρ|(u− u) + ∂xϕ(ρ)|2 dx + C(T ).

Putting (3.17) and (3.14) together, we deduce

d

dt

∫
R

[
1

2
ρ
∣∣(u− u) + ∂x(ϕ(ρ))

∣∣2 + p(ρ|ρ)
]
dx +

∫
R

∂x(ϕ(ρ))∂x(ργ) dx

≤ C

∫
R

μ(ρ)|ux|2 dx + C

∫
R

[
1

2
ρ|(u− u) + ∂xϕ(ρ)|2 + p(ρ, ρ)

]
dx + C(T ).

Finally, using the bounds on the viscosity from Lemma 3.1 and Gronwall’s inequality
we easily deduce (3.12).

4. Proof of Theorem 2.1. In this section, we prove the existence part of The-
orem 2.1.

The proof relies on the following proposition.
Proposition 4.1. Assume that the viscosity coefficient μ satisfies (2.3)–(2.4)

and consider initial data (ρ0, u0) satisfying (2.5). Then for all T > 0 there exist some
constants C(T ), κ(T ), and κ(T ) such that for any strong solution (ρ, u) of (1.1)–(1.3)
with initial data (ρ0, u0), defined on (0, T ) and satisfying

ρ− ρ ∈ L∞(0, T,H1(R)) , ∂tρ ∈ L2((0, T ) × R) ,

u− u ∈ L2(0, T ;H2(R)) , ∂tu ∈ L2((0, T ) × R),

with ρ and ρ−1 bounded, the following bounds hold:

0 < κ(T ) ≤ ρ(t) ≤ κ(T ) ∀t ∈ [0, T ],

‖ρ− ρ‖L∞(0,T ;H1(R)) ≤ C(T ),

‖u− u‖L∞(0,T ;H1(R)) ≤ C(T ).

Moreover, the constants C(T ), κ(T ), and κ(T ) depend on μ only through the constant
C arising in (2.3) and (2.4).

Proof of Theorem 2.1. We define μn(ρ) to be the following positive approximation
of the viscosity coefficient:

μn(s) = max(μ(s), 1/n).

Notice that μn verifies

μ ≤ μn ≤ μ + 1.
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In particular, μn satisfies (2.3) and (2.4) with some constants that are independent
on n.

Next, for all n > 0, we let (ρn, un) be the strong solution of (1.1)–(1.3) with
μ = μn:

ρt + (ρu)x = 0,

(ρu)t + (ρu2)x + p(ρ)x = (μn(ρ)ux)x.

This solution exists at least for small time (0, T0) thanks to Proposition 2.2 (note that
T0 may depend on n). Proposition 4.1 then implies that for all T > 0 there exists
C(T ), κ(T ), and κ(T ) > 0, independent on n, such that

κ(T ) ≤ ρn(t) ≤ κ(T ) ∀t ∈ [0, T ],

‖ρn − ρ‖L∞(0,T ;H1(R)) ≤ C(T ),

‖un − u‖L∞(0,T ;H1(R)) ≤ C(T ).

In particular, we can take T0 = ∞ in Proposition 2.2 (for all n). Moreover, since the
bound from below for the density is uniform in n for any T > 0, by taking n large
enough (namely n ≥ 1/κ(T )), it is readily seen that (ρn, un) is a solution of (1.1)–(1.3)
on [0, T ] with the nontruncated viscosity coefficient μ(ρ). From the uniqueness of the
solution of Proposition 2.2, we see that, passing to the limit in n, we get the desired
global solution of (1.1)–(1.3).

The rest of this section is thus devoted to the proof of Proposition 4.1. First, we
will show that ρ is bounded from above and from below uniformly by some positive
constants. Then we will investigate the regularity of the velocity by some standard
arguments for parabolic equations.

4.1. A priori estimates. Since the initial datum (ρ0, u0) satisfies (2.5), we have∫
ρ0(u0 − u)2 dx < ∞ and

∫
Ω

ρ0|∂x(ϕ(ρ0))|2 dx < +∞.

Moreover, (ρ, u) satisfies (3.11), so we can use the inequalities stated in Lemmas 3.1
and 3.2. We deduce the following estimates, which we shall use throughout the proof
of Proposition (4.1):

(4.1)

||√ρ(u− u)||L∞(0,T ;L2(Ω)) ≤ C(T ),
||ρ||L∞(0,T ;L1

loc∩Lγ
loc(Ω)) ≤ C(T ),

||ρ− ρ||L∞(0,T ;L1(Ω)) ≤ C(T ),

||
√
μ(ρ)(u)x||L2(0,T ;L2(Ω)) ≤ C(T ).

and

(4.2)
||μ(ρ)∂x(ρ−1/2)||L∞(0,T ;L2(Ω)) ≤ C(T ),

||
√
μ(ρ)∂x(ργ/2−1/2)||L2(0,T ;L2(Ω)) ≤ C(T ).

4.2. Uniform bounds for the density. The first proposition shows that no
vacuum states can arise.

Proposition 4.2. For every T > 0, there exists a constant κ(T ) > 0 such that

ρ(x, t) ≥ κ(T ) ∀(x, t) ∈ R × [0, T ].
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The proof of this proposition will follow from two lemmas. The first is as follows.
Lemma 4.3. For every T > 0, there exist δ > 0 and R(T ) such that for every

x0 ∈ R and t0 > 0, there exists x1 ∈ [x0 −R(T ), x0 + R(T )] with

ρ(x1, t0) > δ.

This nice result can be found in [14]. We give a proof of it for the sake of
completeness.

Proof. Let δ > 0 be such that

p(ρ|ρ) ≥ C−1

2
∀ρ < δ

(such a δ exists thanks to (3.4)). Then, if

sup
x∈[x0−R,x0+R]

ρ(x, t0) < δ,

we then have ∫
p(ρ|ρ) dx ≥ C−1R,

and since the integral in the left-hand side is bounded by a constant (see Lemma 3.1),
a suitable choice of R leads to a contradiction.

Lemma 4.4. Let

w(x, t) = inf(ρ(x, t), 1) = 1 − (1 − ρ(x, t))+.

Then there exists ε > 0 and a constant C(T ) such that

||∂xw−ε||L∞(0,T ;L2(R)) ≤ C(T ).

Proof. We have

∂xw = ∂xρ1{ρ≤1}.

In particular, (4.2) gives ∥∥∥∥μ(w)

w3/2
wx

∥∥∥∥
L∞(0,T ;L2(Ω))

≤ C

so using (2.3) we deduce that

||wα−3/2∂xw||L∞(0,T ;L2(Ω)) = ||∂xwα−1/2||L∞(0,T ;L2(Ω)) ≤ C,

and the result follows with ε = 1/2 − α > 0.
Proof of Proposition 4.2. Together with Sobolev–Poincaré inequality, Lemmas 4.3

and 4.4 yield that w−ε is bounded in L∞((0, T ) × R):

w−ε(x, t) ≤ C(T ) ∀(x, t) ∈ R × (0, T ).

This yields Proposition 4.2 with κ(T ) = C(T )−1/ε.
Next, we find a bound for the density in L∞.
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Proposition 4.5. For every T > 0, there exist a constant κ(T ) such that

ρ(x, t) ≤ κ(T ) ∀(x, t) ∈ R × (0, T ).

Proof. Let s = (γ− 1)/2, then (3.12) with (2.3) and (3.13) yields ∂x(ρs) bounded
in L2((0, T ) × R). Moreover, for every compact subset K of R, we have∫

K

|∂xρs| dx =

∫
K

|ρs−1∂xρ| dx

≤
(∫

K

ρ1+2s dx

)1/2 (∫
K

1

ρ3
(∂xρ)

2 dx

)1/2

≤
(∫

K

ργ dx

)1/2 (∫
K

ρϕ′(ρ)2(∂xρ)
2 dx

)1/2

and so using (3.3) we get

∫
K

|∂xρs| dx ≤ C

(
|K| +

∫
K

p(ρ|ρ) dx
)1/2 (∫

K

ρϕ′(ρ)2(∂xρ)
2 dx

)1/2

.

Since

ρs ≤ 1 + ργ ,

we deduce that

ρs is bounded in L∞
(
0, T ;W 1,1

loc (R)
)
,

and the W 1,1(K) norm of ρs(t, ·) only depends on |K|. Sobolev imbedding thus yields
Proposition 4.5.

Proposition 4.6. There exists a constant C(T ) such that

‖ρ(x, t) − ρ(x)‖L∞(0,T ;H1(R)) ≤ C(T ).

Proof. Proposition 4.5 yields∫
(∂xρ)

2 dx ≤ κ3

∫
1

ρ3
(∂xρ)

2 dx

≤ κ3

∫
ρ

(μ(ρ))2
(φ′(ρ))2(∂xρ)

2 dx

≤ νκ3

inf (1, κ2α)

∫
ρ(∂xφ(ρ))2 dx

≤ C(T ),

and the result follows.

4.3. Uniform bounds for the velocity.
Proposition 4.7. There exists a constant C(T ) such that

‖u− u‖L2(0,T ;H2(R)) ≤ C(T )

and

‖∂tu‖L2(0,T ;L2(R)) ≤ C(T ).
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In particular, u− u ∈ C0(0, T ;H1(R)).
Proof. First, we show that u−u is bounded in L2(0, T ;H1(R)). Since ρ ≥ κ > 0,

and using (2.3), it is readily seen that there exists a constant ν′ > 0 such that

μ(ρ(x, t)) ≥ ν′ ∀(x, t) ∈ R × [0, T ],

and so (3.7) gives

∂xu is bounded in L2((0, T ) × R)

and

u− u is bounded in L∞(0, T ;L2(R)).

Therefore u− u is bounded in L2(0, T ;H1(R)).
Note that this implies that ∂tρ is bounded in L2((0, T )×R). Since ρ−ρ is bounded

in L∞(0, T ;H1), it follows (see [1], for example) that

ρ ∈ Cs0((0, T ) × R)

for some s0 ∈ (0, 1).
Next, we rewrite (1.2) as follows:

(4.3) ∂tu−
(
μ(ρ)

ρ
ux

)
x

= −γργ−2ρx + uux + (∂x(ϕ(ρ)) − (u− u))ux,

where we recall that ϕ, which is defined by ϕ′(ρ) = μ(ρ)/ρ2, is the function arising in
the new entropy inequality (see Lemma 3.2).

In order to deduce some bounds on u, we need to control the right-hand side of
(4.3). The first term, ργ−2ρx, is bounded in L∞(0, T ;L2(R)) (thanks to Proposition
4.6). The second term is bounded in L2((0, T ) × R) since u is in L∞. For the last
part, we write (using Hölder inequality and interpolation inequality):

||∂x(ϕ(ρ)) − (u− u)ux||L2(0,T ;L4/3(R))

≤ ||∂x(ϕ(ρ)) − (u− u)||L∞(0,T ;L2(R))||ux||L2(0,T ;L4(R))

≤ ||∂x(ϕ(ρ)) − (u− u)||L∞(L2)||ux||2/3L2(L2)||ux||1/3L2(0,T ;W 1,4/3(R))

≤ C||ux||1/3L2(0,T ;W 1,4/3(R))

(here we make use of (3.12) and Proposition 4.2). So regularity results for parabolic
equation of the form (4.3) (note that the diffusion coefficient is in Cs0((0, T ) × R))
yield

||ux||L2(0,T ;W 1,4/3(R)) ≤ C||ux||1/3L2(0,T ;W 1,4/3(R))
+ C,

and so

||ux||L2(0,T ;W 1,4/3(R)) ≤ C.

Using Sobolev inequalities, it follows that ux is bounded in L2(0, T ;L∞(R)).
Finally, we can now see that the right-hand side in (4.3) is bounded in L2(0, T ;L2(R)),

and classical regularity results for parabolic equations give

u− u is bounded in L2(0, T ;H2(R))
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and

∂tu is bounded in L2(0, T ;L2(R)),

which concludes the proof.
It is now readily seen that Proposition 4.1 follows from Propositions 4.2, 4.5, 4.6,

and 4.7.

5. Uniqueness. In this last section, we establish the uniqueness of the global
strong solution in a large class of weak solutions satisfying the usual entropy inequality.
This result can be rewritten as follows.

Proposition 5.1. Assume that

μ(ρ) ≥ ν > 0 ∀ρ ≥ 0,

and that there exists a constant C such that

|μ(ρ) − μ(ρ̃)| ≤ C|ρ− ρ̃| ∀ρ, ρ̃ ≥ 0.

Assume moreover that γ ≥ 2, and let (ρ, u) be the solution of (1.1)–(1.3) given by
Theorem 2.1.

If (ρ̃, ũ) is a weak solution of (1.1)–(1.3) with initial data (ρ0, u0) and satisfies the
entropy inequality (3.5) and relative entropy bound (3.7), and if

lim
x→±∞

(ρ̃− ρ±) = 0 , lim
x→±∞

(ũ− u±) = 0,

then

(ρ̃, ũ) = (ρ, u).

Notice that we do not need to assume that ρ̃ does not vanish; this proposition
will be a consequence of the following lemma.

Lemma 5.2. Let Ũ = (ρ̃, ρ̃ũ) be a weak solution of (1.1)–(1.3) satisfying the
inequality (3.5), and let U = (ρ, ρu) be a strong solution of (1.1)–(1.3) satisfying the
equality (3.1). Assume, moreover, that Ũ and U are such that

(5.1) lim
x→±∞

(ρ̃− ρ) = 0 , lim
x→±∞

(ũ− u) = 0.

Then we have

d

dt

∫
R

H (Ũ |U) dx +

∫
R

μ(ρ̃) [∂x(ũ− u)]
2

≤ C

∫
|∂xu|H (Ũ |U) dx

−
∫

R

∂xu[μ(ρ̃) − μ(ρ)] [∂x(ũ− u)] dx

+

∫
R

∂x(μ(ρ)∂xu)

ρ
(ρ̃− ρ) (u− ũ) dx.(5.2)

The proof of this lemma relies only on the structure of the equation and not on
the properties of the solutions. We postpone it to the end of this section.
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Proof of Proposition 5.1. In order to prove Proposition 5.1, we have to show that
the last two terms in (5.2) can be controlled by the relative entropy H (Ũ |U) and the
viscosity. Since γ ≥ 2 and ρ ≥ κ > 0, we note that there exists C such that

p(ρ̃|ρ) ≥ C|ρ̃− ρ|2 ∀ρ̃ ≥ 0.

Then, we can write∣∣∣∣
∫

R

∂xu[μ(ρ̃) − μ(ρ)] [∂x(ũ− u)] dx

∣∣∣∣
≤ C‖∂xu‖L∞(R)

(∫
R

|ρ̃− ρ|2 dx
)1/2 (∫

R

|∂x(ũ− u)|2 dx
)1/2

≤ C‖∂xu‖2
L∞(R)

∫
R

|ρ̃− ρ|2 dx +
1

4

∫
R

μ(ρ̃)|∂x(ũ− u)|2 dx

≤ C‖∂xu‖2
L∞(R)

∫
R

H (Ũ |U) dx +
1

4

∫
R

μ(ρ̃)|∂x(ũ− u)|2 dx

which does the trick for the first of the last two terms in (5.2). For the last term,
we see that if we had ∂x(μ(ρ)∂xu) bounded in L∞((0, T )×R), a similar computation
would apply. However, writing

∂x(μ(ρ)∂xu) = μ′(ρ)(∂xρ) (∂xu) + μ(ρ)∂xxu

it is readily seen that ∂x(μ(ρ)∂xu) is only bounded in L2((0, T )×R). For that reason,
we need to control |ũ− u| in L∞, which is made possible by the following lemma.

Lemma 5.3. Let ρ̃ ≥ 0 be such that
∫
p(ρ̃|ρ) dx < +∞. Then there exists a

constant C (depending on
∫
p(ρ̃|ρ) dx) such that for any regular function h:

‖h‖L∞(R) ≤ C

(∫
R

ρ̃|h|2 dx
)1/2

+ C

(∫
R

|hx|2 dx
)1/2

.

Using Lemma 5.3 with h = ũ− u, we deduce that∫
R

∂x(μ(ρ)∂xu)

ρ
(ρ̃− ρ) (u− ũ) dx

≤
∥∥∥∥∂x(μ(ρ)∂xu)

ρ

∥∥∥∥
L2(R)

‖ρ̃− ρ‖L2(R)‖u− ũ‖L∞(R)

≤ C

∥∥∥∥∂x(μ(ρ)∂xu)

ρ

∥∥∥∥
L2(R)

H (Ũ |U)
1
2

(
H (Ũ |U)

1
2 +

(∫
R

|∂x(u− ũ)|2 dx
) 1

2

)

≤ C

∥∥∥∥∂x(μ(ρ)∂xu)

ρ

∥∥∥∥
2

L2(R)

H (Ũ |U) +
1

4

∫
R

μ(ρ̃)|∂x(u− ũ)|2 dx.

So (5.2) becomes

d

dt

∫
R

H (Ũ |U) dx +
1

2

∫
R

μ(ρ̃) [∂x(ũ− u)]
2 ≤ C(t)

∫
H (Ũ |U) dx,

where C(t) ∈ L1(0, T ). The Gronwall lemma, together with the fact that

H (Ũ |U)(t = 0) = 0,
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yields Proposition 5.1.
Proof of Lemma 5.3. Using (3.4), we see that there exists some δ > 0 and C such

that

|{x ∈ R ; ρ̃ ≤ δ}| ≤ C

∫
R

p(ρ̃|ρ) dx.

We take R = C
∫
p(ρ̃|ρ) dx+ 1. Then, for every x0 in R, we know that in the interval

(x0 − R/2, x0 + R/2), ρ̃ is larger than δ, which is a set of measure at least 1. We
denote by ω this set:

ω = (x0 −R/2, x0 + R/2) ∩ {ρ̃ ≥ δ}.

Then, for all x ∈ ω, we have

|h(x0)| ≤ |h(x)| +
∫ x

x0

|hx(y)| dy ≤ |h(x)| + R1/2

(∫
R

|hx(y)|2 dy
)1/2

.

Integrating with respect to x in ω, we deduce that

|h(x0)| ≤
1

|ω|

∫
ω

|h| dx + R1/2

(∫
R

|hx|2 dx
)1/2

≤ 1

|ω|1/2

(∫
ω

|h|2 dx
)1/2

+ R1/2

(∫
R

|hx|2 dx
)1/2

.

Finally, since ρ̃ ≥ δ in ω, we have

|h(x0)| ≤
1

δ1/2|ω|1/2

(∫
ω

ρ̃|h|2 dx
)1/2

+ R1/2

(∫
R

|hx|2 dx
)1/2

,

and since |ω| ≥ 1, the result follows.
Proof of Lemma 5.2. To prove the lemma, it is convenient to note that the system

(1.1)–(1.3) can be rewritten in the form

∂tUi + ∂xAi(U) = ∂x
[
Bij(U)∂x (DjH (U))

]
,

where B(U) is a positive symmetric matrix and DH denotes the derivative (with
respect to U) of the entropy H (U) associated with the flux A(U). The existence of
such an entropy is equivalent to the existence of an entropy flux function F such that

(5.3) DjF (U) =
∑
i

DiH (U)DjAi(U)

for all U . Then strong solutions of (1.1)–(1.3) satisfy

∂tH (U) + ∂xF (U) − ∂x(B(U)∂xDH (U))DH (U) = 0.

In our case, we have

A(U) =

⎡
⎣ m

m2

ρ
+ ργ

⎤
⎦ =

[
ρu

ρu2 + ργ

]
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and

B(U) = μ(ρ)

[
0 0
0 1

]
.

Then, a careful computation (using (5.3)) yields

∂tH (Ũ |U)

=
[
∂tH (Ũ) + ∂x(F (Ũ)) − ∂x(B(Ũ)∂xDH (Ũ))DH (Ũ)

]
−
[
∂tH (U) + ∂xF (U) − ∂x(B(U)∂xDH (U))DH (U)

]
−∂x[F (Ũ) − F (U)]

−D2H (U)[∂tU + ∂xA(U) − ∂x (B(U)∂x (DH (U)))](Ũ − U)

−DH (U)[∂tŨ + ∂xA(Ũ) − ∂x(B(Ũ)∂x(DH (Ũ)))]

+DH (U)[∂tU + ∂xA(U) − ∂x(B(U)∂x (DH (U)))]

+∂x[DF (U)(Ũ − U)]

+DH (U)∂x[A(Ũ |U)]

+∂x[B(Ũ)∂xDH (Ũ) −B(U)∂xDH (U)][DH (Ũ) −DH (U)]

+∂x(B(U)∂xDH (U))DH (Ũ |U),

where the relative flux is defined by

A(Ũ |U) = A(Ũ) −A(U) −DA(U) · (Ũ − U).

Using the fact that Ũ and U are solutions satisfying the natural entropy inequality
and equality, we deduce that

∂tH (Ũ |U)

≤ −∂x[F (Ũ) − F (U)] + ∂x[DF (U)(Ũ − U)]

+DH (U)∂x[A(Ũ |U)]

+∂x[B(Ũ)∂xDH (Ũ) −B(U)∂xDH (U)][DH (Ũ) −DH (U)]

+∂x(B(U)∂xDH (U))DH (Ũ |U).

Integrating with respect to x and using (5.1), we deduce that

d

dt

∫
R

H (Ũ |U) dx

≤ −
∫

∂x[DH (U)]A(Ũ |U) dx

−
∫

R

[B(Ũ)∂xDH (Ũ) −B(U)∂xDH (U)]∂x[DH (Ũ) −DH (U)]dx

+

∫
R

∂x[B(U)∂xDH (U)]DH (Ũ |U) dx.

Finally, we check that

∂x[DH (U)]A(Ũ |U) = (∂xu)[ρ(u− ũ)2 + (γ − 1)p(ρ|ρ̃)] ,

∂x[B(U)∂xDH (U)]DH (Ũ |U) =
∂x(μ(ρ)∂xu)

ρ
(ρ̃− ρ) (u− ũ),
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and

[B(Ũ)∂xDH (Ũ) −B(U)∂xDH (U)]∂x[DH (Ũ) −DH (U)]

= [μ(ρ̃)∂xũ− μ(ρ)∂xu] ∂x [ũ− u]

= μ(ρ̃) [∂xũ− ∂xu]
2

+ ∂xu[μ(ρ̃) − μ(ρ)]∂x [ũ− u] .

It follows that

d

dt

∫
R

H (Ũ |U) dx +

∫
R

μ(ρ̃) [∂x(ũ− u)]
2

≤ C

∫
|∂xu|H (Ũ |U) dx

−
∫

R

∂xu[μ(ρ̃) − μ(ρ)] [∂x(ũ− u)] dx

+

∫
R

∂x(μ(ρ)∂xu)

ρ
(ρ̃− ρ) (u− ũ) dx.

which gives the lemma.

Appendix. Proof of equality (3.15).
Lemma A.1. Let (ρ, u) satisfy (3.11) and

(A.1)

{
∂tρ + ∂x(ρ u) = 0,

ρ(x, 0) = ρ0(x).

Then (ρ, u) satisfies (3.15).
Proof. We denote by hε the convolution of any function h by a mollifier. Convo-

luting (A.1) by the mollifier, we get

∂tρε + ∂x(ρεu) = rε,

where

rε = ∂x(ρεu) − ∂x(ρu)ε.

Since ρε is now a smooth function, a straightforward computation yields

d

dt

∫
ρε

(ϕ(ρε)x)2

2
dx

−
∫

(ρε)
2ϕ′(ρε)ϕ(ρε)xuxx dx

−
∫

(2ρεϕ
′(ρε) + (ρε)

2ϕ′′(ρε))(ρε)xϕ(ρε)xux dx

=

∫
ρεϕ(ρε)x(ϕ′(ρε)rε)x dx.(A.2)

In order to pass to the limit ε → 0, we note that

ρε − ρ −→ ρ− ρ in L∞(0, T ;H1(R)) strong,

which is enough to take the limit in the left-hand side of (A.2) (note that it implies
the strong convergence in L∞(0, T ;L∞(R))). To show that the right-hand side goes
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to zero, we only need to show that rε goes to zero in L2(0, T ;H1(R)) strong (and thus
in L2(0, T ;L∞(R))). We write

∂xrε = 2[∂xρε∂xu− (∂xρ ∂xu)ε]

+ρε∂xxu− (ρ ∂xxu)ε

+∂xxρεu− (∂xxρ u)ε.

The first two terms converge to zero thanks to the strong convergence of ρε in
L∞(0, T ;H1(R)). For the last term, we note that

∂xρ ∈ L∞(0, T ;L2(R)) and u ∈ L2(0, T ;W 1,∞(R))

so the strong convergence to zero in L2((0, T ) × R) follows from Lemma II.1 in [9]
from DiPerna and Lions.
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[30] V. A. Văıgant, Nonhomogeneous boundary value problems for equations of a viscous heat-
conducting gas, Dinamika Sploshn. Sredy, 97 (1990), pp. 3–21, 212.

[31] T. Yang, Z.-a. Yao, and C. Zhu, Compressible Navier-Stokes equations with density-
dependent viscosity and vacuum, Comm. Partial Differential Equations, 26 (2001), pp. 965–
981.

[32] T. Yang and C. Zhu, Compressible Navier-Stokes equations with degenerate viscosity coeffi-
cient and vacuum, Comm. Math. Phys., 230 (2002), pp. 329–363.



SIAM J. MATH. ANAL. c© 2008 Society for Industrial and Applied Mathematics
Vol. 39, No. 5, pp. 1367–1401

ASYMPTOTIC ANALYSIS OF PHASE FIELD FORMULATIONS OF
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Abstract. In this paper, we give the asymptotic analysis of sharp interface analysis of the phase
field function in some phase field models for Willmore’s problem and equilibrium lipid bilayer cell
membrane problems. We derive the explicit expression of the asymptotic expansion of the phase
field functions minimizing the Willmore energy. Based on the structure of the phase field functions
obtained via the asymptotic analysis, we can then demonstrate the consistency of phase field models
and the sharp interface models. Also some error estimates of energy and Euler number formulae are
further analyzed. Some numerical experiments are performed to verify our assumptions and results.
The results of this paper lead to a better understanding of the structure of the phase field functions in
the phase field models for Willmore’s problem and the equilibrium configurations of the lipid vesicle
membranes.
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1. Introduction. Willmore’s problem [26] is a classical problem to minimize the
mean curvature square energy of a compact surface Γ:

(1.1) W =

∫
Γ

H2 dS,

where H = (k1 + k2)/2 is the mean curvature and k1 and k2 are the two principal
curvatures. For the equilibrium surface Γ minimizing the Willmore energy, the mean
curvature H and the Gaussian curvature K = k1k2 of Γ satisfy

(1.2) ΔΓH + 2H(H2 −K) = 0,

which is the Euler–Lagrange equation of Willmore’s problem.
Willmore’s problem is closely related to the equilibrium shapes of biological lipid

bilayer membranes, as shown in the bending elasticity model, first developed by Can-
ham, Evans, and Helfrich [15, 19, 21]. Biomembranes are mostly composed by lipid
molecules, which form a special bilayer structure of the membrane [20]. Due to the
bending property of the lipid bilayer structure, in the bending elasticity model, the
elastic bending energy is formulated by

(1.3) Wc =
κ

2

∫
Γ

(H − c)2 dS,

where H is the mean curvature of the membrane surface Γ, c is the spontaneous
curvature used to describe some physical or chemical difference between the inside and
the outside of the membrane, and κ is the bending rigidity of the bilayer membrane.
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The equilibrium membrane configurations are the minimizers of the elastic bending
energy (1.3). Some constraints may apply, such as a given surface area and fixed cell
volume to account for the effects of density change and osmotic pressure [7].

Some analytical and computational methods for computing the equilibrium shapes
have been developed in the past few years [1, 2, 4, 16, 22, 27]. The computational
methods include the direct methods such as front tracking [23, 14], volume of fluid
(VOF) [18], and level set methods [3]. Another important computational method was
developed recently in [7] and [11, 12, 8, 24, 25], using a phase field function to build
up a general energetic variational framework. There are several advantages to using
the phase field method. It can easily handle the topological changes of the shapes,
and it can be formulated within a unified energetic framework, easy to understand
and implement.

The basic idea of phase field formulations is to introduce a phase field function ϕ
defined on a physical (computational) domain Ω to label the inside and the outside of
the membrane Γ. We visualize that the level set {x : ϕ(x) = 0} gives the surface Γ,
while {x : ϕ(x) > 0} represents the inside of Γ and {x : ϕ(x) ≤ 0} the outside. Define
the following modified Willmore energy:

(1.4) W (ϕ) =

∫
Ω

ε

2

(
Δϕ− 1

ε2
ϕ(ϕ2 − 1)

)2

dx,

where ε is a transition parameter that is taken to be very small. W (ϕ) is a phase field
translation of mean curvature energy (1.1) or the elastic bending energy (1.3) without
the spontaneous curvature. For the elastic bending energy (1.3) with spontaneous
curvature, the phase field translation is [11]

(1.5) Wc(ϕ) =

∫
Ω

ε

2

(
Δϕ− 1

ε2
(ϕ2 − 1)(ϕ +

√
2cε)

)2

dx,

and the goal of the phase field model is to minimize W (ϕ). Some constraints such as
the fixed inside volume and the surface area may apply. In [6, 7, 8], some numerical
schemes and discretization techniques have been developed for the phase field model.
The theoretical analysis to the convergence of those numerical schemes is given in [5].
They have been successfully implemented and used in the numerical simulation of the
membrane deformation. Various equilibrium solution branches and energy diagrams
have been obtained, including interesting new three-dimensional solutions. Also, the
shapes found in numerical experiments are coincident with the biophysical experi-
ments and other theoretical methods for this problem.

There are basic issues about this phase field model requiring further considera-
tion. One of them is to prove the consistency of the phase field model with the sharp
interface Willmore’s problem or the bending elasticity model for small ε. In other
words, it is needed to verify that when phase field function ϕ minimizes W (ϕ), the
zero level set of ϕ is the desired surface Γ minimizing the Willmore energy (1.1) or
the elastic bending energy (1.3), as the interfacial width parameter ε → 0. In [10],
some positive results have been presented regarding the consistency. Some prelim-
inary analyses for this consistency problem have been provided there, based on an
assumption that the phase field function can be asymptotically expanded by

(1.6) ϕ(x) = q(d(x)/ε) + εh + g,

where q ∈ C2(R), h ∈ C2(Ω) are independent of ε, and ‖∇kg‖L∞ = o(ε) for k =
0, . . . , 4.
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Our recent numerical experiments indicate that the above ansatz assumption is
too restrictive in general. The purpose of this paper is to weaken the asymptotic
expansion assumptions in formula (1.6) and derive the detailed expressions of the
terms up to the third order. For example, we prove that the expansion to the second
order term is

(1.7) ϕ(x) = tanh

(
d(x)√

2ε

)
+ 4ε2(H2 −K)p

(
d(x)

ε

)
+ O(ε3),

where p is a given function independent of ε and Γ. Obviously, the second order term
does not satisfy ‖∇kg‖L∞ = o(ε) for k = 0, . . . , 4. Further expansion to the third
order term reveals more details of the structure of the phase field function ϕ so that
the consistency of the phase field model and the sharp interface model can still be
verified.

The asymptotic analysis in this paper provides a firm mathematical foundation
to the phase field models. With this theory, not only do we have the consistency
of a phase field model with sharp interface models, but we can also perform error
estimates of the phase field models, which leads to some very interesting identities.
More importantly, it leads to a better understanding of the phase field formulations,
which may shed light on the phase field modeling of other kinds of problems.

The paper is organized as follows. In the second section, we first make some
assumptions on the asymptotic expansion of the phase field function, and the exact
formulation for the leading, first, second, and third order terms are obtained. Based
on the third order approximation, in the third section we can easily get the equilibrium
state equation and the Willmore flow force, which can be used to prove the consistency
of the phase field model and the sharp interface model. We generalize the problem
to the spontaneous curvature case in section four. The error estimations of the phase
field models are given in the fifth section. An interesting relationship between some
Euler number formulae and the elastic bending energy is also derived in this section.
Some numerical experiments are performed in the sixth section to verify our theory.
Finally we draw the conclusion and give some further considerations.

2. Asymptotic analysis of phase field functions. In this section, we will give
the asymptotic analysis of phase field functions for Willmore’s problem. First, we will
introduce some assumptions for the asymptotic expansions of phase field functions
based on some geometric notation. Then some very useful lemmas will be introduced,
from which we derive the forms of the expansion term by term.

2.1. Geometric notation and phase field model assumptions. Suppose
the surface Γ is smooth and compact. We can find a constant c, such that within
the domain DΓ = {x|dist(x,Γ) < c}, we can have a set of smooth surfaces {Γl}i∈A

such that

DΓ ⊂
⋃
l∈A

Γl, Γa ∩ Γb = ∅ if a �= b.

Therefore, for any point x ∈ DΓ, we can get a ∈ A such that x ∈ Γa. We can define
a normal direction �n(x) by the normal direction of Γa at point x. Further, we denote
the integral curve along the normal direction through x by γx, and we assume that
the constant c is small enough such that every integral curve has a unique intersection
with any Γl. The distance from any point x ∈ DΓ to Γi is defined by the length of
the integral curve γx between Γa and Γi. We call Γa and Γb parallel if the distance
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between any point of Γa and Γb is a constant, and we denote the distance of Γa and
Γb by this constant.

Without proof, we can always find a set of parallel surfaces of Γ. Denote Γ by
Γ0. A sign is the distance between Γ and any parallel surface, positive to the inside
surfaces and negative to the outside surfaces. We use the signed distance to denote
the index of the surface. For example, Γd has a distance d to Γ0.

Suppose x ∈ Γd, and the distance function d(x) is defined by d, the distance
between Γd and Γ, or the signed length from point x along the integral curve γx of
normal direction to Γ0. With this definition, the normal direction

�n(x) = ∇d(x).

For any point x ∈ Γl, the mean curvature H(x) and Gaussian curvature K(x) are de-
fined by the mean curvature and Gaussian curvature of Γl at point x. It is known that

H(x) = −1

2
Δd(x),

and H(x) is a smooth function in domain DΓ.
We also define x|Γ = γx ∩ Γ, the projection of point x on Γ along the integral

curve of ∇d.
As we are mainly concerned with the phase field function theory, some of the

above geometry facts are used without any proof.
Remark 2.1. Note that we do not define the distance function d(x) by the Euclid

distance between x and Γ.
For a phase field function ϕ defined on a computational domain Ω, for any ε > 0,

denote

(2.1) f(ϕ) = Δϕ− 1

ε2
(ϕ2 − 1)ϕ.

The variational problem is to minimize

(2.2) W (ϕ) =
ε

2

∫
Ω

f(ϕ(x))2 dx.

Denote the minimizer of (2.2) by ϕ. Denote Γ0 by {x|ϕ(x) = 0}.
Now we make the following assumptions:
(A1) Γ is a smooth compact surface, and the set of parallel surfaces Γl exists.
(A2) ϕ is a function that can be expanded by

ϕ(x) =

∞∑
n=0

εnqn

(
d(x)

ε
, x|Γ

)
,

where qi ∈ C∞(R̄ × Γ) independent of ε and bounded.
(A3) Φ(ε, t, x) =

∑∞
n=0 ε

nqn(t, x) ∈ C∞(R2 × Γ).
(A4) limε→0 ϕ(x) = 1 if d(x) > 0; limε→0 ϕ(x) = −1 if d(x) < 0; and limε→0

∇nϕ(x) = 0 for x ∈ ∂DΓ and any n ≥ 0.
Remark 2.2. Assumption (A2) is the main point. It describes how ϕ depends on

ε. Assumption (A1) is natural. (A3) ensures boundedness of the partial derivatives
of ϕ on x. (A4) gives the boundary condition for doing integration by parts.

These assumptions weaken the ansatz in [10], which assumes that q0 is only a
function of d/ε, and q1 and q2 depend only on x. Here we assume that q0, q1, and
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q2 depend on both d/ε and x, as in a standard two-scale analysis. Our result in
section 2.3 shows that q2 does depend on both, and not x alone.

For simplicity, we ignore the parameters d(x)
ε and x|Γ when doing so would cause

no confusion, but one should always keep them in mind. This may also apply to the
notation O(εk) and o(εk). For example,

(2.3) qn = qn

(
d(x)

ε
, x|Γ

)
.

We also denote the kth directive

(2.4) q(k)
n = (∂k

1 qn)

(
d(x)

ε
, x|Γ

)
.

Sometimes, we denote the error term functions

(2.5) ei =

∞∑
n=i

εn−iqn.

Using the above notation, we have the following two useful identities:

∇qn =
1

ε
q′n∇d + ∇Γqn =

1

ε
q′n∇d + O(1),(2.6)

Δqn =
1

ε2
q′′n +

1

ε
q′nΔd +

1

ε
∇Γq

′
n · ∇d + ΔΓqn(2.7)

=
1

ε2
q′′n +

1

ε
q′nΔd + ΔΓqn =

1

ε2
q′′n − 2H

ε
q′n + O(1).

2.2. Several lemmas. Now we introduce several useful lemmas.
Lemma 2.3.

∇H · ∇d = 2H2 −K,(2.8)

∇K · ∇d = 2HK,(2.9)

ΔH = ΔΓH + 4H(H2 −K).(2.10)

Proof. Suppose two principal curvatures are k1(x) and k2(x). It is easy to know
that ∇ki · ∇d = k2

i for i = 1, 2. Therefore

∇H · ∇d =
1

2
(k2

1 + k2
2) = 2H2 −K,

∇K · ∇d = k1k
2
2 + k2

1k2 = 2HK,

ΔH = ΔΓH + ∇ · ((∇H · ∇d)∇d)

= ΔΓH + ∇ · ((2H2 −K)∇d)

= ΔΓH + ∇(2H2 −K) · ∇d + (2H2 −K)Δd

= ΔΓH + 4H(2H2 −K) − 2HK − 2H(2H2 −K)

= ΔΓH + 4H(H2 −K).
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Lemma 2.4. For two smooth functions f and g, assume f(d(x)/ε, x|Γ)|∂Ω =
f ′(d(x)/ε, x|Γ)|∂Ω = g(d(x)/ε, x|Γ)|∂Ω = g′(d(x)/ε, x|Γ)|∂Ω = 0. We have∫

Ω

fg′ dx = −
∫

Ω

(f ′ − 2Hfε)g dx,(2.11)

∫
Ω

Hfg′ dx =

∫
Ω

(Kfε−Hf ′)g dx,(2.12)

∫
Ω

Kfg′ dx = −
∫

Ω

Kf ′g dx,(2.13)

∫
Ω

fg′′ dx =

∫
Ω

(f ′′ − 4Hf ′ε + 2Kfε2)g dx,(2.14)

∫
Ω

Hfg′′ dx =

∫
Ω

(Hf ′′ − 2Kf ′ε)g dx,(2.15)

∫
Ω

H2fg′ dx = −
∫

Ω

(
2H(H2 −K)fε + H2f ′)g dx,(2.16)

where H(x) is the mean curvature and K(x) is the Gaussian curvature.

Remark 2.5. Here we hide the parameters d(x)/ε and x|Γ for f , g, and their
derivatives.

Proof. Because the proofs are similar, here we give the proof for only the first
three equations.

Since ∇g = 1
ε g

′∇d + ∇Γg and ∇Γg · ∇d = 0, we know that

g′ = ε(∇g · ∇d−∇Γg · ∇d) = ε∇g · ∇d.

Then ∫
Ω

fg′ dx = ε

∫
Ω

f∇g · ∇d dx

= −ε

∫
Ω

g∇f · ∇d + gfΔd dx

= −
∫

Ω

(f ′ − 2Hfε)g dx.

From Lemma 2.3, we have∫
Ω

Hfg′ dx = ε

∫
Ω

Hf∇g · ∇d dx

= −ε

∫
Ω

∇(Hf) · ∇dg − 2H(Hfg) dx

= −
∫

Ω

(∇H · ∇d)fgε + Hf ′g − 2H2fgε dx

= −
∫

Ω

(2H2 −K)fgε + Hf ′g − 2H2fgε dx

=

∫
Ω

(Kfε−Hf ′)g dx,



ASYMPTOTIC ANALYSIS 1373∫
Ω

Kfg′ dx = ε

∫
Ω

Kf∇g · ∇d dx

= −ε

∫
Ω

∇(Kf) · ∇dg − 2H(Kfg) dx

= −
∫

Ω

(∇K · ∇d)fgε + Kf ′g − 2HKfgε dx

= −
∫

Ω

Kf ′g dx.

Lemma 2.6. For two smooth functions f and g, assume f(d(x)/ε, x|Γ)|∂Ω =
g(d(x)/ε, x|Γ)|∂Ω = 0. We have

(2.17)

∫
Ω

fΔΓg dx =

∫
Ω

ΔΓfg dx.

Proof. First we have

∇g =
1

ε
g′∇d + ∇Γg,

Δg =
1

ε2
g′′ − 2H

ε
g′ + ΔΓg.

From Lemmas 2.3 and 2.4, we have∫
Ω

fΔΓg dx =

∫
Ω

f

(
Δg − 1

ε2
g′′ +

2H

ε
g′
)

dx

=

∫
Ω

Δfg − 1

ε2
(f ′′ − 4Hf ′ε + 2Kfε2)g +

2

ε
(Kfε−Hf ′)g dx

=

∫
Ω

(
Δf − 1

ε2
f ′′ +

2H

ε
f ′
)
g

=

∫
Ω

ΔΓfg dx.

Lemma 2.7. Suppose f ∈ C0(Ω) and p ∈ L1(R) satisfy the bound

(2.18) max
|t|>s

|p(t)t| ≤ C

sm
, m > 1.

Then

(2.19) lim
ε−→0

1

ε

∫
Ω

p(d(x)/ε)f(x) dx =

∫ ∞

−∞
p(t) dt

∫
Γ

f(s)dS.

Please refer to [10] for the proof of Lemma 2.7.
Lemma 2.8.

1

ε

∫
Ω

p(d(x)/ε)f(x|Γ) dx

=

∫ ∞

−∞
p(t) dt

∫
Γ

f(s)dS + ε

∫ ∞

−∞
p(t)t dt

∫
Γ

2f(s)H(s)dS

+ ε2
∫ ∞

−∞
p(t)t2 dt

∫
Γ

f(s)K(s)dS + o(ε3).(2.20)
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Proof. The volume differential dx is a product of area differential dΓs, and ds is
the length differential of the integral curve along ∇d. As dΓs is a function of s, it is
known that (dΓs)

′ = −2HdΓs. (One can get this using the Jacobian notion. Please
refer to [10] for the proof of Lemma 2.7.) Then

(dΓs)
′′ = (−2HdΓs)

′ = −2(∇H · ∇d)dΓs − 2H(−2HdΓs) = 2KdΓs.

It follows that

dΓs = (1 − 2Hs + Ks2 + O(s3))dΓ.

Now

1

ε

∫
Ω

p(d(x)/ε)f(x|Γ) dx =
1

ε

∫
Ω

p(s/ε)f(x|Γ) dΓsds

=
1

ε

∫
Ω

p(s/ε)f(x|Γ) (1 − 2Hs + Ks2 + O(s3))dΓds

=

∫ ∞

−∞
p(t) dt

∫
Γ

f(s)dΓ + ε

∫ ∞

−∞
p(t)t dt

∫
Γ

2f(s)H(s)dΓ

+ ε2
∫ ∞

−∞
p(t)t2 dt

∫
Γ

f(s)K(s)dΓ + o(ε3).

Corresponding to our notation convention, we can replace dΓ by dS, and this gives
the lemma.

Furthermore, we can prove the following lemma.

Lemma 2.9. Suppose f ∈ C2(Ω) and p ∈ L1(R) satisfy the bound

(2.21) max
|t|>s

|p(t)t3| ≤ C

sm
, m > 1.

Then

1

ε

∫
Ω

p(d(x)/ε)f(x) dx

=

∫ ∞

−∞
p(t) dt

∫
Γ

f(x)dS + ε

∫ ∞

−∞
p(t)t dt

∫
Γ

−2fH + ∇f · ∇d dS

+ ε2
∫ ∞

−∞
p(t)t2 dt

∫
Γ

fK − 2(∇f · ∇d)H +
1

2
∇(∇f · ∇d) · ∇d dS

+ O(ε3).(2.22)

Proof. We can expand the function f along the integration curve of ∇d by

f(x) = f(x|Γ) + d(∇f · ∇d)(x|Γ) +
1

2
d2(∇(∇f · ∇d) · ∇d)(x|Γ) + O(d3).
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Applying Lemmas 2.7 and 2.8, we get

1

ε

∫
Ω

p(d(x)/ε)f(x) dx

=
1

ε

∫
Ω

p(d(x)/ε)f(x|Γ) dx +
1

ε

∫
Ω

p(d(x)/ε)d(x)(∇f · ∇d)(x|Γ) dx

+
1

ε

∫
Ω

p(d(x)/ε)
1

2
d2(x)(∇(∇f · ∇d) · ∇d)(x|Γ) dx + O(ε3)

=

∫ ∞

−∞
p(t) dt

∫
Γ

f(x)dS + ε

∫ ∞

−∞
p(t)t dt

∫
Γ

−2fHdS + ε2
∫ ∞

−∞
p(t)t2 dt

∫
Γ

fKdS

+ ε

∫ ∞

−∞
p(t)t dt

∫
Γ

(∇f · ∇d)dS + ε2
∫ ∞

−∞
p(t)t2 dt

∫
Γ

−2(∇f · ∇d)HdS

+ ε2
∫ ∞

−∞
p(t)t2 dt

∫
Γ

1

2
(∇(∇f · ∇d) · ∇d)dS + O(ε3)

=

∫ ∞

−∞
p(t) dt

∫
Γ

f(x)dS + ε

∫ ∞

−∞
p(t)t dt

∫
Γ

−2fH + ∇f · ∇d dS

+ ε2
∫ ∞

−∞
p(t)t2 dt

∫
Γ

fK − 2(∇f · ∇d)H +
1

2
∇(∇f · ∇d) · ∇d dS + O(ε3).

2.3. Asymptotic approximation. With assumptions (A1)–(A4), now we can
get the exact form of qi term by term.

Theorem 2.10. With assumptions (A1)–(A4), we have

q0(t) = tanh

(
t√
2

)
.

Remark 2.11. Because q0 ∈ C∞(R̄ × Γ), it actually means q0(t, x) = tanh( t√
2
),

a function depending only on the first parameter.
Proof. As ϕ = q0 + εe1, we have

f(ϕ) = Δϕ− 1

ε2
(ϕ2 − 1)ϕ

=
1

ε2
(q0 + εe1)

′′ +
1

ε
(q0 + εe1)

′Δd− 1

ε2
(ϕ2 − 1)ϕ + O(1)

=
1

ε2
(q′′0 − (q2

0 − 1)q0) + O(ε−1).

To minimize W (ϕ) = ε
2

∫
Ω
f2 dx, we have that q0 minimizes∫

Ω

(q′′0 − (q2
0 − 1)q0)

2 dx,

which results in

q′′0 − (q2
0 − 1)q0 = 0.
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From assumption (A4), q0(∞) = 1, q0(−∞) = −1. It follows that

q0(t) = tanh

(
t√
2

)
.

With Theorem 2.10, we have

f(q0) = Δq0 −
1

ε2
(q2

0 − 1)q0

=
1

ε
q′0Δd +

1

ε2
q′′0 − 1

ε2
(q2

0 − 1)q0 = −2H

ε
q′0,(2.23)

and we can expand f by

f(ϕ) = Δϕ− 1

ε2
(ϕ2 − 1)ϕ

= Δ(q0 + εe1) −
1

ε2
(q2

0 − 1)q0 −
1

ε
(3q2

0 − 1)e1 − 3q0e
2
1 − εe3

1

= f(q0) + εΔe1 −
1

ε
(3q2

0 − 1)e1 − 3q0e
2
1 − εe3

1

= −2H

ε
q′0 + εΔe1 −

1

ε
(3q2

0 − 1)e1 − 3q0e
2
1 − εe3

1.(2.24)

Theorem 2.12. With assumptions (A1)–(A4), we have

q1 = 0.

Proof. From assumption (A3), e1 = O(ε). From (2.24), we have

f(ϕ) = −2H

ε
q′0 + εΔe1 −

1

ε
(3q2

0 − 1)e1 + O(1)

= −2H

ε
q′0 + εΔq1 −

1

ε
(3q2

0 − 1)q1 + O(1)

= −2H

ε
q′0 + ε

(
−2H

1

ε
q′1 +

1

ε2
q′′1

)
− 1

ε
(3q2

0 − 1)q1 + O(1)

= −2H

ε
q′0 +

1

ε
q′′1 − 1

ε
(3q2

0 − 1)q1 + O(1).

To minimize W (ϕ) = ε
2

∫
Ω
f2 dx, we have that q1 minimizes

W (ϕ) =
ε

2

∫
Ω

(
−2H

ε
q′0 +

1

ε
q′′1 − 1

ε
(3q2

0 − 1)q1 + O(1)

)2

dx

=
ε

2

∫
Ω

(
−2H

ε
q′0

)2

+

(
1

ε
q′′1

1

ε
(3q2

0 − 1)q1

)2

dx

− 1

ε

∫
Ω

Hq′0(q
′′
1 − (3q2

0 − 1)q1) dx + O(ε).
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From Lemma 2.4 ∫
Ω

Hq′0q
′′
1 dx =

∫
Ω

Hq′′′0 q1 dx + O(ε).

Because q′′0 = (q2
0 − 1)q0, q

′′′
0 = (3q2

0 − 1)q′0, we have

W (ϕ) =
1

2ε

∫
Ω

4H2(q′0)
2 + (q′′1 − (3q2

0 − 1)q1)
2 dx + O(ε).

Therefore to minimize W (ϕ), we get

q′′1 − (3q2
0 − 1)q1 = 0.

Since q0(0) = 0, ϕ(0) = 0, assumption (A4) gives q1(0) = 0, and since q0(∞) =
ϕ(∞) = 1, we have q1(∞) = 0. Similarly, q1(−∞) = 0. Then the only solution is
that q1 = 0.

Theorem 2.13. With assumptions (A1)–(A4), we have

q2 = 4(H2 −K)p2, i.e., q2

(
d(x)

ε
, x|Γ

)
= 4(H2(x|Γ) −K(x|Γ))p

(
d(x)

ε

)
,

where x|Γ is the projection of point x on Γ along the integral curve of ∇d, and p2 is
an independent function satisfying the one-dimensional ODE

(2.25) p′′2(t) − (3q2
0(t) − 1)p2(t) =

1

2
q′0(t)t

with p2(±∞) = p2(0) = 0.
Proof. Since q1 = 0, e1 = εe2. From (2.24), we have

f(ϕ) = −2H

ε
q′0 + ε2Δe2 − (3q2

0 − 1)e2 + O(ε2)

= −2H

ε
q′0 − 2Hεe′2 + e′′2 − (3q2

0 − 1)e2 + O(ε2).(2.26)

Now, W (q0) is already fixed due to Theorem 2.10, and

W (ϕ) −W (q0) =
ε

2

∫
Ω

(f(ϕ) + f(q0))(f(ϕ) − f(q0)) dx

=
ε

2

∫
Ω

(2f(q0) − 2Hεe′2 + e′′2 − (3q2
0 − 1)e2 + O(ε2))

(−2Hεe′2 + e′′2 − (3q2
0 − 1)e2 + O(ε2)) dx

=
ε

2

∫
Ω

2f(q0)(−2Hεe′2 + e′′2 − (3q2
0 − 1)e2 + O(ε2))

+ (−2Hεe′2 + e′′2 − (3q2
0 − 1)e2 + O(ε2))2 dx

= R1 + R2.
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First from Lemma 2.4, we have

R1 =
ε

2

∫
Ω

2f(q0)(−2Hεe′2 + e′′2 − (3q2
0 − 1)e2 + O(ε2)) dx

= −
∫

Ω

2Hq′0(−2Hεe′2 + e′′2 − (3q2
0 − 1)e2 + O(ε2)) dx

=

∫
Ω

4H2εq′0e
′
2 dx−

∫
Ω

2Hq′0(e
′′
2 − (3q2

0 − 1)e2) + O(ε2) dx

=

∫
Ω

−4H2εq′′0 e2 + O(ε2) dx−
∫

Ω

2(Hq′′′0 − 2Kq′′0 ε)e2

− 2Hq′0(3q
2
0 − 1)e2 + O(ε2) dx

=

∫
Ω

−4(H2 −K)εq′′0 e2 + O(ε2) dx

and

R2 =
ε

2

∫
Ω

(−2Hεe′2 + e′′2 − (3q2
0 − 1)e2 + O(ε2))2 dx

=
ε

2

∫
Ω

(e′′2 − (3q2
0 − 1)e2)

2 + O(ε) dx

=
ε

2

∫
Ω

(q′′2 − (3q2
0 − 1)q2)

2 + O(ε) dx.

Altogether, we have

W (ϕ) −W (q0) =
ε

2

∫
Ω

−8(H2 −K)q′′0 q2 + (q′′2 − (3q2
0 − 1)q2)

2 dx + O(ε2).

Also, the curvature functions H(x) and K(x) are smooth functions around Γ, and
from Lemma 2.9 we have∫

Ω

−8(H2 −K)q′′0 q2 dx =

∫
Ω

−8(H2 −K)|Γq′′0 q2 dx + O(ε2).

Now, taking q2 = 4(H2 − K)p2, that is, q2(d(x)/ε, x|Γ) = 4(H2(x|Γ) − K(x|Γ))
p2(d(x)/ε, x|Γ), we have q′′2 = 4(H2 −K)p′′2 , and

W (ϕ) −W (q0)

= ε

∫
Ω

16(H2 −K)|2Γ
(
−q′′0p2 +

1

2
(p′′2 − (3q2

0 − 1)q2)
2

)
+ O(ε) dx

= ε

∫
Γ

16(H2 −K)2
∫
γs

−q′′0p2 +
1

2
(p′′2 − (3q2

0 − 1)q2)
2 ds dS + O(ε3).(2.27)

To minimize W (ϕ), p2 is independent of ε and x|Γ, minimizing∫
γs

−q′′0p2 +
1

2
(p′′2 − (3q2

0 − 1)p2)
2 ds.
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Fig. 2.1. The second order term function p2(x).

Changing the parameter d/ε to t, we have p2 minimizing

E(p) =

∫ ∞

−∞
−q0(q

2
0 − 1)p2 +

1

2
(p′′2 − (3q2

0 − 1)p2)
2 dt.

We denote

(2.28) s2 = p′′2 − (3q2
0 − 1)p2.

Taking a variation of E(p), we have

(2.29)
δE

δp2
= −(q2

0 − 1)q0 + s′′2 − (3q2
0 − 1)s2 = 0.

From assumption (A4) and q0(t) = tanh(t/
√

2) and q1 = 0, we know that p2(±∞) =
p′′2(±∞) = 0. Then s2(±∞) = 0. Solving (2.29), we get

s2 =
1

2
q′0t.

Substituting it into (2.28) gives the result.
Remark 2.14. Function p2 can be numerically calculated by solving (2.25). A

plot of p2 is given in Figure 2.1. Theorem 2.13 states that ϕ depends not only on the
distance function d(x) but also on the local curvature properties.

For a sphere we always have H2(x) −K(x) = 0 for every point x ∈ Ω. Following
Theorem 2.13 we directly have the following corollary.

Corollary 2.15. If surface Γ is a sphere, we have q2 = 0.
Remark 2.16. Corollary 2.15 states that the phase field function is at least third

order convergent in ε to the tanh profile for a sphere. Actually, we can easily verify
that the phase field function is an exactly tanh function for a sphere.

Theorem 2.17. With assumptions (A1)–(A4), for given x|Γ, we have q3(t, x|Γ)
minimizing ∫ ∞

−∞
−Qq3 +

1

2
(q′′3 − (3q2

0 − 1)q3)
2 dt,
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where Q(t, x|Γ) = 8H(H2 −K)(x|Γ)[2q′0(t) + 3q′′0 (t)t] + 2ΔΓH(x|Γ)q′0(t).

Proof. For computational purpose, we denote G = 4(H2 − K)|Γ. Then e2 =
q2 + εe3 = Gp2 + εe3, and

Δq2 = ∇ · (∇q2) = ∇ ·
(
∇ΓGp2 + G

p′2
ε
∇d

)

= G
p′′2
ε2

− 2HG
p′2
ε

+ ΔΓGp2.

From (2.24) and e1 = εe2, we have

f(ϕ) = −2H

ε
q′0 + ε2Δe2 − (3q2

0 − 1)e2 − 3ε2q0e
2
2 + O(ε4)

= −2H

ε
q′0 + Gp′′2 − 2HGp′2ε + ΔΓGp2ε

2 + εe′′3 − 2Hε2e′3 + ΔΓe3ε
3

− (3q2
0 − 1)Gp2 − ε(3q2

0 − 1)e3 − 3G2q0p
2
2ε

2 − 6Gq0pe3ε
3 + O(ε4)

= −2H

ε
q′0 + (Gp′′2 − (3q2

0 − 1)Gp2) + ε(−2HGp′2 + e′′3 − (3q2
0 − 1)e3)

+ ε2(ΔΓGp2 − 2He′3 − 3G2q0p
2
2) + ε3(ΔΓe3 − 6Gq0p2e3) + O(ε4)

= f(q0) + a + εb + ε2c + ε3d + O(ε4),

where

a = Gp′′2 − (3q2
0 − 1)Gp2,(2.30)

b = −2HGp′2 + e′′3 − (3q2
0 − 1)e3,(2.31)

c = ΔΓGp2 − 2He′3 − 3G2q0p
2
2,(2.32)

d = ΔΓe3 − 6Gq0p2e3.(2.33)

Then

W (ϕ) −W (q0)

=
ε

2

∫
Ω

(f(ϕ) + f(q0))(f(ϕ) − f(q0)) dx

=
ε

2

∫
Ω

2f(q0)(a + εb + ε2c + ε3d + O(ε4)) + (a + εb + ε2c + ε3d + O(ε4))2 dx

=
ε

2

∫
Ω

2f(q0)a + [2f(q0)bε + a2] + ε[2f(q0)cε + 2ab]

+ ε2[2f(q0)dε + 2ac + b2] + O(ε3) dx.
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Below we focus on the terms involving q3. We use ellipses to denote all the terms not
involving q3. First,

∫
Ω

2f(q0)a dx is independent of q3. Then from Lemma 2.4∫
Ω

2f(q0)bε dx =

∫
Ω

2f(q0)(−2HGp′2)ε + 2f(q0)(e
′′
3 − (3q2

0 − 1)e3)ε dx

=

∫
Ω

· · · − 4Hq′0(e
′′
3 − (3q2

0 − 1)e3) dx

=

∫
Ω

· · · − 4[Hq′′′0 − 2Kq′′0 ε−Hq′0(3q
2
0 − 1)]e3 dx

=

∫
Ω

· · · + 8Kq′′0 e3ε dx.

∫
Ω
a2 dx is also independent of q3.

ε

∫
Ω

2f(q0)cε dx = ε

∫
Ω

−4Hq′0(ΔΓGp2 − 2He′3 − 3G2q0p
2
2) dx

= ε

∫
Ω

· · · + 8(−2H(H2 −K)q′0ε−H2q′′0 )e3 + · · · dx

=

∫
Ω

· · · − 16H(H2 −K)q′0e3ε
2 − 8H2q′′0 e3ε dx.

ε

∫
Ω

2ab dx = ε

∫
Ω

· · · + 2a(e′′3 − (3q2
0 − 1)e3) dx

=

∫
Ω

· · · + 2(a′′ − 4Ha′ε + 2Kaε2)e3ε− 2(3q2
0 − 1)ae3ε dx

=

∫
Ω

· · · + 2a′′e3ε− 8Ha′e3ε
2 − 2(3q2

0 − 1)ae3ε + O(ε3) dx.

ε2
∫

Ω

ε2f(q0)d dx =

∫
Ω

−4Hq′0ΔΓe3ε
2 + 24HGq′0q0p2e3ε

2 dx.

ε2
∫

Ω

2ac dx = ε2
∫

Ω

2a(ΔΓGp2 − 2He′3 − 3G2q0p
2
2) dx

= ε2
∫

Ω

· · · − 4[Kaε−Ha′]e3 dx

=

∫
Ω

· · · + O(ε3) + 4Ha′e3ε
2 dx.

ε2
∫

Ω

b2 dx = ε2
∫

Ω

· · · − 4HGp′2(e
′′
3 − (3q2

0 − 1)e3) + (e′′3 − (3q2
0 − 1)e3)

2 dx

=

∫
Ω

· · · − 4HG(p′′′2 − (3q2
0 − 1)p′2)e3ε

2 + (e′′3 − (3q2
0 − 1)e3)

2ε2

+ O(ε3) dx.
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Combining all the items involving q3 above, we need to minimize

E(e3) =

∫
Ω

8Kq′′0 e3ε− 16H(H2 −K)q′0e3ε
2 − 8H2q′′0 e3ε + 2a′′e3ε− 8Ha′e3ε

2

− 2(3q2
0 − 1)ae3ε− 4Hq′0ΔΓe3ε

2 + 24HGq′0q0p2e3ε
2 + 4Ha′e3ε

2

− 4HG(p′′′2 − (3q2
0 − 1)p′2)e3ε

2 + (e′′3 − (3q2
0 − 1)e3)

2ε2 + O(ε3) dx

=

∫
Ω

[−8(H2 −K)q′′0 + 2a′′ − 2(3q2
0 − 1)a]e3ε

+ [−16H(H2 −K)q′0e3 − 4Ha′e3 − 4Hq′0ΔΓe3 + 24HGq′0q0p2e3

− 4HG(p′′′2 − (3q2
0 − 1)p′2)e3]ε

2 + (e′′3 − (3q2
0 − 1)e3)

2ε2 + O(ε3) dx.

Now we can simplify above E(e3). From (2.28), we have a = Gs2 = Gq′0t/2, a′′ −
(3q2

0−1)a = G(q2
0−1)q0 = Gq′′0 , s′2 = p′′′2 −(3q2

0−1)p′2−6q0q
′
0p2, and from Lemmas 2.9

and 2.6,∫
Ω

−4Hq′0ΔΓe3 dx =

∫
Ω

−4HΓq
′
0ΔΓe3 dx + O(ε) =

∫
Ω

−4ΔΓHq′0e3 dx + O(ε).

From Lemma 2.9, since ∇(H2 −K) · ∇d = 4H(H2 −K),∫
Ω

−8(H2 −K)q′′0 e3ε dx =

∫
Ω

−8[(H2 −K)|Γ + 4H(H2 −K)|Γd]q′′0 e3ε + O(ε3) dx

=

∫
Ω

−2[G + 4HΓGd]q′′0 e3ε + O(ε3) dx.

Altogether we have

E(e3) = ε2
∫

Ω

[
−16H(H2 −K)q′0 − 8HGs′2 − 4ΔΓHq′0 − 8HΓG

d

ε
q′′0

]
e3

+ (e′′3 − (3q2
0 − 1)e3)

2 + O(ε) dx

= ε2
∫

Ω

4H(H2 −K)(x|Γ)

[
−4q′0 − 8s′2 − 8

d

ε
q′′0

]
q3 − 4ΔΓH(x|Γ)q′0q3

+ (q′′3 − (3q2
0 − 1)q3)

2 + O(ε) dx.

Since s2 = q′0t/2, denoting Q = 8H(H2 −K)(x|Γ)[2q′0(t)+3q′′0 (t)t]+2ΔΓH(x|Γ)q′0(t),
we have q3 minimizing

E(e3) = 2ε2
∫

Ω

−Qq3 +
1

2
(q′′3 − (3q2

0 − 1)q3)
2 dx.

From Lemma 2.7,

E(e3) = 2ε3
∫

Γ

∫ ∞

−∞
−Qq3 +

1

2
(q′′3 − (3q2

0 − 1)q3)
2 dt dS + o(ε3).

Therefore, for any given x|Γ, q3(t, x|Γ) minimizes∫ ∞

−∞
−Qq3 +

1

2
(q′′3 − (3q2

0 − 1)q3)
2 dt.
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A direct corollary from Theorem 2.17 is that the equilibrium surface Γ must
satisfy

ΔΓH + 2H(H2 −K) = 0.

Because this result is very important, we discuss it in section 3.

3. Equilibrium state and Willmore force of surface Γ. Based on Theo-
rems 2.10, 2.12, 2.13, and 2.17, we have the following theorem about the equilibrium
surface Γ in the phase field model.

Theorem 3.1. With assumptions (A1)–(A4), if ϕ minimizes energy W (ϕ) de-
fined in (1.4), Γ, the zero level set of ϕ asymptotically satisfies that

(3.1) ΔΓH + 2H(H2 −K) = 0.

Proof. Since ϕ minimizes energy W (ϕ), we have that

ϕ = q0 + ε2q2 + ε3q3 + O(ε4),

where q3 minimizes

(3.2)

∫ ∞

−∞
−Qq3 +

1

2
(q′′3 − (3q2

0 − 1)q3)
2 dt,

where Q = 8H(H2 −K)[2q′0 + 3q′′0 t] + 2ΔΓHq′0.
Now, denote s3 = q′′3 − (3q2

0 − 1)q3. Taking the variation of (3.2), we have that

(3.3) s′′3 − (3q2
0 − 1)s3 = Q.

From assumption (A4), we have that q3(±∞) = q′3(±∞) = 0. Then s3(±∞) = s′3
(±∞) = 0. Now noticing that

q′′0 = q0(q
2
0 − 1), (q′0)

′′ − (3q2
0 − 1)q′0 = 0 ,

from (3.3) we have that∫ ∞

−∞
Qq′0 dt =

∫ ∞

−∞
[s′′3 − (3q2

0 − 1)s3]q
′
0 dt

=

∫ ∞

−∞
s3[(q

′
0)

′′ − (3q2
0 − 1)q′0] dt = 0.(3.4)

On the other hand,∫ ∞

−∞
Qq′0 dt =

∫ ∞

−∞
[8H(H2 −K)[2q′0 + 3q′′0 t] + 2ΔΓHq′0]q

′
0 dt

= 8H(H2 −K)

∫ ∞

−∞
[2(q′0)

2 + 3q′′0 q
′
0t] dt + 2ΔΓH

∫ ∞

−∞
(q′0)

2 dt

= (ΔΓH + 2H(H2 −K))

∫ ∞

−∞
2(q′0)

2 dt.

Comparing this with (3.4), we have

ΔΓH + 2H(H2 −K) = 0.
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Equation (3.1) is exactly the Willmore identity for Willmore’s problem. Theo-
rem 3.1 verifies that the equilibrium state of the phase field model is consistent with
that of the sharp interface model. Equation (3.1) is a necessary condition for the ex-
istence of function q3. If surface Γ does not satisfy (3.1), then to minimize the phase
field energy W (ϕ), we can still choose optimal q0, q1, and q2 but not q3. This is the
main reason why the gradient flow in [7, 8] works, which will be explained below.

In our phase field model in finding the equilibrium shape of Γ, we first start from
an initial phase field function ϕ0, whose zero level set is Γ0. Then we search a lower
energy state along the gradient flow of W (ϕ). Denote the gradient by

(3.5) g(ϕ) =
∂W (ϕ)

∂ϕ
= εΔf(ϕ) − 1

ε
(3ϕ2 − 1)f(ϕ),

where f is defined in (2.1). The gradient flow is as flowing

(3.6) ϕt = −g(ϕ)

with initial condition ϕ|t=0 = ϕ0. In [7, 8] we developed several numerical schemes
for the gradient flow (3.6), including a fully implicit scheme solving by Newton’s
method and some semi-implicit or explicit schemes. With the asymptotic analysis in
section 2.3, we can now explain why the surface Γ moves along the gradient flow by
using a kind of explicit scheme.

Suppose at step n that we have phase field ϕn with zero level set Γn. With the
explicit surface Γn, for the next step along the gradient we get the fastest descent of
the energy. With the asymptotic expansion, obviously we can select

ϕn+1(x) = tanh

(
d(x,Γn)√

2ε

)
+ 4ε2(H2(x|Γn)−K(x|Γn))p

(
d(x,Γn)

ε

)
+ ε3qn+1

3 + · · · .

Now, the gradient flow of ϕ is actually the gradient flow of q3 while q0, q1, and q2 are
fixed to be optimal. Based on Theorem 2.17, the gradient flow of q3 is

q3,t = −Q + s′′3 − (3q2
0 − 1)s3.

Theorem 3.1 states that if Γn is not an equilibrium shape along the gradient flow of q3,
we cannot get an optimal q3. Actually along the gradient flow of q3, we get q3(Γ

n) �= 0,
i.e., Γn is not the zero level set anymore! With a small time step, along the gradient
flow of q3, Γn moves to be Γn+1 with a decreasing energy W (ϕn+1) < W (ϕn). This
process will stop until Γ reaches an equilibrium state.

We can also describe how the zero level set Γ moves along the gradient flow. With
the movement of level set Γd, we have ϕ(x(t), t) = d. Then ϕt +∇ϕ · ẋ(t) = 0. Denote
the induced elastic force in the phase field model by ξε. Based on the relation between
momentum and energy, we have

ξε · ẋ = −Wt = −∂W (ϕ)

∂ϕ
ϕt = −∂W (ϕ)

∂ϕ
(−∇ϕ · ẋ),

which results in the formula for the elastic force in the phase field model:

(3.7) ξε =
∂W (ϕ)

∂ϕ
∇ϕ.

One can refer to [12, 10] for more discussions about it.
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On the other hand, it is known [26, 17] that the Willmore flow force, the gradient
of the sharp interface Willmore energy (1.1), is given by

(3.8) (ΔΓH + 2H(H2 −K))�n(x),

where �n(x) is the normal vector on Γ. A basic question of phase field models minimiz-
ing (1.4) is to verify the consistency of these two forces as ε → 0. In another words,
we need to verify

(3.9) lim
ε→0

ξε ∼ c(ΔΓH + 2H(H2 −K))�n(x),

where a constant c may apply. Unlike the sharp interface model, in the phase field
model the elastic force exists everywhere but concentrates around the transition layer.
Therefore we can only do a weak form of (3.9). Some preliminary analyses of formula
(3.9) are given in [12, 10].

Now in the case where Γ is not an equilibrium shape, although there is no optimal
selection of q3, we can still have the optimal selection of q0, q1, and q2. Further, we
have the following theorem for the weak form of (3.9).

Theorem 3.2. With assumptions (A1)–(A4), for zero level set Γ if ϕ minimizes
W (ϕ) to the second order term, we have

∫
Ω

−ξε · v dx =
4
√

2

3

∫
Γ

(ΔΓH + 2H(H2 −K))�n · v dx + O(ε)

for any continuous vector field v.
Remark 3.3. A major improvement over the method in [12, 10] is that we do not

make any special assumptions on v, such as a divergence-free condition.
In general, the normal direction is defined as pointing towards the outside of Γ.

But the normal direction �n(x) defined by ∇d is towards the inside of Γ because we set
the distance function d positive inside and negative outside. This difference results in
the negative sign before ξε.

Proof. In this proof, we need to expand the phase field function with the third
order term, i.e.,

ϕ(x) = q0

(
d(x)

ε
, x|Γ

)
+ ε2q2

(
d(x)

ε
, x|Γ

)
+ ε3q3

(
d(x)

ε
, x|Γ

)
+ O(ε3).

From (2.26) we have that

(3.10) f(ϕ) = −2H

ε
q′0 + (q′′2 − (3q2

0 − 1)q2) + ε[−2Hq′2 + q′′3 − (3q2
0 − 1)q3] + O(ε2).

Denote that

a = q′′2 − (3q2
0 − 1)q2;(3.11)

b = q′′3 − (3q2
0 − 1)q3.(3.12)

We have

f = −2H

ε
q′0 + a + ε[−2Hq′2 + b] + O(ε2).
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To calculate Δf , first we obtain

Δ(Hq′0) = ΔHq′0 + 2(∇H · ∇d)
1

ε
q′′0 + H(−2H)

1

ε
q′′0 + H

1

ε2
q′′′0

= ΔHq′0 + 2(H2 −K)
1

ε
q′′0 + H

1

ε2
q′′′0

and

Δ(Hq′2) = H
1

ε2
q′′′2 + O

(
1

ε

)
.

Second, from (2.7) we have that

Δa =
1

ε2
a′′ − 2H

ε
a′ + O(1),

Δb =
1

ε2
b′′ + O

(
1

ε

)
.

Altogether we have that

εΔf = −2H

ε2
q′′′0 − 4

ε
(H2 −K)q′′0 − 2ΔHq′0 +

1

ε
a′′ − 2Ha′ − 2Hq′′′2 + b′′ + O(ε).

And because

1

ε
(3ϕ2 − 1)f =

1

ε
(3q2

0 − 1 + 6q0q2ε
2 + O(ε3))f

= −2H

ε2
(3q2

0 − 1)q′0 +
1

ε
(3q2

0 − 1)a

+ (3q2
0 − 1)[−2Hq′2 + b] − 12Hq0q

′
0q2 + O(ε),

we have

g(ϕ) = εΔf(ϕ) − 1

ε
(3ϕ2 − 1)f(ϕ)

= −4

ε
(H2 −K)q′′0 − 2ΔHq′0 +

1

ε
[a′′ − (3q2

0 − 1)a] + [b′′ − (3q2
0 − 1)b]

− 2Ha′ − 2Hq′′′2 + 2Hq′2(3q
2
0 − 1) + 12Hq0q

′
0q2 + O(ε)

= −4

ε
(H2 −K)q′′0 − 2ΔHq′0 +

1

ε
[a′′ − (3q2

0 − 1)a]

+ [b′′ − (3q2
0 − 1)b] − 4Ha′ + O(ε).

From Theorem 2.13, we have

a′′ − (3q2
0 − 1)a = 4(H2 −K)|Γ(q2

0 − 1)q0.

Then

g(ϕ) = −4

ε
(H2 −K)q′′0 − 2ΔHq′0 +

4

ε
(H2 −K)|Γq′′0

+ [b′′ − (3q2
0 − 1)b] − 4Ha′ + O(ε),
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because

−4

ε
(H2 −K)q′′0 +

4

ε
(H2 −K)|Γq′′0 = −4

ε
(∇(H2 −K) · ∇d)dq′′0 + O(ε)

= −16H(H2 −K)(q′′0 t) + O(ε)

and

4Ha′ = 16H(H2 −K)(q′0t/2)′ = 8H(H2 −K)(q′′0 t + q′0);

also from Lemma 2.3, ΔH = ΔΓH + 4H(H2 −K); altogether we have that

g(ϕ) = −16H(H2 −K)(q′′0 t) − 2ΔΓHq′0 − 8H(H2 −K)q′0
− 8H(H2 −K)(q′′0 t + q′0) + [b′′ − (3q2

0 − 1)b] + O(ε)

= −Q + [b′′ − (3q2
0 − 1)b] + O(ε),(3.13)

where Q = 8H(H2 −K)[2q′0 + 3q′′0 t] + 2ΔΓHq′0.
For any continuous vector field v(x), from Lemma 2.8,

∫∞
−∞[b′′−(3q2

0 −1)b]q′0 dt =∫∞
−∞[q′′′0 − (3q2

0 − 1)q′0]b dt = 0, and
∫∞
−∞ q′′0 q

′
0tdt = − 1

2

∫∞
−∞(q′0)

2 dt, we have∫
Ω

−ξε · v dx =

∫
Ω

−g(ϕ)∇ϕ · v dx

=

∫
Ω

(Q− [b′′ − (3q2
0 − 1)b] + O(ε))

(
1

ε
q′0∇d + O(1)

)
· v dx

=

∫
Ω

1

ε
(Q− [b′′ − (3q2

0 − 1)b])q′0∇d · v dx + O(ε)

=

∫ ∞

−∞
[2q′0 + 3q′′0 t]q

′
0 dt

∫
Γ

8H(H2 −K)�n · v dx

+

∫ ∞

−∞
(q′0)

2 dt

∫
Γ

2ΔΓH�n · v dx

−
∫ ∞

−∞
[b′′ − (3q2

0 − 1)b]q′0 dt

∫
Γ

�n · v dx + O(ε)

=

∫ ∞

−∞
2(q′0)

2 dt

∫
Γ

(ΔΓH + 2H(H2 −K))�n · v dx + O(ε)

=
4
√

2

3

∫
Γ

(ΔΓH + 2H(H2 −K))�n · v dx + O(ε).

If Γ is the equilibrium state, from Theorem 2.17 we have

b′′ − (3q2
0 − 1)b = Q.

Then from (3.13) we have

g(ϕ) = O(ε).

This result is trivial, because in the equilibrium state, eventually we have g(ϕ) = 0.
We can even reverse the above analysis to get another proof of Theorems 2.10, 2.12,
2.13, and 2.17.
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4. Effect of spontaneous curvature. With the presence of spontaneous cur-
vature c, we denote

(4.1) fc(ϕ) = Δϕ− 1

ε2
(ϕ2 − 1)(ϕ +

√
2cε),

and the elastic bending energy with spontaneous curvature is given by [11]

(4.2) Wc(ϕ) =
ε

2

∫
Ω

fc(ϕ)2 dx.

The variation of Wc(ϕ) is denoted by

(4.3) gc(ϕ) = εΔfc(ϕ) − 1

ε
(3ϕ2 − 1 + 2

√
2cεϕ)fc(ϕ).

For simplicity, here we consider only the case with constant spontaneous curvature.
First, we have the following theorem about the asymptotic expansion of the phase

field function minimizing energy Wc(ϕ).
Theorem 4.1. With assumptions (A1)–(A4), in the spontaneous curvature case

we have

q0(t) = tanh

(
t√
2

)
,(4.4)

q1 = 0,(4.5)

q2 = 4(H2 −K + 2cH − c2)p2,(4.6)

where p2 is defined in Theorem 2.13.
Proof. Expanding

ϕ = q0 + εq1 + ε2q2 + ε3q3 + O(ε4)

and denoting

a0 = q′′0 − (q2
0 − 1)q0,

ai = q′′i − (3q2
0 − 1)qi, i = 1, 2, 3,

we have

Δϕ =
1

ε2
(q′′0 + εq′′1 + ε2q′′2 + ε3q′′3 )

−2H

ε
(q′0 + εq′1 + ε2q′2) + ΔΓ(q′0 + εq′1) + O(ε2)

and

1

ε2
(ϕ2 − 1)ϕ =

1

ε2
[q2

0 − 1 + ε(2q0q1) + ε2(q2
1 + 2q0q2) + ε3(2q0q3 + 2q1q2)

+O(ε4)](q0 + εq1 + ε2q2 + ε3q3 + O(ε4))

=
1

ε2
[(q2

0 − 1)q0 + ε(3q2
0 − 1)q1 + ε2((3q2

0 − 1)q2 + 3q0q
2
1)

+ ε3((3q2
0 − 1)q3 + 6q0q1q2 + q3

1) + O(ε4)].
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Therefore

f(ϕ) =
1

ε2
a0 +

1

ε
[a1 − 2Hq′0] + [a2 − 2Hq′1 + ΔΓq

′
0 − 3q0q

2
1 ]

+ ε[a3 − 2Hq′2 + εΔΓq
′
1 − 6q0q1q2 − q3

1 ] + O(ε2).

Since
√

2c

ε
(ϕ2 − 1) =

√
2c

ε
(q2

0 − 1) + 2
√

2cq0q1 +
√

2cε(q2
1 + 2q0q2) + O(ε2),

we have

fc(ϕ) = f(ϕ) −
√

2c

ε
(ϕ2 − 1)

=
1

ε2
a0 +

1

ε
[a1 − 2Hq′0 −

√
2c(q2

0 − 1)]

+ [a2 − 2Hq′1 + ΔΓq
′
0 − 3q0q

2
1 − 2

√
2cq0q1]

+ ε[a3 − 2Hq′2 + εΔΓq
′
1 − 6q0q1q2 − q3

1 −
√

2c(q2
1 + 2q0q2)] + O(ε2).

(1) To minimize Wc(ϕ) = ε
2

∫
Ω
fc(ϕ)2 dx, we need to minimize

∫
Ω
a2
0 dx. Then

a0 = 0 ⇒ q0(t) = tanh

(
t√
2

)
.

(2) Now we need to minimize∫
Ω

(a1 − 2Hq′0 −
√

2c(q2
0 − 1))2 dx =

∫
Ω

(a1 − 2(H − c)q′0)
2 dx.

Since ∫
Ω

(H − c)q′0a1 dx =

∫
Ω

(H − c)q′0(q
′′
1 − (3q2

0 − 1)q1) dx

=

∫
Ω

(H − c)(q′′′0 − (3q2
0 − 1)q′0)q1 dx + O(ε) = O(ε),

we have

a1 = 0 ⇒ q1 = 0.

(3) Now we have that

fc(ϕ) = −2

ε
(H − c)q′0 + a2 + ε(a3 − 2Hq′2 − 2

√
2cq0q2) + O(ε2).

Then we need to minimize∫
Ω

−4

ε
(H − c)q′0a2 + a2

2 − 4(H − c)q′0(a3 − 2Hq′2 − 2
√

2cq0q2) dx.
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Since

−4

ε

∫
Ω

(H − c)q′0a2 dx

= −4

ε

∫
Ω

(H − c)q′0(q
′′
2 − (3q2

0 − 1)q2) dx− 4

ε

∫
Ω

(H − c)(q′′′0 − (3q2
0 − 1)q′0)q2

−2Kq′′0 εq2 + 4Hcq′′0 εq2 + O(ε2) dx dx =

∫
Ω

8(K − 2cH)q′′0 q2 + O(ε) dx

and similarly
∫
Ω
−4(H − c)q′0a3 dx =

∫
Ω
O(ε) dx, we need to minimize

∫
Ω

8(K − 2cH)q′′0 q2 − 8H(H − c)q′′0 q2 − 8c(H − c)q′′0 q2 + a2
2 dx,

i.e., ∫
Ω

−8(H2 −K + 2cH − c2)q′′0 q2 + a2
2 dx.

Then we have

q2 = 4(H2 −K + 2cH − c2)p2,

where p2 is defined in Theorem 2.13.

We also have the following theorem about the Willmore flow force and the equi-
librium state of the shape with spontaneous curvature.

Theorem 4.2. With assumptions (A1)–(A4), if ϕ minimizes the energy Wc(ϕ),
the equilibrium state of Γ in the phase field model asymptotically satisfies

(4.7) ΔΓH + 2H(H2 −K) + 2Kc− 2Hc2 = 0.

And if ϕ minimizes the Wc(ϕ) to the second order term with the zero level set Γ, the
elastic force satisfies

∫
Ω

−ξε · v dx =
4
√

2

3

∫
Γ

(ΔΓH + 2H(H2 −K) + 2Kc− 2Hc2)�n · v dx + O(ε)

for any continuous vector field v.

Proof. We can continue with the proof of Theorem 4.1 to calculate gc(ϕ). From

fc(ϕ) = −2

ε
(H − c)q′0 + a2 + ε(a3 − 2Hq′2 − 2

√
2cq0q2) + O(ε2),

we have

εΔfc = −2H

ε2
q′′′0 − 4

ε
(H2 −K)q′′0 − 2ΔHq′0 +

1

ε
a′′2 − 2Ha′2 − 2Hq′′′2 + a′′3

+ 2c

(
1

ε2
q′′′0 − 2H

ε
q′′0

)
− 2

√
2c(q0q2)

′′ + O(ε)
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and

1

ε
(3ϕ2 − 1 + 2

√
2cεϕ)fc

=
1

ε
(3q2

0 − 1 + 6q0q2ε
2 + 2

√
2cεq0 + O(ε3))fc

= −2(H − c)

ε2
(3q2

0 − 1)q′0 +
1

ε
[(3q2

0 − 1)a2 − 4
√

2c(H − c)q0q
′
0]

+ (3q2
0 − 1)(a3 − 2Hq′2 − 2

√
2cq0q2) + 2

√
2cq0a2 − 12(H − c)q0q

′
0q2 + O(ε).

Then

gc(ϕ) = εΔfc −
1

ε
(3ϕ2 − 1 + 2

√
2cεϕ)fc

= −4

ε
(H2 −K)q′′0 − 2ΔHq′0 +

1

ε
(a′′2 − (3q2

0 − 1)a2) + (a′′3 − (3q2
0 − 1)a3)

− 2Ha′2 − 2Hq′′′2 − 4

ε
cHq′′0 − 2

√
2c(q0q2)

′′ − 4

ε
c(H − c)q′′0

+ 2Hq′2(3q
2
0 − 1) + 2

√
2cq0q2(3q

2
0 − 1)

− 2
√

2cq0a2 + 12(H − c)q0q
′
0q2 + O(ε)

= −4

ε
(H2 −K + 2cH − c2)q′′0 +

1

ε
(a′′2 − (3q2

0 − 1)a2) − 2ΔHq′0

+ (a′′3 − (3q2
0 − 1)a3) − 4Ha′2 − 2

√
2c(q0q2)

′′ + 2
√

2cq0q2(3q
2
0 − 1)

− 2
√

2cq0(q
′′
2 − (3q2

0 − 1)q2) − 12cq0q
′
0q2 + O(ε)

= −Q + (a′′3 − (3q2
0 − 1)a3) + O(ε).

Now we derive Q. Because a′′2 − (3q2
0 − 1)a2 = 4(H2 −K + 2cH − c2)|Γq′′0 , we have

−4

ε
(H2 −K + 2cH − c2)q′′0 +

1

ε
(a′′2 − (3q2

0 − 1)a2)

= −4

ε
(∇(H2 −K + 2cH − c2) · ∇d)dq′′0 + O(ε)

= [−16H(H2 −K) − 8c(2H2 −K)](q′′0 t) + O(ε).

Also, ΔH = ΔΓH + 4H(H2 −K) and

−4Ha′2 = −16H(H2 −K + 2cH − c2)s′2

= −8H(H2 −K + 2cH − c2)(q′′0 t + q′0).
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Altogether,

Q = [16H(H2 −K) + 8c(2H2 −K)](q′′0 t) + 2ΔΓHq′0 + 8H(H2 −K)q′0

+ 8H(H2 −K + 2cH − c2)(q′′0 t + q′0)

− 4
√

2c[q′′0 q2 − q′0q
′
2 − q0q

′′
2 + q0q2(3q

2
0 − 1)]

= 8H(H2 −K)(3q′′0 t + 2q′0) + 2ΔΓHq′0 + 8c(2H2 −K)(q′′0 t)

+ 8Hc(2H − c)(q′′0 t + q′0) − 4
√

2c[q′′0 q2 − q′0q
′
2 − q0q

′′
2 + q0q2(3q

2
0 − 1)].

When ϕ minimizes Wc(ϕ), gc(ϕ) = 0. It follows that

a′′3 − (3q2
0 − 1)a3 = Q.

Therefore ∫ ∞

−∞
Qq′0 dt = 0,

since ∫ ∞

−∞
q′′0 tq

′
0 dt = −1

2

∫ ∞

−∞
(q′0)

2 dt

and ∫ ∞

−∞
[q′′0 q2 − q′0q

′
2 − q0q

′′
2 + q0q2(3q

2
0 − 1)]q′0 dx

=

∫ ∞

−∞
[q′′0 q

′
0 + 2q′0q

′′
0 − (q0q

′
0)

′′ + q0q
′
0(3q

2
0 − 1)]q2 dx

=

∫ ∞

−∞
[q0q

′′′
0 + q0q

′
0(3q

2
0 − 1)]q2 dx = 0.

Finally we have∫ ∞

−∞
Qq′0 dt = [4H(H2 −K) + 2ΔΓH − 4c(2H2 −K) + 4Hc(2H − c)]

∫ ∞

−∞
(q′0)

2 dt

= [ΔΓH + 2H(H2 −K) + 2Kc− 2Hc2]

∫ ∞

−∞
2(q′0)

2 dt = 0.

It follows that

ΔΓH + 2H(H2 −K) + 2Kc− 2Hc2 = 0,

which is the equilibrium equation for Γ.

On the other hand, if we have optimal q0, q1, and q2, regardless of q3 we have a
nonequilibrium Γ, since gc(ϕ) = −Q + (a′′3 − (3q2

0 − 1)a3) + O(ε). The elastic force
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satisfies∫
Ω

−ξε · v dx =

∫
Ω

−gc(ϕ)∇ϕ · v dx

=

∫
Ω

(Q− (a′′3 − (3q2
0 − 1)a3) + O(ε))

(
1

ε
q′0∇d + O(1)

)
· v dx

=

∫
Ω

1

ε
Qq′0∇d · v dx−

∫
Ω

1

ε
(a′′3 − (3q2

0 − 1)a3)q
′
0∇d · v dx + O(ε)

=

∫ ∞

−∞
2(q′0)

2 dt

∫
Γ

[ΔΓH + 2H(H2 −K) + 2Kc− 2Hc2]�n · v dx

−
∫ ∞

−∞
2(q′′′0 − (3q2

0 − 1)q′0)a3 dt

∫
Γ

�n · v dx + O(ε)

=
4
√

2

3

∫
Γ

[ΔΓH + 2H(H2 −K) + 2Kc− 2Hc2]�n · v dx + O(ε)

for any continuous vector field v.
Remark 4.3. Theorem 4.2 also proved that the phase field model is consistent

with the sharp interface case, in which the elastic bending energy is defined by

Wc(Γ) =

∫
Γ

(H − c)2 dS =

∫
Γ

H2 dS − 2c

∫
Γ

H dS + c2|Γ|.

One can refer to [26] for the variations for the three items:∫
Γ

H2 dS → ΔΓH + 2H(H2 −K),

∫
Γ

H dS → −K,

|Γ| =

∫
Γ

dS → −2H.

Actually, this theorem gives us the confidence to state that if we use a phase field
function ϕ with a special kind of profile q to formulate a kind of energy W (ϕ), with ϕ
preserving the profile in the process minimizing W (ϕ), the results of our phase field
model should be consistent with those of the sharp interface model.

5. Error estimates. From the discussion of section 3 we know that if Γ is an
equilibrium shape, we can expand the phase field function ϕ up to the third order
term due to Theorems 2.10, 2.12, 2.13, and 2.17; if Γ is not an equilibrium shape,
in the process of gradient flow to minimize phase field energy W (ϕ), we can still
expand ϕ to the second order term. In this section, we use the approximation of ϕ in
the second order term to do some error estimates. The error estimate of the elastic
bending energy further verifies the consistency of the phase field model with the sharp
interface model. Besides the elastic bending energy formula, we can also estimate the
error of some Euler number formulae derived from the tanh profile, and these error
estimates can give us some new identities.
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Lemma 5.1.

W (q0(d(x)/ε)) =
4
√

2

3

∫
Γ

H2 dS + 2C1ε
2

∫
Γ

(4H4 − 5H2K + K2) ds + O(ε3),

where C1 =
∫∞
−∞(q′0)

2t2 dt ≈ 0.608050.
Proof. From (2.23), we have

W (q0) =
ε

2

∫
Ω

f(q0)
2 dx =

1

2ε

∫
Ω

4H2(q′0)
2 dx.

From Lemma 2.9, we have

W (q0) = 2

∫
Γ

H2 dS

∫ ∞

−∞
(q′0)

2 dt + 2ε

∫
Γ

−2H3 + 2H(2H2 −K) dS

∫ ∞

−∞
(q′)2t dt

+ 2ε2
∫

Γ

H2K − 2H(2H(2H2 −K))

+ (12H4 − 10H2K + K2) dS

∫ ∞

−∞
(q′0)

2t2 dt + O(ε3)

=
4
√

2

3

∫
Γ

H2 dS + 2ε2
∫

Γ

(4H4 − 5H2K + K2) ds

∫ ∞

−∞
(q′0)

2t2 dt + O(ε3).

Theorem 5.2 (error estimate of energy). If ϕ minimizes W (ϕ), then

(5.1) W (ϕ) − 4
√

2

3

∫
Γ

H2 dS = 6C1ε
2

∫
Γ

H2(H2 −K) dS + O(ε3),

where C1 =
∫∞
−∞(q′0)

2t2 dt ≈ 0.608050.
Proof. From Theorem 2.13, equation (2.27), we have

W (ϕ) −W (q0(d/ε)) = 16ε2
(∫

Γ

(H2 −K)2 dS

)∫ ∞

−∞
−q′′0p2

+
1

2
(p′′2 − (3q2

0 − 1)p2)
2 + O(ε) dt.

Because p′′2 − (3q2
0 − 1)p2 = s2 = q′0t/2 and s′′2 − (3q2

0 − 1)s2 = q′′0 , we have that∫ ∞

−∞
−q′′0p2 +

1

2
(p′′2 − (3q2

0 − 1)p2)
2 + O(ε) dt

=

∫ ∞

−∞
−(s′′2 − (3q2

0 − 1)s2)p2 +
1

2
s2
2 + O(ε) dt

=

∫ ∞

−∞
−(p′′2 − (3q2

0 − 1)p2)s2 +
1

2
s2
2 + O(ε) dt

=

∫ ∞

−∞
−1

2
s2
2 + O(ε) dt = −1

8
C1 + O(ε),
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where C1 =
∫∞
−∞(q′0)

2t2 dt. Then

W (ϕ) −W (q0) = −2C1ε
2

∫
Γ

(H2 −K)2 dS + O(ε3).

From Lemma 5.1, we have that

(5.2) W (ϕ) − 4
√

2

3

∫
Γ

H2 dS = 6C1ε
2

∫
Γ

H2(H2 −K) dS + O(ε3).

Now, denote

(5.3) χ(ϕ) = −3
√

2ε

16π

∫
Ω

(
Δϕ− 1

ε2
ϕ(ϕ2 − 1)

)
1

ε2
(ϕ2 − 1)ϕ dx.

The following lemma states that χ(q0) is an approximation of the Euler number of Γ.

Lemma 5.3.

χ(q0) = χ(Γ) + O(ε).

Proof. Lemma 2.3 gives K = 2H2 − ∇H∇d, with Lemma 2.9, and the Euler
number

χ(Γ) =
1

4π

∫
Γ

K dS =
3

16
√

2επ

∫
Ω

K(q2
0 − 1)2 dx + O(ε)

=
3

16
√

2επ

∫
Ω

2H2(q2
0 − 1)2 −∇H∇d(q2

0 − 1)2 dx + O(ε)

=
3

16
√

2επ

∫
Ω

2H2(q2
0 − 1)2 + HΔd(q2

0 − 1)2 + 4H(q2
0 − 1)q0∇d∇q0 dx + O(ε)

=
3

4
√

2επ

∫
Ω

H(q2
0 − 1)q0∇d∇q0 dx + O(ε)

= − 3

8ε2π

∫
Ω

H(q2
0 − 1)2q0 dx + O(ε)

= −3
√

2ε

16π

∫
Ω

(
Δq0 −

1

ε2
q0(q

2
0 − 1)

)
1

ε2
(q2

0 − 1)q0 dx + O(ε).

We have the following error estimate. One can refer to [13] for the first proof of
Lemma 5.3 and more discussions of formula (5.3).

Theorem 5.4 (error estimate of the Euler number). If ϕ minimizes W (ϕ), we
have

χ(ϕ) =
3

16π
√

2
W (ϕ) + O(ε).
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Proof.

χ(ϕ) − χ(q0) = −3
√

2ε

16π

∫
Ω

(f(ϕ) − f(q0))
1

ε2
(ϕ2 − 1)ϕ

+ f(q0)
1

ε2
((ϕ2 − 1)ϕ− (q2

0 − 1)q0) dx

= −3
√

2ε

16π

∫
Ω

(ε2Δe2 − (3q2
0 − 1)e2 + O(ε2))

1

ε2
(ϕ2 − 1)ϕ

− 2H

ε
q′0((3q

2
0 − 1)e2 + O(ε2)) dx

= −3
√

2ε

16π

∫
Ω

(ε2Δe2 − (3q2
0 − 1)e2 + O(ε2))

×
(

1

ε2
(q2

0 − 1)q0 + O(1)

)
+ O

(
1

ε

)
dx

= −3
√

2ε

16π

∫
Ω

(ε2Δe2 − (3q2
0 − 1)e2)

1

ε2
(q2

0 − 1)q0 + O

(
1

ε

)
dx

= −3
√

2ε

16π

∫
Ω

(−2Hεe′2 + e′′2 − (3q2
0 − 1)e2)

1

ε2
(q2

0 − 1)q0 + O

(
1

ε

)
dx

= −3
√

2ε

16π

∫
Ω

(e′′2 − (3q2
0 − 1)e2)

1

ε2
(q2

0 − 1)q0 + O

(
1

ε

)
dx.

From Theorem 2.13, we have

e′′2 − (3q2
0 − 1)e2 = q′′2 − (3q2

0 − 1)q2 + O(ε) = 2(H2 −K)q′0t + O(ε).

Therefore

χ(ϕ) − χ(q0) = −3
√

2ε

16π

∫
Ω

2

ε2
(H2 −K)|Γq0(q2

0 − 1)q′0t + O

(
1

ε

)
dx

= −6
√

2

16π

(∫
Γ

H2 −K dS

)(∫ ∞

−∞
q′′0 q

′
0t dt

)
+ O(ε).

Because ∫ ∞

−∞
q′′0 q

′
0t dt = −1

2

∫ ∞

−∞
(q′0)

2 dt = −
√

2

3
,

we have

(5.4) χ(ϕ) − χ(q0) =
1

4π

∫
Γ

H2 −K dS + O(ε).

Since χ(q0) = 1
4π

∫
Γ
K dS + O(ε), we get

χ(ϕ) =
1

4π

∫
Γ

H2 dS + O(ε).
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From Theorem 5.2, we have

W (ϕ) =
4
√

2

3

∫
Γ

H2 dS + O(ε2).

Then we have

χ(ϕ) =
3

16π
√

2
W (ϕ) + O(ε).

Remark 5.5. Theorem 5.4 states that unlike χ(q0), we cannot use χ(ϕ) to calcu-
late the Euler number of Γ. It is unfortunate that the Euler number χ(q0) in (5.4) is
canceled out. Otherwise we could get a modified Euler number formula.

For any n ≥ 1, denote

(5.5) χn(ϕ) = −n
√

2ε

8πβ

∫ (
Δϕ− 1

ε2
ϕ(ϕ2 − 1)

)
1

ε2
(ϕ2 − 1)n−1ϕ dx,

where β =
∫ 1

−1
(1 − x2)n−1 dx. We can prove that χn(q0) is also an approximation of

the Euler number χ(Γ). Actually formula (5.3) is a special case of χn with n = 2.
And similar to the proof of Theorem 5.4, we have

χn(ϕ) =
3

16π
√

2
W (ϕ) + O(ε)

for every n ≥ 1.

6. Numerical experiments. In this section, numerical experiments are per-
formed to verify the results of this paper. We do not verify the expansion of ϕ
directly. Instead, we try to verify Theorem 5.4. Our experiments start from some
initial shapes represented by ϕ0. Following the gradient flow of W (ϕ), finally we reach
some equilibrium shapes of Willmore’s problem. In this process, we verify the relation
of χ(ϕ) to W (ϕ) as stated by Theorem 5.4.

Our experiments here are performed in the three-dimensional axis-symmetrical
case. We do not add any volume and surface area constraints so that we can focus on
the Willmore flow of the surface. Here we use the Fourier spectral method in order to
get high accuracy results. One may refer to [7, 8, 11] for some detailed descriptions
of the numerical schemes of the gradient flow (3.6), and [5] gives the convergence
analysis of those schemes.

The numerical simulations presented in this paper are concerned with the z-axial
symmetrical cases. The computational domain is taken to be [−π, π]2 of the x − z
plane, which is divided into a 128 × 128 mesh. Our first experiment starts from a
torus with the initial phase field function selected to be q0:

ϕ0(x) = q0(d(x)/ε)

= tanh

((
0.25π −

√
(x1 − 0.5π cos θ)2 + (x2 − 0.5π sin θ)2 + x2

3

)
/(
√

2ε)

)
,

where θ = cos−1(x1/‖x‖). The parameter ε = 3h = 0.1473. A cross section of the
initial shape is given in the left panel of Figure 6.1. It is not an equilibrium shape
and it gradually changes to an equilibrium shape (right panel of Figure 6.1) along the
gradient flow.
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Fig. 6.1. Cross-section views of the deformation of a torus into an equilibrium shape (time
t = 0.00, 1.07, 4.45).

Fig. 6.2. The plot of χ(ϕ) and 3W (ϕ)/(16π
√

2).

Figure 6.2 gives the plot of χ(ϕ) and 3W (ϕ)/(16π
√

2). In the beginning, because
ϕ = q0, χ(ϕ) = 0.02, which is close to the Euler number of a torus 0. Along the
gradient flow, the value of χ(ϕ) approaches 3W (ϕ)/(16π

√
2) very quickly. And during

most of the gradient flow, they keep very close to each other. The difference is
about 0.0576, which is relatively small compared to their value (< 3.75%). And this
difference decreases as we decrease the value of ε. This experiment is redone for
ε = 2h, and the difference changes to 0.0253, which is about 1.63% of their value.

Our second experiment is performed to simulate the merging of two spheres on
a 128 grid mesh size with ε = 2h = 0.0982. The cross-section views are given in
Figure 6.3. Figure 6.4 gives the plot of χ(ϕ) and 3W (ϕ)/(16π

√
2). Most of the

time (t > 1.0), the value of ϕ coincides perfectly with the value of 3W (ϕ)/(16π
√

2).
There is a jump of ϕ before the merging of the two spheres. To analyze this jump,
we show in Figure 6.5 the plot of the cross-section views around their merging time.
From this graph, we can clearly see a singular point when their surfaces come to a
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Fig. 6.3. Cross-section views of the merging of two spheres (time t = 0.00, 1.08, 2.06, 3.04, 4.03,
7.89).

Fig. 6.4. The plot of χ(ϕ) and 3W (ϕ)/(16π
√

2).
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Fig. 6.5. Cross-section views of the merging of two spheres (time t = 0.87, 0.97, 1.08).

self-intersection. This singular point results in the nonsmoothness of the distance
function and further results in the jump before their merging together. One may
refer to [9] for more detailed analysis of the effect of singular points in retrieving the
topological information within the phase field framework.

These experiments give numerical verification of Theorem 5.4 that ϕ = 3W (ϕ)/
(16π

√
2) + O(ε), which is derived by the asymptotic analysis of section 2.3 under a

general ansatz.

7. Conclusion. In this paper, we derived an explicit asymptotic expansion of the
phase field functions minimizing the Willmore energy and elastic bending energy based
on some relaxed assumptions. Those assumptions and approximations are verified
by our numerical experiments. The asymptotic analysis results of the phase field
functions are used to proved the consistency of the phase field model with the sharp
interface model. They are further used to derive some error estimates of the energy
and some formulae for the Euler number. The detailed analysis in this paper presents
a clear structure of the phase field function and provides us a better understanding of
why the phase phase models for Willmore’s problem or the equilibrium lipid vesicle
membrane problem have been so successful in modeling those problems.

Some future work can be pursued. First, we may study how some constraints, such
as the volume/surface area constraints, change the profile of the phase field functions.
Second, we can conduct some three-dimensional experiments to verify the expansion
of the phase field functions. Finally, we can do more analysis on other formulae for
the elastic bending energy and derive highly accurate formulae to detect the Euler
number and other geometric and topological information of the surface within the
phase field framework.

Acknowledgments. The author wishes to thank Prof. Qiang Du and Prof. Chun
Liu for insightful discussions and collaborations on this subject.
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SPHERICALLY SYMMETRIC ISENTROPIC COMPRESSIBLE
FLOWS WITH DENSITY-DEPENDENT VISCOSITY COEFFICIENTS∗

ZHENHUA GUO† , QUANSEN JIU‡ , AND ZHOUPING XIN§

Abstract. We prove the existence of global weak solutions to the compressible Navier–Stokes
equations with density-dependent viscosity coefficients when the initial data are large and spherically
symmetric by constructing suitable aproximate solutions. We focus on the case where those coeffi-
cients vanish on vacuum. The solutions are obtained as limits of solutions in annular regions between
two balls, and the equations hold in the sense of distribution in the entire space-time domain. In
particular, we prove the existence of spherically symmetric solutions to the Saint–Venant model for
shallow water.

Key words. compressible Navier–Stokes, density-dependent viscosity, weak solutions
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1. Introduction. The compressible Navier–Stokes equations with density-
dependent viscosity coefficients can be written as

ρt + div(ρU) = 0,(1.1)

(ρU)t + div(ρU ⊗ U) − div(h(ρ)D(U)) −∇(g(ρ)divU) + ∇P (ρ) = 0,(1.2)

where t ∈ (0,+∞) and x ∈ R
N , N = 2, 3, ρ(x, t),U(x, t), and P (ρ) = ργ(γ > 1) stand

for the fluid density, velocity, and pressure, respectively,

D(U) =
∇U +t ∇U

2

is the strain tensor, and h(ρ) and g(ρ) are the Lamé viscosity coefficients satisfying

h(ρ) > 0, h(ρ) + Ng(ρ) ≥ 0.(1.3)

In the past several decades, significant progress on the system (1.1)–(1.2) with pos-
itive constant viscosity coefficients has been achieved by many authors. Concerning
the global existence and the large-time behavior of solutions for sufficiently small
data, the system (1.1)–(1.2) (as well as the full compressible Navier–Stokes equa-
tions) is well-understood in the sense that if the data are small perturbations of an
uniform nonvacuum state, then there exists a (smooth or weak) solution which is
time-asymptotically stable (see [21]). The situation, however, becomes more complex
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when the data are large, and a number of important questions, for example, the ex-
istence of global solutions in the case of heat-conducting gases and the uniqueness
of weak solutions, still remain open. The first general result on weak solutions was
obtained by Lions in [19], in which he used the method of weak convergence to obtain
global weak solutions provided that the specific heat ratio γ is appropriately large,
for example, γ ≥ 3N/(N + 2), N = 2, 3. There have been many generalizations of
this result: see [5, 6, 14, 7, 10, 15, 23], and the references therein.

It is noted that, in dealing with large amplitude solutions, one has to face the
possible appearance of a vacuum state in general. However, as observed in [9, 26, 20],
the compressible Navier–Stokes equations with constant viscosity coefficients behave
singularly in the presence of vacuum. By some physical considerations, Liu, Xin,
and Yang in [20] introduced the modified compressible Navier–Stokes equations with
density-dependent viscosity coefficients for isentropic fluids. As presented in [20], in
deriving the compressible Navier–Stokes equations from the Boltzmann equations by
the Chapman–Enskog expansions, the viscosity depends on the temperature and cor-
respondingly depends on the density for isentropic cases. Meanwhile, in geophysical
flows, many mathematical models correspond to (1.1)–(1.2) (see [1, 3, 19]). In par-
ticular, the viscous Saint–Venant system for shallow water is expressed exactly as
(1.1)–(1.2) with N = 2, h(ρ) = ρ, g(ρ) = 0, and γ = 2. Shallow water equations are
to describe vertically averaged flows in three-dimensional shallow domains in term of
the mean velocity U and the variation of the depth ρ due to the free surface (see
[19, 3]), which is widely used in geophysical flows. Global smooth solutions for data
close to equilibrium were established in [24], and related topics have been extensively
studied in [1, 3], and the references therein. Nevertheless, the global existence of
weak solutions for large data to the shallow water equations or more generally to the
multidimensional compressible Navier–Stokes equations (1.1)–(1.2) (N = 2, 3) is still
open. This is mainly due to the facts, that for these models, new mathematical chal-
lenges are encountered. First, we cannot preclude spontaneous cavitation (vacuum
appearing) for the solutions of (1.1) and (1.2) even if the initial data are far from the
vacuum. Second, when dealing with vanishing viscosity coefficients on vacuum, the
velocity cannot even be defined when the density vanishes, and hence we will have no
uniform estimates for the velocity. Finally, the system (1.1)–(1.2) is highly degenerate
at vacuum.

For one-dimensional compressible Navier–Stokes equations (1.1) and (1.2) with
h(ρ) = ρα, g(ρ) = 0(α ∈ (0, 1)), there is much literature on the well-posedness the-
ory of the solutions (see [11, 13, 17, 20, 25, 27, 28], and the references therein).
In particular, initial-boundary-value problems for one-dimensional (1.1)–(1.2) with
h(ρ) = ρα(α > 1/2) and P = ργ(γ ≥ 1) were studied by Li, Li, and Xin recently in
[18], and interesting phenomena of vacuum vanishing and blowup of solutions were
found there. However, few results are available for multidimensional problems. The
first multidimensional result is due to Bresch, Desjardins, and Lin [3], where they
showed the L1 stability of weak solutions for the Korteweg system (with the Ko-
rteweg stress tensor kρ∇�ρ), and their result was later improved in [1] to include the
case of vanishing capillarity (k = 0) but with an additional quadratic friction term
rρ|U|U. An interesting new entropy estimate is established in [3] in an priori way,
which provides some high regularity for the density. Recently, Mellet and Vasseur
[22] proved the L1 stability of weak solutions of the system of (1.1)–(1.2) based on
the new entropy estimate, extending the corresponding L1 stability results of [3, 1]
to the case r = k = 0. Meanwhile, although L1 stability is considered as one of the
main steps to prove the existence of weak solutions, the global existence of weak so-
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lutions of the compressible Navier–Stokes equations with density-dependent viscosity
(1.1)–(1.2) is still open in the multidimensional cases. The key issue now is how to
construct approximate solutions satisfying the a priori estimates required in the L1

stability analysis. It seems highly nontrivial to do so due to the degeneracy of the
viscosities near vacuum and the additional entropy inequality to be held in the con-
struction of approximate solutions. Very recently, Bresch and Desjardins constructed
approximate solutions for the two-dimensional viscous shallow water systems with
drag terms or a capillarity term and for the compressible Navier–Stokes equations
with cold pressure (see [2]) and proved the global existence of weak solutions to these
systems (see [2, 4]). However, this construction of the approximate solutions in [2]
seems not applicable to building approximate solutions for the standard compressible
Navier–Stokes equations with density-dependent viscosity coefficients.

In our paper, we will construct a class of approximate solutions and furthermore
prove the global existence of weak solutions for spherically symmetric solutions of
the compressible Navier–Stokes equations with the viscosity coefficients depending on
the density. For simplicity of the presentation, in this paper we will give only the
proof of the global existence of the three-dimensional spherically symmetric solutions
of (1.1)–(1.2) with h(ρ) = ρ, g(ρ) = 0. Our result holds true for general h(ρ) =
ρα, g(ρ) = (α − 1)ρα for some α > N−1

N (N = 2, 3). More general h(ρ) and g(ρ)
satisfying g(ρ) = ρh′(ρ) − h(ρ) and other restrictions given in [22] can be handled in
a similar way. It should be noted that the shallow water equations corresponding to
the case of N = 2, α = 1, γ = 2 in (1.1)–(1.2) are covered, and therefore we obtain
the global spherically symmetric solutions of the shallow water equations.

It seems to be difficult to adapt the analysis in [6, 19] due to the degeneracy of
the viscosities near vacuum which may appear. Thus we construct the approximate
solutions by solving the approximate systems of (1.1)–(1.2) with hε(ρ) = h(ρ) +
ερβ , gε(ρ) = g(ρ)+ε(β−1)ρβ for some fixed 0 < β < 1 (β = 3/4, for example) instead
of h(ρ), g(ρ) in (1.1)–(1.2). This is motivated by the approach of Jiang, Xin, and Zhang
[13], in which the one-dimensional case is considered and h(ρ) can be regarded as ρα,
and g(ρ) = (α − 1)ρα for 0 < α < 1. However, compared with the one-dimensional
equations, there are some new difficulties encountered for radial symmetric three-
dimensional Navier–Stokes systems. In particular, the three-dimensional spherically
symmetric equations become singular at r = 0, and more new source terms appear in
both Eulerian and Lagrangian radial symmetric equations (see (2.6)–(2.7) in section
2 and (3.11) in section 3), which lead to some difficulties in obtaining the lower bound
of the density. Therefore we will use the radial symmetric system only on the annular
domain Ωε = Ω \ B̄ε(0), where Ω is a ball of radius R centered at the origin in R

3

and Bε(0) is a ball with radius ε and center 0, to exclude the singularity at the origin
when we construct approximate solutions, and rewrite the Lagrangian equation as a
new form (see (3.21) in section 3) which makes it possible to obtain the lower bounds
of the approximate solutions.

By the approach mentioned above, we can obtain a class of approximate so-
lutions with the required a priori uniform estimates such as energy estimates and
entropy estimates. However, it should be noted that such approximate solutions are
defined and estimated on the annular domain Ωε = Ω \ B̄ε(0), and the L1-stability
analysis as in [22] can provide the convergence of the terms in (1.1)–(1.2) for the
approximate solutions away from r = 0. Thus, to take the limit of the approximate
solutions to obtain weak solutions which are defined on the entire domain Ω, we need
to define the approximate solutions on Bε(0). Note that the usual zero extensions as
in [8, 10] are not suitable here, since such extension would yield that ∇√

ρ belongs
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to L∞(0, T ;L2
loc(Ω \ {0})) only so that the nonlinear diffusion terms in the defini-

tion of weak solutions (see (2.15)) will not make sense. An appropriate extension
is presented in this paper, one of whose advantages is that it preserves the uniform
L∞(0, T ;H1(Ω)) estimate of

√
ρε such that we can obtain the convergence of the

pressure term (ρε)γ and the diffusion terms which are difficult to be dealt with due
to the density-dependent viscosity coefficients. Also, though it seems difficult to ob-
tain some uniform estimates for Uj separately because of the possible appearance
of the vacuum, an extra estimate for esssup0≤t≤T

∫
Ω
ρj |Uj |2+ηdx, with some small

η ∈ (0, 1), guarantees the convergence of the nonlinear convection terms.
The subsequent contents of the paper are organized as follows. In section 2 we

will present the main result of this paper. In section 3 we will show various a priori
estimates of the solutions. In this section, the estimates depending on ε, especially
the lower bound of the density, are building blocks for constructing the approximate
solutions and entropy estimates. On the other hand, the estimates independent of
ε are the starting point for the convergence of the approximate solutions. Based on
these, in section 4, we will first construct approximate solutions and then take the
limits to obtain the global existence of weak solutions of the original system.

2. Main result. Set h(ρ) = ρ and g(ρ) = 0 in (1.1)–(1.2). The isentropic
compressible Navier–Stokes equations become

ρt + div(ρU) = 0,(2.1)

(ρU)t + div(ρU ⊗ U) − div(ρD(U)) + ∇P (ρ) = 0(2.2)

for t ∈ (0,+∞) and x ∈ R
3.

We are concerned with spherically symmetric solutions to (2.1)–(2.2) in a ball Ω
of radius R centered at the origin in R

3. To this end, we denote

|x| = r, ρ(x, t) = ρ(r, t), U(x, t) = u(r, t)
x

r
.(2.3)

The initial and boundary conditions of (2.1)–(2.2) are

(ρ, ρU)|t=0 = (ρ0,m0),(2.4)

m = ρU = 0 on ∂Ω.(2.5)

For simplicity, we will take D(U) = ∇U in (2.2), though the full strain tensor
could be considered in a similar way. This leads to the following system of equations
for r > 0:

ρt + (ρu)r +
2ρu

r
= 0,(2.6)

(ρu)t + (ρu2 + ργ)r +
2ρu2

r
− (ρur)r − ρ

(
2u

r

)
r

= 0,(2.7)

with the initial condition

(ρ, ρu)|t=0 = (ρ0,m0)(2.8)

and the boundary conditions

ρu(0, t) = 0, ρu(R, t) = 0.(2.9)
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It is easy to get the following usual a priori energy estimate for smooth solutions
to (2.6), (2.7), and (2.9):

d

dt

∫ R

0

(
1

2
ρu2 +

1

γ − 1
ργ

)
r2dr +

∫ R

0

ρ(u2
rr

2 + 2u2)dr ≤ 0.(2.10)

Morover, the system (2.1)–(2.2) admits an additional a priori estimate, as observed
by Bresch, Desjardins, and Lin [3], which reads as follows.

Lemma 2.1 (see [22]). Assume that h(ρ) and g(ρ) are two C2 functions such that

g(ρ) = ρh′(ρ) − h(ρ)

holds true. Then the following inequality holds for smooth solutions of (1.1)–(1.2)
with ρ > 0:

d

dt

∫
Ω

(
1

2
ρ|U + ∇ϕ(ρ)|2 +

1

γ − 1
ργ

)
dx +

∫
Ω

∇ϕ(ρ) · ∇ργdx ≤ 0,(2.11)

with ϕ such that

ϕ′(ρ) =
h′(ρ)

ρ
.

In particular, for three-dimensional spherically symmetric equations (2.6)–(2.7),
one has the following.

Lemma 2.2. If (ρ, u) is a smooth solution to (2.6)–(2.9), with ρ > 0, then the
following inequality holds:

d

dt

∫ R

0

{
1

2
ρu2 + ρru + |(√ρ)r|2

}
r2dr +

∫ R

0

4

γ
((ργ/2)rr)

2dr ≤ 0.(2.12)

Now we give a definition of weak solutions to (2.1)–(2.5).
Definition 2.1. A pair (ρ,U) is said to be a weak solution to (2.1)–(2.2) provided

that
(1) ρ ≥ 0 a.e., and

ρ ∈ L∞(0, T ;L1(Ω) ∩ Lγ(Ω)) ∩ C([0,∞);W 1,∞(Ω)∗),
√
ρ ∈ L∞(0, T ;H1(Ω)),

√
ρU ∈ L∞(0, T ;L2(Ω)),

where W 1,∞(Ω)∗ is the dual space of W 1,∞(Ω);
(2) for any t2 ≥ t1 ≥ 0 and any ζ ∈ C1(Ω̄× [t1, t2]), the mass equation (2.1) holds

in the following sense:∫
Ω

ρζdx|t2t1 =

∫ t2

t1

∫
Ω

(ρζt + ρU · ∇ζ)dxdt;(2.13)

(3) for any ψ = (ψ1, ψ2, ψ3) ∈ C2(Ω̄ × [0, T ]) satisfying ψ(x, t) = 0 on ∂Ω and
ψ(x, T ) = 0, it holds that∫

Ω

m0 · ψ(0, ·)dx +

∫ T

0

∫
Ω

[
√
ρ(
√
ρU) · ∂tψ +

√
ρU ⊗√

ρU : ∇ψ]dxdt

+

∫ T

0

∫
Ω

ργdivψdxdt + 〈ρ∇U,∇ψ〉 = 0,(2.14)
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where the diffusion term makes sense when written as

〈ρ∇U,∇ψ〉 = −
∫ T

0

∫
Ω

√
ρ(
√
ρU) · Δψdxdt

−2

∫ T

0

∫
Ω

(
√
ρU) · (∇√

ρ · ∇)ψdxdt.(2.15)

We remark that, in the definition of the weak solution, (2.15) implies ρ∇U ∈
L2(0, T ;W−1,1(Ω)), which follows from the fact that

√
ρ ∈ L∞(0, T ;H1(Ω)),

√
ρU ∈

L∞(0, T ;L2(Ω)). This will be shown in section 4.
In this paper, we will construct global three-dimensional spherically symmetric

weak solutions to (2.1)–(2.2) with the initial-boundary conditions (2.4)–(2.5). The
initial data are assumed to satisfy

ρ0 ≥ 0 a.e. in Ω; m0 = 0 a.e. on {x ∈ Ω|ρ0(x) = 0};(2.16)

ρ0 ∈ W 1,2(Ω);
m2

0

ρ0
∈ L1(Ω);

m2+η
0

ρ1+η
0

∈ L1(Ω),(2.17)

where η ∈ (0, 1) is some small constant. It follows from (2.17) that

ρ0U
2+η
0 ∈ L1(Ω); ρ0U

2
0 ∈ L1(Ω).(2.18)

The main result of this paper can be stated as follows.
Theorem 2.1. For N = 3 and 1 < γ < 3, if the initial data have the form

ρ0 = ρ0(|x|), U0 = u0(|x|)
x

r

and satisfy (2.16)–(2.17), then the initial-boundary-value problem (2.1)–(2.5) has a
global spherically symmetric weak solution

ρ = ρ(|x|, t), U = u(|x|, t)x
r

satisfying, for all T > 0,

ρ(x, t) ∈ C([0, T ];L
3
2 (Ω)),

√
ρU ∈ L∞(0, T ;L2(Ω)),(2.19)

∫
Ω

ρ(x, t)dx =

∫
Ω

ρ0(x)dx.(2.20)

Moreover, it holds that

sup
t∈[0,T ]

∫
Ω

(
1

2
ρ|U|2 +

1

γ − 1
ργ + |∇√

ρ|2 + ρ|U |2+η

)
dx ≤ C,(2.21)

where C is a constant.
Remark 2.1. In fact, our analysis applies to slightly more general viscosity coef-

ficients h(ρ) and g(ρ). For instance, our results hold true for the following situations:
(1) h(ρ) = ρα and g(ρ) = (α − 1)ρα, with α > N−1

N , where the restriction of α
results from the Lamé viscosity coefficients relation (1.3) and the usual energy
estimates.
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(2) h(ρ) and g(ρ) satisfy the relation

g(ρ) = ρh′(ρ) − h(ρ)

and some additional restrictions given in [22].
Remark 2.2. It can be checked easily that, for N = 2, the conclusions in Theorem

2.1 hold true for any γ > 1. Consequently, we obtain the existence of a global
spherically symmetric solution to the Saint–Venant model for shallow water, which
is a particular case of (2.1)–(2.2) with N = 2, h(ρ) = ρ, g(ρ) = 0, and γ = 2 (see
[3, 19]).

Remark 2.3. It should be noted that the boundary condition (2.5) is appropri-
ate from the physical point of view, since, if the vacuum appears on the boundary,
the velocity itself is meaningless and the momentum can be controllable. On the
other hand, if no vacuum appears on the boundary, the boundary condition (2.5) is
equivalent to U(R, t) = 0.

To make sense of the boundary condition (2.5) for weak solutions in Theorem 2.1,
we note that U = u(r)x

r and ρu satisfy

∫ R

0

ρϕr2dr|t2t1 =

∫ t2

t1

∫ R

0

(ρϕt + ρuϕr)r
2drdt(2.22)

for functions ϕ ∈ C1([0, R] × [t1, t2]); see (4.25) in Proposition 4.5 in section 4.
In fact, (2.22) holds for any ϕ which is Lipschitz continuous. In particular, set
ϕ(r, t) = ϕ1(t)ϕ2(r), where ϕ1(t) and ϕ2(r) are Lipschitz continuous functions satis-
fying ϕ1(t) ≡ 1 in [t1, t2] and

ϕ2(r) =

{
1, r ∈ [0, R− δ],

1 − 1
δ (r − (R− δ)), r ∈ [R− δ,R].

Substituting ϕ1(t) and ϕ2(r) into (2.22) and using (2.20), one gets

1

δ

∣∣∣∣∣
∫ t2

t1

∫ R

R−δ

ρur2drdt

∣∣∣∣∣≤
∣∣∣∣∣
∫ R

R−δ

ρ(r, t2)(ϕ2(r) − 1)r2dr

−
∫ R

R−δ

ρ(r, t1)(ϕ2(r) − 1)r2dr

∣∣∣∣∣ → 0

as δ → 0. This implies that (ρu)(R, t) = 0 in the sense of trace.

3. Approximate solutions and their estimates. The key point of the proof
of Theorem 2.1 is to construct smooth approximate solutions satisfying the a priori
estimates required in the L1-stability analysis. The crucial issue is to obtain lower
and upper bounds of the density, as mentioned in the introduction. To this end, we
study the following system as an approximate system of (2.1)–(2.2):

ρt + div(ρU) = 0,(3.1)

(ρU)t + div(ρU ⊗ U) − div((ρ + ερ
3
4 )∇U) + ∇

(ε
4
ρ

3
4 divU

)
+∇P (ρ) = 0,(3.2)

where ε > 0 is a constant.
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When ρ(x, t) = ρ(r, t),U(x, t) = u(r, t)x
r , (3.1)–(3.2) becomes

ρt + (ρu)r +
2ρu

r
= 0,(3.3)

(ρu)t + (ρu2 + ργ)r +
2ρu2

r
+ (ρ + ερ

3
4 )r

2u

r
=

((
ρ +

3ε

4
ρ

3
4

)(
ur +

2u

r

))
r

(3.4)

for r > 0. We will first construct the smooth solution of (3.3)–(3.4) in the truncated
region 0 < ε < r < R with the initial condition

(ρ, ρu)(r, 0) = (ρ0 + ε,m0),

and boundary conditions

u(r, t)|r=ε = 0, u(r, t)|r=R = 0.(3.5)

For approximate solutions with a positive lower bound for the density, (3.5) is equiv-
alent to ρu(r, t)|r=ε = 0 and ρu(r, t)|r=R = 0.

We assume that the initial data are smooth and satisfy the bounds (2.16)–(2.17)
with constants independent of ε. As discussed in the introduction, we shall eventually
take a sequence of inner radii εj tending to 0. From now on, the dependence on j will
be suppressed if there would be no confusion.

In the following, we will state the energy and entropy estimates which have been
presented in the preceding section for these approximate solutions.

Lemma 3.1. Let (ρε, uε) be smooth solutions to (3.3)–(3.4) defined on [ε,R]×[0, T ]
with boundary conditions (3.5) such that ρε > 0. Then there exists a constant C
independent of ε such that∫ R

ε

ρε(r, t)r2dr ≤ C,(3.6)

∫ R

ε

(
1

2
ρε(uε)2 +

1

γ − 1
(ρε)γ

)
r2dr

+

∫ T

0

∫ R

ε

(
ρε +

ε

4
(ρε)

3
4

)
((uε

r)
2r2 + (uε)2)drdt ≤ C,(3.7)

∫ R

ε

1

2
ρε

∣∣∣∣uε + (log ρε)r +
3ε

4
(ρε)−

5
4 ρεr

∣∣∣∣
2

r2dr

+

∫ T

0

∫ R

ε

(
γ(ρε)γ−2 +

3ε

4
γ(ρε)γ−

9
4

)
|ρεr|2r2drdt ≤ C.(3.8)

Remark 3.1. Note that hε(ρ) = ρ + ερ
3
4 and gε(ρ) = − ε

4ρ
3
4 satisfy the relation

gε(ρ) = ρh′
ε(ρ) − hε(ρ). In general, one can choose to approximate the system (2.1)–

(2.2) by taking

hε(ρ) = ρ + ερα, gε(h) = ε(α− 1)ρα,

which satisfy

gε(ρ) = ρh′
ε(ρ) − hε(ρ),

where N−1
N < α < 1, N = 2, 3. We take α = 3

4 for the three-dimensional case here.
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To guarantee the global existence of these approximate solutions, we need to give
some detailed estimates on the density. We start with the following pointwise bounds
for ρε.

Lemma 3.2. Given ε > 0, there is an absolute constant C independent of ε such
that

0 ≤ ρε(r, t) ≤ C

ε2
(3.9)

for ε ≤ r ≤ R and t ≥ 0.
Proof. To simplify the presentation, we drop the superscript ε. Let r(t) denote a

particle path, i.e.,

dr(t)

dt
= u(r(t), t).

Then along the particle path, (3.3) can be solved to get

ρ(r(t), t)r2 = ρ0(r(0))r(0)2e−
∫ t
0
ur(r(s),s)ds,

which implies that ρ ≥ 0 provided that ρ0 ≥ 0.
It follows from (3.7) and (3.8) that∫ R

ε

ρ2
r

ρ
r2dr ≤ C(3.10)

for some absolute constant C independent of ε.
Then the second inequality in (3.9) follows from (3.6) and (3.10). The proof of

the lemma is finished.
To derive the a priori estimates about the velocity of the approximate solutions,

the crucial step is to obtain the lower bound of the density. To this end, we introduce
Lagrangian coordinates for the radial system (3.3)–(3.4) as follows. Let ε > 0 be
fixed, and define

x(r, t) =

∫ r

ε

ρr2dr, τ = t.

Set
∫ 1

ε
ρr2dr = 1 for any fixed ε > 0 without loss of generality. Then

∂x

∂r
= ρr2,

∂x

∂t
= −ρur2,

∂τ

∂r
= 0,

∂τ

∂t
= 1.

Then the system (3.3)–(3.4) becomes{
ρτ + ρ2(r2u)x = 0,

r−2uτ + (ργ)x = [(ρ2 + 3ε
4 ρ

7
4 )(r2u)x]x − (ρ + ερ

3
4 )x

2u
r

(3.11)

for τ > 0 and 0 ≤ x ≤ 1.
The corresponding initial data are

(ρ, ρu)(·, 0) = (ρ0 + ε,m0),

and the boundary conditions are

u(0, τ) = 0, u(1, τ) = 0.(3.12)
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For this system, the following a priori estimates hold.
Lemma 3.3. For all τ ∈ [0, T ], it holds that

∫ 1

0

(
u2(x, τ)

2
+

ργ−1(x, τ)

γ − 1

)
dx +

∫ τ

0

∫ 1

0

(
2u2

r2
+ ρ2u2

xr
4

)
dxds

+

(
1 − λ

2

)∫ τ

0

∫ 1

0

ε
u2

ρ
1
4 r2

dxds +

(
3

4
− 1

2λ

)∫ τ

0

∫ 1

0

ερ
7
4u2

xr
4dxds

≤
∫ 1

0

(
u2

0

2
+

ργ−1
0

γ − 1

)
dx,(3.13)

where λ ∈ ( 2
3 , 2), and

0 ≤ ρ(x, τ) ≤ C(ε, T ),(3.14)

ε ≤ r(x, τ) ≤ R,(3.15)

∫ 1

0

u4dx +

∫ τ

0

∫ 1

0

(
4u4

r2
+ 6ρ2u2u2

xr
4 +

2εu4

ρ
1
4 r2

+ ερ
7
4u2u2

xr
4

)
dxds

≤
∫ 1

0

u4
0dx + C(ε, T ).(3.16)

Proof. By multiplying (3.11)2 by r2u and using (3.11)1 and some standard ma-
nipulations, one gets

d

dτ

∫ 1

0

(
u2

2
+

ργ−1

γ − 1

)
dx +

∫ 1

0

(
2u2

r2
+ ρ2u2

xr
4

)
dx +

∫ 1

0

{
ε

u2

ρ
1
4 r2

+
3

4
ερ

7
4u2

xr
4

}
dx

= ε

∫ 1

0

ρ
3
4uuxrdx ≤ λ

2

∫ 1

0

εu2

ρ
1
4 r2

dx +
1

2λ

∫ 1

0

ερ
7
4u2

xr
4dx

for any λ ∈ ( 2
3 , 2). Thus (3.13) holds.

Next, (3.14) follows from Lemma 3.2, and (3.15) holds trivially.
Now we prove (3.16). By multiplying (3.11)2 by r2u3 and using (3.11)1 and

integration by parts, we have by direct computation that

1

4

d

dτ

∫ 1

0

u4dx +

∫ 1

0

(
2u4

r2
+ 3ρ2u2u2

xr
4

)
dx +

∫ 1

0

(
εu4

ρ
1
4 r2

+
9

4
ερ

7
4u2u2

xr
4

)
dx

= 2

∫ 1

0

ερ
3
4u3uxrdx +

∫ 1

0

(
ργ−1 2u3

r
+ 3ργu2uxr

2

)
dx.(3.17)

Using Hölder and Young’s inequality and Lemma 3.2, one can bound each term of
the right-hand side of (3.17) as follows:

2ε

∫ 1

0

ρ
3
4u3uxrdx ≤ 1

2

∫ 1

0

εu4

ρ
1
4 r2

dx + 2

∫ 1

0

ερ
7
4u2u2

xr
4dx;

2

∫ 1

0

ργ−1u
3

r
dx ≤ 2

(∫ 1

0

ρ4(γ−1)r2dx

) 1
4
(∫ 1

0

u4

r2
dx

) 3
4

≤ 1

2

∫ 1

0

u4

r2
dx + C;
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and

3

∫ 1

0

ργu2uxr
2dx ≤ 3

2

∫ 1

0

ρ2u2u2
xr

4dx +
3

2

(∫ 1

0

ρ4γ−4r2dx

) 1
2
(∫ 1

0

u4

r2
dx

) 1
2

≤ 3

2

∫ 1

0

ρ2u2u2
xr

4dx +
1

2

∫ 1

0

u4

r2
dx + C.

Putting the above three estimates into (3.17) yields

1

4

d

dτ

∫ 1

0

u4dx +

∫ 1

0

(
u4

r2
+

3

2
ρ2u2u2

xr
4

)
dx +

∫ 1

0

(
εu4

2ρ
1
4 r2

+
1

4
ερ

7
4u2u2

xr
4

)
dx ≤ C,

which implies (3.16) directly.
The following estimate can be obtained by modifying the analysis in [13].

Lemma 3.4. There is a positive constant C = C(ε, T, ‖u0‖L4 , ‖(ρ
3
4
0 )x‖L4) such

that ∫ 1

0

((ρ
3
4 )x)4(x, τ)dx ≤ C(3.18)

for any τ ∈ [0, T ].
Proof. (3.11)1 can be rewritten as

(ρ + ερ
3
4 )xτ = −

[(
ρ2 +

3ε

4
ρ

7
4

)
(r2u)x

]
x

.(3.19)

Thus, substituting (3.19) into (3.11)2 yields

r2(ρ + ερ
3
4 )xτ + (ρ + ερ

3
4 )x2ur = −uτ − (ργ)xr

2.(3.20)

Direct computation shows that

∂r

∂τ
= u.

Consequently, (3.20) becomes

(r2(ρ + ερ
3
4 )x)τ = −uτ − (ργ)xr

2.(3.21)

Integrating over [0, t] shows that

u(x, t) − u0(x) +

∫ t

0

(ργ)xr
2(x, s)ds

= r2
0

(
4

3
ρ

1
4
0 + ε

)
∂x

(
ρ

3
4
0

)
− r2

(
4

3
ρ

1
4 + ε

)
∂x

(
ρ

3
4

)
.(3.22)

By multiplying (3.22) by (∂x(ρ
3
4 )r2)3 and integrating over [0, 1] with respect to x, one

gets

∫ 1

0

(
4

3
ρ

1
4 + ε

)(
∂x(ρ

3
4 )r2

)4

dx≤ C

(∫ 1

0

(
∂x

(
ρ

3
4

)
r2
)4

dx

) 3
4

{
‖u− u0‖L4

+
∥∥∥∂x (ρ 3

4
0

)∥∥∥
L4

+

(∫ t

0

‖∂xργ‖4
L4ds

) 1
4

}
.(3.23)
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Using Lemma 3.3, ε ≤ r, r0 ≤ R, and Young’s inequality, one gets from (3.23) that

there is a positive constant C depending on ε, T, ‖u0‖L4 , and ‖(ρ
3
4
0 )x‖L4 such that

ε

∫ 1

0

(∂x(ρ
3
4 )r2)4dx ≤ ε

2

∫ 1

0

(∂x(ρ
3
4 )r2)4dx + C

∫ t

0

∫ 1

0

(∂xρ
γ)4dxds + C,(3.24)

whence ∫ 1

0

(∂x(ρ
3
4 ))4dx ≤ C + C

∫ t

0

max
[0,1]

(ρ4γ−3)

∫ 1

0

(∂x(ρ
3
4 ))4dxds.(3.25)

By applying Gronwall’s inequality to (3.25) and making use of Lemma 3.2, we obtain

∫ 1

0

(∂x(ρ
3
4 ))4dx ≤ C.(3.26)

This completes the proof.
Now we can obtain a positive lower bound for the density.
Lemma 3.5. There is a positive constant C = C(ε, T, ‖u0‖L4 , ‖(ρ

3
4
0 )x‖L4) such

that

ρ(x, τ) ≥ C(3.27)

for all x ∈ [0, 1] and τ ∈ [0, T ].
Proof. Set v(x, τ) = 1

ρ(x,τ) , and V (τ) = max[0,1]×[0,τ ] v(x, s). Then (3.11)1 be-

comes vτ = (ru)x, which implies that
∫ 1

0
v(x, τ)dx =

∫ 1

0
v(x, 0)dx ≤ C0, due to (3.12).

Then it follows from Sobolev’s embedding W 1,1([0, 1]) ↪→ L∞([0, 1]) that, for any
0 < β < 1,

vβ(x, τ) ≤
∫ 1

0

vβ(x, τ)dx +

∫ x

0

|∂xvβ |dx

≤
(∫ 1

0

vdx

)β

+ β

∫ x

0

vβ+ 3
4

∣∣∣∣ ρxρ 1
4

∣∣∣∣ dx
≤ C + CβV β

(∫ 1

0

vdx

) 3
4
(∫ 1

0

((ρ
3
4 )x)4dx

) 1
4

≤ C + CβV β .(3.28)

Thus by choosing β > 0 small enough, which may depend on ε and T , we obtain

V (T ) ≤ C,

where C is a positive constant depending on ε, T, ‖u0‖L4 , and ‖(ρ
3
4
0 )x‖L4 . The proof

of the lemma is completed.
Remark 3.2. When we construct approximate solutions in section 4.1, the initial

data ρ0, u0 will be replaced by the mollified ones ρε,δ0 , uε,δ
0 (see section 4.1 for more

details), and hence the positive constant in Lemmas 3.4 and 3.5 will be replaced by a

positive constant which depends on ε, T, ‖uε,δ
0 ‖L4 , and ‖[(ρε,δ0 )

3
4 ]x‖L4 .

4. Proof of Theorem 2.1. In this section, we will prove Theorem 2.1 by com-
pleting the constructions of approximate solutions, applying the a priori bounds of
sections 2 and 3 to take appropriate limits.
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4.1. The existence of the approximate solutions. Consider the following
approximate system in Lagrangian coordinates:{

ρτ + ρ2(r2u)x = 0,

r−2uτ + (ργ)x = [(ρ2 + 3ε
4 ρ

7
4 )(r2u)x]x − (ρ + ερ

3
4 )x

2u
r

(4.1)

for τ > 0, 0 ≤ x ≤ 1, with

(ρ, ρu)(·, 0) = (ρ0 + ε,m0)

and

u(0, τ) = 0, u(1, τ) = 0.

First we regularize the initial data as follows. Let Jδ be a standard mollifier (in
r) of width δ. Let (ρ0 + ε, u0) be the initial data in Eulerian coordinates, where
u0 = m0

ρ0+ε .

(1) Extend ρ0 + ε continuously outside [ε,R] by taking ρ0(ε) + ε on [0, ε] and
ρ0(R) + ε on [R,∞), mollify with Jδ, restrict it to [ε,R], and then multiply by a
constant to normalize the total mass to be

M0 =

∫ R

0

(ρ0 + ε)r2dr.

The resulting density function is denoted by ρε,δ0 (r).
(2) Redefine u0 to be zero on [0, ε+2δ] and [R−2δ,R], and then mollify it with Jδ

to get the smooth approximate initial velocity denoted by uε,δ
0 (r). Note that uε,δ

0 (r)
is identically zero on a neighborhood of r = ε and r = R.

The resulting data (ρε,δ0 , uε,δ
0 ) then satisfy the hypotheses (2.16)–(2.17) (uniformly

bounded on ε and δ). For any fixed ε > 0, we denote the corresponding initial data
in Lagrangian coordinates by (ρδ0, u

δ
0). Then ρδ0 ∈ C1+β [0, 1] and uδ

0 ∈ C2+β [0, 1] for
any 0 < β < 1. Moreover,

ρδ0 → ρ0 + ε in W 1,2([0, 1]), uδ
0 → u0 in L2([0, 1])(4.2)

as δ → 0 and

uδ
0(0, τ) = uδ

0(1, τ) = 0.

Now consider the initial-boundary-value problem (4.1) with the initial data (ρ0 +
ε, u0) replaced by (ρδ0, u

δ
0). Note, however, that ε is fixed and positive at this stage of

the argument, so that there are no singularities in the equations, and the construc-
tion of these approximate solutions is essentially an one-dimensional problem. For
this problem one can apply the standard argument (see [12, 16], for instance) to ob-
tain the existence of a unique local solution (ρδ, uδ), with ρδ, ρδx, ρ

δ
τx, u

δ, uδ
x, u

δ
τ , u

δ
xx ∈

Cβ,β/2([0, 1]× [0, T ∗]) for some T ∗ > 0. It follows from Lemmas 3.2–3.5 and (4.2) that
ρδ is bounded from below and above, (uδ)2 and ρδx are bounded in L∞([0, T ];L2), and
uδ
x is bounded in L2([0, T ];L2) for any T > 0 because of ε < r < R. Furthermore, one

can differentiate the equations (4.1) and apply the energy method to derive bounds of
high-order derivatives of (ρδ, uδ). Then we can apply the Schauder theory for linear
parabolic equations to conclude that the Cβ,β/2([0, 1] × [0, T ])-norms of ρδ, ρδx, ρδτx,
uδ, uδ

x, uδ
τ and, uδ

xx are bounded a priorily. Therefore, we can continue the local
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solution globally in time and obtain that there exists a unique global solution (ρδ, uδ)
of (4.1) with the initial data (ρ0, u0) replaced by (ρδ0, u

δ
0) such that, for any T > 0,

ρδ, ρδx, ρ
δ
τx, u

δ, uδ
x, u

δ
τ , u

δ
xx ∈ Cβ,β/2([0, 1] × [0, T ])

for some 0 < β < 1, and ρδ > 0 on [0, 1] × [0, T ]. This can be done in a similar way
as in [14]. Thus the solution, which can be denoted as (ρε,δ, uε,δ), satisfies (4.1). By
transforming it into Euler coordinates again by

x =

∫ r

ε

ρ(r, τ)r2dr, τ = t,

we can obtain the solutions (ρε,δ(r, t), uε,δ(r, t)) to the approximate system (3.3)–(3.4),
and consequently Lemma 3.1 holds for these approximate solutions.

4.2. The passage to limit. So far, (ρε,δ, uε,δ) are defined on ε ≤ r ≤ R. To
take the limit {εj , δj} → 0, we extend ρεj ,δj (r, t), uεj ,δj (r, t) to the whole domain Ω
in the following way:

(4.3) ρ̃εj ,δj =

{
ρεj ,δj (r, t), r ∈ [εj , R],

ρεj ,δj (εj , t), r ∈ [0, εj ],

(4.4) ũεj ,δj =

{
uεj ,δj (r, t), r ∈ [εj , R],

0, r ∈ [0, εj ].

For simplicity, we denote the obtained approximate solutions {ρ̃εj ,δj , ũεj ,δj} by {ρj , uj}.
Let ρj(x, t) = ρj(r, t),Uj(x, t) = uj(r, t)x

r , and denote Ωε = Ω\Bε(0) for ε > 0 and
Ω 1

n
= Ω\B 1

n
(0) for n = 1, 2, . . . .

The following then follows from Lemma 3.1.
Lemma 4.1. There exists a constant C independent of ε and δ such that

sup
t∈[0,T ]

∫
Ωεj

ρj(x, t)dx ≤ C,(4.5)

sup
t∈[0,T ]

∫
Ωεj

(
1

2
ρj |Uj |2 +

1

γ − 1
(ρj)γ

)
(x, t)dx +

∫ T

0

∫
Ωεj

ρj |∇Uj |2(x, t)dxdt

+
1

4

∫ T

0

∫
Ωεj

ε(ρj)
3
4 |∇Uj |2(x, t)dxdt ≤ C,(4.6)

sup
t∈[0,T ]

∫
Ωεj

1

2
ρj

∣∣∣∣Uj + ∇ log ρj +
3

4
ε(ρj)−

5
4∇ρj

∣∣∣∣
2

(x, t)dx

+

∫ T

0

∫
Ωεj

(
4

γ
|∇(ρj)

γ
2 |2 +

48εγ

(4γ − 1)2
|∇(ρj)

4γ−1
8 |2

)
(x, t)dxdt ≤ C.(4.7)

Moreover, the following uniform estimate holds:

sup
t∈[0,T ]

(
‖
√
ρj‖H1(Ω) +

∫
Ω

ρj |Uj |2
)

≤ C.(4.8)

Proof. (4.5)–(4.7) follow directly from Lemma 3.1. It suffices to prove (4.8).
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First, it holds that

sup
t∈[0,T ]

‖∇
√
ρj‖L2(Ω) ≤ C,(4.9)

where C is a constant independent of ε and δ. Indeed, in view of the extension (4.3),
one has

∂i
√
ρj(x, t) =

{
∂i
√
ρj , x ∈ Ωεj , t ∈ [0, T ],

0, x ∈ Bεj , t ∈ [0, T ]

for i = 1, 2, 3. Consequently, (4.9) follows from (4.6) and (4.7).
Next, we verify that

sup
t∈[0,T ]

‖
√
ρj‖L2(Ω) ≤ C,(4.10)

where C is a constant independent of ε and δ.
Thanks to the upper bound estimates of the density (3.9) and (4.5), one has

sup
t∈[0,T ]

∫ R

0

ρjr2dr ≤ sup
t∈[0,T ]

∫ εj

0

ρjr2dr + sup
t∈[0,T ]

∫ R

εj

ρjr2dr

≤ C

ε2
j

∫ εj

0

r2dr + C ≤ Cεj
3

+ C ≤ C

for all 0 < εj < R, which yields (4.10). The first part of (4.8) follows from (4.9) and
(4.10). The other part of (4.8) can be checked easily, and the proof of the lemma is
finished.

Remark 4.1. Compared with the usual zero extensions in [10, 12], the extensions

(4.3) and (4.4) keep the L∞(0, T ;H1(Ω))-norm of
√
ρj , which will be used later.

Proposition 4.1. There exists a subsequence of {ρj}, still denoted by itself, such
that, as j → ∞,

ρj(x, t) → ρ(x, t)(4.11)

strongly in C([0, T ], L3/2(Ω)). Moreover, ρ(x, t) = ρ(r, t) is a spherically symmetric
function.

Proof. It follows from (4.8) that
√

ρj is bounded in L∞(0, T ;Lq(Ω)) for q ∈
[2, 6]. Thus ρj is bounded in L∞(0, T ;L3(Ω)), and ρjUj =

√
ρj
√
ρjUj is bounded in

L∞(0, T ;L3/2(Ω)) due to (4.8). The continuity equation yields that ∂tρ
j is bounded

in L∞(0, T ;W−1,3/2(Ω)). Moreover, since ∇ρj = 2
√
ρj∇

√
ρj , we have that ∇ρj is

bounded in L∞(0, T ;L3/2(Ω)). Hence (4.11) is obtained thanks to the Aubin–Lions
lemma. Clearly, ρ(x, t) = ρ(r, t) is spherically symmetric.

Proposition 4.2. Suppose that 1 < γ < 3. Then (ρj)γ converges to ργ strongly
in L1((0, T );L1(Ω)).

Proof. This follows directly from the fact that ρj is bounded in L∞(0, T ;L3(Ω))
and (4.12).

The following proposition will enable us to take the limit in the nonlinear con-
vection term.

Proposition 4.3. If 1 < γ < 3 and∫ R

0

ρ0|u0|2+ηr2dr ≤ C,(4.12)
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then the following estimate is true:

d

dt

∫ R

εj

ρj
|uj |2+η

2 + η
r2dr +

∫ R

εj

(
3

4
ρj +

ε

8
(ρj)

3
4

)
|uj |η(uj

r)
2r2dr

+

∫ R

εj

(
7

4
ρj +

3ε

8
(ρj)

3
4

)
|uj |η+2dr ≤ C

for some small η ∈ (0, 1). In particular,

∫
Ωεj

ρj
|Uj |2+η

2 + η
dx ≤ C,(4.13)

where Ωεj = Ω \Bεj (0) and C is a constant independent of ε and δ.
To prove Proposition 4.3, we need the following lemma.
Lemma 4.2. The pressure (ρj)γ is bounded in L

5
3 ((0, T );L

5
3 (Ωεj )).

Proof. It follows from Lemma 4.1 that (ρj)γ/2 ∈ L2(0, T ;H1(Ωεj )), and hence
(ρj)γ ∈ L1(0, T ;L3(Ωεj )). Since (ρj)γ is bounded in L∞(0, T ;L1(Ωεj )) by (4.6), the
Hölder inequality gives

‖(ρj)γ‖L5/3((0,T )×Ωεj
) ≤ ‖(ρj)γ‖2/5

L∞(0,T ;L1(Ωεj
))‖(ρ

j)γ‖3/5
L1(0,T ;L3(Ωεj

)) ≤ C,

where C is independent of ε and δ. This finishes the proof of the lemma.
Now we can prove Proposition 4.3.
Proof of Proposition 4.3. Let η ∈ (0, 1

2 ). Multiplying (3.4) by r2uj |uj |η and
integrating the resulting equation yield

∫ R

εj

ρj∂t
|uj |2+η

2 + η
r2dr +

∫ R

εj

ρjuj

(
|uj |2+η

2 + η

)
r

r2dr

+(1 + η)

∫ R

εj

(
ρj +

3εj
4

(ρj)
3
4

)
|uj |η(uj

r)
2r2dr

+

∫ R

εj

(2ρj + εj(ρ
j)

3
4 )|uj |η+2dr +

∫ R

εj

|uj |η uj |((ρj)γ)r| r2dr

≤
(
εj +

ηεj
2

)∫ R

εj

(ρj)
3
4 |uj |η+1|uj

r|rdr

≤
(εj

2
+

ηεj
4

)[∫ R

εj

(ρj)
3
4 |uj |η(uj

r)
2r2dr +

∫ R

εj

(ρj)
3
4 |uj |η+2dr

]
.

It follows that

(4.14)

∫ R

εj

ρj∂t
|uj |2+η

2 + η
r2dr +

∫ R

εj

ρjuj

(
|uj |2+η

2 + η

)
r

r2dr

+

∫ R

εj

(
ρj +

εj
8

(ρj)
3
4

)
|uj |η(uj

r)
2r2dr +

∫ R

εj

(
2ρj +

3εj
8

(ρj)
3
4

)
|uj |η+2dr

+

∫ R

εj

|uj |ηuj((ρj)γ)rr
2dr ≤ 0.
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Moreover, multiplying (3.3) by r2|uj |η+2

2+η and integrating by parts show that

∫ R

εj

|uj |2+η

2 + η
∂tρ

jr2dr −
∫ R

εj

ρjuj

(
|uj |2+η

2 + η

)
r

r2dr = 0.(4.15)

Summing over (4.14) and (4.15) leads to

d

dt

∫ R

εj

ρj
|uj |2+η

2 + η
r2dr +

∫ R

εj

(
ρj +

εj
8

(ρj)
3
4

)
|uj |η(uj

r)
2r2dr

+

∫ R

εj

(
2ρj +

3εj
8

(ρj)
3
4

)
|uj |η+2dr ≤

∣∣∣∣∣
∫ R

εj

|uj |η uj |((ρj)γ)r| r2dr

∣∣∣∣∣ .(4.16)

Noting that∣∣∣∣∣
∫ R

εj

|uj |η uj |((ρj)γ)r| r2dr

∣∣∣∣∣
≤ (1 + η)

∣∣∣∣∣
∫ R

εj

|uj |η|uj
r|(ρj)γr2dr

∣∣∣∣∣ + 2

∫ R

εj

|uj |η+1(ρj)γrdr

≤ 1

4

∫ R

εj

ρj |uj |η|uj
r|2r2dr + C

∫ R

εj

(ρj)2γ−1|uj |ηr2dr + 2

∫ R

εj

|uj |η+1(ρj)γrdr

≤ 1

4

∫ R

εj

ρj |uj |η|uj
r|2r2dr + C

∫ R

εj

((ρj)2γ−1− η
2 )

2
2−η r2dr + C

+ C(R)

∫ R

εj

(ρj)(γ−
η+1
η+2 )(2+η)r2dr +

1

4

∫ R

εj

ρj |uj |2+ηdr,

we obtain from (4.16) that

d

dt

∫ R

εj

ρj
|uj |2+η

2 + η
r2dr +

∫ R

εj

(
3

4
ρj +

εj
8

(ρj)
3
4

)
|uj |η(uj

r)
2r2dr

+

∫ R

εj

(
7

4
ρj +

3εj
8

(ρj)
3
4

)
|uj |η+2dr

≤ C

∫ R

εj

(ρj)(2γ−1− η
2 ) 2

2−η r2dr + C(R)

∫ R

εj

(ρj)(γ−
η+1
η+2 )(2+η) r2dr + C.(4.17)

Using Lemma 4.2, one can check easily that the right-hand side of (4.17) is bounded
for small η under the condition

2γ − 1 <
5

3
γ,

which is satisfied if 1 < γ < 3. The proof of the proposition is finished.
It is noted that (4.12) is satisfied due to (2.17). Moreover, it follows from (4.4)

and (4.13) that

∫
Ω

ρj
|Uj |2+η

2 + η
dx ≤ C.(4.18)
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Consequently, since

∫
Ω

(ρj |Uj |2)1+ζdx ≤
(∫

Ω

ρj |Uj |2+ηdx

) 2+2ζ
2+η

(∫
Ω

(ρj)1+
(2+η)ζ
η−2ζ dx

) η−2ζ
2+η

,

and as ζ is small enough, we deduce the following.
Corollary 4.1. If 1 < γ < 3, then

√
ρjUj is bounded in L∞(0, T ;L2+2ζ(Ω))

for some small ζ > 0.
Thanks to Propositions 4.1 and 4.3, Corollary 4.1, and Lemmas 4.4 and 4.6 in

[25], we have the following.
Proposition 4.4. (1) Up to a subsequence, mj = ρjUj converges strongly in

L1((0, T ) × Ω 1
n
) and L2(0, T ;L1+ζ(Ω 1

n
)) to some m(x, t) for any positive integer n.

(2)
√
ρjUj converges strongly in L2((0, T )×Ω 1

n
) to m√

ρ (defined to be zero when

m = 0) for any positive integer n. In particular, m(x, t) = 0 a.e. on {ρ(x, t) = 0},
and there exists a function U(x, t) such that

m(x, t) = ρ(x, t)U(x, t).

This proposition can be proved exactly as in [22], and the details will be omitted.
The following then follows from Propositions 4.1 and 4.4.
Corollary 4.2. Let mj(r, t) = ρjuj(r, t). Then
(1) there exists a function m(r, t) such that m(x, t) = m(r, t)x

r and mj(r, t) =

ρjuj(r, t) converges to m(r, t) strongly in L2(0, T ;L1+ζ
loc ((0, R); r2dr));

(2) there exists a function u(r, t) such that U(x, t) = u(r, t)x
r and the quantity√

ρjuj converges strongly in L2((0, T );L2
loc((0, R); r2dr)) to m√

ρ (defined to

be zero when m = 0).
Proof. Since mj(x, t) = mj(r, t)x

r , so mj(r, t) = |mj(x, t)| converges almost every-
where to m(r, t) = |m(x, t)| due to the fact that mj(x, t) converges almost everywhere
to m(x, t) by the first part of Proposition 4.4. Therefore m(x, t) = m(r, t)x

r . More-
over, noting that ρ(x, t) = ρ(r, t) by Proposition 4.1 and m(x, t) = ρ(x, t)U(x, t) by
Proposition 4.4, we obtain

m(r, t)
x

r
= ρ(r, t)U(x, t).

Therefore there exists a spherically function u(r, t) such that m(r, t) = ρu(r, t).
The rest of the corollary follows directly from Proposition 4.4, and the proof of

the corollary is finished.
Now we show that (ρ,U) obtained in Propositions 4.1–4.4 satisfy the weak form

of (2.1), that is, (2.13) holds.
Proposition 4.5. Let (ρ,U) be the limit described as in Propositions 4.1–4.4.

Then (2.13) holds. Moreover, ρ ∈ C([0,∞);W 1,∞(Ω)∗).
Proof. We first derive the weak form of (3.3). For any ϕ(r, t) ∈ C1([0, R]×[t1, t2]),

it follows from (3.3), (4.3), and (4.4) that

∫ R

0

ρjϕr2dr|t2t1 −
∫ t2

t1

∫ R

0

(ρjϕt + ρjujϕr)r
2drdt

=

∫ εj

0

ρjϕr2dr|t2t1 −
∫ t2

t1

∫ εj

0

ρjϕtr
2drdt,(4.19)
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Due to Proposition 4.1, it holds that∫ R

0

ρjϕr2dr →
∫ R

0

ρϕr2dr(4.20)

and ∫ t2

t1

∫ R

0

ρjϕtr
2drdt →

∫ t2

t1

∫ R

0

ρϕtr
2drdt(4.21)

as j → ∞.
It follows from (4.8) that

√
ρj is bounded in L∞(0, T ;Lq(Ω)) for q ∈ [2, 6]. Thus√

ρj (or its subsequence) converges strongly in L2(0, T ;L2(Ω)) to
√
ρ due to Proposi-

tion 4.1. Moreover, Corollary 4.1 yields that
√
ρjuj is bounded in L∞(0, T ;L2+2ζ(Ω))

for some small ζ > 0, and Corollary 4.2 yields that
√
ρjuj converges almost every-

where to
√
ρu. Hence

√
ρjuj converges strongly to

√
ρu in L2(0, T ;L2(Ω)). So∫ t2

t1

∫ R

0

ρjujϕrr
2drdt =

∫ t2

t1

∫ R

0

√
ρj(

√
ρjuj)ϕrr

2drdt →
∫ t2

t1

∫ R

0

√
ρ(
√
ρu)ϕrr

2drdt =

∫ t2

t1

∫ R

0

ρuϕrr
2drdt(4.22)

as j → ∞.
Moreover, we have

∣∣∣∣ max
t∈[0,T ]

∫ εj

0

ρjϕr2dr

∣∣∣∣ ≤ C max
t∈[0,T ]

(∫ R

0

(ρj)
3
2 r2dr

) 2
3

(εj)
1
3

≤ C(εj)
1
3 → 0(4.23)

and, similarly, ∣∣∣∣
∫ t2

t1

∫ εj

0

ρjϕtr
2drdt

∣∣∣∣
≤ C(εj)

1
3 → 0(4.24)

as j → ∞.
Therefore, in view of (4.20)–(4.24), by taking limit j → ∞ in (4.19), we obtain∫ R

0

ρϕr2dr|t2t1 =

∫ t2

t1

∫ R

0

(ρϕt + ρuϕr)r
2drdt.(4.25)

Now let ζ : Ω̄ × [t1, t2] → R be any C1 function. Define

ϕ(r, t) :=

∫
S

ζ(ry, t)dSy,

where the integral is over the unit sphere S = S2 in R
3. Then it follows from (4.25)

that ∫
Ω

ρζ(x, ·)dx|t2t1 =

∫ t2

t1

∫
Ω

{ρζt + ρ(x, t)U · ∇ζ}(x, t)dxdt.

This establishes the weak form of the mass equation.
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Now we prove that ρ ∈ C([0,∞);W 1,∞(Ω)∗). If φ is a C1 function of x, then by
the continuity equation we have∣∣∣∣

∫
Ω

ρφdx|t2t1

∣∣∣∣ =

∣∣∣∣
∫ t2

t1

∫
Ω

ρ(x, t)U · ∇φdxdt

∣∣∣∣
≤ ‖∇φ‖L∞

∫ t2

t1

(∫
Ω

ρdx

)1/2 (∫
Ω

ρ|U|2dx
)1/2

dt

≤ C(T )‖∇φ‖L∞ |t2 − t1|.

This implies that

‖ρ(·, t2) − ρ(·, t1)‖W 1,∞(Ω)∗ ≤ C(T )|t2 − t1|

for all t1, t2 ∈ [0, T ]. The proof of the proposition is complete.
In the following, we prove that (ρ,U) satisfies (2.14).
Proposition 4.6. Let (ρ,U) be the limit described as in Propositions 4.1–4.4.

Then (2.14) holds.
Proof. Let φ be a C2-function on [0, R] × [0, T ] with φ(0, t) = φ(R, t) = 0 for all

t ∈ [0, T ]. Then it follows from (3.4) that

∫ R

εj

ρj0u
j
0φ(r, 0)r2dr +

∫ T

0

∫ R

εj

(
ρjujφt + ρj(uj)2φr + (ρj)γ

(
φr +

2φ

r

))
r2drdt

−
∫ T

0

∫ R

εj

ρj
(
uj
rφr +

2ujφ

r2

)
r2drdt =

∫ T

0

∫ R

εj

3

4
εj(ρ

j)
3
4

(
uj
r +

2uj

r

)(
φr +

2

r
φ

)
r2drdt

−
∫ T

0

∫ R

εj

εj(ρ
j)

3
4

(
2uj

rφ

r
+

2ujφr

r
+

2

r2
ujφ

)
r2drdt + εjb,(4.26)

where

εjb =

∫ T

0

{[
ρj +

3

4
εj(ρ

j)
3
4uj

r

]
(εj , t)ε

2
jφ(εj , t) − ε2

j (ρ
j)γ(εj , t)φ(εj , t)

}
dt.(4.27)

We claim that

lim
εj→0+

εjb = 0.(4.28)

To check this, we drop the superscript j and denote εj by ε for convenience. First,
we show that

lim
ε→0+

ε2

∫ T

0

ργ(ε, t)φ(ε, t)dt = 0.(4.29)

Indeed, note that∣∣∣∣∣ε2

∫ T

0

ργ(ε, t)φ(ε, t)dt

∣∣∣∣∣ ≤ max
0≤t≤T

|φ(ε, t)|
∫ T

0

ε2ργ(ε, t)dt

≤ max
0≤t≤T

|φ(ε, t)|
[∫ T

0

∫ R

ε

ργ(r, t)r2drdt +

∫ T

0

∫ R

ε

|∂r(ργ)(r, t)|r2drdt

]
.
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Since ∫ T

0

∫ R

ε

ργ(r, t)r2drdt ≤ C0

and ∫ T

0

∫ R

ε

|∂r(ργ)|r2drdt = 2

∫ T

0

∫ R

ε

|ρ
γ
2 ||∂r(ρ

γ
2 )|r2drdt

≤
∫ T

0

∫ R

ε

ργr2drdt +

∫ T

0

∫ R

ε

|∂r(ρ
γ
2 )|2r2drdt ≤ C0

due to (4.6) and (4.7), (4.29) follows from the fact that limε→0+ max0≤t≤T |φ(ε, t)| = 0
since φ(0, t) ≡ 0 and φ ∈ C2. Next, we show that

lim
ε→0+

∫ T

0

(ρur)(ε, t)φ(ε, t)ε2dt = 0.(4.30)

Thanks to (3.3) and the boundary condition that u(ε, t) = 0, one has

ρt(ε, t) + ρ(ε, t)∂ru(ε, t) = 0.

Thus,

lim
ε→0+

∫ T

0

(ρur)(ε, t)φ(ε, t)ε2dt = lim
ε→0+

(
−ε2

∫ T

0

∂tρ(ε, t)φ(ε, t)dt

)

= lim
ε→0+

[
ε2ρ0(ε)φ(ε, 0) + ε2

∫ T

0

ρ(ε, t)∂tφ(ε, t)dt

]
= lim

ε→0+

[
ε2

∫ T

0

ρ(ε, t)∂tφ(ε, t)dt

]
.

On the other hand, it is easy to get

ε2

∣∣∣∣∣
∫ T

0

ρ(ε, t)∂tφ(ε, t)dt

∣∣∣∣∣≤ ε2− 2
γ

(
ε2

∫ T

0

ργ(ε, t)dt

) 1
γ

||∂tφ(ε, ·)||
L

γ
γ−1

≤ C0 ε
2− 2

γ → 0

as ε → 0+. Hence (4.30) holds. Similarly, one can show that

lim
ε→0+

3

4
ε

∫ T

0

ε2
(
ρ

3
4ur

)
(ε, t)φ(ε, t) = 0.(4.31)

Indeed, it follows from (3.3) and u(ε, t) = 0 that

3

4

∫ T

0

ε3
(
ρ

3
4ur

)
(ε, t)φ(ε, t)dt = ε3ρ

3
4
0 (ε)φ(ε, 0) +

∫ T

0

ε3ρ
3
4 (ε, t)∂tφ(ε, t)dt.

Since

ε3

∣∣∣∣∣
∫ T

0

ρ
3
4 (ε, t)∂tφ(ε, t)dt

∣∣∣∣∣ ≤ ε3( 2γ−1
2γ )

(
ε2

∫ T

0

ργ(ε, t)dt

) 3
4γ

||∂tφ(ε, ·)||
L

4γ
4γ−3

,

(4.31) follows. Now (4.28) is a consequence of (4.29)–(4.31).
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Now, for any ψ = (ψ1, ψ2, ψ3) ∈ C2(Ω̄ × [0, T ]) satisfying ψ(x, t) = 0 for all
x ∈ ∂Ω and ψ(x, T ) = 0, we set

φ(r, t) =

∫
S

ψ(ry, t) · y dSy,(4.32)

with S = S2 being the unit sphere in R
3, and transform the terms of (4.26) into

integrals in Cartesian coordinates. Noting that

(r2φ)r = ∂r

∫
|x|≤r

divψ(x, t)dx = r2

∫
S

(ψi)xi(ry, t)dSy,

we have by direct calculations that

−
∫ T

0

∫ R

εj

ρj
(
uj
rφr +

2ujφ

r2

)
r2drdt

=−
∫ T

0

∫
Ωεj

ρj∇(Uj)i : ∇ψidxdt.

Similarly, one has∫ T

0

∫ R

εj

3

4
εj(ρ

j)
3
4

(
uj
r +

2uj

r

)(
φr +

2

r
φ

)
r2drdt =

∫ T

0

∫
Ωεj

1

4
εj(ρ

j)
3
4 div Uj divψdxdt,

and

−
∫ T

0

∫ R

εj

εj(ρ
j)

3
4

(
2
uj
rφ

r
+ 2

ujφr

r
+

2

r2
ujφ

)
r2drdt = −

∫ T

0

∫
Ωεj

εj(ρ
j)

3
4∇Uj : ∇ψdxdt.

Thus, it follows from (4.26) that

∫
Ωεj

ρj0U
j
0 · ψ(0, x)dx +

∫ T

0

∫
Ωεj

{√
ρj(

√
ρjUj) · ∂tψ +

√
ρjUj ⊗

√
ρjUj : ∇ψ

}
dxdt

+

∫ T

0

∫
Ωεj

(ρj)γdivψdxdt−
∫ T

0

∫
Ωεj

ρj∇Uj : ∇ψdxdt

=
1

4
εj

∫ T

0

∫
Ωεj

(ρj)
3
4 divUj divψdxdt− εj

∫ T

0

∫
Ωεj

(ρj)
3
4∇Uj : ∇ψdxdt + εjb.

Thanks to (4.4), one has

∫
Ω

ρj0U
j
0 · ψ(0, ·)dx +

∫ T

0

∫
Ω

{√
ρj(

√
ρjUj) · ∂tψ +

√
ρjUj ⊗

√
ρjUj : ∇ψ

}
dxdt

+

∫ T

0

∫
Ω

(ρj)γdivψdxdt−
∫ T

0

∫
Ω

ρj∇Uj : ∇ψdxdt

=

∫ T

0

∫
Bεj

(ρj)γdivψdxdt +
εj
4

∫ T

0

∫
Ωεj

(ρj)
3
4 divUj divψdxdt

−εj

∫ T

0

∫
Ωεj

(ρj)
3
4∇Uj : ∇ψdxdt + εjb.(4.33)
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We proceed to show that each term on the left-hand side of (4.33) converges to a
corresponding term in (2.14) and each term on the right-hand side of (4.33) vanishes
as j → ∞.

First, the proof of the convergence of ρjUjφt is similar to that of (4.22).
Next, it holds that∣∣∣∣∣

∫ T

0

∫
Ω

[√
ρjUj ⊗

√
ρjUj −√

ρU ⊗√
ρU

]
: ∇ψdxdt

∣∣∣∣∣
≤‖∇ψ‖L∞

∫ T

0

∫
B 1

n

(|
√
ρjUj |2 +

√
ρ|U|2)dxdt

+

∣∣∣∣∣∣
∫ T

0

∫
Ω 1

n

[√
ρjUj ⊗

√
ρjUj − (

√
ρU ⊗√

ρU) : ∇ψ
]
dxdt

∣∣∣∣∣∣(4.34)

for any positive integer n.
By virtue of Proposition 4.3, one has

∫ T

0

∫
B 1

n

|
√
ρjUj |2dxdt≤

⎛
⎝∫ T

0

∫
B 1

n

ρjdxdt

⎞
⎠

η
2+η

⎛
⎝∫ T

0

∫
B 1

n

ρj |Uj |2+ηdxdt

⎞
⎠

2
2+η

≤ C

⎛
⎝∫ T

0

∫
B 1

n

ρjdxdt

⎞
⎠

η
2+η

.

As proved in Proposition 4.5, the following convergence holds:

∫ T

0

∫
B 1

n

ρjdxdt≤ C(T )

⎛
⎝∫ T

0

∫
B 1

n

(ρj)3dxdt

⎞
⎠

1
3

|B 1
n
| 23

≤ C(T )|B 1
n
| 23 → 0(4.35)

as n → ∞, where (4.8) has been used. Consequently, it holds that∫ T

0

∫
B 1

n

|
√
ρjUj |2dxdt → 0,

uniformly on j, as n → ∞. Also,∫ T

0

∫
B 1

n

|√ρU|2dxdt ≤ lim inf
j→∞

∫ T

0

∫
B 1

n

|
√
ρjUj |2dxdt → 0

as n → ∞. It follows from (4.34) and Proposition 4.4 that∫ T

0

∫
Ω

√
ρjUj ⊗

√
ρjUj : ∇ψdxdt →

∫ T

0

∫
Ω

√
ρU ⊗√

ρU : ∇ψdxdt(4.36)

as j → ∞. Concerning the pressure term, Proposition 4.2 implies that∫ T

0

∫
Ω

(ρj)γ divψ dxdt →
∫ T

0

∫
Ω

ργ divψ dxdt, j → ∞.(4.37)
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Concerning the diffusion terms on the left-hand side of (4.33), we obtain after
integration by parts that

∫ T

0

∫
Ω

ρj∇Uj : ∇ψdxdt = −
∫ T

0

∫
Ω

√
ρj(

√
ρjUj) · Δψdxdt

−2

∫ T

0

∫
Ω

(
√
ρjUj) · (∇

√
ρj · ∇)ψdxdt.(4.38)

Using Propositions 4.2–4.4, one can prove the convergence for the first term on
the right-hand side of (4.38) as follows:

∫ T

0

∫
Ω

√
ρj(

√
ρjUj)Δφdxdt →

∫ T

0

∫
Ω

√
ρ(
√
ρU)Δφdxdt(4.39)

as j → ∞, in a similar way as in the proof of (4.22).
Due to Lemma 4.1, it holds that

‖∇
√
ρj‖L∞(0,T ;L2(Ω)) ≤ C,

and hence there exists a function g ∈ L2(0, T ;L2(Ω)) such that

∇
√
ρj ⇀ g weakly in L2(0, T ;L2(Ω)).

Meanwhile, by Proposition 4.1, up to a subsequence,
√
ρj converges almost every-

where to
√
ρ. Combining the fact that

√
ρj is uniformly bounded in L∞(0, T ;L6(Ω)),

one has √
ρj ⇀

√
ρ weakly in L2(0, T ;L2(Ω)),

and hence g = ∇√
ρ. Consequently, it yields

∇
√

ρj ⇀ ∇√
ρ weakly in L2(0, T ;L2(Ω)).

Due to Propositions 4.3 and 4.4, we finally obtain

−2

∫ T

0

∫
Ω

(
√
ρjUj) · (∇

√
ρj · ∇)ψdxdt →

−2

∫ T

0

∫
Ω

(
√
ρU) · (∇√

ρ · ∇)ψdxdt.(4.40)

Substituting (4.39) and (4.40) into (4.38) yields

∫ T

0

∫
Ω

ρj∇Uj : ∇ψdxdt → 〈ρ∇U,∇ψ〉

≡−
∫ T

0

∫
Ω

√
ρ(
√
ρU) · Δψdxdt− 2

∫ T

0

∫
Ω

(
√
ρU) · (∇√

ρ · ∇)ψdxdt.(4.41)

Up to now, we have proved that the terms on the left-hand side of (4.33) converge
to corresponding ones in (2.14) as j → ∞. In the following, we prove that each term
on the right-hand side of (4.33) vanishes as j → ∞.
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Since
√

ρj is uniformly bounded in L∞(0, T ;L6(Ω)) due to (4.8), it holds that∣∣∣∣∣
∫ T

0

∫
Bεj

(ρj)γdivψdxdt

∣∣∣∣∣ ≤ C

(∫ T

0

∫
Bεj

(ρj)3dxdt

) γ
3

|Bεj |
3−γ

3 ≤ C|Bεj |
3−γ

3(4.42)

for 1 < γ < 3, which tends to zero as εj → 0.
With the help of Lemma 4.1 again, one has∣∣∣∣∣εj4

∫ T

0

∫
Ωεj

(ρj)
3
4 divUjdivψdxdt

∣∣∣∣∣
≤C

√
εj

(
εj

∫ T

0

∫
Ωεj

(ρj)
3
4 |∇Uj |2dxdt

) 1
2
(∫ T

0

∫
Ωεj

(ρj)
3
4 dxdt

) 1
2

≤C
√
εj .(4.43)

Similarly, one has ∣∣∣∣∣εj
∫ T

0

∫
Ωj

(ρj)
3
4∇Uj : ∇ψdxdt

∣∣∣∣∣ ≤ C
√
εj .(4.44)

It follows from (4.28) and (4.42)–(4.44) that each term on the right hand side of
(4.33) converges to 0 as j → ∞.

Taking the limit j → ∞ in (4.33), we finish the proof of the proposition.
Now we are ready to prove Theorem 2.1.
Proof of Theorem 2.1. The weak forms of the mass and momentum equations

(2.13) and (2.14) follow from Propositions 4.5 and 4.6, respectively. The first part in
the definition of the weak solutions (see Definition 2.1) follows from Lemmas 3.2 and

4.1 and Proposition 4.5. Moreover, ρ ∈ C([0, T ];L
3
2 (Ω)) and the equation of mass

conservation (2.20) are obtained by Propositions 4.1 and 4.5. The estimate (2.21) is
due to Lemma 4.1 and (4.18). Finally, the radial symmetry of the weak solutions is a
consequence of Corollary 4.2. The proof of Theorem 2.1 is thus finished.
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WAVE-NUMBER-EXPLICIT BOUNDS IN
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Abstract. In this paper we consider the problem of scattering of time-harmonic acoustic waves
by a bounded, sound soft obstacle in two and three dimensions, studying dependence on the wave
number in two classical formulations of this problem. The first is the standard weak formulation in
the part of the exterior domain contained in a large sphere, with an exact Dirichlet-to-Neumann map
applied on the boundary. The second formulation is as a second kind boundary integral equation in
which the solution is sought as a combined single- and double-layer potential. For the variational
formulation we obtain, in the case when the obstacle is starlike, explicit upper and lower bounds
which show that the inf-sup constant decreases like k−1 as the wave number k increases. We also give
an example where the obstacle is not starlike and the inf-sup constant decreases at least as fast as
k−2. For the boundary integral equation formulation, if the boundary is also Lipschitz and piecewise
smooth, we show that the norm of the inverse boundary integral operator is bounded independently
of k if the coupling parameter is chosen correctly. The methods we use also lead to explicit bounds
on the solution of the scattering problem in the energy norm when the obstacle is starlike. The
dependence of these bounds on the wave number and on the geometry is made explicit.

Key words. nonsmooth boundary, a priori estimate, inf-sup constant, Helmholtz equation,
oscillatory integral operator
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1. Introduction. In this paper we consider the classical problem of scattering
of a time-harmonic acoustic wave by a bounded, sound soft obstacle occupying a
compact set Ω ⊂ R

n (n = 2 or 3). The wave propagates in the exterior domain
Ωe = R

n \ Ω, and the boundedness of the scatterer implies that there is an R > 0
such that {x ∈ R

n : |x| > R} ⊂ Ωe. We suppose that the medium of propagation
outside Ωe is homogeneous, isotropic, and at rest, and that a time-harmonic (e−iωt

time dependence) pressure field ui is incident on Ω. Denoting by c > 0 the speed of
sound, we assume that ui is an entire solution of the Helmholtz (or reduced wave)
equation with wave number k = ω/c > 0. Then the problem we consider is to find
the resulting time-harmonic acoustic pressure field u which satisfies the Helmholtz
equation

(1.1) Δu + k2u = 0 in Ωe

and the sound soft boundary condition

(1.2) u = 0 on Γ := ∂Ωe,
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and is such that the scattered part of the field, us := u− ui, satisfies the Sommerfeld
radiation condition

(1.3)
∂us

∂r
− ikus = o(r−(n−1)/2)

as r := |x| → ∞, uniformly in x̂ := x/r. (This latter condition expresses mathemati-
cally that the scattered field us is outgoing at infinity; see, e.g., [14]). It is well known
that this problem has exactly one solution under the constraint that u and ∇u be
locally square integrable; see, e.g., [34].

The aim of this paper is to understand the behavior, in the important but difficult
high frequency limit k → ∞, of two standard reformulations of this problem. Both
reformulations are used extensively, for theoretical analysis and for practical numerical
computation. The first is a weak formulation in the bounded domain DR := {x ∈ Ωe :
|x| < R}, for some R > R0 := supx∈Ω |x|. This formulation is expressed in terms of
the Dirichlet-to-Neumann map TR, for the canonical domain GR := {x : |x| > R} with
boundary ΓR := {x : |x| = R}. The mapping TR takes Dirichlet data g ∈ C∞(ΓR) to
the corresponding Neumann data TRg := ∂v

∂r |ΓR
, where v denotes the solution to the

Helmholtz equation in GR which satisfies the Sommerfeld radiation condition and the
boundary condition v = g on ΓR. It is standard that the mapping TR extends to a
bounded map TR : H1/2(ΓR) → H−1/2(ΓR).

Let VR denote the closure of {v|DR
: v ∈ C∞

0 (Ωe)} ⊂ H1(DR) in the norm of
H1(DR). It is well known (e.g., [39]), and follows easily by integration by parts, that
u satisfies the scattering problem if and only if the restriction of u to DR satisfies the
following variational problem: find u ∈ VR such that

(1.4) b(u, v) = G(v), v ∈ VR.

Here G is an antilinear functional that depends on the incident field (for details see
section 3), while b(·, ·) is the sesquilinear form on VR × VR defined by

(1.5) b(u, v) :=

∫
DR

(∇u · ∇v̄ − k2uv̄) dx−
∫

ΓR

γv̄TRγu ds,

where γ : VR → H1/2(ΓR) is the usual trace operator. Equation (1.4) is our first
standard reformulation of the scattering problem.

To introduce our second reformulation, let Φ(x, y) denote the standard free-space
fundamental solution of the Helmholtz equation given, in the two-dimensional (2D)
and three-dimensional (3D) cases, by

Φ(x, y) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i

4
H

(1)
0 (k|x− y|), n = 2,

eik|x−y|

4π|x− y| , n = 3,

for x, y ∈ R
n, x �= y. It was proposed independently by Brakhage and Werner [4],

Leis [33], and Panich [40], as a means to obtain an integral equation uniquely solvable
at all wave numbers, to look for a solution to the scattering problem in the form of
the combined single- and double-layer potential

(1.6) us(x) :=

∫
Γ

∂Φ(x, y)

∂ν(y)
ϕ(y) ds(y) − iη

∫
Γ

Φ(x, y)ϕ(y) ds(y), x ∈ Ωe,
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for some nonzero value of the coupling parameter η ∈ R. (In this equation ∂/∂ν(y)
is the derivative in the normal direction, the unit normal ν(y) directed into Ωe.) It
follows from standard boundary trace results for single- and double-layer potentials
that us, given by (1.6), satisfies the scattering problem if and only if ϕ satisfies a
second kind boundary integral equation on Γ (see section 4 for details). This integral
equation, in operator form, is

(1.7) (I + K − iηS)ϕ = 2g,

where I is the identity operator, S and K are single- and double-layer potential
operators, defined by (4.1) and (4.2) below, and g := −ui|Γ is the Dirichlet data for
the scattered field on Γ.

Choosing η �= 0 ensures that (1.6) is uniquely solvable. Precisely,

A := I + K − iηS

is invertible as an operator on C(Γ) when Γ is sufficiently smooth, e.g., of class C2

(see [4] or [14]). The case of nonsmooth (Lipschitz) Γ has been considered recently in
[9] (see also [37]), where it is shown that A is invertible as an operator on the Sobolev
space Hs(Γ) for 0 ≤ s ≤ 1.

While it is established that each of these formulations is well-posed, precisely that
A−1 is a bounded operator on Hs(Γ), 0 ≤ s ≤ 1, in the case of (1.6), and that the
sesquilinear form b(·, ·) satisfies the inf-sup condition, that

(1.8) α := inf
0 �=u∈VR

sup
0 �=v∈VR

|b(u, v)|
‖u‖VR

‖v‖VR

> 0,

in the case of the formulation (1.4), there is little information in the literature on how
the stability constants ‖A−1‖ and α depend on k, particularly in the limit as k → ∞.

This lack of theoretical understanding is unfortunate for a number of reasons. In
the first place, both formulations (and similar formulations for other boundary condi-
tions on Γ) are used extensively for numerical computation. Much research in recent
years has been aimed at efficient solvers in the difficult high frequency case, where
the scatterer Γ, and thus the region DR, are large in diameter compared to the wave-
length, so that the solution u is highly oscillatory and standard discretization methods
require very many degrees of freedom. This effort has included many important de-
velopments for the solution of (1.6) and similar integral equations, including higher
order boundary element or Nyström schemes (e.g., [22]), fast multipole methods (e.g.,
[17]), generalized boundary element methods using oscillatory basis functions (e.g.,
[5, 32, 19]), and preconditioners for iterative solvers (e.g., [12]). Similarly, for the
solution of (1.4) at high frequency, important recent developments have included the
use of higher order hp-finite element methods (e.g., [2, 18]), the use of oscillatory basis
functions (e.g., [31] and, for methods based on more general variational formulations,
[7, 21]), and ray-based techniques (e.g., [28]).

An essential ingredient in the development of numerical analysis for these meth-
ods, in particular analysis which seeks to determine the behavior of algorithms as
the wave number increases, is an understanding of how the stability constants of nu-
merical schemes depend on the wave number. Quantification of the dependence on
k of ‖A−1‖ and α, i.e., of stability constants for the continuous formulation, is an
important step in this direction.

An additional and important practical issue in connection to (1.6) is how to choose
the parameter η. A natural criterion when using (1.6) for numerical computation is
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to choose η so as to minimize the condition number cond A := ‖A‖ ‖A−1‖ (e.g., Kress
and Spassov [30] and Kress [29]). To determine this optimal choice, information on
the dependence of ‖A−1‖ on k and η is required and will be obtained in section 4.

Given the practical importance of the questions we will address, it is not sur-
prising that a number of relevant investigations have been carried out previously. In
particular, a number of authors have studied (1.6), or related integral equations, in
the canonical case when Γ is a cylinder or sphere, i.e., Γ = ΓR for some R > 0, espe-
cially with the aim of determining η so as to minimize the L2(Γ) condition number of
A [30, 29, 3, 23, 6, 19]. Particularly relevant are the results of Giebermann [23], which
have recently been completed and put on a rigorous footing by Dominguez, Graham,
and Smyshlyaev [19]. It is shown in [19] that, in the 2D case, if the choice η = k is
made, then

(1.9) ‖A−1‖2 ≤ 1

for all sufficiently large k (we are using ‖ · ‖2 to denote both the norm on L2(Γ) and
the induced operator norm on the space of bounded linear operators on L2(Γ)). This
result is obtained as a consequence of the coercivity result that

(1.10) 
(Aψ,ψ) ≥ ‖ψ‖2
2 ∀ψ ∈ L2(Γ),

where (·, ·) is the usual scalar product on L2(Γ). The same coercivity result, but
without an explicit value for the constant, is shown in the 3D case [19], so that, for
the case when Γ is a sphere, it also holds that ‖A−1‖2 = O(1) as k → ∞. We note
that, even for these canonical cases, establishing such bounds is not straightforward
and depends on explicit calculations of the spectrum of A and careful estimates of
Bessel functions uniformly in argument and order.

Research of relevance to the wave number dependence of (1.4) has also been
carried out. Indeed an explicit estimate of the dependence of the inf-sup constant on
the wave number has been made previously in two cases. The first is what may be
thought of as a one-dimensional (1D) analogue of (1.4), with VR := {u ∈ H1(0, 1) :

u(0) = 0} and b(·, ·) defined by b(u, v) :=
∫ 1

0
u′v̄′ − k2uv̄dx− ikv̄(1)u(1). The results

for this case, due to Ihlenburg and Babuška [26, 27], summarized in [25], are obtained
via explicit calculations of the Green’s function for the corresponding boundary value
problem, i.e., the solution of u′′ + k2u = δy on (0, 1) with u(0) = 0, u′(1) = iku(1),
where δy is the delta distribution supported at y ∈ (0, 1). For this 1D problem it is
shown that, for some constants C1 ≤ C2, the inf-sup constant given by (1.8), with

‖u‖2
VR

=
∫ 1

0
|u′|2dx, satisfies

(1.11)
C1

k
≤ α ≤ C2

k
.

Closer still to the results of this paper is the work of Melenk [35] (see also Cum-
mings and Feng [16]), who considers the Helmholtz equation in a bounded domain
D, which is either convex or sufficiently smooth and starlike, with the impedance
boundary condition ∂u

∂ν = ikηu on ∂D, with the normal directed out of D and η > 0.
The sesquilinear form in their case is b : H1(D) ×H1(D) → C given by

(1.12) b(u, v) :=

∫
D

(∇u · ∇v̄ − k2uv̄) dx− ikη

∫
Γ

γv̄γu ds.
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With this definition of b(·, ·) they show that their inf-sup constant α satisfies

(1.13) α ≥ C

k
,

for some constant C > 0. The technique of argument used in [35] and [16] is to derive
a Rellich-type identity, this technique being of wide applicability in obtaining a priori
estimates for solutions of boundary value problems for strongly elliptic systems of
PDEs; see, e.g., [38, 36, 34]. This approach, essentially a carefully chosen application
of the divergence theorem, appears to depend essentially on the starlike nature of the
domain to obtain the wave-number-explicit bound (1.13).

The arguments of [35] and [16] will be one ingredient of the methods we use in
this paper. The general structure of the arguments, though little of the detail, will
borrow heavily from two of our own recent papers [10, 8], where we show results
analogous to those presented here, but for the case of rough surface scattering, i.e.,
the case where Γ is unbounded and is the graph of some bounded continuous function,
and Ωe is its epigraph. Assuming that the axes are oriented so that Γ is bounded in
the xn-direction, i.e., f− ≤ xn ≤ f+ for x = (x1, . . . , xn) ∈ Γ, for some constants f−
and f+, the analogous sesquilinear form to (1.5) for this case is given by the same
formula, provided that one redefines DR and ΓR by DR := {x ∈ Ωe : xn < R}
and ΓR := {x ∈ Ωe : xn = R}, chooses R ≥ f+, and sets TR to be the Dirichlet-
to-Neumann map for the Helmholtz equation in the upper half-space {x : xn > f+}.
This Dirichlet-to-Neumann map is given explicitly as a composition of a multiplication
operator and Fourier transform operators. With this definition of the sesquilinear form
b(·, ·) and with the inf-sup constant defined by (1.8) with

(1.14) ‖u‖VR
:=

{∫
DR

(
|∇u|2 + k2|u|2

)
dx

}1/2

,

we show in [10] the explicit bound for the rough surface problem

(1.15) α ≥ (1 +
√

2κ (κ + 1)2)−1,

where κ := k(R − f−). In [8] we study an integral equation formulation for the
same problem in the case when, additionally, the function of which Γ is the graph
is continuously differentiable. For the integral equation formulation (1.7) for this
problem (with the twist that S and K are defined with the standard fundamental
solution Φ(x, y) replaced by the Dirichlet Green’s function for a half-space containing
Ωe), we show the bound

(1.16) ||A−1||2 < 2 + 2L + 4L2 +
k

η

(
2 + 5L + 3L3/2

)
,

where L is the maximum surface slope.
We note that Claeys and Haddar [13] have recently adapted the arguments of [10]

to study 3D acoustic scattering from an unbounded sound soft rough tubular surface,
as an initial model of electromagnetic scattering by an infinite wire with a perturbed
surface. They study a weak formulation which can be written in the form (1.4) with a
sesquilinear form which can be written as (1.5), provided that one redefines ΓR to be
the infinite cylinder ΓR := {x ∈ R

3 : x2
1 + x2

2 = R2}, DR to be that part of the region
outside the tubular surface but inside ΓR, and TR to be the appropriate Dirichlet-
to-Neumann map for the Helmholtz equation in the region exterior to ΓR. Their
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emphasis is on showing well-posedness for this problem, including showing that the
inf-sup condition (1.8) holds, rather than on obtaining explicitly the k-dependence,
but their results do imply a lower bound on α, that α−1 = O(k3) as k → ∞, the same
k-dependence as for (1.15).

In this paper we will obtain analogous bounds to (1.11), (1.15), and (1.16) for
the problem of scattering by a bounded sound soft obstacle. A major obstacle in
achieving this aim is understanding the behavior of the Dirichlet-to-Neumann map
TR in sufficient detail. We address this issue in section 2, where our main new result
is Lemma 2.1, a subtle property of radiating solutions of the Helmholtz equation,
whose proof depends on a detailed understanding of monotonicity properties of Bessel
functions. This lemma is essential to our results and, we expect, will be of value in
deducing explicit bounds for a range of other wave scattering problems.

In section 3 we study the formulation (1.4). Our main results are, first, the upper
bound on the inf-sup constant (1.8), which holds with no constraint on Γ, that

α ≤ C1

kR
+

C2

k2R2
,

where the constants C1 ≥ 2
√

2 and C2 depend on the shape of the domain. (Our
norm ‖ · ‖VR

in (1.8) is the wave number dependent norm given by (1.14).) In the
case that the scattering obstacle Ω is starlike in the sense that x ∈ Ω implies sx ∈ Ω
for 0 ≤ s < 1, we also show a lower bound, so that it holds that

(1.17)
1

5 + 4
√

2kR
≤ α ≤ C1

kR
+

C2

k2R2
.

We note that this bound establishes that, when Ω is starlike, α decreases like k−1

as k → ∞ (cf. (1.11)). Finally, we produce an example (scattering by two parallel
plates) for which

α ≤ C

k2R2

for some constant C and unbounded sequence of values of k, showing that the lower
bound in (1.17) need not hold if Ω is not starlike. We emphasize that these appear
to be the first bounds on the inf-sup constant in the literature for any problem of
time-harmonic scattering by a bounded obstacle in more than one dimension that
make the dependence on the wave number explicit.

We turn in section 4 to the integral equation formulation (1.7). We restrict our
attention to the case when Ω is starlike and Γ is Lipschitz and piecewise smooth (e.g.,
a starlike polyhedron). Our main result is a bound on ‖A−1‖2 (Theorem 4.3) as a
function of three geometrical parameters and the ratio k/η of the wave number to
the coupling parameter. Importantly this bound shows that, if the ratio k/η is kept
fixed, then ‖A−1‖2 remains bounded as k → ∞. In particular, if the choice η = k is
made, then, for kR0 ≥ 1,

(1.18) ‖A−1‖2 ≤ 1

2
(1 + θ(4θ + 4n + 1)) ,

where n = 2 or 3 is the dimension, θ := R0/δ−, and δ− > 0 is the essential infimum
of x · ν over the surface Γ (for example, θ = 1 for a sphere, and θ =

√
3 for a cube).

A sharper (but more complicated) bound is given in Corollary 4.4. We note that a
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value of η/k in the range 1/2 ≤ η/k ≤ 1 has been recommended based on studies
of the integral operator A for circular and spherical geometries [30, 29, 3, 23, 19] as
minimizing, approximately, the L2 condition number of A.

We emphasize that the only results comparable to (1.18) to date are the bounds
discussed above for the case when Γ is a circle or sphere, obtained by methods spe-
cialized to circular/spherical geometry. Even for this geometry the only completely
explicit bound is (1.9), shown to hold for a circle for all sufficiently large k. Our
general methods give the bound (4.15) for this case, which is almost as sharp a result,
implying that, for every β > 5/2, ‖A−1‖2 ≤ β for all sufficiently large kR0, where R0

is the radius of the circle.

2. Preliminaries. It is convenient to separate in an initial section two key lem-
mas which are essential ingredients in the arguments we will make to obtain wave-
number-explicit bounds for both of our formulations of the scattering problem, and
to gather here other material common to both formulations.

Our arguments in this paper will depend on explicit representations for solutions
of the Helmholtz equation in the exterior of a large ball. These depend in turn on
explicit properties of cylindrical and spherical Bessel functions. For ν ≥ 0, let Jν and
Yν denote the usual Bessel functions of the first and second kind of order ν (see, e.g.,

[1] for definitions) and let H
(1)
ν := Jν + iYν denote the corresponding Hankel function

of the first kind of order ν. Of course, where Cν denotes any linear combination of Jν
and Yν , it holds that Cν is a solution of Bessel’s equation of order ν, i.e.,

(2.1) z2C ′′
ν (z) + zC ′

ν(z) + (z2 − ν2)Cν(z) = 0.

In the 3D case it is convenient to work also with the spherical Bessel functions

jm, ym, and h
(1)
m := jm+iym for m = 0, 1, . . . . These can be defined directly (see, e.g.,

Nédélec [39]) by recurrence relations which imply that h
(1)
m (z) = eizpm(z−1), where

pm is a polynomial of degree m with pm(0) = 1. Alternatively, the spherical Bessel
functions can be defined in terms of the usual Bessel functions via the relations

(2.2) jm(z) =

√
π

2z
Jm+1/2(z), ym(z) =

√
π

2z
Ym+1/2(z).

It is convenient to introduce the notation

Mν(z) := |H(1)
ν (z)|, Nν(z) := |H(1)

ν

′
(z)|.

The arguments we make depend on the fact that Mν(z) is decreasing on the positive
real axis for ν ≥ 0; indeed, for ν ≥ 1

2 it holds that zM2
ν (z) is nonincreasing [42, sect.

13.74]. This latter fact, together with the asymptotics of Mν(z) [1, eq. (9.2.28)] that

(2.3) Mν(z) =

√
2

πz
+ O(z−5/2) as z → ∞,

implies that

(2.4) zM2
ν (z) ≥ 2

π
for z > 0, ν ≥ 1

2
.

It follows easily from the Bessel equation (2.1) that

(z2 − ν2)
d

dz

(
M2

ν (z)
)

+
d

dz

(
z2N2

ν (z)
)

= 0.
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Thus, defining the function Aν for ν ≥ 0 by

(2.5) Aν(z) := M2
ν (z)(z2 − ν2) + z2N2

ν (z) − 4z

π
, z > 0,

it holds that

(2.6) A′
ν(z) = 2zM2

ν (z) − 4

π
.

Thus A′
ν(z) ≥ 0 for ν ≥ 1

2 and z > 0 by (2.4). Further, from (2.3) and the same
asymptotics for Nν [1, eq. (9.2.30)], i.e.,

Nν(z) =

√
2

πz
+ O(z−5/2) as z → ∞,

it follows that Aν(z) → 0 as z → ∞ for ν ≥ 0. Thus

(2.7) Aν(z) ≤ 0 for z > 0, ν ≥ 1

2
.

It is convenient in the following key lemma and later to use the notation GR :=
{x : |x| > R} for R > 0. In addition, throughout this paper ∇T v denotes the
tangential component of ∇v, i.e., ∇T v := ∇v − ν∂v/∂ν.

Lemma 2.1. Suppose that, for some R0 > 0, v ∈ C2(GR0
) satisfies the Helmholtz

equation (1.1) in GR0
and the Sommerfeld radiation condition (1.3). Then, for R >

R0,

(2.8) �
∫

ΓR

v̄
∂v

∂r
ds ≥ 0, 


∫
ΓR

v̄
∂v

∂r
ds ≤ 0,

and

(2.9) 

∫

ΓR

v̄
∂v

∂r
ds + R

∫
ΓR

(
k2|v|2 +

∣∣∣∣∂v∂r
∣∣∣∣
2

− |∇T v|2
)

ds ≤ 2kR�
∫

ΓR

v̄
∂v

∂r
ds.

Remark 2.2. The first two inequalities (2.8) are well known; see, for example,
Nédélec [39]. The third inequality appears to be new, but we note that an analo-
gous inequality [11, Lemma 6.1], [10, Lemma 2.2] has been used extensively in the
mathematical analysis of problems of scattering by unbounded rough surfaces. This
inequality (proved easily by Fourier transform methods) can be viewed as a (formal)
limit of (2.9) in the limit R → ∞. Closer still to (2.9) is the recent inequality of
Claeys and Haddar [13, Lemma 4.4], who study the Dirichlet-to-Neumann map for
the Helmholtz equation in the exterior of an infinite cylinder in R

3. In fact, their
inequality implies, at least formally, the following less sharp version of (2.9) in the 2D
case: for every ρ0 > 0 there exists a constant C > 0 such that, provided that kR > ρ0,

2

∫

ΓR

v̄
∂v

∂r
ds + R

∫
ΓR

(
k2|v|2 +

∣∣∣∣∂v∂r
∣∣∣∣
2

− |∇T v|2
)

ds ≤ C(1 + kR)�
∫

ΓR

v̄
∂v

∂r
ds.

Proof. Note first that, by standard elliptic regularity results, it holds that v ∈
C∞(GR0). We now deal with the 2D and 3D cases separately.
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Suppose first that n = 2. Choose R1 ∈ (R0, R). Introducing standard cylindrical
polar coordinates, we expand v on ΓR1 as the Fourier series

v(x) =
∑
m∈Z

ameimθ,

where (R1, θ) are the polar coordinates of x. Since v ∈ C∞(ΓR1) it holds that the
series is rapidly converging, i.e., that am = o(|m|−p) as |m| → ∞ for every p > 0. It
is standard that the corresponding Fourier series representation of v in GR1 is

(2.10) v(x) =
∑
m∈Z

ameimθ
H

(1)
|m|(kr)

H
(1)
|m|(kR1)

,

where (r, θ) are now the polar coordinates of x, and that this series, and all its
partial derivatives with respect to r and θ, converge absolutely and uniformly in GR1

.

Hence, defining cm := (|am|2 + |a−m|2)/|H(1)
m (kR1)|2 and ρ := kR, and using the

orthogonality of {eimθ : m ∈ Z}, we see that

∫
ΓR

v̄
∂v

∂r
ds = 2πρ

∑
m∈Z

|am|2
H

(1)
|m|(ρ)H

(1)
|m|

′
(ρ)

|H(1)
|m|(kR1)|2

= 2πρ

∞∑
m=0

cm

(


(
H

(1)
m (ρ)H(1)

m

′
(ρ)

)
+ i (Jm(ρ)Y ′

m(ρ) − J ′
m(ρ)Ym(ρ))

)

=

∞∑
m=0

cm

(
πρ

d

dρ

(
M2

m(ρ)
)

+ 4i

)
,(2.11)

where in the last step we have used the Wronskian formula [1, eq. (9.1.16)], i.e.,

(2.12) πρ(Jν(ρ)Y
′
ν(ρ) − J ′

ν(ρ)Yν(ρ)) = 2.

Since Mm(ρ) is decreasing on (0,∞) we see that (2.8) holds.
Similarly, noting that |∇T v| = R−1|∂v/∂θ|, we calculate that

R

∫
ΓR

(
k2|v|2 +

∣∣∣∣∂v∂r
∣∣∣∣
2

− |∇T v|2
)

ds = 2π

∞∑
m=0

cm
(
M2

m(ρ)(ρ2 −m2) + ρ2N2
m(ρ)

)
.

From this equation and (2.11), and recalling the definition (2.5), we see that we will
complete the proof of (2.9) if we can show the inequality

(2.13)
ρ

2

d

dρ

(
M2

m(ρ)
)

+ Am(ρ) ≤ 0

for ρ > 0 and m = 0, 1, . . . .
By (2.7) and since Mm is decreasing on (0,∞), we see that (2.13) holds for ρ > 0

and m ∈ N. To finish the proof of (2.9) in the case n = 2 we need to show (2.13) for
m = 0, i.e., that

A(ρ) :=
ρ

2

d

dρ

(
M2

0 (ρ)
)

+ A0(ρ) ≤ 0, ρ > 0.
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Now A(ρ) = ρ(J0(ρ)J
′
0(ρ)+Y0(ρ)Y

′
0(ρ))+A0(ρ); thus, using (2.1) and (2.6), it follows

that

A′(ρ) = A′
0(ρ) + ρ

(
N2

0 (ρ) −M2
0 (ρ)

)
= ρ

(
M2

0 (ρ) + N2
0 (ρ)

)
− 4

π
=

A0(ρ)

ρ
.

Thus

d

dρ

(
A(ρ)

ρ

)
=

A′(ρ)

ρ
− A(ρ)

ρ2
= − 1

2ρ

d

dρ

(
M2

0 (ρ)
)
≥ 0.

Also, since from the standard large argument asymptotics of the Bessel functions,
A(ρ)/ρ → 0 as ρ → ∞, it follows that A(ρ) ≤ 0 for ρ > 0. This completes the proof
for n = 2.

We turn now to the 3D case for which we make analogous arguments, though the
details are different. Again we choose R1 ∈ (R0, R). Introducing standard spherical
polar coordinates (r, θ, φ), we expand v on ΓR1 as the spherical harmonic expansion

(2.14) v(x) =

∞∑
�=0

�∑
m=−�

am� Y m
� (θ, φ),

where (R1, θ, φ) are the spherical polar coordinates of x and the functions Y m
� , m =

−�, . . . , �, are the standard spherical harmonics of order � (see, for example, [39,
Theorem 2.4.4]). We recall (e.g., [39]) that {Y m

� : � = 0, 1, . . . , m = −�, . . . , �} is a
complete orthonormal sequence in L2(S), where S := {x : |x| = 1} is the unit sphere,
and an orthogonal sequence in H1(S). Since v ∈ C∞(ΓR1) ⊃ Hm(S), for all m ∈ N,
it holds that the series is rapidly converging, i.e., that am� = o(|�|−p) as |�| → ∞ for
every p > 0 [39].

The solution of the Dirichlet problem for the Helmholtz equation in the exterior
of a sphere is discussed in detail in [39]. It follows from (2.14) and [39, eq. (2.6.55)]
that, for x ∈ GR1 ,

(2.15) v(x) =

∞∑
�=0

�∑
m=−�

am� Y m
� (θ, φ)

h
(1)
� (kr)

h
(1)
� (kR1)

,

where (r, θ, φ) are now the polar coordinates of x, and hence that [39, eqs. (2.6.70)–
(2.6.74)]

∂v

∂r
(x) = k

∞∑
�=0

�∑
m=−�

am� Y m
� (θ, φ)

h
(1)
�

′
(kr)

h
(1)
� (kR1)

,(2.16)

∇T v(x) =
1

r

∞∑
�=0

�∑
m=−�

am� ∇SY
m
� (θ, φ)

h
(1)
� (kr)

h
(1)
� (kR1)

,

where ∇S is the surface gradient operator on S and

(2.17)

∫
S

|∇SY
m
� |2 ds = �(� + 1).
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Hence, using the orthonormality in L2(S) of the spherical harmonics Y m
� , we see that,

where c� := |h(1)
� (kR1)|−2

∑�
m=−� |am� |2 and ρ := kR,

∫
ΓR

v̄
∂v

∂r
ds = R2

∫
S

v̄(Rx̂)
∂v

∂r
(Rx̂) ds(x̂) = Rρ

∞∑
�=0

c� h
(1)
� (ρ)h

(1)
�

′
(ρ)

= R

∞∑
�=0

c�

(
ρ

2

d

dρ

(
|h(1)

� (ρ)|2
)

+
i

ρ

)
,(2.18)

where in the last step we have used (2.2) and (2.12). Recalling that |h(1)
� (ρ)| =√

π/(2ρ)M�+1/2(ρ) is decreasing on (0,∞), we see that (2.8) holds.

Similarly, but also using the orthogonality of the surface gradients ∇SY
m
� in L2(S)

and (2.17), we calculate that

∫
ΓR

(
k2|v|2 +

∣∣∣∣∂v∂r
∣∣∣∣
2

− |∇T v|2
)

ds

=
∞∑
�=0

c�

(
|h(1)

� (ρ)|2(ρ2 − �(� + 1)) + ρ2|h(1)
�

′
(ρ)|2

)
.

Thus



∫

ΓR

v̄
∂v

∂r
ds + R

∫
ΓR

(
k2|v|2 +

∣∣∣∣∂v∂r
∣∣∣∣
2

− |∇T v|2
)

ds− 2kR�
∫

ΓR

v̄
∂v

∂r
ds

=
1

k

∞∑
�=0

c�B�(ρ),

where

B�(ρ) :=
ρ2

2

d

dρ

(
|h(1)

� (ρ)|2
)

+ |h(1)
� (ρ)|2ρ(ρ2 − �(� + 1)) + ρ3|h(1)

�

′
(ρ)|2 − 2ρ.

But straightforward calculations, using the definitions (2.2), yield that

B�(ρ) =
π

2
A�+1/2(ρ), ρ > 0, � = 0, 1, . . . .

Thus, applying (2.7), we see that B�(ρ) ≤ 0 for � = 0, 1, . . . and ρ > 0, which
completes the proof of (2.9).

The following lemma is another key component in obtaining our wave-number-
explicit bounds. Of course, the first equation is just a special case of Green’s first
theorem. The second is a Rellich–Payne–Weinberger identity, essentially that used in
[35] to obtain an estimate for the solution of the Helmholtz equation with impedance
boundary condition in an interior domain (see also [16]). In the case k = 0 it is a
special case of a general identity for second order strongly elliptic operators given in
Lemma 4.22 of [34] (see also [38, Chapter 5]). For completeness, we include the short
proof of this key step in our arguments.
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Lemma 2.3. Suppose that G ⊂ R
n is a bounded Lipschitz domain and that

v ∈ H2(G). Then, for every k ≥ 0, where g := Δv + k2v and the unit normal vector
ν is directed out of G, it holds that

(2.19)

∫
G

(
|∇v|2 − k2|v|2 + gv̄

)
dx =

∫
∂G

v̄
∂v

∂ν
ds

and ∫
G

(
(2 − n)|∇v|2 + nk2|v|2 + 2
 (gx · ∇v̄)

)
dx

=

∫
∂G

(
x · ν

(
k2|v|2 +

∣∣∣∣∂v∂ν
∣∣∣∣
2

− |∇T v|2
)

+ 2

(
x · ∇T v̄

∂v

∂ν

))
ds.(2.20)

Proof. In the case v ∈ C2(Ḡ), these equations are a consequence of the divergence
theorem,

∫
G
∇ · Fdx =

∫
∂G

f · νds, which holds for every vector field F ∈ C1(Ḡ)
(see, e.g., McLean [34] for the case when G is Lipschitz). Equation (2.19) follows
by applying the divergence theorem to the identity |∇v|2 − k2|v|2 + gv̄ = ∇ · (v̄∇v)
integrated over G. Equation (2.20) follows by applying the divergence theorem to the
identity

(2 − n)|∇v|2 + nk2|v|2 + 2
 (gx · ∇v̄) = ∇ ·
[
x
(
k2|v|2 − |∇v|2

)
+ 2
 (x · ∇v̄∇v)

]
integrated over G, and then noting that x · ∇v = x · ν ∂v

∂ν + x · ∇T v on ∂G. The ex-
tension from C2(Ḡ) to H2(G) follows by the density of C2(Ḡ) in H2(G) and by the
continuity of the trace operator γ : H1(G) → H1/2(∂G).

3. The scattering problem and weak formulation. In this section we for-
mulate the scattering problem precisely, state its weak formulation, and obtain explicit
lower bounds on the inf-sup constant (1.8), using the results of the previous section.

To state precisely the scattering problem we wish to solve, let H1
0 (Ωe) ⊂ H1(Ωe)

denote the closure of C∞
0 (Ωe), the set of C∞ functions on Ωe that are compactly

supported, in the norm of the Sobolev space H1(Ωe). Let H1,loc
0 (Ωe) denote the set

of those functions, v, that are locally integrable on Ωe and satisfy that ψχ ∈ H1
0 (Ωe)

for every compactly supported χ ∈ C∞(Ω̄e) := {v|Ω̄e
: v ∈ C∞(Rn)}. Then our

scattering problem can be stated as follows. For simplicity of exposition we restrict
our attention throughout to two specific cases. The first is when the incident wave ui

is the plane wave

(3.1) ui(x) := eikx1 , x ∈ R
n.

The Plane Wave Scattering Problem. Given k > 0, find u ∈ H1,loc
0 (Ωe) ∩

C2(Ωe) such that u satisfies the Helmholtz equation (1.1) in Ωe, and us := u − ui

satisfies the Sommerfeld radiation condition (1.3) as r = |x| → ∞, uniformly in
x̂ = x/r.

The above is the scattering problem that we will focus on in this paper. But it
is essential to our methods of argument in this section to also consider the following
scattering problem where the source of the acoustic excitation is due to a compactly
supported source region in Ωe.
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The Distributed Source Scattering Problem. Given k > 0 and g ∈
L2(Ωe) which is compactly supported, find u ∈ H1,loc

0 (Ωe) such that u satisfies the
inhomogeneous Helmholtz equation

(3.2) Δu + k2u = g in Ωe

in a distributional sense, and u satisfies the Sommerfeld radiation condition (1.3) as
r = |x| → ∞, uniformly in x̂ = x/r.

Recall that, for R > R0 := supx∈Ω |x|, we define DR := {x ∈ Ωe : |x| < R} and
VR := {v|DR

: v ∈ H1
0 (Ωe)} ⊂ H1(DR). We note that VR is a closed subspace of

H1(DR). Throughout this section, (·, ·) will denote the standard scalar product on
L2(DR) and ‖ · ‖2 the corresponding norm; i.e.,

(u, v) :=

∫
DR

uv̄ dx, ‖v‖2 := (v, v)1/2 =

{∫
DR

|v|2 dx
}1/2

.

It is convenient to equip VR with a wave number dependent norm, equivalent to the
usual norm on H1(DR) and defined by (1.14).

As discussed in section 1, our first reformulation of the plane wave scattering
problem is the following weak formulation: find u ∈ VR such that

(3.3) b(u, v) = G(v), v ∈ VR.

In this equation b is the bounded sesquilinear form on VR given by (1.5), and G ∈ V ∗
R,

the dual space of VR, is given by

(3.4) G(v) =

∫
ΓR

v̄

(
∂ui

∂r
− TRu

i

)
ds.

As defined in section 1, the operator TR : H1/2(ΓR) → H−1/2(ΓR), which occurs in
both (1.5) and (3.4), is the Dirichlet-to-Neumann map. Explicitly, in the 2D case, if
φ ∈ H1/2(ΓR) has the Fourier series expansion

φ(x) =
∑
m∈Z

ameimθ,

where (R, θ) are the polar coordinates of x, then (see (2.10) or [25])

(3.5) TRφ(x) = k
∑
m∈Z

ameimθ
H

(1)
|m|

′
(kr)

H
(1)
|m|(kR)

, x ∈ ΓR.

Similarly, in the 3D case, if φ ∈ H1/2(ΓR) has the expansion in spherical harmonics

φ(x) =
∞∑
�=0

�∑
m=−�

am� Y m
� (θ, φ),

where (R, θ, φ) are the spherical polar coordinates of x, then (see (2.16) or [39])

TRφ(x) = k

∞∑
�=0

�∑
m=−�

am� Y m
� (θ, φ)

h
(1)
�

′
(kr)

h
(1)
� (kR)

, x ∈ ΓR,(3.6)
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where both series (3.5) and (3.6) are convergent in the norm of H−1/2(ΓR). Moreover,
from Lemma 2.1, we have the following key properties of TR (see [39]).

Corollary 3.1. For all R > 0 and all φ ∈ H1/2(ΓR) it holds that



∫

ΓR

φ̄TRφds ≤ 0 and �
∫

ΓR

φ̄TRφds ≥ 0.

That the plane wave scattering problem and the weak formulation (3.3) are equiv-
alent is standard. Precisely, we have the following result (see, e.g., [25] or [39]).

Theorem 3.2. If u is a solution to the plane wave scattering problem, then
u|DR

∈ VR satisfies (3.3). Conversely, suppose u ∈ VR satisfies (3.3), let FR := γus

be the trace of us = u− ui on ΓR, and extend the definition of u = ui + us to Ωe by
setting us|GR

to be the solution of the Dirichlet problem in GR, with data FR on ΓR

(this solution is given explicitly by (2.10) and (2.15), in the cases n = 2 and n = 3,
respectively). Then this extended function satisfies the plane wave scattering problem.

In the case that supp(g) ⊂ DR, the distributed source scattering problem is equiv-
alent, in the same precise sense as in the above theorem, to the following variational
problem: find u ∈ VR such that

(3.7) b(u, v) = −(g, v), v ∈ VR.

It is well known that both scattering problems have exactly one solution. Indeed
this follows from the above equivalence and the fact that the variational problem
(3.3) has exactly one solution u ∈ VR for every G ∈ V ∗

R (see, e.g., [25, 39]). In turn,
this follows from uniqueness for the scattering problem (which follows from Rellich’s
lemma [14]) and from the fact that b(·, ·) satisfies a G̊arding inequality [25, 39] (the
first inequality in Corollary 3.1 plays a role here together with the compactness of the
embedding operator from VR to L2(DR)). Further, we have the following standard
stability estimate (see [25, Remark 2.20]).

Lemma 3.3. The inf-sup condition (1.8) holds and, for all u ∈ VR and G ∈ V ∗
R

satisfying (3.3), it holds that

(3.8) ‖u‖VR
≤ C‖G‖V ∗

H
,

with C = α−1. Conversely, if there exists C > 0 such that, for all u ∈ VR and
G ∈ V ∗

R satisfying (3.3), the bound (3.8) holds, then the inf-sup condition (1.8) holds
with α ≥ C−1.

The second part of the above lemma shows that we obtain a lower bound on the
inf-sup constant α if we show the bound (3.8) for all u ∈ VR and G ∈ V ∗

R satisfying
(3.3), and this will be the strategy that we will employ to obtain wave-number-explicit
lower bounds on α. The following lemma reduces the problem of establishing (3.8) to
that of establishing an a priori bound for solutions of the special case (3.7). The proof
(very close to that of [10, Lemma 4.5]) depends on the observation that if u ∈ VR

satisfies (3.3), then u = u0 + w, where u0, w ∈ VR satisfy

b0(u0, v) = G(v) and b(w, v) = 2k2(u0, v) ∀v ∈ VR,

where b0 : VR × VR → C is defined by

b0(u, v) = (∇u,∇v) + k2(u, v) −
∫

ΓR

γv TRγu ds, u, v ∈ VR.
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It follows from Corollary 3.1 that 
 b0(v, v) ≥ ‖v‖2
VR

, v ∈ VR, so that ‖u0‖VR
≤ ‖G‖V ∗

R

by Lax–Milgram, and (3.9) and (1.14) imply that ‖w‖VR
≤ 2kC̃‖u0‖2 ≤ 2C̃‖G‖V ∗

R
.

Lemma 3.4. Suppose there exists C̃ > 0 such that, for all u ∈ VR and g ∈ L2(DR)
satisfying (3.7), it holds that

(3.9) ‖u‖VR
≤ k−1C̃ ‖g‖2.

Then, for all u ∈ VR and G ∈ V ∗
R satisfying (3.3), the bound (3.8) holds with C ≤

1 + 2 C̃.
We have reduced the problem of obtaining lower bounds on the inf-sup constant

to the problem of obtaining a bound on the solution to a scattering problem, namely
the distributed source scattering problem stated above. We will shortly bootstrap to
the case where we require no smoothness on Γ, but our first bound on the solution to
this problem is restricted to the case where Γ is smooth and Ω is starlike. Specifically,
we require the following assumption.

Assumption 1. Let S := {x ∈ R
n : |x| = 1}. For some f ∈ C∞(S,R) with

minx̂∈S f(x̂) > 0, it holds that Γ = {f(x̂)x̂ : x̂ ∈ S}.
Lemma 3.5. Suppose that Assumption 1 holds, u is a solution to the distributed

source scattering problem, R > R0, and supp(g) ⊂ DR. Then

(3.10) k‖u‖VR
≤ (n− 1 + 2

√
2kR)‖g‖2.

Proof. Since DR is a smooth domain, by standard elliptic regularity results [24]
we have that u ∈ H2,loc(DR). Thus we can apply Lemma 2.3 to u in DR to get, by
adding n− 1 times the real part of (2.19) to (2.20), that

∫
DR

(
|∇u|2 + k2|u|2 + 
 (g(2x · ∇ū + (n− 1)ū))

)
dx = −

∫
Γ

x · ν
∣∣∣∣∂u∂ν

∣∣∣∣
2

ds

+

∫
ΓR

(
R

(
k2|u|2 +

∣∣∣∣∂u∂r
∣∣∣∣
2

− |∇Tu|2
)

+ 

(

(n− 1)ū
∂u

∂r

))
ds,

where we have also used the Dirichlet boundary condition (1.2), that is, u = 0 on Γ.
Since x · ν > 0 on Γ, applying Lemma 2.1 and then using (2.19), we see that∫

DR

(
|∇u|2 + k2|u|2 + 
 (g(2x · ∇ū + (n− 1)ū))

)
dx

≤ 2kR�
∫

ΓR

ū
∂u

∂r
ds = 2kR�

∫
DR

gū dx.

Applying the Cauchy–Schwarz inequality and noting that

(3.11) 2ab ≤ εa2 +
b2

ε
,

for a, b ≥ 0, ε > 0, we deduce that

‖u‖2
VR

≤ (n− 1 + 2kR)‖g‖2‖u‖2 + 2R‖g‖2‖∇u‖2

≤ 1

2
‖u‖2

VR
+

‖g‖2
2

2k2
(4k2R2 + (n− 1 + 2kR)2).



WAVE-NUMBER-EXPLICIT BOUNDS 1443

Thus

k2‖u‖2
VR

≤ ‖g‖2
2(4k

2R2 + (n− 1 + 2kR)2),

from which (3.10) follows.
Combining Lemmas 3.3, 3.4, and 3.5, we obtain the following corollary.
Corollary 3.6. If Assumption 1 is satisfied, then the inf-sup condition (1.8)

holds with α−1 ≤ 1 + 2(n− 1 + 2
√

2kR) ≤ 5 + 4
√

2kR.
We proceed now to establish that Lemma 3.5 and Corollary 3.6 hold if Ω is

starlike. Precisely, we require only the following, relaxed version of Assumption 1.
Assumption 2. It holds that 0 �∈ Ωe and, if x ∈ Ωe, then sx ∈ Ωe for every

s > 1.
To establish these generalizations we first prove the following technical lemma (cf.

[10, Lemma 4.10]).
Lemma 3.7. If Assumption 2 holds, then, for every φ ∈ C∞

0 (Ωe) and R > R0,
there exists f ∈ C∞(S,R) with minx̂∈S f(x̂) > 0 such that

suppφ ⊂ Ω′
e := {sf(x̂) ∈ R

n : x̂ ∈ S, s > 1}

and GR ⊂ Ω′
e ⊂ Ωe.

Proof. Clearly, it is sufficient to consider the case when R = 1. So suppose R = 1,
let U := suppφ ∪ Γ1, let B := {sx : x ∈ U, s ≥ 1}, and let δ := dist(U,Γ)/4, so that
dist(B,Γ) = dist(U,Γ) = 4δ and 0 < δ ≤ 1

4 . Let Bδ := {x ∈ R
n : dist(x,B) < 2δ}.

Let N ∈ N and Sj ⊂ S, j = 1, . . . , N , be such that each Sj is measurable and

nonempty, Sj ∩Sm = ∅ for j �= m, S =
⋃N

j=1 Sj , and diam(Sj) ≤ δ, j = 1, . . . , N . For
j = 1, . . . , N choose x̂j ∈ Sj and let

fj := inf{|x| : x ∈ Bδ, x/|x| ∈ Sj}.

Then 2δ ≤ fj ≤ 1 − 2δ, j = 1, . . . , N . Define f̃ : S → R by

f̃(x̂) := fj if x̂ ∈ Sj , j = 1, . . . , N.

Then f̃ ∈ L∞(S,R); in fact, f̃ is a simple function and 2δ ≤ f̃(x̂) ≤ 1 − 2δ, x̂ ∈ S.
Choose ε with 0 < ε < δ and let J ∈ C∞[0, 2] be such that J ≥ 0, J(t) = 0 if
ε2/2 ≤ t ≤ 2 and, where e3 := (0, 0, 1), such that

∫
S
J(1 − e3 · ŷ) ds(ŷ) = 1, so that∫

S
J(1 − x̂ · ŷ) ds(ŷ) = 1, x̂ ∈ S. Define f ∈ C∞(S,R) by

f(x̂) :=

∫
S

J(1 − x̂ · ŷ)f̃(ŷ) ds(ŷ), x̂ ∈ S,

and let Ω′
e be defined as in the statement of the lemma. Then f and Ω′

e have the
properties claimed.

To see that this is true first note that, since J(1 − x̂ · ŷ) = 0 if |x̂− ŷ| ≥ ε,

min
|ŷ−x̂|<ε

|f̃(ŷ)| ≤ f(x̂) ≤ max
|ŷ−x̂|<ε

|f̃(ŷ)|, x̂ ∈ S,(3.12)

so that G1 ⊂ Ω′
e. Now every ŷ ∈ S is an element of Sj , for some j ∈ {1, . . . , N},

and f̃(ŷ) = fj and |ŷ − x̂j | ≤ δ. Thus it follows from (3.12) that, for every x̂ ∈ S,
f(x̂) ≤ fm for some m for which |x̂m− x̂| < ε+δ. Now let x = fmx̂, y = fmx̂m. Then
|x− y| ≤ |x̂− x̂m| < ε + δ, and dist(y,B) = 2δ, so that

dist(x,B) ≥ dist(y,B) − |x− y| ≥ 2δ − (ε + δ) > 0.
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Thus x �∈ B, and so f(x̂)x̂ �∈ B. Thus U ⊂ B ⊂ Ω′
e, and so suppφ ⊂ U ⊂ Ω′

e.
Arguing similarly, for all x̂ ∈ S, f(x̂) ≥ fm for some m for which |x̂m− x̂| < ε+ δ.

Defining x = fmx̂ and y = fmx̂m, it holds that

dist(x,B) ≤ dist(y,B) + |x− y| ≤ 2δ + ε + δ < 4δ,

so that x ∈ Ωe and hence f(x̂)x̂ ∈ Ωe. Thus, for all x̂ ∈ S, sx̂ ∈ Ωe for s > f(x̂); i.e.,
Ω′

e ⊂ Ωe.
With this preliminary lemma we can proceed to show that Lemma 3.5 holds

whenever Assumption 2 holds. In this final lemma (cf. [10, Lemma 4.11]) we use
explicitly the fact that b(·, ·) is bounded. In fact, examining the definition (1.5),
clearly we have that

(3.13) |b(u, v)| ≤ c‖u‖VR
‖v‖VR

, u, v ∈ VR,

where c := 1 + ‖γ‖2‖TR‖ and ‖γ‖ denotes the norm of the trace operator γ : VR →
H1/2(ΓR), while ‖TR‖ denotes the norm of TR as a mapping from H1/2(ΓR) to
H−1/2(ΓR).

Lemma 3.8. Suppose that Assumption 2 holds, u is a solution to the distributed
source scattering problem, R > R0, and supp(g) ⊂ DR. Then the bound (3.10) holds.

Proof. Let Ṽ := {φ|DR
: φ ∈ C∞

0 (Ωe)}. Then Ṽ is dense in VR. Recall that
the distributed source scattering problem is equivalent to (3.7). Suppose u satisfies
(3.7) and choose a sequence (um) ⊂ Ṽ such that ‖um − u‖VR

→ 0 as m → ∞. Then
um = φm|DR

, with φm ∈ C∞
0 (Ωe), and, by Lemma 3.7, there exists fm ∈ C∞(S,R)

with min f > 0 such that suppφm ⊂ Ω
(m)
e and GR ⊂ Ω

(m)
e ⊂ Ωe, where Ω

(m)
e :=

{sfm(x̂) ∈ R
n : x̂ ∈ S, s > 1}. Let V

(m)
R and bm denote the space and sesquilinear

form corresponding to the domain Ω
(m)
e . That is, where D

(m)
R := Ω

(m)
e \GR, V

(m)
R is

defined by V
(m)
R := {φ|

D
(m)
R

: φ ∈ H1
0 (Ω

(m)
e )} and bm is given by (1.5) with DR and

VR replaced by D
(m)
R and V

(m)
R , respectively. Then D

(m)
R ⊂ DR and, if vm ∈ V

(m)
R

and v denotes vm extended by zero from D
(m)
R to DR, it holds that v ∈ VR. Via

this extension by zero, we can regard V
(m)
R as a subspace of VR and regard um as an

element of V
(m)
R .

For all v ∈ V
(m)
R ⊂ VR, we have

bm(um, v) = b(um, v) = −(g, v) − b(u− um, v).

Let u′
m and u′′

m ∈ V
(m)
R be the unique solutions of

bm(u′
m, v) = −(g, v), bm(u′′

m, v) = −b(u− um, v) ∀v ∈ V
(m)
R .

Clearly um = u′
m + u′′

m and, by Lemma 3.5, ‖u′
m‖

V
(m)
R

≤ k−1C̃‖g‖2, where C̃ =

n− 1 + 2
√

2kR, while, by (3.13), Lemma 3.3, and Corollary 3.6,

‖u′′
m‖

V
(m)
R

≤ c(1 + 2C̃)‖u− um‖VR
.

Thus ‖u‖VR
= limm→∞ ‖um‖

V
(m)
R

≤ k−1C̃‖g‖2.

Combining Lemmas 3.3, 3.4, and 3.8, we obtain the following generalization of
Corollary 3.6, which is our main lower bound on the inf-sup constant and the main
result of this section.
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Corollary 3.9. If Assumption 2 is satisfied, then the inf-sup condition (1.8)
holds with α−1 ≤ 1 + 2(n− 1 + 2

√
2kR) ≤ 5 + 4

√
2kR.

We finish the section by obtaining two upper bounds on the inf-sup constant,
which will show, among other things, that the above bound is sharp in its dependence
on k in the limit k → ∞.

To obtain these bounds we modify the construction of Ihlenburg [25] for a weak
formulation of a 1D Helmholtz problem. We note first that, for every nonzero w ∈ VR,

α ≤ sup
0 �=v∈VR

|b(w, v)|
‖w‖VR

‖v‖VR

.

Now choose w ∈ VR ∩H2(DR) such that w = ∇w = 0 on ΓR. Then, integrating by
parts, for v ∈ VR,

|b(w, v)| =

∣∣∣∣
∫
DR

(
∇w · ∇v̄ − k2wv̄

)
dx

∣∣∣∣ =

∣∣∣∣
∫
DR

(
Δw + k2w

)
v̄ dx

∣∣∣∣ .
Thus, and recalling the definition (1.14),

(3.14)
|b(w, v)|

‖w‖VR
‖v‖VR

≤ ‖Δw + k2w‖2‖v‖2

‖w‖VR
‖v‖VR

≤ ‖Δw + k2w‖2

k2‖w‖2
.

Now define u(x) = eikx1w(x). Then the above bound holds with w replaced by u, and

Δu(x) + k2u(x) =

(
2ik

∂w(x)

∂x1
+ Δw(x)

)
eikx1

so that

|b(u, v)|
‖u‖VR

‖v‖VR

≤ ‖Δu + k2u‖2

k2‖u‖2
=

‖2ik ∂w
∂x1

+ Δw‖2

k2‖w‖2
.

We have shown most of the following lemma.
Lemma 3.10. Suppose w ∈ VR ∩H2(DR) is such that γw = γ∇w = 0 and w is

nonzero. Then the inf-sup constant (1.8) is bounded above by

α ≤ C1

kR
+

C2

k2R2
,

where C1 := 2R‖ ∂w
∂x1

‖2/‖w‖2, C2 := R2‖Δw‖2/‖w‖2, and C1 ≥ 2
√

2 ≈ 2.83.
Proof. It remains only to show the last inequality. Since γw = 0, we can approx-

imate w in the H1(DR) norm arbitrarily closely by w̃ ∈ C∞
0 (DR). Then C1 ≥ 2

√
2

follows by a standard Friedrichs inequality (e.g. [10, Lemma 3.4]) which gives that
‖w̃‖2 ≤ (R/

√
2)‖ ∂w̃

∂x1
‖2.

We note that in the case that Assumption 2 holds so that Corollary 3.9 applies,
we have both upper and lower bounds on the inf-sup constant, namely (1.17), where
C1 and C2 are as defined in Lemma 3.10.

The left-hand bound in (1.17) holds for every domain Ωe satisfying Assumption 2.
To check its sharpness, let us consider the case when Ω = {0} and D = R

n \ {0}. In
this special case, VR = H1(DR), and the solution of the plane wave scattering problem
is just u = ui; i.e., the scattered field is zero. Taking in this case w(x) = F (|x|/R),
where F (t) := (1 − t2)2, we calculate that

C1 = 2

√√√√ ∫ 1

0
(F ′(t))2tn−1dt

n
∫ 1

0
(F (t))2tn−1dt

=

{
2
√

30/3 ≈ 3.65, n = 2,

2
√

33/3 ≈ 3.83, n = 3.
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Thus, defining c− := (4
√

2)−1, for this example the bounds (1.17) bracket kRα fairly
tightly, predicting that, in the limit kR → ∞, kRα is in the range [c−, C1] with
C1/c− ≤ 8

√
66/3 ≈ 21.7.

The above results show that kα is bounded above in the limit k → ∞ and is
also bounded below if Assumption 2 holds. If Assumption 2 does not hold, then α
may not be bounded below by a multiple of k−1. The following example shows this
behavior. It is convenient in this example to write x ∈ R

n as x = (x̃, xn), where
x̃ = (x1, . . . , xn−1).

Choose A > 0 and let Ω := Ω+ ∪Ω−, where Ω± := {x ∈ R
n : xn = ±A, |x̃| ≤ A},

so that Ω consists of two parallel lines of length 2A distance 2A apart in the 2D case,
and two parallel disks of radius A in the 3D case. Choose R > R0 =

√
2A and define

the function w by

w(x) :=

{
cos(kxn)F (|x̃|/A), |x̃| ≤ A, |xn| ≤ A,

0 otherwise,

and suppose that k ∈ Λ := {(m + 1/2)π/A : m ∈ N}. Then w ∈ VR ∩H2(DR) and
w = ∇w = 0 on ΓR, so that (3.14) holds. Further,

Δw(x) + k2w(x) =

{
A−2 cos(kxn)F̃ (|x̃|/A), |x̃| ≤ A, |xn| ≤ A,

0 otherwise,

where F̃ (t) := F ′′(t)+(n−2)F ′(t)/t. Thus, for k ∈ Λ, the inf-sup constant is bounded
above by

(3.15) α ≤ ‖Δw + k2w‖2

k2‖w‖2
=

C∗
n

k2A2
,

where C∗
n :=

√∫ 1

0
F̃ 2(t)tn−2dt/

∫ 1

0
F 2(t)tn−2dt.

4. Integral equation formulations. In this section we will obtain estimates
explicit in the wave number for integral equation formulations of scattering problems,
focusing on the plane wave scattering problem introduced in section 3 and on the
integral equation (1.7) and its adjoint.

Throughout this section we assume, essential to the integral equation method, a
degree of regularity of the domain, namely that Ωe is Lipschitz (which implies that the
interior of Ω, denoted Ωi = R

n \Ω̄e is also Lipschitz). We note that the invertibility of
the integral equation (1.7) and its adjoint for the general Lipschitz case has recently
been established in [9, section 2], by combining known results for layer-potentials on
Lipschitz domains in [41, 20, 36, 34].

Given a domain G, let H1(G; Δ) := {v ∈ H1(G) : Δv ∈ L2(G)} (Δ being the
Laplacian in a weak sense). This is a Hilbert space with the norm ‖v‖H1(G;Δ) :=

{
∫
G

[|v|2 + |∇v|2 + |Δv|2]dx}1/2. If G is Lipschitz, then there is a well-defined nor-
mal derivative operator [34], the unique bounded linear operator ∂ν : H1(G; Δ) →
H−1/2(∂G) which satisfies

∂νv =
∂v

∂ν
:= ν · ∇v

almost everywhere on Γ, when v ∈ C∞(Ḡ).
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Our integral equation formulations will be based on standard acoustic layer po-
tentials and their normal derivatives. In the case when the domain Ωe is Lipschitz,
for ϕ ∈ L2(Γ) we define the single-layer potential operator by

(4.1) Sϕ(x) := 2

∫
Γ

Φ(x, y)ϕ(y) ds(y), x ∈ Γ,

and the double-layer potential operator by

(4.2) Kϕ(x) := 2

∫
Γ

∂Φ(x, y)

∂ν(y)
ϕ(y) ds(y), x ∈ Γ,

where the normal ν is directed into Ωe. We also define the operator K ′, which arises
from taking the normal derivative of the single-layer potential, by

(4.3) K ′ϕ(x) = 2

∫
Γ

∂Φ(x, y)

∂ν(x)
ϕ(y) ds(y), x ∈ Γ.

We note that the right-hand sides of (4.1)–(4.3) are well defined at least for almost
all x ∈ Γ, where (4.1) is understood in a Lebesgue sense (that Sϕ(x) is well defined in
this sense for almost all x ∈ Γ follows from Young’s inequality), while the double-layer
potential and K ′ϕ must be understood as Cauchy principal values [36]. Further, all
three operators are bounded operators on L2(Γ) [36]. In fact [34], it holds that, for
|s| ≤ 1/2,

S : Hs−1/2(Γ) → Hs+1/2(Γ),

K : Hs+1/2(Γ) → Hs+1/2(Γ),

K ′ : Hs−1/2(Γ) → Hs−1/2(Γ),

and these mappings are bounded.
These operators can also be characterized as traces on Γ of single- and double-

layer potentials defined in Ωe and Ωi. Introducing, temporarily, the notation ∂±
ν with

∂+
ν and ∂−

ν denoting the exterior and interior normal derivative operators, mapping,
respectively, H1(Ωe; Δ) and H1(Ωi; Δ) to H−1/2(Γ), it holds that [34]

(4.4) K ′ϕ =
(
∂+
ν S + ∂−

ν S
)
ϕ, ϕ ∈ H−1/2(Γ),

where S is defined by

(4.5) Sϕ(x) :=

∫
Γ

Φ(x, y)ϕ(y) ds(y), x ∈ R
n.

It is shown in, e.g., McLean [34] that S : H−1/2(Γ) → H1,loc(Rn), and clearly (Δ +
k2)Sϕ = 0 in R

n \ Γ, so that the right-hand side of (4.5) defines a bounded operator
on H−1/2(Γ).

From [15, Theorem 3.12] and [34, Theorems 7.15, 9.6] it follows that, if u satisfies
the plane wave scattering problem, then a form of Green’s representation theorem
holds, namely

(4.6) u(x) = ui(x) −
∫

Γ

Φ(x, y)∂νu(y) ds(y), x ∈ Ωe.
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Two integral equations for ∂νu can be obtained by taking the trace and the normal
derivative, respectively, of (4.6) on Γ, namely 0 = ui−S∂νu and ∂νu = ∂νu

i−∂νS∂νu.
Note that, to simplify the notation, we have not explicitly used the trace operator γ
in these equations or later in this section. Its presence is assumed implicitly. Since
[34] we have the jump relations that on Γ we have 2Sϕ = Sϕ and 2∂νSϕ = −ϕ+K ′ϕ,
for ϕ ∈ H−1/2(Γ), we can write these equations as

S∂νu = 2ui, ∂νu + K ′∂νu = 2∂νu
i.

It is well known (e.g., [14]) that each of these integral equations fails to be uniquely
solvable if −k2 is an eigenvalue of the Laplacian in Ω for, respectively, Dirichlet
and Neumann boundary conditions, but that a uniquely solvable integral equation is
obtained by taking an appropriate linear combination of the above equations. Clearly,
for every η ∈ R it follows from the above equations that

(4.7) A′∂νu = f,

where

A′ := I + K ′ − iηS,

I is the identity operator, and

f(x) := 2
∂ui

∂ν
(x) − 2iηui(x), x ∈ Γ.

We have shown the first part of the following theorem, which is standard (e.g., [14])
in the case when Γ is smooth; for the extension to the case of Lipschitz Γ see [9].

Theorem 4.1. If u satisfies the plane wave scattering problem, then, for ev-
ery η ∈ R, ∂νu ∈ H−1/2(Γ) satisfies the integral equation (4.7). Conversely, if
φ ∈ H−1/2(Γ) satisfies A′φ = f , for some η ∈ R \ {0}, and u is defined in Ωe by
(4.6), with ∂νu replaced by φ, then u satisfies the plane wave scattering problem and
∂νu = φ.

Note that, since we know that the plane wave scattering problem is uniquely
solvable, this theorem implies that the integral equation (4.7) has exactly one solution
in H−1/2(Γ).

The integral equation (4.7) is an example of a so-called direct integral equation
formulation, obtained by applying Green’s theorem to the original scattering problem.
A related, indirect integral equation formulation, dating back to Brakhage and Werner
[4], Leis [33], and Panich [40], is obtained by looking for a solution to the scattering
problem in the form (1.6) for some density ϕ ∈ H1/2(Γ) and some η ∈ R \ {0}.
This combined single- and double-layer potential is in C2(Ωe), satisfies the Helmholtz
equation and Sommerfeld radiation condition, and is in H1,loc(Ωe) [34]. Thus it
satisfies the plane wave scattering problem if and only if it satisfies the boundary
condition that us = −ui on Γ. Using the standard jump relations for Lipschitz
domains [34], we see that this holds if and only if the integral equation (1.7) is satisfied,
i.e., if and only if

Aϕ = 2g,

where g(x) := −ui(x), x ∈ Γ, is the required Dirichlet data on Γ, and A := I+K−iηS.
This is the integral equation formulation introduced in [4, 33, 40].
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Note that the above mapping properties of S, K, and K ′ imply that, for |s| ≤ 1/2,

(4.8) A : Hs+1/2(Γ) → Hs+1/2(Γ), A′ : Hs−1/2(Γ) → Hs−1/2(Γ),

and these mappings are bounded. It is shown, moreover, in [9] (or see [37] for the case
A′ and s = 0), by combining the standard arguments for these integral equations when
Γ is smooth (see, e.g., [14]) with known properties of integral operators on Lipschitz
domains [41, 20, 36, 34], that, for η ∈ R \ {0}, these mappings are bijections, which of
course implies that their inverses are bounded by the Banach theorem. Further [36],
K ′ is the adjoint of K, and S is self-adjoint, so that A′ is the adjoint of A in the same
sense, namely that

(4.9) (φ,Aψ)Γ = (A′φ, ψ)Γ for φ ∈ L2(Γ), ψ ∈ L2(Γ),

where (φ, ψ)Γ :=
∫
Γ
φψds. Since H1(Γ) is dense in H−1(Γ) and the mappings (4.8)

are bounded, it follows by density that the duality relation (4.9) holds, more generally,
for φ ∈ H−s−1/2(Γ) and ψ ∈ Hs+1/2(Γ), provided that |s| ≤ 1/2. This implies that
the norms of A and A−1 as operators on Hs+1/2(Γ) coincide with those of A′ and

A′−1
, respectively, as operators on H−s−1/2(Γ) for |s| ≤ 1/2. In particular, we note

that

(4.10) ‖A−1‖2 = ‖A′−1‖2,

where, here and in the remainder of the paper, ‖ · ‖2 denotes both the norm on
L2(Γ) = H0(Γ) and the induced norm on the space of bounded linear operators on
L2(Γ).

Following this preparation, we show now the main result of this section, which is
an explicit bound on ‖A−1‖2 = ‖A′−1‖2 in terms of the geometry of Γ and the wave
number, in the case when Ω is starlike and Lipschitz. For brevity and to simplify
the arguments somewhat we also assume that Γ is piecewise smooth. Precisely, we
make the following assumption, which is intermediate between Assumptions 1 and 2
introduced in section 3.

Assumption 3. For some f ∈ C0,1(S,R) with minx̂∈S f(x̂) > 0, it holds that

Γ = {f(x̂)x̂ : x̂ ∈ S}. Further, for some M ∈ N, it holds that S = ∪M
j=1Sj, with each

Sj open in S, Ssing := S\∪M
j=1Sj a set of zero (surface) measure, and f |Sj

∈ C2(Sj ,R)
for j = 1, . . . ,M .

Remark 4.2. As an important example, we note that Assumption 3 is satisfied
if Γ is a polyhedron, provided that the interior of Ω, Ωi = R

n \ Ω̄e, is starlike with
respect to the origin; i.e., x ∈ Ωi implies sx ∈ Ωi for 0 ≤ s ≤ 1. Explicitly the function
f is then defined by f(x̂) := max{s > 0 : sx̂ ∈ Ω}, and, if Γ1, . . . , ΓM denote the
sides of Γ (each Γj open in Γ) and Γsing := Γ\∪M

j=1Γj denote the edges and corners of

Γ, then Assumption 3 holds with Sj := f−1(Γj), j = 1, . . . ,M and Γsing = f(Ssing).
Note that, if Assumption 3 holds (and, more generally, whenever Γ is piecewise

smooth), the integrals (4.2) and (4.3) are well defined in the ordinary Lebesgue sense
almost everywhere on Γ, in fact, provided that x /∈ Γsing = f(Ssing). Note also that
if Assumption 3 holds, then 0 < δ− ≤ δ+ ≤ R0, where

δ− := inf
x∈Γ\Γsing

(x · ν), δ+ := sup
x∈Γ\Γsing

(x · ν),

and R0 = maxx∈Γ |x|. Let us also define

δ∗ := sup
x∈Γ\Γsing

|x− (x · ν)ν| ≤ R0.
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The main result of this section is the following theorem. We postpone the proof until
the end of the section.

Theorem 4.3. Suppose that Assumption 3 holds and η ∈ R \ {0}. Then

(4.11) ‖A−1‖2 = ‖A′−1‖2 ≤ B,

where

B :=
1

2
+

[(
δ+
δ−

+
4δ∗2

δ2
−

)[
δ+
δ−

(
k2

η2
+ 1

)
+

n− 2

δ−|η|
+

δ∗2

δ2
−

]
+

(1 + 2kR0)
2

2δ2
−η

2

]1/2

.

To help make the expression for B more comprehensible, let us consider some
examples. Suppose first that Γ is a circle or sphere; i.e., Γ = {x : |x| = R0}. Then
δ− = δ+ = R0 and δ∗ = 0, and thus

(4.12) B =
1

2
+

[
1 +

k2

η2
+

n− 2

R0|η|
+

(1 + 2kR0)
2

2R2
0η

2

]1/2

.

In the 2D case that Γ is a regular polygon (centered on the origin) with M sides,
δ− = δ+ = R0 cos(π/M) and δ∗ = R0 sin(π/M); thus

(4.13) B =
1

2
+

[(
1 + 4 tan2 π

M

)[
1 +

k2

η2
+ tan2 π

M

]
+

(1 + 2kR0)
2

2R2
0η

2 cos2(π/M)

]1/2

.

In the limit M → ∞ this recovers (4.12), and for a square (M = 4) this simplifies to

(4.14) B =
1

2
+

[
10 + 5

k2

η2
+

(1 + 2kR0)
2

R2
0η

2

]1/2

.

Similarly, for the cube Ω = {x : |xj | ≤ a, j = 1, 2, 3} of side-length 2a we have
δ− = δ+ = a, δ∗ =

√
2a, and R0 =

√
3a, so that

B =
1

2
+ 3

[
3 +

k2

η2
+

1

a|η| +
(1 + 2

√
3ka)2

18a2η2

]1/2

.

We note that (4.12) can be compared with the results of Dominguez, Graham,
and Smyshlyaev [19], who have shown, when Γ is a circle, the bound (1.9) for all
sufficiently large k if the choice η = k is made. Our results Theorem 4.3 and (4.12)
predict for the circle that, if we choose η = k,

(4.15) ‖A−1‖2 ≤ 1

2
+

[
2 +

(1 + 2kR0)
2

2k2R2
0

]1/2

.

The right-hand side of this equation is a decreasing function of kR0 on (0,∞) which
approaches the limit 2.5 as kR0 → ∞. Thus our results show for a circle that, for
every θ > 2.5, ‖A−1‖2 ≤ θ for all sufficiently large kR0. This bound is close to the
result of [19] although we use much more general methods than the explicit calculation
of eigenfunctions and eigenvectors used in [19], which are only available for a circular
geometry. On the other hand, the authors also show, importantly, the coercivity
(1.10), which our methods do not seem to be well adapted to obtain.
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If we follow Dominguez, Graham, and Smyshlyaev [19] and choose η = k, we
obtain the following simplification of the bound in Theorem 4.3 for the case kR0 ≥ 1.
To obtain the second inequality we use that δ+/δ− ≤ θ and δ∗/δ− ≤ θ.

Corollary 4.4. If Assumption 3 holds, η = k, and kR0 ≥ 1, then

‖A−1‖2 = ‖A′−1‖2 ≤ 1

2
+

[(
δ+
δ−

+
4δ∗2

δ2
−

)[
2
δ+
δ−

+
(n− 2)R0

δ−
+

δ∗2

δ2
−

]
+

9R2
0

2δ2
−

]1/2

≤ 1

2
(1 + θ(4θ + 4n + 1)) ,

where θ := R0/δ−.
We finish the section by providing a proof of Theorem 4.3. Clearly, given that we

already know that A and A′ are invertible as operators on L2(Γ) and we have (4.10),
this theorem is implied as a corollary of the following lemma (cf. [8, Lemma 3.3]).

Lemma 4.5. Suppose that Assumption 3 holds and η ∈ R \ {0}. Then, for all
ϕ ∈ L2(Γ),

(4.16) ||A′ϕ||2 ≥ B−1||ϕ||2.

Proof. Let Y ⊂ L2(Γ) denote the set of those functions ϕ that are Hölder contin-
uous and are supported in Γ \ Γsing. Since Y is dense in L2(Γ) and A′ is bounded on
L2(Γ), it is sufficient to show that (4.16) holds for all ϕ ∈ Y .

Thus suppose ϕ ∈ Y , and define the single-layer potential u by

u(x) :=

∫
Γ

Φ(x, y)ϕ(y)ds(y) =

∫
Γ̃

Φ(x, y)ϕ(y)ds(y), x ∈ R
n,

where Γ̃ ⊂ Γ \ Γsing is the support of ϕ. From standard properties of the single-layer

potential (e.g., [14]) we have that u ∈ C(R3) ∩ C2(Rn \ Γ̃). Further, it follows from
[14, Theorem 2.17] that ∇u can be continuously extended from Ωe to Ω̄e and from Ωi

to Ω, with limiting values on Γ given by

(4.17) ∇u±(x) =

∫
Γ̃

∇xΦ(x, y)ϕ(y)ds(y) ∓ 1

2
ϕ(x)ν(x), x ∈ Γ,

where, as before, ν(x) is the unit normal vector at x, directed into Ωe, and

∇u±(x) := lim
ε→0+

∇u(x± εν(x)), x ∈ Γ.

We note from (4.17) that the tangential part of ∇u, ∇Tu, is continuous across Γ.
On the other hand, the normal derivative jumps across Γ, with

(4.18)
∂u±
∂ν

(x) =
1

2
[K ′ϕ(x) ∓ ϕ(x)] , x ∈ Γ \ Γsing.

Since also u(x) = 1
2Sϕ(x), x ∈ Γ, defining

g :=
1

2
A′ϕ =

1

2
(I + K ′ − iηS)ϕ,

we see that

(4.19)
∂u−
∂ν

(x) − iηu(x) = g(x), x ∈ Γ \ Γsing.
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Further, from (4.18) we see that

(4.20)
∂u−
∂ν

(x) − ∂u+

∂ν
(x) = ϕ(x), x ∈ Γ \ Γsing.

Note that to complete the proof we have to show that

(4.21) ||ϕ||2 ≤ 2B||g||2.

We will achieve this by bounding the normal derivatives of u on Γ via applications of
Lemma 2.3 in Ωi and in DR, for some R > R0.

Before proceeding we note first that (2.19) and (2.20) do hold with v replaced by
u and G = Ωi or G = DR, although we have not shown that u ∈ H2(G) so that we
cannot apply Lemma 2.3 directly. To derive these equations when G = Ωi, we can
first apply Lemma 2.3 with v = u and G = sΩi, for s ∈ (0, 1), and then take the
limit s → 1−, noting that Δu + k2u = 0 in Ωi and u ∈ C1(Ω). Arguing similarly,
these equations also hold with v replaced by u and G = DR. Thus, recalling that our
normal vector ν on Γ points out of Ωe, we have, taking the imaginary part of (2.19)
with v = u and G = Ωi or G = DR, the identities

�
∫

Γ

ū
∂u−
∂ν

ds = 0,(4.22)

�
∫

Γ

ū
∂u+

∂ν
ds = �

∫
ΓR

ū
∂u

∂r
ds.(4.23)

Taking v = u and G = Ωi and adding (2.20) to (n − 2) times the real part of (2.19)
gives

2k2

∫
Ω

|u|2 dx =

∫
Γ

(
x · ν

(
k2|u|2 +

∣∣∣∣∂u−
∂ν

∣∣∣∣
2

− |∇Tu|2
)

+

(

[(n− 2)ū + 2x · ∇T ū]
∂u−
∂ν

))
ds.(4.24)

Finally, taking v = u and G = DR, for some R > R0, and adding (2.20) to the real
part of (2.19), we have ∫

DR

(
(3 − n)|∇u|2 + (n− 1)k2|u|2

)
dx

= −
∫

Γ

(
x · ν

(
k2|u|2 +

∣∣∣∣∂u+

∂ν

∣∣∣∣
2

− |∇Tu|2
)

+ 

(

[ū + 2x · ∇T ū]
∂u+

∂ν

))
ds

+

∫
ΓR

((
k2|u|2 +

∣∣∣∣∂u∂r
∣∣∣∣
2

− |∇Tu|2
)

+ 

(
ū
∂u

∂r

))
ds.(4.25)

Using these four identities and Lemma 2.1 we will complete the proof.
We start by using (4.19) to replace ∂u−/∂ν in (4.22). Applying Cauchy–Schwarz,

we see that

|η| ‖u‖2
2 =

∣∣∣∣�
∫

Γ

ūgds

∣∣∣∣ ≤ ‖u‖2‖g‖2,
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so that

(4.26) ‖u‖2 ≤ |η|−1‖g‖2.

Alternatively, from (4.22) we have that



∫

Γ

iηū
∂u−
∂ν

ds = 0,

and, using (4.19) and Cauchy–Schwarz, we see that

(4.27)

∥∥∥∥∂u−
∂ν

∥∥∥∥
2

≤ ‖g‖2.

It remains to bound the L2 norm of ∂u+/∂ν in terms of ‖g‖2. To achieve this
goal we first bound ‖∇T ‖2 using (4.24). From this equation we have that

δ−‖∇Tu‖2
2 ≤

∫
Γ

x · ν|∇Tu|2 ds

≤ δ+k
2‖u‖2

2 + δ+

∥∥∥∥∂u−
∂ν

∥∥∥∥
2

2

+ [(n− 2)‖u‖2 + 2δ∗‖∇Tu‖2]

∥∥∥∥∂u−
∂ν

∥∥∥∥
2

,

where we have used that |x · ∇Tu| = |(x− (x · ν)ν) · ∇Tu|. From (4.26) and (4.27) it
follows that

δ−‖∇Tu‖2
2 ≤

[
δ+

(
k2

η2
+ 1

)
+

n− 2

|η|

]
‖g‖2

2 + 2δ∗‖∇Tu‖2‖g‖2.

Finally, applying (3.11) to the last term on the right-hand side, we deduce that

δ−
2
‖∇Tu‖2

2 ≤
[
δ+

(
k2

η2
+ 1

)
+

n− 2

|η| + 2
δ∗2

δ−

]
‖g‖2

2

so that

(4.28) ‖∇Tu‖2 ≤
[
2
δ+
δ−

(
k2

η2
+ 1

)
+

2(n− 2)

δ−|η|
+ 2

δ∗2

δ2
−

]1/2

‖g‖2.

To finish the proof, we start from (4.25), apply Lemma 2.1, which is valid since
u is a radiating solution of the Helmholtz equation, and then use (4.23) to see that

δ−

∥∥∥∥∂u+

∂ν

∥∥∥∥
2

2

≤
∫

Γ

x · ν
∣∣∣∣∂u+

∂ν

∣∣∣∣
2

ds

≤
∫

Γ

(
x · ν|∇Tu|2 + 


(
[ū + 2x · ∇T ū]

∂u+

∂ν

)
+ 2kR�

(
ū
∂u+

∂ν

))
ds.

Applying Cauchy–Schwarz and (3.11), we see that

δ−

∥∥∥∥∂u+

∂ν

∥∥∥∥
2

2

≤ δ+‖∇Tu‖2
2 + (1 + 2kR)‖u‖2

∥∥∥∥∂u+

∂ν

∥∥∥∥
2

+ 2δ∗‖∇Tu‖2

∥∥∥∥∂u+

∂ν

∥∥∥∥
2

≤
(
δ+ +

4δ∗2

δ−

)
‖∇Tu‖2

2 +
δ−
2

∥∥∥∥∂u+

∂ν

∥∥∥∥
2

2

+
(1 + 2kR)2

δ−
‖u‖2

2.
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Hence, and using (4.26) and (4.28),∥∥∥∥∂u+

∂ν

∥∥∥∥
2

2

≤ 2

(
δ+
δ−

+
4δ∗2

δ2
−

)
‖∇Tu‖2

2 +
2(1 + 2kR)2

δ2
−

‖u‖2
2

≤ 4

[(
δ+
δ−

+
4δ∗2

δ2
−

)[
δ+
δ−

(
k2

η2
+ 1

)
+

(n− 2)

δ−|η|
+

δ∗2

δ2
−

]
+

(1 + 2kR)2

2δ2
−η

2

]
‖g‖2

2.

This bound holds for all R > R0 and hence also for R = R0. Combining this bound
with (4.27) we see that we have shown (4.21) and thus have finished the proof of the
lemma.
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[26] F. Ihlenburg and I. Babuška, Finite element solution of the Helmholtz equation with high

wave number. I. The h-version of the FEM, Comput. Math. Appl., 30 (1995), pp. 9–37.
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ON THE CAUCHY PROBLEM FOR THE p-SYSTEM AT A
JUNCTION∗
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Abstract. We present a model for the description of a nonviscous isentropic or isothermal fluid
crossing a junction. Aiming at an extension of the usual Euler equations, we neglect the effects of
friction against the walls of the pipes, but the reaction constraints at the junction are considered.
The well posedness of the Cauchy problem is proved, and some qualitative properties of the model
are described.
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1. Introduction. Consider n rectilinear tubes exiting a junction. For l =
1, . . . , n, the direction and section of the lth tube are described, respectively, by
the direction and the norm of a vector νl ∈ R

3 \ {0}. All tubes are filled with the
same nonviscous isentropic (or isothermal) fluid, and friction along the walls is ne-
glected. The resulting system can be modeled through n copies of the one-dimensional
p-system in Eulerian coordinates:

(1.1)

⎧⎨
⎩

∂tρl + ∂xql = 0,

∂tql + ∂x

(
q2
l

ρl
+ p(ρl)

)
= 0,

t ∈ [0,+∞[ ,
x ∈ [0,+∞[ ,
l ∈ {1, . . . , n} .

Here, t is time, and, along the lth tube, x is the abscissa, ρl is the fluid density, and ql
is the linear momentum density. The pressure law p = p(ρ) is the same for all tubes.

This paper aims to study the Cauchy problem for (1.1). Therefore, we introduce
below coupling conditions among the tubes that depend on the relative sizes and
positions of the tubes. These conditions neglect friction at the junction; nevertheless
the total linear momentum is not conserved due to the presence of the junction, and
its variation depends on ν1, . . . , νn (see also Example 1 below).

The key condition, written using the linear momentum flow P (ρ, q) = q2

ρ + p(ρ),
reads

(P) lim
x→0+

P (ql(t, x), ρl(t, x)) = lim
x→0+

P (qh(t, x), ρh(t, x))

for all l, h = 1, . . . , n, and for almost every (a.e.) t > 0. In the static case ql = 0, it
amounts to the equality of the hydrostatic pressure. Note that in (P) the geometry of
the junction is hidden in the vectors νl that identify the direction of the tube. Indeed,
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the connection between (1.1) and the full three-dimensional (3D) Euler equations is
achieved through the functions

ρ(t;x) =

n∑
l=1

ρl(t,x · ν̂l)χTl
(x) and q(t;x) =

n∑
l=1

ql(t,x · ν̂l)χTl
(x) ν̂l ,

where Tl is the region in the lth tube, x is the space variable, and ν̂l = νl/‖νl‖.
As usual, χT is the characteristic function of T ; i.e., χT (x) = 1 if x ∈ T , while
χT (x) = 0 if x �∈ T . Here we approximate the intrinsically 3D nature of the real
junction assuming that the fluid speed in the lth pipe is parallel to νl and that the
different pipes interact at a unique single point. The total linear momentum is then

Q(t) =

∫
R3

q(t,x) dx =

n∑
l=1

∫ +∞

0

ql(t, x) νl dx.

Straightforward computations based on the 3D Euler equations (see [9]) show that if
(ρl, ql) is in L1 ∩ BV, then the variation of the total linear momentum on

⋃n
l=1 Tl

during the time interval [t1, t2] is

Q(t2) −Q(t1) =

∫∫∫
⋃

l Tl

(q(t2;x) − q(t1;x)) dx

=

∫ t2

t1

n∑
l=1

P (ρl(t, 0+), ql(t, 0+)) νl dt .

The latter term above is the variation in the total linear momentum and is due to the
junction. Condition (P) says that

Q(t2) −Q(t1) =

∫ t2

t1

n∑
l=1

P (ρl(t, 0+), ql(t, 0+)) νldt =

(∫ t2

t1

P∗(t) dt

) n∑
l=1

νl

for a suitable function P∗ of time. Hence, (P) implies that the reaction constraint due
to the junction is directed along

∑
l νl; i.e.,

(Q)

(
n∑

l=1

P (ρl(t, 0+), ql(t, 0+)) νl

)
∈
(

R

n∑
l=1

νl

)
.

This condition depends heavily on the geometry of the junction and is equivalent
to (P) as soon as ν1, . . . , νn are linearly independent; see Lemma 2.2.

In the case of n = 2 ducts with different sections, our model can be compared to
the limit situation of [18, 19] corresponding to a delta source; see [14]. The case of a
“kink,” i.e., n = 2 nonparallel ducts having the same section, was considered in [17].
In these papers, the variation in the total linear momentum is quantified through a
source term. In the present model, no source term is specified, and the modulus of
the reaction constraint is not assumed to be known. On the contrary, here only the
direction of the reaction constraint is used, and it is assumed to depend only on the
geometry of the junction.

The friction against the pipes’ walls is neglected here. When considered, it can
be described through standard source terms along the pipes and a Dirac delta at the
junction, using, for example, the techniques in [14, 17]. The present results are also
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preliminary to the study of more complicated networks. However, as the results in [13]
also show, well posedness depends on the geometry of the network.

Our choice of considering the subsonic case is motivated by the relevance of this
situation for applications. From the analytic point of view, as will be clear by the
proofs below, the only relevant constraints are that (i) the total number of positive
characteristic speeds must be equal to the number of pipes, and (ii) no transonic wave
arises.

The main technique we use is the so-called wave-front tracking method; see [4, 10].
Therefore, we base our analysis on the solution to the Riemann problem at the junc-
tion, as in [8, 9]. This concept of solution is a natural extension of the classical Lax
solution and reduces to it in the case of two ducts with the same section. Furthermore,
it ensures the well posedness for the Riemann problem; hence the present definition
is different from that introduced in [2, 3].

Similarly to the well posedness results found in the literature for the general
p-system [4, 10], the well posedness of the Cauchy problem at a junction is proved
below in the case where the initial data are a sufficiently small perturbation of a
stationary solution.

There are a large number of papers dealing with various fluid-dynamical models
in networks. Concerning car traffic in a network, we refer to the book [13] and to
the papers [5, 6, 9, 11, 12, 16]. Concerning the evolution of gas in a network, see, for
example, [2, 3, 8, 9]. Networks of open channels are studied with different techniques
in [15].

Section 2 describes the model and recalls the solution to the Riemann problem
at the junction, as defined in [8, 9]. Qualitative properties of the solution to the
Riemann problem and numerical examples are also provided. Section 3 is devoted to
the well posedness of solutions to the Cauchy problem. Finally, section 4 contains the
technical details of the proofs.

2. The model. This section is devoted to definitions and results of the Riemann
problem at a junction; see also [8, 9]. The physics of the fluid is described by the
following usual condition on the pressure law in (1.1).

(EoS) The Equation of State of the fluid, i.e., the pressure law p = p(ρ), satisfies
p ∈ C2 (R+; R+), p(0) = 0, p′ > 0, and p′′ ≥ 0.

We denote R
+ = [0,+∞[ and R̊

+ = ]0,+∞[. A typical example is the γ-law

(2.1) p(ρ) = p∗ · (ρ/ρ∗)γ

for fixed constants ρ∗, p∗ > 0 and γ ≥ 1. Other quantities relevant in the study
of (1.1) are

flow of the linear momentum: P (ρ, q) =
q2

ρ
+ p(ρ),

total energy: E(ρ, q) =
q2

2ρ
+ ρ

∫ ρ

ρ∗

p(r)

r2
dr,

flow of the total energy: F (ρ, q) =
q

ρ
· (E(ρ, q) + p(ρ)) .

We refer below to P as to the dynamic pressure. As is well known (see [10, for-
mula (3.3.21)]), the pair (E,F ) plays the role of the (mathematical) entropy-entropy
flux pair.
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T1 T2

ν1 ν2

T1

T2

T3

ν1
ν2

ν3

Fig. 2.1. Examples of junctions and notation used in section 3.

We introduce the regions

q

ρ

A+
0

A+

A−
0

A−

λ1 = 0

λ2 = 0

A− =
{
R

+ × R : λ2(ρ, q) < 0
}
,

A−
0 =

{
R

+ × R : λ2(ρ, q) ≥ 0, q ≤ 0
}
,

A+
0 =

{
R

+ × R : λ1(ρ, q) ≤ 0, q ≥ 0
}
,

A+ =
{
R

+ × R : λ1(ρ, q) > 0
}
,

A0 =A−
0 ∪A+

0 .

Above, as usual, λi is the ith characteristic speed; see (4.1) for its expression and for
other relations holding for the p-system. We shall often refer to A0 as the subsonic
region.

Consider n ducts exiting a single junction. Each tube is modeled by R
+, and the

junction is at x = 0. The lth pipe is described by a vector νl parallel to it that exits the
junction and whose norm ‖νl‖ is equal to the section of the duct; see Figure 2.1. For
instance, standard Riemann problems correspond to (2.2) with n = 2 and ν1 +ν2 = 0.
This choice makes the geometry of the junction intrinsic to the structure of the model;
see Example 1 below.

Assigning at time t = 0 a constant initial state (ρ̄l, q̄l) ∈ R
+ × R in each of the n

ducts exiting a junction (l ∈ {1, . . . , n}), we have a Riemann problem at the junction:

(2.2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tρl + ∂xql = 0,

∂tql + ∂x

(
q2
l

ρl
+ p(ρl)

)
= 0,

(ρl, ql)(0, x) = (ρ̄l, q̄l) ,

t ∈ R
+,

x ∈ R
+,

l ∈ {1, . . . , n},
(ρ̄l, q̄l) ∈ R̊

+ × R .

Definition 2.1. A solution to the Riemann problem (2.2) is a self-similar func-

tion (ρ, q) ∈ BV(R+ × R
+; (R̊+ × R)n) such that the following hold:

(L) For all l = 1, . . . , n, the function (t, x) → (ρl, ql)(t, x) is self-similar and

coincides with the restriction to x ∈ R̊
+ of the Lax solution to the standard Riemann
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problem ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tρl + ∂xql = 0,

∂tql + ∂x

(
q2
l

ρl
+ p(ρl)

)
= 0,

(ρl, ql)(0, x) =

{
(ρ̄l, q̄l) if x > 0,
(ρl, ql)(1, 0+) if x < 0 .

(M) Mass is conserved at the junction; i.e., for a.e. t > 0,

n∑
l=1

‖νl‖ ql(t, 0+) = 0 .

(P) The trace of the dynamic Pressure P is the same along all tubes; i.e., there
exists a positive P∗ such that for l = 1, . . . , n,

P (ρl(t, 0+), ql(t, 0+)) = P∗ .

(E) At the junction, Entropy may not decrease; i.e., for a.e. t > 0,

n∑
l=1

‖νl‖F (ρl(t, 0+), ql(t, 0+)) ≤ 0 .

Condition (L) implies that waves exiting the junction are standard Lax solutions
to suitable Riemann problems. Hence, waves produced by the solution to (2.2) have
positive speed in each duct, and the trace at the junction is constant in time.

The next example shows that, in Definition 2.1, geometry is hidden in the vectors
ν1, . . . , νn.

Example 1. Consider an elbow of an angle π − θ between two tubes having the
same section, so that n = 2, ν1 = [−1 0]T , and ν2 = [cos θ sin θ]T .

T1

T2

θ

Choose initial data (ρ̄1, q̄1) and (ρ̄2, q̄2). According to the conservation of mass (M),
which is part of Definition 2.1, if these data are in equilibrium (in the sense that no
wave arises in the corresponding Riemann problem (2.2)), then the variation in the
total linear momentum is ΔQ = q̄1ν1 − q̄2ν2 = q̄1 (ν1 + ν2). Note that ΔQ is directed
along ν1 + ν2, coherently with (Q) and, moreover, ‖ΔQ‖ = |q̄1|

√
2(1 − cos θ), exactly

as in [17, formula (0.3)].
As anticipated in the introduction, the independence of (P) from the geometry is

only apparent. Indeed, (P) implies the more explicitly geometric condition (Q) and
is equivalent to it as soon as ν1, . . . , νn are linearly independent.

Lemma 2.2. For any n-tuple of pipes, (P) =⇒ (Q). Moreover, if ν1, . . . , νn are
linearly independent, then (P) ⇐⇒ (Q).

The proof is immediate. Note that (P) gives n−1 conditions, while (Q) provides

a number of conditions equal to the dimension of (
∑

νl)
⊥

. In particular, with more
than three tubes, (P) and (Q) may not be equivalent.
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The results in [8, 9] can be slightly modified to cover the present case and ensure
that the Riemann problem (2.2) with Definition 2.1 enjoys the same properties of
standard Riemann problems with the standard Lax solutions [4, section 5.3]. In fact,
we have the following proposition.

Proposition 2.3. Let p satisfy (EoS). Fix n ∈ N with n ≥ 2 and a positive P∗.
Choose n initial states satisfying

(2.3) (ρ̄i, q̄i) ∈ Å0,

n∑
i=1

‖νi‖q̄i = 0, P (ρ̄i, q̄i) = P∗,
n∑

i=1

‖νi‖F (ρ̄i, q̄i) < 0.

Then, for every C > 0, there exists δ > 0 such that for all n-tuples of initial states
(ρ̃, q̃) ∈ (R̊+ × R)n with |ρ̄i − ρ̃i| + |q̄i − q̃i| < δ, the Riemann problem (2.2) admits a
unique solution (ρ, q) = (ρ, q)(t, x) in the sense of Definition 2.1 satisfying

(2.4) |ρi(t, x) − ρ̄i| + |qi(t, x) − q̄i| < C,

for every i ∈ {1, . . . , n}, t ∈ R
+, and x ∈ R

+. Moreover, in the case n = 2, ν1+ν2 = 0,
the map (t, x) → (ρ∗, q∗)(t, x) is the standard Lax solution to (1.1) with data

(ρ, q)(0, x) =

{
(ρ̄1,−q̄1) if x < 0,
(ρ̄2, q̄2) if x > 0

if and only if the map

(2.5) (t, x) →
{

(ρ∗,−q∗)(t,−x) if x ≤ 0,
(ρ∗, q∗)(t, x) if x ≥ 0

solves (2.2) with data (ρ̄1, q̄1) and (ρ̄2, q̄2) in the sense of Definition 2.1.

The proof is as in [8, 9]. Here, aiming both at the well posedness of the Riemann
problem and at the qualitative properties of the solutions to (2.2), we consider some
effects of interactions at the junction.

Proposition 2.4. Let p satisfy (EoS). Fix n ∈ N with n ≥ 2 and a positive
P∗. Choose n initial states (ρ̄l, q̄l) satisfying (2.3) and thus producing a stationary
solution for the Riemann problem. Then, there exists δ > 0 such that if in the lth
duct a rarefaction (resp., a shock) of the first family connecting (ρ̄l, q̄l) with a state
(ρrl , q

r
l ) ∈ Å0 satisfying |(ρ̄l, q̄l) − (ρrl , q

r
l )| < δ reaches the junction, then a rarefaction

(resp., a shock) propagates in all the other pipes.

The proof is deferred to section 4. Here we give three numerical examples, where
we used the γ-law (2.1) with γ = 1.4, ρ∗ = 1, and p∗ = 1.

Example 2. Consider the junction below with ν1 = [−1 0]T , ν2 = [2 0]T .

The arrows indicate the direction of the fluid. A 1-shock heads from the left toward
the junction. Before the interaction the states (ρ, q) from left to right are as shown
below:
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T1 T2

tt

x xA

B

C

D

E A = (2.00001, 1.29999),
B = (2.10000, 1.22504),
C = (2.09816, 1.21891),
D = (2.34829,−0.649996),
E = (2.38388,−0.609455).

After the interaction, a shock propagates in the pipe to the right, and a rarefaction
is reflected to the left.

Example 3. Consider the same pipes as in Example 2.

A 1-shock moves from the larger duct toward the smaller one:

T1 T2

tt

xxA

B

C

D

E A = (2.00001, 1.29999),
B = (2.13796, 1.58483),
C = (2.34829,−0.649996),
D = (2.50000,−0.913070),
E = (2.61032,−0.792455).

After the interaction, a shock is reflected back to the right, and another shock is
refracted in the smaller tube.

Example 4. We now consider an example with three pipes. Let ν1 = [−1 0]T ,
ν2 = [1/2

√
3/2]T , and ν3 = [1/2 −

√
3/2]T ; i.e., all tubes have the same sections,

and
∑

νl = 0.

T1 T2

T3

T1 T2

T3

The tubes are in equilibrium. A 1-shock approaches the junction along tube 1.

T1 T3T2

ttt

xxxA

B

C

D

E

F

G
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A = (1.0363, 1.0802),
B = (1.6000, 0.79276),
C = (1.6007, 0.79407),

D = (1.6273,−0.57179),
E = (1.7694,−0.42680),
F = (1.6528,−0.50842),
G = (1.7847,−0.36827).

Then, the resulting interaction at the junction forms a shock in each tube.

3. Analytical results. Consider the Cauchy problem at a junction with n pipes,
i.e., the problem

(3.1)

⎧⎪⎪⎨
⎪⎪⎩

∂tρl + ∂xql = 0,

∂tql + ∂x

(
q2
l

ρl
+ p(ρl)

)
= 0,

(ρ, q)(0, x) = (ρo, qo)(x),

t∈R
+,

x∈R
+,

l∈{1, . . . , n},
(ρo, qo)∈L1

(
R

+; (R̊+ × R)n
)
.

For (ρ, q) ∈ L1(R+; (R̊+ × R)n) attaining values in a neighborhood of a fixed (ρ̂, q̂) ∈
(R̊+ × R)n, with a slight abuse of notation, we introduce

‖(ρ, q)‖L1 =

n∑
l=1

‖(ρl, ql)‖L1 and TV (ρ, q) =

n∑
l=1

TV (ρl, ql) .

The natural extension of the usual definition of a weak entropy solution to the present
case is the following.

Definition 3.1. Fix (ρ̂, q̂) ∈ (R̊+ × R)n and T ∈ ]0,+∞]. A weak solution

to (3.1) is a map (ρ, q) ∈ C0([0, T ]; (ρ̂, q̂) + L1(R+; (R̊+ × R)n)) such that for all
ϕ ∈ C∞

c (]−∞, T [ × R
+; R)

n∑
l=1

(∫ T

0

∫
R+

(ρl ∂tϕ + ql ∂xϕ) dx dt +

∫
R+

ρo,l(x)ϕ(0, x) dx

)
‖νl‖ = 0,

(∫ T

0

∫
R+

(ql∂tϕ + Pl∂xϕ) dxdt +

∫
R+

qo,l(x)ϕ(0, x) dx

)
‖νl‖=

∫ T

0

P∗(t)ϕ(t, 0)dt

for all l = 1, . . . , n and for a suitable P∗ ∈ L1 ([0, T ]; R+). The weak solution (ρ, q) is
entropic if for all ϕ ∈ C∞

c (] −∞, T [×R
+; R+)

n∑
l=1

(∫ T

0

∫
R+

(El ∂tϕ + Fl ∂xϕ) dx dt +

∫
R+

E(ρo,l, qo,l)ϕ(0, x) dx

)
‖νl‖ ≥ 0,

where El = E(ρl, ql) and Fl = F (ρl, ql).
Above, the condition on the second equation clearly reflects (P). A similar con-

dition related to (Q) is

n∑
l=1

(∫ T

0

∫
R+

(ql ∂tϕ + Pl ∂xϕ) dx dt +

∫
R+

qo,l(x)ϕ(0, x) dx

)
νl ∈

(
R

n∑
l=1

νl

)
.

A simple condition for (ρ, q) to be a weak entropy solution is provided by the
following lemma.

Lemma 3.2. Let n ∈ N with n ≥ 2 and ν1, . . . , νn ∈ R
3 be pairwise distinct. Fix

a state (ρ̂, q̂) ∈ (R̊+ × R)n and T ∈ ]0,+∞]. If the map (ρ, q) ∈ C0([0, T ]; (ρ̂, q̂) +

L1(R+; (R̊+ × R)n)) satisfies
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1. for l = 1, . . . , n, each map (ρl, ql) is a weak entropy solution to (1.1) for

x ∈ R̊
+ and t ∈ R

+,
2. for a.e. t ∈ R̊

+, the trace (ρ̄l, q̄l) (t) = limx→0+(ρl, ql)(t, x) is the initial data
of a stationary solution to the Riemann problem (2.2) in the sense of Defini-
tion 2.1,

then it is a weak solution to (3.1).

The proof is an adaptation of [9, Propositions 2.1, 2.2, and 3.2] and is omitted.
We proceed to the main result of this paper: the well posedness of the solution to the
Cauchy problem for the p-system at a junction.

Theorem 3.3. Fix an n-tuple of subsonic states (ρ̂, q̂) ∈ (Å0)
n, giving a sta-

tionary solution to the Riemann problem (2.2), in the sense of Definition 2.1, with
entropy flux strictly negative. Then, there exist positive constants δ0, L and a map
S : [0,+∞[ ×D → D, with the following properties:

1. D ⊇ {(ρ, q) ∈ (ρ̂, q̂) + L1(R+; (R̊+ × R)n) : TV (ρ, q) ≤ δ0}.
2. For (ρ, q) ∈ D, S0(ρ, q) = (ρ, q) and for s, t ≥ 0, SsSt(ρ, q) = Ss+t(ρ, q).
3. For (ρ, q), (ρ′, q′) ∈ D and s, t ≥ 0,

‖St(ρ, q) − Ss(ρ
′, q′)‖L1 ≤ L · (‖(ρ, q) − (ρ′, q′)‖L1 + |t− s|).

4. If (ρ, q) ∈ D is piecewise constant, then for t > 0 sufficiently small, St(ρ, q)
coincides with the juxtaposition of the solutions to Riemann problems centered
at the points of jumps or at the junction.

Moreover, for every (ρ, q) ∈ D, the map t → St(ρ, q) is a weak entropy solution to the
Cauchy problem (3.1) in the sense of Definition 3.1.

Note that 1–4 above are the natural extension of the definition of the standard
Riemann semigroup [4, Definition 9.1] to the Cauchy problem (3.1). In general, the
linear momentum fails to be conserved. Indeed, the following estimate holds.

Proposition 3.4. Let n ∈ N with n ≥ 2 and ν1, . . . , νn ∈ R
3 be pairwise distinct.

Fix (ρ̂, q̂) ∈ (R̊+ × R)n and T ∈]0,+∞]. Let (ρ, q) ∈ C0([0, T ]; (ρ̂, q̂) + L1(R+; (R̊+ ×
R)n)) be a solution to (1.1) in the sense of Definition 2.1. Then,

Q(t2) −Q(t1) =

(∫ t2

t1

P∗(t) dt

) n∑
l=1

νl,

where, for l = 1, . . . , n and a.e. t1, t2 ∈ [0, T ], P∗(t) = P (ρl(t, 0
+), ql(t, 0

+)).

The proof is similar to that of [9, Proposition 3.2] and is omitted. The term on
the right-hand side above is the impulse of the reaction constraint and describes the
defect in the conservation of the total linear momentum.

4. Technical details. The first part of this section deals with the basic proper-
ties of the p-system and with the proof of Proposition 2.4. Subsection 4.2 describes
the wave-front tracking construction and the estimates for the existence and well
posedness of the Cauchy problem.

In this section, we use the notation u = [ρ q]T .

4.1. Properties of the p-system. We recall here basic formulas of the p-
system (1.1) valid for a pressure law satisfying (EoS). Throughout, c(ρ) =

√
p′(ρ)

denotes the sound speed. Let λi be the ith eigenvalue corresponding to the ith right
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eigenvector ri of the Jacobian of the flow f(ρ, q) = [q q2/ρ + p(ρ)]T . We have

(4.1)

λ1(ρ, q) = q
ρ − c(ρ) , λ2(ρ, q) = q

ρ + c(ρ) ,

r1(ρ, q) =

[
ρ

q − ρc(ρ)

]
, r2(ρ, q) =

[
ρ

q + ρc(ρ)

]
,

∇λ1 · r1 = −c(ρ) − ρc′(ρ), ∇λ2 · r2 = c(ρ) + ρc′(ρ).

The speeds of 1, 2-shock waves between (ρo, qo) and the state at density ρ are

Λ 1
2
(ρ, ρo, qo) =

qo
ρo

∓

√
ρ

ρo
· p(ρ) − p(ρo)

ρ− ρo
.

The (forward) 1, 2-Lax curves have the expressions

L1(ρ; ρo, qo) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ

ρo
qo − ρ

∫ ρ

ρo

c(r)

r
dr if ρ < ρo,

ρ

ρo
qo −

√
ρ

ρo
(ρ− ρo) (p(ρ) − p(ρo)) if ρ > ρo,

L2(ρ; ρo, qo) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ

ρo
qo −

√
ρ

ρo
(ρ− ρo) (p(ρ) − p(ρo)) if ρ < ρo,

ρ

ρo
qo + ρ

∫ ρ

ρo

c(r)

r
dr if ρ > ρo

(see Figure 4.1, right), while the reversed 1, 2-Lax curves exiting (ρ̄, q̄) are

(4.2)

L−
1 (ρ; ρ̄, q̄) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ

ρ̄
q̄ +

√
ρ

ρ̄
(ρ̄− ρ) (p(ρ̄) − p(ρ)) if ρ < ρ̄,

ρ

ρ̄
q̄ − ρ

∫ ρ

ρ̄

c(r)

r
dr if ρ > ρ̄,

L−
2 (ρ; ρ̄, q̄) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ

ρ̄
q̄ +

√
ρ

ρ̄
(ρ− ρ̄) (p(ρ) − p(ρ̄)) if ρ > ρ̄,

ρ

ρ̄
q̄ − ρ

∫ ρ̄

ρ

c(r)

r
dr if ρ < ρ̄.

Proof of Proposition 2.4. For simplicity denote with ul the states (ρ̄l, q̄l). Assume
that in a pipe, say 1, a shock wave connecting u1 with ur

1 = (ρr1, q
r
1) arrives at the

junction. Clearly ρ1 < ρr1. We have

d

dρ
P (ρ, L1(ρ;u1))|ρ=ρ1

= (λ1(u1))
2 > 0,

and thus P (u1) < P (ur
1). Denote with ũ1 ∈ A0 the point of the reversed Lax curve of

the second family through ur
1 having dynamical pressure equal to P (u1). The n-tuple

(ũ1, u2, . . . , un) does not provide a stationary solution to the Riemann problem at the
junction, since the sum in (M) is less than 0. Therefore the solution to the Riemann
problem has a dynamical pressure P∗ > P (u1). Since the dynamical pressure P is
strictly increasing along the reversed Lax curves of the second family [8, Lemma 1],
we conclude that shock waves are generated in all pipes, except the first one.

Similar considerations hold in the case of a rarefaction wave.
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q

ρ

A+

A+
0

A−
0

A−

λ1(ρ, q) = 0

λ2(ρ, q) = 0

q

ρ

R1

R2

S1

S2

Fig. 4.1. Left: the regions A−, A±
0 , A+ and a level curve of the dynamic pressure. Right: the

Lax forward curves for (1.1).

4.2. Wave-front tracking with the junction. This subsection is devoted to
the proof of Theorem 3.3. To do this, we introduce a wave-front tracking approxima-
tion for our Cauchy problem and a functional measuring the distance in L1 between
two piecewise constant solutions. The construction of a solution to (3.1) is given
adapting the wave-front tracking technique; see [4, Chapter 7] or [10, Chapter 14].

Define ûl = (ρ̂l, q̂l) for l = 1, . . . , n. Let δ̂ > 0 be such that B(ûl, δ̂) ⊂ Å0 for

l = 1, . . . , n and introduce the compact set B =
∏n

l=1 B(ûl, δ̂).

Approximate the initial datum uo with a sequence uo,ν of piecewise constant initial
data each having a finite number of discontinuities so that limν→+∞ ‖uo,ν − uo‖L1 =
0. Then, at the junction and at each point of jump in the approximate initial datum
along the ducts, we solve the corresponding Riemann problem. The Riemann problem
at the junction is solved according to Definition 2.1. If the total variation of the
initial datum is sufficiently small, then Theorem 2 in [8] assures the existence and
uniqueness of the solution to the Riemann problem. We approximate each rarefaction
wave with a rarefaction fan, i.e., by means of (nonentropic) shock waves traveling at
the characteristic speed of the state to the right of the shock.

This construction can be extended up to the first time t̄1 at which two waves
interact in a duct or a wave hits the junction. Clearly, at time t̄1 the functions so
constructed are piecewise constant with a finite number of discontinuities. Hence,
at any subsequent interaction or collision with the junction, we repeat the previous
construction with the following provisions:

1. No more than two waves interact at the same point or at the junction.
2. A rarefaction fan of the ith family produced by the interaction between an

ith rarefaction and any other wave is not split any further.
3. When the product of the strengths of two interacting waves falls below a

threshold ε̌, then we let the waves cross each other, their size being unaltered,
and introduce a nonphysical wave with speed λ̂, with λ̂ > supu λ2(u); see [4,
Chapter 7] and the refinement [1].

In the present case, we have to complete the above algorithm by stating how the
Riemann problem at the junction is to be solved. At time t = 0 and whenever a
physical wave with size greater than ε̌ hits the junction, the accurate solver is used;
i.e., the exact solution as in Definition 2.1 is approximated by replacing rarefaction
waves with rarefaction fans. When a wave with strength smaller than ε̌ hits the
junction, then we let it be reflected into a nonphysical wave with speed λ̂, and no
wave in any other duct is produced.
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σ+
1

σ−
1

σ+
2

σ−
2

σ+
1

σ+
2

σ′′
2 σ′

2

Fig. 4.2. Interactions in the (t, x) plane and notation for the standard interaction estimates in
Lemma 4.1.

Repeating this procedure recursively, we construct a wave-front tracking sequence
of approximate solutions uν in the sense of [4, Definition 7.1].

A key role in wave-front tracking is played by interaction estimates. At interac-
tions of waves in a duct, we have the following classical result.

Lemma 4.1. There exists a constant K with the following property.
1. If there is an interaction in a duct between two waves σ−

1 and σ−
2 , respec-

tively of the first and the second family, producing the waves σ+
1 and σ+

2 (see
Figure 4.2, left), then

(4.3)
∣∣σ+

1 − σ−
1

∣∣+ ∣∣σ+
2 − σ−

2

∣∣ ≤ K ·
∣∣σ−

1 σ−
2

∣∣ .
2. If there is an interaction in a duct between two waves σ′

i and σ′′
i of the same

ith family producing waves of total size σ+
1 and σ+

2 (see Figure 4.2, right, for
the case i = 2), then∣∣σ+

1 − (σ′′
1 + σ′

1)
∣∣+ ∣∣σ+

2

∣∣ ≤ K · |σ′
1σ

′′
1 | if i = 1,∣∣σ+

1

∣∣+ ∣∣σ+
2 − (σ′′

2 + σ′
2)
∣∣ ≤ K · |σ′

2σ
′′
2 | if i = 2.

3. If there is an interaction in a duct between two physical waves σ−
1 and σ−

2

producing a nonphysical wave σ+
3 (see Figure 4.3, left), then∣∣σ+

3

∣∣ ≤ K ·
∣∣σ−

1 σ−
2

∣∣.
4. If there is an interaction in a duct between a physical wave σ and a nonphys-

ical wave σ−
3 producing a physical wave σ and a nonphysical wave σ+

3 (see
Figure 4.3, right), then ∣∣σ+

3

∣∣− ∣∣σ−
3

∣∣ ≤ K ·
∣∣σσ−

3

∣∣.
For a proof of this result see [4, Chapter 7]. Remember that nonphysical waves

cannot interact with the junction or with other nonphysical waves.
In the case of the junction, with the notation in Figure 4.4, we have the following

result.
Proposition 4.2. Let (EoS) hold. There exist δJ > 0 and KJ ≥ 1 with the

following property. For any ū ∈ B that yields a stationary solution to the Riemann
problem (2.2), for any 1-waves σ−

l ∈ ]− δJ , δJ [ hitting the junction and producing the
2-waves σ+

l , it holds that

(4.4)

n∑
l=1

∣∣σ+
l

∣∣ ≤ KJ ·
n∑

l=1

∣∣σ−
l

∣∣ .
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σ+
3

σ+
1

σ−
1σ−

2

σ+
2

σ−
3 σ+

3

σ

σ

Fig. 4.3. Left: in the (t, x) plane, a nonphysical wave arises, and right: a nonphysical wave
interacts with a physical one.

11

22

33

σ−
1

σ+
1

σ+
2

σ+
3

Fig. 4.4. Notation for Proposition 4.2: in the physical space, before the interaction (left) and
after the interaction (right).

Proof. We recall that, similarly to the proof of [8, Theorem 1], the densities ρ+
l

after the interaction solve

n∑
l=1

‖νl‖L−
2 (ρ+

l ; ρ−l , L1(ρ
−
l ; ū)) = 0,

P (ρ+
l , L

−
2 (ρ+

l ;L1(ρ
−
l ; ū))) = P (ρ+

l−1, L
−
2 (ρ+

l−1;L1(ρ
−
l−1; ū))).

Applying the implicit function theorem in a neighborhood of ρ−l = ρ+
l = ρ̄, we obtain

(ρ+
1 , . . . , ρ

+
n ) as a function of (ρ−1 , . . . , ρ

−
n ). Moreover,

n∑
l=1

∣∣ρ+
l − ρ̄

∣∣ ≤ K̃ ·
n∑

l=1

∣∣ρ−l − ρ̄
∣∣ .

Pass now to the arc-length parametrization, since in B the arc-length is a bi-Lipschitz
function of the density variation. More precisely, the unknowns ∂ρ−

1
ρ+
l solve the linear

system Ax = b, where, setting λi(l) = λi(ρ̄l, q̄l),

A =

⎡
⎢⎢⎢⎢⎣

‖ν1‖λ2(1) ‖ν2‖λ2(2) ‖ν3‖λ2(3) . . . ‖νn‖λ2(n)

(λ2(1))
2 − (λ2(2))

2
0 . . . 0

(λ2(1))
2

0 − (λ2(3))
2

. . . 0
. . . . . . . . . . . . . . .

(λ2(1))
2

0 0 . . . − (λ2(n))
2

⎤
⎥⎥⎥⎥⎦ ,

b = ‖ν1‖λ1(1)

[
1 λ2(1) + 2

q

ρ
λ2(1) + 2

q

ρ
· · · λ2(1) + 2

q

ρ

]T
.

This concludes the proof.
Define K1 = 2KKJ + 1. Fix a wave-front tracking approximate solution uν .

For t > 0 and l ∈ {1, . . . , n}, we denote with xl,α (α ∈ Jl(u)) the positions of the
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discontinuities of the approximate solution in the lth duct and with σl,1,α, σl,2,α, σl,3,α

the strengths of the waves of the first family, the second family, and the nonphysical
waves at xl,α, respectively. Introduce the Glimm-type functionals

V (t) =

n∑
l=1

∑
α∈Jl

[2KJ · |σl,1,α| + |σl,2,α| + |σl,3,α|],

Q(t) =

n∑
l=1

∑
{|σl,i,α σl,j,β | : (σl,i,α, σl,j,β) ∈ Al},

Υ(t) = V (t) + K1 ·Q(t),(4.5)

where Al denotes the set of approaching waves in the lth duct; see [4].
The functionals above are well defined for every t > 0 at which no interaction

happens. Suppose now that at a time τ > 0 there is an interaction between k ∈
{1, . . . , n} waves σk,1,α of the first family and the junction. This interaction produces
n waves σ′

l,2,α of the second family. Thus

ΔV (τ) ≤
n∑

l=1

[
∣∣σ′

l,2,α

∣∣− 2KJ |σl,1,α|] ≤ −KJ

n∑
l=1

|σl,1,α|,

ΔQ(τ) ≤ KJV (τ−)

n∑
l=1

|σl,1,α|,

ΔΥ(τ) ≤ KJ · [K1 V (τ−) − 1] ·
n∑

l=1

∣∣∣σ−
l,1,α

∣∣∣.
Suppose now that an interaction between two waves σl,i,α, σ′

l,j,β happens in a
duct at time τ . We deduce that

ΔV (τ) ≤ 2KKJ

∣∣σl,i,ασ
′
l,j,β

∣∣,
ΔQ(τ) ≤ K

∣∣σl,i,ασ
′
l,j,β

∣∣V (τ−) −
∣∣σl,i,ασ

′
l,j,β

∣∣,
ΔΥ(τ) ≤

∣∣σl,i,ασ
′
l,j,β

∣∣[K(2KJ + K1V (τ−)) −K1].

We have thus proved the following basic result.
Proposition 4.3. Let δ1 = (1/(2K1)) min{1/K, 1}. At any interaction time

τ > 0, if V (τ−) < δ1, then ΔΥ(τ) < 0 with Υ defined in (4.5).
Proof of Theorem 3.3. Let δ1 be as in Proposition 4.3 and define

D̃ = {u ∈ (ρ̂, q̂) + (PC ∩ L1(R+; (R̊+ × R)n)) : Υ(u) ≤ δ1}.
There exists C1 > 0 such that 1

C1
TV (u)(t, ·) ≤ V (t) ≤ C1 TV (u)(t, ·) for all u ∈ D̃.

Any initial datum in D̃ yields an approximate solution to (1.1) attaining values in D̃
by Proposition 4.3, and thus, by classical arguments (see [4]), for all initial data in D
a solution to (3.1) exists for every t > 0 and attains values in D, where D is the L1

closure of D̃. Hence, statements 1 and 2 in Theorem 3.3 clearly hold. The limit orbits
t → Stu are indeed solutions in the sense of Definition 3.1; note that the existence of
the trace P∗(t) at the junction follows from Definition 2.1 and [7, Proposition 5.3].

We pass now to the well posedness of the Cauchy problem. Consider two ε–wave-
front tracking approximate solutions u1 and u2. Define the functional

(4.6) Φ(u1, u2) =

n∑
l=1

2∑
i=1

∫ +∞

0

|sl,i(x)|Wl,i(x) dx ,
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where sl,i(x) measures the strengths of the ith shock wave in the lth duct at point x
(see [4, Chapter 8]) and the weights Wl,i are defined by

Wl,i(x) = 1 + κ1 Al,i(x) + κ1 κ2 [Υ(u1) + Υ(u2)].

Here Υ is the functional defined in (4.5), while the Al,i are defined by

Al,i(x) =
∑{

|σl,kα,α| :
xα < x, i < kα ≤ 2,
xα > x, 1 ≤ kα < i,

}

+

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑{
|σl,i,α| :

xα < x, α ∈ J(u1),
xα > x, α ∈ J(u2),

}
if ql,i(x) < 0,

∑{
|σl,i,α| :

xα < x, α ∈ J(u2),
xα > x, α ∈ J(u1),

}
if ql,i(x) ≥ 0;

see [4, Chapter 8]. We first fix κ1, κ2 so that δ0 in the definition of D can be chosen
to satisfy 1 ≤ Wl,i(x) ≤ 2 for every l ∈ {1, . . . , n}, i ∈ {1, 2}, and x ≥ 0. Hence the
functional Φ is equivalent to the L1 distance; i.e.,

Φ(u1, u2) ≥
1

C2
· ‖u1 − u2‖L1 and Φ(u1, u2) ≤ C2 · ‖u1 − u2‖L1

for a positive constant C2. The same calculations as in [4, Chapter 8] show that, at
any time t > 0 when an interaction happens neither in u1 nor in u2,

(4.7)
d

dt
Φ(u1(t), u2(t)) ≤ C3 ε ,

where C3 is a suitable positive constant depending only on a bound on the total
variation of the initial data. If t > 0 is an interaction time for u1 or u2, then, by
Proposition 4.3, Δ[Υ(u1(t))+Υ(u2(t))] < 0 and, choosing κ2 large enough, we obtain

(4.8) ΔΦ(u1(t), u2(t)) < 0 .

Thus, Φ(u1(t), u2(t)) − Φ(u1(s), u2(s)) ≤ C2 ε (t − s) for every 0 ≤ s ≤ t, proving
statement 3. Statement 4 follows by standard arguments.
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CONVERGENCE OF GIBBS MEASURES ASSOCIATED WITH
SIMULATED ANNEALING∗

DENNIS D. COX† , ROBERT M. HARDT‡ , AND PETR KLOUČEK§

Abstract. We give a sufficient condition for a sequence of Gibbs measures dominated by
Lebesgue measure to converge to a singular measure concentrated on a submanifold. The limiting
measure is absolutely continuous with respect to Hausdorff (Riemannian) measure on the submani-
fold, and a formula for its density is given. These results have implications for simulated annealing
algorithms on a continuous state space when the set of minimizers of the objective function is more
complex than a finite set of points. Under regularity conditions, the limiting measure is concen-
trated on the highest dimensional submanifold of the set of minimizers, so that lower dimensional
components of the minimizing set are essentially lost. A generalization of the main result treats mul-
tiple limits within submanifolds, which could be useful for constrained optimization with simulated
annealing. An example is given which shows that if the conditions of the theorem do not hold, then
unexpected results may occur.

Key words. Gibbs measure, Hausdorff measure, simulated annealing, Markov chain Monte
Carlo methods, differential inclusions
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1. Introduction. We consider some measure theoretic problems that arise in
the context of simulated annealing. Simulated annealing (SA) [22], [16] is a stochastic
optimization algorithm that mimics the physical process of a thermodynamic system
settling into the state of minimal energy while lowering the temperature. It is usually
considered in a discrete state space setting when the objective has multiple min-
ima, but continuous state space simulated annealing has found many applications
[5], [6], [21]. The version of the SA algorithm we consider here is in the Metropolis–
Hastings (MH) family of algorithms, which is one of the main methods for Markov
chain Monte Carlo (MCMC). We also consider continuous state space simulated
annealing with equality constraints that can be expressed as the zero set of a nonneg-
ative function. One approach for dealing with the constraints is a relaxation method
wherein one adds a nonnegative multiple of the constraint function to the objective
and lets the multiplier go to infinity. The work in the present paper indicates that
without appropriate conditions, the procedure may not converge to the desired con-
strained minimum. Other authors have considered similar approaches to constrained
simulated annealing (see [28], [14]).
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We first consider an unconstrained problem. Suppose our goal is to find the set

Argmin
x∈Rn

J(x),

where J is a continuous function, bounded below, and J(x) → ∞ as |x|
Rn → ∞

sufficiently fast so that

Z−1
λ =

∫
Rn

e−λJ(x) dx < ∞

for some λ > 0. We may then define a probability density function

(1.1) fλ(x) = Zλe
−λJ(x).

The corresponding probability distribution, Pλ, given for any Borel subset B of R
n

by

(1.2) Pλ(B) =

∫
B

fλ (x) dx,

is known as a Gibbs measure. In a thermodynamic setting, x represents the state of
the system, and λ = (kT )−1, where k is Boltzmann’s constant and T is temperature.
Using MCMC methods it is possible to construct ergodic Markov chains {Xk}∞k=0

whose distribution approaches a stationary distribution which is Pλ [12].
The idea behind SA is to concentrate the Gibbs measure on the set of minima by

letting T → 0, i.e., λ → ∞. Then the simulated values of the Markov chain will be
close to a minimum with high probability. This convergence will not necessarily be
uniform on the set of minima. Note that there are two limits taking place here: we
must simulate a realization from the Markov chain {Xm,λ : m = 1, 2, . . .} and stop at
a large value of m so that the probability distribution for Xm,λ is close to Pλ. Then
we increase λ (which changes the dynamics of the Markov chain) and run, say, m1

more simulations with the new value, increase λ again, etc.
Next consider constrained optimization problems. Suppose that J0 and J1 are

nonnegative functions satisfying conditions similar to those for J , and that we wish
to find the minimizers of J0 when x is constrained to the set

(1.3) M = {x ∈ R
n |J1 (x) = 0} .

One approach to solving the constrained minimization problem is to apply SA to the
Gibbs measure Pλ0,λ1 with density

(1.4)
f (x;λ0, λ1)

def
= Zλ0,λ1e

−λ0J0(x)−λ1J1(x),

Z−1
λ0,λ1

def
=

∫
Rn e−λ0J0(x)−λ1J1(x) dx.

One could then let λ1 → ∞ so that the Gibbs measure will concentrate on the
constraint set M , and then afterwards let λ0 → ∞ to find the minima on the constraint
set M . One question we address in this article is, Under what conditions could we
expect Pλ0,λ1 to concentrate on the set of constrained minima as λ1 → ∞ and then
λ0 → ∞? One might conjecture that as λ1 → ∞, the limit of Pλ0,λ1 would be a
measure on the constraint set M which is absolutely continuous (dominated by) a
Hausdorff measure on M and the density with respect to a Hausdorff measure being
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a multiple of e−λ0J0 . The first main result of this paper, stated in section 3, gives
sufficient conditions for the first part of the conjecture to hold. In particular, under
regularity assumptions about the constraint function J1, the constraint set M will be
a disjoint union of submanifolds, and the limiting measure will concentrate on the
highest dimensional submanifold. Further, there may be nonconstant factors in the
density for the limiting measure that come from the Hessian D2J1. In section 3 we
also give a generalization which treats the case of multiple limits, with the occurrence
of a new factor in the limiting measure that indicates the degree of “orthogonality”
of the multiple constraints on the common constraint set. Some examples of these
theorems are given in section 4. Other examples in this section, which are not covered
by the results of section 3, show that the support of the limiting measure Pλ1,λ2 as
λ1 → ∞ can be a subset of the constraint set which does not include the constrained
minima of J2.

Our main objective here is to initiate the development of a theory for handling
these limiting Gibbs measures in complex situations. The paper is organized as fol-
lows. We discuss the SA and constrained SA in more detail in section 2 and show
how the results here pertain to the limiting behavior of these algorithms. The main
results are stated in section 3. In section 4 we present three examples, two of which
exemplify the main theorems and one where the limit of the Gibbs measure can be
determined through ad hoc methods. Further possible applications are discussed in
section 5, including the problem which motivated our study, namely, solving differ-
ential inclusions which are used for modeling functional materials. The remaining
sections present technical details of the proofs of the theorems.

2. Simulated annealing. We will first define the MH algorithm, which eventu-
ally generates an approximate sample from a given probability density function f(·)
on R

n. Consider a family of “proposal” distributions R(x, ·), where for each fixed
x, R(x, ·) is a Borel probability measure on R

n. Suppose that R(x, ·) has density
r(x, ·) with respect to Lebesgue measure. Starting from some initial state X0, we will
recursively generate new states. Given the current state Xm, the next state Xm+1

is generated as follows:
Step 1. Generate a “proposal for the new state,” X ∈ R

n, from the measure
R(Xm, ·).

Step 2. Compute

α(Xm,X) =
f(X)r(X,Xm)

f(Xm)r(Xm,X)
.

Step 3. Let W ∈ [0, 1) be a random number drawn from the uniform distribution
on [0, 1). Then

Xm+1 =

{
X if W < α(Xm,X),

Xm otherwise.

Note that if α(X) ≥ 1, then the proposal X is automatically accepted, and thus there
is no point in even generating the W in Step 3. Under very general conditions [26] the
limiting distribution as m → ∞ of {Xm}m will have the probability density function
f . This convergence takes place in total variation norm on measures at an exponential
rate.

If the proposal density r satisfies a “reversibility” property, i.e., r(x, y) = r(y, x),
x, y ∈ R

n, then the algorithm is identical to the original Metropolis algorithm and
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α(X) = f(X)/f(Xm). An example of a reversible proposal distribution is any
Gaussian distribution with the mean x, e.g.,

(2.1) r(x, y) = (2πσ2)−n/2 e−|x−y|2/(2σ2),

where |x| indicates the norm of the vector x ∈ R
n.

Now we describe an SA algorithm. Consider a sequence λk → ∞. Starting with
k = 1, replace f above by fλk

as given in (1.1) and run the MH algorithm until
Xmk

has a distribution which is sufficiently close to the one with density fλk
. Now,

increment k and start with Xmk
and repeat the MH algorithm. As long as we require

that the total variation distance between the distribution of Xmk
and the distribution

with density fλk
tends to 0 as k → ∞, then it is clear that the limiting distribution

of Xm will be the same as the limiting distribution of the Gibbs measures. This
motivates our study of the limits of these Gibbs measures. There are various papers
that consider the convergence of SA (e.g., [15], [13]). The basic idea is that Xm will
converge to a global minimum of J as long as the temperature goes to 0 but not too
fast.

Assuming a reversible proposal distribution for the SA algorithm described above,
we see that a proposal X is automatically accepted if fλk

(X) ≥ fλk
(Xm), i.e., if the

proposed X has value of the objective no larger than the current value, and the
proposal is accepted with some positive probability if 0 < fλk

(X) < fλk
(Xm). This

latter type of uphill step allows the Markov chain to avoid getting stuck in local
minima. As the temperature go to 0 (i.e., λk → ∞), the probability distribution for
the state of the system becomes concentrated near the global minima of J . Keeping
the temperature from cooling too quickly avoids getting stuck in local minima.

For constrained optimization problems, we can consider multiple temperatures as
in (1.4). We then modify the SA algorithm so that both λ0 → ∞ and λ1 → ∞, slowly
enough so that the distribution of each Xm is close to the appropriate Gibbs measure
with density f (·;λ0, λ1). This methodology has been proposed in the discrete setting
in [28]. The results stated in the next section show that the Gibbs measure will
converge to a constrained minimum under certain conditions, and an example given
in section 4 shows that this convergence can fail if the conditions of the theorems in
section 3 are not valid.

3. Statement of the main results. For our first result, we consider a slight
generalization of a Gibbs measure with density as in (1.1). For λ > 0 and nonnegative
continuous functions h, J on R

n we assume that

Z−1
λ =

∫
Rn

h(x)e−λJ(x) dx < ∞,

and then we have a probability density function

(3.1) f(x;λ) = Zλh(x)e−λJ(x)

and corresponding probability measure

Pλ(B) =

∫
B

f(x;λ) dx,

defined for Borel measurable subsets B of R
n. We investigate the behavior of Pλ as

λ → ∞.
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We will use weak convergence of probability measures. Suppose {Pm : m ∈ Z} is
a sequence of probability measures and P is a fixed probability measure, all defined
on the Borel sets E of a given Polish space E. Weak convergence of Pm to P , denoted
Pm ⇒ P , means that

(3.2)

∫
φdPm →

∫
φdP for all bounded continuous real valued functions φ.

We note that Pm ⇒ P is equivalent to the following (cf. Theorem 2.1 of [3]):

(3.3) Pm(B) → P (B) for all Borel sets of E such that P (∂B) = 0.

Recall that the probability distributions in the MH algorithm converge in total
variation norm to the stationary distribution. However, convergence in total variation
is not possible here since the limiting measure is mutually singular with each of the
Gibbs measures. Convergence in total variation means supB |Pn(B) − P (B)| → 0.

For a function ψ with domain and range in some Euclidean spaces, we say ψ ∈
Ck,α(Ω) (where k ≥ 0 is an integer and α ∈ (0, 1]) if Dkψ exists, is continuous in Ω,
and satisfies a uniform Hölder condition∣∣Dkψ(x) −Dkψ(y)

∣∣ ≤ C |x− y|α for x, y ∈ Ω.

We say that an n-dimensional manifold M is Ck,α if it has a Ck,α-atlas, i.e., a partition
into finitely many open sets (in the relative topology of M), and each open set in the
partition is homeomorphic with R

n by a Ck,α homeomorphism whose inverse is also
Ck,α.

Now we state our first result.
Theorem 3.1. Assume the following:

(A1) h ∈ C0(Rn) is bounded, and J ∈ C3,α(Rn).
(A2) h ≥ 0, and J ≥ 0.
(A3) For some p > 0, J(x) ≥ ‖x‖p for all ‖x‖ sufficiently large.
(A4) M = {x ∈ R

n : J(x) = 0} is nonempty and bounded.
(A5) There exist a bounded disjoint open set U1, U2, . . . , Uj and integers 0 ≤ m1 <

m2 < · · · < mj ≤ n satisfying the following:
(a) M ⊂ U = U1 ∪ U2 ∪ · · · ∪ Uj.
(b) Each set Mi = M ∩ Ui is a C2,α smooth mi-dimensional manifold.
(c) On each Mi, the Hessian D2J is nonnegative definite and has constant

rank n−mi for i = 1, . . . , j.
(d) For some a ∈ M1, h(a) > 0.

Let Hn−k1 be the (n − k1)-dimensional Hausdorff measure on M1, and let Λ(a)
be the product of the k1 positive eigenvalues of D2J(a) for a ∈ M1. Then

Pλ ⇒ P as λ → ∞,

where, for any Borel set B ⊂ R
n,

P (B) = Z

∫
M1∩B

h(a) Λ(a)−1/2 dHn−k1(a)

with

Z−1 =

∫
M1

h(a) Λ(a)−1/2 dHn−k1(a) .
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Observe that, as λ → ∞, the probability measures Pλ concentrate only on the
highest dimensional stratum M1 of M = J−1{0} and do not produce any lower
dimensional measures on M2 ∪ · · · ∪Mj .

Sections 6–8 gather material necessary for the proof of Theorem 3.1 in section 9.
We note that special cases of this result are certainly well known; in particular, if M
is zero-dimensional, i.e., a finite set of points {x1, . . . , xm}, then by Laplace’s method
of asymptotic expansion [4], it is easy to see that the Gibbs measures will converge
weakly to the probability measure on the discrete set of points with probabilities
proportional to h(xi) detD2J(xi), 1 ≤ i ≤ m.

Next we discuss a generalization of the main result to treat multiple limits. First,
the ambient space R

n is replaced by a compact n-dimensional Riemannian manifold
N . Consider probability measures of the form

(3.4) dPλ1λ2···λj = Zλ1λ2···λjh(x)e−λ1J1(x)−λ2J2(x)−···−λjJj(x) dHn(x).

Here the Hausdorff measure Hn is the standard Riemannian volume measure of N .
We consider limits of the form

lim
λ1→∞

lim
λ2→∞

· · · lim
λj→∞

Pλ1λ2···λj
.

If J : N −→ R is a smooth function, then the Riemannian Hessian of J at a ∈ N is the
bilinear form on the tangent space TaN whose value at (v, v) for v ∈ TaN is simply the
initial second derivative of J along a geodesic starting at a with initial velocity v. In
case the xi are geodesic normal coordinates at a, this Hessian is represented at a by the

usual matrix ∂2

∂xi∂xj
J(a). We will also need the properties of the wedge product [25],

specifically that if v1, . . . , vk are n-dimensional vectors, then |v1 ∧ · · · ∧ vk| is the

k-dimensional volume of the k-dimensional parallelopiped {
∑k

i=1 tivi : 0 ≤ ti ≤ 1}.
Theorem 3.2. Suppose that p > 0 and that, for i = 0, . . . , j, Ji is a nonnegative

C3,α function on N . Suppose also that each set Mi = J−1
i {0} is a C3,α smooth

compact (n − ki)-dimensional submanifold on which the Riemannian Hessian D2Ji
is a nonnegative definite operator with range Ei of constant dimension ki. With
k = k1 + · · ·+ kj , we also assume that the Mi intersect transversally (i.e., the Ei are
linearly independent), giving the (n− k)-dimensional manifold

M = {x ∈ N : J1(x) = J2(x) = · · · = Jj(x) = 0}

on which the total Hessian D2(J1 + · · · + Jj) has range E of constant dimension k.
Assume h(a) > 0 for some a ∈ M .

For λ1, . . . , λj ≥ 1, let Pλ1···λj be the probability measure on N given in (3.4),
where h(x) is a bounded continuous function. Then

Pλ1···λj
⇒ P as λ1, . . . , λj → ∞, regardless of the order,

where, for any Borel set B ⊂ R
n,

P (B) = Z

∫
M∧B

e−J0(a) Λ1(a)
−1/2 · · ·Λj(a)

−1/2Θ(a) dHn−k(a).

Here

Z−1 =

∫
M

e−J0 Λ
−1/2
1 · · ·Λ−1/2

j Θ dHn−k,
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Λi(a) is the product of the ki positive eigenvalues of D2Ji(a), and

Θ(a) = |v1
1 ∧ · · · ∧ v1

k1
∧ · · · ∧ vj1 ∧ · · · ∧ vjkj

|,

where {vi1, . . . , viki
} is an orthonormal basis for Ei(a) for i = 1, . . . , j.

The proof of this result is given in section 9.2.

4. Examples. We will consider in depth three examples. The first is an appli-
cation of Theorem 3.1, and the second of Theorem 3.2. The third example is similar
to the first, but the hypotheses of Theorem 3.1 are not met, and using ad hoc calcu-
lations we show that the limiting measure is not the desired one. This example also
shows that the order of taking the limits in a setting like Theorem 3.2 can matter
when the hypotheses are violated.

4.1. Example 1. Consider the following two functions on R
2:

J1(x)
def
=

(
|x|2 − 1

)2
,(4.1)

J2(x)
def
=

{
x2

1x
2
2 if |x|2 < 2,

x2
1x

2
2 +

(
|x|2 − 2

)4
if |x|2 ≥ 2.

(4.2)

Let

g(x;λ1, λ2)
def
= e−λ1J1(x)−λ2J2(x),

Z−1
λ1,λ2

def
=

∫
R2

g(x;λ1, λ2)dx,

and let us define the normalized densities and the corresponding Gibbs measures as
follows:

f(x;λ1, λ2)
def
= Zλ1,λ2 g(x;λ1, λ2),(4.3)

R(B;λ1, λ2)
def
=

∫
B

g(x;λ1, λ2)dx,(4.4)

P (B;λ1, λ2)
def
=

∫
B

f(x;λ1, λ2)dx.(4.5)

In the above definitions, B denotes a Borel set in R
2.

Consider the limit λ1 → ∞ with λ2 fixed. This could arise if we consider simulated
annealing for the constrained optimization problem

Argmin{J2(x) |x ∈ M}, where M = {x ∈ R
2 |J1(x) = 0}.

We can apply Theorem 3.1 to find the limiting Gibbs measure in this case.
Assumptions (A1)–(A3) and (A5) clearly hold. The set M where J1 = 0 is the
unit circle centered at the origin, S1; hence (A4) is satisfied.

The Hessian of J1 is given by

D2J1(x1, x2) =

(
4
(
3x2

1 + x2
2 − 1

)
8x1x2

8x1x2 4
(
x2

1 + 3x2
2 − 1

)
)
.
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Fig. 1. Plot of the unnormalized Gibbs density e−(λ1J1(x)+λ2J2(x)) in Example 1. The picture
on the left is a plot with λ1 = 60 and λ2 = 5. The picture on the right is a plot with λ1 = 460 and
λ2 = 50.

In particular,

D2J1(x1, 0) =

(
4
(
3x2

1 − 1
)

0

0 4
(
x2

1 − 1
)
)
.

Thus, along the x1-axis the eigenvalues are given by the diagonal entries, and the
eigenvectors are the corresponding coordinate vectors. Noting that J1 is rotationally
symmetric, we see that

rankD2J1(x) =

{
2 if |x|2 = 1 or 1

3 ,

1 otherwise,

and D2J1(x) is nonnegative definite for |x|2 ≥ 1/3. Thus in assumption (A5), j = 1
and we may take U = U1 = {x : 1/

√
3 < |x| <

√
2}, and the rank of the Hessian on M

= M1, which is the unit circle, is k1 = 1. Consequently, it follows from Theorem 3.1
that

P (·;λ1, λ2) ⇒ P1(·;λ2) as λ1 → +∞,

where P1(·;λ2) has a density with respect to H1 on S1 which is proportional to
e−λ2J2(x). Here, H1 may be thought of as “arc-length measure.”

It is easy to check that

(4.6) P1(·;λ2) ⇒
1

4

∑
x∈{(0,±1),(±1,0)}

δx(·) as λ2 → +∞,

which is the uniform probability distribution on the four points that minimize J2

subject to J1 = 0. This is clearly the desirable outcome in this case. Figure 1
illustrates this convergence.

4.2. Example 2. Here we give an example illustrating Theorem 3.2. Letting
M be some compact two-dimensional Riemannian manifold which contains a subset
isometric to the square [−3, 3]×[−3, 3] ⊂ R2, we will simply use the coordinate system
of the latter set. Let J1 be as in (4.1) and let

J3(x)
def
=

(
(x1 − 1)2 + 2x2

2 − 3x2

)2
.
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Using the linear isomorphism

L(x1, x2) = (x1 − 1, 2(x2 + 3/4)),

we see that J3(x) = J4(L(x)), where J4(y) = (|y|2 − 3/2)2. Since the rank of the Hes-
sian is invariant under a linear transformation, we see as in Example 1 in section 4.1
that the rank of the Hessian D2J3 equals 1 on the ellipse J−1

3 {0}. This ellipse crosses
the unit circle M1 = J−1

1 {0} orthogonally at a = (1, 0) with slope 0, and nonorthog-
onally at a = (0, 1) with slope 2. In fact, for a smooth function on a planar region,
the slope of u−1{0} at a point with ∂u

∂x2
= 0 is given by the formula

− ∂u/∂x1

∂u/∂x2
,

and we may apply this with u(x1, x2) = (x1 − 1)2 + 2x2
2 − 3x2. So we may compute

Θ(a) = |(0, 1) ∧ (1, 0)| = 1, Θ(b) = |(1, 0) ∧ (2/
√

5, 1/
√

5)| = 1/
√

5 .

Thus, if Pλ1,λ3 is the corresponding Gibbs measure as in Theorem 3.2, then

Pλ1,λ3 ⇒
√

5

1 +
√

5
δa +

1

1 +
√

5
δb as λ1, λ3 → ∞.

Note that, unlike in the previous example, we do not obtain a uniform distribution on
the set of constrained minima. If SA is applied in this case, we are more likely to find
the point a than b. The nonuniform distribution here comes from the factor in Theo-
rem 3.2 that comes from the factor Θ, but one could also obtain such nonuniformity
from the factors Λi. While this does not affect the convergence of SA to a minimum,
one may wish to explore the set of all minima, and a nonuniform distribution would
then not be desirable.

4.3. Example 3. We use the same functions (4.1)–(4.3), but now we let λ2 → ∞
holding λ1 fixed. This would arise from applying SA to a constrained optimization
problem in which the objective from the previous example becomes a constraint and
vice versa, i.e., if we attempt to solve

Argmin{J1(x) |x ∈ M}, where M = {x ∈ R
2 |J2(x) = 0}.

We cannot apply Theorem 3.1 to this situation because assumption (A5) is not valid.
(Note that our complicated expression for J2 is constructed so that

∫
exp[−λJ2] < ∞

for all λ > 0 and J2 is C3,α.) The Hessian of J2 is given by

D2J2(x) =

(
2x2

2 4x1x2

4x1x2 2x2
1

)
if |x|2 ≤ 2.

Its eigenvalues are

x2 + y2 ±
√
x4 + 14y2x2 + y4.

Consequently, for |x|2 < 2,

rankD2J2(x1, x2) =

⎧⎪⎪⎨
⎪⎪⎩

2 if x1 = 0 and x2 = 0,

1 if x1 = 0 or x2 = 0 and x1 = x2,

0 if x1 = x2 = 0.
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Fig. 2. Plot of the unnormalzied Gibbs density e−(λ1J1(x1,x2)+λ2J2(x1,x2)) in Example 3. The
picture on the left is a plot with λ1 = 1 and λ2 = 5, and the one on the right is with λ1 = 1 and
λ2 = 30.

Since the set M = J−1
2 (0) consists of the segments of the x and y axes for which

|x| ≤ 2, the rank of the Hessian drops from being 1 on M \ {0} to 0 at the origin.
Figure 2 suggests that the limiting measure is concentrated along the axes near the
desired constrained minima. However, this picture is misleading, as we shall prove.

Let B be a neighborhood of 0 ∈ R
2 of the form

B = (−ε, ε) × (−ε, ε).

We will show that

(4.7) R(Bc;λ1, λ2) = o(R(B;λ1, λ2)) as λ2 → ∞,

where R is the unnormalized Gibbs measure in (4.4). From this it easily follows that

P (·;λ1, λ2) ⇒ δ0 as λ2 → ∞.

To estimate the left-hand side of (4.7), define

Q(λ2) =

∫ ε

0

∫ ε

0

e−λ2x
2
1x

2
2 dx1 dx2.

Then clearly

R(B;λ1, λ2) � Q(λ2),

where we use � to indicate that the left-hand side is bounded above and below by
finite positive multiples of the right-hand side, where the constants do not depend on
λ2. By direct calculation

Q(λ2) =
√
π

2
√
λ2

∫ √
λ2ε

2

0

1
v Erf(v)dv, where Erf(z) =

2√
π

∫ z

0

e−x2

dx,

is the Error function [1]. Using the properties that Erf(z) ∼ 2√
π
z as z → 0 and

Erf(z) → 1 as z → ∞, it follows that for λ2 > ε−4,

(4.8) R(B;λ1, λ2) � λ
−1/2
2 log λ2.
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It is clear from the proof of Theorem 3.1 (see (9.2)–(9.5)) that R(Bc;λ1, λ2) is asymp-
totically dominated by the R(·;λ1, λ2) measure of the tubular neighborhoods of the
intersection of the coordinate axes with Bc and the disk |x|2 ≤ 2, and that

(4.9) R(Bc;λ1, λ2) � λ
−1/2
2 .

Combining (4.8) and (4.9) gives the result (4.7).
As seen in the first example, we can take λ1 → ∞ and then λ2 → ∞ and get the

“right answer,” but the calculation here shows that we cannot take the limits in the
other order and get the desired result. Note that Theorem 3.2 does not apply here
either for the same reason as for Theorem 3.1: the appropriate Hessian does not have
constant rank on the required set.

5. Further applications and discussion.

5.1. Applications to materials science. Differential inclusions are a model-
ing methodology that has found application in material science. Unlike a differen-
tial equation where an exact relationship for the derivative is given, in a differential
inclusion the derivative is required to lie in a specified set. In the materials science
applications, the set corresponds to microscale crystalline configurations and typically
consists of a finite number of allowed gradients (first derivatives) and all rotations of
them. For more material on differential inclusions, including theory, methods, and
application, see [2], [19], [8], [18], [24], [23], [9], and the references therein.

In this section, we consider a simple example which has almost all of the features
of the models used in practice. Let Ω = [0, 1]2 be the unit square in R

2. Suppose that
we wish to find a weakly differentiable function u : Ω → R satisfying the following
conditions:

(i) u is continuous (continuity condition);
(ii) u(x) = g(x) for x ∈ ∂Ω, where g is given (boundary condition);
(iii) |∇u| = 1 in Ω (gradient constraint).

If a solution exists, it can be found by solving the constrained optimization problem

min

∫
∂Ω

(g(s) − u(s))2 dS subject to |∇u| = 1 a.e. in Ω and u ∈ C0(Ω).

This is a nonconvex minimization problem with numerous local minima (see, e.g., [7]);
thus SA is a reasonable approach. We consider a finite dimensional approximation
uh which is piecewise affine with different parameters in each element of a triangular
partition of Ω. For simplicity, we first subdivide Ω into squares, then subdivide the
squares by a diagonal (cf. Figure 4). We will suppose that the continuity condition
is enforced, but the gradient constraint is relaxed. With continuity the function uh

in one of the subdivision squares is determined by its values at the four corners of
the square; denote them by v = (v1, v2, v3, v4), as indicated in Figure 4. An SA
approach of the type discussed in section 2 could be based on first using the modified
objective λ1J1(u)+λ2J2(u), where J1 and J2 correspond to the boundary and gradient
constraints, respectively, e.g.,

J1(uh) =

∫
∂Ω

(g(s) − uh(s))
2
dS,(5.1)

J2(uh) =

∫
Ω

(
|∇uh(x)|2 − 1

)2

dx.(5.2)
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Fig. 3. (a) The left plot indicates the labeling for a square element in the subdivision of Ω.
(b) The plot on the right shows (E23 × R) ∩ (R × E34) corresponding to the gradient constraints
in each of the two triangular subregions. At the points Q1 and Q2 the Hessian of the gradient
constraint functional drops in rank.

Now we show that this Lagrangian formulation has the same problems as the
example in section 4.3, namely, that assumption (A5) of Theorem 3.1 is violated.
Consider a single square with its two triangular elements in the partition of Ω. For
simplicity, we assume that the side length is 1. If we set v1 = 0, then we imbed
the problem in a visualizable three-dimensional space. Consider the set of values
(v2, v3, v4) satisfying the gradient constraint in the lower triangular element, namely,

|∇uh|2 = |(v2, v3 − v2)|2 = 1.

Define an ellipse in the (v2, v3) coordinate plane

E23 = {(v2, v3) : |(v2, v3 − v2)|2 = 1}.

Then the set of values (v2, v3, v4) satisfying the gradient constraint in the lower tri-
angular element is given by the cylindrical surface E23 ×R. We can parameterize the
surface with (α, z) ∈ [0, 2π) × R; i.e., the surface E23 × R is the graph of the map

(α, z) �→ (cos(α), sin(α) + cos(α), z), α ∈ [0, 2π), z ∈ R.

Similarly, we can define an ellipse

E34 = {(v3, v4) | |(v3 − v4, v4)|2 = 1},

and then the set of values (v2, v3, v4) satisfying the gradient constraint in the upper
triangular element is given by the cylindrical surface R × E34. The corresponding
parameterization is (β, y), where R × E34 is the graph of the map

(β, y) �→ (y, sin(β) + cos(β), sin(β)), β ∈ [0, 2π), y ∈ R.

The intersection of these two cylindrical surfaces is a pair of ellipses which intersect
as depicted by the right-hand panel in Figure 3. Note that the continuity constraint
means that the gradient in the upper triangular region must be identical with the
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Fig. 4. Three possible solutions for the differential inclusion |∇uh| = 1 and uh ∈ C0(Ω) which
are piecewise affine in the triangular elements.

gradient in the lower region or else it has to be the reflection about the diagonal
of the gradient in the lower region. Hence, either β = α and then we obtain a
single affine function throughout the square or β = π/2 − α (mod 2π) and then we
obtain a piecewise affine solution with different parameters in the upper and lower
triangular elements. For a given α ∈ [0, 2π) (which specifies a unit length gradient in
the lower triangular element), there will typically be two values of β (corresponding
to a unit length gradient in the upper triangular element), except when the gradient
is parallel with the diagonal boundary, i.e., α = π/4 and α = 5π/4. Examples of
such continuous piecewise affine functions with unit length gradients are shown in
Figure 4. The points α = π/4 and α = 5π/4 correspond to the points Q2 and Q1 in
Figure 3(b), respectively. The corresponding uh with α = π/4 and its gradient field
are given in the last plot in Figure 4 where necessarily β = π/4 for the gradient in
the upper triangular element.

The analogy to Example 3 in section 4.3 is as follows. The above discussion shows
that there exist points in the constraint set which are the intersections of two smooth
one-dimensional manifolds. Since the sum of the rank of the Hessian and the dimen-
sion of the tangent space of the manifold is bounded above by the dimension of the
ambient space, we know the rank of the Hessian is ≤ 2 at all points on the constraint
set, but ≤ 1 at Q1 and Q2. Thus, this example will clearly violate the assumptions
of our theorems. Using complicated arguments based on elementary considerations
(symmetries of the constraint set and properties of quartic polynomials), we can show
that the Hessian has rank 1 at Q1 and Q2, and at some points outside of Q1 and Q2

(namely, the other vertices of the ellipses), it has rank 2. Based on numerical calcu-
lations, we conjecture that it has rank 2 at all points except Q1 and Q2, similarly to
Example 3 in section 4.3. A natural conjecture would be that the same phenomenon
that occurred in Example 3 will occur here: as the multiplier corresponding to the
gradient constraint λ2 → ∞, the limiting measure will concentrate on the points
α = π/4 and α = 5π/4. However, the same type of reasoning suggests that along
boundaries between triangular elements in different squares, there will be a tendency
for the gradient to align itself with the direction of the boundary. Because of all of
these interactions, we do not know how this affects the behavior of an SA solution to
this problem, but it does suggest that there will be difficulties with such an approach.
Clearly further extension of the results given here is necessary to provide insight. The
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strain densities described in [19], [20], [18], [17], and [2] provide a similar implemen-
tation of the gradient constraints for the microscale modeling of crystalline materials.
We believe that these will have similar problems.

5.2. Potential application to Bayesian statistics. While SA has been our
prime motivation for developing the results in section 3, we believe they may have
implications for other applications of MCMC, and specifically for Bayesian statistics.
In the Bayesian framework, as one obtains more samples, the negative log likelihood
in the neighborhood of the true value of the parameter behaves like nJ1(θ), where n
is the sample size, θ is a variable value of the parameter, and J1 is a fixed function
(see [27]) which is minimized at the true parameter value. Thus, the posterior density
is approximated by

gn(θ) = Zn exp[−J0(θ) − nJ1(θ)],

where J0 is the negative logarithm of the prior density. This approximation is valid
as long as there is a unique true value of the parameter. Bayesian methods are
being applied to more and more complicated models, and some models may lack
identifiability; i.e., there are multiple parameter values giving the same likelihood. In
regular cases, the set of possible true values will be a manifold, and Theorem 3.1 may
prove useful for obtaining asymptotic approximations of the posterior.

5.3. Generalizations. Here we mention some generalizations that would be
desirable. The assumption of Theorem 3.1 we have found most problematic is that
the set M must be a smooth compact manifold. We believe that it should be possible
to extend the results to more general sets M , possibly with restrictions on J and h.
Developing a more general theory that would cover examples similar to the one in
section 4.3 would also be of interest.

6. Nearest point projection for a submanifold. Recall that, for any Borel
set A ⊂ R

n (or even any metric space A) and any number k ≥ 0, the k-dimensional
Hausdorff measure Hk(A) is defined [11, sect. 2.10.2]. It is normalized so that, for
integer k in R

k, Hk coincides with the k-dimensional Lebesgue measure. In a higher
dimensional R

n, the restriction of Hk to a k-dimensional C1 submanifold M coincides
with the Riemannian volume measure on M for the metric induced from R

n. In
particular, a k-dimensional ball of radius r in R

k,

B
k
r (a) ≡ {x ∈ R

k : |x− a| < r} ,

has

(6.1) Hk(Bk
r (a)) = αkr

k,

where αk is the k-dimensional Lebesgue measure of the unit ball in R
k.

Our notation for an integral with respect to a (lower dimensional) Hausdorff
measure will have the form∫

A

f(a) dHka or

∫
A

f dHk,

while our integrals with respect to the (top dimensional) Lebesgue measure will keep
the standard notation∫

U

f(x) dx rather than

∫
U

f(x) dHnx.
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In particular, we have the polar coordinate formula for a Lebesgue integrable function
f on the ball BR(0) ≡ B

n
R(0),

∫
BR(0)

f(x) dx =

∫
Sn−1

∫ R

0

f(rω) rn−1 dr dHn−1ω,

where Sn−1 is the (n− 1)-dimensional unit sphere in R
n. One readily checks that

(6.2) Hn−1(Sn−1) = nαn

by differentiating (6.1).
For any vector subspace T of R

n, the orthogonal projection

ΠT : R
n → T

is the linear map which takes any point x ∈ R
n to the unique point ΠT (x) in T that

is nearest to x.
Suppose that M is a compact m-dimensional C2,α submanifold of R

n. Then the
m-dimensional tangent space TaM and (n − m)-dimensional normal space (TaM)⊥

are continuously differentiable functions of a ∈ M . We can use the function

dist(x,M) = inf{|x− a| : a ∈ M}

to define a “tubular” neighborhood of M on which there is a well-defined nearest
point map ΠM whose differential at a point x is close to the orthogonal projection of
R

n onto TΠM (x)M . Specifically, we have the following lemma.
Lemma 6.1. There are positive constants δ and C depending only on M so that

if

U = {x ∈ R
n : dist(x,M) < δ},

then the following hold:
(1) Every point x ∈ U has a unique nearest point ΠM (x) in M .
(2) The map ΠM is C1,α smooth.
(3) For all x ∈ U,

‖DΠM (x) − ΠTΠM (x)M‖ ≤ C|ΠM (x) − x|α.

(4) The m-dimensional Jacobian

JmΠM ≡ ‖ ∧m DΠM‖ =
√

det ((DΠM ) ◦ (DΠM )∗)

(see [11, sect. 3.2.22]) satisfies

| JmΠM (x) − 1 | ≤ C|ΠM (x) − x|α

for all x ∈ U .
Proof. As discussed, for example, in [10], the nearest point neighborhood property

of a compact C2 submanifold M depends on its curvature bound. In fact (1) and (2)
hold specifically by taking

δ =
(
max
a∈m

‖AM (a)‖
)−1

,
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where AM is the second fundamental form of M . For a ∈ M , DΠM (a) = ΠTaM .
Since, for a compact C2,α submanifold M , the map ΠM is C1,α bounded in some
compact neighborhood of M , we obtain (3) by slightly shrinking δ. Finally for (4)
we note that the linear map ΠTΠ(x)M , being an orthogonal projection onto an m-

dimensional space, has m-dimensional Jacobian equal to 1. Since
√
t is smooth near

t = 1, the estimate follows from (3) and the formula for Jm.
For each a ∈ M note that the set Π−1

M {a} is simply an (n −m)-dimensional flat
disk normal to M at a; in fact,

Π−1
M {a} = {y + a : y ∈ (TaM)⊥ : |y| < δ}.

Integrals over a tubular neighborhood may be computed using the Jacobian
JmΠM .

Lemma 6.2. For any bounded continuous function ψ on R
n,

∫
U

ψ(x) dx =

∫
M

(∫
Π−1

M {a}
ψ · (JmΠM )−1 dHn−m

)
dHma.

Proof. We may apply the (coarea) change of variable formula [11, sect. 3.2.22,
expression (3)] for the map ΠM : U → M ,

∫
U

φ(x)(JmΠM )(x) dx =

∫
M

(∫
Π−1

M {a}
φdHn−m

)
dHma,

with φ(x) = ψ(x) · (JmΠM )−1(x).
For use in section 9.2, we next observe that the following holds.
Lemmas 6.1 and 6.2 continue to hold in the case when the ambient space R

n is
replaced by an n-dimensional Riemannian manifold N .

Concerning Lemma 6.2, one additional observation is required. In the general
Riemannian case, each set Π−1

M {a}, for a ∈ M , is now a uniformly smooth (but
possibly curved) (n−m)-dimensional disk in N normal to M . It may be parameterized
by the planar disk in the normal space,

Nδ(a) ≡ {v ∈ (TaM)⊥ : |v| < δ} ⊂ TaN.

Lemma 6.3. There exist positive δ and C and, for every point a ∈ M, a C1,α

function Ga mapping Nδ(a) diffeomorphically onto Π−1
M {a} so that Ga(0) = a, DGa(0)

is an isometry, and, for every y ∈ Nδ(a),

‖DGa(y) −DGa(0)‖ ≤ C|y|α;

hence,

(6.3) |y| ≤ dist(Ga(y), a) ≤ |y| + C|y|1+α,

and

(6.4) | Jn−mGa(y) − 1 | ≤ C|y|α,

where Jn−mGa =
√

det ((DGa)∗ ◦ (DGa)).
Proof. The desired parameterizing map Ga is obtained by simply restricting the

Riemannian exponential map ExpN
a to the normal disk Nδ(a). The estimates all follow
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from properties of this exponential map. In particular, as a varies over the compact
submanifold M , all estimates are uniform because of the C0,α bound on the sectional
curvature of M .

Lemma 6.2 is now replaced by the following lemma.
Lemma 6.4. For any bounded continuous function ψ on N,

∫
U

ψ(x) dx =

∫
M

(∫
Π−1

M {a}
ψ · (JmΠM )−1 dHn−m

)
dHm(a)

=

∫
M

(∫
Nδ(a)

ψ(Ga(y)) · (JmΠM )−1(Ga(y)) · Jn−m(Ga(y)) dy

)
dHm(a) .

Proof. The first equality follows from [11, sect. 3.2.22, expression (3)] as in the
proof of Lemma 6.2. For the second equality, we then apply the (area) change of
variable formula [11, sect. 3.2.5] for the map Ga : Nδ(a) → Π−1

M {a},∫
Nδ(a)

φ(Ga(y)) · (Jn−mGa)(y) dy =

∫
Π−1

M {a}
φ dHn−m

with φ = ψ · (JmΠM )−1.

7. Expansion of a nonnegative function of fixed nondegeneracy.
Proposition 7.1. Suppose that F is a nonnegative, C3,α smooth function on

an open subset of R
n, the zero set M = F−1{0} is an embedded C2,α submanifold,

and rank ∂2F
∂xi∂xj

≡ n − m on M . For each compact subset A of M there are pos-

itive constants C, δ so that for each a ∈ A, gradF (a) vanishes and the symmetric

matrix ∂2F
∂xi∂xj

(a) has, counting multiplicities, m zero eigenvalues and n −m positive

eigenvalues

μ1(a) ≤ μ2(a) ≤ · · · ≤ μn−m(a),

which are continuous in a with a positive minimum and a finite maximum. Also there
is an orthogonal rotation Γa of R

n so that

Γa({0} × R
n−m) = (TaM)⊥

and∣∣∣∣∣F (a + Γa(x)) −
m−n∑
i=1

1

2
μi(a)(xm+i − am+i)

2

∣∣∣∣∣ ≤ C

(
sup
Bδ(a)

‖D3F‖
)
|x− a|3

for all x ∈ Bδ(0).
Proof. Note that for each a ∈ M and each vector v ∈ R

n, the function Fv(t) =
F (a + tv) has a minimum at t = 0. So v·gradF (a) = dFv

dt

∣∣
t=0

= 0, and

0 ≤ d2Fv

dt2

∣∣∣∣
t=0

=
d

dt
v · gradF (a + tv)

∣∣∣∣
t=0

=
∑
i,j

vi
∂2F

∂xi∂xj
(a)vj .

Thus gradF (a) = 0, and all the eigenvalues of ∂2F
∂xi∂xj

(a) are nonnegative. In general,

the full collection of eigenvalues of a square matrix, being the complex roots of the
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characteristic polynomial, varies continuously as the matrix varies; see, e.g., [11].

Here, by assumption, for a ∈ M , the matrix
(

∂2F
∂xi∂xj

)
(a) has, counting multiplicities,

precisely m zero eigenvalues and precisely n−m nonzero, hence positive, eigenvalues.
So, under ordering by size, these positive eigenvalues become continuous functions
on M . By the compactness of M , μ1 has a positive minimum and μn−m a finite
maximum.

For a ∈ A, we let v1, . . . , vn be orthonormal eigenvectors of the symmetric matrix(
∂2F

∂xi∂xj

)
(a) corresponding to the eigenvalues 0, . . . , 0, μ1(a), . . . , μn−m(a), and choose

the rotation Γa of R
n satisfying Γa(ei) = vi for i = 1, . . . , n. With Ha(x) = a+Γa(x),

we deduce that the matrix
(∂2(F◦Ha)

∂xi∂xj

)
(0) is diagonal with the first m eigenvalues

being zero and the (m + i)th eigenvalue being μi(a) for i = 1, . . . , n −m. Since also
(F ◦Ha)(0) = 0, grad(F ◦Ha)(0) = 0, and ‖D2F‖ is bounded in some neighborhood
of M , the second order Taylor expansion for F ◦Ga now proves the last inequality of
the proposition.

8. Some integrals.
Lemma 8.1. For k = 1, 2, . . . ,∫ ∞

0

e−λt2tk−1 dt = βkλ
− k

2 ,

where

βk =

{
2−

k
2 (k − 2)(k − 4) · · · (2) for k even,

2−
k−1
2 (k − 2)(k − 4) · · · (3) ·

√
π for k odd.

Proof. The substitution s =
√
λt gives the factor λ− k

2 and reduces to the case
λ = 1.

Integration by parts gives∫ ∞

0

e−t2tk−1 dt =
−1

2

∫ ∞

0

tk−2 d(e−t2) =
k − 2

2

∫ ∞

0

e−t2tk−3 dt.

This may be applied with k replaced by k − 2, k − 4, . . . , finally giving the formula

∫ ∞

0

e−t2t2j dt =

{
2−

k−2
2 (k − 2)(k − 4) · · · (2) ·

∫∞
0

e−t2t dt for k even

2−
k−1
2 (k − 2)(k − 4) · · · (3) ·

∫∞
0

e−t2 dt for k odd.

Of course, substituting s = t2 gives
∫∞
0

e−t2t dt = 1
2 , and the last integral is found

by the usual polar coordinate trick

(∫ ∞

0

e−t2 dt

)2

=

∫ ∞

0

∫ ∞

0

e−x2−y2

dx dy =

∫ 2π

0

∫ ∞

0

e−r2

r dr dθ

=
2π

2

∫ ∞

0

e−u du = π.

Corollary 8.2.

(8.1) lim
λ→∞

λ
k
2

∫ ∞

0

e−λt2tj dt = 0 for any integer j > k − 1,
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and

(8.2) lim
λ→∞

λ
k
2

∫ ∞

δ

e−λt2tk−1 dt = 0 for any δ > 0.

Proof. Applying Lemma 8.1 with k = j + 1 gives the first conclusion because
λ(−j+k−1)/2 → 0 as λ → ∞. For the second, we change variables s = λ1/2t to see that

λ
k
2

∫ ∞

δ

e−λt2tk−1 dt = λ
k
2 λ− k−1

2 λ−1/2

∫ ∞

λ1/2δ

e−s2sk−1 ds → 0 as λ → ∞

because
∫∞
0

e−s2sk−1 ds < ∞.

Corollary 8.3. For δ > 0 and 0 < μ1 ≤ μ2 ≤ · · · ≤ μk < ∞,

lim
λ→∞

λ
k
2

∫
B
k
δ (0)

e−
1
2λ(μ1y

2
1+···+μky

2
k) dy = 2k/2Λ−1/2kαkβk,

where Λ = μ1 · · ·μk, αk is as in (6.1), and βk is as in Lemma 8.1.

Proof. One can explicitly compute the integral over the k-dimensional elliptical
region

Ek
δ = { y ∈ R

k : μ1y
2
1 + · · · + μ1y

2
k < 2δ2 },

because Ek
δ = L(Bk

δ (0)), where

L(z1, . . . , zk) = ((2/μ1)
1/2z1, . . . , (2/μk)

1/2zk) for (z1, . . . , zk) ∈ R
k .

Using the change of variables y = L(z) with dy = (JkL) dz = 2k/2Λ−1/2dz, as
well as polar coordinates, Lemma 8.1, and (8.2), we find that

λ
k
2

∫
Ek

δ

e−
1
2λ(μ1y

2
1+···+μky

2
k) dy

= 2k/2Λ−1/2λ
k
2

∫
Bk

δ

e−λ|z|2 dz

= 2k/2Λ−1/2λ
k
2

∫
Sk−1

∫ δ

0

e−λr2

rk−1 dr dHk−1

= 2k/2Λ−1/2λ
k
2 kαk

∫ δ

0

e−λr2

rk−1 dr

= 2k/2Λ−1/2kαkλ
k
2

(∫ ∞

0

e−λr2

rk−1 dr −
∫ ∞

δ

e−λr2

rk−1 dr

)

→ 2k/2Λ−1/2kαkβk − 0 as λ → ∞.

We get precisely the same limit with Ek
δ replaced by the ball B

k
δ (0) because we

have the inclusions

B
k
γ(0) ⊂ B

k
δ (0) ⊂ B

k
ε (0) and B

k
γ(0) ⊂ Ek

δ (0) ⊂ B
k
ε (0)
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with γ = min{δ, (2/μk)
1/2δ} and ε = max{δ, (2/μ1)

1/2δ} and we have

lim
λ→∞

λ
k
2

∫
Bk
ε (0)\Bk

γ(0)

e−
1
2λ(μ1y

2
1+···+μky

2
k) dy ≤ lim

λ→∞
λ

k
2

∫
Bk
ε (0)\Bk

γ(0)

e−
1
2λ(μ1|y|2) dy

≤ lim
λ→∞

kαkλ
k
2

∫ ∞

γ

e−
1
2λ(μ1r

2)rk−1 dr = 0

by (8.2).
Lemma 8.4. Suppose 0 ≤ k ≤ n, F is a nonnegative continuous function on R

n,
p > 0, and F (y) ≥ |y|p whenever |y| is sufficiently large. Then, for any bounded open
neighborhood U of F−1{0},

lim
λ→∞

λk/2

∫
Rn\U

e−λF (y) dy = 0.

Proof. We may assume p < 2. Choose R > 0 so that U ⊂ BR(0) and F (y) ≥ |y|p
whenever |y| ≥ R. On the bounded region BR(0) \ U , F has a positive lower bound
ε, and

λk/2e−λF (y) ≤ λk/2e−λε → 0

uniformly as λ → ∞. Thus

lim
λ→∞

λk/2

∫
BR(0)\U

e−λF (y) dy = 0.

For the remaining set R
k \ BR(0), we use polar coordinates and change variables

s = λ1/pt to see that

λk/2

∫
Rn\BR(0)

e−λF (y) dy ≤ nαn−1λ
k/2

∫ ∞

R

e−λtptn−1 dt

= nαn−1λ
k
2−

n−1
p − 1

p

∫ ∞

λ1/pR

e−spsn−1 ds → 0

as λ → ∞ because k
2 − n

p ≤ 0 and
∫∞
0

e−spsn−1 ds < ∞.

9. Proof of main theorems.

9.1. Proof of Theorem 3.1. We begin by noting that without loss of generality,

we may set h ≡ 1. To show the dependence of the measures on h, let P
(h)
λ denote

the Gibbs measures in Theorem 3.1 and P (h) the limiting measure. For any bounded
continuous φ, since φh is bounded and continuous by our assumptions, if the theorem
holds when h ≡ 1, then we have∫

φh dP
(1)
λ →

∫
φh dP (1),

and noting that
∫
h dP (1) > 0 by our assumption (A5)(d), we have

∫
φ dP

(h)
λ =

∫
φh dP

(1)
λ∫

h dP
(1)
λ

→
∫
φh dP (1)∫
h dP (1)

=

∫
φ dP (h).
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First we treat the case j = 1 where the Hessian D2J has constant rank k = k on
the submanifold M = M1 = J−1{0}. Taking F = J and M = J−1{0}, we choose δ
and U ⊂ U1 as in Lemma 6.1 and Proposition 7.1 with m = n− k. In the remainder
of the proof, we will occasionally enlarge C, finitely many times, without changing
the notation. Nevertheless, the constant C will always just depend on n and J .

Let φ be a bounded continuous function on R
n and ε be any positive number with

ε < min

{
1

2
,

1

2C

}
,

where C is as in Lemma 6.1.

First we may assume that the δ and corresponding tubular neighborhood U in
Lemma 6.1 are small enough so that, for any point x ∈ U and nearest point a =
ΠM (x) ∈ M , one has

(9.1) |x− a| < δ < ε, |φ(x) − φ(a)| < ε.

For λ sufficiently large, we have, by Lemma 8.4, that

(9.2) λ
k
2

∫
Rn\U

φ(x)e−λJ(x) dx ≤
(
sup |φ|

)
λ

k
2

∫
Rn\U

e−λJ(x) dx < ε.

For the integral over U , we use Lemma 6.2 with ψ replaced by φe−λJ to write

(9.3) λ
k
2

∫
U

φ(x)e−λJ(x) dx = λ
k
2

∫
M

(∫
Π−1

M (a)

za(x) dHk(x)

)
dHn−k(a),

where

za(x)
def
= φ(x) · e−λJ(x) · JkΠM (x) .

We will first make upper estimates. For the first factor with ΠM (x) = a, we use (9.1)
to see that

φ(x) ≤ φ(a) + ε.

For the third factor, we use Lemma 6.1 to obtain

JkΠM (x) ≤ (1 + Cεα).

Combining these and changing C, we now have the upper bound

(9.4)

λ
k
2

∫
U

φ(x)e−λJ(x) dx

≤ λ
k
2 (1 + Cεα)

∫
M

(φ(a) + ε)

∫
Π−1

M {a}
e−λJ(x) dHk(x) dHn−k(a).

The remaining second factor in zα is in the last integral. To estimate this, we rotate
coordinates as in Proposition 7.1 with F = J and use Corollary 8.3 with k = k, and
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(8.1) with k = k + 2 to deduce that

(9.5)

λ
k
2

∫
Π−1

M {a}
e−λJ(x) dHk(x) ≤ λ

k
2

∫
Bδ(0)

e−λ(
∑k

i=1
1
2μi(a)y2

i )eCλ|y|3 dy

≤ λ
k
2

∫
Bδ(0)

e−λ(
∑k

i=1
1
2μi(a)y2

i )(1 + 2Cλ|y|3) dy

≤ λ
k
2

∫
Bδ(0)

e−λ(
∑k

i=1
1
2μi(a)y2

i ) dy + 2Cλ
k+2
2 kαk

∫ ∞

0

e−
1
2λμ1(a)r2

r3+k−1 dr

−→ 2
k
2 Λ−1/2(a) kαkβk + 0 as λ → ∞,

where Λ(a) = μ1(a) . . . μk(a). Taking the lim supλ→∞ in (9.4) along with (9.5), re-
calling (9.2), and then letting ε ↓ 0, we conclude that

(9.6) lim sup
λ→∞

λ
k
2

∫
Rn

φ(x)e−λJ(x) dx ≤ 2
k
2 kαkβk

∫
M

φ(a)Λ−1/2(a) dHn−k(a).

Next, arguing in the same manner using lower bounds gives the inequality

(9.7) lim inf
λ→∞

λ
k
2

∫
Rn

φ(x)e−λJ(x) dx ≥ 2
k
2 kαkβk

∫
M

φ(a)Λ−1/2(a) dHn−k(a).

This essentially finishes the proof. For the normalization, we define, for λ > 1,

Yλ =
(
2

k
2 kαkβk

)−1

Zλ
k
2 ,

where

Z =

(∫
M

Λ−1/2(a) dHn−k(a)

)−1

as before. We now apply (9.6) and (9.7) first with φ ≡ 1 to see that

lim
λ→∞

Yλ

Zλ
= lim

λ→∞
Yλ

∫
Rn

e−λJ(x) dx = 1,

and second with the general bounded continuous φ to obtain the conclusion

lim
λ→∞

Zλ

∫
Rn

φ(x)e−λJ(x) dx = lim
λ→∞

Yλ

∫
Rn

φ(x)e−λJ(x) dx

= Z

∫
M

φ(a)Λ−1/2(a) dHn−k(a),

which gives the desired convergence of measures Pλ ⇒ P .
Finally we consider the case j > 1 of Theorem 3.1 involving the extra disjoint

compact submanifolds M2, . . . ,Mj on each of which the Hessian D2J has constant
rank strictly larger than k1, which is its rank on M1. Now we will repeat most of the
above arguments and again use the factor λk1/2 to try to estimate

λ
k1
2

∫
Rn

φ(x)e−λJ(x) dx
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as λ → ∞. As before we may, by Lemma 8.4, restrict our integration to any fixed
neighborhood U of M . We take U = U1 ∪ · · · ∪ Uj , where each Ui is, as before, a
sufficiently small (depending on a given ε and test function φ) tubular neighborhood
of Mi.

For the region U1, we find, by estimating the upper and lower bounds just as
before, that

(9.8) lim
λ→∞

λ
k1
2

∫
U1

φ(x)e−λJ(x) dx = 2
k1
2 k1αk1βk1

∫
M1

Λ−1/2(a) dHn−k1(a),

where Λ(a) is, as before, the product of the k1 positive eigenvalues of D2J(a) for
a ∈ M1.

However, for any region Ui with i = 2, . . . , j, one finds that, with a ∈ Mi, in place
of (9.5), one has the upper estimate
(9.9)

λ
k1
2

∫
Π−1

M {a}
e−λJ(x) dHki(x)

≤ λ
k1
2

∫
Bδ(0)

e−
1
2λμ1(a)|y|2)(1 + 2Cλ|y|3) dy

= λ
k1
2 kiαki

∫ ∞

0

e−
1
2λμ1(a)r2

rki−1 dr + 2Cλ
k1+2

2 kiαki

∫ ∞

0

e−
1
2λμ1(a)r2

r3+ki−1 dr

−→ 0 + 0 as λ → ∞

by (8.1), because ki > k1 and 3 + ki > k1 + 2. It follows that, for any bounded
continuous φ on R

n,

(9.10) lim
λ→∞

λ
k1
2

∫
Ui

φ(x)e−λJ(x) dx = 0

for i = 2, . . . , j. With

Yλ =
(
2

k1
2 k1αk1βk1

)−1

Zλ
k1
2 ,

we conclude from (8.1), (9.8), and (9.10) as before that, as λ → ∞, Yλ/Zλ → 1 and

Zλ

∫
Rn

φ(x)e−λJ(x) dx → Z

∫
M1

φ(a)Λ−1/2(a) dHn−k1a,

which completes the proof.

9.2. Multiple limit theorem. Multiple constraints generated by functions
J1, J2, . . . , Jj lead to consideration of Gibbs measures obtained from multiple lim-
its limλ1→∞ limλ2→∞ · · · limλj→∞. With suitable nondegeneracy assumptions on the
Hessians of the Ji, one expects to obtain consecutively suitably weighted Hausdorff
measures on lower and lower dimensional submanifolds. As before, it suffices to prove
the case h ≡ 1. To inductively follow this procedure, one first needs to verify the
following proposition.

Proposition 9.1. Theorem 3.1 remains true if R
n is replaced by an n-dimen-

sional complete Riemannian manifold N, the term D2J is replaced by the Riemannian
Hessian, and the Lebesgue measure on R

n is replaced by the standard n-dimensional
Hausdorff measure on N .
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Proof. The proof follows exactly as in section 9.1 using Riemannian normal co-
ordinates in the expansions until we need to apply Lemma 6.4 instead of Lemma 6.2
and replace the right-hand side of (9.3) by

(9.11) λ
k
2

∫
M

(∫
Nδ(a)

φ(Ga(y)) · e−λJ(Ga(y)) · Jn−kGa(y) · Jk(Ga(y)) dy

)
dHn−ka ,

where Ga is given in Lemma 6.3. Note that, by our choice of U , also small enough
for Lemma 6.3, and by (9.1), one has, with x = Ga(y) ∈ U (hence a = ΠM (x)), that

|y| ≤ dist(x, a) < δ < ε .

We estimate the first three factors of (9.11) as before in our estimate of (9.3). Although
it is no longer true that Jn−kGa ≡ 1, we may use (6.4) to estimate the new factor
Jn−kGa(y). The fourth factor is also estimated using Lemma 6.3 to obtain

Jk(Ga(y)) ≤ 1 + Cεα.

Combining these and changing C, we now have the upper bound

λ
k
2

∫
U

φ(x)e−λJ(x) dHnx ≤ λ
k
2 (1 + Cεα)

∫
M

(φ(a) + ε)

∫
Nδ(a)

e−λJ(Ga(y)) dy dHn−ka,

which corresponds to (9.4). The remainder of the proof now follows precisely as before
in section 9.

9.3. Proof of Theorem 3.2. For each a ∈ M and 1 ≤ h < i ≤ j, the
subspaces Eh(a) and Ei(a) have zero-dimensional intersection because the span of
E1(a), . . . , Ej(a) is of dimension k = k1 + · · ·+kj . In the special case they are all mu-
tually orthogonal, the Hessian matrices D2J1(a), . . . , D

2Jj(a) may be simultaneously
diagonalized. We now find the expansion in the fiber, Π−1

W {a}, that λ1J1 + · · ·+λnJj
now has the form

1

2

[
λ1μn−k+1y

2
n−k+1 + · · · + λ1μn−k+k1

y2
n−k+k1

+ · · ·

+λjμn−kj+1y
2
n−kj+1 + · · · + λjμny

2
n

]
+ higher order terms.

We may now estimate terms as in the proofs in section 9, including that of Proposi-
tion 9.1. In taking any limit λi → ∞, the remaining factors e−λjJj may be treated
as part of the test function in the weak convergence. The mutual orthogonality also
implies that Θ ≡ 1, and we thus obtain Theorem 3.2 in the orthogonal case.

In the general transverse (but not necessarily orthogonal) case, we can make a
smooth change of coordinates of a full neighborhood U of each a ∈ M so that, at each
x ∈ U∩M , the differential of the transformation preserves E(x)⊥ and transforms E(x)
by taking the vectors chosen from some orthonormal bases of E1(x), . . . , Ej(x) (which
by assumption span R

n) to a single orthonormal basis of E(x). With this change of
variables, we may compute the desired integrals over U and then use the orthogonality
as above. This change of variable that makes the Ei mutually orthogonal gives rise
to a new n-dimensional Jacobian term, which is precisely Θ on U ∩M . The desired
limiting formula follows.
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SPHERICAL SOLUTIONS TO A NONLOCAL FREE BOUNDARY
PROBLEM FROM DIBLOCK COPOLYMER MORPHOLOGY∗

XIAOFENG REN† AND JUNCHENG WEI‡

Abstract. The Γ-limit of the Ohta–Kawasaki density functional theory of diblock copolymers is
a nonlocal free boundary problem. For some values of block composition and the nonlocal interaction,
an equilibrium pattern of many spheres exists in a three-dimensional domain. A subrange of the
parameters is found where the multiple sphere pattern is stable. This stable pattern models the
spherical phase in the diblock copolymer morphology. The spheres are approximately round. They
satisfy an equation that involves their mean curvature and a quantity that depends nonlocally on the
whole pattern. The locations of the spheres are determined via a Green’s function of the domain.

Key words. spherical phase, diblock copolymer morphology, sphere coarsening, interface
oscillation

AMS subject classifications. 35R35, 82B24, 82D60
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1. Introduction. A diblock copolymer melt is a soft material, characterized
by fluid-like disorder on the molecular scale and a high degree of order at a longer
length scale. A molecule in a diblock copolymer is a linear subchain of A-monomers
grafted covalently to another subchain of B-monomers. Because of the repulsion
between the unlike monomers, the different type subchains tend to segregate, but
as they are chemically bonded in chain molecules, segregation of subchains cannot
lead to a macroscopic phase separation. Only a local microphase separation occurs:
microdomains rich in A-monomers and microdomains rich in B-monomers emerge as a
result. These microdomains form patterns that are known as morphology phases. Var-
ious phases, including lamellar, cylindrical, spherical, and gyroid, have been observed
in experiments. See Bates and Fredrickson [1] for more on block copolymers.

This paper deals with the spherical phase of the block copolymer morphology
(Figure 1.1, Plot 1). Let a ∈ (0, 1) be the block composition fraction which is the
number of the A-monomers divided by the number of all the A- and B-monomers in
a chain molecule. The spherical phase occurs when a is relatively close to 0 (or close
to 1), and the A-monomers (or B-monomers, respectively) form small balls in space.

The model we use here is a nonlocal free boundary problem derived from the
Ohta–Kawasaki density functional theory of diblock copolymers [18]. Let D be
a bounded and sufficiently smooth domain in R3 occupied by a diblock copolymer
melt in the spherical phase. Let E be a subset of D where A-monomers concentrate.
Then D\E is the subset where B-monomers concentrate. Denote the part of the
boundary of E that is in D by ∂DE which is the set of the interfaces separating
the A-rich microdomains from the B-rich microdomains. Denote the Lebesgue mea-
sure of E by |E|. Given a block composition fraction a ∈ (0, 1), one has |E| = a|D|.
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Fig. 1.1. The spherical, cylindrical, and lamellar morphology phases commonly observed in
diblock copolymer melts. The dark color indicates the concentration of type A monomers, and the
white color indicates the concentration of type B monomers.

Moreover, there exists a number λ such that at every point on ∂DE

(1.1) H(∂DE) + γ(−Δ)−1(χE − a) = λ.

Here H(∂DE) is the mean curvature of ∂DE viewed from E, γ is a positive parameter,
and χE is the characteristic function of E, i.e. χE(x) = 1 if x ∈ E, and χE(x) = 0 if
x ∈ D\E. The expression (−Δ)−1(χE − a) is the solution v of the problem

−Δv = χE − a in D, ∂νv = 0 on ∂D, v = 0,

where the bar over a function is the average of the function over its domain, i.e.,

v =
1

|D|

∫
D

v(x) dx.

Because (−Δ)−1 is a nonlocal operator defined from {q ∈ L2(D) : q = 0} to itself,
the free boundary problem (1.1) is nonlocal.

Equation (1.1) is the Euler–Lagrange equation of the free energy J of the system.
The functional J is given by

(1.2) J(E) = |DχE |(D) +
γ

2

∫
D

|(−Δ)−1/2(χE − a)|2 dx, E ∈ Σ.

The admissible set Σ of the functional J is the collection of all measurable subsets of
D of measure a|D| and of finite perimeter, i.e.,

(1.3) Σ = {E ⊂ D : E is Lebesgue measurable, |E| = a|D|, χE ∈ BV (D)}.

Here BV (D) is the space of functions of bounded variation on D. In (1.2), |DχE |(D)
is the perimeter of E. When ∂E is smooth, this is merely the surface area of ∂DE.
For a more general E, χE is a BV-function and DχE is a vector valued finite mea-
sure. We denote the magnitude of this measure by |DχE | which is a positive, finite
measure. The perimeter of E is defined to be the size of D under this measure. The
operator (−Δ)−1/2 is the positive square root of (−Δ)−1.

The main difficulty in (1.1) stems from the nonlocal term. Without it, i.e., if
γ = 0, (1.1) would just be the equation of constant mean curvature. However with the
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nonlocal term the curvature of a solution in general is not constant. One exception
occurs in the study of the lamellar phase (Figure 1.1, Plot 3) where interfaces are
parallel planes (Ren and Wei [20, 23]). The solution we are looking for in this paper
is a union of a number of disconnected sets each of which is close to a small round
ball. The solution is hence termed a spherical solution.

Nishiura and Ohnishi [16] formulated the Ohta–Kawasaki theory on a bounded
domain as a singularly perturbed variational problem with a nonlocal term and also
identified the free boundary problem (1.1). Ren and Wei [20] showed that (1.2) is a
Γ-limit of the singularly perturbed variational problem. See the last section for more
discussion on the Ohta–Kawasaki theory and Γ-convergence.

Since then much work has been done mathematically to these problems. The
lamellar phase (Figure 1.1, Plot 3) is studied by Ren and Wei [20, 22, 23, 27, 28], Fife
and Hilhorst [9], Choksi and Ren [4], Chen and Oshita [2], and Choksi and Sternberg
[6]. The result obtained by Müller [15] is related to the lamellar phase in the case
a = 1/2, as observed in [16]. Radially symmetric bubble and ring patterns are studied
by Ren and Wei [21, 26, 29]. The gyroid phase is numerically studied by Teramoto and
Nishiura [33]. Triblock copolymers are studied by Ren and Wei [24, 25]. A diblock
copolymer/homopolymer blend is studied by Choksi and Ren [5]. Also, see Ohnishi
et al. [17] and Choksi [3].

The cylindrical phase (Figure 1.1, Plot 2) is studied by Ren and Wei [31, 30], in
which a variant of the Lyapunov–Schmidt reduction procedure is developed to study
a cross section of Figure 1.1, Plot 2. A pattern with a number of approximate small
discs is found which satisfies the two-dimensional version of (1.1). In two dimensions,
∂DE is a union of curves and H(∂DE) is the curvature of the curves.

In this paper we adapt the Lyapunov–Schmidt reduction procedure to three
dimensions to construct spherical solutions. These solutions look like Figure 1.1,
Plot 1. They model the spherical phase of diblock copolymer morphology.

The main results are presented in section 2. Our strategy to prove them consists
of setting up a first approximation (section 3) and through linearization (sections 4
and 5) and fixed point argument (sections 6 and 7) solving a projected version of the
full problem (up to spherical harmonics of order 0 and 1 corresponding to translations
and changes in volume). This reduces the infinite dimensional variational problem to a
finite dimensional minimization problem in centers and radii. After finding a minimum
of the finite dimensional problem, we show that it is indeed an exact solution of the
full problem, using a tricky reparametrization argument (section 8).

Our construction yields, in addition, information on the spectra of linearization,
interpreted as forms of stability-instability.

Compared to the two-dimensional case, the study of the linearized problem is more
involved here. In two dimensions the corresponding linearized problem is analyzed
by the Fourier series method. Here in three dimensions we use spherical harmonics
to diagonalize the linearized operator (see Lemma 5.1). More differences between the
two-dimensional and the three-dimensional cases are given in section 9.

2. Main results. The Green’s function of −Δ is denoted by G. It is a sum of
two parts:

(2.1) G(x, y) =
1

4π|x− y| + R(x, y).

The first part on the right-hand side of (2.1) is the fundamental solution in three
dimensions. The second part is the regular part of G(x, y), denoted by R(x, y). The



1500 XIAOFENG REN AND JUNCHENG WEI

Green’s function satisfies
(2.2)

−ΔxG(x, y) = δ(x− y) − 1

|D| in D, ∂ν(x)G(x, y) = 0 on ∂D, G(·, y) = 0 ∀y ∈ D.

Here Δx is the Laplacian with respect to the x-variable of G, and ν(x) is the outward
normal direction at x ∈ ∂D. We set

(2.3) F (ξ1, ξ2, . . . , ξK) =

K∑
k=1

R(ξk, ξk) +

K∑
k=1

K∑
l=1,l �=k

G(ξk, ξl),

for ξk ∈ D and ξk �= ξl if k �= l. Because G(x, y) → ∞ if |x−y| → 0 and R(x, x) → ∞
if x → ∂D, F admits at least one global minimum.

The average sphere radius is

(2.4) ρ =

(
3a|D|
4πK

)1/3

.

The main result of this paper is the following existence theorem.
Theorem 2.1. Let K ≥ 2 be an integer.
1. For every ε > 0 there exists δ > 0, depending on ε, K, and D only, such that if

(2.5) γρ3 > 3 + ε,

(2.6)

∣∣∣∣γρ3 − 3(n + 2)(2n + 1)

2

∣∣∣∣ > εn2 ∀ n = 2, 3, 4, . . . ,

and

(2.7) ρ < δ,

then there exists a solution E of (1.1).
2. The solution E is a union of K approximate balls. The radius of each ball is

close to ρ.
3. Let the centers of these balls be ζ1, ζ2, . . . , ζK . Then ζ = (ζ1, ζ2, . . . , ζK) is

close to a global minimum of the function F .
The precise meaning that each component of E is close to a ball of radius ρ is

given in (8.18). As ρ (or a) tends to 0, ζ converges to a global minimum of F , possibly
along a subsequence.

We have opted for a rather general existence theorem. The solution found in the
theorem is not necessarily stable. The stability of the solution depends on how (2.6)
is satisfied.

Theorem 2.2. If (2.6) is satisfied because

(2.8) γρ3 − 3(n + 2)(2n + 1)

2
< −εn2 ∀ n ≥ 2,

then the spherical solution is stable. Otherwise if (2.6) is satisfied but

(2.9) εn2 < γρ3 − 3(n + 2)(2n + 1)

2
, and γρ3 − 3(n + 3)(2n + 3)

2
< −ε(n + 1)2
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for some n ≥ 2, then the spherical solution is unstable.

When we delete intervals around 3(n+2)(2n+1)
2 , n = 2, 3, . . . , in (2.6), the width of

the intervals, 2εn2, grows as n becomes large. At some point an interval will include

nearby members in the sequence 3(n+2)(2n+1)
2 . When this happens, γρ3 cannot be

placed above such 3(n+2)(2n+1)
2 . This implies that there exists C(ε) > 0 depending on

ε such that

(2.10) γ <
C(ε)

ρ3
.

A little computation shows that C(ε) is

C(ε) =
3

2

(
6 +

√
36 + 18ε

2ε
+ 2

)(
6 +

√
36 + 18ε

ε
+ 1

)
.

Combining (2.10) with (2.5) we see that ρ and γ are in a somewhat narrow parameter
range

(2.11) ρ < δ,
3 + ε

ρ3
< γ <

C(ε)

ρ3
,

and γρ3 must stay away from the sequence 3(n+2)(2n+1)
2 , n = 2, 3, . . . , in the sense of

(2.6). From (2.11) one sees that ρ must be small and γ be appropriately large.
We may assign a negative gradient flow to J and consider a dynamic counterpart

of (1.1) (see [16]). The condition (2.5) prevents coarsening in such a dynamic process.
By coarsening we mean that some balls become larger and other balls shrink and
disappear.

The gap condition (2.6) controls interface oscillation. Interface oscillation refers to
a phenomenon that oscillations appear on the boundary of a ball. The gap condition
also suggests bifurcations to oscillating solutions. Elsewhere gap conditions have
appeared in constructing layered solutions for singularly perturbed problems. See
Malchiodi and Montenegro [12], del Pino, Kowalczyk, and Wei [8], Pacard and Ritoré
[19], and the references therein.

The solution found in Theorem 2.1 may be unstable because of interface oscilla-
tion. The condition (2.8) in Theorem 2.2 eliminates this possibility. Under (2.8), ε
must be no greater than 3, and ρ and γ must satisfy a more stringent requirement

(2.12) ρ < δ,
3 + ε

ρ3
< γ <

30 − 4ε

ρ3
.

This means that γρ3 must stay to the left of the sequence 3(n+2)(2n+1)
2 , n = 2, 3, . . . .

If (2.9) holds, then we have an unstable mode that tends to bring oscillations to the
spheres.

The spheres in the solution we construct are approximately round, with the same
approximate radius. Theorem 2.1, part 3 asserts that the sphere centers must mini-
mize F approximately.

We can even determine the optimal number of balls in a spherical pattern. Because
of (2.11), we write

(2.13) γ =
μ

a
=

μ(
4πK
3|D|

)
ρ3

.



1502 XIAOFENG REN AND JUNCHENG WEI

Now a and μ are the parameters of the problem. We hold μ fixed and make a and
hence ρ small.

With (2.13) and (2.4) the leading order of the free energy is calculated from the
formula in Lemma 8.1,

(2.14) 4πρ2K +
γ

2

(
8πρ5K

15

)
= 4πK1/3

(
3a|D|

4π

)2/3

+
μ4π

15a

(
3a|D|

4π

)5/3

K−2/3.

With respect to K the last quantity is minimized at

(2.15) K =
|D|μ
10π

.

Note that the choice (2.15) of K does not violate the condition (2.12), since, with
this K,

(2.16) γ =
μ

a
= μ

3|D|
K4πρ3

= μ
3|D|
4πρ3

10π

μ|D| =
30

4ρ3
.

Equation (2.15) gives the optimal number of spheres in a spherical pattern.

3. Approximate solutions. Throughout the rest of this paper we are given
ε > 0, and γ and ρ satisfy (2.5) and (2.6).

Let U1 be a small neighborhood in DK of the set {η : F (η) = minξ∈DK F (ξ)},
and U2 be the set

U2 =

{
(r1, r2, . . . , rK) ∈ RK : rk ∈ ((1 − δ2)ρ, (1 + δ2)ρ),

k = 1, 2, . . . ,K,
K∑

k=1

4πr3
k

3
= a|D|

}
.(3.1)

The constant δ2 is positive, small, and depends on ε. It will be fixed later in the
proofs of Lemmas 5.3 and 8.2. Define

(3.2) U = U1 × U2.

Let ξ1, ξ2, . . . , ξK be K distinct points in D such that ξ = (ξ1, ξ2, . . . , ξK) is in
U1, and r = (r1, r2, . . . , rK) is in U2. Denote the ball centered at ξk of radius rk by
Bk. The union of the Bk’s is B:

(3.3) B =

K⋃
k=1

Bk =

K⋃
k=1

{x ∈ R3 : |x− ξk| < rk}.

With U1 close to {η : F (η) = minκ∈DK F (κ)} and ρ sufficiently small, the Bk’s are
all inside D and disjoint.

Lemma 3.1. When E is B, the left-hand side of (1.1) is

1

rk
+ γ

⎡
⎣r2

k

3
+

4πr3
k

3
R(ξk, ξk) +

∑
l �=k

4πr3
l

3
G(ξk, ξl)

⎤
⎦+ O(ρ)

at each ξk + rkθk, where θk ∈ S2 and S2 is the unit sphere.
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Proof. At a boundary point ξk + rkθk of Bk, the curvature is 1
rk

.

We compute vk = (−Δ)−1(χBk
− 4πr3

k

3|D| ). Define

Pk(x) =

{
− |x−ξk|2

6 +
r2
k

2 if |x− ξk| < rk
r3
k

3|x−ξk| , if |x− ξk| ≥ rk.

Then −ΔPk = χBk
. Write vk(x) = Pk(x) + Qk(x, ξk). Clearly

−ΔQk(x, ξk) = −4πr3
k

3|D| , ∂ν(x)Qk(x, ξk) = −∂ν
4πr3

k

3

1

4π|x− ξk|

on ∂D, Qk(·, ξk) = −Pk.

From (2.2) we see that Qk(x, ξk) and
4πr3

k

3 R(x, ξk) satisfy the same equation and the
same boundary condition, where R is the regular part of the Green’s function G.

Therefore they can differ only by a constant. This constant is Qk(·, ξk)− 4πr3
k

3 R(·, ξk).
But vk = G(·, ξk) = 0 implies that this constant is

−Pk +
4πr3

k

3

1

4π|x− ξk|
=

4πr5
k

3

1

10|D|

by direct calculation. Hence

Qk(x, ξk) =
4πr3

k

3
R(x, ξk) +

4π

3

r5
k

10|D|

and

(3.4) vk(x) = Pk(x) +
4πr3

k

3
R(x, ξk) +

4π

3

r5
k

10|D| .

Let v = (−Δ)−1(χB − a) =
∑

l vl. Then at ξk + rkθk

v(ξk + rkθk) =
r2
k

3
+

4πr3
k

3
R(ξk + rkθk, ξk) +

∑
l �=k

4πr3
l

3
G(ξk + rkθk, ξl)

+

K∑
l=1

4π

3

r5
l

10|D|(3.5)

=
r2
k

3
+

4πr3
k

3
R(ξk, ξk) +

∑
l �=k

4πr3
l

3
G(ξk, ξl) + O(ρ4).

The lemma follows from (2.10).
Lemma 3.2. The free energy of B is

J(B) =

K∑
k=1

4πr2
k +

γ

2

{ K∑
k=1

[
8πr5

k

15
+

(
4π

3

)2

r6
kR(ξk, ξk)

]

+

K∑
k=1

K∑
l=1,l �=k

(
4π

3

)2

r3
kr

3
l G(ξk, ξl) +

K∑
k=1

K∑
l=1

(
4π

3

)2(
r3
kr

5
l

10|D| +
r5
kr

3
l

10|D|

)}
.
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Proof. The local part of the free energy is just
∑K

k=1 4πr2
k.

The nonlocal part of the free energy is

∫
D

|(−Δ)−1/2(χB − a)|2 dx

=

∫
D

(χB − a)v(x) dx =

K∑
l=1

∫
Bl

v(x) dx

=

K∑
l=1

K∑
k=1

∫
Bl

vk(x) dx =

K∑
l=1

K∑
k=1

[∫
Bl

Pk(x) dx +

∫
Bl

Qk(x, ξk) dx

]
.

There are two possibilities. When l = k, from the definition of Pk we find

(3.6)

∫
Bk

Pk(x) dx =
8πr5

k

15
.

For the integral of Qk, we have

∫
Bk

Qk(x, ξk) dx =
4πr3

k

3

∫
Bk

R(x, ξk) dx +

(
4π

3

)2
r8
k

10|D| .

Since R(x, ξk)− 1
6|D| |x−ξk|2 is harmonic in x, by the mean value theorem for harmonic

functions∫
Bk

R(x, ξk) dx =

∫
Bk

(
R(x, ξk) −

1

6|D| |x− ξk|2
)

dx +

∫
Bk

1

6|D| |x− ξk|2 dx

=
4πr3

k

3
R(ξk, ξk) +

4π

3

r5
k

10|D| .(3.7)

Hence

∫
Bk

vk dx =
8πr5

k

15
+

(
4π

3

)2

r6
kR(ξk, ξk) +

(
4π

3

)2
r8
k

5|D| .

When l �= k, for x ∈ Bl, since Pk is harmonic,

∫
Bl

vk dx =

∫
Bl

Pk dx +
4πr3

k

3

∫
Bl

R(x, ξk) dx +

(
4π

3

)2
r5
kr

3
l

10|D|

=
4π

3
r3
l

r3
k

3|ξk − ξl|
+

4πr3
k

3

[∫
Bl

(
R(x, ξk) −

1

6|D| |x− ξl|2
)

dx

+

∫
Bl

1

6|D| |x− ξl|2 dx
]

+

(
4π

3

)2
r5
kr

3
l

10|D|

=

(
4π

3

)2
r3
kr

3
l

4π|ξk − ξl|
+

(
4π

3

)2

r3
kr

3
l R(ξk, ξl) +

(
4π

3

)2(
r3
kr

5
l

10|D| +
r5
kr

3
l

10|D|

)
.
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Finally the nonlocal part of the free energy is

∫
D

(χB − a)v dx =

K∑
k=1

[
8πr5

k

15
+

(
4π

3

)2

r6
kR(ξk, ξk)

]

+
K∑

k=1

K∑
l=1,l �=k

[(
4π

3

)2
r3
kr

3
l

4π|ξk − ξl|
+

(
4π

3

)2

r3
kr

3
l R(ξk, ξl)

]

+
K∑

k=1

K∑
l=1

(
4π

3

)2(
r3
kr

5
l

10|D| +
r5
kr

3
l

10|D|

)
.(3.8)

The lemma now follows.

4. Perturbed spheres. We perturb each ball Bk considered in the last section.
A perturbed ball denoted by Eφk

is described by a function φk = φk(θk), θk ∈ S2:

(4.1) Eφk
= {ξk + tθk : θk ∈ S2, t ∈ [0, (r3

k + φk(θk))
1/3]}.

Each φk is small compared to r3
k so that r3

k + φk(θk) is positive. Each θk is identified
by its longitude and latitude (θk,1, θk,2), namely

(4.2) θk = (cos θk,1 sin θk,2, sin θk,1 sin θk,2, cos θk,2).

The φk’s satisfy

(4.3)

K∑
k=1

∫
S2

φk(θk) dθk = 0.

Here the integral is a surface integral over S2 and

(4.4) dθk = sin θk,2 dθk,1dθk,2

is the surface element on S2. Hence the total volume inside the perturbed spheres
remains fixed:

K∑
k=1

|Eφk
| =
∑
k

∫
S2

∫ (r3
k+φk(θk))1/3

0

t2 dtdθk

=
∑
k

∫
S2

(
r3
k

3
+

φk(θk)

3

)
dθk =

∑
k

4πr3
k

3
= a|D|.

The union of the Eφk
’s is Eφ:

(4.5) Eφ =

K⋃
k=1

Eφk
.

With these notations B = E0.
We let θ = (θ1, θ2, . . . , θK) and φ(θ) = (φ1(θ1), φ2(θ2), . . . φK(θK)). To express

surface area in terms of φk, first define

(4.6) L(s, p, q, β) = s−1/3

√
p2

9 sin2 β
+

q2

9
+ s2,
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and then define

(4.7) Lk

(
φk,

∂φk

∂θk,1
,

∂φk

∂θk,2
, θk,2

)
= r2

kL

(
1 +

φk

r3
k

,
1

r3
k

∂φk

∂θk,1
,

1

r3
k

∂φk

∂θk,2
, θk,2

)
.

The surface area of ∂DEφ can be expressed as

(4.8)

K∑
k=1

|DχEφk
|(D) =

K∑
k=1

∫
S2

Lk

(
φk,

∂φk

∂θk,1
,

∂φk

∂θk,2
, θk,2

)
dθk.

The nonlocal part of J in (1.2) may be written in terms of φ as

γ

2

∫
D

|(−Δ)−1/2(χEφ
− a)|2 dx =

γ

2

∫
Eφ

∫
Eφ

G(x, y) dxdy.(4.9)

The first variation of J can now be written as

J ′(Eφ)(w) =

K∑
k=1

∫
S2

[
∂Lk

∂φk
wk +

∂Lk

∂φk,1
wk,1 +

∂Lk

∂φk,2
wk,2

]
dθk(4.10)

+

K∑
k=1

∫
S2

wk(θk)

[
K∑
l=1

γ

3

∫
Eφl

G(ξk + (r3
k + φk(θk))

1/3θk, y) dy

]
dθk.

(4.11)

Here we have used shorthand notations φk,1 = ∂φk

∂θk,1
and φk,2 = ∂φk

∂θk,2
, and so on.

From (4.10) we define a second order, quasilinear elliptic operator

Hk(φk)(θk) =
1

sin θk,2

[
∂Lk

∂φk
sin θk,2 −

∂

∂θk,1

(
∂Lk

∂φk,1
sin θk,2

)

− ∂

∂θk,2

(
∂Lk

∂φk,2
sin θk,2

)]
.(4.12)

This is just the mean curvature of the perturbed sphere ∂Eφk
at ξk+(r3

k+φk(θk))
1/3θk,

multiplied by 1
3 . The second part (4.11) of the first variation of J gives rise to a

nonlocal operator

(4.13) φ →
K∑
l=1

γ

3

∫
Eφl

G(ξk + (r3
k + φk(θk))

1/3θk, y) dy.

This is just

γ

3
(−Δ)−1(χEφ

− a)(ξk + (r3
k + θk)

1/3θk),

the nonlocal part of (1.1) at ξk + (r3
k + φk(θk))

1/3θk multiplied by 1
3 .

There are two cases in the sum over l in (4.13); when l = k we write

γ

3

∫
Eφk

G(ξk + (r3
k + φk(θk))

1/3θk, y) dy

=
γ

3

∫
Eφk

dy

4π|ξk + (r3
k + φk(θk))1/3θk − y| +

γ

3

∫
Eφk

R(ξk + (r3
k + φk(θk))

1/3θk, y) dy.
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We denote the last two terms by

Ak(φk)(θk) =
γ

3

∫
Eφk

dy

4π|ξk + (r3
k + φk(θk))1/3θk − y| ,(4.14)

Bk(φk)(θk) =
γ

3

∫
Eφk

R(ξk + (r3
k + φk(θk))

1/3θk, y) dy.(4.15)

When l �= k in (4.13) we let

(4.16) Ckl(φk, φl)(θk) =
γ

3

∫
Eφl

G(ξk + (r3
k + φk(θk))

1/3θk, y) dy.

The left-hand side of (1.1) (multiplied by 1
3 ) now becomes

Hk(φk)(θk) + Ak(φk)(θk) + Bk(φk)(θk) +
∑
l �=k

Ckl(φk, φl)(θk)

at ξk + (r3
k + φk(θk))

1/3θk. Let us define

(4.17) S = (S1,S2, . . . ,SK),

where

(4.18) Sk(φ)(θk) = Hk(φk)(θk)+Ak(φk)(θk)+Bk(φk)(θk)+
∑
l �=k

Ckl(φk, φl)(θk)+λ(φ).

Here λ(φ) is a number, independent of k. It is given by

(4.19) λ(φ) = − 1

K

K∑
k=1

[
Hk(φk) + Ak(φk) + Bk(φk) +

∑
l �=k

Ckl(φk, φl)

]
.

The bar over the quantity here stands for the average of the quantity over S2. With
this definition of λ,

(4.20)
K∑

k=1

Sk(φk) = 0.

The operator S maps from

(4.21) X =

{
φ = (φ1, φ2, . . . , φK) : φk ∈ W 2,p(S2), k = 1, 2, . . . ,K,

K∑
k=1

φk = 0

}

to

(4.22) Y =

{
q = (q1, q2, . . . , qK) : qk ∈ Lp(S2), k = 1, 2, . . . ,K,

K∑
k=1

qk = 0

}
.

For technical reasons p is assumed to be in the range

(4.23) 2 < p < ∞.
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This guarantees that Dφk is continuous, a fact needed in the proof of Lemma 6.1.
Equation (1.1) now becomes

(4.24) S(φ) = 0.

By defining

(4.25) C = (C1, C2, . . . , CK), where Ck(φ1, φ2, . . . , φK) =
∑
l �=k

Ckl(φk, φl),

we write

(4.26) S = H + A + B + C + λ.

In the map S the inputs φ1, φ2, . . . , φk interact only in C and λ. The other operators
can be written in the block matrix form

H =

⎡
⎢⎢⎣
H1 0 . . . 0
0 H2 . . . 0
. . . . . . . . . . . .
0 0 . . . HK

⎤
⎥⎥⎦, A =

⎡
⎢⎢⎣
A1 0 . . . 0
0 A2 . . . 0
. . . . . . . . . . . .
0 0 . . . AK

⎤
⎥⎥⎦, B =

⎡
⎢⎢⎣
B1 0 . . . 0
0 B2 . . . 0
. . . . . . . . . . . .
0 0 . . . BK

⎤
⎥⎥⎦,

(4.27)

where each entry in a matrix is an operator from W 2,p(S2) to Lp(S2). The scalar
operator λ gives the projection −(λ(φ), λ(φ), . . . , λ(φ)) of H(φ) +A(φ) +B(φ) + C(φ)
to the one-dimensional space spanned by (1, 1, . . . , 1).

Let us write the first Fréchet derivatives of these operators. For simplicity we
write

φk,i =
∂φk

∂θk,i
, φk,ij =

∂2φk

∂θk,ij
, uk,i =

∂uk

∂θk,i
, uk,ij =

∂2uk

∂θk,ij
.

Calculations show that

H′
k(φk)(uk) =

∂Hk

∂φk
uk +

2∑
i=1

∂Hk

∂φk,i
uk,i +

2∑
i,j=1

Hk

∂φk,ij
uk,ij ,(4.28)

A′
k(φk)(uk)(θk) =

γ

9

∫
S2

uk(ωk) dωk

4π|(r3
k + φk(θk))1/3θk − (r3

k + φk(ωk))1/3ωk|

− γuk(θk)

9(r3
k + φk(θk))2/3

∫
Ẽφk

((r3
k + φk(θk))

1/3θk − y) · θk
4π|(r3

k + φk(θk))1/3θk − y|3 dy.(4.29)

B′
k(φk)(uk)(θk)

=
γ

9

∫
S2

uk(ωk)R(ξk + (r3
k + φk(θk))

1/3θk, ξk + (r3
k + φk(ωk))

1/3ωk) dωk

+
γuk(θk)

9(r3
k + φk(θk))2/3

∫
Eφk

∇R(ξk + (r3
k + φk(θk))

1/3θk, y) · θk dy.(4.30)

C′
kl(φk, φl)(uk, ul)(θk)

=
γ

9

∫
S2

ul(ωl)G(ξk + (r3
k + φk(θk))

1/3θk, ξl + (r3
l + φl(ωl))

1/3ωl) dωl

+
γuk(θk)

9(r3
k + φk(θk))2/3

∫
Eφl

∇G(ξk + (r3
k + φk(θk))

1/3θk, y) · θk dy.(4.31)
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In A′
k, Ẽφk

= Eφk
− ξk is a shift of Eφk

. The center of Ẽφk
is 0. The derivative

(4.32) λ′(φ1, φ2, . . . , φK)(u1, u2, . . . , uK)

is so chosen that

(4.33)

K∑
k=1

S ′
k(u) = 0.

5. A linear operator. Let L be the linearized operator of S at φ = 0, i.e.,

(5.1) L = S ′(0).

Going back to (4.28), (4.29), (4.30), and (4.31) we find that

H′
k(0)(uk) = − 1

9r4
k

[
1

sin2 θk,2

∂2uk

∂θ2
k,1

+
∂2uk

∂θ2
k,2

+ cot θk,2
∂uk

∂θk,2

]
− 2

9r4
k

u,

A′
k(0)(uk)(θk) =

γ

9rk

∫
S2

uk(ωk) dωk

4π|θk − ωk|
− γuk(θk)

27rk
,

B′
k(0)(uk)(θk) =

γ

9

∫
S2

uk(ωk)R(ξk + rkθk, ξk + rkωk) dωk

+
γuk(θk)

9r2
k

∫
Bk

∇R(ξk + rkθk, y) · θk dy,

C′
kl(0, 0)(uk, ul)(θk) =

γ

9

∫
S2

ul(ωl)G(ξk + rkθk, ξl + rlωl) dωl

+
γuk(θk)

9r2
k

∫
Bl

∇G(ξk + rkθk, y) · θk dy.

The derivation of A′
k(0) is explained in more detail in Appendix A.

Let us separate L to a dominant part L1 and a minor part L2. We define L1,k,
the kth component of L1, to be

L1,k(u)(θk) = H′
k(0)(uk)(θk) + A′

k(0)(uk)(θk) + l1(u).

The real valued linear operator l1 is independent of k. It is so chosen that L1 maps
from X to Y. The rest of L is denoted by L2.

We are more interested in the operators ΠL and ΠL1, where Π is the orthogonal
projection operator from Y to

(5.2) Y∗ = {q = (q1, . . . , qK) ∈ Y : qk ⊥ H1, qk ⊥ 1, k = 1, . . . ,K}.

Here H1 is the space of spherical harmonics of degree 1. See, for instance, [10] for
more on spherical harmonics. The operator ΠL is defined on

(5.3) X∗ = {φ = (φ1, . . . , φK) ∈ X : φk ⊥ H1, φk ⊥ 1, k = 1, . . . ,K}.

We use the same Π to denote the orthogonal projection from

(5.4) L2(S2) to {qk ∈ L2(S2) : qk ⊥ H1, qk ⊥ 1}.
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Lemma 5.1. Consider ΠL1 as an operator from X∗ to Y∗. The eigenvalues of
ΠL1 are

(5.5) λk,n =
(n− 1)(n + 2)

9r4
k

− γ

9rk

[
2(n− 1)

3(2n + 1)

]
, k = 1, 2, . . . ,K, n = 2, 3, 4, . . .

whose multiplicity is 2n + 1. The corresponding eigenvectors are the spherical har-
monics of degree n; i.e., Hn is the eigenspace associated with λk,n.

Proof. In X∗, L1 is simplified to

L1,k(u) = − 1

9r4
k

[
1

sin2 θk,2

∂2uk

∂θ2
k,1

+
∂2uk

∂θ2
k,2

+ cot θk,2
∂uk

∂θk,2

]
− 2uk

9r4
k

+
γ

9rk

∫
S2

uk(ωk) dωk

4π|θk − ωk|
− γuk(θk)

27rk
,

for each k. This is a diagonalized operator. Note that in X∗, ΠL1 = L1. To find the
spectrum of L1 in X∗ we consider the effect of L1 on the spherical harmonics h ∈ Hn

of degree n. Since

(5.6)
1

sin2 θk,2

∂2

∂θ2
k,1

+
∂2

∂θ2
k,2

+ cot θ2
∂

∂θk,2
:= ΔS2

is the Laplacian–Beltrami operator on the unit sphere,

(5.7) −
[

1

sin2 θk,2

∂2h

∂θ2
k,1

+
∂2h

∂θ2
k,2

+ cot θ2
∂h

∂θk,2

]
= n(n + 1)h.

In Appendix B we find that

(5.8)

∫
S2

h(ω) dω

4π|θ − ω| =
h(θ)

2n + 1
.

Following (5.7) and (5.8) one deduces that

(5.9) L1,k(h) =

[
n(n + 1) − 2

9r4
k

+
γ

9rk

(
1

2n + 1
− 1

3

)]
h.

This proves the lemma.

The second part of L is minor.

Lemma 5.2. There exists C > 0 independent of ξ, r, ρ, and γ such that

‖L2(u)‖Lp ≤ C

ρ2
‖u‖Lp

for all u ∈ Y∗. A similar estimate holds if the two p’s above are replaced by 2.
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Proof. Let L2,k be the kth component of L2. Then

L2,k(u)(θk) =
γ

9

∫
S2

uk(ωk)(R(ξk + rkθk, ξk + rkωk) −R(ξk, ξk)) dωk

+
γuk(θk)

9r2
k

∫
Bk

∇R(ξk + rkθk, y) · θk dy

+
∑
l �=k

γ

9

∫
S2

ul(ωl)(G(ξk + rkθk, ξl + rlωl) −G(ξk, ξl)) dωl

+
∑
l �=k

γuk(θk)

9r2
k

∫
Bl

∇G(ξk + rkθk, y) · θk dy

+ l2(u),

where l2(u) is real valued and independent of k. It is included so that L2(u) is in Y.
Because

R(ξk + rkθk, ξk + rkωk) −R(ξk, ξk) = O(ρ),

G(ξk + rkθk, ξl + rlωl) −G(ξk, ξl) = O(ρ),

we obtain that∥∥∥∥γ9
∫
S2

uk(ωk)(R(ξk + rkθk, ξk + rkωk) −R(ξk, ξk)) dωk

∥∥∥∥
Lp

≤ Cγρ‖u‖Lp∥∥∥∥γ9
∫
S2

ul(ωl)(G(ξk + rkθk, ξl + rlωl) −G(ξk, ξl)) dωl

∥∥∥∥
Lp

≤ Cγρ‖uk‖Lp .

Since the volume of Bk is
4πr3

k

3 ,∥∥∥∥γuk(θk)

9r2
k

∫
Bk

∇R(ξk + rkθk, y) · θk dy
∥∥∥∥
Lp

≤ Cγρ‖uk‖Lp

∥∥∥∥γuk(θk)

9r3
k

∫
Bl

∇G(ξk + rkθk, y) · θk dy
∥∥∥∥
Lp

≤ Cγρ‖uk‖Lp .

The condition

K∑
k=1

L2,k(u)(θk) = 0

implies that

|l2(u)| ≤ Cγρ‖u‖Lp .

The lemma then follows, with the help of (2.10).
Lemma 5.3.

1. For u ∈ X∗

‖u‖W 2.p ≤ Cρ4‖ΠLu‖Lp .

2. The operator ΠL is invertible from X∗ to Y∗.
3. If (2.8) holds,

‖u‖2
W 1,2 ≤ Cρ4〈ΠLu, u〉.
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Proof. From Lemma 5.1 we have

|λk,n|
n2

=
n− 1

9r4
kn

∣∣∣∣n + 2

n
− 2γr3

k

3(2n + 1)n

∣∣∣∣ > n− 1

18r4
kn

∣∣∣∣n + 2

n
− 2γρ3

3(2n + 1)n

∣∣∣∣
if δ2 in the definition (3.1) of U2 is small enough. Then (2.6) implies that

|λk,n|
n2

>
(n− 1)

18r4
kn

2εn

3(2n + 1)
≥ C

ρ4
, n = 2, 3, . . . .

If we expand uk by spherical harmonics

uk =

∞∑
n=2

2n+1∑
l=1

cn,lhn,l,

where hn,l, l = 1, . . . , 2n + 1, form an orthonormal basis in Hn, then

−ΔS2uk =

∞∑
n=2

2n+1∑
l=1

n(n + 1)cn,lhn,l, L1,kuk =

∞∑
n=2

2n+1∑
l=1

λk,ncn,lhn,l.

Our estimate on |λk,n| shows that

‖ΔS2uk‖2
L2 =

∞∑
n=2

2n+1∑
l=1

n2(n + 1)2c2n,l ≤ Cρ8
∞∑

n=2

2n+1∑
l=1

λ2
k,nc

2
n,l = Cρ8‖L1,kuk‖2

L2 .

The standard elliptic theory implies that

(5.10) ‖u‖W 2,2 ≤ C‖ΔS2u‖L2 ≤ Cρ4‖ΠL1(u)‖L2 .

To prove part 1 of Lemma 5.3, we divide ΠL1 into

(5.11) ΠL1,k = − 1

9r4
k

ΔS2 + Mk,

where ΔS2 is defined in (5.6), and M = (M1,M2, . . . ,MK) is defined by (5.11). The
standard elliptic estimate asserts that

‖uk‖W 2,p ≤ C‖ΔS2uk‖Lp ,

which by (5.11) is turned to

‖uk‖W 2,p ≤ C‖9r4
kMku− 9r4

kΠL1,ku‖Lp

≤ Cρ4(‖Mku‖Lp + ‖ΠL1,ku‖Lp).

One observes that

‖Mu‖Lp ≤ C

ρ4
‖u‖Lp ≤ C

ρ4
‖u‖W 2,2 ,

where the last inequality comes from the Sobolev embedding W 2,2(S2) → W 1,p(S2) ⊂
Lp(S2) for any p ≥ 1. Hence when p > 2, by (5.10) we deduce that

‖uk‖W 2,p ≤ Cρ4(ρ−4‖u‖W 2,2 + ‖ΠL1,ku‖Lp)

≤ Cρ4(‖ΠL1,ku‖L2 + ‖ΠL1,ku‖Lp)

≤ Cρ4‖ΠL1,ku‖Lp .
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Lemma 5.2 implies that

‖ΠLu‖Lp ≥ ‖ΠL1u‖Lp − ‖ΠL2u‖Lp ≥ C

ρ4
‖u‖W 2,p − C

ρ2
‖u‖Lp ≥ C

ρ4
‖u‖W 2,p

for small ρ. This proves part 1 of Lemma 5.3.
Part 2 of Lemma 5.3 follows from the Fredholm alternative.
When (2.8) holds,

λk,n

n2
=

n− 1

9r4
kn

(
n + 2

n
− 2γr3

k

3(2n + 1)n

)
>

n− 1

18r4
kn

2εn

3(2n + 1)
≥ C

ρ4
, n = 2, 3, . . . ,

if δ2 in (3.1) is small. This implies that, with the help of expansion by spherical
harmonics,

〈ΠL1,k(uk), uk〉 =

∞∑
n=2

2n+1∑
l=1

λk,nc
2
n,l ≥ C

ρ4

∞∑
n=2

2n+1∑
l=1

n(n + 1)c2n,l

=
C

ρ4
〈−ΔS2uk, uk〉 =

C

ρ4
〈∇uk,∇uk〉 ≥ C

ρ4
‖u‖2

W 1,2 .

Using the estimate of Lemma 5.2 with p replaced by 2, we find that

〈ΠL(u), u〉 = 〈ΠL1(u), u〉 + 〈ΠL2(u), u〉 ≥ C

ρ4
‖u‖2

W 1,2 −
C

ρ2
‖u‖2

L2 ≥ C

ρ4
‖u‖2

W 1,2 .

This proves part 3 of Lemma 5.3.

6. The second Fréchet derivative.

Lemma 6.1. Suppose that ‖φ‖W 2,p ≤ cρ3, where c is sufficiently small. The
following estimates hold:

1. ‖H′′
k(φk)(uk, vk)‖Lp ≤ C

ρ7
‖uk‖W 2,p‖vk‖W 2,p .

2. ‖A′′
k(φk)(uk, vk)‖Lp ≤ C

ρ7
‖uk‖W 1,p‖vk‖W 1,p .

3. ‖B′′
k(φk)(uk, vk)‖Lp ≤ C

ρ5
‖uk‖W 1,p‖vk‖W 1,p .

4. ‖C′′
kl(φk, φl)(uk, ul)(vk, vl)‖Lp ≤ C

ρ5
(‖uk‖W 1,p+‖ul‖W 1,p)(‖vk‖W 1,p+‖vl‖W 1,p).

5. |λ′′(φ)(u, v)| ≤ C

ρ7
‖u‖W 2,p‖v‖W 2,p .

Proof. Note that by taking c small, we keep r3
k + φk positive, so ∂Eφk

is a
perturbed sphere.

The mean curvature operator Hk is elliptic and quasilinear. Its second Fréchet
derivative is calculated from (4.28):

H′′
k(φk, Dφk, D

2φk)(uk, vk)

=
∂2Hk

∂φ2
k

ukvk +

2∑
i=1

∂2Hk

∂φk∂φk,i
(ukvk,i + uk,ivk) +

2∑
i,j=1

∂2Hk

∂φk,i∂φk,j
(uk,ivk,j + uk,jvk,i)

+

2∑
l,m=1

∂2Hk

∂φk∂φk,lm
(ukvk,lm + uk,lmvk) +

2∑
i,l,m=1

∂2Hk

∂φk,i∂φk,lm
(uk,ivk,lm + uk,lmvk,i).
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It is important to note that because Hk is quasilinear, i.e., it is linear in D2φk, the term

2∑
i,j,l,m=1

∂2Hk

∂φk,ij∂φk,lm
(uk,ijvk,lm + uk,lmvk,ij)

is 0 and hence absent in H′′
k . The Sobolev embedding W 1,p → L∞ and ‖φk‖W 2,p ≤ cρ3

for a small c implies that |φk| ≤ Cρ3 and |Dφk| ≤ Cρ3. From the definition (4.12) of
Hk we have the pointwise estimate

|H′′
k(φk, Dφk, D

2φk)(uk, vk)|

≤ C

ρ7

(∣∣∣∣D2φk

r3
k

∣∣∣∣ |uk| |vk| +
∣∣∣∣D2φk

r3
k

∣∣∣∣ |uk| |Dvk| +
∣∣∣∣D2φk

r3
k

∣∣∣∣ |Duk| |vk|

+

∣∣∣∣D2φk

r3
k

∣∣∣∣ |Duk| |Dvk| + |uk| |D2vk| + |D2uk| |vk| + |Duk| |D2vk| + |D2uk| |Dvk|
)
,

when θk is some distance away from the two poles (where θk,2 = 0 or π) of S2. Near
the two poles one can use a different parametrization of S2 so that the same pointwise
estimate holds. The same Sobolev embedding implies that

(6.1) ‖H′′
k(φ)(uk, vk)‖Lp ≤ C

ρ7
‖uk‖W 2,p‖vk‖W 2,p .

This proves part 1 of Lemma 6.1.

We now turn to part 2 of Lemma 6.1. In our estimation of A′′
k and B′′

k we drop
the subscript k in most quantities. The second Fréchet derivative of Ak is calculated
from (4.29):
(6.2)
A′′

k(φ)(u, v) = A1(φ)(u, v) + A2(φ)(u, v) + A3(φ)(u, v) + A4(φ)(u, v) + A5(φ)(u, v),

where

A1(φ)(u, v) = − γv(θ)θ

108π(r3 + φ(θ))2/3
·
∫
S2

K(θ, ω)u(ω) dω,

A2(φ)(u, v) = − γu(θ)θ

108π(r3 + φ(θ))2/3
·
∫
S2

K(θ, ω)v(ω) dω,

A3(φ)(u, v) =
γ

108π

∫
S2

K(θ, ω) · ω u(ω)v(ω)

(r3 + φ(ω))2/3
dω,

A4(φ)(u, v) = − γu(θ)v(θ)

108π(r3 + φ(θ))4/3

×
∫
Ẽφk

|(r3 + φ(θ))1/3θ − y|2 − 3((r3 + φ(θ))1/3 − θ · y)2
|(r3 + φ(θ))1/3θ − y|5 dy,

A5(φ)(u, v) =
2γu(θ)v(θ)

108π(r3 + φ(θ))5/3

∫
Ẽφk

((r3 + φ(θ))1/3θ − y) · θ
|(r3 + φ(θ))1/3θ − y|3 dy.

Recall that Ẽφk
in A4 and A5 is Eφk

− ξk. The kernel K is

(6.3) K(θ, ω) =
(r3 + φ(θ))1/3θ − (r3 + φ(ω))1/3ω

|(r3 + φ(θ))1/3θ − (r3 + φ(ω))1/3ω|3 .
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Here we encounter a singular integral operator

(6.4) K(u)(θ) =

∫
S2

K(θ, ω)u(ω) dω.

A variant of the Calderon–Zygmund estimate [32, Theorem 1] is applicable to this
operator:

‖K(u)‖q ≤ C

ρ2
‖u‖Lq

for any q ∈ (1,∞). In [32] the kernel takes the form K(x − y). To meet this re-
quirement, we can transform (6.4) to an integral on the perturbed sphere ∂Eφk

, then
K(θ, ω) becomes x−y

|x−y|3 , where x, y ∈ ∂Eφk
.

For ‖φ‖W 2,p ≤ cρ3 with a small c, we consider

‖A′′
k(φ)(u, v)‖Lp ≤

5∑
i=1

‖Ai(φ)(u, v)‖Lp .

For sufficiently large q

‖A1(φ)(u, v)‖Lp ≤ C

ρ7
‖vk‖Lq‖K(uk)‖Lq ≤ C

ρ7
‖vk‖Lq‖uk‖Lq ≤ C

ρ7
‖uk‖W 1,p‖vk‖W 1,p .

Similarly

‖A2(φ)(u, v)‖Lp ≤ C

ρ7
‖u‖W 1,p‖vk‖W 1,p .

Regarding A3 we have, using the Calderon–Zygmund estimate in Lp and the Sobolev
embedding theory,

‖A3(φ)(u, v)‖Lp ≤ C

ρ7
‖uv‖Lp ≤ C

ρ7
‖u‖W 1,p‖v‖W 1,p .

For A4, the integral∫
Ẽφk

|(r3 + φ(θ))1/3θ − y|2 − 3((r3 + φ(θ))1/3 − θ · y)2
|(r3 + φ(θ))1/3θ − y|5 dy

is a convergent improper integral defined by its principal part. It is of order 1 and
uniformly bounded with respect to θ. In the case of φ equal to 0, it may be explicitly
computed. (See Appendix C.) Therefore

‖A4(φ)(u, v)‖Lp ≤ C

ρ7
‖uv‖Lp ≤ C

ρ7
‖u‖W 1,p‖v‖W 1,p .

For A5, because of the mild singularity, we easily find that

‖A5(φ)(u, v)‖Lp ≤ C

ρ7
‖u‖W 1,p‖v‖W 1,p .

Now we have

‖A′′
k(φ)(uk, vk)‖Lp ≤ C

ρ7
‖uk‖W 1,p‖vk‖W 1,p .
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This proves part 2 of Lemma 6.1.
The kernel R in Bk is a smooth function. Calculations from (4.30) show that

B′′
k(φ)(u, v)(θ)

=
γv(θ)

27(r3 + φ(θ))2/3

∫
S2

u(ω)D1R(ξ + (r3 + φ(θ))1/3θ, ξ + (r3 + φ(ω))1/3ω) · θ dω

γu(θ)

27(r3 + φ(θ))2/3

∫
S2

v(ω)D1R(ξ + (r3 + φ(θ))1/3θ, ξ + (r3 + φ(ω))1/3ω) · θ dω

+
γ

27

∫
S2

u(ω)v(ω)

(r3 + φ(ω))2/3
D2R(ξ + (r3 + φ(θ))1/3θ, ξ + (r3 + φ(ω))1/3ω) · θ dω

+
γu(θ)v(θ)

27(r3 + φ(θ))4/3

∫
Eφk

D2
1R(ξ + (r3 + φ(θ))1/3θ, y)θ · θ dy

− 2γu(θ)v(θ)

27(r3 + φ(θ))5/3

∫
Eφk

D1R(ξ + (r3 + φ(θ))1/3θ, y) · θ dy,

where D1 and D2 refer to the derivatives of R with respect to its first and second
arguments, respectively. D2

1R is the second derivative matrix of R with respect to the
first argument of R. Part 3 of Lemma 6.1 is now proved easily.

The function G is also smooth in C. We restore subscripts in the rest of this
section. Similar to B′′

k , we find from (4.31) that

C′′
kl(φk, φl)(uk, ul)(vk, vl)(θk)

=
γvk(θk)

27(r3
k + φk(θk))2/3

∫
S2

ul(ωl)D1G(ξk + (r3
k + φk(θk))

1/3θk, ξl

+ (r3
l + φl(ωl))

1/3ωl) · θk dωl

+
γuk(θk)

27(r3
k + φk(θk))2/3

∫
S2

vl(ωl)D1G(ξk + (r3
k + φk(θk))

1/3θk, ξl

+ (r3
l + φl(ωl))

1/3ωl) · θk dωl

+
γ

27

∫
S2

ul(ωl)vl(ωl)

(r3
l + φl(ωl))2/3

D2G(ξk + (r3
k + φk(θk))

1/3θk, ξl

+ (r3
l + φl(ωl))

1/3ωl) · ωl dωl

+
γuk(θk)vk(θk)

27(r3
k + φk(θk))4/3

∫
Eφl

D2
1G(ξk + (r3

k + φk(θk))
1/3θk, y)θk · θk dy

− 2γuk(θk)vk(θk)

27(r3
k + φk(θk))5/2

∫
Eφl

D1G(ξk + (r3
k + φk(θk))

1/3θk, y) · θk dy.

Part 4 of Lemma 6.1 then follows.
Part 5 of Lemma 6.1 follows from parts 1–4 and the fact that

0 =
∑
k

S′′
k (φ)(u, v)

=
∑
k

H′′
k(φk)(uk, vk) +

∑
k

A′′
k(φk)(uk, vk) +

∑
k

B′′
k(φk)(uk, vk)

+
∑
k

C′′
k (φ)(u) + Kλ′′(φ)(u, v).
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7. Reduction to 4K−1 dimensions. We view S as a nonlinear operator from
X to Y. In this section it will be proved that, for each (ξ, r) ∈ U , a ϕ(·, ξ, r) exists
such that ϕ(·, ξ, r) ∈ X∗ and
(7.1)
Sk(ϕ)(θk) = Ak,1 cos θk,1 sin θk,2+Ak,2 sin θk sin θk,2+Ak,3 cos θk,2+Ak, k = 1, 2, . . . ,K

for some numbers Ak,1, Ak,2, Ak,3, Ak. Note that ϕ is sought in X∗. Each φ ∈ X∗
satisfies ∫

S2

φk(θk) dθk = 0, k = 1, 2, . . . ,K,(7.2) ∫
S2

φk(θk) cos θk,1 sin θk,2 dθk = 0, k = 1, 2, . . . ,K,(7.3) ∫
S2

φk(θk) sin θk,1 sin θk,2 dθk = 0, k = 1, 2, . . . ,K,(7.4) ∫
S2

φk(θk) cos θk,2 dθk = 0, k = 1, 2, . . . ,K.(7.5)

The condition (7.2) means that φk ⊥ H0, the space of spherical harmonics of degree
0, and the conditions (7.3–7.5) state that φk ⊥ H1.

Write (7.1) as

(7.6) ΠS(ϕ) = 0,

where Π is the orthogonal projection operator from Y to Y∗. In the next section we
will find a particular (ξ, r), say (ζ, s) at which Ak,1 = Ak,2 = Ak,3 = Ak = 0, i.e.,
S(ϕ(·, ζ, s)) = 0. This means that by finding ϕ we reduce the original problem (1.1)
to a problem of finding a (ζ, s) in a 4K − 1 dimensional set U .

Recall L, the linearized operator of S at φ = 0. Expand S(φ) as

(7.7) S(φ) = S(0) + L(φ) + N (φ),

where N is a higher order term defined by (7.7). Turn (7.6) to a fixed point form

(7.8) φ = −(ΠL)−1(ΠS(0) + ΠN (φ)).

Lemma 7.1. There exists ϕ = ϕ(θ, ξ, r) such that for every (ξ, r) ∈ U , ϕ(·, ξ, r) ∈
X∗ solves (7.8) and ‖ϕ‖W 2,p ≤ cρ5, where c is a sufficiently large constant independent
of ξ, r, ρ, and γ.

Proof. To use the contraction mapping principle, let

(7.9) T (φ) = −(ΠL)−1(ΠS(0) + ΠN (φ))

be an operator defined on

(7.10) D(T ) = {φ ∈ X∗ : ‖φ‖W 2,p ≤ cρ5},

where the constant c is sufficiently large and will be determined shortly.
Lemma 3.1 shows that

Sk(0)(θk) − λ(0) =
1

3rk
+

γ

3

⎡
⎣r2

k

3
+

4πr3
k

3
R(ξk, ξk) +

∑
l �=k

4πr3
l

3
G(ξk, ξl)

⎤
⎦+ O(ρ).
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Each Sk(0) is sum of a number independent of θk and a quantity of order O(ρ). After
we apply the projection operator Π the number vanishes and

(7.11) ‖ΠS(0)‖Lp = O(ρ).

By Lemma 5.3 we find

(7.12) ‖(ΠL)−1ΠS(0)‖W 2,p ≤ Cρ5.

For N (φ) we decompose it into three parts. The first is N1 whose kth component is

(7.13) N1,k(φk) = Hk(φk) −Hk(0) −H′
k(0)(φk)

which is Hk(φ) minus its linear approximation at 0. Lemma 6.1, part 1, shows that

(7.14) ‖N1(φ)‖Lp ≤ C

ρ7
‖φ‖2

W 2,p .

The second part of N , denoted by N2, is A(φ)+B(φ)+ C(φ) minus its linear approx-
imation, i.e.,

(7.15) N2(φ) = A(φ)−A(0)−A′(0)(φ)+B(φ)−B(0)−B′(0)(φ)+C(φ)−C(0)−C′(0)(φ).

Lemma 6.1, parts 2, 3, and 4, implies that

(7.16) ‖N2(φ)‖Lp ≤ C

ρ7
‖φ‖2

W 1,p .

The third part of N , which is denoted by N3, merely gives a constant so that∑
k

Nk(φ) =
∑
k

N1,k(φ) +
∑
k

N2,k(φ) + KN3(φ) = 0.

It follows that

(7.17) |N3(φ)| ≤ C

ρ7
‖φ‖2

W 2,p .

Therefore we deduce, from (7.14), (7.16), (7.17), and with the help of Lemma 5.3, that

‖N (φ)‖Lp ≤ C

ρ7
‖φ‖2

W 2,p ,(7.18)

‖(ΠL)−1ΠN (φ)‖W 2,p ≤ C

ρ3
‖φ‖2

W 2,p .(7.19)

Using (2.10), (7.12), (7.10), and (7.19) we find

‖T (φ)‖W 2,p ≤ Cρ5 + Cc2ρ7 ≤ cρ5

if c is sufficiently large and ρ sufficiently small. Therefore T is a map from D(T ) into
itself.

Next we show that T is a contraction. For N1 we note that

N1(φ1) −N1(φ2) = H(φ1) −H(φ2) −H′(0)(φ1 − φ2).
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Therefore using Lemma 6.1, part 1, we obtain

‖H(φ1) −H(φ2) −H′(0)(φ1 − φ2)‖Lp

≤ ‖H′(φ2)(φ1 − φ2) −H′(0)(φ1 − φ2)‖Lp +
C

ρ7
‖φ1 − φ2‖2

W 2,p

≤ C

ρ7
‖φ2‖W 2,p‖φ1 − φ2‖W 2,p +

C

ρ7
‖φ1 − φ2‖2

W 2,p

≤ C

ρ7
(‖φ1‖W 2,p + ‖φ2‖W 2,p)‖φ1 − φ2‖W 2,p .

This shows that

(7.20) ‖N1(φ1) −N2(φ2)‖Lp ≤ C

ρ2
‖φ1 − φ2‖W 2,p .

For N2 we note that

N2(φ1) −N2(φ2) = A(φ1) −A(φ2) −A′(0)(φ1 − φ2) + B(φ1) − B(φ2)

−B′(0)(φ1 − φ2) + C(φ1) − C(φ2) − C′(0)(φ1 − φ2).(7.21)

Therefore using Lemma 6.1, part 2, we obtain

‖A(φ1) −A(φ2) −A′(0)(φ1 − φ2)‖Lp

≤ ‖A′(φ2)(φ1 − φ2) −A′(0)(φ1 − φ2)‖Lp +
C

ρ7
‖φ1 − φ2‖2

W 1,p

≤ C

ρ7
‖φ2‖W 1,p‖φ1 − φ2‖W 1,p +

C

ρ7
‖φ1 − φ2‖2

W 1,p

≤ C

ρ7
(‖φ1‖W 1,p + ‖φ2‖W 1,p)‖φ1 − φ2‖W 1,p .

Similarly using Lemma 6.1, parts 3 and 4, we deduce

‖B(φ1) − B(φ2) − B′(0)(φ1 − φ2)‖Lp ≤ C

ρ5
(‖φ1‖W 1,p + ‖φ2‖W 1,p)‖φ1 − φ2‖W 1,p

‖C(φ1) − C(φ2) − C′(0)(φ1 − φ2)‖Lp ≤ C

ρ5
(‖φ1‖W 1,p + ‖φ2‖W 1,p)‖φ1 − φ2‖W 1,p .

From (7.21) we conclude that

‖N2(φ1) −N2(φ2)‖Lp ≤ C

ρ7
(‖φ1‖W 1,p + ‖φ2‖W 1,p)‖φ1 − φ2‖W 1,p

≤ C

ρ2
‖φ1 − φ2‖W 1,p .(7.22)

We also have

(7.23) ‖N3(φ1) −N3(φ2)‖Lp ≤ C

ρ2
‖φ1 − φ2‖W 2,p .

Hence, following (7.20), (7.22), and (7.23), we find that

‖T (φ1) − T (φ2)‖W 2,p

= ‖(ΠL)−1ΠN (φ1) − (ΠL)−1ΠN (φ2)‖W 2,p ≤ Cρ2‖φ1 − φ2‖W 2,p ,(7.24)

i.e., that T is a contraction map if ρ is sufficiently small. A fixed point ϕ exists.
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Since ϕ satisfies ‖φ‖W 2,p ≤ cρ5, by taking ρ small we see that r3
k + ϕk remains

positive. ∂Eϕk
is a perturbed sphere.

Denote S ′(ϕ) by L̃. We derive a lemma for L̃ similar to Lemma 5.3.
Lemma 7.2. Let Π be the same projection operator from X to X∗.
1. There exists C > 0 such that for all u ∈ X∗

‖u‖W 2,p ≤ Cρ4‖ΠL̃(u)‖Lp .

2. If (2.8) holds, then

‖u‖2
W 1,2 ≤ Cρ4〈ΠL̃(u), u〉.

Proof. By Lemma 5.3, part 1, Lemma 6.1, and the fact ‖ϕ‖W 2,p = O(ρ5), we
deduce that

‖ΠL̃(u)‖Lp ≥ ‖ΠL(u)‖Lp − ‖Π(L̃ − L)(u)‖Lp

≥ C

ρ4
‖u‖W 2,p − C

ρ7
‖ϕ‖W 2,p‖u‖W 2,p

≥ C

ρ4
‖u‖W 2,p − C

ρ2
‖u‖W 2,p ≥ C

ρ4
‖u‖W 2,p

when ρ is small. This proves part 1 of Lemma 7.2.
Write L̃ = H′(ϕ) + A′(ϕ) + B′(ϕ) + C′(ϕ) + λ′(ϕ). Then, according to (4.7),

〈H′
k(ϕk)(uk), uk〉 =

∫
S2

⎡
⎣∂2Lk

∂φ2
k

u2
k + 2

2∑
i=1

∂2Lk

∂φk∂φk,i
ukuk,i +

2∑
i,j=1

∂2Lk

∂φk,i∂φk,j
uk,iuk,j

⎤
⎦dθk,

and a similar expression holds if we replace ϕk and ϕk,i by 0 in the last formula.
With ‖ϕ‖W 2,p = O(ρ5), calculations show that

|〈(H′
k(ϕk) −H′

k(0))uk, uk〉|

≤
∣∣∣∣
∫
S2

(
∂2Lk(ϕk)

∂φ2
k

− ∂2Lk(0)

∂φ2
k

)
u2
k dθk

∣∣∣∣
+ 2

2∑
i=1

∣∣∣∣
∫
S2

(
∂2Lk(ϕk)

∂φk∂φk,i
− ∂2Lk(0)

∂φk∂φk,i

)
ukuk,i dθk

∣∣∣∣
+

2∑
i,j=1

∣∣∣∣
∫
S2

(
∂2Lk(ϕk)

∂φk,i∂φk,j
− ∂2Lk(0)

∂φk,i∂φk,j

)
uk,iuk,j dθk

∣∣∣∣
≤ C

ρ2
‖u‖2

L2 +
C

ρ2
‖u‖L2‖Du‖L2 +

C

ρ2
‖Du‖2

L2 ≤ C

ρ2
‖u‖2

W 1,2 .(7.25)

Next we estimate ‖(A′
k(ϕk) − A′

k(0))uk‖L2 and revisit A′′
k . Arguing as in the

proof of Lemma 6.1, part 2, we deduce that

‖A′′
k(φ)(uk, vk)‖L2 ≤ C

ρ7
‖uk‖W 1,2‖vk‖W 1,2 .

This implies that in this lemma

‖(A′
k(ϕ) −A′

k(0))uk‖L2 ≤ C

ρ7
Cρ5‖uk‖W 1,2 ≤ C

ρ2
‖uk‖W 1,2 .
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Simpler arguments show that

‖(B′
k(ϕ) − B′

k(0))uk‖L2 ≤ C

ρ2
‖uk‖W 1,2 , ‖(C′(ϕ) − C′(0))u‖L2 ≤ C

ρ2
‖u‖W 1,2 .

We obtain that

(7.26) ‖(A′(ϕ) + B′(ϕ) + C′(ϕ) −A′(0) − B′(0) − C′(0))u‖L2 ≤ C

ρ2
‖u‖W 1,2 .

If (2.8) holds, we combine Lemma 5.3, part 3, (7.25), and (7.26) to deduce that

〈ΠL̃(u), u〉 = 〈ΠL(u), u〉 + 〈Π(L̃ − L)u, u〉 ≥ C

ρ4
‖u‖2

W 1,2 −
C

ρ2
‖u‖2

W 1,2 ≥ C

ρ4
‖u‖2

W 1,2 ,

proving the second part.
One consequence of Lemma 7.2, part 1, is an estimate of ∂ϕ

∂ξl,j
.

Lemma 7.3. The fixed point ϕ satisfies
∥∥ ∂ϕ
∂ξl,j

∥∥
W 2,p = O(ρ4), l = 1, 2, . . . ,K,

j = 1, 2, 3.
Proof. We prove this lemma by the implicit function theorem. Fix l ∈ {1,

2, . . . ,K} and j ∈ {1, 2, 3}. Differentiating ΠS(ϕ) with respect to ξl,j we find that,
for k = 1, 2, . . . ,K, if k = l, then

∂ΠSl(ϕ)

∂ξl,j
= ΠL̃l

(
∂ϕ

∂ξl,j

)
+ Π

γ

3

×
∫
Eϕl

[
∂R(ξl + (r3

l + ϕl(θl))
1/3θl, y)

∂xj
+

∂R(ξl + (r3
l + ϕl(θl))

1/3θl, y)

∂yj

]
dy

+
∑
m�=l

Π
γ

3

∫
Eϕm

∂G(ξl + (r3
l + ϕl(θl))

1/3θl, y)

∂xj
dy,

and if k �= l,

∂ΠSk(ϕ)

∂ξl,j
= ΠL̃k

(
∂ϕ

∂ξl,j

)
+ Π

γ

3

∫
Eϕl

∂G(ξk + (r3
k + ϕk(θk))

1/3θk, y)

∂yj
dy.

Here R = R(x, y) and G = G(x, y). It is clear that∥∥∥∥∥γ3
∫
Eϕl

[
∂R(ξl + (r3

l + ϕl(θl))
1/3θl, y)

∂xj

+
∂R(ξl + (r3

l + ϕl(θl))
1/3θl, y)

∂yj

]
dy

∥∥∥∥
Lp

= O(γρ3),

∥∥∥∥∥γ3
∫
Eϕm

∂G(ξl + (r3
l + ϕl(θl))

1/3θl, y)

∂xj
dy

∥∥∥∥∥
Lp

= O(γρ3),

∥∥∥∥∥γ3
∫
Eϕl

∂G(ξk + (r3
k + ϕk(θk))

1/3θk, y)

∂yj
dy

∥∥∥∥∥
Lp

= O(γρ3).
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Therefore

∂ΠS(ϕ)

∂ξl,j
= ΠL̃

(
∂ϕ

∂ξl,j

)
+ W,

where ‖W‖Lp = O(γρ3) = O(1).
On the other hand

∂ΠS(ϕ)

∂ξl,j
= 0,

since ΠS(ϕ) = 0.
By Lemma 7.2 we deduce that∥∥∥∥ ∂ϕ

∂ξl,j

∥∥∥∥
W 2,p

≤ Cρ4O(1) ≤ Cρ4.

8. Solving the reduced problem. We now turn to solve S(φ) = 0.
Lemma 8.1. J(Eϕ) = J(B) + O(ρ6). More explicitly

J(Eϕ) =

K∑
k=1

4πr2
k +

γ

2

{ K∑
k=1

[
8πr5

k

15
+

(
4π

3

)2

r6
kR(ξk, ξk)

]

+

K∑
k=1

K∑
l=1,l �=k

(
4π

3

)2

r3
kr

3
l G(ξk, ξl)

}
+ O(ρ5).

Here J(Eϕ) = J(Eϕ(·,ξ,r)) can be considered as a function of (ξ, r).
Proof. Expanding J(Eϕ) yields

(8.1) J(Eϕ) = J(B) +
∑
k

∫
S2

Sk(0)ϕk dθk +
1

2

∑
k

∫
S2

Lk(ϕ)ϕk dθk + O(ρ8).

The error term O(ρ8) in (8.1) is obtained in the same way that (7.18) is derived.
On the other hand ΠS(ϕ) = 0 implies that

Π(Sk(0) + Lk(ϕ) + Nk(ϕ)) = 0,

where N is given in (7.7) and estimated in (7.18). We multiply the last equation by
ϕk and integrate to derive∫

S2

Sk(0)ϕk dθk +

∫
S2

L(ϕk)ϕk dθk = O(ρ8).

We can now rewrite (8.1) as

J(Eϕ) = J(B) +
1

2

∑
k

∫
S2

Sk(0)ϕk dθk + O(ρ8).

Note that Sk(0) is the sum of a number independent of θk and a quantity of order
ρ by Lemma 3.1. Since ϕk satisfies (7.2), the inner product of the number and ϕk is
zero, and hence ∫

S2

Sk(0)ϕk dθ = O(ρ6).
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Therefore

J(Eϕ) = J(B) + O(ρ6).

Lemma 3.2 implies that

J(Eϕ) =

K∑
k=1

4πr2
k +

γ

2

{ K∑
k=1

[
8πr5

k

15
+

(
4π

3

)2

r6
kR(ξk, ξk)

]

+

K∑
k=1

K∑
l=1,l �=k

(
4π

3

)2

r3
kr

3
l G(ξk, ξl)

+
K∑

k=1

K∑
l=1

(
4π

3

)2(
r3
kr

5
l

10|D| +
r5
kr

3
l

10|D|

)}
+ O(ρ6)

=

K∑
k=1

4πr2
k +

γ

2

{ K∑
k=1

[
8πr5

k

15
+

(
4π

3

)2

r6
kR(ξk, ξk)

]

+

K∑
k=1

K∑
l=1,l �=k

(
4π

3

)2

r3
kr

3
l G(ξk, ξl)

}
+ O(ρ5).

This proves the lemma.
Lemma 8.2. When ρ is sufficiently small, J(Eϕ(·,ξ,r)) is minimized at some

(ξ, r) = (ζ, s) ∈ U . As ρ → 0, s
ρ → (1, 1, . . . , 1), and ζ → ζ0 along a subsequence

where ζ0 ∈ U1 is a global minimum of F .
Proof. Let us rescale the problem with

R =
r

ρ
, J̃(ξ,R) =

2

γρ5
J(Eϕ(·,ξ,r)), (ξ,R) ∈ U1 × Ũ2,

where

Ũ2 =

{
(R1, R2, . . . , RK) : 1 − δ2 < Rk < 1 + δ2,

K∑
k=1

R3
k = K

}

is a scaled version of U2. Note that by (2.5) and Lemma 8.1 that

J̃(ξ,R) =
8π

γρ3

K∑
k=1

R2
k +

K∑
k=1

8πR5
k

15

+ ρ

(
4π

3

)2
⎡
⎣ K∑
k=1

(R6
kR(ξk, ξk)) +

K∑
k=1

∑
l �=k

R3
kR

3
lG(ξk, ξl)

⎤
⎦+ O(ρ3).

Again by (2.5) we may assume that along a subsequence

(8.2)
8π

γρ3
→ b0 ≤ 8π

(3 + ε)π
, as ρ → 0.

Let (ζ, S) be the global minimum of J̃ on the closure of U1 × Ũ2. Here S = s
ρ .

Let (ζ, S) → (ζ0, S0) along a subsequence as ρ tends to 0. First we claim that
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S0 = (1, 1, . . . , 1). Suppose this is false, i.e., S0 �= (1, 1, . . . , 1). Then as ρ tends to 0,

J̃(ζ, (1, . . . , 1)) − J̃(ζ, S) =
∑
k

8π

γρ3
+
∑
k

8π

15
−
∑
k

8πS2
k

γρ3
−
∑
k

8πS5
k

15
+ O(ρ)

→
∑
k

b0 +
∑
k

8π

15
−
∑
k

b0S
2
0,k −

∑
k

8πS5
0,k

15
.

Because of (8.2) and the constraint
∑

k S
3
0,k = K, it is easy to show that the last

line is negative if δ2 in (3.1) is small enough, depending on ε. For, under (8.2), the
function

x → b0x
2/3 +

8π

15
x5/3

is convex when x is near 1. The last assertion then follows from the Jensen’s inequality,
when x takes values S3

0,k. This is a contradiction to that (ζ, S) is a minimum of J̃ .

Next we claim that ζ0 minimizes F in U1. Suppose this is false. Let η be a
minimum of F in U1. Then F (η) < F (ζ0). Consider

1

ρ

(
3

4π

)2

(J̃(η, S) − J̃(ζ, S)) =

K∑
k=1

S6
kR(ηk, ηk) +

K∑
k=1

∑
l �=k

S3
kS

3
l G(ηk, ηl)

−
K∑

k=1

S6
kR(ζk, ζk) −

K∑
k=1

∑
l �=k

S3
kS

3
l G(ζk, ζl) + O(ρ2)

→ F (η) − F (ζ0) < 0, as ρ → 0,

another contradiction to that (ζ, S) minimizes J̃ . Note that (ζ, S) ∈ U1 × Ũ2 when ρ
is small, since (ζ0, S0) ∈ U1 × Ũ2.

We show that ϕ(·, ζ, s) is an exact solution of (1.1) in the next two lemmas. The
first shows that Ak = 0 in (7.1) at ξ = ζ and r = s.

Lemma 8.3. At ξ = ζ and r = s, Sk(ϕ(·, ζ, s))(θk) = Ak,1 cos θk,1 sin θk,2 +
Ak,2 sin θk,1 sin θk,2 + Ak,3 cos θk,2.

Proof. At each (ξ, r) ∈ U , let

(8.3) pk = r3
k, qk = s3

k.

Calculations show that

∂J(Eϕ)

∂pk
=

K∑
l=1

∫
S2

[Sl(ϕ) − λ(ϕ)]
∂(pl + ϕl)

∂pk
dθl

=

∫
S2

[Sk(ϕ) − λ(ϕ)]

(
1 +

∂ϕk

∂pk

)
dθk +

∑
l �=k

∫
S2

[Sl(ϕ) − λ(ϕ)]
∂ϕl

∂pk
dθl

=

∫
S2

(Ak,1 cos θk,1 sin θk,2 + Ak,2 sin θk,1 sin θk,2 + Ak,3 cos θk,2

+Ak − λ(ϕ))

(
1 +

∂ϕk

∂pk

)
dθk
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+
∑
l �=k

∫
S2

(Al,1 cos θl,1 sin θl,2 + Al,2 sin θl,1 sin θl,2 + Al,3 cos θl,2

+Al − λ(ϕ))
∂ϕl

∂pk
dθl

= 4πAk − 4πλ(ϕ).

Here we have used the facts that

∂ϕl

∂pk
⊥ cos θl,1 sin θl,2, sin θl,1 sin θl,2, cos θl,2, 1

which follow from ϕ ∈ X∗.
On the other hand at the minimum p = q and ξ = ζ with respect to p, we must

have

∂J(Eϕ)

∂pk
|ξ=ζ,p=q = μ

for all k = 1, 2, . . . ,K. Here μ is a Lagrange multiplier coming from the constraint

K∑
k=1

pk =
3a|D|

4π
.

Therefore we deduce that

Ak =
μ

4π
+ λ

which is independent of k. By (4.20) we derive that
∑K

k=1 Ak = 0, and then we
conclude that each Ak must be 0.

Next we show that Ak,1, Ak,2, and Ak,3 in (7.1) are 0 at ξ = ζ and r = s. The
proof uses a tricky reparametrization technique.

Lemma 8.4. At ξ = ζ and r = s, S(ϕ(·, ζ, s)) = 0.
Proof. To simplify notations in this proof, we do not explicitly indicate the depen-

dence of ϕ on r, i.e., we write ϕ(·, ξ) instead of ϕ(·, ξ, r). For each ξk = (ξk,1, ξk,2, ξk,3)
near ζk we reparametrize ∂DEϕk(·,ξ). Let ζk be the center of new polar coordinates,
r3
k+ψk the new radius cube, and ηk the new angle. A point on ∂DEϕk(·,ξ) is described

as ζk + (r3
k + ψk)

1/3ηk. It is related to the old polar coordinates via

(8.4) ζk + (r3
k + ψk)

1/3ηk = ξk + (r3
k + ϕk)

1/3θk.

In the new coordinates Eϕk
becomes Eψk

. It is viewed as a perturbation of the ball
centered at ζk with radius rk. The perturbation is described by ψk which is a function
of ηk and ξ.

The main effect of the new coordinates is to “freeze” the center. The center of
the new polar system is ζk which is fixed while the center of the old polar system is
ξk which varies in D.

We now consider the derivative of J(Eϕ(·,ξ)) = J(Eψ(·,ξ)) with respect to ξk. On
one hand, at ξ = ζ and r = s,

(8.5)
∂J(Eψ(·,ξ))

∂ξk,j
|ξ=ζ =

∂J(Eϕ(·,ξ))

∂ξk,j
|ξ=ζ = 0, j = 1, 2, 3,

since ζ is a minimum.
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On the other hand calculations show that

(8.6)
∂J(Eψ(·,ξ))

∂ξk,j
=

K∑
l=1

∫
S2

Sl(ψ(·, ξ))(ηl)
∂ψl

∂ξk,j
dηl.

We emphasize that (8.6) is obtained under the reparametrized coordinates, in which
the dependence of J(Eψ(·,ξ)) on ξ is reflected only in the dependence of ψ on ξ. Had
we calculated in the original coordinates, ξ would have appeared also in the nonlocal
part of J through R(ξl + · · · , ξl + · · · ) and G(ξk + · · · , ξl + · · · ). The result would
have been very different from (8.6). See the proof of Lemma 7.3 which involves
differentiation with respect to ξ in the original coordinates. In the derivation of (8.6)
we have used the fact that

∑
l

∫
S2 ψl dηl = 0 which implies that

∑
l

∫
S2

∂ψl

∂ξk,j
dηl = 0,

so that
∑

l

∫
S2 λ(ψ) ∂ψl

∂ξk,j
dηl = 0, where λ(ψ) is part of

Sl(ψ) = Hl(ψ) + Al(ψ) + Bl(ψ) + Cl(ψ) + λ(ψ),

and we can reach the right-hand side of (8.6).

The expression S(φ) is invariant under reparametrization, i.e.,

(8.7) Sl(ϕ(·, ξ))(θl) = Sl(ψ(·, ξ))(ηl).

Now we return to the original coordinate system and integrate with respect to θl in
(8.6). Then

(8.8)
∂J(Eψ(·,ξ))

∂ξk,j
=

K∑
l=1

∫
S2

Sl(ϕ(·, ξ))(θl)
∂ψl(ηl(θl, ξ), ξ)

∂ξk,j

∣∣∣∣∂(ηl,1, ηl,2)

∂(θl,1, θl,2)

∣∣∣∣ sin ηl,2
sin θl,2

dθl.

There are two cases: l = k and l �= k. We start with the first case. Recall that
ψk and ηk are defined implicitly as functions of θk and ξ by (8.4). Let us agree that
ψk = ψk(ηk, ξ) is a function of ηk and ξ. Set Ψk(θk, ξ) = ψk(ηk(θk, ξ), ξ). To simplify
notations let us set

(8.9) g = (r3
k + Ψk)

1/3, g̃ = (r3
k + ϕk)

1/3.

Implicit differentiation shows that, with the help of Lemmas 7.1 and 7.3,

(8.10)

⎡
⎢⎢⎢⎢⎢⎣

∂ηk,1

∂θk,1

∂ηk,1

∂θk,2

∂ηk,1

∂ξk,1

∂ηk,1

∂ξk,2

∂ηk,1

∂ξk,3

∂ηk,2

∂θk,1

∂ηk,2

∂θk,2

∂ηk,2

∂ξk,1

∂ηk,2

∂ξk,2

∂ηk,2

∂ξk,3

∂Ψk

∂θk,1

∂Ψk

∂θk,2

∂Ψk

∂ξk,1

∂Ψk

∂ξk,2

∂Ψk

∂ξk,3

⎤
⎥⎥⎥⎥⎥⎦ = −M−1N,
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where

M−1 =

⎡
⎢⎢⎢⎢⎢⎣

g sin ηk,1 sin ηk,2 − g cos ηk,1 cos ηk,2 − cos ηk,1 sin ηk,2

3g2

−g cos ηk,1 sin ηk,2 −g sin ηk,1 cos ηk,2 − sin ηk,1 sin ηk,2

3g2

0 g sin ηk,2 − cos ηk,2

3g2

⎤
⎥⎥⎥⎥⎥⎦

−1

=
1

sin ηk,2

⎡
⎢⎢⎢⎢⎢⎣

sin ηk,1

g − cos ηk,1

g 0

− cos ηk,1 cos ηk,2 sin ηk,2

g − sin ηk,1 cos ηk,2 sin ηk,2

g
sin2 ηk,2

g

−3g2 cos ηk,1 sin2 ηk,2 −3g2 sin ηk,1 sin2 ηk,2 −3g2 cos ηk,2 sin ηk,2

⎤
⎥⎥⎥⎥⎥⎦

and N = [Nij ] is a 3 by 5 matrix given by

N11 =
cos θk,1 sin θk,2

3g̃2

∂ϕk

∂θk,1
− g̃ sin θk,1 sin θk,2,

N12 =
cos θk,1 sin θk,2

3g̃2

∂ϕk

∂θk,2
+ g̃ cos θk,1 cos θk,2, N13 = 1 +

cos θk,1 sin θk,2
3g̃2

∂ϕk

∂ξk,1
,

N14 =
cos θk,1 sin θk,2

3g̃2

∂ϕk

∂ξk,2
, N15 =

cos θk,1 sin θk,2
3g̃2

∂ϕk

∂ξk,3

N21 =
sin θk,1 sin θk,2

3g̃2

∂ϕk

∂θk,1
+ g̃ cos θk,1 sin θk,2,

N22 =
sin θk,1 sin θk,2

3g̃2

∂ϕk

∂θk,2
+ g̃ sin θk,1 cos θk,2,

N23 =
sin θk,1 sin θk,2

3g̃2

∂ϕk

∂ξk,1
, N24 = 1 +

sin θk,1 sin θk,2
3g̃2

∂ϕk

∂ξk,2
,

N25 =
sin θk,1 sin θk,2

3g̃2

∂ϕk

∂ξk,3
, N31 =

cos θk,2
3g̃2

∂ϕk

∂θk,1
,

N32 =
cos θk,2

3g̃2

∂ϕk

∂θk,2
− g̃ sin θk,2, N33 =

cos θk,2
3g̃2

∂ϕk

∂ξk,1
,

N34 =
cos θk,2

3g̃2

∂ϕk

∂ξk,2
, N35 = 1 +

cos θk,2
3g̃2

∂ϕk

∂ξk,3
.

We write N as

sin θk,2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−g̃ sin θk,1
+O(ρ3)

g̃ cos θk,1 cos θk,2

sin θk,2

+O(ρ3)

1
sin θk,2

+O(ρ2)
O(ρ2) O(ρ2)

g̃ cos θk,1
+O(ρ3)

g̃ sin θk,1 cos θk,2

sin θk,2

+O(ρ3)
O(ρ2)

1
sin θk,2

+O(ρ2)
O(ρ2)

O(ρ3)
sin θk,2

−g̃ +
O(ρ3)
sin θk,2

O(ρ2)
sin θk,2

O(ρ2)
sin θk,2

1
sin θk,2

+
O(ρ2)
sin θk,2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.
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At ξ = ζ, we have η = θ and Ψ = ϕ. Multiplying M−1 and N we deduce that (8.10)
becomes
(8.11)⎡
⎢⎢⎢⎢⎢⎣

1+O(ρ2) O(ρ2) − sin θk,1

sin θk,2g
+O(ρ)

cos θk,1

sin θk,2g
+O(ρ) O(ρ)

O(ρ2) 1+O(ρ2)
cos θk,1 cos θk,2

g +O(ρ)
sin θk,1 cos θk,2

g +O(ρ) − sin θk,2

g +O(ρ)

O(ρ5) O(ρ5) 3g2 cos θk,1 sin θk,2+O(ρ4) 3g2 sin θk,1 sin θk,2+O(ρ4) 3g2 cos θk,2+O(ρ4)

⎤
⎥⎥⎥⎥⎥⎦

when ξ = ζ.

We have found from (8.11) that at ξ = ζ,

(8.12)

(
∂Ψk

∂ξk,1
,
∂Ψk

∂ξk,2
,
∂Ψk

∂ξk,3

)
|ξ=ζ = 3r2

kθk + O(ρ4).

To compute ∂ψk

∂ξk,j
, we invert ηk = ηk(ξ, θk) to express θk = Θk(ηk, ξ). Then

∂ψk

∂ξk,j
=

∂Ψk

∂ξk,j
+

∂Ψk

∂θk,1

∂Θk,1

∂ξk,j
+

∂Ψk

∂θk,2

∂Θk,2

∂ξk,j
.

At ξ = ζ, since, by (8.11),

(8.13)
∂Ψk

∂θk,m
|ξ=ζ = O(ρ5)

and

⎡
⎢⎣

∂Θk,1

∂ξk,1

∂Θk,1

∂ξk,2

∂Θk,1

∂ξk,3

∂Θk,2

∂ξk,1

∂Θk,2

∂ξk,2

∂Θk,2

∂ξk,3

⎤
⎥⎦
ξ=ζ

= −

⎡
⎢⎣

∂ηk,1

∂θk,1

∂ηk,1

∂θk,2

∂ηk,2

∂θk,1

∂ηk,2

∂θk,2

⎤
⎥⎦
−1 ⎡
⎢⎣

∂ηk,1

∂ξk,1

∂ηk,1

∂ξk,2

∂ηk,1

∂ξk,3

∂ηk,2

∂ξk,1

∂ηk,2

∂ξk,2

∂ηk,2

∂ξk,3

⎤
⎥⎦

=
O
(

1
ρ

)
sin θk,2

,(8.14)

we deduce that

(8.15)

(
∂ψk

∂ξk,1
,
∂ψk

∂ξk,2
,
∂ψk

∂ξk,3

)
|ξ=ζ = 3r2

kθk +
O(ρ4)

sin θk,2
(1, 1, 1).

The second case l �= k is similar, for which we omit the details of our computation.
At ξ = ζ, we have

(8.16)

(
∂ψl

∂ξk,1
,
∂ψl

∂ξk,2
,
∂ψl

∂ξk,3

)
|ξ=ζ =

O(ρ4)

sin θl,2
(1, 1, 1).
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Following (8.15), (8.16), and the fact that |∂(ηl,1,ηl,2)
∂(θl,1,θl,2)

|ξ=ζ = 1 + O(ρ2), we find

that (8.8) becomes

∂J(Eψ(·,ξ))

∂ξk,1
|ξ=ζ =

∫
S2

Sk(ϕ)

(
3r2

k cos θk,1 sin θk,2

+
O(ρ4)

sin θk,2

)
dθk +

∑
l �=k

∫
S2

Sl(ϕ)
O(ρ4)

sin θl,2
dθl,

∂J(Eψ(·,ξ))

∂ξk,2
|ξ=ζ =

∫
S2

Sk(ϕ)

(
3r2

k sin θk,1 sin θk,2

+
O(ρ4)

sin θk,2

)
dθk +

∑
l �=k

∫
S2

Sl(ϕ)
O(ρ4)

sin θl,2
dθl,

∂J(Eψ(·,ξ))

∂ξk,3
|ξ=ζ =

∫
S2

Sk(ϕ)

(
3r2

k cos θk,2 +
O(ρ4)

sin θk,2

)
dθk

+
∑
l �=k

∫
S2

Sl(ϕ)
O(ρ4)

sin θl,2
dθl.

Now we combine (7.1), (8.5), and the above to derive that at ξ = ζ and r = s,

Ak,1

∫
S2

cos θk,1 sin θk,2

(
3r2

k cos θk,1 sin θk,2 +
O(ρ4)

sin θk,2

)
dθk + Ak,2O(ρ4)

+Ak,3O(ρ4) +
∑
l �=k

Al,1O(ρ4) +
∑
l �=k

Al,2O(ρ4) +
∑
l �=k

Al,3O(ρ4) = 0,

Ak,1O(ρ4) + Ak,2

∫
S2

sin θk,1 sin θk,2

(
3r2

k sin θk,1 sin θk,2 +
O(ρ4)

sin θk,2

)
dθk

+Ak,3O(ρ4) +
∑
l �=k

Al,1O(ρ4) +
∑
l �=k

Al,2O(ρ4) +
∑
l �=k

Al,3O(ρ4) = 0,

Ak,1O(ρ4) + Ak,2O(ρ4) + Ak,3

∫
S2

cos θk,2

(
3r2

k cos θk,2 +
O(ρ4)

sin θk,2

)
dθk

+
∑
l �=k

Al,1O(ρ4) +
∑
l �=k

Al,2O(ρ4) +
∑
l �=k

Al,3O(ρ4) = 0.

Writing the system in matrix form

(8.17)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4πr2
1 0 0 0 . . . 0 0

0 4πr2
1 0 0 . . . 0 0

0 0 4πr2
1 0 . . . 0 0

..

..
0 0 0 0 . . . 4πr2

K 0
0 0 0 0 . . . 0 4πr2

K

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ O(ρ4)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1,1

A1,2

A1,3

. . .

. . .
AK,2

AK,3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
. . .
. . .
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

we deduce, since (8.17) is nonsingular when ρ is small, that Ak,1 = Ak,2 =
Ak,3 = 0.

The existence part of Theorem 2.1 follows from Lemma 8.4. The centers ζk
and radii sk of the spheres are found in Lemma 8.2. In Lemma 7.1 we see that
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‖ϕ‖W 2,p ≤ cρ5, which implies that the radius of a sphere is approximately

(8.18) (s3
k + ϕk(θk))

1/3 = sk +
O(|ϕk(θk)|)

ρ2
= sk + O(ρ3).

By Lemma 8.2, ζ is close to a minimum of F and sk is close to ρ. The formula in
Lemma 8.1 gives the free energy of our solution.

In Theorem 2.2, a solution is termed stable if it is a local minimizer of J in the
space

U ×
{
φ = (φ1, . . . , φK) : |ρ3 + φk| ≥

ρ3

2
, φk ∈ W 1,2(S2),

φk ⊥ 1, φk ⊥ H1, k = 1, 2, . . . ,K

}
.(8.19)

The condition |ρ3 + φk| ≥ ρ3

2 ensures that J is well defined in this space. Un-
der the condition (2.8), Lemma 7.2, part 2, shows that each ϕ(·, ξ, r) we found in

Lemma 7.1 locally minimizes J , with fixed (ξ, r) ∈ U , in {φ : |ρ3 + φk| ≥ ρ3

2 , φk ∈
W 1,2(S2), φk ⊥ 1, φk ⊥ H1}. On the other hand ϕ(·, ζ, s) minimizes J(Eϕ(·,ξ,r)) with
respect to ξ and r. Hence ϕ(·, ζ, s) is a local minimizer of J in (8.19).

If (2.9) holds, then we can find one eigenvalue λk,n of L1, Lemma 5.1, for some
n ∈ {2, 3, . . .} such that

λk,n < −C

ρ4
, 〈L1(ek,n), ek,n〉 < −C

ρ4
‖ek,n‖2

W 1,2 ,

where ek,n is an eigenvector corresponding to λk,n. By Lemma 5.2, the last inequality
implies that

〈L(ek,n), ek,n〉 < −C

ρ4
‖ek,n‖2

W 1,2 .

Then by Lemma 6.1, parts 2, 3, and 4, and (7.25) in the proof of Lemma 7.2,

〈L̃(ek,n), ek,n〉 < −C

ρ4
‖ek,n‖2

W 1,2 .

Therefore the solution is unstable.

9. Discussion. The functional (1.2) is derived as a Γ-limit of the free energy
functional in the Ohta–Kawasaki theory of diblock copolymers in [20]. Ohta and
Kawasaki use a function u on D to describe the density of A-monomers and 1− u to
describe the density of B-monomers. The free energy of a diblock copolymer is

(9.1) I(u) =

∫
D

[
ε2

2
|Du|2 + W (u) +

σ

2
|(−Δ)−1/2(u− a)|2

]
dx,

where u is in

(9.2) {u ∈ H1(D) : u = a}.

The ε in (9.1) is not to be confused with the ε that has appeared in this paper. The
function W is a balanced double-well potential such as W (u) = 1

4u
2(1 − u)2. There

are three positive parameters in (9.1): ε, σ, and a, where ε is small and a is in (0, 1).
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These three-dimensionless parameters are related to several physical parameters
of a diblock copolymer system. See [29] for the precise relationships between the
dimensionless parameters here and the physical parameters.

If we take σ to be of order ε, i.e., by setting

(9.3) σ = εγ

for some γ independent of ε, then as ε tends to 0, the limiting problem of ε−1I turns
out to be

(9.4) J(E) = τ |DχE |(D) +
γ

2

∫
D

|(−Δ)−1/2(χE − a)|2 dx

which is the same as the J in (1.2) except for the additional constant τ here. This
constant is known as the surface tension and is given by

(9.5) τ =

∫ 1

0

√
2W (q) dq.

The functional (9.4) is defined on the same admissible set Σ, (1.3). In this paper we
have taken τ = 1 without loss of generality.

The theory of Γ-convergence was developed by De Giorgi [7], Modica and Mortola
[14], Modica [13], and Kohn and Sternberg [11]. It was proved that ε−1I Γ-converges
to J in the following sense.

Proposition 9.1 (see Ren and Wei [20]).
1. For every family {uε} of functions in (9.2) satisfying limε→0 uε = χE in

L2(D),

lim inf
ε→0

ε−1I(uε) ≥ J(E).

2. For every E in Σ, there exists a family {uε} of functions in (9.2) such that
limε→0 uε = χE in L2(D), and

lim sup
ε→0

ε−1I(uε) ≤ J(E).

The relationship between I and J becomes more clear when a result of Kohn and
Sternberg [11] was used to show the following.

Proposition 9.2 (see Ren and Wei [20]). Let δ > 0 and E ∈ Σ be such that
J(E) < J(F ) for all χF ∈ Bδ(χE) with F �= E, where Bδ(χE) is the open ball of
radius δ centered at χE in L2(D). Then there exists ε0 > 0 such that for all ε < ε0

there exists uε ∈ Bδ/2(χE) with I(uε) ≤ I(u) for all u ∈ Bδ/2(χE). In addition
limε→0 ‖uε − χE‖L2(D) = 0.

The existence of a stable solution Eϕ(·,ζ,s) to (1.1) in the sense of Theorem 2.1 does
not quite imply the existence of a local minimizer, close to χEϕ(·,ζ,s) in L2(D), of I.
One must show that Eϕ(·,ζ,s) is a strict local minimizer in the sense of Proposition 9.2.
This issue requires more study.

Our work is the first mathematically rigorous confirmation of the spherical phase
of diblock copolymer morphology. This phase, depicted in Figure 1.1, plot 1, has
been observed in experiments for some time [1]. Our earlier work [31, 30] in two
dimensions gave a mathematical proof of the existence of the cylindrical phase of
diblock copolymer morphology; see Figure 1.1, plot 2. The results obtained here are
analogous to the ones obtained in [30], but there are some notable differences.
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In two dimensions we studied a cross section of the cylindrical phase and con-
structed a stable solution which is a union of many small, approximate discs under
the condition that

(9.6)
1 + ε

ρ3 log 1
ρ

< γ <
12 − 4ε

ρ3
.

Here ρ is the average disc radius defined by ρ =
√

a|D|
Kπ . Note that the two bounds for

γ in (9.6) are of different orders. Recall that in three dimensions we have (2.12), i.e.,

(9.7)
3 + ε

ρ3
< γ <

30 − 4ε

ρ3
,

where the two bounds are of the same order. In experiments it is more likely to see
the cylindrical phase than the spherical phase (see [1]). The different bounds in (9.6)
and (9.7) appear to offer an explanation.

In (8.18) we have proved that the perturbed “radius” is

(9.8) (s3
k + ϕk(θk))

1/3 = sk + O(ρ3).

In other words the deviation of the “radius” of a perturbed ball from an exact ball is
of the order O(ρ3). However, in two dimensions the corresponding quantity is

(9.9) (s2
k + ϕk(θk))

1/2 = sk + O(ρ2),

a fact found after the proof of [30, Theorem 2.1]. The approximate balls in the spher-
ical solution found here are more round than the approximate discs in the cylindrical
solution found in [30].

Appendix A. We drop the subscript k in this appendix. The derivative of A at
0 has two terms according to (4.29). The first is

γ

9rk

∫
S2

u(ω)

4π|θ − ω| dω.

The second is

−γu(θ)

9rk

∫
B1(0)

(θ − y) · θ
4π|θ − y|2 dy

for which we calculate the integral. Here B1(0) is the unit ball. This integral is
independent of θ ∈ S2 so without loss of generality we assume that θ = (0, 0, 1). Write
y = (r cos p, r sin p, y3) in the cylindrical coordinates. Then the integral becomes

∫
B1(0)

(θ − y) · θ
4π|θ − y|2 dy =

1

4π

∫ 1

−1

∫ 2π

0

∫ √
1−y2

3

0

(1 − y3)r dr dp dy3

[(1 − y3)2 + r2]3/2
=

1

3
.

Appendix B. The integral operator

(B.1) h(θ) →
∫
S2

h(ω) dω

|θ − ω|
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acts on spherical harmonics h ∈ Hn in a simple way. Here Hn is the space of spherical
harmonics of degree n on S2. In general one has

(B.2)

∫
S2

Φ(θ · ω)h(ω) dω = αn(Φ)h(θ),

where

(B.3) αn(Φ) = 2π

∫ 1

−1

Φ(t)Pn(t) dt.

See, for instance, [10, Theorem 3.4.1]. Here Pn is the nth Legendre polynomial. In
our case

1

|θ − ω| =
1√

2 − 2θ · ω
,

so we take

(B.4) Φ(t) =
1√

2 − 2t
.

The classical representation of Legendre polynomials in terms of generating func-
tions [10, Formula 3.3.39]

(B.5)
1

(1 + r2 − 2rt)1/2
=

∞∑
n=0

Pn(t)rn, r, t ∈ (−1, 1)

shows that ∫ 1

−1

Pn(t) dt

(1 + r2 − 2rt)1/2
= rn

∫ 1

−1

P 2
n(t) dt =

2rn

2n + 1
,

where the orthogonality of the Legendre polynomials is used [10, Formula 3.3.16]:∫ 1

−1

Pn(t)Pm(t) dt =
2δnm
2n + 1

.

By sending r → 1 we find that

(B.6) αn(Φ) =
4π

2n + 1
.

Appendix C. Here we calculate the improper integral

(C.1)

∫
B1(0)

|θ − y|2 − 3(1 − θ · y)2
|θ − y|5 dy,

where B1(0) is the unit ball centered at 0. This integral is independent of θ ∈ S2. We
take θ = (0, 0, 1). Let z = (0, 0, 1) − y and set z = (r cos p, r sin p, z3) in cylindrical
coordinates. Then∫

B1(0)

|θ − y|2 − 3(1 − θ · y)2
|θ − y|5 dy

=

∫
B1(0,0,1)

|z|2 − 3z2
3

|z|5 dz

=

∫ 2

0

∫ √
1−(1−z3)2

0

∫ 2π

0

(r2 + z2
3) − 3z2

3

(r2 + z2
3)5/2

r dpdrdz3 = −8π

3
.
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ON CONVERGENCE OF SOLUTIONS OF FRACTAL BURGERS
EQUATION TOWARD RAREFACTION WAVES∗
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Abstract. In this paper, the large time behavior of solutions of the Cauchy problem for the
one-dimensional fractal Burgers equation ut + (−∂2

x)α/2u + uux = 0 with α ∈ (1, 2) is studied. It
is shown that if the nondecreasing initial datum approaches the constant states u± (u− < u+) as
x → ±∞, respectively, then the corresponding solution converges toward the rarefaction wave, i.e.,
the unique entropy solution of the Riemann problem for the nonviscous Burgers equation.

Key words. fractal Burgers equation, asymptotic behavior, rarefaction wave, Riemann problem,
Lévy process
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1. Introduction. The goal of this work is to study asymptotic properties of
solutions of the Cauchy problem for the nonlocal conservation law

ut + Λαu + uux = 0, x ∈ R, t > 0,(1.1)

u(0, x) = u0(x),(1.2)

where Λα = (−∂2/∂x2)α/2 is the pseudodifferential operator defined via the Fourier
transform

(1.3) (̂Λαv)(ξ) = |ξ|αv̂(ξ).

Following [3], we will call (1.1) the fractal Burgers equation. Equations of this
type appear in the study of growing interfaces in the presence of self-similar hop-
ping surface diffusion [19]. Moreover, in their recent papers, Jourdain, Méléard, and
Woyczyński [13, 14] gave probabilistic motivations for studying equations with the
anomalous diffusion when the Laplacian (the generator of the Wiener process) is re-
placed by a more general pseudodifferential operator generating the Lévy process. In
particular, the authors of [14] studied problem (1.1)–(1.2), where the initial condition
u0 is assumed to be a nonconstant function with bounded variation on R. In other
words, a.e. on R,

(1.4) u0(x) = c +

∫ x

−∞
m(dy) = c + H ∗m(x)
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with c ∈ R, m being a finite signed measure on R, and H(y) denoting the unit step
function 1{y≥0}. Observe that the gradient v(x, t) = ux(x, t) satisfies

(1.5) vt + Λαv + (vH ∗ v)x = 0, v(·, 0) = m.

If m is a probability measure on R, (1.5) is a nonlinear Fokker–Planck equation. In
the case of an arbitrary finite signed measure, the authors of [14] associated (1.5)
with a suitable nonlinear martingale problem. Next, they studied the convergence
of systems of particles with jumps as the number of particles tends to +∞. As a
consequence, the weighted empirical cumulative distribution functions of the particles
converge to the solution of the martingale problem connected to (1.5). This phe-
nomenon is called the propagation of chaos for problem (1.1)–(1.2), and we refer the
reader to [14] for more details and additional references.

Motivated by the results from [14], we study problem (1.1)–(1.2) under the crucial
assumption α ∈ (1, 2) and with the initial condition of the form (1.4). In our main
result, we assume that u0 is a function satisfying

(1.6) u0 − u− ∈ L1((−∞, 0)) and u0 − u+ ∈ L1((0,+∞)) with u− < u+,

where u− = c and u+ − u− =
∫

R
m(dx).

It is well known (cf. [11, 20, 10] and Lemma 2.4 below) that the asymptotic profile
as t → ∞ of solutions of the viscous Burgers equation

(1.7) ut − uxx + uux = 0

(i.e., (1.1) with α = 2) supplemented with an initial datum satisfying (1.6) is given
by the so-called rarefaction wave. This is the continuous function

(1.8) wR(x, t) = WR(x/t) =

⎧⎪⎪⎨
⎪⎪⎩

u− , x/t ≤ u−,

x/t , u− ≤ x/t ≤ u+,

u+ , x/t ≥ u+,

which is the unique entropy solution of the following Riemann problem:

wR
t + wRwR

x = 0,(1.9)

wR(x, 0) = wR
0 (x) =

{
u− , x < 0,

u+ , x > 0.
(1.10)

Below, we use the solution of the Burgers equation (1.7) with the initial datum (1.10)
as the smooth approximation of the rarefaction wave (1.8).

The authors of this work were inspired by the fundamental paper of Il’in and
Oleinik [11] who showed the convergence toward rarefaction waves of solutions of the
nonlinear equation ut−uxx + f(u)x = 0 under a strict convexity assumption imposed
on f . That idea was next extended in several different directions, and we refer the
reader to, e.g., [10, 18, 20, 21, 23, 24] for an overview of known results and additional
references.

In this work, we contribute to the existing theory by developing tools which allow
us to obtain analogous results for equations with a nonlocal and anomalous diffusion.
Basic properties of solutions (namely, their existence and the regularity) of quasi-
linear evolution equations with (−Δ)α/2, α ∈ (1, 2), (or, more generally, with the
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Lévy diffusion) were shown in [8, 9]. On the other hand, one may expect singularities
in finite time of solutions of (1.1) with α ∈ (0, 1); see [2] for more details. If u0 ∈ L1(R),
Biler, Karch, and Woyczyński [4] proved that the large time asymptotics of solutions of
(1.1)–(1.2) is described by the self-similar fundamental solution of equation vt+Λαv =
0. Analogous asymptotic properties of solutions of multidimensional generalizations
of problem (1.1)–(1.2) with u0 ∈ L1(RN ) were studied in [5, 6]. Here, we would like
also to report the recent progress in the understanding of properties of solutions of the
quasi-geostrophic equation with an anomalous diffusion; cf. [7, 15] and the references
therein.

The purpose of the present paper is to prove the convergence of solutions of
the Cauchy problem for the fractal Burgers equations (1.1)–(1.2) toward rarefaction
waves. We state our main result in the following theorem.

Theorem 1.1. Let α ∈ (1, 2). Assume that wR = wR(x, t) is the rarefaction wave
(1.8). Denote by u = u(x, t) the unique solution of problem (1.1)–(1.2) corresponding
to the initial datum u0 of the form (1.4) and satisfying (1.6) (cf. Theorem 2.1). For
every p ∈ ((3 − α)/(α− 1),∞] there exists C > 0 independent of t such that

‖u(t) − wR(t)‖p ≤ Ct−[α−1−(3−α)/p]/2 log(2 + t)

for all t > 0.
Remark 1.1. The proof of Theorem 1.1 does not work for α ∈ (0, 1]. In fact, our

preliminary computations confirm that, in this case, one should expect completely
different asymptotic profiles of solutions. First of all, the initial value problem (1.1)–
(1.2) has the unique global-in-time entropy solution for every u0 ∈ L∞(R) and α ∈
(0, 1] due to the recent work of Alibaud [1]. We expect these solutions to be regular
for nondecreasing initial conditions, namely, in this case when shocks do not form for
the nonviscous Burgers equation ut + uux = 0. Using the uniqueness result from [1]
combined with a standard scaling technique, one can show that (1.1) with α = 1 has
self-similar solutions of the form u(x, t) = U(x/t). These profiles determine the large
time asymptotics of solutions to the initial value problem (1.1)–(1.2) with α = 1. If
α ∈ (0, 1), the Duhamel principle applied to problem (1.1)–(1.2) (cf. (2.10)) allows us
to derive asymptotic profiles of solutions in the form

Uα(x/t1/α) =

∫ x/t1/α

−∞
Pα(z) dz,

where the function Pα is as defined below (see (2.11) and (2.12)). Precise statements
of these results and their proofs will be published in [12].

Remark 1.2. Our result has an important probabilistic interpretation, because
the rarefaction wave (1.8) with u− = 0 and u+ = 1 is the probability distribution
function corresponding to the uniform distribution on the interval [0, t]. On the other
hand, the results announced in the remark above say that solutions to (1.1)–(1.2)
with α ∈ (0, 1) converge as t → ∞ toward the symmetric α-stable laws and toward a
one-parameter family of new laws solving the nonlinear equation (1.1) if α = 1.

Remark 1.3. The result from Theorem 1.1 and its proof hold true also for α = 2
(observe that (3 − α)/(α − 1) → 1 as α → 2). However, we pass over this case for
simplicity of the exposition and because the large time asymptotics of solutions of the
Burgers equation (1.7) is well known; see Lemma 2.4.

In the next section, we gather several preliminary properties of the operator Λα

and of solutions of problem (1.1)–(1.2). Theorem 1.1 is shown in section 3. In sec-
tion 4, we discuss possible generalizations of our main result.



FRACTAL BURGERS EQUATION 1539

Notation. For 1 ≤ p ≤ ∞, the Lp-norm of a Lebesgue measurable, real-valued
function v defined on R is denoted by ‖v‖p. For a finite signed measure m on R, we
put ‖m‖ = |m|(R), where |m| is the total variation of m. The Fourier transform of v
is v̂(ξ) ≡ (2π)−1/2

∫
R
e−ixξv(x) dx. Given a function v = v(x), we are going to use the

decomposition v = v+ − v−, where as usual v− = max{0, −v} and v+ = max{0, v}.
The constants (always independent of t) will be denoted by the same letter C, even
if they may vary from line to line. Occasionally, we write, e.g., C = C(α, �) when we
want to emphasize the dependence of C on parameters α and �.

2. Preliminary results. We begin by recalling that the basic questions on the
existence and the uniqueness of solutions of problem (1.1)–(1.2) have been answered
in [8, 9].

Theorem 2.1 (see [8, Thm. 1.1], [9, Thm. 7]). Let α ∈ (1, 2) and u0 ∈ L∞(R).
There exists the unique solution u = u(x, t) of problem (1.1)–(1.2) in the following
sense: for all T > 0,

u ∈ Cb((0, T ) × R) and , for all a ∈ (0, T ), u ∈ C∞
b ((a, T ) × R),

u satisfies (1.1) on (0, T ) × R,

u(t, ·) → u0 in L∞(R) weak-∗, as t → 0.

Moreover, the following inequality holds true:

(2.1) ‖u(t)‖∞ ≤ ‖u0‖∞ for all t > 0.

The main goal of this section is to complete this result by additional properties
of ux if the initial conditions are of the form (1.4).

Theorem 2.2. Let α ∈ (1, 2). Assume that the initial datum u0 can be written
in the form (1.4) for a constant c ∈ R and a signed finite measure m on R. Then
the solution u = u(x, t) of problem (1.1)–(1.2) satisfies ux ∈ C((0, T ];Lp(R)) for each
1 ≤ p ≤ ∞ and every T > 0.

Consider u and ũ to be two such solutions with initial conditions u0 and ũ0,
respectively. Suppose that ũx(x, t) is nonnegative a.e. and u0 − ũ0 ∈ L1(R). Then

(2.2) ‖u(t) − ũ(t)‖1 ≤ ‖u0 − ũ0‖1

for all t > 0.
Theorem 2.3. Under the assumption of Theorem 2.2, if the measure m in the

initial datum (1.4) is nonnegative, we have
(i) ux(x, t) ≥ 0 for all x ∈ R and t > 0;
(ii) for every p ∈ [1,∞] there exists C = C(p) > 0 such that

(2.3) ‖ux(t)‖p ≤ t−1+1/p‖m‖1/p.

In the proofs of Theorems 2.2 and 2.3 as well as in our study of the large
time asymptotics, we shall require several properties of the operator Λα and of the
semigroup of linear operators generated by it. First of all, note that the operator de-
fined by (1.3) has the integral representation for every α ∈ (1, 2) (cf., e.g., [9, Thm. 1])

(2.4) Λαw(x) = −C(α)

∫
R

w(x + z) − w(x) − wx(x)z

|z|1+α
dz.
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This formula allows us to apply Λα to functions which are bounded and sufficiently
smooth but not, however, necessarily decaying at infinity.

Lemma 2.1. Let 1 < α < 2. For every p ∈ [1, ∞] there exists C = C(p, α) > 0
such that

(2.5) ‖Λαw‖p ≤ C‖wx‖2−α
p ‖wxx‖α−1

p

for all functions w satisfying wx, wxx ∈ Lp(R).
Proof. We can easily deduce the interpolation inequality (2.5) from (2.4). Indeed,

it follows from the Taylor formula that for any fixed R > 0 we have

‖Λαw‖p ≤ C‖wxx‖p
∫
|z|≤R

|z|1−α dz + C‖wx‖p
∫
|z|>R

|z|−α dz

≤ C
(
R2−α‖wxx‖p + R1−α‖wx‖p

)
.

Choosing R = ‖wx‖p/‖wxx‖p we complete the proof of inequality (2.5).
Now, we prove the Nash inequality for the operator Λα.
Lemma 2.2. Let 0 < α. There exists a constant CN > 0 such that

(2.6) ‖w‖2(1+α)
2 ≤ CN‖Λα/2w‖2

2‖w‖2α
1

for all functions w satisfying w ∈ L1(R) and Λα/2w ∈ L2(R).
Proof. For every R > 0, we decompose the L2-norm of the Fourier transform of

w as follows:

‖w‖2
2 = C

∫
R

|ŵ(ξ)|2 dξ

≤ C‖ŵ‖2
∞

∫
|ξ|≤R

dξ + CR−α

∫
|ξ|>R

|ξ|α|ŵ(ξ)|2 dξ

≤ CR‖w‖2
1 + CR−α‖Λα/2w‖2

2.

For R =
(
‖Λα/2w‖2

2/‖w‖2
1

)1/(1+α)
we obtain (2.6).

Lemma 2.3. Let 0 ≤ α ≤ 2. For every p > 1, we have

(2.7)

∫
R

(Λαw)|w|p−2w dx ≥ 4(p− 1)

p2

∫
R

(
Λ

α
2 |w|

p
2

)2

dx

for all w ∈ Lp(R) such that Λαw ∈ Lp(R). If Λαw ∈ L1(R), we obtain

(2.8)

∫
R

(Λαw)sgnw dx ≥ 0,

and if w,Λαw ∈ L2(R), it follows that

(2.9)

∫
R

(Λαw)w+ dx ≥ 0 and

∫
R

(Λαw)w− dx ≥ 0,

where w+ = max{0, w} and w− = max{0,−w}.
Inequality (2.7) is well known in the theory of sub-Markovian operators and its

statement and proof are given, e.g., in [17, Thm. 2.1 combined with the Beurling–
Deny condition (1.7)]; see also [7, 15]. Observe that if α = 2, integrating by parts we
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obtain (2.7) with the equality. Inequality (2.8) (called the Kato inequality) is used
in [9] to construct entropy solutions of (1.1) and it can be easily deduced from [9,
Lem. 1] by an approximation argument (see also [3, inequality (3.5)]). The proof of
(2.9) can be found, for example, in [17, Prop. 1.6].

We also recall that, by Duhamel’s principle, the solution of problem (1.1)–(1.2)
can be written in the equivalent integral form

u(t) = Sα(t)u0 −
∫ t

0

Sα(t− τ)u(τ)ux(τ) dτ,(2.10)

where

(2.11) Sα(t)u0 = pα(t) ∗ u0(x).

Here, the fundamental solution pα(x, t) of the linear equation ∂tv + Λαv = 0 can be
computed via the Fourier transform p̂α(ξ, t) = e−t|ξ|α . Hence,

pα(x, t) = t−1/αPα(xt−1/α),

where Pα is the inverse Fourier transform of e−|ξ|α . It is well known that for every
α ∈ (0, 2] the function Pα has the property

∫
R
Pα(x) dx = 1 and it is smooth,

nonnegative, and satisfies

(2.12) 0 ≤ Pα(x) ≤ C(1 + |x|)−(α+1) and |∂xPα(x)| ≤ C(1 + |x|)−(α+2)

for a constant C and all x ∈ R. Using these properties of the convolution operator
Sα(t) defined by (2.11) we obtain the estimates

‖Sα(t)v‖p ≤ Ct−(1−1/p)/α‖v‖1,(2.13)

‖(Sα(t)v)x‖p ≤ Ct−(1−1/p)/α−1/α‖v‖1(2.14)

for every p ∈ [1,∞] and all t > 0. Moreover, we can replace v in (2.13) and (2.14) by
any signed measure m. In that case, ‖v‖1 should be replaced by ‖m‖.

Proof of Theorem 2.2. It follows from the integral equation (2.10) that ux is the
solution of

(2.15) ux(t) = Sα(t)m−
∫ t

0

∂xSα(t− τ)V (τ)ux(τ) dτ,

where V (x, t) = u(x, t) is treated as given and is smooth and bounded. Now the
standard argument involving the Banach fixed point theorem allows us to show that
the “linear” equation (2.15) has a unique solution in C((0, T ];Lp(R)) for each p ∈
[1,∞] and every T > 0. Here, we should use the following estimate of the operator
T (u) defined by the right-hand side of (2.15):

‖T (u)(t)‖p ≤ ‖Sα(t)m‖p +

∫ t

0

‖∂xSα(t− τ)V (τ)ux(τ)‖p dτ

≤ Ct−(1−1/p)/α‖m‖ + C sup
τ∈[0,T ]

‖V (τ)‖∞
∫ t

0

(t− τ)−1/α‖ux(τ)‖p dτ,

which is the immediate consequence of (2.13) and (2.14). Let us skip the other details
of this well-known argument (cf. [22]).
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Now, we prove inequality (2.2). A direct calculation shows that the function
v(x, t) = u(x, t) − ũ(x, t) satisfies

(2.16) vt + Λαv +
1

2
(v2 + 2vũ))x = 0.

First, we multiply (2.16) by sgn v = v|v|−1:

d

dt

∫
R

|v| dx +

∫
R

(Λαv)sgn v dx +
1

2

∫
R

[v2 + 2vũ)]xsgn v dx = 0.

The second term is nonnegative by (2.8). To show the same property for the third
term, we replace the sgn function by smooth and nondecreasing ϕ = ϕ(x). In this
case, we obtain∫

R

[v2 + 2vũ]xϕ(v)dx = −
∫

R

(v2 + 2vũ)ϕ′(v)vx dx = −
∫

R

Ψ(v)x dx +

∫
R

ũxΦ(v) dx,

where Ψ(s) =
∫ s

0
z2ϕ′(z) dz and Φ(s) =

∫ s

0
2zϕ′(z) dz. Obviously, the first term

on the right-hand side is equal to zero and the second one is nonnegative because
ũx ≥ 0 and Φ(s) ≥ 0 for all s ∈ R. Now, the standard approximation argument gives∫

R
[v2 + 2vũ]xsgn v dx ≥ 0. Hence, ‖v(t)‖1 = ‖u(t) − ũ(t)‖1 ≤ ‖u0 − ũ0‖1 = ‖v0‖1 for

all t > 0.
Proof of Theorem 2.3. To show part (i) of Theorem 2.3, we deal first with the

smooth initial datum u0 satisfying u0,x(x) ≥ 0 and u0,x ∈ Lp(R) for every p ∈ [1,∞].
In this case, differentiating (1.1) with respect to x we have

(ux)t + Λαux + (uux)x = 0.(2.17)

Note the well-known property∫
R

vtv
− dx =

∫
v≤0

v−t v
− dx =

1

2

d

dt

∫
v≤0

(v−)2 dx.

Hence, multiplying (2.17) by u−
x , integrating the resulting equation over R, and inte-

grating by parts on the right-hand side, we obtain

1

2

d

dt

∫
ux≤0

(u−
x )2 dx +

∫
R

(Λαux)u−
x dx = −

∫
ux≤0

(uu−
x )xu

−
x dx

= −1

2

∫
ux≤0

(u−
x )3 dx.

Since
∫

R
(Λαux)u−

x dx ≥ 0 by (2.9) and
∫
ux≤0

(u−
x (x, 0))2 dx = 0 by the assumption

imposed on u0, the Gronwall inequality implies
∫
ux≤0

(u−
x (x, t))2 dx = 0 for all t ≥ 0.

Consequently, u−
x (x, t) ≡ 0 and the proof of (i) for regular initial conditions is finished.

Now, the proof of (i) for the solution u = u(x, t) corresponding to the initial
datum u0 of the form (1.4) with the nonnegative finite measure m can be completed
by the following approximation argument. We consider the sequence of regular initial
conditions un

0 as in the first part of this proof. Moreover, we assume that un
0,x con-

verges weakly to m and ‖un
0 −u0‖1 → 0 as n → ∞. Inequality (2.2) allows us to prove

that the corresponding solutions un(·, t) satisfy ‖un(·, t)− u(·, t)‖1 → 0 as n → ∞ for



FRACTAL BURGERS EQUATION 1543

any t > 0. Hence, there is a subsequence nk → ∞ such that unk(x, t) → u(x, t) a.e.
Since each un(x, t) is nondecreasing as a function of x, the same conclusion holds true
for u(x, t).

In order to show inequality (2.3), we first observe that integrating (2.15) over R

and using the equalities∫
R

Sα(t)m dx =

∫
R

m(dx) and

∫
R

∂xSα(t− τ)(u(τ)ux(τ)) dx = 0,

we obtain the identity
∫

R
ux(x, t) dx =

∫
R
m(dx), which for nonnegative ux means

(2.18) ‖ux(t)‖1 = ‖m‖ for all t > 0.

Now, for fixed p ∈ (1,∞) and ux ≥ 0, we multiply (2.17) by up−1
x and integrate

the resulting equation over R. After some manipulations involving integrations by
parts on the right-hand side, we arrive at

1

p

d

dt
‖ux(t)‖pp +

∫
R

up−1
x Λαux dx = −

∫
R

(uux)xu
p−1
x dx

= −p− 1

p

∫
R

up+1
x dx.(2.19)

Recall now that
∫

R
up−1
x Λαux dx ≥ 0 by inequality (2.7). Moreover, it follows from

the Hölder inequality combined with (2.18) that

‖ux(t)‖p2/(p−1)
p ≤ ‖ux(t)‖p+1

p+1‖m‖1/(p−1).

Applying those two inequalities to (2.19) (note that ux ≥ 0) we obtain the following
differential inequality for ‖ux(t)‖pp:

d

dt
‖ux(t)‖pp ≤ −(p− 1)‖m‖−1/(p−1)

(
‖ux(t)‖pp

)p/(p−1)
.

Integrating it we complete the proof of (2.3) for any p ∈ (1,∞).
The case of p = ∞ is obtained immediately by passing to the limit p → ∞ in

inequality (2.3).
We conclude this section by recalling some results on smooth approximations of

rarefaction waves, namely, the solutions of the following Cauchy problem:

wt − wxx + wwx = 0,(2.20)

w(x, 0) = w0(x) =

{
u− , x < 0,

u+ , x > 0.
(2.21)

Lemma 2.4. Let u− < u+. Problem (2.20)–(2.21) has the unique, smooth, global-
in-time solution w(x, t) satisfying that

(i) u− < w(t, x) < u+ and wx(t, x) > 0 for all (x, t) ∈ R × (0,∞);
(ii) for every p ∈ [1, ∞], there exists a constant C = C(p, u−, u+) > 0 such that

‖wx(t)‖p ≤ Ct−1+1/p, ‖wxx(t)‖p ≤ Ct−3/2+1/(2p)

and

‖w(t) − wR(t)‖p ≤ Ct−(1−1/p)/2
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for all t > 0, where wR(x, t) is the rarefaction wave (1.8).
All results stated in Lemma 2.4 are deduced from the explicit formula for solutions

of (2.20)–(2.21) and detailed calculations can be found in [10], with some additional
improvements contained in [16, sect. 3].

3. Convergence toward rarefaction waves. For simplicity of the exposition,
we split the proof of Theorem 1.1 into a sequence of lemmas.

Lemma 3.1. Let α ∈ (1, 2). Assume that u and ũ are two solutions of problem
(1.1)–(1.2) with initial conditions u0 and ũ0, both of the form (1.4) with finite signed
measures m and m̃, respectively. Suppose, moreover, that the measure m̃ of ũ0 is
nonnegative and u0 − ũ0 ∈ L1(R). Then, for every p ∈ [1,∞] there exists a constant
C = C(p) > 0 such that

(3.1) ‖u(t) − ũ(t)‖p ≤ Ct−(1−1/p)/α‖u0 − ũ0‖1

for all t > 0.
Proof. In our reasoning, we denote v(x, t) = u(x, t)− ũ(x, t) which satisfies (2.16).

It follows from Theorem 2.2, inequality (2.2), that ‖v(t)‖1 ≤ ‖v0‖1.
Now, we multiply (2.16) by |v|p−2v with p > 1:

(3.2)
1

p

d

dt

∫
R

|v|p dx +

∫
R

(Λαv)(|v|p−2v) dx +
1

2

∫
R

[v2 + 2vũ]x|v|p−2v dx = 0.

The third term on the left-hand side of (3.2) is nonnegative by the following calcula-
tions: ∫

R

[v2 + 2vũ]x|v|p−2v dx =

∫
R

2vx|v|p dx +

∫
R

2ũvx|v|p−2v dx +

∫
R

2ũx|v|p dx(3.3)

= 2

(
1 − 1

p

)∫
R

ũx|v|p dx ≥ 0,

because
∫

R
vx|v|p dx = 0 and ũx ≥ 0. Hence, using inequality (2.7), we obtain from

(3.2)

(3.4)
d

dt

∫
R

|v|p dx + 4

(
1 − 1

p

)∫
R

(Λα/2|v|p/2)2 dx ≤ 0.

From now on, we proceed by induction. Applying the Nash inequality (2.6) com-
bined with (2.2), we deduce from (3.4) with p = 2 the following differential inequality:

d

dt
‖v(t)‖2

2 + 2C−1
N ‖v0‖−2α

1 ‖v(t)‖2(1+α)
2 ≤ 0,

which, after integration, leads to

(3.5) ‖v(t)‖2 ≤ C1‖v0‖1t
−1/(2α) with C1 = (CN/2α)1/(2α).

This is estimate (3.1) with p = 2.
Suppose now that

(3.6) ‖v(t)‖2n ≤ Cnt
−(1−2−n)/α‖v0‖1 for all t > 0.
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We consider (3.4) with p = 2n+1, where the second term is estimated, first, by the
Nash inequality (2.6) with w = |v|2n

, and next, by the inductive hypothesis (3.6).
This two-step estimate leads to the differential inequality

d

dt
‖v(t)‖2n+1

2n+1 + 4(1 − 2−n−1)C−1
N (Cn‖v0‖1)

−α2n+1

t2
n+1−2

(
‖v(t)‖2n+1

2n+1

)1+α

≤ 0.

Integrating it we obtain

(3.7) ‖v(t)‖2n+1 ≤ Cn+1t
−(1−2−n−1)/α‖v0‖1 for all t > 0

with

Cn+1 = Cn

(
(CN/(2α))1/α

)2−n−1 (
2n2−n−1

)1/α

.

This is inequality (3.1) for any p = 2n+1 with n ∈ N.
We leave to the reader the proof that lim supn→∞ Cn < ∞. Hence, passing to the

limit n → ∞ in (3.7) we obtain inequality (3.1) for p = ∞.
The Hölder inequality

‖v‖p ≤ ‖v‖2n+1/p−1
2n ‖v‖2−2n+1/p

2n+1

completes the proof for every p ∈ (2n, 2n+1).
Lemma 3.2. Let α ∈ (1, 2). Assume that w = w(x, t) is the smooth approximation

of the rarefaction wave, namely, the solution of problem (2.20)–(2.21). Then for each
t0 > 0 we have ∫ ∞

t0

‖wxx(t)‖p dt < ∞ for every p ∈ (1,∞]

and ∫ t

t0

‖Λαw(t)‖p dt ≤ C log(2 + t) for p =
3 − α

α− 1

for all t ≥ t0 and C > 0 independent of t.
Proof. It follows from the decay estimates recalled in Lemma 2.4 that∫ ∞

t0

‖wxx(t)‖p dt ≤ C

∫ ∞

t0

t−3/2+1/(2p) dt < ∞ for every p ∈ (1,∞].

By the interpolation inequality (2.5) and Lemma 2.4, we obtain

‖Λαw(t)‖p ≤ C(1 + t)(−1+1/p)(2−α)(1 + t)(−3/2+1/(2p))(α−1)

= C(1 + t)−(1+α)/2+(3−α)/(2p).

Hence, the rate of decay on the right-hand side equals −1 for p = (3−α)/(α−1).
Lemma 3.3. Let α ∈ (1, 2). Assume that u = u(x, t) is the solution of (1.1)–(1.2)

and w = w(x, t) is the solution of (2.20)–(2.21). Suppose that u0 − w0 ∈ Lp(R) for
p = (3 − α)/(α− 1). Then

‖u(t) − w(t)‖p ≤ C log(2 + t).
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Proof. Denoting v = u− w, we see that this new function satisfies

vt + Λαv +
1

2
[v2 + 2vw]x = −Λαw + wxx.

We multiply this equation by |v|p−2v and we integrate over R to obtain

(3.8)

1

p

d

dt

∫
|v|p dx +

∫
(Λαv)(|v|p−2v) dx +

1

2

∫
[v2 + 2vw]x|v|p−2v dx

=

∫
(−Λαw + wxx)(|v|p−2v) dx.

It follows from Lemma 2.3 that
∫

R
(Λαv)(|v|p−2v) dx ≥ 0. The third term on the

left-hand side of (3.8) is nonnegative by Lemma 2.4 and the same argument as the
one used in the proof of Lemma 3.1; cf. identity (3.3). Moreover, using the Hölder
inequality, we have∣∣∣∣

∫
R

(−Λαw + wxx)(|v|p−2v) dx

∣∣∣∣ ≤ (‖Λαw‖p + ‖wxx‖p)‖v‖p−1
p .

Consequently, (3.8) implies the following differential inequality:

d

dt
‖v(t)‖pp ≤ p (‖Λαw(t)‖p + ‖wxx(t)‖p) ‖v(t)‖p−1

p ,

which, after integration, leads to

‖v(t)‖p ≤ ‖v(t0)‖p +

∫ t

t0

‖Λαw(τ)‖p + ‖wxx(τ)‖p dτ.

The proof is completed by the result stated in Lemma 3.2.
Now, we are in a position to prove the main result of this paper.
Proof of Theorem 1.1. First, we consider the auxiliary solution ũ = ũ(x, t) of the

fractal Burgers equation (1.1) with the step-like initial condition (1.10). In this case,
the measure m̃ = (u+ − u−)δ0 is nonnegative; hence by Theorem 2.3, ũx ≥ 0, and by
Lemma 3.1,

‖u(t) − ũ(t)‖p ≤ Ct−(1−1/p)/α‖u0 − ũ0‖1

for every p ∈ [1,∞] and all t > 0.
Next, we compare ũ with the smooth approximation of the rarefaction wave that

is with the solution w = w(x, t) of (2.20)–(2.21) (note that ũ0 = w0). By Theorem 2.2
and Lemma 2.4, we obtain

‖ũx(t)‖∞ + ‖wx(t)‖∞ ≤ Ct−1.

Moreover, using the Gagliardo–Nirenberg inequality

(3.9) ‖v‖p ≤ C‖vx‖a∞‖v‖1−a
p0

,

valid for any 1 < p0 < p ≤ ∞ and a = (1/p0 − 1/p)/(1 + 1/p0), we have

‖ũ(t) − w(t)‖p ≤ C(‖ũx(t)‖∞ + ‖wx(t)‖∞)a‖ũ(t) − w(t)‖1−a
p0

≤ Ct−a‖ũ(t) − w(t)‖1−a
p0

.
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Choosing p0 = (3 − α)/(α − 1) (hence a = [α − 1 − (3 − α)/p]/2), by Lemma 3.3,
we conclude that ‖ũ(t) − w(t)‖p ≤ Ct−a log(2 + t) for every p ∈ (p0,∞]. Here, we
are allowed to use Lemma 3.3 because ũ0 − w0 ∈ L1(R) ∩ L∞(R) ⊂ Lp(R) for every
p ∈ [1,∞].

Finally, it follows from Lemma 2.4 that the large time asymptotics of w(t) is
described in Lp(R) by the rarefaction wave wR(x, t).

The proof is complete because for 1 < α < 2 we have (1 − 1/p)/α > (1 − 1/p)/2.
Moreover, since 1 < p0 < p, we have (1 − 1/p)/2 > (1/p0 − 1/p)/(1 + 1/p0).

4. Additional comments and possible generalizations. Our main result is
stated and shown in the simplest case of (1.1); however, several generalizations are
possible.

First of all, the operator Λα can be replaced by the Lévy operator L which is a
pseudodifferential operator defined by the symbol a = a(ξ) ≥ 0, L̂v(ξ) = a(ξ)v̂(ξ).
Here, the function e−ta(ξ) should be positive definite, so the symbol a(ξ) can be
represented by the Lévy–Khintchine formula in the Fourier variables

(4.1) a(ξ) = ibξ + Q(ξ) +

∫
R

(
1 − e−iηξ − iηξ 1{|η|<1}(η)

)
Π(dη).

Here, b ∈ R is fixed, Q(ξ) = qξ2 with some q ≥ 0, and Π is a Borel measure such that
Π({0}) = 0 and

∫
R

min(1, |η|2) Π(dη) < ∞.
Detailed analysis of conservation laws with the anomalous diffusion operator L is

contained in [4, 5, 6]. Here, we would like to emphasize that the fundamental nature
of the operator L is clear from the perspective of the probability theory. It represents
the most general form of the generator of a stochastically continuous Markov process
with independent and stationary increments. This fact was our basic motivation for
the development of the theory presented above.

In order to show the convergence toward rarefaction waves of solutions of conserva-
tion laws with the Lévy operator, we need the counterparts of estimates (2.13)–(2.14)
of the semigroup of linear operators e−tL generated by −L. They are valid, e.g., under
the assumption that the symbol a of L has the form

(4.2) a(ξ) = �|ξ|α + k(ξ),

where � > 0, 1 < α ≤ 2, and k is a symbol of another Lévy operator K such that

(4.3) lim
ξ→0

k(ξ)

|ξ|α = 0.

The assumptions (4.2) and (4.3) are fulfilled, for example, by multifractal diffusion
operators

L = −a0∂
2
x +

k∑
j=1

aj(−∂2
x)αj/2

with a0 ≥ 0, aj > 0, 1 < αj < 2, and α = min1≤j≤k αj . We refer the reader to [5, 6]
for the reasoning leading to the decay estimates of solutions of nonlinear problems
with an operator L satisfying (4.2)–(4.3). That argument can be directly adapted to
obtain counterparts of Theorem 2.2 and Lemma 3.1 with Λα replaced by L. Note
here that the Lp-Lq estimates of the semigroup e−tL are equivalent to a certain Nash
inequality; see [17, 5] and the references therein.
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Our result also holds true if we replace the nonlinear term uux in (1.1) by f(u)x
with a strictly convex C2-function f (as in the paper of Il’in and Oleinik [11]) satisfying
f ′′(u) ≥ κ for some fixed κ > 0 and all u ∈ R. Under this assumption, we immediately
generalize Theorem 2.2 and we obtain the decay estimate (2.3).

In order to show the counterpart of Lemma 3.1, we should use the assumption
f ′′(u) ≥ κ and replace equalities (3.3) by the following (recall that v = u− ũ):

∫
R

[f(u) − f(ũ)]x|v|p−2v dx ≥ κ

(
1 − 1

p

)∫
R

ũx|v|p dx ≥ 0.

This argument, however, is known and used systematically, e.g., in [24, inequality
(3.5)] (see also [11, 20, 21, 23]); hence we skip the other details.
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Abstract. Two Γ-convergence results for a general class of power-law functionals are obtained
in the setting of A-quasiconvexity. New variational principles in L∞ are introduced, allowing for the
description of the yield set in the context of a simplified model of polycrystal plasticity. A number
of highly degenerate nonlinear partial differential equations arise as Aronsson equations associated
with these variational principles.
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1. Introduction. One of the main motivations of this work is the development
of a general theory that allows for the characterization of the yield set in the context
of polycrystal plasticity by means of suitable variational principles in L∞. From
the mathematical point of view the results of the present paper cover two related but
simpler problems pertaining to highly nonlinear conducting media. These can be seen
as simplified versions of polycrystal plasticity in the context of antiplane shear (see
[37]). We will now describe the physical motivations in the more familiar framework
of polycrystal plasticity.

A polycrystal is a collection of single crystals (grains) bonded together in different
orientations; the microstructure of the polycrystal, which consists of the shapes and
orientations of the grains, is called the texture of the polycrystal. In addition to the
material properties of the grains, the behavior of polycrystalline solids is highly influ-
enced by their texture. Understanding how the behavior of a polycrystal depends on
its texture is crucial from the technological point of view in that it provides important
guidelines for specific material processing.

The yield of a single crystalline material is described by a closed convex subset
K of the space of stresses M

3×3
sym (symmetric 3 × 3 real matrices); any stress field

σ : Ω → M
3×3
sym in the crystal occupying the region Ω ⊂ R

3 is subject to the pointwise
constraint

σ(x) ∈ K, x ∈ Ω.

In the context of rigid perfectly plastic crystals the set K is called the yield set.
Rigid perfectly plastic behavior is characterized by the fact that the crystal can only
withstand stresses in the interior of the set K; i.e., the material does not exhibit
plastic deformation when subject to a stress σ such that σ(x) ∈ int(K), x ∈ Ω, but,

∗Received by the editors October 15, 2006; accepted for publication (in revised form) July 26,
2007; published electronically January 22, 2008.

http://www.siam.org/journals/sima/39-5/67238.html
†Department of Mathematics, North Dakota State University, 300 Minard Hall, Fargo, ND 58105-

5075 (marian.bocea@ndsu.edu).
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on the other hand, the material will deform at a certain strain rate when σ(x) ∈ ∂K
for some x ∈ Ω. The boundary ∂K of the yield set is called the yield surface.

The texture of a polycrystal is described by a piecewise constant rotation-valued
function R : Ω → SO(3), where R(x) is constant in each grain and indicates the
orientation of the grain which contains the point x ∈ Ω. If the yield set of the reference
single crystal is K, the stress in the polycrystal occupying the region Ω ⊂ R

3 must
satisfy the constraint

σ(x) ∈ R(x)KRT (x), x ∈ Ω.(1.1)

The effective behavior of the polycrystal is then described by the constraints induced
on the average stress σ := −

∫
Ω
σ(x)dx; the set of all average stresses σ when σ satisfies

the pointwise constraint (1.1) and the equilibrium equation,

div σ = 0 in Ω,(1.2)

is called the yield set of the polycrystal. Precisely,

Keff :=

{
σ :=

∫
Ω

σ(x)dx : (1.1) and (1.2) hold

}
.

Yield in a crystalline solid is usually associated with a finite number of slip systems
which depend on the atomic lattice, each determined by a pair (nk,mk) of orthogonal
vectors, where nk is the normal to the slip plane and mk is the direction of slip. In
this case, we have

K =
{
A ∈ M

3×3
sym : 〈A,μk〉 ≤ τ critical

k , k = 1, . . . , s
}
,

where s stands for the number of slip systems, τ critical
k is the critical shear stress for

the kth slip system, and

μk :=
1

2
(mk ⊗ nk + nk ⊗mk)

is the kth slip tensor. The goal of polycrystal plasticity is to describe the yield set Keff ,
given K and some information on the texture of the polycrystal. The complexity of
the problem has led to the introduction of alternative schemes designed to estimate the
macroscopic response of polycrystals without solving the equilibrium equation (1.2)
directly. The estimate introduced by Sachs [42] assumes that the stress is constant
throughout the polycrystal, leading to

KSachs :=
{
σ ∈ M

3×3
sym : (1.1) holds

}
.

On the other hand, the estimate introduced by Taylor [49] assumes that the strain
rate is constant throughout the polycrystal, giving

KTaylor :=

{
σ :=

∫
Ω

σ(x)dx : (1.1) holds

}
.

Since

KSachs ⊆ Keff ⊆ KTaylor,
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it follows that the Sachs and Taylor estimates lead to bounds on the yield set Keff .
This was first recognized by Bishop and Hill [11]. In much more recent developments,
Kohn and Little [37] studied in detail a simpler model working in particular in the
context of antiplane shear. They showed that in two dimensions the Sachs bound is
optimal and gave a better estimate for the Taylor bound. Goldsztein [30] improved
the results in [37] by proposing a better estimate for KTaylor having the same scaling
law. In [31] he showed that this scaling law is essentially optimal. The corresponding
problems in three dimensions for model problems involving gradients and divergence-
free fields were addressed by Garroni and Kohn [27]. In both settings they found
that the Sachs bound is optimal; in the case of gradients they provided an improved
estimate for the Taylor bound which scales differently for certain reference crystals,
while in the divergence-free case they proved that the Taylor bound has the optimal
scaling law.

From the mathematical standpoint, polycrystal plasticity has been justified for
many years by means of the dual of a W 1,1 problem. This formulation has been
studied in a classical series of papers by Bouchittè and Suquet. We refer the reader to
[12] for the original work and to [37] for a minimal overview. Much more recently, the
study of these problems has been justified in a different way. The first paper in this
direction is due to Garroni, Nesi, and Ponsiglione [28], where the authors considered
first failure dielectric breakdown. Mathematically, they treated a case in which the
variable is a gradient field. The main contribution is to show that the so-called strength
or yield set can be characterized via Γ-convergence in an alternative way. Here we
address a similar but mathematically distinct problem, namely, the characterization
of effective yield sets defined in terms of divergence-free fields. We achieve this goal in
the context of electrical resistivity in section 6 of the paper. We will comment later on
the differences between this alternative point of view and the classical one; we point
out that both the new and the classical derivations give rise to the same effective
yield set, but the new derivation preserves some memory of the approximation that
has been used to derive it. We refer the reader to sections 5 and 6 of the paper. For
example, in the “gradient” case, treated in [28], one is naturally led to an interesting
connection with the study of some generalizations of the infinity-Laplace equation

Δ∞u :=

N∑
i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
= 0.(1.3)

This equation has been introduced by Aronsson in his influential work in connection
with the problem of minimal extensions of Lipschitz maps [2], [3], [4], [5], [6], and its
study has received a great deal of attention in the last decade. An excellent account
on this topic is given in the survey paper by Aronsson, Crandall, and Juutinen [7].
We also refer the reader to the recent work of Evans and Yu [24] for a review of some
basic properties of the solution to (1.3), as well as for some new interesting results.

Let us go back to the main contribution of the present paper. It has long been
recognized that in the mathematical study of materials the key question that one
must understand is the interaction between linear partial differential equations (the
balance laws) and nonlinear pointwise constraints (the constitutive laws). This is
the underlying motivation for the general theory of compensated compactness as de-
veloped by Murat and Tartar (see, e.g., [39], [47], [48]). In this paper we generalize
the Γ-convergence results of [28] to more general linear PDE constraints on the un-
derlying fields, in the framework of A-quasiconvexity (see [19], [25]). This allows us
to consider situations which have not been studied so far, most notably the case of
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solenoidal fields (divergence-free fields), which is relevant to treating extreme resistiv-
ity. Actual plasticity would require an extra constraint, namely, one should consider
divergence-free matrix fields which are symmetric. This further generalization does
not seem to be a serious obstacle to the analysis, but it would require a rather long
digression so we will address this issue elsewhere.

The paper is organized as follows. In section 2 we give the definition of A-
quasiconvexity, state a lower semicontinuity result of Fonseca and Müller [25], and
recall the definition of De Giorgi’s Γ-convergence. In section 3 we prove two Γ-
convergence results for power-law functionals in the general setting of A-quasiconvexity.
Section 4 is devoted to specializing the abstract results of the previous section to two
different special cases. The first one deals with curl-free fields, where we generalize
results in [28] by making milder assumptions on the functionals under consideration.
We focus on power-law-type materials and discuss the meaning of our results in the
context of effective conductivity. In the second part of section 4 we specialize the Γ-
convergence results of section 3 to the case where the underlying fields are divergence
free. This leads to a new derivation, whose meaning is discussed in the context of
effective resistivity. We conclude this section by briefly recalling the duality behind
effective conductivity and effective resistivity, and we explain the connection with
the literature treating bounds for effective properties of nonlinear composites in the
context of constitutive laws of power-law type (see [28], [40], [41], [44], [45], [46]).
Section 5 treats dielectric breakdown as a particular instance of our general results.
We define the effective strength domain for electrically conducting media and explain
the relation with the new variational principle and the associated Aronsson equation,
leading to the study of the infinity-Laplace equation. In section 6 we define the effec-
tive strength set Keff (which one may call yield set, with a slight abuse of language) in
the context of electrical resistivity, we propose a new variational principle by means
of a minimization problem in L∞, and we provide the first characterization of Keff in
terms of this new object. We end the first part of section 6 by explaining some of the
issues that remain to be addressed via homogenization. The new variational princi-
ple in L∞ leads naturally to interesting new systems of partial differential equations
which arise as the Aronsson equations associated with the supremal functionals under
consideration. The formal derivation of these systems, as well as several remarks, are
left for the second part of section 6.

2. Preliminaries. Let N, d, l be positive integers, 1 ≤ p ≤ +∞, and consider a
family A(1), A(2), . . . , A(N) ∈ Lin(Rd; Rl). We define A : Lp(Ω; Rd) → W−1,p(Ω; Rl)
by

Av :=
N∑
i=1

A(i) ∂v

∂xi
,(2.1)

where Ω is an open, bounded domain in R
N . Note that each A(i) is represented by an

l×d matrix, and ∂v
∂xi

(x) is represented by a d-dimensional column vector, so that each

term A(i) ∂v
∂xi

(x) is an l-dimensional column vector. Consider the operator A : R
N →

Lin(Rd; Rl), defined as a linear combination of the given family A(1), A(2), . . . , A(N)

with real coefficients. Precisely, we set

A(w) :=
N∑
i=1

wiA
(i),
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where w = (w1, . . . , wN ) ∈ R
N . In what follows we will assume that A satisfies the

constant rank property (see [39]):

there exists r ∈ N such that rank A(w) = r for all w ∈ SN−1.(2.2)

The constant rank property plays a central role in the theory of compensated com-
pactness developed by Murat [39] and Tartar [47], [48]. Situations where (2.2) fails
are much less understood (see, e.g., [38]). In what follows, and throughout the paper,
Q := (0, 1)N is the unit cube in R

N .
Definition 2.1. A function g : R

d → R is said to be A-quasiconvex if

g(A) ≤
∫
Q

g(A + w(x))dx

for all A ∈ R
d and all Q-periodic w ∈ C∞(Q; Rd) such that A(w) = 0 and

∫
Q
w(x)dx

= 0.
The notion of A-quasiconvexity (without the assumption of periodicity of the

test functions) has been first investigated by Dacorogna [19]. Under the assumption
of constant rank property (2.2) of the operator A, Fonseca and Müller have shown in
[25] that if Ω ⊂ R

N is an open, bounded set, (u, v) : Ω → R
m×R

d is measurable, and
g : Ω×R

m×R
d → R is a normal integrand, then the A-quasiconvexity of g(x, u, ·) is a

necessary and sufficient condition for the sequential lower semicontinuity of integrals
of the form

(u, v) �→
∫

Ω

g(x, u(x), v(x))dx

along sequences that satisfy un → u in measure, vn → v in Lp, and Avn → 0 in
W−1,p. We will explicitly need only the sufficiency part of their result for 1 ≤ p < +∞.
Precisely, we have the following proposition.

Proposition 2.2 (see [25, Theorem 3.7]). Let 1 ≤ p < +∞, and suppose that
g : Ω × R

m × R
d → [0,+∞) is a normal integrand such that z �→ g(x, u, z) is A-

quasiconvex and continuous for LN -a.e. x ∈ Ω and all u ∈ R
m. Assume further that

there exists a locally bounded function a : Ω × R
m → [0,+∞) such that

0 ≤ g(x, u, v) ≤ a(x, u)(1 + |v|p)

for LN -a.e. x ∈ Ω and all (u, v) ∈ R
m × R

d. If

un → u in measure,

vn ⇀ v in Lp(Ω; Rd),(2.3)

and

Avn → 0 in W−1,p(Ω; Rl),(2.4)

then ∫
Ω

g(x, u(x), v(x))dx ≤ lim inf
n→∞

∫
Ω

g(x, un(x), vn(x))dx.(2.5)

We remark that if p = +∞, then (2.5) still holds provided that in (2.3) the
weak convergence of vn to v in Lp(Ω; Rd) is replaced by the weak* convergence in
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L∞(Ω; Rd), and in (2.4) Avn → 0 in W−1,p(Ω; Rl) is replaced by Avn ≡ 0. In this
case the growth condition on g is not needed (see [25]). We end this section by
recalling the definition of De Giorgi’s Γ-convergence (see [21], [22]) in metric spaces.
For a comprehensive introduction to the subject we refer the reader to the monograph
by Dal Maso [20]. See also [13].

Definition 2.3. Let X be a metric space. A sequence {Ip} of functionals Ip :
X → R := R ∪ {+∞} is said to Γ(X)-converge to I : X → R (we write Γ(X) −
limp→∞ Ip = I) if the following hold:

(i) for every u ∈ X and {up} ⊂ X such that up → u in X, we have

I(u) ≤ lim inf
p→∞

Ip(up);

(ii) for every u ∈ X there exists a sequence {up} ⊂ X such that up → u in X
and

I(u) = lim
p→∞

Ip(up).

The sequence {up} in (ii) is called a recovery sequence for the Γ-limit.

3. Γ-convergence results in a general setting. In this section we prove two
Γ-convergence results. The first one should be seen as a justification of a simplified
plasticity model by a nonclassical route. Let Ω be an open, bounded domain in
R

N (N ≥ 1), and let f : Ω × R
d → [0,+∞) be a Carathéodory integrand satisfying

the following hypotheses:

f(x, ·) is A-quasiconvex for LN -a.e. x ∈ Ω;(3.1)

there exist constants c, C > 0 such that

c|v| ≤ f(x, v) ≤ C (1 + |v|) for LN -a.e. x ∈ Ω and all v ∈ R
d.(3.2)

Let Ip : L1(Ω; Rd) → [0,+∞] be defined by

Ip(w) :=

⎧⎪⎨
⎪⎩

1

p

∫
Ω

f(x,w(x))pdx if w ∈ Lp(Ω; Rd) ∩ kerA,

+∞ otherwise.

Theorem 3.1. Define I∞ : L1(Ω; Rd) → [0,+∞] by

I∞(w) :=

{
0 if f(x,w(x)) ≤ 1 for LN -a.e. x ∈ Ω, Aw = 0,

+∞ otherwise.

Then
(i) for every w ∈ L1(Ω; Rd) and {wp} ⊂ L1(Ω; Rd) such that wp ⇀ w weakly in

L1(Ω; Rd), we have

I∞(w) ≤ lim inf
p→∞

Ip(wp);(3.3)

(ii) for every w ∈ L1(Ω; Rd), there exists a sequence {wp} ⊂ L1(Ω; Rd) such that
wp → w in L1(Ω; Rd), and

lim sup
p→∞

Ip(wp) ≤ I∞(w).(3.4)
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In particular,

Γ(L1(Ω; Rd)) − lim
p→∞

Ip = I∞.

Proof. Let {wp} ⊂ L1(Ω; Rd) be such that wp ⇀ w weakly in L1(Ω; Rd). We will
show that (3.3) holds. In view of the coercivity condition in (3.2), we may assume,
without loss of generality, that

wp ∈ Lp(Ω; Rd), Awp = 0,(3.5)

and

lim inf
p→∞

Ip(wp) = lim
p→∞

Ip(wp) < +∞.(3.6)

Let x ∈ Ω be a Lebesgue point for f(·, w(·)) ∈ L1(Ω). For any ball B(x, r) ⊂ Ω and
for p sufficiently large, we have

∫
B(x,r)

f(y, wp(y))dy ≤
(∫

Ω

(f(y, wp(y)))
p
dy

)1/p (
LN (B(x, r))

)(p−1)/p

= (Ip(wp))
1/p

p1/p
(
LN (B(x, r))

)(p−1)/p
,

where we have used Hölder’s inequality. Letting p → ∞, we obtain that

lim sup
p→∞

∫
B(x,r)

f(y, wp(y))dy ≤ LN (B(x, r)).(3.7)

Taking (3.1), (3.2), and (3.5) into account, we may apply Proposition 2.2 and we
deduce that ∫

B(x,r)

f(y, w(y))dy ≤ lim inf
p→∞

∫
B(x,r)

f(y, wp(y))dy.

Thus, in view of (3.7),

1

LN (B(x, r))

∫
B(x,r)

f(y, w(y))dy ≤ 1.

Since LN -a.e. x ∈ Ω is a Lebesgue point for f(·, w(·)), passing to the limit r → 0+ in
the last equation yields

f(x,w(x)) ≤ 1 for LN -a.e. x ∈ Ω.

It follows that I∞(w) = 0, and this implies that (3.3) holds. To complete the proof,
we need to show that for any w ∈ L1(Ω; Rd), there exists a recovery sequence for the
Γ-limit, that is, a sequence {wp} ⊂ L1(Ω; Rd) with wp → w in L1(Ω; Rd) and such
that (3.4) holds.

To this aim, assume, without loss of generality, that I∞(w) = 0. Thus, f(x,w(x)) ≤
1 for LN -a.e. x ∈ Ω and Aw = 0. By (3.2), w ∈ L∞(Ω; Rd), and thus we may choose
{wp} = {w} as a recovery sequence. Indeed,

Ip(wp) =
1

p

∫
Ω

f(x,w(x))pdx ≤ 1

p
LN (Ω),
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which implies that limp→∞ Ip(wp) = 0 = I∞(w). We conclude that (3.4) holds.
We will now describe an alternative derivation of the model. The goal is to obtain

a limiting functional which is less degenerate than I∞. We follow [28], where a similar
approach was used in the gradient case.

Define Jp : L1(Ω; Rd) → [0,+∞] by

Jp(w) :=

⎧⎪⎨
⎪⎩

(∫
Ω

f(x,w(x))pdx

)1/p

if w ∈ Lp(Ω; Rd) ∩ kerA,

+∞ otherwise.

Theorem 3.2. Let J∞ : L1(Ω; Rd) → [0,+∞] be defined by

J∞(w) :=

{
ess supx∈Ω f(x,w(x)) if w ∈ L∞(Ω; Rd) ∩ kerA,

+∞ otherwise.

Then
(i) for every w ∈ L1(Ω; Rd) and {wp} ⊂ L1(Ω; Rd) such that wp ⇀ w weakly in

L1(Ω; Rd), we have

J∞(w) ≤ lim inf
p→∞

Jp(wp);(3.8)

(ii) for every w ∈ L1(Ω; Rd), there exists a sequence {wp} ⊂ L1(Ω; Rd) such that
wp → w in L1(Ω; Rd) and

lim sup
p→∞

Jp(wp) ≤ J∞(w).(3.9)

In particular,

Γ(L1(Ω; Rd)) − lim
p→∞

Jp = J∞.

Proof. Let {wp} ⊂ L1(Ω; Rd) be such that wp ⇀ w weakly in L1(Ω; Rd). We need
to show that (3.8) holds. Extract a subsequence (not relabeled) such that

wp ∈ Lp(Ω; Rd), Awp = 0,(3.10)

and

lim inf
p→∞

Jp(wp) = lim
p→∞

Jp(wp) < +∞.(3.11)

In view of (3.1) and Jensen’s inequality, for any q ≥ 1, f(x, ·)q is A-quasiconvex for
LN -a.e. x ∈ Ω. In addition, by (3.2),

cq|v|q ≤ f(x, v)q ≤ 2q−1Cq (1 + |v|q)(3.12)

for LN -a.e. x ∈ Ω and all v ∈ R
d. For any p > q > 1, we have

‖wp‖Lq(Ω;Rd) ≤ CJp(wp),

where C > 0 is a constant which depends only on LN (Ω). Thus, by (3.11), {wp}
is bounded in Lq(Ω; Rd). Up to a subsequence (not relabeled) wp ⇀ w weakly in
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Lq(Ω; Rd), as p → ∞. Taking (3.10) and (3.12) into account and in view of the A-
quasiconvexity and continuity of f(x, ·)q for LN -a.e. x ∈ Ω, we are again in position
to apply Proposition 2.2. We obtain∫

Ω

f(x,w(x))qdx ≤ lim inf
p→∞

∫
Ω

f(x,wp(x))qdx.(3.13)

On the other hand, by means of elementary arguments, we have that

(
lim inf
p→∞

∫
Ω

f(x,wp(x))qdx

)1/q

≤ lim sup
p→∞

(∫
Ω

f(x,wp(x))qdx

)1/q

.(3.14)

In view of (3.13) and (3.14), we deduce that

Jq(w) ≤ lim sup
p→∞

Jq(wp) ≤ LN (Ω)
1
q lim
p→∞

Jp(wp)(3.15)

for all q ≥ 1, where the last inequality follows from the fact that

Jq(wp) ≤ LN (Ω)
1
q−

1
p Jp(wp).

By a localization argument similar to the one used in the proof of Theorem 3.1 it
can be shown that f(·, w(·)) ∈ L∞(Ω). It follows that Jq(w) → ‖f(·, w(·))‖L∞(Ω) as
q → ∞. Thus, sending q → ∞ in (3.15) we obtain that (3.8) holds.

It remains to prove (3.9). Let w ∈ L1(Ω; Rd), and consider the sequence {wp} ⊂
L1(Ω; Rd), where wp := w for all p ∈ N. To verify that (3.9) holds we assume, without
loss of generality, that w ∈ L∞(Ω; Rd) and Aw = 0, so that J∞(w) < +∞. We have

lim sup
p→∞

Jp(wp) = lim sup
p→∞

‖f(·, w(·))‖Lp(Ω) = J∞(w),

which concludes the proof.

4. Effective conductivity and resistivity. In this section we specialize the
previous results to cover effective conductivity and effective resistivity for the im-
portant class of power-law materials. In this context, the use of convex duality has
been exploited by many authors both from the mathematical point of view (see, e.g.,
[23] and [26]) and from the point of view of applications to materials science, more
specifically to the issue of bounding effective behavior in this nonlinear setting (see
[44], [45], [46]).

4.1. Conductivity: The curl-free case. In this section we consider the situa-
tion where the differential constraint Aw = 0 reduces to requiring w : Ω ⊂ R

N → R
N

to satisfy curl w = 0, i.e.,

∂wk

∂xi
− ∂wi

∂xk
= 0, 1 ≤ i, k ≤ N.

In this case d = N , and we may rewrite these partial differential equations as Aw = 0,
where

Aw :=
N∑
r=1

A(r) ∂w

∂xr
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with A(r) ∈ Lin(RN ,RN2

) given by

A
(r)
(ik),p := δriδpk − δrkδpi, 1 ≤ i, k, p, r ≤ N.

It can be shown that A satisfies the constant rank property (see (2.2) and [25]). In fact,
for every w ∈ SN−1, ker(A(w)) = span{w}, and thus we have that dim(ker(A(w))) =
1.

Let f : Ω × R
N → [0,+∞) be defined by f(x, v) := 〈Σ(x)v, v〉 1

2 , where Σ ∈
L∞ (

Ω; MN×N
sym

)
satisfies the ellipticity bounds

1

K
|ξ|2 ≤ 〈Σ(x)ξ, ξ〉 ≤ K|ξ|2(4.1)

for LN -a.e. x ∈ Ω and all ξ ∈ R
N , where K ≥ 1 is a real constant. Note that f

satisfies our hypotheses (3.1) and (3.2). With these particular choices one can recover
the results of Garroni, Nesi, and Ponsiglione [28] as corollaries of Theorems 3.1 and 3.2.

Corollary 4.1 (see [28, Proposition 2.1]). Let Gp : L1(Ω; Rd) → [0,+∞] be
defined by

Gp(u) :=

⎧⎪⎨
⎪⎩

1

p

∫
Ω

〈Σ(x)∇u(x),∇u(x)〉
p
2 dx if u ∈ W 1,p(Ω),

+∞ otherwise.

Then

Γ(L1(Ω; Rd)) − lim
p→∞

Gp = G∞,

where G∞ : L1(Ω; Rd) → [0,+∞] is given by

G∞(u) :=

{
0 if

∣∣∣Σ 1
2 (x)∇u(x)

∣∣∣ ≤ 1 for LN -a.e. x ∈ Ω,

+∞ otherwise.

Corollary 4.2 (see [28, Proposition 2.6]). Define Fp : L1(Ω; Rd) → [0,+∞] by

Fp(u) :=

⎧⎪⎨
⎪⎩

(∫
Ω

〈Σ(x)∇u(x),∇u(x)〉
p
2 dx

)1/p

if u ∈ W 1,p(Ω),

+∞ otherwise.

Then

Γ(L1(Ω; Rd)) − lim
p→∞

Fp = F∞,

where F∞ : L1(Ω; Rd) → [0,+∞] is given by

F∞(u) :=

⎧⎨
⎩

∥∥∥Σ 1
2∇u

∥∥∥
L∞(Ω)

if u ∈ W 1,∞(Ω),

+∞ otherwise.

In [28] the authors are interested in the case with isotropic phases and therefore
they set Σ(x) = λ2(x)Id, x ∈ Ω, for some λ ∈ L∞(Ω).

Let us now focus on the periodic case for simplicity. In what follows, for 1 ≤ p ≤
+∞, we denote by Lp

� (Q) and W 1,p
� (Q) the spaces of Q-periodic functions belonging
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to Lp
loc(R

N ) and W 1,p
loc (RN ), respectively, where Q := (0, 1)N is the unit cube in R

N .
We assume that Σ is defined on Q, and we define the effective conductivity as follows:

(4.2) gp(ξ) := inf

{
Gp(u) : u ∈ W 1,p

� (Q) + ξ · x,
∫
Q

u(y) dy = 0

}
,

where

Gp(u) :=

∫
Q

〈Σ(x)∇u(x),∇u(x)〉
p
2 dx.(4.3)

Next, we make the (very strong) assumption that gp depends on ξ only through its
norm. This gives

(4.4) gp(ξ) = (hp,eff)
p
2 |ξ|p

for some number hp,eff which will be interpreted as the effective conductivity. Let us
remark for later purposes that the minimizer of (4.2) (see also (4.3)) is a weak solution
of the anisotropic p-Laplace-type equation

(4.5)

⎧⎨
⎩ div

(
〈Σ(x)∇u(x),∇u(x)〉 p−2

2 Σ(x)∇u(x)
)

= 0 if x ∈ Q,

u ∈ W 1,p
� (Q) + ξ · x.

4.2. Resistivity: The divergence-free case. Now we consider the situation
where the differential constraint Aw = 0 becomes div w = 0. In this case d = N , and
we take

A
(i)
j := δij , 1 ≤ i, j ≤ N.

Note that the constant rank condition is again satisfied, since for every w ∈ SN−1 we
have

ker(A(w)) =

{
v ∈ R

N :

N∑
i=1

A(i)wi(v) = 0

}
= {v ∈ R

N : w · v = 0},

which gives rank (A(w)) = dim(ker A(w)) = N − 1.

Let f : Ω × R
N → [0,+∞) be defined by f(x, v) := 〈A(x)v, v〉 1

2 , where A ∈
L∞ (

Ω; MN×N
sym

)
satisfies the ellipticity bounds

1

K
|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ K|ξ|2(4.6)

for LN -a.e. x ∈ Ω and all ξ ∈ R
N , where K ≥ 1 is a real constant. Note that f

satisfies (3.1) and (3.2).
With these particular choices, we obtain the following corollaries of Theorems 3.1

and 3.2.
Corollary 4.3. Let Tq, T∞ : L1(Ω; RN ) → [0,+∞] be defined by

Tq(b) :=

⎧⎪⎨
⎪⎩

1

q

∫
Ω

〈A(x)b(x), b(x)〉
q
2 dx if b ∈ Lq(Ω; RN ), div b = 0,

+∞ otherwise
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and

T∞(b) :=

{
0 if 〈A(x)b(x), b(x)〉 ≤ 1 for LN -a.e. x ∈ Ω,

+∞ otherwise.

Then

Γ(L1(Ω; RN )) − lim
q→∞

Tq = T∞.

Corollary 4.4. Define Sq, S∞ : L1(Ω; RN ) → [0,+∞] by

Sq(b) :=

⎧⎪⎨
⎪⎩

(∫
Ω

〈A(x)b(x), b(x)〉
q
2 dx

)1/q

if b ∈ Lq(Ω; RN ), div b = 0,

+∞ otherwise

and

S∞(b) :=

{
‖〈Ab, b〉 1

2 ‖L∞(Ω) if b ∈ L∞(Ω; RN ), div b = 0,

+∞ otherwise.

Then

Γ(L1(Ω; RN )) − lim
q→∞

Sq = S∞.

Let us now focus again on the periodic case, for simplicity. We assume that A is
defined on the unit cube Q = (0, 1)N and define the effective resistivity as follows:

(4.7) tq(η) := inf
{
Tq(b) : b ∈ Lq

� (Q; RN ) + η, div b = 0
}
,

where

Tq(b) :=

∫
Q

〈Σ−1(x)b(x), b(x)〉
q
2 dx.(4.8)

Note that we have chosen

(4.9) A ≡ Σ−1,

where Σ ∈ L∞ (
Q; MN×N

sym

)
is such that (4.1) holds. As in the previous case, we

assume the dependence of tq(η) upon η is only through its norm. In this way, one has
that

(4.10) tq(η) = (ρq,eff)
q
2 |η|q

for some number ρq,eff which we interpret as effective resistivity. The crucial fact is
that, with the definitions (4.4) and (4.10), one has

(4.11) hp,eff =
1

ρq,eff
,

where q = p′ is the Hölder conjugate exponent of p, i.e., 1
p + 1

q = 1. Let us briefly

explain where condition (4.11) comes from. We need the following well-known obser-
vations. Given p ∈ (1,+∞), if up solves (4.5), then the vector field

(4.12) bp := 〈Σ∇up,∇up〉
p−2
2 Σ∇up
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belongs to Lq(Q; RN ) and it is divergence free. Moreover, bp ∈ L∞
� (Q; RN ) + η for

some vector η ∈ R
N which can be explicitly computed in terms of ξ and hp,eff . The

Euler–Lagrange equations associated with (4.7) (see also (4.8)) are given by

(4.13)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

curl

(〈
Σ−1b, b

〉 q−2
2 Σ−1b

)
= 0 inQ,

div b = 0, inQ,

b ∈ L∞
� (Q; RN ) + η.

We will derive such systems in the next section, where we need to address the issue
of the limiting case q → +∞. It is easy to check that bp does indeed solve the system
(4.13) if one defines the vector η by

(4.14) η := h
p
2

p,eff |ξ|p−2ξ.

In addition, one has the pointwise relation

(4.15) 〈Σ∇up,∇up〉
p
2 = 〈Σ−1bp, bp〉

q
2 ,

which implies that ∫
Q

〈Σ∇up,∇up〉
p
2 dx =

∫
Q

〈Σ−1bp, bp〉
q
2 dx.

The above equation is equivalent to

h
p
2

p,eff |ξ|p = ρ
q
2

q,eff |η|q,

which, in view of (4.14), gives (4.11). The above calculations explain why in the
literature about bounding nonlinear energies one looks simultaneously at both a vari-
ational principle in terms of gradient fields and one in terms of divergence-free fields.
A lower bound on the effective conductivity relative to the exponent p is equivalent to
an upper bound on the effective resistivity relative to the exponent q, and conversely.

5. Power-law and dielectric breakdown. In this section we formulate the
strategy for our new definition of the effective yield set. This issue will be given a clear
physical interpretation. However, as we shall see, a number of mathematical questions
arise. We explain our results by specializing them to electrically conducting materials,
since in this context our analysis is complete. We follow in part the exposition in [28],
focusing on the simplest possible nontrivial situation.

5.1. Effective strength set for conducting materials. Suppose that we are
given a material that occupies the domain Ω := Ω1 ∪ Ω2 which, for simplicity, will
be taken to be the unit cube Q = (0, 1)N (N ≥ 2). Given 0 < α1 < α2, let α ∈
L∞(Ω; [α1, α2]) and, for p > 1 and ξ ∈ R

N , consider

Fp(u) :=

(
1

p

∫
Ω

α(x)
p
2 |∇u(x)|pdx

) 1
p

(5.1)

and set

fp(ξ) := inf
{
Fp(u) : u ∈ W 1,p

� (Ω) + ξ · x
}
.(5.2)
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We regard fp(ξ) as the overall (or effective) conductivity of the body in the direction
ξ ∈ R

N . With the notation of section 4, if we assume isotropy, we have

(5.3) fp(ξ) =

⎛
⎝h

1
2

p,eff

p
1
p

⎞
⎠ |ξ|.

The terminology is as follows. The material occupying the domain Ω is a two-phase
composite whose conductivity is locally isotropic, given by the measurable function
α(x) = χΩ1(x)α1 + χΩ2(x)α2. The unknown is the “microgeometry,” i.e., the set Ω1,
which is completely determined by its characteristic function χΩ1 with χΩ2 = 1−χΩ1 .
It is assumed that the relative volume fractions θ1 and θ2 = 1 − θ1 are given with

(5.4) θ1 =
LN (Ω1)

LN (Ω)
.

The goal is to characterize (for every vector ξ) the closure of the range of fp(ξ) as
χ1 varies within the class of characteristic functions of measurable subsets Ω1 of Ω
satisfying (5.4). This kind of material is often of power-law type and has been studied
extensively. The typical approach, in a large part of the engineering literature (see,
for instance, the influential work of Hutchinson [32]), is to consider p as a “fitting
parameter.” In other words, one takes the viewpoint that due to too many nonlinear
effects, it is hard to choose a priori the right “constitutive law.” For given p, one
would have the electric field of the form e(x) = ∇u(x) and the nonlinear response
b(x) = α(x)

p
2 |∇u(x)|p−2∇u(x) with the constitutive law div b = 0. In other words,

u ∈ W 1,p
loc (Ω) and it solves (4.5) exactly as the minimizers of (4.3).

For given “microgeometry” (i.e., for given sets Ω1 and Ω2) one obtains the real
number fp(ξ) given by (5.2) and (5.3). However, while the microgeometry is kept
fixed, fp(ξ) varies with p (monotonically, by Jensen’s inequality). Therefore, if one
can measure the effective response of the material, one can choose p in such a way
that will make the theoretical answer as accurate as possible. With this in mind, one
can immediately understand why long ago people have been trying to take limits as
p → ∞ for this type of problem. Actually, as in, for instance, [32], calculations are
often performed for “large” p. In [32, p. 109], “large” p means p = 8, and p = +∞ is
“extrapolated.”

The mathematical approach has been quite different. We refer the reader to the
work of Bouchitté and Suquet (see, e.g., [12]). A more direct approach has been
proposed in [28], and this is the ancestor of what we do in the present paper. The
idea is to pass to the limit as p → ∞ in the sense of Γ-convergence. In particular,
this new idea makes it possible to rigorously justify statements which were previously
taken for granted. In fact, one achieves more naturally a very direct link between
the minimizers of (5.2) and (at least one) minimizer of the new variational problem
associated with F∞ (the Γ-limit). Let us briefly review the classical approach versus
the new one.

Within the classical approach, one considers α ∈ L∞(Ω; [α1, α2]) as above, λ :=

α
1
2 , and defines, for u ∈ W 1,∞(Ω),

G∞(u) :=

{
0 if |λ(x)∇u(x)| ≤ 1 for LN -a.e. x ∈ Ω,

+∞ otherwise

and

g∞(ξ) := inf
{
G∞(u) : u ∈ W 1,∞

� (Ω) + ξ · x
}
.(5.5)
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Then the “strength” set (which is called yield set in plasticity) Keff can be defined by

(5.6) Keff := {ξ ∈ R
N : g∞(ξ) = 0}.

In this approach, the link between the minimizers of Fp and those of G∞ is unclear.
In particular it is not clear, a priori, whether limp→∞ fp(ξ) (which exists, by mono-
tonicity) is indeed related to the value g∞(ξ). The new approach is more transparent
and direct: define

(5.7) F∞(u) := ||λ∇u||L∞(Ω)

and

f∞(ξ) := inf
{
F∞(u) : u ∈ W 1,∞

� (Ω) + ξ · x
}
.(5.8)

As a direct consequence of Corollary 4.2 (see also [28]) one has

(5.9) Keff = {ξ ∈ R
N : f∞(ξ) ≤ 1}.

Moreover, up to a subsequence, the minimizers of Fp converge to some minimizer of
F∞. In addition, p �→ fp(ξ) is continuous.

Another important advantage of this approach is that it strongly suggests an
interesting connection with the infinity-Laplace equation. This is highlighted in the
next subsection.

5.2. Infinity-harmonic functions. Let us explain this in the context devel-
oped in [28]. Assume that the material under consideration fills a regular body Ω,
and that it is not only isotropic but also homogeneous. In this case α(x) ≡ λ(x) ≡ 1,
and the functional F∞ in (5.7) becomes

F∞(u) = ||∇u||L∞(Ω).(5.10)

The problem of minimizing (in a properly interpreted sense) this functional represents
the prototype for a series of related problems belonging to the emerging area of calculus
of variations in L∞. In this context, the functional F∞ is strongly connected to the
infinity-Laplace equation (1.3)—its associated Euler–Lagrange (Aronsson) equation,
whose solutions must be understood in the viscosity sense. We will give more details
shortly. However, before doing this, let us remark that these solutions lose many of
the properties enjoyed by the solutions of the Euler–Lagrange equations associated
with the functionals Fp. From the physical perspective, these phenomena are much
less surprising. We refer the reader to sections 3 and 4 of [28] and to [27] for some
examples.

The minimization of the functional Fp, subject to given boundary conditions, leads
in the usual way to the associated Euler–Lagrange equation. It was first observed by
Aronsson [2], [3], [4], [5], [6] in the one-dimensional case that minimization problems
(properly interpreted) for supremal functionals such as (5.10) also lead to partial
differential equations. We outline below, for the convenience of the reader, the formal
derivation of the Aronsson equation associated with F∞, as a limiting (p → ∞)
case of the Euler–Lagrange equations associated with Fp. For λ ≡ 1, this has been
made rigorous in [10], where it was shown that weak solutions of the Euler–Lagrange
equations associated with the p-Dirichlet integrals converge (up to a subsequence) to
viscosity solutions of the limiting equation.
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For p ≥ 1 and when λ is smooth, minimizers of Fp(u) := 1
p

∫
Ω
|λ(x)∇u(x)|pdx in

W 1,p(Ω), subject to given boundary conditions, solve the associated Euler–Lagrange
equation

−div
(
λp|∇u|p−2∇u

)
= 0,(5.11)

which may be rewritten as

p− 2

2
λp−4|∇u|p−4〈∇(λ2|∇u|2), λ2∇u〉 + λp−2|∇u|p−2div(λ2∇u) = 0.(5.12)

For p > 2, after division by p−2
2 λp−4|∇u|p−4, (5.12) becomes

〈∇(λ2|∇u|2), λ2∇u〉 +
2

p− 2
λ2|∇u|2div(λ2∇u) = 0.(5.13)

Note that at least the necessary condition that must hold in order to divide by
p−2
2 λp−4|∇u|p−4 in (5.12) is satisfied because the left-hand side of (5.13) also van-

ishes when either λ = 0 or ∇u = 0. Formally letting p → +∞, we obtain the equation

〈∇(λ2|∇u|2), λ2∇u〉 = 0.(5.14)

In the general case, where Fp is given by the formula in Corollary 4.2 with Σ not
necessarily isotropic, (5.14) should be replaced by

〈∇〈Σ∇u,∇u〉,Σ∇u〉 = 0.(5.15)

When λ ≡ 1 in (5.14), (5.11) reduces to the p-Laplace equation

Δpu := div(|∇u|p−2∇u) = 0,(5.16)

while (5.14) becomes

Δ∞u = 0,(5.17)

where Δ∞ denotes the infinity-Laplace operator, which on smooth, real-valued func-
tions u is defined by the formula

Δ∞u :=

N∑
i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
.(5.18)

The infinity-Laplace equation (5.17) has been introduced in the fundamental work
of Aronsson [4], [5] as the candidate for the Euler–Lagrange equation associated with a
properly interpreted minimization problem for supremal functionals (5.10). Precisely,
we say that u ∈ W 1,∞(Ω) ∩ C(Ω) is an absolutely minimizing Lipschitz extension
(abbreviated AMLE) if

‖∇u‖L∞(D) ≤ ‖∇v‖L∞(D)

whenever D ⊂ Ω is open, and v ∈ W 1,∞(D)∩C(D) is such that u|∂D = v|∂D. Aronsson
showed that a necessary and sufficient condition for a smooth u to be an AMLE is
that u solves (5.17) in the classical sense. On the other hand, he also noticed that
(5.17) does not always have a classical solution. Motivated by the work in [4], [5],
Jensen showed in [33] that every AMLE u is indeed a solution of the infinity-Laplace
equation in the viscosity sense (see [18], [17]). We recall that u is called a viscosity
solution of the infinity-Laplace equation if it is simultaneously a viscosity subsolution
and a viscosity supersolution of (5.17):
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(i) (u is a viscosity subsolution of (5.17)) for every local maximum point x ∈ Ω
of u− ϕ, where ϕ is C2 in some neighborhood of x, we have −Δ∞ϕ(x) ≤ 0;

(ii) (u is a viscosity supersolution of (5.17)) for every local minimum point x ∈ Ω
of u− ϕ, where ϕ is C2 in some neighborhood of x, we have −Δ∞ϕ(x) ≥ 0.

In addition, Jensen proved the maximum principle for solutions of (5.17) and, conse-
quently, settled the crucial question regarding uniqueness of solutions. Generalizations
of these ideas to minimization problems for generic supremal functionals of the form
‖f(·, u(·),∇u(·))‖L∞(Ω) have been considered by Juutinen [34] and Barron, Jensen,
and Wang [9], among others. We need to emphasize here that in order to be truly
relevant for the study of composite materials, a theory would need to be valid with
no smoothness assumptions on the coefficients. To our knowledge, such a theory is
not yet available. A recent work by Juutinen [35] describes a promising approach.

6. The effective strength set for electrical resistivity. In this section we
explore some applications of the Γ-convergence results obtained in section 3. Our
results are motivated by the study of the yield set in polycrystal plasticity. Here,
we address the mathematically very similar problem of electrical resistivity. The
mathematical gap consists of the fact that in the former problem one should consider
divergence-free matrix fields which are constrained to be symmetric, a constraint
which we are allowed to neglect in the latter. Handling the extra constraint necessary
to treat polycrystal plasticity does not seem to be a serious obstacle to the analysis,
but it would require a rather long digression so we will address this issue elsewhere.
We begin by providing a characterization of the effective strength set in the context of
electrical resistivity in terms of the new L∞ functionals acting on divergence-free fields.
A formal derivation of the Aronsson equations associated with our new variational
principle follows.

6.1. Effective strength for resistive materials. In this subsection the goal
is to characterize the effective strength set Keff , defined by (6.7), in the context of
electrical resistivity. This is achieved in Proposition 6.2. Consider

jeff
q (η) := inf

{(∫
Q

f(x, b(x) + η)qdx

)1/q

(6.1)

: b ∈ Lq(Q; RN ),

∫
Q

b dx = 0,div b = 0

}
.

We note that the infimum in (6.1) is attained. This is an easy consequence of the
lower semicontinuity result stated in Proposition 2.2.

Proposition 6.1. Let f : Q × R
N → R be a Carathéodory integrand satisfying

(3.1) and (3.2). For any η ∈ R
N , jeff

q (η) converges to jeff
∞ (η) given by

jeff
∞ (η) := inf

{
ess sup

x∈Q
f(x, b(x) + η)(6.2)

: b ∈ L∞(Q; RN ),

∫
Q

b dx = 0,div b = 0

}
.

Moreover, if b
(η)
q is a minimizer of the problem (6.1), then, up to a subsequence, the

sequence {b(η)
q } converges weakly in L1(Q; RN ) to a minimizer b(η) of (6.2).
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Proposition 6.1 can be seen as a consequence of standard arguments regarding
the convergence of minima and minimizers of Γ-converging functionals (see, e.g., [14]
and [20]). For the convenience of the reader, we provide below a more elementary
self-contained proof.

Proof. Let η ∈ R
N , and let b

(η)
q ∈ Lq(Q; RN ) be such that

∫
Q
b
(η)
q dx = 0,

div b
(η)
q = 0, and

(∫
Q

f(x, b(η)
q (x) + η)qdx

)1/q

= jeff
q (η).(6.3)

We distinguish two cases.

Case 1.

lim sup
q→∞

(∫
Q

f(x, b(η)
q (x) + η)qdx

)1/q

= +∞.

We claim that in this case jeff
∞ (η) = +∞ as well. Indeed, if this were not the case,

there would exist b ∈ L∞(Q; RN ) such that
∫
Q
b dx = 0, div b = 0, and

ess sup
x∈Q

f(x, b(x) + η) < jeff
∞ (η) + 1 < +∞.

Since b is admissible for jeff
q (η), we have

(∫
Q

f(x, b(η)
q (x) + η)qdx

)1/q

≤
(∫

Q

f(x, b(x) + η)qdx

)1/q

≤
(∫

Q

(
ess sup

x∈Q
f(x, b(x) + η)

)q

dx

)1/q

≤ jeff
∞ (η) + 1.

It follows that

lim sup
q→∞

(∫
Q

f(x, b(η)
q (x) + η)qdx

)1/q

≤ jeff
∞ (η) + 1,

a contradiction.

Case 2.

lim sup
q→∞

(∫
Q

f(x, b(η)
q (x) + η)qdx

)1/q

< +∞.

In view of the coercivity condition in (3.2), the sequence {b(η)
q + η} is bounded in

Lq(Q; RN ). Extract a subsequence (not relabeled) such that b
(η)
q ⇀ b(η) weakly in

L1(Q; RN ) with div b(η) = 0 and
∫
Q
b(η)dx = 0. By Theorem 3.2, we deduce that

J∞(b(η) + η) ≤ lim inf
q→∞

(∫
Q

f(x, b(η)
q (x) + η)qdx

)1/q

< +∞.(6.4)



1568 MARIAN BOCEA AND VINCENZO NESI

In particular, b(η) ∈ L∞(Q; RN ). We have

lim sup
q→∞

jeff
q (η) = lim sup

q→∞

(∫
Q

f(x, b(η)
q (x) + η)qdx

)1/q

≤ lim sup
q→∞

(∫
Q

f(x, b(η)(x) + η)qdx

)1/q

= ess sup
x∈Q

f(x, b(η)(x) + η)

≤ lim inf
q→∞

jeff
q (η),

where we have used (6.3) and (6.4). Thus, limq→∞ jeff
q (η) exists, and

ess sup
x∈Q

f(x, b(η)(x) + η) = lim
q→∞

jeff
q (η).

It remains to show that

ess sup
x∈Q

f(x, b(η)(x) + η) = jeff
∞ (η).(6.5)

Clearly, jeff
∞ (η) ≤ ess supx∈Q f(x, b(η)(x)+η). To show the converse inequality, consider

b ∈ L∞(Q; RN ) such that div b = 0 and
∫
Q
b dx = 0. We have

ess sup
x∈Q

f(x, b(x) + η) = lim
q→∞

(∫
Q

f(x, b(x) + η)qdx

)1/q

≥ lim
q→∞

jeff
q (η) = ess sup

x∈Q
f(x, b(η)(x) + η).

Passing to the infimum over all fields b satisfying the admissibility conditions, we
obtain that jeff

∞ (η) ≥ ess supx∈Q f(x, b(η)(x) + η). It follows that (6.5) holds.

Consider now the situation where the pointwise constraint on the stress (current)
may be written in the form

σ(x) ∈
{
η ∈ R

N : f(x, η) ≤ 1
}
,(6.6)

where f : Q×R
N → R satisfies our hypotheses (3.1) and (3.2). In the context of (first

failure) models of dielectric breakdown for composites made of two isotropic phases,
considered by Garroni, Nesi, and Ponsiglione in [28], the constraint (6.6) is replaced
by the requirement that the electric field ∇u satisfy ∇u(x) ∈ K(x), where

K(x) =
{
η ∈ R

2 : λ(x)|η| ≤ 1
}

with λ(x) being a combination of the characteristic functions of the phases. Thus,
in that case, K(x) is a disc whose radius varies from point to point. Such a model
is concerned with electrical conductivity, and therefore the relevant fields are curl
free. In dimension N ≥ 3, if one wants to model electrical resistivity, then the right
differential constraint is that the relevant fields are divergence free. In view of the
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pointwise constraint (6.6), the yield set of the polycrystal becomes

Keff =

{
η ∈ R

N : there exists σ ∈ L∞(Q; RN ) such that η =

∫
Q

σ(x)dx,

div σ = 0, f(x, σ(x)) ≤ 1,LN -a.e. x ∈ Q

}

=

{
η ∈ R

N : there exists σ ∈ L∞(Q; RN ) such that

∫
Q

σ(x)dx = 0,

div σ = 0, f(x, σ(x) + η) ≤ 1,LN -a.e. x ∈ Q

}
.(6.7)

We are now in position to describe Keff by means of the L∞ variational principle
(6.2).

Proposition 6.2. Let N ∈ {2, 3}, and let f : Q × R
N → R be a Carathéodory

function satisfying (3.1) and (3.2). The yield set of a conducting polycrystal whose
current (stress) σ satisfies the pointwise constraint (6.6) at almost every point and
the equilibrium equation div σ = 0 is described by

Keff =
{
η ∈ R

N : jeff
∞ (η) ≤ 1

}
.(6.8)

Proof. Let η ∈ Keff . By (6.7), there exists σ ∈ L∞(Q; RN ) such that
∫
Q
σ(x)dx =

0, div σ = 0, and with f(x, σ(x) + η) ≤ 1 for LN -a.e. x ∈ Q. We obtain that
jeff
∞ (η) ≤ ess supx∈Q f(x, σ(x) + η) ≤ 1. Conversely, let η ∈ R

N be such that

jeff
∞ (η) ≤ 1.(6.9)

Let {σn} ⊂ L∞(Q; RN ) be a sequence such that div σn = 0,
∫
Q
σn(x)dx = 0 for any

n ∈ N, and

lim
n→∞

ess sup
x∈Q

f(x, σn(x) + η) = jeff
∞ (η).(6.10)

Taking (3.2) into account, we may extract a subsequence of {σn} (not relabeled) such
that σn ⇀ σ weakly* in L∞(Q; RN ), with div σ = 0, and

∫
Q
σ(x)dx = 0. Let x ∈ Q

be a Lebesgue point for f(·, σ(·) + η). By (3.1), and in view of Proposition 2.2, we
have that ∫

B(x,r)

f(y, σ(y) + η)dy ≤ lim inf
n→∞

∫
B(x,r)

f(y, σn(y) + η)dy

for sufficiently small r > 0. Thus, (6.10) yields

1

LN (B(x, r))

∫
B(x,r)

f(y, σ(y) + η)dy ≤ jeff
∞ (η).

Letting r → 0+, and since a.e. point x ∈ Q is a Lebesgue point for f(·, σ(·) + η), we
deduce that f(x, σ(x) + η) ≤ jeff

∞ (η) for LN -a.e. x ∈ Q. Taking (6.9) into account, we
deduce that η ∈ Keff . Thus, (6.8) holds.

Let us remark that, although our new definition of Keff provided by Proposi-
tion 6.2 is novel, the study of bounds on the effective strength set in this context is
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not. Kohn and Little [37] considered the case of antiplane shear in the two-dimensional
case, and there the corresponding sets K(x) are rectangles whose orientation varies
from point to point. In this case their analysis is equivalently performed on both curl-
free fields and symmetrized gradients. A similar study is considered in [27], where
some interesting new bounds are proved in three dimensions for both gradients and
divergence-free fields.

An interesting open question is whether jeff
∞ , which enters the expression of Keff

in (6.8), can be recovered in the general case as a relevant energy density via ho-
mogenization. Let us assume that f : R

N × R
d → R is a Carathéodory function,

(0, 1)N -periodic in its first variable. For ε > 0, define Jp,ε : L1(Ω; Rd) → [0,+∞] by

Jp,ε(v) :=

⎧⎪⎨
⎪⎩

(∫
Ω

f
(x
ε
, v(x)

)p

dx

)1/p

if v ∈ Lp(Ω; Rd) ∩ kerA,

+∞ otherwise,

where A is a constant rank operator (see (2.1)). If f(x, ·) is A-quasiconvex and if (3.2)
holds we have, in view of Theorem 3.2, that Jp,ε Γ(L1(Ω; Rd))-converges as p → ∞
to J∞,ε : L1(Ω; Rd) → [0,+∞] defined by

Jε(u; Ω) :=

⎧⎨
⎩

ess sup
x∈Ω

f
(x
ε
, v(x)

)
if v ∈ L∞(Ω; Rd) ∩ kerA,

+∞ otherwise.

A first step toward answering the above question is to decide whether the Γ-limit
(as ε → 0+) of Fε with respect to the weak* topology of L∞(Ω; Rd) may itself be
written in supremal form. If this is the case, under which assumptions on f is jeff

∞
the supremand of the Γ-limit? General homogenization and relaxation results for
integral functionals in the context of A-quasiconvexity have been studied by Braides,
Fonseca, and Leoni in [15]. We also refer the reader to the recent paper by Ansini
and Garroni [1] where, in the divergence-free case Av = div v, some of the general
arguments of [15] are simplified and more explicit constructions are given. Except
for some recent progress in the unconstrained case and in the curl-free case (see, e.g.,
[29]), the corresponding questions for supremal functionals are yet to be addressed.
We remark that the condition on f which should be relevant in this context is the
necessary and sufficient condition for the weak* lower semicontinuity in L∞(Ω; Rd) of
supremal functionals of the type

v �→ ess sup
x∈Ω

f(x, v(x)).

For the general case of constant rank PDE constraints on the fields v such a condition
has not yet been identified. In the unconstrained scalar case, which corresponds to
A ≡ 0, it is known (see Barron, Jensen, and Wang [8]) that the necessary and sufficient
condition for lower semicontinuity is the level set convexity of f(x, ·), that is, for LN -
a.e. x ∈ Ω and every u ∈ R

m, the sets
{
v ∈ R

d : f(x, v) ≤ γ
}

are convex for any
choice of γ ∈ R. For the case v = ∇u in a vectorial setting, corresponding to the
particular choice A = 0 ⇔ curl u = 0, the necessary and sufficient condition for the
lower semicontinuity of the functional W 1,∞(Ω; Mm×N ) � u �→ ess supx∈Ω f(x,∇u(x))
with respect to the weak* topology in W 1,∞(Ω; Mm×N ) has been identified in [8] as
being the strong Morrey quasiconvexity of f in the last variable. Let Q = (0, 1)N . A
Borel measurable map g : M

m×N → R is said to be strong Morrey quasiconvex if for
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any ε > 0, each A ∈ M
m×N , and any K > 0, there exists δ = δ(ε,K,A) > 0 such that

if ϕ ∈ W 1,∞(Q; Rm) satisfies

‖∇ϕ‖L∞(Q;Mm×N ) ≤ K, max
x∈∂Q

|ϕ(x)| ≤ δ,

then

g(A) ≤ ess sup
x∈Q

g(A + ∇ϕ(x)) + ε.

In the curl-free case the question of whether the corresponding jeff
∞ arises directly

as a relevant energy density via homogenization has been answered affirmatively by
Briani, Garroni, and Prinari in [16] under the assumption of level set convexity on
f(x, ·).

6.2. The new Aronsson equations suggested by power-law resistivity.
In what follows we will focus on Corollary 4.4, and motivated by the results of the
previous subsection we derive the Euler–Lagrange equation associated with the min-
imization of Sq. Next we identify, via a formal limiting procedure as q → ∞, the
candidate for the Euler–Lagrange equation (the Aronsson equation) corresponding to
the minimization problem of the Γ-limit S∞.

For q ≥ 1 and A smooth, any minimizer b of Sq subject to appropriate boundary
conditions must satisfy

Sq(b) ≤ Sq(b + tϕ)

for any t ∈ R and any ϕ ∈ C∞
c (Ω; RN ) such that div ϕ = 0 in Ω. Thus, for any such

ϕ, we must have

d

dt
Sq(b + tϕ)|t=0 = 0.(6.11)

Since

d

dt
Sq(b + tϕ)

=
1

q

(∫
Ω

〈Ab + tAϕ, b + tϕ〉
q
2 dx

) 1
q−1

d

dt

∫
Ω

〈Ab + tAϕ, b + tϕ〉
q
2 dx

=
1

2

(∫
Ω

〈Ab + tAϕ, b + tϕ〉
q
2 dx

) 1
q−1

×
∫

Ω

〈Ab + tAϕ, b + tϕ〉
q−2
2

(
〈Aϕ, b〉 + 〈Ab, ϕ〉 + 2t〈Aϕ,ϕ〉

)
dx,

(6.11) becomes∫
Ω

〈
〈A(x)b(x), b(x)〉

q−2
2

((
AT (x) + A(x)

)
b(x)

)
, ϕ(x)

〉
dx = 0(6.12)

for all ϕ ∈ C∞
c (Ω; RN ), where AT stands for the transpose of A.
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Testing in (6.12) with ϕ = curl ξ, for ξ ∈ C∞
c (Ω), we find that b must satisfy the

system

{
curl

[
〈Ab, b〉 q−2

2

(
AT + A

)
b
]

= 0 in Ω,

div b = 0 in Ω
(6.13)

in the sense of distributions.

We now focus on the physically more relevant case N = 3. Note that we may
rewrite the left-hand side of the first equation in (6.13) as

curl
[
〈Ab, b〉

q−2
2

(
AT + A

)
b
]

= 〈Ab, b〉
q−2
2 curl

[(
AT + A

)
b
]
+

(
q − 2

2
〈Ab, b〉

q−4
2 ∇〈Ab, b〉

)
∧
(
AT + A

)
b

= 〈Ab, b〉
q−2
2 curl

[(
AT + A

)
b
]

+
q − 2

2
〈Ab, b〉

q−4
2

((
[D(Ab)]

T
b + [Db]

T
Ab
)
∧
(
AT + A

)
b
)
,

where u ∧ v := (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1) is the exterior (cross) product
of u = (u1, u2, u3) and v = (v1, v2, v3) in R

3.

Thus, for q > 4, we may rewrite the system (6.13) as

⎧⎪⎪⎨
⎪⎪⎩

(
[D(Ab)]

T
b + [Db]

T
Ab
)
∧
(
AT + A

)
b

+ 2
q−2 〈Ab, b〉curl

[(
AT + A

)
b
]

= 0 in Ω,

div b = 0 in Ω

(6.14)

after formally dividing the first equation in (6.13) by q−2
2 〈Ab, b〉 q−4

2 . Note that at least
the necessary condition which must hold in order to perform the division is satisfied,
since on the set where 〈Ab, b〉 = 0 the resulting expression also vanishes.

The limiting system as q → ∞ reads

{ (
[D(Ab)]

T
b + [Db]

T
Ab
)
∧
(
AT + A

)
b = 0 in Ω,

div b = 0 in Ω.
(6.15)

In the isotropic and homogeneous case, where A is taken to be the identity matrix in
M

3×3, the systems (6.14) and (6.15) become

{ (
[Db]

T
b
)
∧ b + 1

q−2 |b|2curl b = 0 in Ω,

div b = 0 in Ω
(6.16)

and { (
[Db]

T
b
)
∧ b = 0 in Ω,

div b = 0 in Ω,
(6.17)
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respectively. Thus, smooth solutions of (6.17) are solenoidal vector fields b whose

values at x ∈ Ω are eigenvectors of [Db(x)]
T
. Equivalently, (6.17) can be written as{

b ∧∇|b|2 = 0 in Ω,

div b = 0 in Ω.
(6.18)

Comparing with the curl-free situation, the system (6.13) (in the isotropic, homo-
geneous case A = Id ∈ M

N×N ) can be viewed as being dual to the p-Laplace equation
(5.16) which reduces to the usual Laplace equation Δu = 0 (u is harmonic) when
p = 2. Similarly, if q = 2, (6.13) becomes (again, take A = Id ∈ M

N×N ){
curl b = 0 in Ω,

div b = 0 in Ω.
(6.19)

Equivalently, with b(x1, . . . , xN ) = (b1(x1, . . . , xN ), . . . , bN (x1, . . . , xN )), this is a Riesz
system of partial differential equations{

∂bi
∂xj

=
∂bj
∂xi

(i, j = 1, . . . , N) in Ω,∑N
i=1

∂bi
∂xi

= 0 in Ω,

a generalized Cauchy–Riemann system (see Stein and Weiss [43]). Indeed, in the
two-dimensional case (6.19) is, simply, the system of Cauchy–Riemann equations{

∂b2
∂x1

= ∂b1
∂x2

in Ω,
∂b2
∂x2

= − ∂b1
∂x1

in Ω.
(6.20)

In this case b1 − ib2 is an analytic function of z = x1 + ix2, and b = (b1, b2) is
the gradient of a harmonic function in the region Ω. Vector-valued functions b =
(b1, . . . , bN ) : Ω ⊂ R

N → R
N which are gradients of harmonic functions in Ω are

called generalized analytic [43].
Viscosity solutions of the infinity-Laplace equation (5.17) arising in the curl-free

case are called infinity-harmonic functions. In view of the duality described above,
we will loosely refer to the solutions of (6.17) as infinity analytic (although the notion
of solution to (6.17) will later need to be understood in an appropriate sense). We
conjecture that the system (6.17) (or, equivalently, (6.18)) is the correct “Aronsson
equation” associated with the minimization of the supremal functional

b �→ ess sup
x∈Ω

|b(x)|(6.21)

considered on divergence-free fields b. However, many basic questions about the sys-
tem (6.17) will need to be answered in order to justify this properly. For example,
is it true that, in the spirit of the results available in the curl-free case, absolute
(local) minimizers of (6.21) are infinity analytic? In particular, in which sense do
absolute minimizers solve the system (6.17)? Are they the unique solution of this
system? Unlike in the curl-free case, where one shows that absolute minimizers of
u �→ ess supx∈Ω |∇u(x)| are solutions to the infinity-Laplace equation in the viscosity
sense (note that here u is a scalar function), the method of viscosity solutions may not
be the right tool for the study of (6.17) (whose solutions must be vector fields). To
overcome this difficulty, we need to pursue alternative methods, capable of handling
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the vectorial case. Perhaps the most outstanding problem along these lines is to un-
derstand whether an efficient weak formulation for the system (6.15) can be identified
in the case of nonsmooth coefficients A.

Finally, we would like to comment very briefly on the limiting cases of the usual
(p, q)-Hölder duality (here, q = p′, with 1

p + 1
p′ = 1) when p → ∞ (which corresponds

to q → 1+) or q → ∞ (equivalently, p → 1+). In the context of power-law materials
at “level” p, convex duality is fully understood. Guided by the duality between
the p-Laplace equation (5.16) and the system (6.16) (as we have already seen, these
equations correspond to dual variational principles), it is not hard to see, formally,
that when p → 1+ in (5.16) one has that u satisfies the 1-Laplace equation (see,
e.g., [36])

(6.22) div

(
∇u

|∇u|

)
= 0,

while when q → 1+ in (6.16), b satisfies the system

(6.23) curl

(
b

|b|

)
= 0.

Again, heuristically, if u1 is a solution to (6.22), then the field b1 defined by

(6.24) b1 :=
∇u1

|∇u1|

is divergence free, and we have |b1|2 = 1 a.e. Therefore, b1 is a solution of (6.18) (or,
equivalently, (6.17)), which is the limiting (q → ∞) system associated with (6.16).
On the other hand, if one starts from a field b1 which satisfies (6.23), one is given a
function u1 such that

(6.25) ∇u1 :=
b1
|b1|

.

It is not hard to check that u1 formally satisfies Δ∞u1 = 0.
Whether a satisfactory mathematical theory can be developed to justify these

statements in some appropriate weak sense is an intriguing open question which we
believe deserves further investigation.
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NEWTONIAN LIMIT FOR WEAKLY VISCOELASTIC FLUID
FLOWS OF OLDROYD TYPE∗

LUC MOLINET† AND RAAFAT TALHOUK‡

Abstract. This paper is concerned with regular flows of incompressible weakly viscoelastic
fluids which obey a differential constitutive law of Oldroyd type. We study the Newtonian limit for
weakly viscoelastic fluid flows in R

N or T
N for N = 2, 3, when the Weissenberg number (relaxation

time measuring the elasticity effect in the fluid) tends to zero. More precisely, we prove that the
velocity field and the extrastress tensor converge in their existence spaces (we examine the Sobolev-Hs

theory and the Besov-Bs,1
2 theory to reach the critical case s = N/2) to the corresponding Newtonian

quantities. This convergence results are established in the case of “ill-prepared” data. We deduce,
in the two-dimensional case, a new result concerning the global existence of weakly viscoelastic fluid
flow. Our approach makes use of essentially two ingredients: the stability of the null solution of the
viscoelastic fluid flow and the damping effect, on the difference between the extrastress tensor and
the tensor of rate of deformation, induced by the constitutive law of the fluid.
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1. Introduction, main results, and notations. In this paper we investigate
the Newtonian limit of weakly viscoelastic fluid flows of Oldroyd type in Ω = R

N or
Ω = T

N .
The dynamics of homogeneous, isothermic, and incompressible fluid flows is de-

scribed by the partial differential derivatives system given by

(1)

{
ρ
(
u′ + (u.∇)u

)
= f + divσ,

divu = 0.

Here ρ > 0 is the (constant) density and f is the external density body forces. u =
u(t, x) is the velocity vector field and σ = σ(t, x) is the symmetric stress tensor, which
is split into two parts: σ = −pId + τ , where −pId is the spherical part (p = p(t, x)
the hydrodynamics pressure) and τ is the tangential part or the extrastress tensor.
The fluid is called Newtonian if τ can be expressed linearly in terms of the rate of
strain tensor D[u] = 1

2 (∇u + ∇uT ), i.e.,

(2) τ = 2ηD[u],

where η is the viscosity coefficient of the fluid (in this case (1) is the Navier–Stokes
system). A fluid for which (2) is not valid is called non-Newtonian or complex fluid.

Unfortunately no universal constitutive law exists for non-Newtonian fluids (see,
for instance, [10]). In this paper we consider a class of fluids with memory. For this
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kind of fluid, the extrastress tensor at a time t depends on D[u] and its history. A
model taking into account this property is the Oldroyd one. The constitutive law of
Oldroyd’s type [9] is given by

(3) τ + λ1
Daτ

Dt
= 2η

(
D + λ2

DaD

Dt

)
,

where 0 ≤ λ2 < λ1, λ1 is the relaxation time, and λ2 is the retardation time. The
symbol Da

Dt denotes an objective (frame indifferent) tensor derivative (see [10]). More
precisely,

Daτ

Dt
= τ ′ + (u · ∇)τ + τW − Wτ − a(Dτ + τD)

with W[u] = 1
2 (∇u −∇uT ) the vorticity tensor and a a real number verifying −1 ≤

a ≤ 1. The limit case λ1 > 0 and λ2 = 0 corresponds to a purely elastic fluid (which
is excluded in our analysis), while the limit case λ1 = λ2 = 0 corresponds to a viscous
Newtonian fluid.

The constitutive law (3) is not under an evolution form. This equation can be
transformed into a transport equation by splitting the extrastress tensor into two parts
τs + τp, where τs corresponds to a Newtonian part (the solvant) and τp to the elastic
part (the polymer). Setting τs = 2η(1−ω)D[u], with ω defined by 0 ≤ ω = 1− λ2

λ1
≤ 1,

it follows from (3) that τp satisfies the following transport equation:

(4) τp + λ1
Daτp
Dt

= 2ηωD[u].

From now on we shall denote τp = τ and rewrite (1) and (4) by using dimensionless
variables, and we obtain the following partial differential system:

(5)

⎧⎪⎨
⎪⎩

Re (u′ + (u.∇)u) − (1 − ω)Δu + ∇p = f + div τ
divu = 0

ε
(
τ ′ + (u.∇)τ + g(∇u, τ)

)
+ τ = 2ωD[u]

in Ω,

where g is a bilinear tensor-valued mapping defined by

g(∇u, τ) = τW[u] − W[u]τ − a(D[u]τ + τ D[u]),

Re = ρUL
η and ε = λ1

U
L are, respectively, the well-known Reynolds number and the

Weissenberg number (U and L represent a typical velocity and typical length of the
flow). It is worth noticing that the Weissenberg number is usually denoted by We.
Here, since we will make the Weissenberg number tend to zero, we prefer to denote
it by ε. It is crucial to note that when ε = 0, (5) reduces to the incompressible
Navier–Stokes system

(6)

{
Re (v′ + (v.∇)v) − Δv + ∇p = f

div v = 0
in Ω .

On the other hand, from the definition of the retardation parameter we observe that
ω = 1 − μ/ε, where 0 ≤ μ < ε is given by μ = λ2

U
L . Therefore, the Newtonian limit

of (5) is actually a limit with two parameters ε and μ. To simplify the study we could
drop a parameter by assuming that the rate μ/ε (or equivalently ω) is constant as
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ε tends to zero. In this work, instead of doing this, we will only impose a uniform
upper bound on ω (= 1 − μ/ε) with respect to ε.

System (5) is completed by the following initial conditions:

(7) u|t=0 = u0 and τ|t=0 = τ0.

Our approach is quite general and uses the two following ingredients.
• The stability of the null solution of (5) for a fixed ε (see [1] on R

N or T
N and

[6], [4], [8] for the case of a bounded domain).
• The damping of factor 1/ε on the quantity τ − 2ωD[u] induced by equation

(5)3.
Our results in the Sobolev spaces are valid for Ω = R

N or T
N , but to simplify

the expository we will only consider Ω = R
N and give the necessary modification to

handle the periodic case.
The main idea is to cut u and τ in low and high frequencies at a level depending on

1/ε. Roughly speaking, forgetting the nonlinear terms, the high frequency part of u−v
(v is the Newtonian solution; see (6) associated with the initial data u0) will satisfy the
homogeneous system linearized around the null solution plus a nonhomogeneous part
containing a high frequency term of v. But by the Lebesgue monotone convergence
theorem, this term will tend to zero in the appropriate norms. The stability of the null
solution (cf. [1], [6]) will then force the high frequencies of u− v and ε1/2τ to remain
small (recall that (u− v)(0) = 0). On the other hand, the remaining frequencies will
tend to zero due to the damping effect on τ − 2ωD[u] which we will use in the same
time as a smoothing effect. We will describe the main steps of the proof in section
1.3.

Note that our analysis is in the spirit of numerous works on the incompressible
limit of compressible Navier–Stokes equations (see, for instance, [2] and the references
therein). However, our analysis is in some aspects easier since there is a damping effect
relating to the small parameter whereas in the incompressible limit it is a dispersive
effect.

To our knowledge, no such result exists in the literature concerning our study,
i.e., the Newtonian limit of non-Newtonian fluid flows. Moreover, our global existence
result for regular weakly viscoelastic fluids flow in dimension two (see Corollary 1.1)
is new and, in particular, not contained in the global existence results of [1].

1.1. Function spaces and notations. In what follows, C denotes a positive
constant which may differ at each appearance. When writing x � y (for x and y two
nonnegative real numbers), we mean that there exist C1 and C2 two positive constants
(which do not depend on x and y) such that C1x ≤ y ≤ C2x. When writing x � y
(for x and y two nonnegative real numbers), we mean that there exists C1 a positive
constant (which does not depend on x and y) such that x ≤ C1y.

P will denote the Leray projector on solenoidal vector fields. For 1 ≤ p, q ≤ ∞,
we denote by ‖ · ‖Lp the usual Lebesgue norm on Ω = R

N ,

‖v‖Lp =

(∫
RN

|v|p(x) dx

)1/p

and by ‖ · ‖Lq
tL

p the space-time Lebesgue norm on ]0, t[×Ω,

‖v‖Lq
tL

p =

[∫ t

0

‖v(τ)‖qLp dτ

]1/q
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with the obvious modification for p, q = ∞. For s ∈ R, we denote by ‖ · ‖Hs the usual
Sobolev norms on Ω = R

N ,

‖v‖Hs =

(∫
RN

(1 + |ξ|2)s|v̂(ξ)|2 dξ
)1/2

,

where v̂ is the Fourier transform of v. The corresponding scalar product will be de-
noted by ((·, ·))Hs . Finally, for any ε > 0 we introduce the following Fourier projectors:

(8) P̂εf(ξ) = χ[0,εα](|ξ|)f̂(ξ) and Q̂εf(ξ) = χ]εα,∞[(|ξ|)f̂(ξ),

where α > 0 will be specified later.

1.1.1. Homogeneous Besov spaces. Let ψ be in S(R) such that ψ̂ is sup-
ported by the set {z / 2−1 ≤ |z| ≤ 2 } and such that

(9)
∑
j∈Z

ψ̂(2−jz) = 1 , z �= 0.

Define ϕ by

(10) ϕ̂ = 1 −
∑
j≥1

ψ̂(2−jz),

and observe that ϕ ∈ D(R), ϕ̂ is supported by the ball {z / |z| ≤ 2 }, and ϕ̂ = 1
for |z| ≤ 1. We denote now by Δj and Sj the convolution operators on R

N whose

symbols are, respectively, given by ψ̂(2−j |ξ|) and ϕ̂(2−j |ξ|) where ξ ∈ R
N and |ξ| =√

ξ2
1 + · · · + ξ2

N . Also we define the operator Δ̃j by

Δ̃j = Δj−1 + Δj + Δj+1

which satisfies

Δ̃j ◦ Δj = Δj .

For s ∈ R, the homogeneous Besov space Bs,1
2 (RN ) (to simplify the notation we

will simply denote it by Bs(RN )) is the completion of S(RN ) with respect to the
seminorm

(11) ‖f‖Bs =
∥∥{2js‖Δj(f)‖L2}

∥∥
l1(Z)

.

1.2. Main results.
Theorem 1.1. Let N = 2, 3 and let (u0, τ0) ∈ Hs(RN ) × Hs(RN2

) and f ∈
L2

loc(R;Hs−1) with s > N/2. Let v be the Newtonian solution satisfying (6) with
initial data u0 and let 0 < T0 ≤ ∞ such that v ∈ C([0, T0];H

s). Then for any
δ ∈ ]0, 1[ there exists

ε0 = ε0(N,Re, δ, ‖v‖L∞
T0

Hs , ‖∇v‖L2
T0

Hs , ‖τ0‖Hs , ‖Pf‖L2
T0

Hs−1) > 0

such that for any 0 < ε < ε0 the system (5), with

(12) 0 < ω ≤ 1 − δ,
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admits a unique solution

uε ∈ C([0, T0];H
s), ∇uε ∈ L2(0, T0;H

s), τε ∈ C([0, T0];H
s).

Moreover,

(13) uε −→
ε→0

v in C([0, T0];H
s),

(14) τε − 2ωD[uε] −→
ε→0

0 in L2(0, T0;H
s),

(15) ε1/2τε −→
ε→0

0 in C([0, T0];H
s).

Recalling that in dimension two, the solution of the Newtonian problem exists for
all positive times, we deduce the following result.

Corollary 1.1. In dimension two there exists

ε0 = ε0(Re, δ, ‖v‖L∞
∞Hs , ‖∇v‖L2

∞Hs , ‖τ0‖Hs , ‖Pf‖L2
∞Hs−1) > 0

such that for any 0 < ε < ε0 the solution of (5) given by Theorem 1.1 exists for all
positive times.

Remark 1.1. Note that Theorem 1.1 is a convergence result for “ill-prepared”
data. Indeed the quantity τ0 − 2ωD[u0] is not assumed to be small with ε. Moreover,
this is a singular limit result since τ and D[u] do not belong to the same function
space. In particular, D[u0] is not as the same level of Sobolev regularity as τ0.

Remark 1.2. According to the introduction, the Newtonian limit process is ac-
tually a limit process with two parameters ε and μ tending to zero with 0 ≤ μ < ε.
The assumption (12) of Theorem 1.1 means that we impose the following additional
conditions on the rate μ/ε as (ε, μ) tends to zero (0, 0):

δ ≤ μ

ε
=

λ2

λ1
< 1

for some fixed 1 > δ > 0.
As mentioned in the introduction, the use of Besov spaces enables us to reach the

critical index s = N/2.

Theorem 1.2. Let N = 2, 3 and let (u0, τ0) ∈ BN/2−1(RN ) × BN/2(RN2

) and
f ∈ L1

loc(B
N/2−1). Let v be the Newtonian solution satisfying (6) with initial data u0

and let 0 < T0 ≤ ∞ such that v ∈ C([0, T0];B
N/2−1). There exist 0 < ω0 < 1 and

ε0 = ε0(N,Re, ω0, ‖τ0‖BN/2 ,Pf, u0) > 0 such that for any 0 < ε < ε0 the system (5),
with 0 < ω ≤ ω0, admits a unique solution

uε ∈ C([0, T0];B
N/2−1), uε ∈ L1(0, T0;B

N/2+1), τε ∈ C([0, T0];B
N/2).

Moreover,

(16) uε −→
ε→0

v in C([0, T0];B
N/2−1),

(17) τε − 2ωD[uε] −→
ε→0

0 in L1(0, T0;B
N/2),
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(18) ε1/2τε −→
ε→0

0 in C([0, T0];B
N/2) .

In dimension two, using the classical global existence result in B0 for the Newto-
nian problem (see, for instance, [2]), we get the following corollary.

Corollary 1.2. In dimension two there exists

ε0 = ε0(Re, ω0, ‖v‖L∞
∞B0 , ‖∇v‖L1

∞B2 , ‖τ0‖B1 , ‖Pf‖L1
T0

B0)

such that for any 0 < ε < ε0 the solution of (5) given by Theorem 1.2 exists for all
positive times.

In the surcritical case, s > N/2, we get similar results by considering nonho-
mogeneous Besov spaces. Note that ε0 then depends explicitly on some norms of
v.

Theorem 1.3. For s > N/2, Theorem 1.2 and Corollary 1.2 also hold by replac-
ing the function spaces BN/2−1 by Bs−1∩BN/2−1 and BN/2 by Bs∩BN/2. Moreover,
ε0 will depend now explicitly on some norms of v and Pf . More precisely, for s > N/2,
we have

ε0 = ε0(N,Re, ω0, ‖v‖L∞
T0

BN/2−1 , ‖∇v‖L1
T0

Bs , ‖τ0‖BN/2 , ‖Pf‖L1
T0

BN/2−1).

1.3. Sketch of the proof of Theorem 1.1. In this subsection we want to
explain the main steps of the proof of Theorem 1.1. Note that Theorem 1.2 follows
from the same arguments. To simplify we drop the nonlinear terms in (5). The first
step consists in noticing that W := u− v satisfies the following system:

(19)

⎧⎪⎪⎨
⎪⎪⎩

ReWt − (1 − ω)QεΔW − PεΔW = PεP(div τ − ωΔu)
−ωQεΔv + QεPdiv τ,

divW = 0,
ετt + Qετ = 2ωQεD[W ] + 2ωQεD[v] − Pε(τ − 2ωD[u]),

where Pε and Qε are the projectors on, respectively, the low and the high frequencies
defined in (8).

Projecting on the high frequencies with Qε (see (8) for the definition), proceeding
as in [1], it is easy to check that we get a differential inequality close to

d

dt

(
‖QεW‖2

Hs + ε‖Qετ‖2
Hs

)
+ ‖Qε∇W‖2

Hs + ‖Qετ‖2
Hs � ‖Qε∇v‖2

Hs ,

where we drop all the constants to clarify the presentation. Therefore, since W (0) = 0,
ε → 0, and, by the Lebesgue monotone convergence theorem, ‖Qε∇v‖L2

T0
Hs → 0, we

infer that ‖QεW‖L∞
T0

Hs goes to zero with ε. Now, to treat the low frequency part, we

observe that, computing Pε(19)3 − 2ω
ReD[(19)1] and taking the Hs−1-scalar product of

the resulting equation with Z := τ − 2ωD[u], we obtain something like

(20)
d

dt
‖PεZ‖2

Hs−1 +
1

ε
‖PεZ‖2

Hs−1 � ‖Pετ‖2
Hs + ‖Pεf‖2

Hs−1 .

On the other hand, Pε(19)3 can be rewritten as

εPετt + εβPετ = 2ωεβPεD[W ] + 2ωεβPεD[v] − (1 − εβ)PεZ,
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where 0 < β < 1 will be specified later. Therefore, taking the Hs-scalar product of
this last equality with τ and adding with the scalar product of (19)1 with W , we get
a differential inequality close to

d

dt

(
‖PεW‖2

Hs +ε‖Pετ‖2
Hs

)
+‖Pε∇W‖2

Hs +εβ‖Pετ‖2
Hs � ε−β‖PεZ‖2

Hs +εβ‖Pε∇v‖2
Hs .

Adding this last inequality and ε2β(20) we finally obtain

d

dt

(
‖PεW‖2

Hs + ε‖Pετ‖2
Hs

)
+ ‖Pε∇W‖2

Hs + εβ‖Pετ‖2
Hs + ε2β−1‖PεZ‖2

Hs−1

� ε2β‖Pεf‖2
Hs−1 + εβ‖Pε∇v‖2

Hs

since ε−β‖PεZ‖2
Hs ≤ ε−βε−2α‖PεZ‖2

Hs−1 ≤ ε2β−1

4 ‖PεZ‖2
Hs−1 as soon as 1−3β−2α >

0. This last inequality enables us to conclude for the low frequency part. Note that
we used the damping effect also as a smoothing effect.

2. Proof of Theorem 1.1. Let us recall the following existence theorem proven
by Chemin and Masmoudi [1].

Theorem 2.1. Let (u0, τ0) ∈ Hs(RN ) × Hs(RN2

) with s > N/2. Then there
exists a unique positive maximal time T ∗ and a unique solution

(u, τ) ∈ C([0, T ∗[;Hs) ∩ L2
loc(0, T

∗;Hs+1) × C([0, T ∗[;Hs).

Moreover, if T ∗ < ∞, then for all N/2 < s′ ≤ s

(21) lim sup
t↗T∗

(
‖u(t)‖Hs′ + ‖τ(t)‖Hs′

)
= +∞.

Remark 2.1. Actually in [1] the following sharper blowup condition is derived:

T ∗ < ∞ =⇒
∫ T∗

0

‖∇u(t)‖L∞ + ‖τ(t)‖2
L∞ dt = +∞,

but for our purpose the classical blowup condition (21) will be sufficient.
Let us also recall a commutator estimate and classical Leibniz rules for fractional

derivatives.
Lemma 2.2. Let Δ be the Laplace operator on R

N , N ≥ 1. Denote by Js the
operator (1 − Δ)s/2.

• For every s > N/2,

(22) ‖[Js, f ]g‖L2(RN ) � ‖∇f‖Hs(RN )‖g‖Hs−1(RN ).

• For every s > 0, 1 < q, q′ ≤ ∞, and 1 < r, p, p′ < ∞ with 1/p+1/q = 1/p′ +1/q′ =
1/r,

(23) ‖Js(fg)‖Lr(RN ) � ‖Jsf‖Lp(RN )‖g‖Lq(RN ) + ‖f‖Lq′ (RN )‖Jsg‖Lp′ (RN ).

• For every p, r, t such that r, p ≥ t and r + p− t > N/2,

(24) ‖fg‖Ht(RN ) � ‖f‖Hp(RN )‖g‖Hr(RN ).

Proof. Estimates (23) and (24) are classical and can be found in [7] and [5].
Estimate (22) is a variant of Kato–Ponce’s commutator estimates. It is proven in [12]
in dimension one but the proof works also in dimensions two and three.
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To treat some nonlinear terms in dimension two we will need, moreover, the
following Gagliardo–Nirenberg-type inequality (see, for instance, [3]).

Lemma 2.3. Let N ≥ 2, for u ∈ H1(RN ) the following Sobolev-type inequality
holds for any 2 ≤ p < +∞ such that 1

2 − 1
N ≤ 1

p :

(25) ‖u‖Lp(RN ) � ‖u‖(N
p −N

2 +1)

L2(RN )
‖∇u‖(N

2 −N
p )

L2(RN )
.

2.1. Estimate on W = u − v and ε1/2τ . We start by deriving a differential
inequality for the Hs-norms of W and ε1/2τ . The high frequency part of this inequality
is directly inspired by the stability proof of the null solution in [1]. This will enable
us to control the very high frequency part (Qεu,Qετ) of the solution. The other part
(Pεu, Pετ) will be treated by using the damping effect.

For ε > 0 fixed, Theorem 2.1 gives the existence and uniqueness of the solution
(uε, τε) of (5) in C([0, T ∗

ε [;Hs) ∩ L2
loc(0, T

∗
ε ;Hs+1) × C([0, T ∗

ε [;Hs) for some T ∗
ε > 0.

To simplify the notations, we drop the index ε on u and τ in what follows. Setting

Z = τ − 2ωD[u]

we have the following estimates.

Lemma 2.4. For ε > 0 small enough, the solution (u, τ) of (5) satisfies, for all
0 < t < T ∗

ε and 0 < β < 1,

d

dt

(Re

2
‖W‖2

Hs +
ε

4ω
‖τ‖2

Hs

)
+

1

4
‖Pε∇W‖2

Hs +
(1 − ω)

2
‖Qε∇W‖2

Hs

+
1

4ω
‖Qετ‖2

Hs +
εβ

4ω
‖Pετ‖2

Hs

≤
(

1 +
4ε−β

ω

)
‖PεZ‖2

Hs + 4ω‖Qε∇v‖2
Hs + 8ωεβ‖Pε∇v‖2

Hs

+
C Re

(1 − ω)2
(‖∇u‖2

Hs + ‖∇v‖2
Hs)‖W‖2

Hs +
C

ω
ε2−β‖∇u‖2

Hs‖τ‖2
Hs(26)

whenever 0 < ω < 1. Moreover, for 0 < ω ≤ 10−2, it holds that

d

dt

(Re

4
‖W‖2

Hs +
ε

2
‖τ‖2

Hs

)
+

1

8
‖Pε∇W )‖2

Hs +
(1 − ω)

4
‖Qε∇W‖2

Hs

+
1

4
‖Qετ‖2

Hs +
εβ

4
‖Pετ‖2

Hs

≤ (1 + 4ε−β)‖PεZ‖2
Hs + 8ω2‖Qε∇v‖2

Hs + 8ω2εβ‖Pε∇v‖2
Hs

+
C Re

(1 − ω)2
(‖∇u‖2

Hs + ‖∇v‖2
Hs)‖W‖2

Hs + C ε2−β‖∇u‖2
Hs‖τ‖2

Hs .(27)

Proof. Notice that W verifies the equation

Re
(
Wt + P(u.∇)W

)
− ΔW = Pdiv τ − ωΔu− Re P(W.∇)v

= PεP
(
div τ − ωΔu

)
− ωQεΔv

+QεPdiv τ − ωQεΔW − Re P(W.∇)v.(28)
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Therefore, multiplying scalarly (28) by W in Hs(RN ), using the Cauchy–Schwarz
inequality, Lemma 2.2, and that u is divergence free, we obtain

1

2
Re

d

dt
‖W‖2

Hs + ‖Pε∇W‖2
Hs + (1 − ω)‖Qε∇W‖2

Hs

≤ ((Qεdiv τ,W ))Hs + ‖PεZ‖Hs‖∇W‖Hs + ω‖Qε∇v‖Hs‖Qε∇W‖Hs

+C Re
∣∣∣((Js(u.∇)W,JsW ))L2

∣∣∣ + Re
∣∣∣((Js(W.∇)v, JsW ))L2

∣∣∣.(29)

To estimate the second to the last term of (29), we rewrite it with the help of a
commutator and apply the Cauchy–Schwarz inequality to the term containing this
commutator to get∣∣∣((Js(u.∇)W,JsW ))L2

∣∣∣ ≤ ∣∣∣(( (u.∇)JsW,JsW ))
∣∣∣ +

∥∥∥[Js, (u.∇)]W
∥∥∥
L2
‖JsW‖L2 .

Since u is divergence free, the first term of the right-hand side of this last inequality
cancels by integration by parts. Estimating the second term, thanks to Lemma 2.2,
we then obtain ∣∣∣((Js(u.∇)W,JsW ))L2

∣∣∣ ≤ C ‖∇u‖Hs‖∇W‖Hs‖W‖Hs .

Now, to estimate the last term of the right-hand side of (29) we have to distinguish
the cases N = 2 and N = 3.

• N = 3. Then by Lemma 2.2 and the Hölder, Sobolev, and Young inequalities,
we get∣∣∣((Js(W.∇)v, JsW ))L2

∣∣∣ ≤ ‖Js(W.∇)v‖L6/5‖JsW‖L6

�
(
‖JsW‖L2‖∇v‖L3 + ‖W‖L3‖Js∇v‖L2

)
‖Js∇W‖L2

� ‖W‖Hs‖∇v‖Hs‖∇W‖Hs .

• N = 2. In this case, using Hölder’s inequality and Lemmas 2.2 and 2.3 we infer that∣∣∣((Js(W.∇)v), JsW ))L2

∣∣∣ ≤ ‖Js(W.∇)v‖L3/2‖JsW‖L3

�
(
‖JsW‖L6‖∇v‖L2 + ‖W‖L6‖Js∇v‖L2

)
‖JsW‖L3

� ‖JsW‖L6‖Js∇v‖L2‖JsW‖L3

� ‖W‖Hs‖∇v‖Hs‖∇W‖Hs .

By Young’s inequalities it thus follows from (29) that

Re

2

d

dt
‖W‖2

Hs +
3

4
‖Pε∇W‖2

Hs +
(1 − ω)

2
‖Q>ε∇W‖2

Hs

≤ ((Qεdiv τ,W ))Hs + ‖PεZ‖2
Hs +

ω2

4(1 − ω)
‖Qε∇v‖2

Hs

+
C Re

(1 − ω)2

(
‖∇u‖2

Hs + ‖∇v‖2
Hs

)
‖W‖2

Hs .(30)

On the other hand, for 0 < β < 1, observing that

τ − 2ωD[u] = Qετ − 2ωQε(D[W ] + D[v])

+(1 − εβ)PεZ + εβ
(
Pετ − 2ωPε(D[W ] + D[v])

)
,
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we deduce from (5) that τ satisfies the equation

ε
(
τt + (u.∇)τ + g(∇u, τ)

)
+ Qετ + εβPετ = 2ωQεD[W ] + 2ωQεD[v]

+2ωεβPεD[W ] + 2ωεβPεD[v] − (1 − εβ)PεZ.

Taking the Hs-scalar product of this equation with τ and using Lemma 2.2 and the
Cauchy–Schwarz and Young inequalities we get

ε

2

d

dt
‖τ‖2

Hs +
1

2
‖Qετ‖2

Hs +
εβ

2
‖Pετ‖2

Hs ≤ 2ω((QεD[W ], τ))Hs + 8ε−β‖PεZ‖2
Hs

+8ω2‖Qε∇v‖2
Hs + 8ω2εβ(‖Pε∇W‖2

Hs + ‖Pε∇v‖2
Hs)

+C ε2−β‖∇u‖2
Hs‖τ‖2

Hs .(31)

We now separate the two cases.
• ω �= 0. Then, adding (30) and (31)/2ω we notice that the first term in the

right-hand side of (30) and (31) cancel each other and (26) follows. This gives (26)
for ε small enough since β > 0.

• 0 < ω ≤ 10−2. Then adding (30)/2+(31), estimating the two remaining Hs-
scalar products by integration by parts and using the Cauchy–Schwarz and Young
inequalities, one obtains (27).

2.2. Estimate on Z = τ −2ωD[u]. We will now take advantage of the damp-
ing effect on Z = τ − 2ωD[u].

Lemma 2.5. The solution (u, τ) of (5) satisfies, for all ε small enough and
0 < t < T ∗

ε ,

1

2

d

dt
‖Z‖2

Hs−1 +
1

2ε
‖Z‖2

Hs−1 ≤ 4ω

Re (1 − ω)
‖Pf‖2

Hs−1 +
(1 + ω)2

Re (1 − ω)
‖τ‖2

Hs

+
4

1 − ω
(Re‖∇u‖2

Hs + ‖τ‖2
Hs)‖u‖2

Hs .(32)

Proof. We apply 2ω
ReD[·] to (5)1 and substract the resulting equation from (5)2 to

obtain

(33) Zt −
(1 − ω)

Re
ΔZ +

1

ε
Z = −f1 − f2,

where

f1 =
2ω

Re
D[Pdiv τ ] − (1 − ω)

Re
Δτ +

2ω

Re
D[Pf ] − 2ωD[P(u.∇)u]

and

f2 = P(u.∇)τ + g(∇u, τ).

Taking the Hs−1-scalar product of (33) with Z we get

1

2

d

dt
‖Z‖2

Hs−1 +
(1 − ω)

4 Re
‖∇Z‖2

Hs−1 +
1

ε
‖Z‖2

Hs−1

≤ C
(1 + ω)2

Re (1 − ω)
‖τ‖2

Hs +
4ω

Re (1 − ω)
‖Pf‖2

Hs−1

+
4ω Re

1 − ω
‖(u.∇)u‖2

Hs−1 + 4‖(u.∇)τ‖2
Hs−1 + ‖g(∇u, τ)‖2

Hs−1 ,(34)
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where we used that

2ω

Re

∣∣∣((D[Pdiv τ ], Z))Hs−1

∣∣∣ ≤ C
2ω

Re
‖div τ‖Hs−1‖∇Z‖Hs−1

≤ 1 − ω

8 Re
‖∇Z‖2

Hs−1 + C
ω2

Re (1 − ω)
‖τ‖2

Hs .

Finally to control the nonlinear terms we notice that, thanks to (24),

‖a.∇b‖Hs−1 � ‖a‖Hs‖∇b‖Hs−1

which concludes the proof of (32).

2.3. Convergence to the Newtonian flow. We give here the proof in the
case 10−2 ≤ ω ≤ 1 − δ. The case 0 < ω ≤ 10−2 is simpler and can be handled in the
same way by using (27) instead of (26).

Adding (26) and ε2β(32), we obtain for ε small enough

d

dt

(
Re

2
‖W‖2

Hs +
ε

4ω
‖τ‖2

Hs +
ε2β

2
‖Z‖2

Hs−1

)

+
(1 − ω)

4
‖∇W‖2

Hs +
1

8ω
(‖Qετ‖2

Hs + εβ‖Pετ‖2
Hs) +

ε2β−1

4
‖Z‖2

Hs−1

≤ 8ω2‖Qε∇v‖2
Hs + 8ω2εβ‖Pε∇v‖2

Hs + C ε1−β‖∇u‖2
Hs

ε

4ω
‖τ‖2

Hs

+
C Re

(1 − ω)2
(‖∇v‖2

Hs + ‖∇u‖2
Hs)‖W‖2

Hs

+C
ε2β

(1 − ω)

[
1

Re
‖Pf‖2

Hs−1 + (Re‖∇u‖2
Hs + ‖τ‖2

Hs)‖u‖2
Hs

]
.(35)

Here, we used that for ε small enough,

(1 + ω)2

Re (1 − ω)
ε2β‖τ‖2

Hs ≤ εβ

8ω
‖τ‖2

Hs

and (
1 +

4ε−β

ω

)
‖PεZ‖2

Hs ≤ (1 + 202ε−β)ε−2α‖PεZ‖2
Hs−1 ≤ ε2β−1

4
‖Z‖2

Hs−1

as soon as β > 0 and 1 − 3β − 2α > 0.
From now on to simplify we thus take (α, β) = (1/8, 1/8). Setting

Xs(t) =
Re

2
‖W (t)‖2

Hs +
ε

4ω
‖τ(t)‖2

Hs +
ε2β

2
‖Z‖2

Hs−1

+

∫ t

0

(1 − ω)

4
‖∇W‖2

Hs +
1

8
‖Qετ‖2

Hs +
εβ

8
‖Pετ‖2

Hs +
ε2β−1

4
‖Z‖2

Hs−1 ds,

we infer that Xs satisfies the following differential inequality:

d

dt
Xs ≤ 8ω2‖Qε∇v‖2

Hs + 8ω2εβ‖Pε∇v‖2
Hs + C

ε2β

Re (1 − ω)
‖Pf‖2

Hs−1

+C( Re , δ)
[
ε2β‖τ‖2

Hs + ‖∇u‖2
Hs + ‖∇v‖2

Hs

]
Xs

+C
εβ

(1 − ω)
(Reεβ‖∇u‖2

Hs + εβ‖τ‖2
Hs)‖v‖2

Hs ,(36)
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where we rewrite u as W + v and use the triangle inequality when necessary. Hence,
Gronwall’s inequality leads to

Xs(t) ≤ exp
[
C( Re , δ)

(
ε2β‖τ‖2

L2
tH

s + ‖∇u‖2
L2

tH
s + ‖∇v‖2

L2
tH

s

)]
[
Xs(0) + 8ω2‖Qε∇v‖2

L2
tH

s + 8εβ‖∇v‖2
L2

tH
s + C

ε2β

Re δ
‖Pf‖2

L2
tH

s−1

+
εβ

δ
(Re εβ‖∇u‖2

L2
tH

s + εβ‖τ‖2
L2

tH
s)‖v‖2

L∞
t Hs

]
.(37)

Rewriting u as v + W , we finally obtain

Xs(t) ≤ exp
[
C( Re , δ)

(
‖∇v‖2

L2
tH

s + Xs(t)
)]

[
Xs(0) + 8ω2‖Qε∇v‖2

L2
tH

s + 8εβ‖∇v‖2
L2

tH
s + C

ε2β

Re δ
‖Pf‖2

L2
tH

s−1

+C
(1 + Re)εβ

δ
‖v‖2

L∞
t HsXs(t) + C

Re ε2β

δ
‖v‖2

L∞
t Hs‖∇v‖2

L2
tH

s

]
,(38)

where

(39) Xs(0) =
ε

4ω
‖τ0‖2

Hs +
ε2β

2
‖τ0 − 2ωD|u0]‖2

Hs−2 .

Let us now assume that T ∗
ε ≤ T0. Since (38) holds for any N/2 < s′ < s, noticing

that

‖Qε∇v‖L2
tH

s′ ≤ εα(s−s′)‖∇v‖L2
tH

s ,

we deduce from (38), (39), and the continuity of t → Xs′(t) that there exists

ε0(s, ‖τ0‖Hs , ‖u0‖Hs , ‖∇v‖L2
T0

Hs , ‖v‖L∞
T0

Hs) > 0

such that for any 0 < ε < ε0 and any 0 < t < T ∗
ε ,

(40) Xs′(t) ≤ C εmin(β,2α(s−s′)) ≤ Cεmin(1,s−s′)/8

which contradicts (21) of Theorem 2.1. This ensures that T ∗
ε > T0. Now, since by

Lebesgue monotone convergence theorem

(41) ‖Qε∇v‖L2
T0

Hs −→
ε→0

0,

it follows from (38) and (39) that Xs(T0) → 0 as ε → 0. This proves (13) and (15). To
prove (14) we observe that from this last limit and (41), ‖Qε(τ − 2ωD[u])‖L2

T0
Hs → 0

and ε2β−1‖Pε(τ−2ωD[u])‖2
L2

T0
Hs−1 → 0. This yields the result by Bernstein inequality

since 2β − 1 + 2α < 0.

2.4. The periodic setting. Let us give here the modifications needed to handle
the case Ω = T

N , N = 2, 3. It is worth noticing that Lemma 2.2 holds also with
Ω = T

N . On the other hand, the Sobolev inequality (2.3) does not hold for general
functions in T

N but holds, for instance, for zero mean-value functions. Note that if
f(t) has mean value zero for all time t ≥ 0, then using the invariance by Galilean
transformations, u → u(t, x − z t) + z with z ∈ R

3, we can assume that u has zero
mean value for all time and we are done. Otherwise, we have only to care about the
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treatment of the nonlinear term (W.∇)v in (28). Denoting by W the L2-projection of
W on zero mean-value functions, we rewrite (W.∇)v as

(42) (W.∇)v = (W.∇)v +

(∫
Ω

W

)
∇v.

We take the Hs-scalar product of (28) with W and add with the L2-scalar product
of (28) with W . The Hs-scalar product coming from the first term of the right-hand
side of (42) can be treated as in R

N . For the second term, we observe that∣∣∣∣
(((∫

Ω

W

)
∇v,W

))
Hs

∣∣∣∣ =

∣∣∣∣
∫

Ω

W

∣∣∣∣
∣∣∣∣((∇v,W ))Hs

∣∣∣∣
� ‖W‖L2‖∇v‖Hs‖∇W‖Hs−1 .

On the other hand, concerning the L2-scalar product we notice that∣∣∣∣
((

(W.∇)v,W

))
L2

∣∣∣∣ =

∣∣∣∣
((

(W.∇)v,W

))
L2

+

(∫
Ω

W

)((
∇v,W

))
L2

∣∣∣∣
� ‖W‖L6‖∇v‖L2‖W‖L3 +

∣∣∣∣
∫

Ω

W

∣∣∣∣‖∇v‖L2‖W‖L2

� ‖W‖Hs‖∇W‖L2‖∇v‖L2 .

We thus obtain, exactly as in (30),

Re

2

d

dt

(
‖W‖2

Hs + ‖W‖2
L2

)
+

3

4
‖Pε∇W‖2

Hs +
(1 − ω)

2
‖Q>ε∇W‖2

Hs

≤ ((Qεdiv τ,W ))Hs + ‖PεZ‖2
Hs +

ω2

4(1 − ω)
‖Qε∇v‖2

Hs

+
C Re

(1 − ω)2

(
‖∇u‖2

Hs + ‖∇v‖2
Hs

)
‖W‖2

Hs .

The remainder of the analysis is now exactly the same as in R
N .

3. Proof of Theorems 1.2 and 1.3. In this section we prove a convergence
result in the Besov spaces Bs−1,1

2 , s ≥ N/2. It will require a smallness assumption
on the retardation parameter ω but, on the other hand, will enable us to reach the
critical regularity space for (5). Note that our smallness assumption on the retardation
parameter is the same as the one in [1] to get the stability of the null solution in such
function spaces.

Let us recall the following well-posedness result derived in [1].

Theorem 3.1. Let (u0, τ0) ∈ Bs−1(RN )∩BN/2−1(RN )×Bs(RN2

)∩BN/2(RN2

)
with s ≥ N/2. Then there exist a unique positive maximal time T ∗ and a unique
solution

(u, τ) ∈ C([0, T ∗[;Bs−1∩BN/2−1)∩L1
loc(0, T

∗;Bs+1∩BN/2+1)×C([0, T ∗[;Bs∩BN/2).

Moreover, if T ∗ < ∞, then

(43) lim sup
t↗T∗

(
‖u(t)‖BN/2−1 + ‖τ(t)‖BN/2

)
= +∞.

We will make use of the following classical commutator and product estimates
(see, for instance, [1], [2], and [11]).
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Lemma 3.2. For all s ∈ ]1 −N/2, 1 + N/2[ we have

(44) ‖Δ̃j [(a.∇),Δj ]b‖2 � 2−j(s−1)γj‖∇a‖BN/2+1‖b‖Bs−1

with ‖γj‖L1(Z) � 1.
For all s1, s2 ≤ N/2 with s1 + s2 > 0 it holds that

(45) ‖ab‖Bs1+s2−N/2 � ‖a‖Bs1‖b‖Bs2 .

For any ε > 0 we divide Z into the three following subsets:

I := Z
∗
− = {j ∈ Z, 0 < 2j < 1}, Jε := {j ∈ Z, 1 ≤ 2j ≤ ε−α}, and

Kε := {j ∈ Z, 2j > ε−α},

and for any subset N ⊂ Z we denote by ‖ · ‖Bs
N

the seminorm

‖u‖Bs
N

=
∑
j∈N

2js‖Δju‖L2 .

3.1. Estimate on W and ετ .
Lemma 3.3. The solution (u, ετ) of (5) satisfies, for all 0 < t < T ∗,

d

dt

(
Re‖W‖Bs−1 + 4ε‖τ‖Bs

)
+[(1 − ω)/2 − 16ω]‖W‖Bs+1

Kε

+ ‖W‖Bs+1
I∪Jε

+ 2‖τ‖Bs
Kε

+ 2εβ‖τ‖Bs
I∪Jε

≤ 5‖Z‖Bs
I∪Jε

+ 16ω‖v‖Bs+1
Kε

+ 16ωεβ(‖W‖Bs+1
I∪Jε

+ ‖v‖Bs+1
I∪Jε

)

+C εμ1‖u‖BN/2+1‖τ‖Bs + C (‖u‖BN/2+1 + ‖v‖BN/2+1)‖W‖Bs−1 .(46)

Proof. Applying Δj to (28) we have for j ∈ Jε,

Re
(
∂tΔjW + P(u.∇)ΔjW

)
− (1 − ω)ΔjΔW

= −ωΔjΔv + ΔjPdiv τ + Re Δ̃jP[(u.∇),Δj ]W + Re ΔjP(W.∇)v(47)

and for j ∈ I,

Re
(
∂tΔjW + P(u.∇)ΔjW

)
− ΔjΔW

= ΔjZ + Re Δ̃jP[(u.∇),Δj ]W + Re ΔjP(W.∇)v .(48)

Taking the scalar product in L2(RN ) of (47) with ΔjW , using that W is divergence
free and using the Cauchy–Schwarz inequality we get

1

2
Re

d

dt
‖ΔjW‖2

2 + (1 − ω)‖∇ΔjW‖2
2

≤ ‖ΔjW‖2

(
ω‖ΔjΔv‖2 + ‖Δjdiv τ‖2

+ Re ‖Δ̃jP [(u.∇),Δj ]W‖2 + Re ‖ΔjP (W.∇)v‖2

)
.(49)

We use now that, according to Bernstein inequality, ‖∇ΔjW‖2 ≥ 2j−1‖ΔjW‖2 and
divide (49) by ‖ΔjW‖2. Then, estimating the commutator term, thanks to (44),
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and the last term, thanks to (45), with s1 = s − 1 and s2 = N/2, using Bernstein
inequalities, it follows that

Re
d

dt
‖ΔjW‖2 +

(1 − ω)

2
22j‖ΔjW‖2 ≤ 2‖ΔΔjv‖L2 + 2‖Δjdiv τ‖2

+γj2
−j(s−1)(‖u‖BN/2+1 + ‖v‖BN/2+1)‖W‖Bs−1(50)

with ‖(γj)‖l1(Z) � 1. Multiplying by 2j(s−1) and summing in j ∈ Kε, it follows that

Re
d

dt
‖W‖Bs−1

Kε

+
(1 − ω)

2
‖W‖Bs+1

Kε

− 2‖τ‖Bs
Kε

≤ (‖u‖BN/2+1 + ‖v‖BN/2+1)‖W‖Bs−1 .(51)

Proceeding in the same way with (48) but summing in j ∈ I ∪ Jε, we obtain

Re
d

dt
‖W‖Bs−1

I∪Jε

+
1

2
‖W‖Bs+1

I∪Jε

− ‖Z‖Bs
I∪Jε

≤ (‖u‖BN/2+1 + ‖v‖BN/2+1)‖W‖Bs−1 .(52)

Now, for j ∈ Z, we infer from (5) that

ε∂tΔjτ + ε(u.∇)Δjτ + Δjτ

= 2ωΔjD[u] − ε[(u.∇),Δj ]τ + εΔjg(∇u, τ) .(53)

Rewriting Δj(τ − 2ωD[u]) as Δj(τ − 2ωD[W ] − 2ωD[v]) for j ∈ Kε and as

εβΔjτ − 2ωεβΔj(D[W ] + D[v]) + (1 − εβ)ΔjZ

for j ∈ I ∪ Jε, similar considerations as above lead to the two following inequalities:

ε
d

dt
‖τ‖Bs

Kε
+ ‖τ‖Bs

Kε
≤ 4ω‖W‖Bs+1

Kε

+ 4ω‖v‖Bs+1
Kε

+ C ε ‖u‖BN/2+1‖τ‖Bs(54)

and

ε
d

dt
‖τ‖Bs

I∪Jε
+ εβ‖τ‖Bs

I∪Jε
≤ ‖Z‖Bs

I∪Jε
+ 4ωεβ‖W‖Bs+1

I∪Jε

+ 4ωεβ‖v‖Bs+1
I∪Jε

+ C ε ‖u‖BN/2+1‖τ‖Bs .(55)

Adding (51) + (52) + 4((55) + (54)), (46) follows.

3.2. Estimate on τ − 2ωD[u].
Lemma 3.4.

d

dt
‖Z‖Bs−2

Jε

+
1

ε
‖Z‖Bs−2

Jε

≤ (1 + ω)

Re
‖τ‖Bs

Jε
+ ‖Pf‖Bs−1

Jε

+C α ln(ε−1)
(
‖u‖BN/2+1 + ‖τ‖BN/2

)
‖u‖Bs−1 ,(56)

d

dt
‖Z‖Bs

I
+

1

ε
‖Z‖Bs

I
≤ (1 + ω)

Re
‖τ‖Bs

I
+ ‖Pf‖Bs−1

I

+C
(
‖u‖BN/2+1 + ‖τ‖BN/2

)
‖u‖Bs−1 .(57)
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Proof. Applying Δj to (33) and taking the L2-scalar product with ΔjZ we get

d

dt
‖ΔjZ‖L2 +

(1 − ω)

2 Re
22j‖ΔjZ‖L2 +

1

ε
‖ΔjZ‖L2 � ‖Δjf1‖L2 + ‖Δjf2‖L2 ,

where

f1 =
2ω

Re
D[Pdiv τ ] − (1 − ω)

Re
Δτ +

2ω

Re
D[Pf ] − 2ωD[P(u.∇)u]

and

f2 = P(u.∇)τ + g(∇u, τ).

Multiplying this inequality by 2j(s−2) and summing in j ∈ Jε, we infer that

d

dt
‖Z‖Bs−2

Jε

+
(1 − ω)

2 Re
‖Z‖Bs

Jε
+

1

ε
‖Z‖Bs−2

Jε

≤ (1 + ω)

Re
‖τ‖Bs

Jε
+ ‖Pf‖Bs−1

Jε

+‖(u.∇)u‖Bs−1
Jε

+ ‖(u.∇)τ‖Bs−2
Jε

+ ‖g(∇u, τ)‖Bs−2
Jε

.(58)

For s > 1 we estimate the nonlinear term thanks to (45) with, respectively, (s1, s2) =
(s − 1, N/2), (s − 1, N/2 − 1), and (s − 2, N/2). For s = 1 (of course N = 2) we
estimate the first nonlinear term in the same way and use the following lemma to
estimate the two last ones. This lemma follows directly from the definitions of I and
Jε and the fact that, for |s| ≤ N/2, the usual product maps continuously1 B−s,1×Bs,1

into B−N/2,∞ (see, for instance, [11]). Note, in particular, that |Jε| � α ln(ε−1).
Lemma 3.5. For all s1, s2 ≤ N/2 with s1 + s2 = 0 it holds that

(59) ‖a b‖
B

−N/2
Jε

� α ln(ε−1)‖a‖Bs1‖b‖Bs2

and

(60) ‖a b‖
B

−N/2+2
I

� ‖a‖Bs1‖b‖Bs2 .

We apply this lemma with (s1, s2) = (0, 0) and (−1, 1) for, respectively, the second
and the third nonlinear term of (58) to complete the proof of (56). Finally (57) can
be easily obtained in the same way by using that ‖a‖Bs

I
≤ ‖a‖Bs′

I
for s′ ≤ s and (60).

3.3. Convergence to the Newtonian flow. From now on we set γ(ω) =
(1 − ω)/2 − 16ω and assume that 0 ≤ ω ≤ ω0 with γ(ω0) > 0.

We proceed as in section 2.3. For 0 < β < 1, we add (46) and ε2β((56) + (57))
to get

d

dt

(
Re‖W‖Bs−1 + 4ε‖τ‖Bs + ε2β(‖Z‖Bs−2

Jε

+ ‖Z‖Bs
I
)
)

+ γ(ω0)‖W‖Bs+1
Kε

+ ‖W‖Bs+1
I∪Jε

+ 2‖τ‖Bs
Kε

+ εβ‖τ‖Bs
I∪Jε

+
ε2β−1

2
(‖Z‖Bs−2

Jε

+ ‖Z‖Bs
I
)

≤ 16ω‖v‖Bs+1
Kε

+ 16ωεβ‖v‖Bs+1
I∪Jε

+ ε2β‖Pf‖Bs−1
I∪Jε

+C ε‖u‖BN/2+1‖τ‖Bs + C (‖u‖BN/2+1 + ‖v‖BN/2+1)‖W‖Bs−1

+C αε2β ln(ε−1)(‖u‖BN/2+1 + ‖τ‖BN/2) ‖v‖Bs−1 .(61)

1For 1 ≤ p ≤ ∞, ‖f‖Bs,p =
∥∥{2js‖Δj(f)‖L2}

∥∥
lp(Z)

.
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Here we used that for ε small enough, εβ ≤ min(16γ(ω0),
Re
4 ), ε2β−1/2 ≥ 5, and

5‖Z‖Bs
Jε

� ε−2α‖Z‖Bs−2
Jε

≤ ε2β−1

2
‖Z‖Bs−2

Jε

as soon as

(62) 0 < α < 1/2 and 0 < 2β < 1 − 2α .

From now on we set (α, β) = (1/8, 1/8) so that (62) is satisfied. Setting

Xs(t) = Re ‖W (t)‖Bs−1 + 4ε‖τ‖Bs + ε2β‖Z‖Bs−2
I∪Jε

+

∫ t

0

γ(ω0)

2
‖W‖Bs+1 +

(
‖τ‖Bs

Kε
+ εβ‖τ‖Bs

I∪Jε

)
+

ε2β−1

2

(
‖Z‖Bs−2

Jε

+ ‖Z‖Bs
I

)
ds,

we infer that

d

dt
Xs(t) ≤ 16ω‖v‖Bs+1

Kε

+ 16ωεβ‖v‖Bs+1
I∪Jε

+ ε2β‖Pf‖Bs−1
I∪Jε

+C(Re , ω)
[
‖W‖BN/2+1 + ‖v‖BN/2+1 + ε2β ln(ε−1)‖τ‖BN/2

]
Xs

+C αε2β ln(ε−1)(‖v‖BN/2+1 + ‖W‖BN/2+1 + ‖τ‖BN/2) ‖v‖Bs−1 .

By Gronwall’s lemma we infer that

Xs(t) ≤ exp
(
C(ω, Re )

(
‖v‖L1

tB
N/2+1 + XN/2(t)

))
[
Xs(0) + 16ω‖v‖L1

tB
s+1
Kε

+ 16ωεβ‖v‖L1
tB

s+1
I∪Jε

+ ε2β‖Pf‖L1
tB

s−1
I∪Jε

+C α ln(ε−1)εβ
(
XN/2(t)‖v‖L∞

t Bs−1 + εβ‖v‖L1
tB

s−1‖v‖L∞
t Bs−1

)]
,(63)

where

(64) Xs(0) = 4ε‖τ0‖Bs + ε2β
(
‖τ0 − 2ωD[u0]‖Bs

I
+ ‖τ0 − 2ωD[u0]‖Bs−2

Jε

)
.

Assuming that T ∗
ε ≤ T0 and noticing that

(65) ‖v‖
L1

T0
B

N/2+1
Kε

→ 0 as ε → 0,

we deduce from (63) and (64) and the continuity of t → XN/2(t) that there exists
ε0 = ε0(N, ‖τ0‖BN/2 ,Pf, u0) such that for any 0 < ε < ε0 and any 0 < t < T ∗

ε ,

XN/2(t) ≤ Λ(ε)

with Λ(ε) ↘ 0 as ε → 0. This contradicts (43) of Theorem 3.1 and thus ensures
that T ∗

ε > T0. The convergence results (16) and (18) follow as well. To prove (17)
we notice that from this last limit and (65), ‖τ − 2ωD[u]‖

L1
T0

B
N/2
Kε

→ 0, ε2β−1‖τ −
2ωD[u]‖

L1
T0

B
N/2
I

→ 0, and ε2β−1‖τ − 2ωD[u]‖
L1

T0
B

N/2−2
Jε

→ 0. This gives the result

since 2β − 1 + 2α ≤ 0 and thus

‖τ − 2ωD[u]‖L1
T0

Bs
Jε

� ε−2α‖τ − 2ωD[u]‖L1
T0

Bs−2
Jε

� ε2β−1‖τ − 2ωD[u]‖L1
T0

Bs−2
Jε

.
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Finally, for s > N/2, the proof follows the same lines using that

(66) ‖v‖
L1

T0
B

N/2+1
Kε

≤ εα(s−N/2)‖v‖L1
T0

Bs+1
Kε

and thus with

ε0 = ε0(N, ‖τ0‖BN/2 , ‖u0‖BN/2−1 , ‖v‖L1
T0

Bs+1
Kε

, ‖Pf‖L1
T0

BN/2−1).

This completes the proof of Theorems 1.2 and 1.3.

Acknowledgment. The authors are grateful to the referees for useful remarks.
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INVERSE SCATTERING FOR SCHRÖDINGER-TYPE OPERATORS
WITH INTERFACE CONDITIONS ACROSS SMOOTH SURFACES∗

STEPHEN O’DELL†

Abstract. We consider direct and inverse scattering for the Laplace–Beltrami operator with
electromagnetic potentials in domains with smooth surfaces upon which we impose interface condi-
tions. The boundary conditions used encompass physical models of imperfect transmission arising in
acoustics, quantum scattering, semiconductors, and geophysics. We prove uniqueness of the location
of the surfaces and the interface conditions from the fixed-energy scattering amplitude. If the surface
encloses a compact region, we also prove uniqueness of the Dirichlet-to-Neumann operator at the
boundary of the obstacle.
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1. Introduction. Consider the Laplace–Beltrami operator with electromagnetic
potentials in R

n:

(1.1) L =

⎛
⎝∑

j,k

1
√
g

(
−i

∂

∂xj
+ Aj(x)

)
√
ggjk(x)

(
−i

∂

∂xk
+ Ak(x)

)⎞⎠+ V (x),

where all the coefficients are real-valued and L = −� for |x| ≥ R. In its full form,
this operator is the Hamiltonian for a quantum particle in an electromagnetic field
constrained to a Riemannian manifold. It also can be used to model wave propagation
in anisotropic media. Here, A(x) = (A1(x), . . . , An(x)) is the magnetic potential, V (x)
is the electric potential, and

∑
j,k gjk(x) dxj ⊗ dxk is a metric with determinant g(x).

In this paper, we study inverse scattering for this operator when it is defined with
interface conditions across smooth embedded surfaces.

To explain this in detail, we fix some bounded open connected domain Ω with
smooth boundary ∂Ω. Define the boundary operators,

γ0
±u(x) = lim

x→∂Ω±
u(x),(1.2)

γ1
±u(x) = lim

x→∂Ω±

∑
j,k

gjk
(

∂u

∂xj
+ iAju

)
νk(x)

(∑
p,r

gpr(x)νp(x)νr(x)

)− 1
2

,(1.3)

where the positive limit denotes that it is taken from the exterior and ν is the outward
pointing unit normal (with respect to the Euclidean metric). Let Le and Li be

operators of the form (1.1) with smooth coefficients {gjke , Ae
j , V

e} and {gjki , Ai
j , V

i},
respectively. Now consider the time-independent scattering problem:

(Le − k2)(eikω·x + w(x, kω)) = 0 in R
n\Ω,(1.4)

(Li − k2)w(x, kω) = 0 in Ω,(1.5)

∗Received by the editors November 16, 2006; accepted for publication (in revised form) October
4, 2007; published electronically January 30, 2008.
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with interface conditions,

(1.6)

(
γ0
−w

γ1,i
− w

)
=

(
a(x) b(x)
c(x) d(x)

)(
γ0
+(eikω·x + w)

γ1,e
+ (eikω·x + w)

)
,

and outgoing radiation conditions,

(1.7)
∂w

∂r
(x, kω) − ikw(x, kω) = o

(
1

r
n−1

2

)
, w(x, kω) = O

(
1

r
n−1

2

)
.

In what follows, we denote the matrix in (1.6) as T (x) and refer to it as the
interface matrix, or transfer matrix. It is worthwhile to remark that we make no
assumptions here on the coefficients or the interface to guarantee there is in fact a
boundary. This allows us to use the above problem to also study transmission cracks
which occur if Le = Li everywhere and T = I on some subset of the boundary.
Similarly this boundary value problem also covers the case when there may just be a
“tear” in the coefficients, i.e., Li and Le smoothly connect and T is trivial on some
subset of the boundary.

Let us briefly formulate the scattering problem. The direct problem is to show
there exists a solution w(x, kω) solving (1.4)–(1.7) that has the asymptotic form,

(1.8) w(x, kω) = eikω·x + a

(
x

|x| , ω, k
)

eik|x|

|x|
n−1

2

+ O

(
1

|x|
n+1

2

)
,

where a(θ, ω, k) is the scattering amplitude for some k > 0. The inverse problem is
to show that the scattering amplitude uniquely characterizes the perturbations to the
exterior coefficients. For the transmission obstacles given above, this entails showing
that the location of the boundary and the transfer matrix is uniquely determined
everywhere that at least one of the following holds: (1) The coefficients are not smooth
across ∂Ω, or (2) T �= I. Also, we want to prove that the Dirichlet-to-Neumann
operator is uniquely determined on ∂Ω.

Without any further restrictions on the transfer matrix or the coefficients, there
are some constant factors by which we can change the interface and interior coefficients
which do not affect the fixed energy scattering amplitude. Moreover, altering the
coefficients and interfaces in this manner will produce a different obstacle. Indeed,
we prove that the scattering operator can distinguish two such obstacles, whereas the
fixed-energy scattering amplitude cannot. In most practical applications, however, the
boundary conditions (1.6) are subject to constraints which remove these degeneracies.
This is discussed in detail in section 2.2. In the interest of obtaining the most general
results, we prove the uniqueness of the inverse problem up to these constants and
then interpret the results in physically interesting cases afterward.

Our main theorems, as well as some background, are given in section 2. In section
2.1, we formulate our result on the forward problem and in section 2.2 cite physical
examples in which these boundary conditions arise. In section 2.3 the results on the
inverse problem are given, and in section 2.4 we discuss previous work on scattering
from transmission obstacles and interfaces.

The plan of the remainder of the paper is as follows. After reviewing preliminary
material on semigeodesic coordinates, layer potentials, and wave front sets in section
3, we solve the direct problem in section 4 by reducing the problem to a system of
pseudodifferential equations on ∂Ω. In section 5, we solve the inverse problem when
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there are only electric potentials. In this case the analysis of certain boundary opera-
tors is simplified since the first two terms of the symbol of the Dirichlet-to-Neumann
operator are known. In section 6, the full symbol of the Dirichlet-to-Neumann opera-
tor is recalled and we formulate a theorem on boundary determination in the presence
of anisotropic media and electromagnetic potentials. This prepares us to solve the
general inverse problem in section 7 in which case a much more exhaustive analysis
is required to prove the uniqueness.

2. Results and background.

2.1. The direct problem.

2.1.1. Self-adjointness. Consider the scattering problem (1.4)–(1.7). Let
√
g̃e

and
√
g̃i denote the determinant of the restriction of the metrics to the boundary ∂Ω.

We say the boundary conditions are self-adjoint if:

(2.1) a(x)d(x) − b(x)c(x) =

√
g̃e(x)√
g̃i(x)

.

The reason for this definition is that if we define L to be an operator equal to Li on
Ω and Le on R

n\Ω, and impose interface conditions of the form (1.6) on ∂Ω, then the
adjoint of L, as defined in the L2-inner product, will be the same as L if and only if
(2.1) holds. This is proved in section 4.2. We also show there that (2.1) is equivalent
to the energy flux being equal on each side of the boundary.

The distinction between self-adjoint and nonself-adjoint conditions is relevant
since it affects the solvability of the forward problem. In particular, it is in gen-
eral not possible to prove the uniqueness with nonself-adjoint boundary conditions.
Nonetheless, we prove solvability off of a discrete set of energies in this case.

2.1.2. Results on the direct problem. We always assume that

(2.2) a > 0, d > 0, and detT �= 0,

and either

(2.3) b �= 0 on all of ∂Ω or b = 0 on all of ∂Ω,

or

(2.4) ∃Δ ⊂ ∂Ω open with ∂Δ smooth s.t. Re b �= 0 on Δ and b = 0 on ∂Ω\Δ.

The term b(x) requires special consideration since it contributes to the leading term of
the system of pseudodifferential equations to which the direct problem is reduced. The
conditions in (2.4) describe an analogue of partially coated obstacles for transmission
obstacles, which we introduce to model transmission obstacles with a resistive coating
on a subset of the boundary. Finally, assume a, c, and d are smooth everywhere and
b is smooth on Δ and ∂Ω\Δ. Unless otherwise stated, we always assume that (2.2)
holds with either (2.3) or (2.4) for every transfer matrix.

Our main result on the direct scattering problem is the following.
Theorem 2.1. Say T satisfies (2.2) and (2.3) or (2.4). Then for all but a discrete

set of k ∈ (0,∞) there exists a solution to (1.4)–(1.7) of the form

(2.5) w(x, kω) = a(θ, ω, k)
eik|x|

|x|
n−1

2

+ O

(
1

|x|
n+1

2

)
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as |x| → ∞, θ = x
|x| . Moreover, if also

(2.6) Imb ≤ 0, Imc ≥ 0, and ad− bc =

√
g̃e√
g̃i
,

then the discrete set is empty. In particular, (1.4)–(1.7) is solvable for all k > 0 in
the self-adjoint case.

These results are proved in section 4.

2.2. Physical background. It is worthwhile to briefly relate our problem ex-
plicitly to the case of acoustic scattering in anisotropic media. In this situation, to
model the inhomogeneities, one uses an operator of the general form

(2.7) L′ = −
n∑

j,k=1

∂

∂xj
γjk(x)

∂

∂xk
+ η(x),

where we assume η(x) = 0 and γjk(x) = δjk for |x| large. For n ≥ 3 we can set

gjk = (det {γjk}) 1
2−n γjk and multiply through by

√
g in (1.4) to obtain an operator

of the form (2.7). Moreover, it is straightforward to check that (if Aj = 0),

(2.8)
∑
j,k

γjk(x)

(
∂u

∂xk

)
+

νk = γ1,L
+ u(x)

√
g̃e.

Thus, an interface for operators of the form (2.7) has the form

(2.9)

(
γ0
−u∑

j,k γ
jk
i (x)( ∂u

∂xk
)+ν

k

)
=

(
a′(x) b′(x)
c′(x) d′(x)

)(
u+∑

j,k γ
jk
e (x)( ∂u

∂xk
)−ν

k

)
,

where for gjk and γjk related as above,

(2.10)

(
a′(x) b′(x)
c′(x) d′(x)

)
=

(
a(x) b(x)(

√
g̃e)

c(x)(
√
g̃i)−1 d(x)(

√
g̃e)(

√
g̃i)−1

)
.

Despite the simpler form of the transfer matrix, we will always use the Laplace–
Beltrami operator even when discussing acoustic wave propagation in anisotropic me-
dia since using the Laplace–Beltrami considerably simplifies some of the calculations,
especially when it is necessary to make coordinate changes.

We now discuss some physical examples. Recall that the natural transmission
conditions at an interface have the form

γ0
+u− γ0

−u = 0,(2.11)

γ1,e
+ u

√
g̃e − γ1,i

− u
√
g̃i = 0.(2.12)

A simple application of the Green’s function yields these conditions. Note there are
no density terms for operators of the form (2.7).

Imperfect interfaces occur originally in the study of elastodynamic waves passing
between two different elastic media which are not in perfect contact. Interpreted in
the context of acoustic waves, the boundary conditions have the form

γ0
+u− γ0

−u = α(x)
[
γ1,i
− u

√
g̃i + γ1,e

+ u
√
g̃e
]
,(2.13)

γ1,e
+ u

√
g̃e − γ1,i

− u
√
g̃i = β(x)

[
γ0
−u + γ0

+u
]
.(2.14)
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See [3] and [34] for background and references. Physically, we can interpret α and β as
the relative compressibility and permeability of a thin membrane separating the two
regions [34]. These interface conditions are easily converted into boundary conditions
of the form (1.6) and the resultant interface matrix looks like

(2.15) T =
1

1 − αβ

(
1 + αβ −2α(

√
g̃e)

−2β(
√
g̃i)−1 (1 + αβ)(

√
g̃e)(

√
g̃i)−1

)
.

Of course, for operators of the form (2.7), the interface matrix does not have the
density terms.

In the case β = 0, the boundary conditions are known as spring-contact bound-
ary conditions. For background on their use, see the review given in [3]. In this
paper the authors also derive a more accurate mathematical model (than the spring-
contact boundary conditions) for 2-dimensional sound harmonic waves separated by
a thin layer which turn out to be of the form (2.11)–(2.12), except that (2.12) has
an additional correction term dependent on second order tangential derivatives at the
surface.

The resistive and conductive transmission boundary conditions, which arise in
geophysics, are also of this form (see [1] and the references therein). Resistive condi-
tions arise if α is complex-valued and β = 0 in (2.13)–(2.14), and conductive conditions
are given by assuming β is complex-valued and α = 0 in (2.13)–(2.14).

In quantum scattering the simplest example of boundary conditions of the form
(1.6) arises in the model of an electron wave passing through a δ-like potential. As-
suming the media is Euclidean for simplicity, then if V (x) = κδ∂Ω, it is easy to derive
the transfer matrix will have the form (see [13])

T =

(
1 0
κ 1

)
.

In general, the boundary conditions describing scattering from electric potentials of
the above form are given by (2.13)–(2.14) with α = 0.

Finally, transfer matrix boundary conditions have also been in use for many years
in the effective mass method which is used to model the electronic states of semicon-
ducting materials containing abrupt interfaces between materials of different com-
positions. Transfer matrix heterojunctions, as they are known in the literature, are
used in this context to connect wave functions, known as envelopes, across regions
of different chemical compositions and through barriers of yet a third material. See
[2] and [32] for a review of their use as well as various physical interpretations of the
matrix elements.

2.3. Results on the inverse problem.

2.3.1. Nonuniqueness. Consider (1.4)–(1.7). There are two types of alter-
ations as follows which do not affect the scattering amplitude:

1. T → τT for τ > 0.
2. ⎛

⎜⎜⎜⎜⎝
Ω
T
gjk

Aj

V

⎞
⎟⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎜⎜⎜⎝

Ω(
ρ−

n
2 0

0 ρ1−n
2

)
T

ρ2gjk

Aj

ρ2V + k2(1 − ρ2)

⎞
⎟⎟⎟⎟⎟⎟⎠

for ρ > 0.
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When describing physical phenomena, the model of a transmission obstacle will gen-
erally be selected in such a fashion that these constants do not arise. Shortly we will
discuss a number of restrictions that remove these constants.

The first type of nonuniqueness results from the fact that if we multiply the
interface by a constant, we can multiply the solution on the interior by the inverse of
that constant without affecting the solution on the exterior. Of course, this type of
degeneracy will not affect the full scattering operator and is somewhat trivial.

The second type of nonuniqueness is obtained by replacing (Li−k2) by ρ2(Li−k2)
in (1.5) and then changing the interface matrix accordingly. The precise powers of ρ
are selected in such a way that self-adjoint boundary conditions remain self-adjoint.
Note that as a result of this type of nonuniqueness, there are always an infinite
number of obstacles which are not identical to the background but which nonetheless
are “invisible” to the scattering amplitude at a given fixed energy. Such obstacles,
moreover, are distinguishable from the background by the scattering operator. It is
worthwhile to formulate some restrictions as follows which force the constants to be
one:

τ = 1 if any of the following hold:
• The boundary conditions are self-adjoint.
• Any nonzero element of the interface matrix is fixed.

ρ = 1 if any of the following hold:
• d(x) = (

√
g̃e)(

√
g̃i)−1a(x).

• gjke = gjki = δjk.
• V e = V i = 0.
• Any nonzero element of the interface matrix is fixed.

Note that for imperfect interfaces, the boundary conditions (2.15) are self-adjoint

and d(x) = (
√
g̃e)(

√
g̃i)−1a(x) so that both τ and ρ are 1. The resistive and con-

ductive boundary conditions, as well as the boundary conditions describing scattering
from delta-like potentials, are a subset of imperfect interface boundary conditions
(2.15).

In order to simplify notation in the future, we say (L1 − k2) and ρ2(L2 − k2)
smoothly connect in the normal direction at x0 ∈ ∂Ω if for all p,(

∂

∂ν

)p

gjk1 (x0) = ρ2

(
∂

∂ν

)
)pgjk2 (x0,

(
∂

∂ν

)p

A1
j (x0) =

(
∂

∂ν

)p

A2
j (x0), and(

∂

∂ν

)p

V1(x0) = ρ2

(
∂

∂ν

)p

(V2(x0) + k2(1 − ρ2)).(2.16)

2.3.2. Inverse problem. Our main result is that the fixed-energy scattering
amplitude uniquely determines the obstacles up to the constant factors described
above. We interpret these results in the case of imperfect interfaces afterwards. First,
consider the location and let an obstacle be defined by three elements {Ω, T, Li}. Ω
is a subset of R

n, T is the interface matrix, and Li is an operator of the form (1.1)
which describes the physical properties of the interior of the obstacle.

Theorem 2.2. Consider scattering from an obstacle {Ω, T, Li} as in problem
(1.4)–(1.7), where T satisfies (2.2) and (2.3) or (2.4). Then a(θ, ω, k) for θ, ω ∈ Sn−1

and some fixed k > 0 uniquely determines the location of all points x0 ∈ ∂Ω at which
there does not exist τ > 0, ρ > 0 such that

1. T (x0) = τ
( ρ−

n
2 0

0 ρ1−n
2

)
and

2. ρ2(Li − k2) and (Le − k2) smoothly connect in the normal direction at x0.
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When the constants are one, this means we uniquely determine all points on the
boundary, where either T �= I or the coefficients do not smoothly connect. Now con-
sider the boundary conditions. Below, Λj denotes the Dirichlet-to-Neumann operator
on ∂Ω for the operator Li

j − k2 and σ(Λj) is its full symbol (see section 6).

Theorem 2.3. Assume we are given two obstacles {Ω, T1, L
i
1} and {Ω, T2, L

i
2}

with T1 and T2 satisfying (2.2) and (2.3) or (2.4) along with their respective scattering
data a1(θ, ω, k) and a2(θ, ω, k). Then a1(θ, ω, k) = a2(θ, ω, k) for θ, ω ∈ Sn−1 and
some k > 0 implies there exists τ > 0, ρ > 0 such that,

T1(x) = τ

(
ρ−

n
2 0

0 ρ1−n
2

)
T2(x) and σ(Λ1) = ρσ(Λ2).

Also, if k2 is not a Dirichlet eigenvalue for either Li
1 or Li

2 on Ω, then Λ1 = ρΛ2.
These results are proved in sections 5 and 7. As is proved in section 6 the equality

of the symbols of the Dirichlet-to-Neumann operators implies that (Li
1 − k2) and

ρ2(Li
2 − k2) smoothly connect on the boundary in the sense of (2.16).
For imperfect interfaces (2.13) and (2.14), the results are as follows.
Theorem 2.4. a(θ, ω, k) for θ, ω ∈ Sn−1 and some fixed k > 0 uniquely deter-

mines the location of all points x0 ∈ ∂Ω at which it is not the case that
1. α(x0) = 0, β(x0) = 0 and
2. Li and Le smoothly connect in the normal direction at x0.

Theorem 2.5. Assume Ω is known. Then a1(θ, ω, k) = a2(θ, ω, k) for θ, ω ∈
Sn−1 and some k > 0 implies,

α1(x) = α2(x), β1(x) = β2(x), σ(Λ1) = σ(Λ2).

Also, if k2 is not a Dirichlet eigenvalue for either L1 or L2 on Ω, then Λ1 = Λ2.
These theorems are proved using Theorems 2.2 and 2.3. Since Theorems 2.2 and

2.3 are the more general results, we focus our attention on them throughout the paper.

2.4. Historical remarks and overview of approach. Already there has been
extensive study of direct and inverse scattering from transmission obstacles in the case
of perfectly transmitting interfaces and constant isotropic media on the interior and
exterior (see the review article [5] and books [6] and [7] for a full history). The most
general results in this case are due to Kirsch and Päivärinta [21], in which the authors
consider the scattering problem for transmission obstacles embedded in known electric
inhomogeneities with boundary conditions of the form

T =

(
τ 0
0 1

)

(with τ constant) and containing unknown electric potentials. Here τ represents the
inverse of the density of the interior constant isotropic media so that these boundary
conditions are in fact self-adjoint. They prove that the fixed energy scattering data
uniquely determine the location of the obstacle, the boundary conditions, and the
interior electric potentials.

Recently there has also been greater focus on the scattering problem when the ob-
stacle contains anisotropic media (see [4], [7], [9], [15], [27], and [28]). The anisotropic
media is modeled in these papers using an operator of the form ∇ ◦ A(x)∇ and the
inverse scattering problem of determining the location is solved under various restric-
tions on A(x). The recovery of the interior media is not considered in these papers.
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As is well known, for n ≥ 3 this problem is equivalent to the one we consider with a
Laplace–Beltrami operator. A closely related problem is obtained by allowing inho-
mogeneous media on the interior (i.e., media with variable, isotropic density). The
related direct scattering problem is considered by Martin [24] and Werner [35] and
the inverse problem by Isakov [20]. The main result of [20] is that the fixed energy
scattering data uniquely determine the location of the obstacle as well as the media
at the boundary of the obstacle. Inhomogeneous media are covered by our work for
n ≥ 3 by using the metric gjk(x) = ρ(x)

2−n
2 δjk, where ρ is the inhomogeneous density.

There has been little previous work on general boundary conditions of the type we
consider. The only results we are aware of with off-diagonal elements in the transfer
matrix are for resistive and conductive boundary conditions (see [1], [14], [16], and
[33]) with the Helmholtz equation on the interior and exterior. In these papers the
direct scattering problem is solved and in [16] and [33] it is shown the fixed-energy
scattering data uniquely determine the boundary conditions and the location of an
obstacle with conductive interfaces. Finally, we are unaware of previous work with
nonself-adjoint boundary conditions.

To solve the inverse problem we investigate the behavior of the singularity of the
Green’s function near the boundary of obstacles. The idea to consider the behavior
of the Green’s function is originally due to Isakov [20]. We obtain a precise formula
for the singularity of the Green’s function in terms of the interface matrix and the
symbol of the Dirichlet-to-Neumann operator as the pole approaches some point on
the boundary. This is different approach than the one used by Isakov [20], Kirsch
and Päivärinta [21], and Hettlich [16] in that we focus on the singularity itself, rather
than on the behavior of the solution on the interior or on a subset of the boundary
as the pole approaches the obstacle. See also [8] for a further discussion on the use of
the fundamental solution in inverse scattering problems.

A similar formula for the singularity of the Green’s function has been obtained
by Potthast and Stratis [29] for a transmission obstacle with boundary conditions of
the form

T =

(
1 0
0 β �= 1

)

without exterior or interior potentials and with the same wave number on the interior
as the exterior.

For the recovery of the boundary conditions and the Dirichlet-to-Neumann oper-
ator, the main idea is to analyze the symbol of the boundary operator,

(Λi ◦ b− d)−1(Λi ◦ a− c),

on ∂Ω which we prove is uniquely determined from the singularity as well. Here
(Λi◦b−d)−1 really represents a parametrix of the pseudodifferential operator Λi◦b−d
(the invertibility does not necessarily hold). We show that one can extract all the
necessary information, i.e., the interface conditions and the symbol of the Dirichlet-
to-Neumann operator, from this operator, where to explicitly calculate the full symbol
we use the full symbol of the Dirichlet-to-Neumann as derived in [12] and [23].

3. Preliminaries. In this section we collect some basic facts about semigeodesic
coordinates, layer potentials, and wave front sets that will be fundamental for our
analysis.

First, we recall the semigeodesic (i.e., boundary normal) coordinates at the surface
∂Ω. In semigeodesic coordinates around some p ∈ ∂Ω, ∂Ω has coordinates (x′, 0) and
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the outward pointing normal to the surface points in the positive xn direction. Let
us briefly recall their construction. For each q ∈ ∂Ω, define γq : (−ε, ε) → R

n to be
the unit-speed geodesic with q at γq(0) and normal to ∂Ω there and such that t < 0
implies γq(0) ∈ Ω. Now let (x̂1, . . . , x̂n−1) be any local coordinates for ∂Ω near some
p ∈ ∂Ω. We can extend the coordinates smoothly into R

n\Ω and into Ω by having
them be constant along each normal geodesic γq. If we take x̂n to be the parameter
along each γq, then one can check that (x̂1, . . . , x̂n−1, x̂n) form coordinates in R

n in
some neighborhood of p. Note that in these coordinates, x̂n = 0 implies x̂ ∈ ∂Ω and
the metric will have the form

ĝ =

n−1∑
j,k=1

ĝjk(x̂) dx̂j ⊗ dx̂k + dx̂n ⊗ dx̂n.

Often when there is no chance of confusion we will use (x1, . . . , xn) also as the semi-
geodesic coordinates (e.g., ∂Ω will have coordinates (x′, 0)). Also, we shall denote a

function f in the semi-geodesic coordinates f̂ .
It is particularly important to note that the selection of the coordinates on ∂Ω

is arbitrary since often we will want to compare different or unknown metrics on ∂Ω.
In particular, assume ge and gi are metrics as above and let (x̂1, . . . , x̂n−1) be any
local coordinates on ∂Ω. Then we can form separate semigeodesic coordinates for ge

and gi in a neighborhood of some point p ∈ ∂Ω of the form (x̂1, . . . , x̂n−1, x̂ne) and
(x̂1, . . . , x̂n−1, x̂ni).

We will use the following notation when using pseudodifferential operators. Below
let S be the class of Schwartz functions and Hs the standard Sobolev spaces. See,
for example, [10] or [30]. Let X be an open set in R

n and recall the symbol classes
Sm(X × R

n) of Hörmander [19].
Definition 3.1. a ∈ Sm(X × R

n) if a ∈ C∞(X × R
n) and∣∣∂α

ξ ∂
β
xa(x, ξ)

∣∣ ≤ Cα,β(1 + |ξ|)m−|α|, x ∈ X, ξ ∈ R
n.

Sm is called the space of symbols of order m.
Definition 3.2. If a(x, ξ) ∈ Sm(X × R

n), the operator a(x,D) ∈ Lm(X) is
defined on S (X) by

a(x,D)u(x) =
1

(2π)n

∫
Rn

eix·ξa(x, ξ)ũ(ξ) dξ.

We say a(x,D) is a pseudodifferential operator of order m. Moreover, a(x,D) can be
extended to a continuous operator from Hs

comp(X) → Hs−m
loc (X).

Finally, recall that the operator a(x,D) is properly supported if its kernel,

K(x, y) =
1

(2π)n

∫
Rn

ei(x−y)·ξa(x, ξ) dξ

is properly supported. We say a kernel K(x, y) is properly supported if, for every
compact M ⊆ X, {(x, y) ∈ supp K : x ∈ M or y ∈ M} is compact.

Now let L be an operator of the form (1.1) and let G(x, y, k) denote the funda-
mental solution for L− k2 with the outgoing radiation conditions (as constructed in
[26], for example). Then the single layer potential S on ∂Ω is defined by

(3.1) Sφ(x) =

∫
∂Ωj

G(x, y)φ(y) dSy.
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This is smoothing from ∂Ω to R
n\∂Ω which means it is of order −∞. We are partic-

ularly interested in its behavior as a map from functions on the boundary into itself
as obtained when x is restricted to the boundary. Let S+, respectively, S−, denote
the operator obtained when x is restricted to ∂Ω limiting from above, respectively,
below. Both are the sum of a properly supported elliptic pseudodifferential operator
on ∂Ω of order −1 and a term with a smoothing kernel. The latter condition means
the kernel is in C∞(X ×X).

Although this is already well known, a brief outline of this fact is given below
since it will often be necessary to refer to the construction of layer potentials. For
simplicity assume we are on a half-space and that we are a given an operator of the
form L − k2 that is equal to zero outside some large ball with fundamental solution
G(x, y). Modulo smoothing terms, this is the situation obtained by restricting to a
local coordinate chart using the semigeodesic coordinates. Now,

(3.2) G(x, y) =
1

(2π)n

∫
Rn

ei(x−y)·ξr(x, ξ) dξ + S(x, y),

where S(x, y) is C∞(Rn×R
n), r(x, ξ) is the symbol of the parametrix for L−k2, and

the integral is defined as an oscillatory integral. Let φ(x′) ∈ C∞
0 (Rn−1). Then the

single layer potential is defined as follows:

lim
xn↓0

∫
Rn−1

G(x, y′, 0)φ(y′) dy′

= lim
xn↓0

1

(2π)n

∫
Rn

∫
Rn

ei(x−y)·ξr(x, ξ)(φ(y′) ⊗ δ(yn)) dξ dy

=
1

(2π)n−1

∫
Rn−1

∫
Rn−1

ei(x
′−y′)·ξ′

(
lim
xn↓0

1

2π

∫
R

eixn·ξnr(x, ξ) dξn

)
φ(y′) dξ′ dy′

=
1

(2π)n−1

∫
Rn−1

ei(x
′−y′)·ξ′

(∫ +

r(x′, 0, ξ) dξn

)
φ(y′) dy′,

where
∫ +

is equal to i times the sum of residues in the upper half-plane (see Chapter
18 of [19] for a more detailed account). Using that

r(x′, 0, ξ) =
1

ξ2
n +

∑n−1
ĝjk(x′)ξjξk

+
(
∂xn

√
g̃√

g̃
(x′) − 2Ân(x′))ξn

(ξ2
n +

∑n−1
ĝjk(x′)ξjξk)2

+ O

(
1

ξ4
n

)
,

where the ĝ denotes we are in semigeodesic coordinates, it is easy to derive the princi-
pal symbol of the layer potential (as well as its jump relations). Let S+ (respectively,
S−) denote the operator obtained from (3.1) by taking the limit of x from above
(respectively, below). Also, let ( ∂S

∂νx
)± denote the conormal derivative of the single

layer potentials, i.e., (1.3) without the terms due to the magnetic potential.
Theorem 3.3. S± and ( ∂S

∂νx
)± are each equal to the sum of a properly supported

elliptic pseudodifferential operator and a term with a smooth kernel. The principal
symbols are

σ−1(S±) =
1

2
√∑n−1

j,k ĝjk(x′, 0)ξjξk

,

σ0

((
∂S

∂νx

)
±

)
= ∓1

2
.
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Also,

(3.3) S+ − S− = 0,

(
∂S

∂νx

)
+

−
(

∂S

∂νx

)
−

= −I.

We now recall some basic facts about wave front sets of distributions from [18]
and [19]. Given a compactly supported distribution v ∈ E ′(Rn), let ṽ(ξ) be its Fourier
transform and define the cone Σ(v) to be all η ∈ R

n\{0} having no conic neighborhood
V such that

|ṽ(ξ)| ≤ CN (1 + |ξ|)−N , N ∈ N, ξ ∈ V.

For X an open set in R
n and u ∈ D′(X), define for x ∈ X,

Σx(u) =
⋂

φ∈C∞
0 (X)

φ(x) 
=0

Σ(φu).

Then,

WF (u) = {(x, ξ) ∈ X × (Rn\0); ξ ∈ Σx(u)}.

As a specific example, note WF (δ(x− y)) = y × R
n\{0}, since δ̃ = 1.

Now we consider characteristic sets and wave front sets of pseudodifferential op-
erators. Let A ∈ Lm be an operator with principal symbol a(x, ξ) ∈ Sm(T ∗(X)). We
say A is noncharacteristic at (x0, ξ0) ∈ T ∗(X)\0 if ab− 1 ∈ S−1 in a conic neighbor-
hood of (x0, ξ0) for some b ∈ S−m. Denote by Char A the set of characteristic points
of A. In particular, note Char P = ∅ for any elliptic differential operator. This leads
to an alternate definition of the wave front set:

WF (u) =
⋂

A∈Lm(X),m∈R

Aprop. supp.

Au∈C∞(X)

Char A,

from which it is easy to prove the following theorem.
Theorem 3.4. If A ∈ Lm(X) is properly supported and u ∈ D′(X), then

WF (u) ⊂ WF (Au) ∪ CharA.

As an example relevant to us, if G(x, y) is the fundamental solution for L−k2, then
WF (G(x, y)) = y × R

n\{0} since L− k2 is elliptic and WF (δ(x− y)) = y × R
n\{0}.

The last part of the theory we need to recall is the definition of the wave front
set of a pseudodifferential operator. Let A ∈ Lm(X) be a properly supported pseu-
dodifferential operator with symbol a(x, ξ) ∈ Sm as above. Then its kernel is

KA(x, y) =

∫
Rn

ei(x−y)·ξa(x, ξ) dξ,

where the integral is defined as an oscillatory integral. Suppose Char A = X ×ΓA(x)
for some ΓA(x) ⊆ R

n\{0}. Then one can check that for any fixed y ∈ X,

(3.4) WF (KA(x, y)) = y × ΓA(y).
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See, for example, Proposition 18.1.26 in [19]. In light of (3.2), this gives an alternate
proof that WF (G(x, y)) = y × R

n\{0}.
Our interest in wave front sets is due to the next two propositions.
Proposition 3.5. WF (limy↓x∗∈∂Ω G(x, y)|x∈∂Ω) = x∗ × Sn−2.
Proof. By a discussion analogous to that preceding Theorem 3.3, it is easy to see

that modulo a smoothing kernel, limy↓x∗∂Ω G(x, y)|x∈∂Ω is the kernel of an elliptic
pseudodifferential operator (in the variables x and x∗). Therefore the claim follows
from (3.4).

Proposition 3.6. Say P1(x,D) and P2(x,D) are two elliptic pseudodifferential
operators on R

n and u ∈ D′(Rn) is a distribution with wave front set WF (u) =
0 × R

n\{0}. Then P1u = P2u + f for some f ∈ C∞(Rn) implies that σ(P1)(0, ξ) =
σ(P2)(0, ξ).

Proof. This is an immediate consequence of Theorem 3.4.

4. The direct problem. Consider scattering from a general transmission ob-
stacle as in (1.4)–(1.7). Because it significantly complicates the problem when b is
both zero and nonzero, we initially assume that either

(4.1) b(x) = 0 for all x ∈ ∂Ω

or

(4.2) b(x) �= 0 for all x ∈ ∂Ω.

In section 4.1, we will solve the direct problem, assuming T satisfies (2.2), (2.6), and
(4.1), or (4.2), and then in section 4.2 we consider the nonself-adjoint problem when
just (2.2) and (4.1) or (4.2) is satisfied. Finally, in section 4.3 we solve the problem
for general scatterers when only (2.2) and (2.3) or (2.4) hold by considering a mixed
boundary value problem and using the results of the previous sections.

First, recall the following lemma from [7] and [26].
Lemma 4.1. If u satisfies (−� − k2)u = 0 outside of BS and u satisfies the

outgoing radiation conditions

(4.3)
∂

∂r
u(x) − iku(x) = o

(
1

r
n−1

2

)
, u = O

(
1

r
n−1

2

)
,

then

(4.4) u = a(θ)
eik|x|

|x|n−1
2

+ O

(
1

|x|n+1
2

)

when |x| → ∞, θ = x
|x| .

Now consider the boundary value problem,

(Le − k2)u(x) = fe(x) in R
n\Ω,(4.5)

(Li − k2)u(x) = f i(x) in Ω,(4.6) (
u−
γ1,i
− u

)
=

(
a(x) b(x)
c(x) d(x)

)(
u+

γ1,e
+ u

)
,(4.7)

∂

∂r
u(x) − iku(x) = o

(
1

r
n−1

2

)
, u = O

(
1

r
n−1

2

)
,(4.8)

where fe ∈ C∞
0 (Rn\Ω) and f i ∈ C∞(Ω).
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4.1. Dissipative conditions. We begin with the uniqueness.
Lemma 4.2. Say u satisfies (4.5)–(4.8) with fe = 0, f i = 0 and T satisfies (2.2)

and (2.6). Then u is equal to 0 in R
n.

Proof. Applying Green’s formula to the identity,

0 =

∫
BR\Ω

(Le − k2)uu
√
ge dx−

∫
Ω

(Li − k2)uu
√
gi dx,

taking the imaginary part of both sides, plugging the expansion (4.4) into the integral
over ∂BR, and letting R tend to infinity, we obtain

(4.9)

∫
Sn−1

k |a(θ)|2 dθ = Im

[∫
∂Ω

γ1,e
+ uu+

√
g̃edSx −

∫
∂Ω

γ1,i
− uu−

√
g̃idSx

]
.

Using the boundary conditions (4.7) and also (2.2) and (2.6),

γ1,i
− uu−

√
g̃i =

[(
cu+ + dγ1,e

+ u
)(
au+ + bγ1,e

+ u
)]√

g̃i

=
[
ac |u+|2 + bd

∣∣∣γ1,e
+ u

∣∣∣2 + adu+γ
1,e
+ u + bcu+γ

1,e
+ u

]√
g̃i

= ac |u+|2
√
g̃i + bd

∣∣∣γ1,e
+ u

∣∣∣2√g̃i + u+γ
1,e
+ u

√
g̃e

+2bc Re u+γ
1,e
+ u

√
g̃i.

Plugging this into (4.9) and utilizing that −bd and −ac are each less than zero by
(2.2) and (2.6), we get∫

Sn−1

k |a(θ)|2 dθ ≤ Im

∫
∂Ω

−2bc Re u+γ
1,e
+ u

√
g̃i dSx

≤ 0.

Note bc has no imaginary part as a result of (2.6). Therefore u = O( 1

|x|
n+1

2

) and so

Rellich’s lemma and unique continuation imply u = 0 in R
n\Ω (see, e.g., [26]). The

boundary conditions give us that u−|∂Ω = 0 and γ1,i
− u = 0, which by the uniqueness

of the Cauchy problem implies u = 0 in Ω (see, for example, [17]).
To prove Theorem 2.1 assuming (2.2), (2.6), and (4.1) or (4.2), we will construct

the Green’s function for (4.5)–(4.8).
Theorem 4.3. Assume T satisfies (2.2), (2.6), and (4.1) or (4.2). Then there

exists unique Ge(x, y, k) and Gi(x, y, k) that solve (4.5)–(4.8) with fe(x) = δ(x − y)
and f i(x) = δ(x− y).

Proof. Let G̃e(x, y) and G̃i(x, y) be the outgoing the Green’s functions for (Le−k2)
and (Li − k2) in R

n as constructed in [26]. Note G̃e(x, y) = E+(x− y) for x, y large,
where E+(x−y) is the outgoing fundamental solution of the Helmholtz equation. We
look for Ge and Gi in the form

Ge(x, y) = G̃e(x, y) + Seφe(x, y),

Gi(x, y) = G̃i(x, y) + Siφi(x, y),

where Se and Si are single layer potentials for G̃e and G̃i on ∂Ω as defined in section
3. Fix y ∈ R

n\Ω. Then the boundary conditions (4.7) give us the following system
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of pseudodifferential equations on ∂Ω:(
Si
− −aSe

+ − bγ1,e
+ Se

γ1,i
− Si −cSe

+ − dγ1,e
+ Se

)(
φi(x, y)
φe(x, y)

)
(4.10)

=

(
−G̃i(x, y)|∂Ω + aG̃e(x, y)|∂Ω + bγ1,e

+ G̃e

−γ1,i
− G̃i(x, y) + cG̃e(x, y)|∂Ω + dγ1,e

+ G̃e

)
.

We want to show that the matrix B of pseudodifferential operators on the left-hand
side is uniquely invertible. Note B is bounded L2(∂Ω)⊗L2(∂Ω) → L2(∂Ω)⊗L2(∂Ω).
In Corollary 4.6 we show that B is Fredholm with index 0.

Assuming this for now, we have only to show that B is injective. Say first that
k2 is not a Dirichlet eigenvalue of Le on Ω. In this case, suppose the right-hand side
of (4.10) is equal to zero and let ye(x) = Se

+φ
e(x) and yi(x) = Si

−φ
i(x). Then ye,

yi solve the transmission problem (4.5)–(4.8) with fe = 0 and f i = 0. Lemma 4.2
implies

ye(x) = 0 in R
n\Ω,

yi(x) = 0 in Ω.

Using the jump relations given in Theorem 3.3, we see that yi solves (Li−k2)yi = 0 in
R

n\Ω and yi|∂Ω = 0. Therefore it is easy to see that yi = 0 in R
n\Ω (see, for example,

[26]) and so another application of the jump relations implies φi = 0. Similarly, ye

solves (Le − k2)ye = 0 in Ω and ye|∂Ω = 0. Therefore since we are assuming k2 is
not a Dirichlet eigenvalue for Le on Ω, ye must be identically zero in Ω and another
application of the jump relations proves that φe = 0.

In the case that k2 is a Dirichlet eigenvalue for Le on Ω there are a number
of methods we could use to solve the problem. One would be to use different layer
potentials (like the ones used in [26]) or use a sum of single and double layer potentials
as is utilized in [6]. Instead, here we will alter the equation on the interior of Ω
following the approach taken in [11]. In particular, pick some constant q such that k2

is not a Dirichlet eigenvalue of Le + q on Ω. Let χΩ be the distribution equal to 1 on
Ω and 0 everywhere else. One can construct the Green’s function Ge(x, y) to solve

(Le + χΩq − k2)Ge(x, y) = δ(x− y)

as in [11] and it will have the same jump relations as those given in Theorem 3.3.
Therefore the preceding argument with this alteration to the exterior Green’s function
can be used.

Define the Green’s function G(x, y) for y �∈ ∂Ω by

(4.11) G(x, y) =

{
Ge(x, y), x ∈ R

n\Ω;
Gi(x, y), x ∈ Ω.

In particular, for f(x) ∈ C∞
0 (Rn),

(4.12) Gf(x) =

{ ∫
Rn Ge(x, y)f(y) dy, x ∈ R

n\Ω;∫
Rn Gi(x, y)f(y) dy, x ∈ Ω,

where to avoid y ∈ ∂Ω, we can interpret the integrals as being over R
n\∂Ω since ∂Ω

is a set of Lebesgue measure zero.
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Proof of Theorem 2.1 (in the dissipative case and assuming either (4.1) or (4.2)).
Letting v(x, kω) = G[−(Le − k2)eikω·x], we look for a solution to (1.4)–(1.7) of the
form

w(x, kω) =

{
v(x, kω) + Seψe(x), x ∈ R

n\Ω;
v(x, kω) + Siψi(x), x ∈ Ω,

for two smooth functions ψe(x) and ψi(x) on ∂Ω. Plugging w(x, kω) into (1.6) leads
to a system of pseudodifferential equations on ∂Ω of the form (4.10) with, of course,
different functions on the right-hand side. This is solvable as in the proof of the
previous theorem. That w(x, kω) has the correct asymptotics follows from Lemma
4.1.

4.2. General nonself-adjoint problem. First, we find the boundary condi-
tions of the adjoint problem.

Theorem 4.4. The adjoint boundary value problem to (4.5)–(4.8) has transfer
matrix

T ∗(x) =

√
g̃e√
g̃i

1

ad− bc

(
a(x) b(x)

c(x) d(x)

)

in place of T and the solution v must satisfy the incoming radiation conditions

(4.13)
∂

∂r
v(x) + ikv(x) = o

(
1

r
n−1

2

)
, v = O

(
1

r
n−1

2

)

instead of the outgoing radiation conditions (4.8).
Note (T ∗)∗ = T .
Proof. Assume u is a solution to (4.5)–(4.8) for some fe and f i. Then the adjoint

boundary conditions are, by definition, the conditions that a function v in the domain
of Le − k2 on R

n\Ω and in the domain of Li − k2 on Ω must satisfy so that∫
Rn\Ω

(Le − k2)uv
√
ge dx +

∫
Ω

(Li − k2)uv
√
gi dx(4.14)

=

∫
Rn\Ω

u(Le − k2)v
√
ge dx +

∫
Ω

u(Li − k2)v
√
gi dx.

Here (Le − k2) and (Li − k2) are self-adjoint on L2(Rn,
√
ge dx) and L2(Rn,

√
gi dx),

respectively.
Integrating over some large ball BR instead of R

n in (4.14) and applying Green’s
formula, we obtain

−
∫
∂BR

∂u

∂r
v dSx +

∫
∂Ω

γ1,e
+ uv

√
g̃e dSx −

∫
∂Ω

γ1,i
− uv

√
g̃i dSx

= −
∫
∂BR

u
∂v

∂r
dSx +

∫
∂Ω

uγ1,e
+ v

√
g̃e dSx −

∫
∂Ω

uγ1,i
− v

√
g̃i dSx.

It is easy to see that in order for the integrals over ∂BR to vanish, v must satisfy the
incoming radiation conditions. Assuming this to be the case and taking the limit as
R → ∞, the remaining integrals over ∂Ω will give us the form of T ∗. In particular,
we must have〈

γ1,e
+ u, v+

〉
√
g̃e

−
〈
γ1,i
− u, v−

〉
√

g̃i
=
〈
u+, γ

1,e
+ v

〉
√
g̃e

−
〈
u−, γ

1,i
− v

〉
√

g̃i
,
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where we use the notation 〈f, g〉h =
∫
∂Ω

fg h dSx. Plugging in the boundary conditions
(4.7) this becomes〈

1

ad− bc
(−cu− + aγ1,i

− u), v+

〉
√
g̃e

−
〈
γ1,i
− u, v−

〉
√

g̃i

=

〈
1

ad− bc
(du− − bγ1,i

− u), γ1,e
+ v

〉
√
g̃e

−
〈
u−, γ

1,i
− v

〉
√

g̃i

and reorganizing,〈
u−,

1

ad− bc
(−cv+ − dγ1,e

+ ve)

〉
√
g̃e

+

〈
γ1,i
− u,

1

ad− bc
(av+ + bγ1,e

+ v)

〉
√
g̃e

= −
〈
u−, γ

1,i
− v

〉
√

g̃i
+
〈
γ1,i
− u, v−

〉
√

g̃i
.

It follows that (
v−
γ1,i
− v

)
=

√
g̃e√
g̃i

1

ad− bc

(
a(x) b(x)

c(x) d(x)

)(
v+

γ1,e
+ v

)

which completes the proof.
It follows from this result that the problem is self-adjoint when both (2.2) and

(2.6) are satisfied and b and c have no imaginary component. This is not surprising
since Im u+γ

1,e
+ u and Im u−γ

1,i
− u physically represent the exterior and interior flux

at the boundary and, as shown in the proof of Lemma 4.2, they are equal precisely
when (2.2) and (2.6) hold and the imaginary components of the off-diagonal terms
are zero.

We now finish the proof of Theorem 2.1 by constructing the Green’s function for
(4.5)–(4.8) when the transfer matrix is assumed only to satisfy (2.2) and (4.1) or (4.2).

Theorem 4.5. Assume T satisfies (2.2) and (4.1) or (4.2). Then for all but a
discrete set of k > 0, there exists Ge(x, y, k) and Gi(x, y, k) that solve (4.5)–(4.8) with
fe = δ(x− y) and f i = δ(x− y).

Proof. We will prove this by constructing G(x, y, z) for all but a discrete set of z
in C. Note that for all but a discrete set of z ∈ C, there exists fundamental solutions
for Le − z2 and Li − z2 in R

n, Ge(x, y, z), and Gi(x, y, z), where for z > 0 these
fundamental solutions have the outgoing radiation conditions (see [26]). In fact we
know the poles must occur on the imaginary axis. Define K to be this discrete subset
of C. In order to solve the transmission problem for z outside of this discrete set, as
in the proof of Theorem 4.3 the problem is reduced to showing the invertibility of the
matrix of pseudodifferential operators on ∂Ω:

(4.15) M =

(
Si
− −aSe

+ − bγ1,e
+ Se

γ1,i
− Si −cSe

+ − dγ1,e
+ Se

)
.

Here the layer potentials are with respect to the operators Ge(x, y, z) and Gi(x, y, z)
on ∂Ω. Let

Λ =
{
z ∈ C :

π

2
− ε < arg z <

π

2
+ ε

}
and let (x1, . . . , xn−1, 0) be local coordinates for ∂Ω around some point y ∈ ∂Ω.

Furthermore, let ĝjki and ĝjke be the restriction of the interior and exterior metrics
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to ∂Ω with respect to this coordinate system. Then in some neighborhood of y, the
layer potentials have the following symbols in the calculus of the pseudodifferential
operators with a parameter for z ∈ Λ\K (see [26] and [30]):

Si
−(x′, ξ′, z) =

1

2
√∑n−1

j,k=1 ĝ
jk
i (x′, 0)ξjξk − z2

+ Ri
−2(x

′, ξ′, z),

Se
+(x′, ξ′, z) =

1

2
√∑n−1

j,k=1 ĝ
jk
e (x′, 0)ξjξk − z2

+ Re
−2(x

′, ξ′, z),

γ1,e
+ Se(x′, ξ′, z) =

1

2
+ T i

−1(x
′, ξ′, z),

γ1,i
− Si(x′, ξ′, z) = −1

2
+ T e

−1(x
′, ξ′, z).

Here Ri
−2 and Re

−2 are bounded pseudodifferential operators (quantized in the calculus
with a parameter) on ∂Ω of order −2, and T e

−1 and T i
−1 represent operators of order

−1.
Therefore,

M(x′, ξ′, z) =

(
1

2	i1(z)
− a

2	e1(z)
+ b

2 − bT e
−1(z)

1
2 + T i

−1(z) − c
2	e1(z)

+ d
2 + dT e

−1(z)

)
+ R−2(z),

where �i1(x
′, ξ′, z) = (

∑n−1
j,k=1 ĝ

jk
i (x′, 0)ξjξk − z2)

1
2 and �e1(x

′, ξ′, z) is defined similarly.

Also, R−2(x
′, ξ′, z) ∈ S−2(∂Ω × ∂Ω × R

n−1,Λ).
Assume z ∈ Λ\K and |z| ≥ R for some large R. Since we are assuming either

(4.1) or (4.2), it is not difficult to construct an operator B(z) ∈ L−2(∂Ω×∂Ω,Λ) with
symbol B(x′, ξ′, z) ∈ S−2(∂Ω × ∂Ω × R

2n,Λ) such that

(4.16) M(z)B(z) = I + T (z),

where

‖T (z)‖L2(∂Ω)×L2(∂Ω) ≤
C

1 + |z|

and T is compact on the same space. Thus, (I+T (z))−1, and hence M(z)−1, exists for
z ∈ (Λ\K)∩{|z| ≥ R} for some large R > 0. Now let B′(z) be a parametrix for M(z)
constructed using the regular pseudodifferential calculus (i.e., the Kohn–Nirenberg
quantization). Then, M(z)B′(z) = I + T ′(z) for some compact T ′(z). Moreover,
(I + T ′(z))−1 exists for z ∈ (Λ\K) ∩ {|z| ≥ R} since M(z)−1 is invertible there.
Since T ′(z) is an operator-valued meromorphic function of z on L2(∂Ω) × L2(∂Ω),
(I + T ′(z))−1, and hence M(z)−1, exists for all but a discrete set of z ∈ C (see [31]).
Note it was necessary to consider separately T (z), B(z) and T ′(z), B′(z) since the
construction of B(z) and T (z) becomes problematic on the positive real axis (because
the denominator of the principal symbol of the single layer potential may be zero
there in the parameter-dependent calculus).

Corollary 4.6. M(z) is Fredholm with index 0 for all z ∈ C\K.
Proof. This is true for M(z) with z ∈ (Λ\K) ∩ {|z| ≥ R} since M(z) is Fredholm

by (4.16) and invertible. Moreover, M(z1) −M(z2) is compact on L2(∂Ω) × L2(∂Ω)
since z appears only on terms of order −1.
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The following theorem relates the Green’s function and its adjoint. Note that by
arguments similar to those given in [26], the set of k > 0 on which G(x, y, k) and
G∗(x, y, k) exist coincides.

Theorem 4.7. Say k > 0 is such that G(x, y, k) and G∗(x, y, k) exist and assume
x, y �∈ ∂Ω. Then G∗(x, y, k) = G(y, x, k).

Proof. Define L to be the operator equal to Le in R
n\Ω and equal to Li in Ω.

Let f, g ∈ C∞
0 (Rn). Then

〈f,G∗g〉L2(BR)

=
〈
(L− k2)Gf,G∗g

〉
L2(BR)

=
〈
Gf, (L∗ − k2)G∗g

〉
L2(BR)

−
∫
∂BR

∂Gf

∂r
G∗g −Gf

∂G∗g

∂r
dSx.

As R tends to infinity the integral over ∂BR tends to zero since Gf and G∗g satisfy
the outgoing radiation conditions. Thus,

〈f,G∗g〉L2(Rn\Ω) = 〈Gf, g〉L2(Rn\Ω)

for all f, g ∈ C∞
0 (Rn\Ω) from which it follows that G∗(x, y) = G(y, x).

Note in the self-adjoint case this proves G(x, y, k) = G(y, x, k) for all k > 0.

4.3. Direct problem for general obstacles. We now prove the full result for
obstacles satisfying only (2.2) and (2.3) or (2.4).

Proof of Theorem 2.1 for general transmission obstacles. Let T be a transfer
matrix satisfying (2.2) and (2.3) or (2.4). It suffices to solve (4.10). Let b′(x) be a
smooth extension of b(x) onto all ∂Ω which equals b(x) on Δ. Then define

(4.17) M =

(
Si
− −aSe

+ − b′γ1,e
+ Se

γ1,i
− Si −cSe

+ − dγ1,e
+ Se

)

and

(4.18) M0 =

(
Si
− −aSe

+

γ1,i
− Si −cSe

+ − dγ1,e
+ Se

)
.

As in [26] (see also [10]), solving (4.10) reduces to finding �g ∈ H̊
1
2 (Δ), solving

(4.19) ρΔ(MM−1
0 )�g = �f

for �f ∈ H− 1
2 (Δ). Here H̊s(Δ) denotes the subspace of Hs(Δ) consisting of functions

with support in Δ. It is easy to see that

MM−1
0 =

(
I + Q1 P0

0 I

)
,

where P0 and Q1 are pseudodifferential operators of orders 0 and 1 on ∂Ω. In fact,
after a trivial but lengthy calculation we find (in semigeodesic coordinates)

σ(Q1)(x
′, ξ′) = −b(x′)

(
a(x′)

�e1(x
′, ξ′)

+
d(x′)

�i1(x
′, ξ′)

)−1

+ · · · .
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Since Q1 has a strongly elliptic principal symbol by (2.4), it follows that (I +Q1)
is Fredholm with index 0. Therefore ρΔ(MM−1

0 ) is also Fredholm with index 0. In
the self-adjoint case, or more generally whenever (2.6) holds, the necessary uniqueness
follows by Lemma 4.2 and the proof in this case is finished.

For the nonself-adjoint case, since Q1 is elliptic, we can find a matrix of pseudo
differential operators B such that

ρΔ(MM−1
0 )Bf = ρΔ(I + T−1)f.

Therefore using the parameter-dependent pseudodifferential calculus as in section 4.2,
we can prove invertibility for all but a discrete set of k > 0.

We remark that the φe and φi obtained by the above argument are both in
H

1
2 (∂Ω), which implies the Green’s functions Ge(x, y) and Gi(x, y) are in H2(Rn\Ω)

and H2(Ω) away from the pole. This means the application of Green’s formula is valid
in the uniqueness proofs, or in establishing the scattering amplitude uniquely deter-
mines the Green’s function (as below). See [26] for a more detailed discussion.

4.4. The Green’s function and the scattering amplitude. Assume we are
given two obstacles, {Ω1, T1(x), L1} and {Ω2, T2(x)L2}, along with their respective
scattering data, a1(θ, ω, k) and a2(θ, ω, k). We recall the following theorem from [26]
(where Theorem 4.4 establishes that the adjoint the Green’s function exists).

Theorem 4.8. a1(θ, ω, k) = a2(θ, ω, k) for θ, ω ∈ Sn−1 implies G1(x, y, k) =
G2(x, y, k) for x, y ∈ R

n\(Ω1 ∪ Ω2) and x �= y.
Strictly speaking the proof of the theorem requires all the obstacles to be impen-

etrable. However, the alterations for the case of transmission obstacles are minor.
Note this theorem holds even when the boundary conditions are nonself-adjoint.

This also establishes the equivalence of the scattering problem and the inverse
boundary value problem on the boundary of a ball large enough to contain all the
scatterers. See [26].

5. Inverse problem for constant isotropic media with electric poten-
tials. For this entire section assume Le = −�+ V e(x)− k2 and Li = −�+ V i − k2.
By assuming the metrics are the same (and known) at the surface of the scatterer
and that there are no magnetic potentials, we avoid some difficult technicalities while
still preserving the general idea of all of the proofs. After recalling the symbol of the
Dirichlet-to-Neumann operator in section 6, as well as formulating some basic proper-
ties on boundary determination, we will be prepared for the more exhaustive analysis
required in the case of a nontrivial metric and electromagnetic potentials given in
section 7.

5.1. Location. First, we analyze the behavior of the singularity of the Green’s
function in a neighborhood of the boundary of an obstacle.

We say the obstacle Ω is well defined at x0 if x0 �∈ ∂Δ and at least one of the
following holds:

1. T (x0) �= τI for some τ > 0.
2. V e and V i do not smoothly connect along the normal direction at x0.

The following lemma proves a singularity develops in Ge(x, y) − G̃e(x, y) as y ap-
proaches x ∈ ∂Ω, which is well defined, and the subsequent corollary gives an exact
formula for the principal symbol of the single layer potential of Ge(x, y) obtained as
y ↓ x∗ ∈ ∂Ω.

Lemma 5.1. ∂Ω is well defined at x0 if and only if

lim
y↓x∗∈∂Ω

(
Ge(x, y) − G̃e(x, y)

)
= lim

y↓x∗∈∂Ω
Se

+φ
e(x, y) /∈ C∞(Bε(x

∗) ∩ ∂Ω).
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Proof. Say first that k2 is not a Dirichlet eigenvalue of either −�+V e or −�+V i

on Ω. This restriction will be removed at the end of the proof. Note the Dirichlet-
to-Neumann operator for −�+ V i(x)− k2 on Ω, Λi(k) can be written γ1,i

− Si(Si
−)−1.

Fix y ∈ R
n\Ω. We rewrite (4.10) in the form

Λi ◦
[
aSe

+φ
e(x, y) + bγ1,e

+ Seφe(x, y) − G̃i + aG̃e(x, y) + bγ1,e
+ G̃e(x, y)

]
= cSe

+φ
e(x, y) + dγ1,e

+ Seφe(x, y) − γ1,i
− G̃i(x, y) + cG̃e(x, y) + dγ1,e

+ G̃e(x, y).

Define Λe
e = −γ1,e

+ Se(Se
+)−1 to be the Dirichlet-to-Neumann operator of the exterior

problem for −�+V e(x)−k2 (with outgoing radiation conditions) and Λe the Dirichlet-
to-Neumann operator for −�+V e(x)−k2 on Ω. Using that ΛiG̃i(x, y) = γ1,i

− G̃i(x, y),
we can rewrite the above equation as[

Λi ◦ a− Λi ◦ b ◦ Λe
e − c + d ◦ Λe

e

]
(Se

+φ
e)(x, y)

= −
[
Λi ◦ a + Λi ◦ b ◦ Λe − c− d ◦ Λe

]
G̃e(x, y).

Also since Λe
e = −Λe + (Se

±)−1,[
Λi ◦ a− Λi ◦ b ◦ Λe

e − c + d ◦ Λe
e

]
(Se

+φ
e)(x, y)

=
[
d ◦ (Se

±)−1 − Λi ◦ b ◦ (Se
±)−1

]
G̃e(x, y)

−
[
Λi ◦ c− Λi ◦ b ◦ Λe

e − c + d ◦ Λe
e

]
G̃e(x, y).

We want to invert the operator on the left-hand side, at least, at the symbol level, in
order to obtain a formula for the singularity of Se

+φ
e(x, y∗) as y ↓ x∗ ∈ ∂Ω. Now,

σ
[
Λi ◦ a− Λi ◦ b ◦ Λe

e − c + d ◦ Λe
e

]
= a�e1 − b�e1�

i
1 + d�1 + bm−1(x, ξ) + T−2(x, ξ),

where m−1(x, ξ) is some operator of order −1. Let P be a local parametrix of
[
Λi ◦

a−Λi ◦ b ◦Λe
e − c+ d ◦Λe

e

]
which exists since we are assuming x∗ �∈ ∂Δ. Then, in an

appropriate neighborhood of x∗,

Ge(x, y) − G̃e(x, y) = Se
+φ

e(x, y)

∼ −G̃e(x, y) + P
[
d ◦ (Se

±)−1 − Λi ◦ b ◦ (Se
+)−1

]
G̃e(x, y),(5.1)

where ∼ denotes equality modulo C∞. In the following corollary we use the above
formula to find the principal symbol of the single layer potential of Ge(x, y) obtained
by taking the limit as y ↓ x∗ ∈ ∂Ω. For now, it suffices to show that a singularity
necessarily develops in (5.1) as y ↓ x∗ ∈ ∂Ω, which will be the case unless

(5.2) σ(P
[
d ◦ (Se

±)−1 − Λi ◦ b ◦ (Se
+)−1

]
) = 1

for all x in a neighborhood of x∗. This condition is sufficient by Proposition 3.6.
For all x0 ∈ ∂Ω near x∗, we see that equality of both sides of (5.2) is equivalent

to

σ
[
Λi ◦ a + Λi ◦ b ◦ Λe − c− d ◦ Λe

]
(x0, ξ) = 0

or

σ
[
Λi ◦ a + Λi ◦ b ◦ Λe

]
(x0, ξ) = σ

[
c + d ◦ Λe

]
(x0, ξ).
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However, for this to be true we need b(x0) = 0 and σ(Λi ◦ a)(x0) = σ(d ◦Λe + c)(x0).
Using the composition formula for pseudodifferential operators, this becomes

�1a + �0a +
∑
j

∂ξj �1Dxja + · · · = d�1 + d�0 + c + · · · .

From the coefficient of �1 we see that a = d and it follows that
∑

∂ξj �1Dxja and c
must equal zero. The former implies a = τ for some constant τ . Of course if the
boundary conditions are self-adjoint, τ = 1. Therefore σ(Λi) = σ(Λe). It is well-
known that the symbol of the Dirichlet-to-Neumann operator uniquely determines
the electric potential, along with all its normal derivatives, at the surface (see [22] or
the following section). This contradicts that the obstacle is well defined at x∗ and
proves a singularity must form in (5.1) as y ↓ x∗ ∈ ∂Ω.

It still remains to consider the case when k2 is a Dirichlet eigenvalue of −�+V i(x)
on Ω. In this case, let φi(x), φe(x) be solutions to the equation(

Si
− −aSe

+ − bγ1,e
+ Se

γ1,i
− Si −cSe

+ − dγ1,e
+ Se

)(
φi(x, y)
φe(x, y)

)
(5.3)

∼
(

−G̃i(x, y)|∂Ω + aG̃e(x, y)|∂Ω + bγ1,e
+ G̃e

−γ1,i
− G̃i(x, y) + cG̃e(x, y)|∂Ω + dγ1,e

+ G̃e

)

in some neighborhood of x∗. Specifically, as discussed in Theorem 4.5, there exists
a parametrix of the matrix of pseudodifferential operators on the left-hand side. We
want φi and φe to be the functions obtained by applying this parametrix to the right-
hand side. Since neither (Si

−)−1 nor (Se
+)−1 necessarily exists, we understand these

terms to refer to parametrices too. The proof then proceeds in the same fashion.
The following corollary of (5.1) gives the principal symbol of the transpose of the

layer potential of Ge(x, y) on ∂Ω.
Corollary 5.2. Let (Se

+)t refer to the transpose of the single layer potential of
Ge(x, y) on ∂Ω. Then if b �= 0 at x0,

σ−1((S
e
+)t)(x0, ξ

′) =
1√∑n−1

j,k ĝjke (x′, 0)ξjξk

,

and if b(x0) = 0,

σ−1((S
e
+)t)(x0, ξ

′) =
1

(ad + 1)
√∑n−1

j,k ĝjke (x′, 0)ξjξk

where we are in local, semigeodesic coordinates.
Note that if T = I, we recover the principal symbol of the usual single layer

potential on ∂Ω for G̃e(x, y) as given in Theorem 3.3.
It is now easy to show that the location of the obstacle is uniquely determined

everywhere it is well defined. Assume {Ω1, T1(x), L1} and {Ω2, T2(x), L2} are two
obstacles well defined on Γ1 ⊆ ∂Ω1 and Γ2 ⊆ ∂Ω2. Let G1(x, y) and G2(x, y) be their
respective Green’s functions.

Theorem 5.3. If Ge
1(x, y) = Ge

2(x, y) for all x, y ∈ R
n\(Ω1 ∪ Ω2) and x �= y,

then Γ1 = Γ2.
Proof. Say there exists a point x∗ ∈ Γ2 such that x∗ ∈ R

n\(Ω1 ∪ Γ1), where
the closure of Γ1 is taken with respect to ∂Ω. Fix some neighborhood Γ such that
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x∗ ∈ Γ ⊂ Γ2 and Γ ∩ Γ1 = ∅. Then, by Lemma 5.1,

lim
y↓x∗

Ge
2(x, y) − G̃e(x, y) �∈ C∞(Γ).

On the other hand, since x∗ is a positive distance away from Γ1, it is easy to see that

lim
y↓x∗

Ge
1(x, y) − G̃e(x, y) ∈ C∞(Γ).

This is a contradiction and proves the theorem.

5.2. Transfer matrix and Dirichlet-to-Neumann operator. The following
theorem proves the transfer matrix and the full symbol of the Dirichlet-to-Neumann
operator are uniquely determined on the boundary. Also, if the Dirichlet-to-Neumann
operator on the boundary exists, we show it is uniquely determined.

Theorem 5.4. Assume Ge(x, y) is known for all x and y in R
n\Ω. This uniquely

determines T (x) (up to the constant τ), σ(Λi), and, if k2 is not a Dirichlet eigenvalue
of −� + V i on Ω, Λi(k) itself is uniquely determined.

Proof. First, we show the transfer matrix is uniquely determined. Assume that
k2 is not a Dirichlet eigenvalue of −�+V i(x) on Ω so that Λi exists. This restriction
is easily removed, as discussed at the end of the proof of Lemma 5.1.

The proof will rely on an analysis of the symbol of the operator

(d− Λi ◦ b)−1(Λi ◦ a− c),

where (d−Λi ◦ b)−1 refers to the parametrix for d−Λi ◦ b. We first need to show that
this pseudodifferential operator on ∂Ω is uniquely determined from Ge(x, y).

We know that

(5.4)

(
γ0
−G

i(x, y)

γ1,i
− Gi(x, y)

)
=

(
a(x) b(x)
c(x) d(x)

)(
γ0
+G

e(x, y)

γ1,e
+ Ge(x, y)

)
.

Rewriting this by using that γ1,i
− Gi(x, y) = ΛiGi(x, y), we obtain for y ∈ R

n\Ω and
x ∈ ∂Ω that

(Λi ◦ a− c)Ge(x, y) = (d− Λi ◦ b)γ1,e
+ Ge(x, y).

Since (d− Λi ◦ b) is elliptic, the previous equality implies

(5.5)
[
(Λi ◦ b(x) − d(x))−1(Λi ◦ a(x) − c(x))

]
Ge(x, y) ∼ −γ1,e

+ Ge(x, y).

Note this holds only in a local neighborhood of any point on the boundary that is not
in ∂Δ.

Fix some x0 ∈ ∂Ω\∂Δ. Since γ1,e
+ Ge(x, y) is known for all y ∈ R

n\Ω, so is the
limit as y ↓ x0 ∈ ∂Ω. Now, by Corollary 5.2 and Proposition 3.5, WF (Ge(x, x0)|∂Ω) =
x0 ×Sn−2 since this is true of G̃e(x, x0). Therefore the symbol of the operator acting
on Ge(x, x0) is uniquely determined by Proposition 3.6.

This reduces the problem to showing that

(5.6) B(x0, ξ) = σ
[
(Λi ◦ b− d)−1(Λi ◦ a− c)

]
(x0, ξ)

uniquely determines a(x0), b(x0), c(x0), and d(x0) which will be accomplished by an-
alyzing the symbol.
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Recall that the symbol of the Dirichlet-to-Neumann operator on ∂Ω has the form
(in local semigeodesic coordinates around x0)

(5.7) σ(Λi)(x′, ξ′) = �1(x
′, ξ′) + �0(x

′, ξ′) + �−1(x
′, ξ′) + · · · ,

where �1 = (
∑n−1

j,k ĝjki (x′, 0)ξjξk)
1
2 and �0 does not depend on V (x) (see [22] or section

6). It will considerably simplify the notation in the future to define the product,

(5.8) Πj

(
p, q

)
(x, ξ) =

∑
|α|=j

∂α
ξ p(x, ξ)D

α
x q(x, ξ)/α!.

Also, in analyzing the symbol, we separate the proof into the cases where b = 0 and
b �= 0. Note we can immediately tell whether b = 0 in some neighborhood of x0 or
whether b �= 0 there by the asymptotics of Ge(x, y) given in Corollary 5.2. Finally, it
is worth mentioning that if we consider only the self-adjoint case, the analysis of the
symbol can be simplified.

First, consider the simpler case in which b(x) = 0 for all x in some neighborhood
of x0. Then at x0 and in local semigeodesic coordinates around x0 ∈ ∂Ω, (5.6) looks
like

B(x0, ξ
′) = σ

[1

d
◦ Λi ◦ a− c

d

]
(x0, ξ

′)

=
a

d
�1 +

1

d
Π1(�1, a) +

a

d
�0 +

c

d
+ · · · .(5.9)

Thus, at any x0, we uniquely determine a
d , 1

dΠ1(�1, a), and c
d . We claim this uniquely

determines the transfer matrix (up to a constant). Say we had two transfer matrices
with elements a1, c1, d1 and a2, c2, d2. Then

a1

d1
=

a2

d2
,(5.10)

Π1(�1, a1) =
d1

d2
Π1(�2, a2),(5.11)

c1
d1

=
c2
d2

.(5.12)

Thus by (5.10),

Π1(�1, a1) = Π1

(
�1,

d1

d2
a2

)
=

d1

d2
Π1(�1, a2) + a2Π1

(
�1,

d1

d2

)

which combined with (5.11) implies that d1

d2
= τ > 0 is a constant everywhere. There-

fore, (5.10) and (5.12) imply that a1 = τa2 and c1 = τc2.
A much more detailed analysis is needed when b(x) �= 0. Let t = detT . We

claim, in local semigeodesic coordinates around any x0 ∈ ∂Ω (and in a sufficiently
small neighborhood such that b �= 0),

B(x′, ξ′) =
a

b
+

1

�1

[ t

b2

]
(5.13)

+
1

�21

[ t

b2

(
d

b
− �0 −

1

�1
Π1(�1, �1)

)
+

1

b
Π1

(
�1,

t

b

)]
+ · · · .

Before obtaining this formula, we show this finishes the proof that the transfer matrix
is uniquely determined.
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Given two transfer matrices, we know

a1

b1
=

a2

b2
,(5.14)

t1
b21

=
t2
b22
,(5.15)

d1

b1
=

d2

b2
,(5.16)

Π1

(
�1,

t1
b1

)
=

b1
b2

Π1

(
�1,

t2
b2

)
.(5.17)

Now, (5.15) implies

Π1

(
�1,

t1
b1

)
= Π1

(
�1,

b1
b2

t2
b2

)
=

b1
b2

Π1

(
�1,

t2
b2

)
+

t2
b2

Π1

(
�1,

b1
b2

)

which in view of (5.17) implies that there exists a constant τ > 0 such that b1
b2

= τ .
Therefore (5.14), (5.15), and (5.16) finish the claim. That this is the same constant
as it is on the set where b = 0 follows by the continuity and positivity of a and d on
all of ∂Ω.

To prove the symbol has the form (5.13) we will solve for B(x′, ξ′) =
∑∞

j=0 r−j(x
′, ξ′)

using the composition formula for pseudodifferential operators. By (5.6),

σ(Λi ◦ b− d) ◦ σ(B) = σ(Λi ◦ a− c).

Plugging in the symbol of the Dirichlet-to-Neumann operator (5.7) we obtain (up to
terms of order −2)[

�1b + Π1(�1, b) + �0b− d + Π2(�1, b) + Π1(�0, b) + �−1b
]
◦
[
r0 + r−1 + r−2

]
= �1a + Π1(�1, a) + �0a− c + Π2(�1, a) + Π1(�0, a) + �−1a + · · · .

Equating terms by order of homogeneity, this becomes

(�1b)r0 = �1a,(5.18)

(�1b)r−1 +
[
Π1(�1, b) + �0b− d

]
r0 + Π1(�1b, r0) = Π1(�1, a) + �0a− c,(5.19)

(�1b)r−2 +
[
Π1(�1, b) + �0b− d

]
r−1 +

[
Π2(�1, b) + Π1(�0, b) + �−1b

]
r0(5.20)

+ Π2(�1b, r0) + Π1(�1b, r−1) + Π1([Π1(�1, b) + �0b− d], r0)

= Π2(�1, a) + Π1(�0, a) + �−1a.

From (5.18) we see that r0 = a
b . Thus, (5.19) can be rewritten

(�1b)r−1 + Π(�1, b)
a

b
+ �0a− ad

b
+ Π1

(
�1b,

a

b

)
= Π1(�1, a) + �0a− c.

A simple calculation shows that

Π1

(
�1b,

a

b

)
= bΠ1

(
�1,

a

b

)
= Π1(�1, a) −

a

b
Π1(�1, b),

so that (5.19) can be simplified to,

(�1b)r−1 −
ad

b
= −c.
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Therefore

r−1 =
1

�1

(
ad

b2
− c

b

)
=

1

�1

(
ad− bc

b2

)
.

Plugging in the formulas for r0 and r−1 and expanding the term Π1(�0b,
a
b ) as above,

(5.20) becomes

(�1b)r−2 +
a

b
Π2 (�1, b) + Π2

(
�1b,

a

b

)
+ Π1

(
Π1(�1, b),

a

b

)
+

detT

�1b2
[
Π1(�1, b) + �0b− d

]
+ Π1

(
�1b,

detT

�1b2

)
= Π2(�1, a).

A trivial, but lengthy, calculation shows that

Π2

(
�1b,

a

b

)
= Π2(�1, a) −

a

b
Π2(�1, b) − Π1

(
Π1(�1, b),

a

b

)
.

Plugging this into the previous equation, expanding Π1(�1b,
detT
	1b2

) as previously, and
solving for r−2 we finish the proof of (5.13).

Finally, we show that for k2 not a Dirichlet eigenvalue of Ω, the Dirichlet-to-
Neumann operator Λi on ∂Ω is uniquely determined. By (5.4), we know

Λi
(
a(x)Ge(x, y) + b(x)γ1,e

+ Ge(x, y)
)

= c(x)Ge(x, y) + d(x)γ1,e
+ Ge(x, y)

for y ∈ R
n\Ω. Therefore it suffices to note that a(x)Ge(x, y) + b(x)γ1,e

+ Ge(x, y) for
y ∈ R

n\Ω is dense in L2(∂Ω), which is proved in the following lemma.

Lemma 5.5. If k2 is not a Dirichlet eigenvalue of −� + V i(x) on Ω, then for
any open set O ⊂ R

n\Ω,

{a(x)Ge(x, y) + b(x)γ1,e
+ Ge(x, y) : y ∈ O}

is dense in L2(∂Ω).

Proof. Say

u(y) =

∫
∂Ω

a(x)Ge(x, y) + b(x)γ1,e
+ Ge(x, y)φ(x) dSx = 0 for all y ∈ O.

Then, using the boundary conditions, it follows that

u(y) =

∫
∂Ω

Gi(x, y)φ(x) dSx = 0 for all y ∈ O

and so by unique continuation, u = 0 in R
n\Ω. Therefore u+(y) = 0 on ∂Ω and

γ1,i
+ u(y) = 0 on ∂Ω. Since k2 is not a Dirichlet eigenvalue of −� + V i(y) − k2 on Ω

and, by the jump relations, u−(y) = 0, it follows that γ1,i
− u = 0. Another application

of the jump relations then shows φ(y) = 0.

Theorems 5.3 and 5.4, along with Theorem 4.8, finishes the proof of Theorems
2.2 and 2.3 when there are no magnetic potentials and the media is Euclidean.
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6. The symbol of the Dirichlet-to-Neumann operator and boundary
determination. In this section we recall the symbol of the Dirichlet-to-Neumann
operator and prove that it uniquely determines g, A, and V at the boundary of the
obstacle modulo gauge transformations and diffeomorphisms of the metric that do
not affect the operator at the boundary. Note these results hold for complex-valued
electromagnetic potentials as well.

Let L be a Schrödinger operator of the form

Lu(x) =

⎛
⎝∑

j,k

1
√
g

(
Dj + Aj(x)

)√
ggjk(x)

(
Dk + Ak(x)

)⎞⎠u(x) + q(x)u(x)

with (A1(x), . . . , An) and q(x) infinitely smooth, and fix some compact, connected

subset Ω ⊂ R
n. Consider the boundary value problem for f ∈ H

1
2 (∂Ω),

Lu = 0 in Ω,

u|∂Ω = f.

Then the Dirichlet-to-Neumann map, Λ : H
1
2 (∂Ω) → H− 1

2 (∂Ω), is defined by

(6.1) Λf =
∑
j,k

gjk
(

∂u

∂xj
+ iAju

)
νk(x)

(∑
p,r

gpr(x)νp(x)νr(x)

)− 1
2

,

where ν is the outward pointing normal in Euclidean coordinates.
Before introducing the symbol, it will help to simplify the operator. In a neigh-

borhood of an arbitrary point x0 ∈ ∂Ω introduce semigeodesic coordinates (which we
shall continue to denote by x = (x′, xn)) so that xn = 0 is the equation of ∂Ω. In
these coordinates,

L̂(x,D)û = D2
nû(x) + Ln(x,D)û(x)

+

n−1∑
j,k

1√
ĝ
(Dj + Âj(x))

√
ĝĝjk(x)(Dk + Âk(x))û(x) + q̂(x)û(x),

where

Ln(x,D) = (En(x) + Ân(x))Dn + ÂnDn + (En + Ân)Ân + DnÂn).

Above, as well as in what follows, Ej(x) =
Dj(

√
g)√

g =
Dj(

√
ĝ)√

ĝ
(1 ≤ j ≤ n). We now

select a gauge κ(x) such that κ(x′, 0) = 1 and

A′
n(x) = Ân(x) +

Dnκ(x)

κ(x)
= 0.

Note κ is easily found by assuming κ(x) = e−iψ(x) for some ψ(x) equal to zero on the
boundary. We then have

L′ = D2
n + EnDn +

n−1∑
j,k

1√
ĝ
(Dj + Âj)

√
ĝĝjk(Dk + Âk)û + q̂,

which we will rewrite in the form

L′(x,D) = D2
n + En(x)Dn + q2(x,D

′) + q1(x,D
′)

+ 2

n−1∑
j,k

A′
j(x)ĝjk(x)Dk + G(x),
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where

q2(x,D
′) =

n−1∑
j,k

ĝjk(x)DjDk,

q1(x,D
′) =

n−1∑
j,k

(ĝjk(x)Ej(x) + Dj ĝ
jk(x))Dk,

and

G(x) =

n−1∑
j,k

(Ej(x) + A′
j + Dj)(ĝ

jkAk) + q̂(x).

If we define Λ′ to be the Dirichlet-to-Neumann operator corresponding to the operator

L′, then Λ′f = ∂û(x′,0)
∂xn

and Λ′f = Λf .

We want to show the symbol of the Dirichlet-to-Neumann operator uniquely de-
termines the value of ĝ, A′, and q̂, as well as all their normal derivatives, on the
boundary. Here ĝ|∂Ω is independent of a diffeomorphism of the metric and the
A′

j(x) (1 ≤ j ≤ n − 1) are the result of specifying a particular gauge (i.e., one that

makes Ân(x) = 0). Therefore the metric and potentials, along with all powers of their
normal derivatives, are uniquely defined at the boundary. Boundary determination
from the symbol of the Dirichlet-to-Neumann operator has been proven by Kohn and
Vogelius [22] for the case gjk = δjk and A = 0; by Lee and Uhlmann [23] for arbi-
trary g and A = 0, V = 0; and by Nakamura, Sun, and Uhlmann [25] and Eskin [12]
for gjk = δjk and real-valued A, V . We slightly improve these results to show the
uniqueness for arbitrary {g,A, V } by investigating not only terms of a specific order
of homogeneity in the symbol but also terms of a specific type of homogeneity. To
explain what is meant by type, note both ξj and (ξjξl)((

∑
p,r g

prξpξr)
1
2 )−

1
2 are of

order 1 but are of different type.

The following theorem gives the exact symbol of the Dirichlet-to-Neumann oper-
ator. For the proof see [12], [22], [23], or [25].

Theorem 6.1. The symbol of the Dirichlet-to-Neumann operator is

σ(Λ′)(x′, ξ′) = �1(x
′, ξ′) + �0(x

′, ξ′) + �−1(x
′, ξ′) + �−2(x

′, ξ′) + · · · ,

where

�1(x
′, ξ′) =

√
q2(x, ξ) =

√√√√n−1∑
j,k

ĝjk(x′, 0)ξjξk,

�0(x
′, ξ′) = − 1

2�1

⎛
⎝Π1(�1, �1) − q1 − ∂xn�1 + En�1 +

n−1∑
j,k

A′
j ĝ

jk(x′, 0)ξk

⎞
⎠ ,

�−1(x
′, ξ′) = − 1

2�1

⎛
⎜⎜⎝ ∑

0≤p,r,≤1

K=p+r

ΠK(�p, �r) + ∂xn�0 − En�0 −G

⎞
⎟⎟⎠ ,
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and for m < 0,

�m−1(x
′, ξ′) = − 1

2�1

⎛
⎜⎜⎝ ∑

m≤p,r≤1

K=p+r−m

ΠK(�p, �r) + ∂xn
�m − En�m

⎞
⎟⎟⎠ .

The expansion gives us an immediate corollary on boundary determination.
Corollary 6.2. σ(Λ′) uniquely determines (for all p > 0 and 1 ≤ j ≤ n − 1)

( ∂
∂xn

)pĝ|{xn=0}, ( ∂
∂xn

)pA′
j |{xn=0}, ( ∂

∂xn
)pq̂(x)|{xn=0}.

Proof. In �21, ĝ
αβ is the coefficient of ξαξβ so that ĝαβ , as well as all their deriva-

tives in directions tangent to the boundary, are uniquely determined.
Define Ã = ({ĝ}n−1

α,β=1)
−1A′. The only new information in �0 is the appearance of

∂ĝαβ

∂xn
for 1 ≤ α, β ≤ n − 1 and Ãj for 1 ≤ j ≤ n − 1. These occur in the following

manner:

∂ĝαβ(x)

∂xn
is part of the coefficient of

ξαξβ∑
ĝprξpξr

,

Ãj(x) is part of the coefficient of
ξj

(
∑

ĝprξpξr)
1
2

.

Note the other terms in the expansion are known from �0. Thus, from �0 we obtain
∂ĝαβ

∂xn
for 1 ≤ α, β ≤ n− 1, and Ãj . It is now easy to see that new information occurs

in a manner which uniquely determines the desired values. Specifically, on the term
�1−k,

∂kĝαβ(x′, 0)

∂(xn)k
is part of the coefficient of

ξαξβ

(
∑

ĝprξpξr)
k+1
2

,

∂k−1Ãj(x
′, 0)

∂(xn)k−1
is part of the coefficient of

ξj

(
∑

ĝprξpξr)
k
2

,

∂k−2q̂(x′, 0)

∂(xn)k−2
is part of the coefficient of

1

(
∑

ĝprξpξr)
k−1
2

.

This implies the claim (note we can recover A′ from Ã).

7. Inverse problem for anisotropic media and electromagnetic poten-
tials. Our arguments will closely follow those in section 5. In order to avoid excessive

indices, we denote pj = �
(j)
1 below.

Lemma 7.1. Say p−2
1 Π1(p1, p1) = p−2

2 Π1(p2, p2) and p1 = fp2. Then f is
constant.

Proof. Substituting the latter into the former, we obtain,

(7.1) Π1(p1, p1) = f2Π1(p2, p2).

On the other hand,

(7.2) Π1(p1, p1) = Π1(fp2, fp2) = f2Π1(p2, p2) + fp2Π1(p2, f).

Therefore (7.1) and (7.2) imply that Π1(p2, f) = 0, from which it follows that f must
be constant.
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First, let us show the location is uniquely determined. We say an obstacle is well
defined at x0 if conditions (i) and (ii) in Theorem 2.2 do not hold for any pair of σ > 0
and ρ > 0. Analogously to Lemma 5.1, we obtain the following.

Lemma 7.2. {Ω, T, Li} is well defined at x∗ if and only if

lim
y↓x∗∈∂Ω

(
Ge(x, y) − G̃e(x, y)

)
= lim

y↓x∗∈∂Ω
Se

+φ
e(x, y) /∈ C∞(∂Ω).

Proof. By the same reasoning as in the proof of Lemma 5.1, we know a singularity
in G̃e(x, y) −Ge(x, y) will form as y ↓ x ∈ ∂Ω unless

σ
[
Λi ◦ a + Λi ◦ b ◦ Λe

]
(x0, ξ) = σ

[
c + d ◦ Λe

]
(x0, ξ).

Assume this is true. Then b = 0 and σ(Λi ◦ a) = σ(c + d ◦ Λe). Therefore

�i1a + Π1(�
i
1, a) + �i0a = d�e1 + d�e0 + c + · · ·

and using the expansion of �0,

�i1a + Π1(�
i
1, a) − a

1

2�i1

⎛
⎝Π1(�

i
1, �1) − qi1 − ∂xni

�i1 + Ei
n�

i
1 +

n−1∑
j,k

(Ai)′j ĝ
jk
i (x′, 0)ξk

⎞
⎠

= d�e1 − d
1

2�e1

⎛
⎝Π1(�

e
1, �

e
1) − qe1 − ∂xne

�e1 + Ee
n�

e
1 +

n−1∑
j,k

(Ae)′j ĝ
jk
e (x′, 0)ξk

⎞
⎠+ c.

Immediately we see that �e1a = �i1d and a
	i1

Π1(�
i
1, �

i
1) = d

	e1
Π1(�

e
1, �

e
1) which implies, by

Lemma 7.1, there exists a constant ρ such that a
d = ρ and

	e1
	i1

= ρ. Since the magnetic

potentials are real and the terms
qe1a
	e1

and
qi1d

	i1
are equal by the previous statement,

it follows that Π1(�1, a) = 0 (since these terms are of a specific homogeneity type).
Thus there exists τ such that a = τρ−

n
2 . Therefore d = τρ1−n

2 and so c = 0. We
leave it to the reader to verify that in the self-adjoint case, τ = 1.

Note we have proved the following corollary which is of interest in its own right.
Corollary 7.3. σ(Λ1 ◦ f) = σ(g ◦ Λ2) implies that f/g is constant.
The principal symbol of the single layer potentials can now be calculated.
Corollary 7.4. For b �= 0,

σ−1((S
e
+)t) =

1√∑n−1
j,k ĝjke (x′, 0)ξjξk

,

and for b = 0,

σ−1((S
e
+)t) =

1

(ad
	i1
	e1

+ 1)
√∑n−1

j,k ĝjke (x′, 0)ξjξk

,

where we are in local, semigeodesic coordinates.
Analogously to Theorem 5.4, we have the following.
Theorem 7.5. Given G1(x, y) and G2(x, y) such that Ge

1(x, y) = Ge
2(x, y) for all

x and y in R
n\Ω, it follows that there exists a constant ρ > 0 such that

T1(x) =

(
ρ−

n
2 0

0 ρ1−n
2

)
T2(x), σ(Λi

1) = ρσ(Λi
2),
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and if k2 is not a Dirichlet eigenvalue for either Li
1 − k2 or Li

2 − k2 on Ω, then
Λi

1 = ρΛi
2.

Proof. As in the proof of Theorem 5.4, we know that Ge
j(x, y) (j = 1, 2) uniquely

determines the operator

Bj(x, ξ) = σ
[
(Λi ◦ b− d)−1(Λi ◦ a− c)

]
(x0, ξ).

Also, as mentioned in the proof of Theorem 5.4, we can tell whether b = 0 or b �= 0 in
the neighborhood of any x0 �∈ ∂Δ by the asymptotics of Ge

j(x, y) given in the previous
corollary. Therefore b1(x) = 0 when b2(x) = 0.

We will consider only the case that bj(x) �= 0 since the other case follows similarly.
Using (x′, ξ′) to denote we are in local semigeodesic coordinates and restricting to a
sufficiently small neighborhood,

Bj(x
′, ξ′) =

aj
bj

+
1

�
(j)
1

[
tj
b2j

]

+
1

(�
(j)
1 )2

[
tj
b2j

(
dj
bj

− �
(j)
0 − 1

�
(j)
1

Π1(�
(j)
1 , �

(j)
1 )

)
+

1

bj
Π1

(
�
(j)
1 ,

tj
bj

)]
+ · · · .

Equating terms by order and type of homogeneity in the equality B1(x
′, ξ′) = B2(x

′, ξ′),
we get

a1

b1
=

a2

b2
,(7.3)

1

p1

t1
b21

=
1

p2

t2
b22
,(7.4)

1

p2
1

t1
b21

(
d1

b1
+

Dn1(
√
ĝ1)√

ĝ1

−
∂xn1

p1

p1

)
=

1

p2
2

t2
b22

(
d2

b2
+

Dn2
(
√
ĝ2)√

ĝ2

−
∂xn2

p2

p2

)
,(7.5)

1

p2
1

Π1(p1, p1) =
1

p2
2

Π1(p2, p2),(7.6)

1

p2
1b1

Π1

(
p1,

t1
b1

)
+

t1
b21

1

p2
1

∑
A1′

j ĝjk1 ξk =
1

p2
2b2

Π1

(
p2,

t2
b2

)
+

t2
b22

1

p2
2

∑
A2′

j ĝjk2 ξk.(7.7)

Note in (7.7) we really should have included t1
b21

1
p2
1

q
(1)
1

p1
and t2

b22

1
p2
2

q
(1)
2

p2
. However, we will

not need (7.7) until it already will have been proven that these terms are equal. From
(7.6) and (7.4), we see that there exists a constant ρ such that

(7.8)
p1

p2
=

t1
t2

(b2
b1

)2

= ρ.

Now,

Π1

(
p1,

t1
b1

)
= Π1

(
ρp2, ρ

b1
b2

t2
b2

)

= ρ2Π1

(
p2,

b1
b2

t2
b2

)

= ρ2 b1
b2

Π1

(
p2,

t2
b2

)
+ ρ2 t2

b2
Π1

(
p2,

b1
b2

)
.
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Plugging this result into (7.7), we obtain

c2

p2
1

b2
b1

t2
b22

Π1

(
p2,

b1
b2

)
+

t1
b21

1

p2
1

∑
A1′

j ĝjk1 ξk =
t2
b22

1

p2
2

∑
A2′

j ĝjk2 ξk.

Using that the magnetic potentials are real-valued and that t1
b21

and t2
b22

have a real

constant proportionality, it follows that Π1(p2,
b1
b2

) = 0. Thus there exists a constant

ρ such that b1
b2

= τρ−
n
2 and, hence, t1

t2
= τ2ρn−1. To finish the unique determination,

we need to analyze (7.5) in order to show that d1

b1
= ρd2

b2
. There are two possibilities

for the terms of the form
∂xnp
p : either (1) ∂xn ĝ

jk = τ ĝjk for all j, k and some τ > 0,

or (2) this is not the case. In case (2), the term has homogeneity type ξa
p which is

distinguishable from homogeneity type 1. Note that if case (2) holds for ĝ1, then it

also holds for ĝ2 since the symbols are equal. In this case, ∂xn1
ĝjk1 and ∂xn2

ĝjk2 are
uniquely determined (and proportional to one another). Therefore so are the terms
involving the determinants. Consequently, the above relation between d1

b1
and d2

b2
must

hold. On the other hand, if case (1) holds for both g1 and g2, then a calculation shows
that

Dn1(
√
ĝ1)√

ĝ1

−
∂xn1

p1

p1
=

nτ

i
− τ

and the same relation (times the proper proportionality constant) holds for g2 so that
again we get the desired relation between d1

b1
and d2

b2
.

The case when b(x) = 0 follows by analyzing the symbol in the same fashion.
Now assume k2 is not a Dirichlet eigenvalue on Ω for either L1 or L2. By (5.4),

we know (for j = 1, 2)

Λj

(
aj(x)Ge

j(x, y) + bj(x)γ1,e
+ Ge

j(x, y)
)

= cj(x)Ge
j(x, y) + dj(x)γ1,e

+ Ge
j(x, y)

for y ∈ R
n\Ω. By Lemma 5.5, the behavior of the Dirichlet-to-Neumann operator on

the above functions determines the operator. The above relations on the elements of
the transfer matrix therefore imply Λ1 = ρΛ2.

By Lemma 7.2, we can apply Theorem 5.3 to locate the obstacle. Therefore,
Lemma 7.2 and Theorem 7.5 prove Theorems 2.2 and 2.3.
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[17] L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, Berlin, 1963.
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EXPLICIT SOLUTIONS FOR A CLASS OF NONLINEAR PDEs
THAT ARISE IN ALLOCATION PROBLEMS∗

PAUL DUPUIS† AND JIM X. ZHANG‡

Abstract. To exploit large deviation approximations for allocation and occupancy problems
one must solve a deterministic optimal control problem (or equivalently, a calculus of variations
problem). As this paper demonstrates, and in sharp contrast to the great majority of large deviation
problems for processes with state dependence, for allocation problems one can construct more or less
explicit solutions. Two classes of allocation problems are studied. The first class considers objects of
a single type with a parameterized family of placement probabilities. The second class considers only
equally likely placement probabilities but allows for more than one type of object. In both cases,
we identify the Hamilton–Jacobi–Bellman equation, whose solution characterizes the minimal cost,
explicitly construct solutions, and identify the minimizing trajectories. The explicit construction
is possible because of the very tractable properties of the relative entropy function with respect to
optimization.

Key words. explicit solutions, allocation, occupancy problems, nonlinear PDE, large deviations,
calculus of variations
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1. Introduction. Allocation and occupancy problems are concerned with the
random placement of objects into containers. The objects (usually referred to as balls
or tokens) can be of a single type or many, in which case they are often distinguished
by “color.” The containers are variously called urns or cells and have many interpre-
tations such as physical partitions (photo-electric receptors in a grid) and temporal
partitions (the days of the year).

There are also many rules for how a given ball may be assigned to a given cell.
The simplest such rule, in the context of a single color, uses what are called Maxwell–
Boltzmann (MB) statistics. Here, each cell is equally likely to receive each ball. Other
rules consider the balls as being placed sequentially, and the likelihood that a given
ball is placed in a given cell depends on the current contents of that cell (relative to
the contents of all other cells). Examples in this category are Bose–Einstein (BE)
statistics, for which a cell that already contains balls is more likely to receive the next
ball, and Fermi–Dirac (FD) statistics, where the reverse holds. The precise definitions
of BE and FD will be given below.

A key random variable associated with an allocation is the empirical measure.
After all (or some) of the balls have been placed, one can form the (random) prob-
ability measure (η0, η1, . . .) on {0, 1, . . .}, with η0 equal to the fraction of cells that
are empty, η1 the fraction that contain 1, etc. For example, one could be particularly
concerned that at least 90% of the cells are nonempty after the random allocation. In
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this case one is interested in the distribution of the first component of the empirical
measure, and in particular P{η0 ≤ 0.1}.

While methods from combinatorial probability provide exact formulas for certain
classes of allocation problems, they do not apply universally, nor are they always of
great practical utility; see the discussion in [2] on this point. Hence one turns to
approximations. The simplest approximation is a law of large numbers (LLN) limit,
under which the number of cells and number of balls placed into the cells both tend
to ∞ with some fixed ratio. If η is indexed by the number of cells n, then the LLN
limit identifies the (deterministic) probability distribution that ηn tends to as n → ∞.
This identifies the “typical” behavior of the allocation scheme for large n. The limit
can often be identified as the solution to a system of ordinary differential equations
(ODEs) at time t (and for an appropriate initial condition), where t is limiting ratio
of the number of balls to the number of cells, i.e., the mean number of balls per cell.

If in contrast one is concerned with probabilities of atypical behavior, then one
considers large deviation asymptotics. For example, if it is usual that 50% of the cells
are empty when n is large, then under some technical assumptions large deviation
asymptotics assert that − 1

n logP{η0 ≤ 0.1} tends to some constant c > 0, thus
identifying the exponential rate of decay of the probability. The parameter c is usually
identified as the solution of a calculus of variations problem, and using the well-known
relation between problems in calculus of variations and Hamilton–Jacobi equations,
c can also be characterized as the value (at a particular point) of the solution to a
nonlinear partial differential equation (PDE).

The explicit identification of c is in general a daunting task. Whilst there are a
small number of cases for which analytic expressions are available, in most cases one
must attempt numerical approximation, and so one is limited to only low dimensional
problems (i.e., in our setting to the first few components of the empirical distribution).
Even putting aside the restriction of numerical methods to low dimensions, one would
prefer analytic expressions for c since they have many other uses. Beyond simply
identifying the rate of decay, analytic expressions for c can be used

• to characterize the most likely way that a rare event will occur,
• to construct efficient Monte Carlo schemes (known as importance sampling

schemes) for nonasymptotic approximations, and
• in statistical estimation and model inference for occupancy models.

The purpose of the present paper is to show that explicit solutions can be ob-
tained for the PDEs that are associated with a wide variety of allocation problems
and to introduce techniques that can be applied to even broader classes of problems.
As remarked previously, explicit solutions are not common. Among the classes of
nonlinear, first order PDEs with explicit solutions (in general dimension) are those
associated with the linear quadratic regulator and those linked to the Hopf–Lax for-
mula. Both these examples exploit some significant underlying simplification. In the
first example it is the fact that the value function for the control problem is expected
to be quadratic in the spatial variable, and in the second example it is the indepen-
dence of the running cost from the state variable. The optimization problems related
to allocation problems are qualitatively quite different from either of these, as can be
seen from both the form of the value functions and the structure of the minimizing
trajectories. There is significant state dependence and no a priori obvious form for
the value function. In the setting of allocation problems, it seems that the attractive
properties of the relative entropy function are largely responsible for the existence of
explicit solutions. It is these properties which allow for convenient calculation and
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representation of the various derivatives in terms of Lagrange multipliers, the key
ingredient in the proof.

In the next section we analyze the single color model. After introducing the
general model and formally reviewing the large deviation context, we discuss a formal
and heuristic derivation of the explicit solution. The associated Hamilton–Jacobi–
Bellman (HJB) equation is then introduced, and a solution is proposed in the form of a
finite dimensional minimization problem that can be easily and efficiently solved using
Lagrange multiplier techniques. The value of the minimization problem is shown to
be smooth for an appropriate class of terminal costs, its derivatives are characterized
via multipliers, and the HJB equation is shown to hold. The section concludes with
the identification of the minimizing trajectories. The third and final section repeats
these steps for a model with different colors.

2. Allocation models with differing assignment probabilities.

2.1. Probabilistic background and the variational problem. In this sec-
tion, we formulate a general single color occupancy problem. After describing the
model, we outline the relevant large deviation properties on path space and the re-
lated variational problems.

In the occupancy problem considered here cells are distinguished according to the
number of balls contained therein. The full collection of models will be indexed by a
parameter a. This parameter takes values in the set (0,∞] ∪ {−1,−2, . . . , }, and its
interpretation is as follows. Suppose that a ball is about to be thrown, and that any
two cells (labeled, say, A and B) are selected. A cell is said to be of category i if it
contains i balls. Suppose that cell A is of category i, while B is of category j. Then
the probability that the ball is thrown into cell A, conditioned on the state of all the
cells, and that the ball is thrown into either cell A or B, is

a + i

(a + i) + (a + j)
.

When a = ∞ we interpret this to mean that the two cells are equally likely. Also,
when a < 0 we use this ratio to define the probabilities only when 0 ≤ i∨ j ≤ −a and
i < −a or j < −a, so the formula gives a well-defined probability. The probability
that a ball is placed in a cell of category −a is 0. Thus under this model, cells can only
be of category 0, 1, . . . ,−a, and we only throw balls into categories 0, 1, . . . ,−a− 1.

When a ∈ (0,∞), cells that already contain balls are more likely to receive the
next ball. When a < 0 the opposite is true. The cases a = 1, a = ∞, a ∈ −N cor-
respond to what were called Bose–Einstein statistics, Maxwell–Boltzmann statistics,
and Fermi–Dirac statistics, respectively, in the introduction.

Suppose that before we throw a ball there are already tn balls in all the cells,
and that the occupancy state is (x0, x1, . . . , xI+). Here xi, i = 0, 1, . . . , I, denotes
the fraction of cells that contain i balls, and xI+ denotes the fraction containing
more than I balls. Throughout this paper we use this convention so that the state
space of the occupancy process is finite dimensional. (Explicit formulas analogous
to the ones derived here also hold in the infinite dimensional case, though one must
be more careful in defining the PDE.) When the occupancy state is (x0, x1, . . . , xI+),
the “un-normalized” or “relative” probability of throwing into a category i cell with
i ≤ I is simply (a + i)xi. Let us temporarily abuse notation, and let xI+1, xI+2, . . .
denote the exact fraction in each category i with i > I. Since there are tn balls in
the cells before we throw,

∑∞
i=0 ixi = t. Thus the (normalized and true) probability
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that the ball is placed in a cell that contains exactly i balls, i = 0, 1, . . . , I, is a+i
a+txi,

and the probability that the ball is placed in a cell that has more than I balls is
1 −
∑I

j=0
a+j
a+txj .

In order to define both the LLN and large deviation approximations, it is conve-
nient to introduce an occupancy process. We introduce a time variable t that ranges
from 0 to T. At a time t that is of the form l/n, with 0 ≤ l ≤ �nT 	 an integer, l balls
have been thrown. Let Xn(t) =

{
Xn

0 (t), Xn
1 (t), . . . , Xn

I (t), Xn
I+(t)

}
be the occupancy

state at that time. As noted previously, Xn
i (t) denotes the fraction of cells that con-

tain i balls at time t, i = 0, 1, . . . , I, and Xn
I+(t) the fraction of cells that contain

more than I balls. The definition of Xn is extended to all t ∈ [0, T ] not of the form
l/n by piecewise linear interpolation. Note that Xn(t) is indeed a probability vector
in R

I+2. If

SI
.
=

{
x ∈ R

I+2 : xi ≥ 0, 0 ≤ i ≤ I + 1, and

I+1∑
i=0

xi = 1

}
,

then for any t ∈ [0, T ] , Xn(t) ∈ SI . Thus Xn takes values in U .
= C ([0, T ] ,SI). We

equip U with the usual supremum norm and on SI we take the usual L1 norm. The
generator of Xn sampled at times of the form t = l/n is

Lnf(x, t) = nE [f(Xn(t + 1/n)) − f(Xn(t))|Xn(t) = x]

= n

I∑
k=0

(
a + k

a + t

)
xk [f(x + (ek+1 − ek)/n) − f(x)] ,

where ek are the standard basis unit vectors.
It is often the case that one is interested in the large deviation properties at the

terminal time T (i.e., those of Xn(T )) and for a general initial condition of the form
Xn(t) = (x0, . . . , xI+). Here there is often a detour—one first identifies the large
deviation properties of the process, and then solves for the large deviation properties
of Xn(T ) via the so-called contraction principle. This theorem represents the sought
after exponential rate of decay as the solution to a calculus of variations problem, and
therein lies the link to a PDE.

For our purposes an informal description of the process level large deviation prop-
erties will suffice. We first define the rate function on path space. Given (x, t) and a
continuous trajectory ϕ with ϕ(t) = x, the rate I(ϕ;x, t) identifies the decay rate for
the probability that Xn is in a small neighborhood of ϕ:

lim
δ↓0

lim sup
n→∞

− 1

n
logP

{
sup

t≤s≤T
|Xn(s) − ϕ(s)| < δ

∣∣∣∣Xn(t) = xn

}

= lim
δ↓0

lim inf
n→∞

− 1

n
logP

{
sup

t≤s≤T
|Xn(s) − ϕ(s)| < δ

∣∣∣∣Xn(t) = xn

}
= I(ϕ;x, t).

Here xn is any sequence of initial conditions that can occur with positive probability
and which satisfy xn → x as n → ∞. The proof of such a result and the identification
of the rate function are given in [7]. I(ϕ;x, t) can be represented as the integral, over
[t, T ], of a nonnegative “cost” which measures the likelihood that the increments of
Xn follow the increments of ϕ, with higher cost corresponding to lower likelihood (the
LLN trajectory has zero cost). The integral form of I(ϕ;x, t) is a consequence of the
Markov property.
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The specific form of I(ϕ;x, t) is as follows. Define the linear map M : SI �→ R
I+2

Mi[θ] =

⎧⎨
⎩

−θ0, i = 0,
θi−1 − θi, 1 ≤ i ≤ I,
θI , i = I + 1.

Let ϕ ∈ U be given with ϕ(t) = x. Suppose there is a Borel measurable function
θ : [t, T ] �−→ SI such that for any s ∈ [t, T ] ,

(2.1) ϕ(s) = ϕ(t) +

∫ s

t

M [θ](u)du.

We interpret θi(s) as the rate at which balls are thrown into cells that contain i balls at
time s. This rate will be viewed as a perturbation of the LLN limit rate at which balls
would be thrown, and the cost for this perturbation will measure the likelihood that
sure a perturbation occurs (with large cost corresponding to unlikely perturbations).

The mapping M [θ] accounts for the fact that when a ball is placed in a category
i cell Xn

i decreases by 1/n and Xn
i+1 increases by 1/n. The rates θ(s) are unique in

the sense that if another θ̃ : [t, T ] �−→ SI satisfies (2.1), then θ̃ = θ a.e. on [t, T ] . We
call ϕ a valid occupancy state process if there exists θ : [t, T ] �−→ SI satisfying (2.1).
In this case θ is called the occupancy rate process associated with ϕ. For x ∈ R

I+2

and t ∈ [0,−a1{a<0} + ∞1{a>0}), define the vector ρ(t, x) ∈ R
I+2 by

ρk(t, x) =
a + k

a + t
xk for k = 0, 1, . . . , I,(2.2)

and

ρI+(t, x) = 1 −
I∑

k=0

a + k

a + t
xk.

For each a, ρk(t, x) gives the LLN limiting probability that at time t the next ball
will be placed in a category k cell, given that the statistics of model a are used and
that Xn(t) = x. A direct calculation shows that if

(2.3) x ∈ SI and

I+1∑
k=0

kxk ≤ t,

then ρ(t, x) is indeed a probability vector in R
I+2, i.e., ρ(t, x) ∈ SI . It is easy to

observe that if ϕ is valid, then ϕ(s) satisfies (2.3) for all s ∈ [0, T ]. This shows that
ρ (s, ϕ(s)) ∈ SI . For future use we define

(2.4) τ(x, t)
.
=

(
t−

I∑
k=0

kxk

)/
xI+

if xI+ > 0 and τ(x, t)
.
= I +1 if xI+ = 0. Thus τ(x, t) can be interpreted as the mean

number of balls per cell among those of category I+. With this notation,

(2.5) ρI+(x, t) = (a + τ(x, t))xI+1/(a + t),

and so ρI+(x, t) in some sense takes a form very similar to that of ρk(x, t) for k =
0, 1, . . . , I.
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Let δ > 0 be small. Observe that the occupancy state will not change very much
over [t, t+δ] while nδ balls are placed into cells. Let θ denote the empirical measure on
the categories where these balls are placed. Then the new occupancy state is the sum
of the old state plus δM [θ]. Since the change in state is determined by an empirical
distribution for (at least approximately) independent and identically distributed (iid)
random variables, Sanov’s theorem [1, Theorem 2.2.1] suggests that the cost appearing
in the integral representation for I(ϕ;x, t) should be defined in terms of the famous
relative entropy function. For two probability measures α and β on a Polish space A,
the relative entropy of α with respect to β is defined by

R (α||β)
.
=

∫
A

(
log

dα

dβ

)
dα

whenever α is absolutely continuous with respect to β (and with the convention that
0 log 0 = 0). In all other cases we set R (α||β) = ∞. When two probability vectors ρ
and ν ∈ SI appear in the relative entropy function, we interpret them as probability
measures on the simplex {0, 1, . . . , I, I + 1}, and thus

R (ρ||ν)
.
=

I+1∑
i=0

ρi log
ρi
νi
.

Important properties of relative entropy are that it is nonnegative, jointly convex,
and lower semicontinuous in (α, β), and R (α||β) = 0 if and only if α = β [1, Lemma
1.4.3].

As observed, when ϕ(s) is valid, ρ (s, ϕ(s)) ∈ SI , which makes R(θ(s)||ρ (s, ϕ(s)))
well defined. If in addition ϕ(t) = x, define

(2.6) I(ϕ;x, t) =

∫ T

t

R(θ(s)||ρ (s, ϕ(s)))ds.

If ϕ is not valid or ϕ(t) �= x, then define I(ϕ;x, t) = ∞.
This defines the rate function for the models introduced at the beginning of this

section. Now suppose that one wishes to approximate probabilities involving Xn(T ).
Since the probability that Xn (as a process) is close to a given trajectory ϕ decays ex-
ponentially, decay rates of quantities such as P {Xn(T ) ∈ A|Xn(t) = xn} can (under
appropriate regularity conditions on A) be found as follows. Among all trajectories ϕ
with ϕ(t) = x and ϕ(T ) ∈ A, identify the one with the smallest decay rate c. Then c is
also the exponential decay rate of P {Xn(T ) ∈ A|Xn(t) = xn}. Hence the variational
problem to be solved is

(2.7) V (x, t) = inf
ϕ:ϕ(t)=x and ϕ(T )∈A

I(ϕ;x, t).

If one is interested in expected values other than probabilities, then variational prob-
lems of the more general form

(2.8) V (x, t) = inf
ϕ:ϕ(t)=x

[I(ϕ;x, t) + F (ϕ(T ))]

arise, and one is often particularly interested in the initial condition that corresponds
to starting with all cells empty: t = 0, x0 = 1 and xk = 0, k > 0. We will refer to this
as the empty initial condition.
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Not all initial conditions are feasible in the sense that they can be reached with
finite cost from the empty initial condition. Feasibility in this context depends on the
underlying parameter a.

Definition 2.1 (feasible domain). Define Da, the feasible domain for the occu-
pancy model with parameter a, as follows:

• When a > 0,

Da
.
=

{
(x, t) ∈ SI × [0, T ) : xI+1 > 0 and t >

I+1∑
i=0

ixi

}

⋃{
(x, t) ∈ SI × [0, T ) : xI+1 = 0 and t =

I∑
i=0

ixi

}
;

• and when a < 0 and I = −a− 1,

Da
.
=

{
(x, t) ∈ SI × [0, T ) : t =

I+1∑
i=0

ixi

}
.

In the first case the second set in the union reflects the fact that when xI+1 = 0

the number of balls thrown is exactly
∑I

i=0 ixi, and similarly for the second case.
When a ∈ −N it is only possible to throw balls into the categories 0, 1, . . . ,−a − 1,
and the only possible categories are 0, 1, . . . ,−a. Thus if there are n cells, there can
at most be −an balls thrown, and therefore T ≤ −a. When T = −a all the cells
have exactly −a balls, which is not an interesting case to study. As a consequence,
throughout this paper we assume T < −a. Also, because of the restriction on the
possible categories we can (without loss) assume that I = −a − 1. Hence for a < 0
we assume without loss that

(2.9) T < −a, I = −a− 1.

2.2. LLN limits and formal derivation of the explicit solution. When
constructing explicit solutions one needs some insight into the form of the solution.
In this section we present a formal derivation of an explicit solution to (2.8) for the
case F (x) = 1y(x) ·∞. Before doing so we calculate the LLN limits of the occupancy
processes, a necessary ingredient in the solution.

Equations for the LLN limits can easily be derived directly, or alternatively by
noting that they are the zero cost trajectories in the variational problem (2.8) with
F ≡ 0. It will suffice to consider initial conditions of the form x = ek, k = 0, 1, . . . , I,
where (ek)j is 1 if j = k and 0 otherwise. Since the relative entropy vanishes only if
θ(s) = ρ (s, ϕ(s)), the LLN limits can be characterized by the system of ODEs

(2.10) ϕ̇(s) = M [ρ (s, ϕ(s))], ϕ(t) = ek.

Since the LLN limit is desired for all components of the occupancy process, we use
the infinite system rather than the system truncated at I+. These are easy to solve
because the equation for the jth component depends only on the (j−1)st component,
and so one can solve first for the kth component and then bootstrap. To write the
solution in explicit form, we need some notation. For all a ∈ R, a �= 0, and i ∈ N, let

(
a

i

)
.
=

∏i−1
j=0(a− j)

i!
.
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Note that if a ∈ N and i > a, then
(
a
i

)
= 0, and that if a /∈ N ∪ {0} and i ∈ N, then(

a
i

)
�= 0. For i ∈ N ∪ {0} and a > 0, s ≥ 0 or a ∈ −N, 0 ≤ s ≤ −a, define

Qa
i (s)

.
=
(
− s

a

)i(−a

i

)(
1 +

s

a

)−a−i

.

One can easily check that the solution to (2.10) is ϕi(s) = 0 if i < k, and

ϕk+i(s) = Qa+k
i

(
a + k

a + t
(s− t)

)

if i ≥ 0. In the limit a → ∞ (MB statistics) one obtains the Poisson distribution

Qa+k
i

(
a + k

a + t
(s− t)

)
→ Pi(s− t) = e−(s−t)(s− t)i/i!.

For the remainder of this section we assume a �= ∞, with the understanding that
analogous statements for a = ∞ can be obtained by passing to the limit.

We next present a formal and heuristic solution to the variational problem (2.7)
that is based on probabilistic intuition. We do not attempt to directly solve for the
minimizing ϕ, but rather heuristically derive an alternate rate function for Xn(T ).
This alternative rate function is based on a different construction of the process.
However, since rate functions are unique it should coincide with (2.7) when A = {y}.
Recall that the variational problem is intended to approximate the normalized loga-
rithm of a probability. If one decomposes a probability into products or conditional
products, this will correspond to a decomposition of the quantity being minimized as
a sum.

We wish to solve (2.7) when A = {y}. Suppose that xi is interpreted as the size
of the “pool” of cells that at time t are in category i. Hence there are approximately
nxi cells in pool i. The cells in a given pool are fixed for the rest of the construction.
Let πk

i denote the probability that a cell of category k at time t ends up being a cell
of category k + i at time T . Then satisfaction of the terminal constraint requires

yi =

i∑
k=0

xkπ
k
i−k, 0 ≤ i ≤ I, yI+1 = 1 −

I∑
k=0

yk.

We use y
.
= x × π as shorthand for the last display. We require that the πk be

probabilities, and also require a constraint that corresponds to the fact that n(T − t)
balls will be placed in the prelimit problem:

(2.11) xk

∞∑
j=0

πk
j = xk, 0 ≤ k ≤ I + 1,

I+1∑
k=0

xk

∞∑
j=0

jπk
j = T − t.

Let F(x, t; y, T ) denote the set of π = (π0, π1, . . . , πI , πI+1) which satisfy the last two
displays. A terminal point y is feasible (for the given initial time and condition) if
F(x, t; y, T ) is not empty.

Owing to the fact that the un-normalized relative probabilities are affine in the
number of balls currently in each cell, we can consider the allocation from a different
perspective. We first study the random evolution of the number of balls contained in
each distinct pool of cells (recall that the partition of cells into pools is determined by
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their status at time t). Because the un-normalized probabilities are affine, this can be
done without knowing the details of how the balls are to be placed within the pool.
This process is also Markovian, and its large deviation properties are easy to identify.

Once we know the total number of balls that will end up in each pool, we then
consider the question of how they are distributed among cells within the pool. Here
we make an approximation that is formal but reasonable. If the number of cells within
a pool is large, then the statistical dependence between any two cells should be low.
If the dependence in some sense disappears in the limit n → ∞, then one might guess
that the rate function for the empirical distribution within the pool is given by Sanov’s
theorem, where the distribution of the random number of balls within each cell is just
the LLN distribution appropriate to that particular pool. By Sanov’s theorem the rate
function for the empirical distribution within the pool is a certain relative entropy.
However, we must also impose the constraint on the (previously determined) number
of balls that were placed into this particular pool, which adds a constraint to the
rate function. Finally, the overall rate function is found by combining these two rates
(allocation between pools and allocation within each pool). The function found in
this manner will be proved to be the solution to the calculus of variations problem.

An argument based on Sanov’s theorem shows that the variational problem for
the allocation between the pools is

inf

∫ T

t

R (u(s) ‖w(s) ) ds,

where

wk(s) =
(a + k)xk +

∫ s

t
uk(τ)dτ

a + s

is the probability that a ball is placed into pool k at time s. This is, in un-normalized
form, equal to axk+[number of balls per cell in pool k]xk, and the normalization is
just a + s. The initial and terminal conditions are

wk(t) =
(a + k)xk

a + t
, wk(T ) =

(a + k)xk + zk(T − t)

a + T
,

where zk is the mean number of additional balls per unit time put into pool k. The
Euler–Lagrange equations for this problem are easily constructed and solved, and one
obtains as the optimal trajectory

wk(s) =
1

s + a
((a + k)xk + (s− t)zk)

(of course satisfaction of the Euler–Lagrange equations is not, in general, a sufficient
condition for optimality, but since our discussion is simply to motivate the form of
the solution, this point is of no consequence). The cost is

∫ T

t

R
(
[(s + a)w(s)]

′ ‖w(s)
)
ds,

and for the optimal trajectory,

[(s + a)wk(s)]
′
= zk.
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The integral can be explicitly evaluated and equals

I+∑
k=0

zk · (T − t) · log

(
a + t

a + k
· zk
xk

)

−
I+∑
k=0

[xk · (a + k) + zk · (T − t)] · log

(
a + k + zk

xk
(T − t)

a + k + a+k
a+t (T − t)

)
.

This identifies the first part of the overall rate function.
The second part is found by considering placement within each pool. The mean

additional number of balls per cell in pool k is (zk/xk)(T − t). According to the
LLN, the number of additional balls in a typical cell from pool k has distribution
Qa+k

(
zk
xk

(T − t)
)

if k ≤ I and Qa+τ(x,t)
( zI+
xI+

(T − t)
)

if k = I+. Approximating

the true empirical measure within a given pool by that of the empirical measure
for iid random variables with the corresponding distribution, one formally obtains
from Sanov’s theorem the rate function R

(
πk‖Qa+k

(
zk
xk

(T − t)
))

, together with the

constraint
∑∞

i=0 iπ
k
i = zk

xk
(T − t) on the number of balls placed in pool k. Combining

the different contributions from the various pools with the contribution due to the
allocation between the pools and then applying the terminal constraint, one (again
formally) obtains the rate function

inf

{
I∑

k=0

xkR

(
πk

∥∥∥∥Qa+k

(
zk
xk

(T − t)

))

+ xI+R

(
πI+

∥∥∥∥Qa+τ(x,t)

(
zI+
xI+

(T − t)

))
+

I+∑
k=0

zk · (T − t) · log

(
a + t

a + k
· zk
xk

)

−
I+∑
k=0

[xk · (a + k) + zk · (T − t)] · log

(
a + k + zk

xk
(T − t)

a + k + a+k
a+t (T − t)

)}
,

where the infimum is over all π and z such that
∑∞

i=0 iπ
k
i = zk

xk
(T − t) and x×π = y.

However, a straightforward calculation using the specific form of Qa and
∑∞

i=0 iπ
k
i =

zk
xk

(T − t) gives

R

(
πk

∥∥∥∥Qa+k

(
a + k

a + t
(T − t)

))
−R

(
πk

∥∥∥∥Qa+k

(
zk
xk

(T − t)

))

=
zk
xk

(T − t) · log

(
a + t

a + k
· zk
xk

)
− (a + k) · log

(
a + k + zk

xk
(T − t)

a + k + a+k
a+t (T − t)

)

− zk
xk

(T − t) · log

(
a + k + zk

xk
(T − t)

a + k + a+k
a+t (T − t)

)
,

with an analogous result for k = I+. If follows that the rate function can be written
in the simpler form

inf
π:x×π=y

{
I∑

k=0

xkR

(
πk

∥∥∥∥Qa+k

(
a + k

a + t
(T − t)

))

+ xI+R

(
πI+

∥∥∥∥Qa+τ(x,t)

(
a + τ(x, t)

a + t
(T − t)

))}
,
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with the infimum over z no longer necessary.
Let

J (x, t; y)
.
= inf

ϕ∈C([t,T ],SI)
ϕ(t)=x,ϕ(T )=y

I(x, t;ϕ).(2.12)

The formal derivation just given suggests the following result, in which we also simplify
further where the special cases of FD and MB statistics allow.

Theorem 2.2 (explicit formula for the rate function). Consider an initial con-
dition (x, t) ∈ Da and a feasible terminal condition y. If a ∈ (0,∞), define τ(x, t) by
(2.4). Then the quantity J (x, t; y) defined in (2.12) has the representation

J (x, t; y) = min
π∈F(x,t;y,T )

{
I∑

k=0

xkR

(
πk

∥∥∥∥Qa+k

(
a + k

a + t
(T − t)

))

+ xI+1R

(
πI+1

∥∥∥∥Qa+τ(x,t)

(
a + τ(x, t)

a + t
(T − t)

))}
.

If a ∈ −N with I = −a− 1, then τ(x, t) = I + 1 and

J (x, t; y) = min
π∈F(x,t;y,T )

{
I+1∑
k=0

xkR

(
πk

∥∥∥∥Qa+k

(
a + k

a + t
(T − t)

))}
.

In the final case of a = ∞, we have

J (x, t; y) = min
π∈F(x,t;y,T )

{
I+1∑
k=0

xkR
(
πk ‖P (T − t)

)}
.

Remark 2.3. Although the minimization problems in Theorem 2.2 appear to be
infinite dimensional, they can in fact be reduced to finite dimensional problems. This
is because if πk is the minimizer, then πk

j takes a prescribed form for j > I. In fact,

all πk
j can be represented in terms of no more than I + 3 Lagrange multipliers as in

(2.20) below.

2.2.1. The Hamilton–Jacobi–Bellman equation. Given Theorem 2.2 one
can solve the problem with a general terminal condition F . Conversely, if the prob-
lem with terminal cost can be solved for a sufficiently broad class of F , one can derive
Theorem 2.2. This is how we will prove the theorem, and moreover, the proof will be
based on the fact that finite dimensional representations analogous to those in Theo-
rem 2.2, but with these terminal costs, are classical sense solutions to the associated
PDE. The proof also has a number of side benefits, such as convenient representations
for the various derivatives of the solution in terms of Lagrange multipliers.

The calculus of variations problem (2.8) has a natural control inter-
pretation, where θ(s), t ≤ s ≤ T , is the control, ϕ̇(s) = M [θ](s) are the dynamics,
R (θ(s)||ρ (s, ϕ(s))) is the running cost, and F (x) is the terminal cost. It is expected
that if we define

(2.13) V (x, t)
.
= inf

ϕ∈C([t,T ],SI),ϕ(t)=x

{∫ T

t

R (θ(s)||ρ (s, ϕ(s))) ds + F (ϕ(T ))

}
,
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then V (x, t) is a weak sense solution to the HJB equation

Wt + H(Wx, x, t) = 0

and terminal condition

W (x, T ) = F (x).

Here the Hamiltonian H(p, x, t) is defined by

H(p, x, t)
.
= inf

θ∈SI

[〈p,M [θ]〉 + R (θ ‖ρ (t, x) )]

and Wt and Wx denote the partial derivative with respect to t and gradient in x, re-
spectively. Note that by the representation formula [1, Proposition 1.4.2], the infimum
in the definition of H(p, x, t) can be evaluated, yielding

(2.14)

{
Wt = log

(∑I
k=0 xk

(
a+k
a+t

)
exp
(
Wxk

−Wxk+1

)
+ xI+1

(
a+τ(x,t)

a+t

))
,

W (x, T ) = F (x).

Note the use of the convenient expression (2.5) for ρI+(x, t).

For a general smooth F , (2.14) need not have a smooth (C1) solution. However,
for affine terminal costs F (x) = 〈�, x〉+b there is a C1 solution (it is in fact the unique
solution), and as remarked above, these solutions can be used to carry out a fairly
complete analysis of the problem with more general terminal conditions. Indeed,
for a general (proper) convex terminal cost F (x), the Legendre transform gives a
representation of the form

F (x) = sup
β∈RI+2

[〈β, x〉 − h(β)]

for some proper convex function h. Let V F (x, t) denote the solution (explicit or
otherwise) to the calculus of variations problem (2.13) with terminal cost F (·). Then
one can show

V F (x, t) = sup
β∈RI+2

V {〈β,·〉−h(β)}(x, t),

and an analogous formula for UF (x, t)
.
= inf[J (x, t; y) + F (y)]. Given Proposition

2.4 below, V F = UF then follows. Since ∞ · 1{y}c is a proper convex function, the
formula can be extended even further to very general F .

Observe that W is a solution of just the PDE alone (i.e., without the terminal
condition) if and only if W + c is a solution for any real number c. Since x is a
probability vector, we can write

F (x) = 〈�, x〉 + b =
I∑

i=0

(�i − �I+1)xi + �I+1 + b,

and so by the previous sentence it suffices to prove the representation under the
conditions �I+1 = 0 and b = 0.
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2.3. Explicit solution for affine terminal costs.
Proposition 2.4. Consider (x, t) ∈ Da and F (y) = 〈�, y〉, where � ∈ R

I+2 and
�I+1 = 0. Define

V (x, t)
.
= inf

ϕ∈C([t,T ],SI),ϕ(t)=x

{∫ T

t

R (θ(s)||ρ (s, ϕ(s))) ds + F (ϕ(T ))

}
,

and

U(x, t)
.
= min

π∈F(x,t;T )

{
I∑

k=0

xkR

(
πk

∥∥∥∥Qa+k

(
a + k

a + t
(T − t)

))
(2.15)

+ xI+1R

(
πI+1

∥∥∥∥Qa+τ(x,t)

(
a + τ(x, t)

a + t
(T − t)

))
+ F (x× π)

}
,

where π ∈ F (x, t;T ) means that π satisfies the constraints in (2.11). Then V (x, t) =
U(x, t).

The proof of this result is given in the next subsection. We close this subsection
with remarks on the LLN limit distributions.

We will use the fact that if a ∈ R and |z| < 1, then the binomial expansion

(1 + z)−a =

∞∑
i=0

(
−a

i

)
zi,

(
a

i

)
.
=

∏i−1
j=0(a− j)

i!

is valid, and if −a ∈ N, then the sum contains only a finite number of nonzero
terms and is valid for all z ∈ R. Recall that for i ∈ N ∪ {0} and a > 0, s ≥ 0 or
a ∈ −N, 0 ≤ s ≤ −a, then

Qa
i (s)

.
=
(
− s

a

)i(−a

i

)(
1 +

s

a

)−a−i

.

If a > 0, s ≥ 0, and |sθ/(a + s)| < 1, then the binomial expansion gives

∞∑
i=0

Qa
i (s)θ

i =

∞∑
i=0

(
− s

a

)i(−a

i

)(
1 +

s

a

)−a−i

θi

=
(
1 +

s

a

)−a ∞∑
i=0

(
− s

s + a
θ

)i(−a

i

)

=
(
1 +

s

a

)−a
(

1 − sθ

s + a

)−a

=

(
1 +

s

a
− sθ

a

)−a

=
(
1 +

s

a
(1 − θ)

)−a

.

We thus have the following expressions, where the second one may be justified by a
very similar calculation (when |sθ/(a + s)| < 1):

(2.16)

∞∑
i=0

Qa
i (s)θ

i =
(
1 +

s

a
(1 − θ)

)−a

,

∞∑
i=0

iQa
i (s)θ

i = sθ
(
1 +

s

a
(1 − θ)

)−a−1

.
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Note also that when −a ∈ N and 0 ≤ s ≤ −a the number of nonzero summands is
finite and the formulas again hold. If −a ∈ N and 0 ≤ s ≤ −a or a > 0 and s ≥ 0,
then Qa

i (s) ≥ 0 for i ∈ N∪ {0}. Letting θ ↑ 1 in the first expression shows that under
these conditions Qa

i (s) defines a probability measure on N∪ {0}. When a = 0 we use
the limiting values

Q0
0(s) = 1, Q0

i (s) = 0

for all i ∈ N and s ≥ 0. For later use note that similar calculations show that if
−a ∈ N and 0 ≤ s ≤ −a or a > 0, s ≥ 0, and s/(a + s) < 1, then

(2.17)

∞∑
i=0

i2Qa
i (s) −

[ ∞∑
i=0

iQa
i (s)

]2

= s +
s2

a
.

2.3.1. Analysis of the finite dimensional minimization problem. We now
focus on proving Proposition 2.4. We will do so by proving that U(x, t) is a classical
sense solution to the HJB equation (2.14). A modification of the standard verification
argument [4] can then be used to show that V (x, t) = U(x, t). The classical verification
argument consists of two parts. One first considers any valid occupancy process and
control (ϕ, θ) for the initial condition (x, t). If U is a smooth solution to the PDE
(2.14) in neighborhood of {(ϕ(s), s) : t ≤ s ≤ T} and if U(ϕ(T ), T ) = 〈ϕ(T ), �〉,
then the chain rule implies that the cost along this trajectory is at least U(x, t). The
reverse inequality is proved by defining an optimal feedback control through the HJB
equation, using this control to construct a trajectory, and then verifying (once again
via the chain rule) that the cost for this control is U(x, t). The characterization of
V (x, t) as an infimum over all valid occupancy processes and controls that start at
(x, t) then gives V (x, t) = U(x, t). However, we have to clarify here what is meant by
a “classical sense” solution to (2.14). The difficulty is that U(x, t) is only well defined
on the set Da, which does not have an interior.

Given any point (x, t) ∈ Da, we will prove that one can extend U(x, t) smoothly
to a neighborhood of (x, t) in R

I+2×R. To be more precise, for any such (x, t) we will
show there exists a neighborhood U ⊂ R

I+2×R of (x, t) and a function Ū ∈ C∞(U ,R),
such that Ū(y, s) = U(y, s) for (y, s) ∈ U ∩Da, and that Ū satisfies (2.14) in U ∩ Da.
One can then use Ū in place of U in the verification argument, since any feasible
trajectory will never leave Da.

To analyze U(x, t) we formulate an appropriate Lagrangian. Let

f(x, t;π)
.
=

I∑
k=0

xkR

(
πk

∥∥∥∥Qa+k

(
a + k

a + t
(T − t)

))
(2.18)

+ xI+1R

(
πI+1

∥∥∥∥Qa+τ(x,t)

(
a + τ(x, t)

a + t
(T − t)

))
+ 〈�, x× π〉

and for a set of Lagrange multipliers Λ
.
= (λ, μ) = (λ0, λ1, . . . , λI , λI+1, μ), let

L(x, t; Λ;π)(2.19)

.
= f(x, t;π) +

I+1∑
k=0

λkxk

⎛
⎝1 −

∞∑
j=0

πk
j

⎞
⎠+ μ

⎛
⎝T − t−

I+1∑
k=0

xk

∞∑
j=0

jπk
j

⎞
⎠ .

It follows from the definition of U(x, t) that U(x, t) = infπ supΛ L(x, t; Λ;π).
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Note that by the joint convexity of relative entropy, L(x, t; Λ;π) is convex in
π. Thus (2.15) is a standard convex programming problem with linear constraints,
except that the minimization is over a variable π which is infinite dimensional. Hence
the standard Lagrange multiplier method does not apply directly. If we temporarily
ignore this issue, then to guess the form of the minimizer one would of course set
DπL(x, t; Λ;π) = 0 to get π = π(x, t; Λ), where Dπ stands for the gradient in π and

πk
j (x, t; Λ) = Qa+k

j

(
a + k

a + t
(T − t)

)
eλk−1+jμ−	k+j

k = 0, 1, . . . , I and j ≥ 0,(2.20)

πI+1
j (x, t; Λ) = Qa+τ(x,t)

j

(
a + τ(x, t)

a + t
(T − t)

)
eλI+1−1+jμ.

Here, for notational simplicity, we extend � in Proposition 2.4 by letting �i = 0
when i > I. Note in particular that

{
πk
}

will depend on x only when k = I + 1.
Observe also that setting DΛL(x, t; Λ;π) = 0 gives the constraints (2.11). For any
(x, t) ∈ R

I+2 × R and Λ ∈ R
I+3, let π(x, t; Λ) be determined by (2.20) and define

G : R
I+2 × R × R

I+3 �→ R
I+3 by

Gk(x, t; Λ) =

⎛
⎝1 −

∞∑
j=0

πk
j (x, t; Λ)

⎞
⎠ , k = 0, 1, . . . , I + 1,

GI+2(x, t; Λ) =

⎛
⎝T − t−

I+1∑
k=0

xk

∞∑
j=0

jπk
j (x, t; Λ)

⎞
⎠ .

In the next theorem we show that the π(x, t;λ) defined in (2.20) indeed give the
minimizer of (2.15).

Theorem 2.5. For any (x, t) ∈ Da define U(x, t) by (2.15). Then there exists
Λ ∈ R

I+3 so that G(x, t; Λ) = 0, and π(x, t; Λ) is a minimizer of (2.15). Thus
U(x, t) = L

(
x, t; Λ;π(x, t; Λ)

)
. In addition, the Λ that satisfies G(x, t; Λ) = 0 is

unique. Hence if G(x, t; Λ) = 0 for some Λ ∈ R
I+3, then π(x, t; Λ) is a minimizer of

(2.15).
The proof is divided into three lemmas. For a point (x, t) ∈ Da, quantities of the

following sort will appear frequently in the proofs of the lemmas:

π̄k
j

.
= Qa+k

j

(
a + k

a + t
(T − t)

)
(2.21)

π̄I+1
j

.
= Qa+τ(x,t)

j

(
a + τ(x, t)

a + t
(T − t)

)
for k = 0, 1, . . . , I; j = 0, 1, . . . .

In particular, it will often be the case that (2.16) must be invoked, with a there
replaced by a+ k [or a+ τ(x, t)] and s there replaced by the corresponding argument
in the expression above. We note that the conditions required for (2.16) will always
hold so long as t ∈ [0, T ]. This is straightforward to check in the case of a > 0. For
the case −a ∈ N, it uses that −a = I + 1, T ≤ −a, and that always τ(x, t) = I + 1.
Thus, for example, for any k ∈ {0, . . . ,−a} and t ∈ [0, T ], (a + k)(T − t)/(a + t) ≥ 0
and (T − t)/(−a− t) ≤ 1 shows that (a+ k)(T − t)/(a+ t) ≤ −a− k, as required for
(2.16).
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Lemma 2.6 (general properties). For any (x, t) ∈ Da define U(x, t) by (2.15).
Then F(x, t;T ) is nonempty, minimizing measures π∗ exist, and if k is such that
xk > 0 and j ∈ {0, 1, . . .}, then

(2.22) π̄k
j > 0 implies π∗k

j > 0.

Proof. According to (2.16) the quantities in (2.21) are probabilities that satisfy
(2.11). This shows that F(x, t;T ) is nonempty. Next note that with this notation,
we can rewrite (2.18) as

(2.23) f(x, t;π) = R (x⊗ π ‖x⊗ π̄ ) + 〈�, x× π〉,

where (x ⊗ π)i,j = xiπ
i
j . Since the relative entropy has compact level sets in the

first argument [1, Lemma 1.4.3(c)], the existence of a minimizer of (2.15) follows. In
addition, because of the strict convexity in that argument we know that the minimizer
is unique up to those

{
πk
·
}

with xk > 0.
For a general initial condition (x, t) let K .

= {k : xk > 0}. Then the choice of{
πk
· : k /∈ K

}
will not affect either the constraint (2.11) or the objective function

(2.23). Hence we can consider the equivalent minimization problem over M(x,t) ={
πk
j : k ∈ K, j = 0, 1, . . .

}
. As discussed in the previous paragraph, a minimizer in

M(x,t) exists and is unique. Let this minimizer be denoted π∗.
Lastly we must show (2.22). Let πε .

= (1− ε)π∗ + επ̄, where π̄ is defined in (2.21),
and let f(ε) = f(x, t;πε). By computing the derivative of f(ε) explicitly, it is readily
observed that if (2.22) does not hold, then f ′(ε) → −∞ as ε → 0. Thus (2.22) must
be true since otherwise π∗ is not the minimizer.

Lemma 2.7 (characterization of the minimizer). For any (x, t) ∈ Da define
U(x, t) by (2.15). Then there exists Λ ∈ R

I+3 so that G(x, t; Λ) = 0, and π(x, t; Λ) is
a minimizer of (2.15).

Proof. We want to argue that the minimizers must take the form of (2.20).
However, there is a difficulty since M(x,t) can be infinite dimensional. To deal with
this we use a truncation argument adapted from one in [2]. For any N ∈ N let

T (N) .
=
∑
k∈K

xk

N∑
j=0

jπ∗k
j , α

(N)
k

.
=

N∑
j=0

π∗k
j , k ∈ K,

and also let

f (N)(x, t;π)
.
= f(x, t; π̂),

where

π̂k
j = πk

j for k ∈ K, j ≤ N,

π̂k
j = π∗k

j for k ∈ K, j > N.

Since π∗ is the minimizer of (2.15), we automatically obtain

(2.24) U(x, t) = min
π

f (N)(x, t;π),

where the minimum is subject to the constraints

∑
k∈K

xk

N∑
j=0

jπk
j = T (N),

N∑
j=0

πk
j = α

(N)
k , k ∈ K.



EXPLICIT SOLUTIONS FOR ALLOCATION PROBLEMS 1643

We can now apply the standard Lagrange multiplier method to (2.24). The first step
is to formulate the Lagrangian for this finite dimensional problem:

LN (x, t; Λ;π)

.
= fN (x, t;π) +

∑
k∈K

λ
(N)
k xk

⎛
⎝α

(N)
k −

N∑
j=0

πk
j

⎞
⎠+ μ(N)

⎛
⎝T (N) −

I+1∑
k=0

xk

N∑
j=0

jπk
j

⎞
⎠ .

We have that
{
π∗k
j : k ∈ K, j ≤ N

}
satisfies the constraints in (2.24), and by (2.22)

we know that π∗k
j > 0 if π̄k

j > 0. Hence by [6, Corollary 28.2.2] and [6, Theorem 28.3]

applied to (2.24), there must exist a set of Lagrange multipliers λ
(N)
k , μ(N) so that the

minimizer of (2.24) π∗k
j has the form

(2.25) π∗k
j = π̄k

j e
λ

(N)
k −1+jμ(N)−	k+j

for k ∈ K and 0 ≤ j ≤ N . If k + j > I, then since �k+j = 0,

π∗k
j+1

π∗k
j

= C · eμ(N)

,

where C does not depend on N . Thus μ(N) is independent of N , and hence λ(N)

is also independent of N . Since the choice of N is arbitrary, we then know that for
all k ∈ K and j = 0, 1, . . . , π∗k

j indeed has the form in (2.20) for a suitable choice

of λk and μ. For k /∈ K, we can simply define π∗k
j as in (2.25) and then solve

for λk from the normalization constraint
∑∞

j=0 π
∗k
j = 1. When defined in this way,

Λ∗ = (λ0, . . . , λI+1, μ) automatically satisfies G(x, t; Λ∗) = 0.
For k ∈ K the corresponding λk are a Kuhn–Tucker vector as in [6, Corollary

28.2.2], and hence each λk < ∞. However, for k /∈ K the finiteness of λk is not
automatic.

To show the finiteness, we first insert the explicit form of πI+1
j (x, t; Λ) from (2.20)

into GI+1(x, t,Λ) = 0 to obtain

∞∑
j=0

Qa+τ(x,t)
j

(
a + τ(x, t)

a + t
(T − t)

)
eλI+1−1+jμ = 1.

Using (2.16) to evaluate the sum gives

λI+1 = (a + τ(x, t)) log

(
a + T − eμ(T − t)

a + t

)
+ 1.

For notational simplicity define

(2.26) η(t, μ)
.
= log

(
a + T − eμ(T − t)

a + t

)
, λ(x, t;μ)

.
= (a + τ(x, t))η(t, μ) + 1.

Then λI+1 = λ(x, t;μ). Choose C < ∞ such that |�k| ≤ C for 0 ≤ k ≤ I. Then

∞∑
j=0

π̄k
j e

λk−1+jμ−C ≤
∞∑
j=0

πk
j (x, t; Λ) ≤

∞∑
j=0

π̄k
j e

λk−1+jμ+C .
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A calculation of the same sort that gave the display above (2.26) gives

(a + k)η(t, μ) + 1 − C ≤ λk ≤ (a + k)η(t, μ) + 1 + C, k = 0, . . . , I.

Hence λk < ∞ so long as λi < ∞ for some i = 0, 1, . . . , I, I + 1, which is true by
[6, Corollary 28.2.2]. This completes the proof that for any (x, t) ∈ Da there exists
Λ ∈ R

I+3 so that G(x, t; Λ) = 0 and π(x, t; Λ) is a minimizer of (2.15).

The next lemma will focus on the claim that for (x, t) ∈ Da, there is only one Λ
that satisfies G(x, t,Λ) = 0, which together with the previous lemma completes the
proof of Theorem 2.5.

Lemma 2.8 (uniqueness of characterization). For (x, t) ∈ Da, there is only one
Λ ∈ R

I+3such that G(x, t,Λ) = 0.

Proof. Recalling the definition of π̄ in (2.21), notice that (2.20) is simply

πk
j (x, t; Λ) = π̄k

j e
λk−1+jμ−	k+j for k = 0, 1, . . . , I + 1, j = 0, 1, . . . .

As noted previously, for any (x, t) ∈ Da we can assume that each
{
π̄k
·
}

is a valid proba-

bility vector. Thus πk
j (x, t; Λ) ≥ 0 and for each k at least one of

{
πk
j (x, t; Λ), j = 0, 1, . . .

}
is strictly positive. If

αk
.
=

∞∑
j=0

πk
j (x, t; Λ), Tk

.
=

∞∑
j=0

jπk
j (x, t; Λ),

then αk > 0 for each k = 0, 1, . . . , I, I + 1, and any Λ ∈ R
I+3. Using the particular

dependency of πk
j (x, t; Λ) on Λ, one can compute

⎧⎪⎪⎨
⎪⎪⎩

∂πk
j (x,t;Λ)

∂λk
= πk

j (x, t; Λ),
∂πk

j (x,t;Λ)

∂μ = jπk
j (x, t; Λ),

∂πk
j (x,t;Λ)

∂λl
= 0, l �= k.

It is straightforward to construct a dominating function of the form π̄k
j ·C ·Dj for suit-

able constants C and D, and hence by the Lebesgue dominated convergence theorem
one can compute DΛG(x, t; Λ) explicitly as

⎛
⎜⎜⎜⎝

−α0 · · · 0 −T0

... · · ·
...

...
0 · · · −αI+1 −TI+1

−x0T0 · · · −xI+1TI+1 −
∑I+1

k=0 xk

∑∞
j=0 j

2πk
j (x, t; Λ)

⎞
⎟⎟⎟⎠ .

Using elementary row operations to make the matrix upper triangular, we see that
{−αk : k = 0, 1, . . . , I + 1} and

∑I+1
k=0

xk

αk
T 2
k−
∑I+1

k=0 xk

∑∞
j=0 j

2πk
j (x, t; Λ) are the eigen-

values of DΛG(x, t; Λ). We have already observed that αk > 0 for all k = 0, 1, . . . , I+1.
Also, for every k = 0, 1, . . . , I + 1 the Cauchy–Schwarz inequality implies

⎛
⎝ ∞∑

j=0

j2πk
j (x, t; Λ)

⎞
⎠
⎛
⎝ ∞∑

j=0

πk
j (x, t; Λ)

⎞
⎠ ≥

⎛
⎝ ∞∑

j=0

jπk
j (x, t; Λ)

⎞
⎠

2

.
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It is easy to verify that the necessary condition for equality [πk
j = j2πk

j for all j] does
not hold. Hence the inequality is strict, and therefore⎛

⎝ ∞∑
j=0

j2πk
j (x, t; Λ)

⎞
⎠ >

T 2
k

αk
.

Thus DΛG(x, t; Λ) is negative definite for all Λ ∈ R
I+3.

Now we can prove the uniqueness of Λ. Suppose there are two different Λ1,Λ2 ∈
R

I+3 such that G(x, t; Λi) = 0, i = 1, 2. Define Λ(ε)
.
= εΛ1 + (1 − ε)Λ2 and

h(ε)
.
= 〈G(x, t; Λ(ε)),Λ1 − Λ2〉.

Then h′(ε) = (Λ1 − Λ2)
T · DΛG · (Λ1 − Λ2). Since DΛG(x, t; Λ) is always negative

definite, h′(ε) < 0 for all 0 < ε < 1. However, h(0) = h(1) = 0. This contradiction
shows that G(x, t; Λ) = 0 has a unique solution in Λ.

The next theorem considers differentiability properties of U(x, t). As mentioned
previously, we first extend the definition of U(x, t) to a neighborhood of (x, t) in
R

I+2 × R, label this extension Ū(x, t), and then show Ū(x, t) is differentiable in the
normal Euclidean sense. For our needs (a verification argument) the function Ū(x, t)
can be used in lieu of U(x, t).

Theorem 2.9. Fix (x, t) ∈ Da and define U(x, t) by (2.15). Then there is an
open neighborhood U of (x, t) and an extension Ū of U from Da ∩ U to U which is
differentiable on U .

Proof. By Theorem 2.5, for any (x, t) ∈ Da there exists Λ so that G(x, t; Λ) =
0 and U(x, t) = L

(
x, t; Λ, π(x, t; Λ)

)
. A natural approach to proving smoothness

would be to apply the implicit function theorem. Recall that τ(x, t) is defined as
the mean number of balls per cell in category I+ in (2.4). A difficulty with a direct
application of the implicit function theorem is that this nonsmooth function appears
in the constraints involving GI+1 and GI+2. To avoid this difficulty we consider an
equivalent but less obvious formulation of the constraint.

As discussed above (2.26), if the Lagrange multiplier λI+1 is set to λ(x, t;μ),
then the constraint GI+1(x, t; Λ) = 0 will hold automatically. We will work with the
reduced set of multipliers Λ̃

.
= {λ0, . . . , λI , μ} and the definition

(2.27) Λ
(
x, t; Λ̃

)
.
= {λ0, λ1, . . . , λI , λ(x, t;μ), μ} .

Setting

(2.28) H(x, t; Λ̃)
.
= L

(
x, t; Λ

(
x, t; Λ̃

)
;π
(
x, t; Λ

(
x, t; Λ̃

)))

gives U(x, t) = H(x, t; Λ̃).
To apply the implicit function theorem we must show that there are smooth

constraints that characterize Λ̃. For i = 0, . . . , I we use G̃i(x, t; Λ̃) = 0, where
G̃i(x, t; Λ̃) = Gi(x, t; Λ). These constraints are equivalent since πk

j does not depend
on λI+1 for k ≤ I. Since GI+1(x, t; Λ) = 0 holds automatically, we need only define
G̃I+1 so that G̃I+1(x, t; Λ̃) = 0 is equivalent to GI+2(x, t; Λ) = 0. We have

GI+2(x, t; Λ) = T − t−
I∑

k=0

xk

∞∑
j=0

jπk
j (x, t; Λ) − xI+1

∞∑
j=0

jπI+1
j (x, t; Λ),
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and thus set

(2.29) G̃I+1(x, t; Λ̃)
.
= GI+2(x, t; Λ(x, t; Λ̃)).

Since πk
j (·) does not depend on λI+1 when k ≤ I we abuse notation and write the

terms of the form πk
j (x, t; Λ(x, t; Λ̃)) as πk

j (x, t; Λ̃). Thus

G̃I+1(x, t; Λ̃) = T − t−
I∑

k=0

xk

∞∑
j=0

jπk
j (x, t; Λ̃) − xI+1

∞∑
j=0

jπI+1
j (x, t; Λ(x, t; Λ̃)).

Since for (x, t) ∈ Da the value Λ such that G(x, t; Λ) = 0 exists and is unique, the
value Λ̃ such that G̃(x, t; Λ̃) = 0 exists and is also unique.

We have that DΛ̃G̃(x, t; Λ̃) equals⎛
⎜⎜⎜⎝

−α0 · · · 0 −T0

... · · ·
...

...
0 · · · −αI −TI

−x0T0 · · · −xITI DμG̃I+1(x, t; Λ̃)

⎞
⎟⎟⎟⎠ ,

where it is only the last entry that must be identified.
We pause to introduce a convention which will be used in the remainder of the

paper. Whenever a differential operator of the form Dx precedes a composed function,
the derivative is computed via the chain rule for precisely those arguments where a
composed dependence on x is made explicit in the notation. Thus in computing
DμG̃I+1(x, t; Λ̃) we use (2.29) and calculations in the last section to get

DμG̃I+1(x, t; Λ̃)

= DμGI+2(x, t;λ0, . . . , λI , λ(x, t;μ), μ)

= DμGI+2(x, t;λ0, . . . , λI , λI+1, μ) + DλI+1
GI+2(x, t;λ0, . . . , λI , λI+1, μ) ·Dμλ(x, t;μ)

= −
I+1∑
k=0

xk

∞∑
j=0

j2πk
j (x, t; Λ(x, t; Λ̃)) − xI+1TI+1 ·DμλI+1(x, t;μ).

It will be useful to express πI+1 in the Qa(s) notation. We have

πI+1
j = Q

a+τ(x,t)
j

(
a + τ(x, t)

a + t
(T − t)

)
eλI+1−1ejμ.

Recall that λI+1 is chosen to make this a probability measure. By (2.16),

eλI+1−1 =

(
1 +

T − t

a + t
(1 − eμ)

)a+τ(x,t)

.

Hence using a little algebra we can write

πI+1
j

=

(
−T − t

a + t

)j ( −a− τ(x, t)
j

)(
1 +

T − t

a + t

)−a−τ(x,t)−j

ejμ
(

1 +
T − t

a + t
(1 − eμ)

)a+τ(x,t)

=

(
− eμ(T − t)

a + T − eμ(T − t)

)j ( −a− τ(x, t)
j

)(
a + T

a + T − eμ(T − t)

)−a−τ(x,t)−j

= Q
a+τ(x,t)
j

(
eμ(T − t)(a + τ(x, t))

a + T − eμ(T − t)

)
.
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Again using (2.16),

(2.30) TI+1 =

∞∑
j=0

jπI+1
j (x, t; Λ(x, t; Λ̃)) =

eμ(a + τ(x, t))(T − t)

a + T − eμ(T − t)
.

Recalling the definition

λ(x, t;μ) = (a + τ(x, t)) log

(
a + T − eμ(T − t)

a + t

)
,

a direct calculation shows Dμλ(x, t;μ) = −TI+1, and hence

(2.31) DμG̃I+1(x, t; Λ̃) = −
I+1∑
k=0

xk

∞∑
j=0

j2πk
j (x, t; Λ(x, t; Λ̃)) + xI+1T

2
I+1.

Since αI+1 = 1, the eigenvalues of DΛ̃G̃(x, t; Λ̃) are −α0,−α1, . . . ,−αI and∑I+1
k=0

xk

αk
T 2
k −
∑I+1

k=0 xk

∑∞
j=1 j

2πk
j (x, t; Λ(x, t; Λ̃)). By the same argument as was used

for DΛG(x, t; Λ) these are all negative, and hence DΛ̃G̃(x, t; Λ̃) is invertible.

We next claim that DΛ̃G̃ is smooth in (x, t). One can check that the only po-

tentially difficult component is DμG̃I+1(x, t; Λ̃), and of this the only nontrivial part
is

xI+1

⎛
⎝ ∞∑

j=0

j2πI+1
j (x, t; Λ(x, t; Λ̃)) − T 2

I+1

⎞
⎠ .

Using (2.17) and some algebra shows this term equals

−xI+1(a + τ(x, t)) · (t− T )eμ(a + T )

[eμ(t− T ) + a + T ]2
.

Although τ(x, t) is not smooth, xI+1(a + τ(x, t)) is always smooth, and thus DμG̃ is
smooth in (x, t). Note that the denominator does not vanish since η(t, μ) > −∞.

Therefore G̃(·; ·) is smooth in a neighborhood of (x, t; Λ̃). By the implicit function
theorem, for any (x, t) ∈ Da there exists a neighborhood U ⊂ R

I+1 × R of (x, t), a
neighborhood V ⊂ R

I+2 of Λ̃, and a C∞ function g : U �→ V, so that Λ̃ = g(x, t) and
for every (y, s) ∈ U , G̃(y, s; g(y, s)) = 0. Define

Ū(y, s) = H(y, s; g(y, s)).

Since g(y, s) is smooth in U , Ū ∈ C∞(U ,R), and by Theorem 2.5 Ū(y, s) = U(y, s)
for (y, s) ∈ U ∩ Da.

The next theorem expresses the derivatives in terms of the Lagrange multipliers.
Theorem 2.10. Fix (x, t) ∈ Da, and let Λ̃∗ be the associated Lagrange multiplier.

We have{
Dxk

Ū(x, t) −Dxk+1
Ū(x, t) = λ∗

k − λ∗
k+1 + η∗, k = 0, 1, . . . , I − 1,

DxI
Ū(x, t) −DxI+1

Ū(x, t) = λ∗
I − 1 − (a + I)η∗

and DtU(x, t) = η∗ − μ∗.
Proof. Consider any point (x, t) ∈ Da and let Λ̃∗ be the associated Lagrange

multiplier. By Theorem 2.9 there exists U ⊂ R
I+1 × R a neighborhood of (x, t),
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V ⊂ R
I+2 a neighborhood of Λ̃∗, and a C∞ function Λ̃ : U �→ V such that Ū(y, s)

.
=

H(y, s; Λ̃(y, s)) satisfies Ū(y, s) = U(y, s) for any (y, s) ∈ U ∩ Da.
Keeping in mind the convention regarding differential operators,

Dxk
Ū(x, t) = Dxk

H(x, t; Λ̃(x, t))

= Dxk
H(x, t; Λ̃∗) + DΛ̃H(x, t; Λ̃∗)Dxk

Λ̃(x, t).

Thus in the first line H(x, t; Λ̃(x, t)) is considered as the composed function of (x, t)
(which by definition is Ū(x, t)), and we take derivatives with respect to two arguments
and evaluate at (x, t). In the second line, Dxk

H(x, t; Λ̃∗) means H(x, t; Λ̃∗) is now a
function of the independent variables (x, t, Λ̃∗) and we take derivatives with respect
to xk and then evaluate it at (x, t; Λ̃∗). In all calculations, vectors are interpreted as
row vectors.

With the notation established, we can proceed. Note that by definition (2.28),

DΛ̃H(x, t; Λ̃)

= DΛL (x, t; Λ;π)DΛ̃Λ
(
x, t; Λ̃

)
+ DπL (x, t; Λ;π)DΛ̃π

(
x, t; Λ

(
x, t; Λ̃

))
.

Since Λ∗ = Λ(x, t; Λ̃∗) and π∗ are chosen so that DπL (x, t; Λ∗;π∗) = DΛL (x, t; Λ∗;π∗) =
0, we have DΛ̃H(x, t; Λ̃∗) = 0. This gives

(2.32) Dxk
Ū(x, t) = Dxk

H(x, t; Λ̃∗), k = 0, 1, . . . , I + 1.

By the same argument, we have DtŪ(x, t) = DtH(x, t; Λ̃∗).
Next, we insert the explicit form of π(x, t; Λ) from (2.20) into (2.19) to get

L(x, t; Λ, π(x, t; Λ))

=
I+1∑
k=0

xk

∞∑
j=0

[λk − 1 + jμ]πk
j (x, t; Λ) +

I+1∑
k=0

λkxk

⎛
⎝1 −

∞∑
j=0

πk
j (x, t; Λ)

⎞
⎠

+μ

⎛
⎝T − t−

I+1∑
k=0

xk

∞∑
j=0

jπk
j (x, t; Λ)

⎞
⎠

= −
I∑

k=0

xk

∞∑
j=0

πk
j (x, t; Λ) − xI+1

∞∑
j=0

πI+1
j (x, t; Λ) +

I+1∑
k=0

λkxk + μ (T − t) .

In the definition of H(x, t; Λ̃), λI+1 is replaced by λ(x, t;μ) so that automatically∑∞
j=0 π

I+1
j (x, t; Λ) = 1. Using xI+1λ(x, t;μ) − xI+1 = xI+1(a + τ(x, t))η(t, μ) from

(2.26) and the definition of τ(x, t),

H(x, t; Λ̃) =

I∑
k=0

xkλk + μ(T − t) −
I∑

k=0

xk

∞∑
j=0

πk
j (x, t; Λ̃)

+ xI+1(a + τ(x, t))η(t, μ)

=
I∑

k=0

xkλk + μ(T − t) −
I∑

k=0

xk

∞∑
j=0

πk
j (x, t; Λ̃)

+a

(
1 −

I∑
k=0

xk

)
η(t, μ) +

(
t−

I∑
k=0

kxk

)
η(t, μ).
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Recall from the explicit expression (2.20) that for k = 0, 1, . . . , I, πk
j (x, t; Λ) does not

depend on x or on λI+1. Hence the x dependence can be omitted in πk
j (x, t; Λ̃) in the

last display, and we do so from now on.
By (2.32),

Ūxk
= λ∗

k − 1 − (a + k)η∗, k = 0, 1, . . . , I,

and ŪxI+1
= 0, where η∗ = η(t, μ∗). This implies the first claim of the theorem.

Similarly

DtŪ(x, t)

= DtH(x, t; Λ̃∗)

= η∗ − μ∗ −Dt

⎧⎨
⎩

I∑
k=0

xk

∞∑
j=0

πk
j (t; Λ̃∗)

⎫⎬
⎭+

{
a

(
1 −

I∑
k=0

xk

)
+

(
t−

I∑
k=0

kxk

)}
Dtη(t, μ

∗)

= η∗ − μ∗ −Dt

⎧⎨
⎩

I∑
k=0

xk

∞∑
j=0

πk
j (t; Λ̃∗)

⎫⎬
⎭+ xI+1(a + τ(x, t))Dtη(t, μ

∗).

We now will verify that

(2.33) −Dt

⎧⎨
⎩

I∑
k=0

xk

∞∑
j=0

πk
j (t; Λ̃∗)

⎫⎬
⎭+ xI+1(a + τ(x, t))Dtη(t;μ

∗) = 0,

which implies DtU(x, t) = η∗ − μ∗. By the explicit formula for πk
j (t; Λ̃) in (2.20) and

the definition of Qa
j (s), for all k = 0, 1, . . . , I; j = 0, 1, . . .

Dtπ
k
j (t; Λ̃) = jπk

j (t; Λ̃)
a + T

(t− T )(a + t)
+

(a + k + j)

a + t
πk
j (t; Λ̃).

A suitable dominating function can be found, and thus by the Lebesgue dominated
convergence theorem,

Dt

⎧⎨
⎩

I∑
k=0

xk

∞∑
j=0

πk
j (t; Λ̃)

⎫⎬
⎭

=
I∑

k=0

xk

∞∑
j=0

[
jπk

j (t; Λ̃)
a + T

(t− T )(a + t)
+

(a + k + j)

a + t
πk
j (t; Λ̃)

]
.

Using that π(x, t; Λ∗) satisfies the constraint (2.11) and some elementary algebra,

Dt

⎧⎨
⎩

I∑
k=0

xk

∞∑
j=0

πk
j (t; Λ̃∗)

⎫⎬
⎭

= −
xI+1

∑∞
j=0 jπ

I+1
j (x, t; Λ∗)

t− T
− xI+1(a + τ(x, t))

a + t
.

Equation (2.30) and the definition of η in (2.26) give

(2.34) TI+1 =
T − t

a + t
(a + τ(x, t))eμ

∗−η∗
,
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and hence

(2.35) Dt

⎧⎨
⎩

I∑
k=0

xk

∞∑
j=0

πk
j (t; Λ̃∗)

⎫⎬
⎭ = −a + τ(x, t)

a + t
xI+1

(
1 − eμ

∗−η∗
)
.

The definition of η(t, μ) in (2.26) and (a + t)eη = a + T − eμ(T − t) gives

Dtη(t, μ) =
eμ

a + T − (T − t)eμ
− 1

a + t
=

eμ−η − 1

a + t
.

Finally, combining this with (2.35) gives (2.33).
Our final theorem shows that Ū satisfies the HJB equation (2.14) in the classical

sense on U . When combined with a standard verification argument as in [4], this will
imply V (x, t) = Ū(x, t) = U(x, t) on Da.

Theorem 2.11. Ū satisfies (2.14) on Da.
Proof. Having derived various expressions for the derivatives of Ū in terms of the

Lagrange multipliers in Theorem 2.10, to show that Ū(x, t) satisfies the PDE (2.14)
it remains to show

(2.36) e−μ∗+η∗
=

I−1∑
k=0

xk
a + k

a + t
eλ

∗
k−λ∗

k+1+η∗
+xI

a + I

a + t
eλ

∗
I−1−(a+I)η∗

+xI+1
a + τ(x, t)

a + t
.

Recall from (2.20) that for k = 0, 1, . . . , I and j ≥ 0,

π∗k
j = Qa+k

j

(
a + k

a + t
(T − t)

)
eλ

∗
k−1+jμ∗−	k+j .

Using the definition of Qa+k
j , for k = 0, 1, . . . , I − 1,

π∗k+1
j =

(j + 1)(a + t)

(a + k)(T − t)
π∗k
j+1e

λ∗
k+1−λ∗

ke−μ∗
.

Now sum both sides from j = 0 to ∞ and use the fact that
∑∞

j=0 π
∗k
j = 1 to get

(2.37) eλ
∗
k−λ∗

k+1 = e−μ∗ ·
(a + t)

∑∞
j=1 jπ

∗k
j

(T − t)(a + k)
for k = 0, 1, . . . , I − 1.

Inserting (2.37) into (2.36), a little algebra shows that satisfaction of the PDE is
equivalent to

(T − t) =

I−1∑
k=0

xk

∞∑
j=0

jπ∗k
j + xI

a + I

a + t
(T − t)eλ

∗
I−1−(a+I+1)η∗+μ∗

+xI+1
a + τ(x, t)

a + t
(T − t)e−η∗+μ∗

.(2.38)

Since π∗I
j = Qa+I

j

(
a+I
a+t (T − t)

)
eλ

∗
I−1+jμ∗

for j ≥ 1, by (2.16),

∞∑
j=1

jπ∗I
j =

∞∑
j=1

jQa+I
j

(
a + I

a + t
(T − t)

)
eλ

∗
I−1+jμ∗

=
T − t

a + t
(a + I)eλ

∗
I−1−η∗(a+I+1)+μ∗

,(2.39)
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where the last equality uses the definition of η in (2.26).

Inserting (2.34) and (2.39) into
∑I+1

k=0 xk

∑∞
j=0 jπ

k
j = T − t, we then have

(T − t) =
I−1∑
k=0

xk

∞∑
j=0

jπ∗k
j + xI

a + I

a + t
(T − t)eλ

∗
I−1−η∗(a+I+1)+μ∗

+xI+1
a + τ(x, t)

a + t
(T − t)e−η∗+μ∗

.

We have thus verified (2.38), which completes the proof that Ū satisfies (2.14).

2.4. Minimizing trajectories. The minimizing trajectories associated with the
calculus of variations problem have important qualitative and computational uses.
Perhaps the most important is that they identify the most likely way a rare event will
occur [5].

Identification of the minimizing trajectories in the MB case was done in [2] using
the Euler–Lagrange equations, a system of nonlinear ODEs. The solutions to these
equation are called extremals, and in general being an extremal is neither a necessary
nor sufficient condition for minimality. In [2], a direct but detailed argument using
Lagrange multiplier techniques was used to show the extremals were indeed mini-
mizers. Here we take a different tack. We start in [2] with a two-parameter family
of solutions to the Euler–Lagrange equations that identify the extremals. The two
parameters are themselves characterized as the solution to a pair of nonlinear alge-
braic equations. These parameters and the form of the extremals suggest values for
the Lagrange multipliers in the explicit representation (2.15), and indeed it is shown
that characterizing equations G(x, t; Λ) = 0 for the unique Lagrange multipliers are
satisfied. Having identified the minimal cost, all that remains is to show that the
cost along the extremal is the same as this minimal value. This is done by explicitly
evaluating an integral.

The main goal of this section is to argue that the extremals are minimizers and
exhibit the relation between the two parameters used to identify the extremals and
the Lagrange multipliers used in the formula for the minimal cost. Not all details will
be given, and to simplify the presentation only the initial condition with t = 0 and
all cells empty is considered. The statement of the case of general initial conditions is
exactly analogous to Theorem 2.8 in [2], and any details that are omitted are similar
to ones appearing in [2]. In addition, we present only the case a ∈ (0,∞). In this
case it is simpler to work with an infinite dimensional version of the extremals. This
is analogous to what is called the exponential case in [2]. The arguments for the cases
a = ∞ and a < 0 are analogous to that of a ∈ (0,∞). As noted above, the case a = ∞
has already been considered in [2]. In the case a < 0, the extremals satisfy ϕI = 0.
Because of this the arguments are somewhat simpler than in the case of a > 0, and it
is analogous to the polynomial case of [2].

In the case of the empty initial condition the extremal can be identified as follows.
Let y ∈ SI be given. Then a family of solutions to the Euler–Lagrange equations for
the problem of minimizing the cost subject to this terminal condition are

ϕ0(t) = CQa
0(ρt) +

I∑
k=0

(yk − CQa
k(ρT ))

(
1 − t

T

)k

,

ϕi(t) =
ti

i!
(−1)iϕ

(i)
0 (t), 1 ≤ i ≤ I,
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ϕI+(t) = 1 −
I∑

i=0

ϕi(t).

This is exactly analogous to the form found in [2] for the special case of a = ∞,
with the Poisson distribution P(t) in that case replaced by the family of probability
distributions Qa(t). It is useful to extend the definition of ϕi(t) to ϕi(t) = CQa

i (ρt)
for i > I, while maintaining the distinction between ϕI+(t) and ϕI(t).

The parameters ρ > 0 and C ≥ 0 are chosen so that the measure corresponding
to ϕi(T ) is a probability measure, and moreover, one for which the number of balls
per cell at time T equals T. Specifically, ρ is chosen so that

ρT −
∑I

i=0 iQa
i (ρT )

1 −
∑I

i=0 Qa
i (ρT )

=
T −

∑I
i=0 iyi

1 −
∑I

i=0 yi

holds, and then

C
.
=

1 −
∑I

i=0 yi

1 −
∑I

i=0 Qa
i (ρT )

=
T −

∑I
i=0 iyi

ρT −
∑I

i=0 iQa
i (ρT )

.

Solutions to these equations exist for ρ ∈ (0,∞) and C ∈ [0,∞) and are unique.
To show that this is indeed a minimizing trajectory we relate the constants ρ

and C to the Lagrange multipliers appearing in the finite dimensional representation
(2.15). Recall that the minimizer to this problem takes the form

π0
j (1, 0; Λ) = Qa

j (T )eλ0−1+jμ−	j ,

with �j = 0 if j > I. Using the form of the minimizing trajectory, at time t = T ,

ϕj(T ) = yj , 0 ≤ j ≤ I,

ϕj(T ) = CQa
j (ρT ), I < j.

Thus for all j > I we will want

Qa
j (T )eλ0−1+jμ = CQa

j (ρT ).

Since

Qa
j (ρT )

Qa
j (T )

=

(
−ρT
a+ρT

)j (
a+ρT

a

)−a

(
−T
a+T

)j (
a+T
a

)−a
= ρj

(
a + T

a + ρT

)j (
a + T

a + ρT

)a

,

this suggests

μ = log ρ + log

(
a + T

a + ρT

)
,

λ0 − 1 = a log

(
a + T

a + ρT

)
+ logC,

and

�k = − log yk + logQa
k(ρT ) + logC
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when k ≤ I. Hence the minimizing trajectory for a problem with a finite terminal
cost � will terminate at a point y with each yk > 0, an assumption we make for the
rest of this section. The argument when one or more yk = 0 can be handled by a
limiting argument. We remark in passing that similar considerations allow one to
explicitly identify the Lagrange multipliers for all initial conditions (x, t) that lie on
the extremal in terms of C, ρ, and the values yk.

To show that π0(1, 0; Λ) is the minimizing probability measure in (2.15) the con-
straints (2.11) must be demonstrated. One constraint is that π0

j (1, 0; Λ) be a proba-

bility measure. Since the definitions of the Lagrange multipliers enforce π0
j (1, 0; Λ) =

ϕj(T ), this follows from
∑I

i=0 yi = 1 − C + C
∑I

i=0 Qa
i (ρT ) and

∞∑
j=0

ϕj(T ) =

I∑
j=0

yj +

∞∑
j=I+1

CQa
j (ρT ) = 1 − C + C = 1.

The only other constraint to check is the conservation condition:
∞∑
j=0

jπ0
j (1, 0; Λ) =

∞∑
j=0

jQa
j (T )eλ0−1+jμ−	j

=

∞∑
j=0

jCQa
j (ρT ) +

I∑
j=0

jyj −
I∑

j=0

jCQa
j (ρT )

= CρT −
I∑

j=0

jCQa
j (ρT ) +

I∑
j=0

jyj

= T −
I∑

i=0

iyi +

I∑
j=0

jyj

= T,

where the equations characterizing C and ρ are used for the fourth equality.
We have identified the optimal measure for the terminal cost �. To complete the

argument that ϕ is a minimizer we need only show that the cost along this trajectory
equals

R
(
π0(1, 0; Λ) ‖Qa(T )

)
=

∞∑
j=0

π0
j (1, 0; Λ) log

(
π0
j (1, 0; Λ)

Qa
j (T )

)

=

∞∑
j=0

Qa
j (T )eλ0−1+jμ−	j log

(
eλ0−1+jμ−	j

)

=

I∑
j=0

yj log

(
yj

Qa
j (T )

)
+

∞∑
j=I+1

CQa
j (ρT ) log

(
CQa

j (ρT )

Qa
j (T )

)

=
∞∑
j=0

ϕj(T ) log

(
ϕj(T )

Qa
j (T )

)

=

∞∑
j=0

ϕj(T ) log (ϕj(T )) −
∞∑
j=0

ϕj(T ) log
(
Qa

j (T )
)
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=

∞∑
j=0

ϕj(T ) log (ϕj(T ))

−
∞∑
j=0

ϕj(T )

[
log

(
T

a

)j

+ log

(∏j−1
k=0(a + k)

j!

)
+ log

(
a + T

a

)−a−j
]

=

∞∑
j=0

ϕj(T ) log (ϕj(T )) − T log

(
T

a

)
+ (a + T ) log

(
a + T

a

)

−
∞∑
j=0

ϕj(T ) log

(∏j−1
k=0(a + k)

j!

)
.

The notion of a completely monotone function is useful here. Although it is clear
from the construction of the Lagrange multipliers that ϕj(T ) is a probability measure,
the same cannot be said yet for ϕj(t). A monotone function γ is completely monotone
on [0, T ] if it is infinitely differentiable on [0, T ] and if for all t ∈ [0, T ] and i ≥ 0,

(−1)iγ(i)(t) ≥ 0.

The same argument as [2, p. 2794] shows that ϕ0(t) is completely monotone on [0, T ],
and hence for all t ∈ [0, T ] and i ≥ 0, ϕi(t) ≥ 0. From the explicit formula for ϕ0(t)

we actually have (−1)iϕ
(i)
0 (t) > 0 for t ∈ (0, T ). It is also easy to show that for all

t ∈ [0, T ] and i ≥ 0, ϕi(t) can be interpreted as the ith term in the Taylor series
expansion of ϕ0(0) about t, and so for each t, {ϕi(t), i = 0, 1, . . .} is a probability
measure on {0, 1, . . .}.

To evaluate the cost ∫ T

0

R (θ ‖ρ(t, ϕ(t)) ) dt,

it is convenient to work, as in [2], with the cumulative occupancy functions

ψj(t) =

j∑
i=0

ϕi(t).

The dynamics then take the form ψ
(1)
j (t) = −θj(t), and so with the convention

ψ−1(t) = 0 the cost can be expressed as∫ T

0

[
I∑

i=0

−ψ
(1)
i (t) log

(
−ψ

(1)
i (t)

a+i
a+t (ψi(t) − ψi−1(t))

)
+
(
1 + ψ

(1)
0 (t) + · · · + ψ

(1)
I (t)

)

× log

(
1 + ψ

(1)
0 (t) + · · · + ψ

(1)
I (t)

a
a+t (1 − ψI(t)) + 1

a+t

∑∞
k=I+1 k (ψk(t) − ψk−1(t))

)]
dt.

We have

−ψ
(1)
i (t) = −

i∑
k=0

ϕ
(1)
i (t)

= −
i∑

k=0

(−t)k

k!
ψ

(k+1)
0 (t) +

i∑
k=1

(−t)k−1

(k − 1)!
ψ

(k)
0 (t)

= − (−t)i

i!
ψ

(i+1)
0 (t),
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and so

−ψ
(1)
i (t)

ϕi(t)
=

− (−t)i

i! ψ
(i+1)
0 (t)

(−t)i

i! ψ
(i)
0 (t)

=
−ψ

(i+1)
0 (t)

ψ
(i)
0 (t)

.

Since for i > I,

−ψ
(1)
i (t)

a+i
a+t (ψi(t) − ψi−1(t))

=
a + t

a + i

−ϕ
(i+1)
0 (t)

ϕ
(i)
0 (t)

=
a + t

a + i

Qa
i+1(ρt)(i + 1)

Qa
i (ρt)t

=
a + t

a + i

(−ρt)(−a− i)

(a + ρt)t

=
(a + t)ρ

a + ρt

and

1 + ψ
(1)
0 (t) + · · · + ψ

(1)
I (t)

a
a+t (1 − ψI(t)) + 1

a+t

∑∞
k=I+1 k (ψk(t) − ψk−1(t))

=

∑∞
i=I+1 −

(−t)i

i! ϕ
(i+1)
0 (t)

a
a+t

(∑∞
i=I+1

(−t)i

i! ϕ
(i)
0 (t)

)
+ 1

a+t

∑∞
i=I+1 i

(−t)i

i! ϕ
(i)
0 (t)

=

∑∞
i=I+1 −

(−t)i

i! ϕ
(i+1)
0 (t)

a+i
a+t

(∑∞
i=I+1

(−t)i

i! ϕ
(i)
0 (t)

) ,

we can write the integral as

∫ T

0

∞∑
i=0

−ψ
(1)
i (t) log

(
−ψ

(1)
i (t)

a+i
a+t (ψi(t) − ψi−1(t))

)
dt.

In several places below we will need the existence of a dominating function to justify
the interchange of summation and integration. A suitable function can be found using
the same calculations as those used to establish (2.16). Also, this dominating function
will work only on closed subintervals of (0, T ), and so a careful argument will first
evaluate the integral on [ε, T − ε] and then use monotone convergence to take the
limit ε ↓ 0.
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We evaluate the integral by the following calculation, each line of which is ex-
plained below:

∫ T

0

∞∑
i=0

−ψ
(1)
i (t) log

(
a + t

a + i

−ψ
(i+1)
0 (t)

ψ
(i)
0 (t)

)
dt

=

∫ T

0

∞∑
i=0

(
−ψ

(1)
i (t) log

∣∣∣ψ(i+1)
0 (t)

∣∣∣+ ψ
(1)
i (t) log

∣∣∣ψ(i)
0 (t)

∣∣∣− ψ
(1)
i (t) log (a + i)

)
dt

+

∫ T

0

( ∞∑
i=0

−ψ
(1)
i (t)

)
log (a + t) dt

=

∫ T

0

∞∑
i=0

[(
ψ

(1)
i (t) − ψ

(1)
i−1(t)

)
log
∣∣∣ψ(i)

0 (t)
∣∣∣− ψ

(1)
i (t) log (a + i)

]
dt

+

∫ T

0

log (a + t) dt

=
∞∑
i=0

([
ϕi(t) log

∣∣∣ψ(i)
0 (t)

∣∣∣]T
0

+

∫ T

0

( ∞∑
i=0

−ψ
(1)
i (t)

)
dt +

∞∑
i=0

[ψi(t)]
T
0 log(a + i)

)

+ (a + T ) log(a + T ) − (a + T ) − a log a + a

=

∞∑
i=0

([
ϕi(T ) log

∣∣∣ϕ(i)
0 (T )

∣∣∣− ϕi(0) log
∣∣∣ϕ(i)

0 (0)
∣∣∣]T

0
+ log(a + i)

(
i∑

k=0

ϕi(T ) −
i∑

k=0

ϕi(0)

))

+T + (a + T ) log(a + T ) − (a + T ) − a log a + a

=

∞∑
i=0

(
ϕi(T ) log

(
ϕi(T )i!/T i

)
− log(a + i)

( ∞∑
k=i+1

ϕk(T )

))

+ (a + T ) log(a + T ) − a log a

=

∞∑
i=0

(
ϕi(T ) logϕi(T ) +

∞∑
i=0

ϕi(T ) log (i!) − ϕi(T ) log

(
i−1∏
k=0

(a + k)

))

−T log T + (a + T ) log(a + T ) − a log a

=

∞∑
i=0

ϕi(T ) logϕi(T ) +

∞∑
i=0

ϕi(T ) log

(
i!∏i−1

k=0(a + k)

)

−T log T + (a + T ) log(a + T ) − a log a.

The first line separates the a+ t term in the logarithm. The second equality uses the

convention ψ−1(t) = 0 and that
∑∞

i=0 −ψ
(1)
i (t) = 1 (all balls go into some cell). The

third line uses integration by parts and the fourth uses the definition of the cumulative
occupancies. The fifth line uses the definition of ϕi in terms of derivatives of ϕ0, and
the sixth equality uses summation by parts. Since

−T log

(
T

a

)
+ (a + T ) log

(
a + T

a

)
= −T log T + (a + T ) log(a + T ) − a log a,

the cost along this trajectory equals the minimum, and the argument is complete.

3. Allocation models with balls of different color. In this section we extend
the techniques to the case of allocation models where the balls are of more than one
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type. To keep the notation simple, we actually consider just two colors, the extension
to the more general case being straightforward. Another simplification is that we
consider only MB statistics. The interested reader can combine the methods from
this section and the last to treat more general statistical models.

3.1. Coloration process. We construct an allocation model with colored balls
as follows. Balls are thrown into one of n cells sequentially. The throwing process
is modeled by a collection of iid random variables, each uniformly distributed on the
set {1, . . . , n}, with each value of the set corresponding to a cell. There is also a
coloration process. At each discrete time a ball is assigned color Y n

l ∈ {1, 2} and
then placed into the cell determined by the throwing process. These two processes
are independent.

The occupancy process in this case is defined as follows. The natural state space
is

SI,J
.
=

⎧⎨
⎩x ∈ R

I+2 × R
J+2 : xi,j ≥ 0, 0 ≤ i ≤ I + 1, 0 ≤ j ≤ J + 1,

I+1∑
i=0

J+1∑
j=0

xi,j = 1

⎫⎬
⎭ .

If i ∈ {0, . . . , I} and j ∈ {0, . . . , J}, then Xn
i,j(l/n) is the fraction of cells containing

exactly i color-1 and j color-2 balls when l balls have been thrown. In an analogous
fashion Xn

I+,j(l/n), Xn
i,J+(l/n) and Xn

I+,J+(l/n) are defined. By definition Xn
0,0(0)

.
=

1, and Xn
i,j(0)

.
= 0 for all other values of (i, j).

To describe the large deviation asymptotics of these allocation processes we must
specify those of the coloration processes. Cumulative coloration processes {rn, n ∈ N}
are defined for t = l/n by

rn1

(
l

n

)
.
=

1

n

l∑
k=1

1{Y n
k =1}, rn2

(
l

n

)
.
=

1

n

l∑
k=1

1{Y n
k =2}.

We will assume that these processes satisfy a large deviations principle with a rate

function of the form J(φ) =
∫ T

0
c(φ̇(s))ds. Thus c(φ̇(s)) is a measure of the local (in

time) log likelihood that a fraction φ̇i(s) of the balls are color i. A mild technical
assumption that is needed to prove a large deviations result for the occupancy process
is that c(a) = 0 for some point a with ai > 0, i = 1, 2. Since c is a rate function,
there is at least one probability vector a at which c(a) = 0. The assumption that this
occurs at a point where both components are positive is very mild and means simply
that the LLN limit cannot concentrate exclusively on one color.

Examples of coloration processes which satisfy these properties are deterministic,
iid, and Markovian. In the iid case colors are selected by an iid sequence of random
variables. In the Markov case the color is chosen by a finite state ergodic Markov
chain. The so-called deterministic case seeks to achieve a deterministic fraction ak of
color k, with ak ∈ (0, 1). This can be done as follows. If Nk

l−1 balls of color k have
been thrown in the first l−1 throws (with N1

l−1+N2
l−1 = l−1), and if N1

l−1/n ≤ a1l/n,
then we color the lth ball 1, and otherwise color it 2.

The specific form for c in all these cases is spelled out in [3]. For reasons to be
explained below, the focus in this paper will be on the iid and deterministic cases,
where c(ρ) equals R(ρ ‖a ) and ∞· 1{a}c(ρ), respectively. Under a suitable restriction
needed to ensure convexity that is also described below, the same methods can be
applied to the Markovian case as well.
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3.2. Variational problem and PDE. For this problem the feasible domain is

D .
=

⎧⎨
⎩(x, t) ∈ SI,J × [0, T ) :

I∑
i=0

xi,J+1 +

J∑
j=0

xI+1,j + xI+1,J+1 > 0 and

t >
I+1∑
i=0

J+1∑
j=0

xi,j or

I∑
i=0

xi,J+1 +

J∑
j=0

xI+1,j + xI+1,J+1 = 0 and t =

I∑
i=0

J∑
j=0

xi,j

⎫⎬
⎭ .

We next describe the large deviations variational problem. Recall that SI,J are the
set of all probability measures on {0, I + 1}×{0, J + 1}, which can also be interpreted
as real (I + 2) × (J + 2) matrices. For α ∈ SI,J define the linear maps

M1
i,j [α] = αi−1,j1{i≥1} − αi,j1{i≤I},M

2
i,j [α] = αi,j−11{j≥1} − αi,j1{j≤J}.

The rate function for the coloration over an interval [t, T ] is assumed to be of the

form
∫ T

t
c(ρ)ds, where ρ(s) = (ρ1(s), ρ2(s)) are the colored fractions at time s. The

local (in time) and total coloration fractions satisfy qk =
∫ T

t
ρk(s)ds/[T − t], and for

a trajectory of the form (ρ1(s), ρ2(s)) = (q1, q2), the cost is of course [T − t]c(q). The
rate function for the occupancy process on path space is then

I(x, t;ϕ) = inf
θ,ρ

∫ T

t

[
ρ1R(θ1 ‖ϕ ) + ρ2R(θ2 ‖ϕ ) + c(ρ)

]
ds,

where the infimum is over all θ, ρ such that

ϕ(u) − ϕ(t) =

∫ u

t

(
ρ1M

1[θ1] + ρ2M
2[θ2]

)
ds.

For a terminal cost F we consider

V (x, t) = inf
ϕ∈C([t,T ],SI,J ),ϕ(t)=x

{I(x, t;ϕ) + F (ϕ(T ))} .

Then V should be a weak sense solution to

Wt + H(Wx, x, t) = 0

and the terminal condition, where

H(p, x, t) = inf
ρ,θ1,θ2

[〈
p, ρ1M

1[θ1] + ρ2M
2[θ2]

〉
+ ρ1R(θ1 ‖x ) + ρ2R(θ2 ‖x ) + c(ρ)

]
.

If b(γ) is the Legendre transform b(γ) = supρ [〈γ, ρ〉 − c(ρ)], then we can also write

H(p, x, t) = − sup
ρ

[
−
∑

m=1,2

ρm

(
inf
θm

[〈p,Mm[θm]〉 + R(θm ‖x )]

)
− c(ρ)

]

= −b

(
− inf

θ1

[〈
p,M1[θ1]

〉
+ R(θ1 ‖x )

]
,− inf

θ2

[〈
p,M2[θ2]

〉
+ R(θ2 ‖x )

])
.
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The variational formula for exponential integrals in terms of relative entropy [1,
Proposition 1.4.2] asserts that

inf
θ1

[〈
p,M1

[
θ1
]〉

+ R(θ1 ‖x )
]

= inf
θ1

⎡
⎣ ∑
i,j,i≥1

pi,jθ
1
i−1,j −

∑
i,j,i≤I

pi,jθ
1
i,j + R(θ1 ‖x )

⎤
⎦

= inf
θ1

⎡
⎣ ∑
i,j,i≤I

(pi+1,j − pi,j)θ
1
i,j + R(θ1 ‖x )

⎤
⎦

= − log

⎛
⎝ ∑

i,j,i≤I

e−(pi+1,j−pi,j)xi,j +
∑

i,j,i=I+1

xi,j

⎞
⎠ .

Using the analogous formula for m = 2, one obtains

H(p, x, t) = −b

⎡
⎣log

⎛
⎝ ∑

i,j,i≤I

e−(pi+1,j−pi,j)xi,j +
∑

i,j,i=I+1

xi,j

⎞
⎠ ,

log

⎛
⎝ ∑

i,j,j≤J

e−(pi,j+1−pi,j)xi,j +
∑

i,j,j=J+1

xi,j

⎞
⎠
⎤
⎦ .(3.1)

3.3. Explicit solution. Let πi,j(r1, r2) denote the probability of throwing rm
additional balls of color m, m = 1, 2, into cells of category (i, j), and let q = (q1, q2)
be the fraction of balls of colors (1, 2). For x ∈ SI,J , we say that (π, q) ∈ F(x, t; y, T )
if for all i, j,

xi,j

∞∑
r1,r2=0

πi,j(r1, r2) = xi,j ,

I+1∑
i=0

J+1∑
j=0

xi,j

∞∑
r1,r2=0

rmπi,j(r1, r2) = qm(T − t)

for m = 1, 2 and

yk,l =

k∑
i=0

l∑
j=0

xi,jπi,j(k − i, l − j),

yI+1,l =

∞∑
r=0

I+1∑
i=0

l∑
j=0

xi,jπi,j(I + 1 − i + r, l − j),

yk,J+1 =

∞∑
r=0

k∑
i=0

J+1∑
j=0

xi,jπi,j(k − i, J + 1 − j + r),

yl+1,J+1 =

∞∑
s=0

∞∑
r=0

I+1∑
i=0

J+1∑
j=0

xi,jπi,j(I + 1 − i + s, J + 1 − j + r).

We also denote y by x × π. If the coloration turns out to be (q1, q2), then there are
qm(T − t)n balls of color m thrown, and the LLN limit for the empirical fraction of
cells of category (i, j) is Pi(q1(T − t))Pj(q2(T − t)).

The same sort of argument as in section 2.2 then suggests that the explicit form
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for the solution to the variational problem should be

min
(π,q)∈F(x,t;y,T )

⎧⎨
⎩

I+1∑
i=0

J+1∑
j=0

xi,jR (πi,j ‖P(q1(T − t)) × P(q2(T − t)) ) + (T − t)c(q)

⎫⎬
⎭ .

However, an interesting feature of the case with color is that the quantity being
minimized in this formula is not always convex. In a previous paper [3], a useful
assumption that guaranteed the convexity of the large deviation rate on path space
was that c(ρ)+h(ρ) be convex, where h(ρ) is the entropy function h(ρ)

.
= −ρ1 log ρ1−

ρ2 log ρ2. We will show that this same condition, not surprisingly, gives convexity here
as well. Let a be the point with ai > 0, i = 1, 2, for which c(a) = 0. Then we can
write, under the constraint that relates πi,j and qm,

I+1∑
i=0

J+1∑
j=0

xi,jR (πi,j ‖P(q1(T − t)) × P(q2(T − t)) ) + (T − t)c(q)

=

I+1∑
i=0

J+1∑
j=0

xi,j

∞∑
k=0

∞∑
l=0

πi,j(k, l) log

(
πi,j(k, l)

Pk(a1(T − t))Pl(a2(T − t))

)

+
I+1∑
i=0

J+1∑
j=0

xi,j

∞∑
k=0

∞∑
l=0

πi,j(k, l)

[
(T − t)c(q) − log

([
q1
a1

]k [
q2
a2

]l)]

=
I+1∑
i=0

J+1∑
j=0

xi,jR (πi,j ‖P(a1(T − t)) × P(a2(T − t)) ) + (T − t) [c(q) −R(q ‖a )] .

The mapping q → [c(q) −R(q ‖a )] is convex if and only if c(q) + h(q) is convex, and
so convexity of c(q) + h(q) is sufficient for the minimization problem to be convex
in (πi,j , qm). Note that in the deterministic case this condition holds with strict
convexity, and that in the iid case c(q)+h(q) is convex but never strictly convex (it is
in fact always linear in q). Hence this is in a certain sense a borderline case, and one
for which there may be nonuniqueness of minimizers. In the case of Markov coloring
the condition may or may not hold; see [3] for further details.

This alternative rewriting of the objective function also has a practical benefit,
in that the quantity to be minimized is now the sum of a convex function of π and a
convex function of q, with no “cross terms.” As a consequence, the formulas for πi,j

and qm also separate, and hence can be solved for explicitly in terms of the multipliers.
Having already restricted our attention to the case where c(q) + h(q) is convex,

we now make a final restriction. To parallel the very explicit computations of the
single color model, we need a specific form for c, and in particular a form that allows
us to solve for the minimizers in terms of multipliers. This can be done when the rate
function for the coloration has a representation in terms of relative entropy, which is
the case for all the models introduced previously. The particular form we choose is
c(q) = bR(q ‖a ), where b ∈ (1,∞). The limit b ↑ ∞ gives the deterministic coloration
with parameters a1 and a2, and the limit b ↓ 1 gives the iid coloration with parameters
a1 and a2.

Define

J (x, t; y)
.
= inf

ϕ∈C([t,T ],SI,J )
ϕ(t)=x,ϕ(T )=y

I(x, t;ϕ).
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Theorem 3.1. Consider the allocation problem with either the deterministic
or iid coloration process with parameters a1 > 0 and a2 > 0, an initial condition
(x, t) ∈ D, and a feasible terminal condition y. Then the quantity J (x, t; y) has the
representation

min
(π,q)∈F(x,t;y,T )

⎧⎨
⎩

I+1∑
i=0

J+1∑
j=0

xi,jR (πi,j ‖P(a1(T − t))×P(a2(T − t)) )+(T − t)(b− 1)R(q ‖a )

⎫⎬
⎭ .

Proof. We will prove the representation for b ∈ (1,∞). Taking limits and using
monotonicity in b will then establish the corresponding result for b = 1 and b = ∞.
The same line of argument as in the single color case is followed. Hence we consider
linear terminal conditions F (y) = 〈y, �〉 with � = �i,j , i = 0, . . . , I +1, j = 0, . . . , J +1,
and define

U(x, t) = inf

{
I+1∑
i=0

J+1∑
j=0

xi,jR (πi,j ‖P(a1(T − t)) × P(a2(T − t)) )

+ (T − t)(b− 1)R(q ‖a ) + 〈�, x× π〉
}
.

The infimum is over F(x, t, T ), which is defined to be the set of all collections (πi,j , qm)
such that

I+1∑
i=0

J+1∑
j=0

xi,j

∞∑
r1=0

∞∑
r2=0

rmπi,j(r1, r2) = qm(T − t), m = 1, 2,

and

qm ≥ 0, m = 1, 2, q1 + q2 = 1.

To study this problem, define

f(x, t;π, q)

.
=

I+1∑
i=0

J+1∑
j=0

xi,jR (πi,j ‖P(a1(T − t)) × P(a2(T − t)) ) + (T − t)(b− 1)R(q ‖a ) + 〈�, x× π〉 ,

introduce Lagrange multipliers Λ = (λi,j , i = 0, . . . , I + 1, j = 0, . . . , J + 1;μm,m =
1, 2; θ), and define

L(x, t; Λ, π, q)
.
= f(x, t;π, q) +

I+1∑
i=0

J+1∑
j=0

λi,jxi,j

(
1 −

∞∑
k=0

∞∑
l=0

πi,j(k, l)

)

+
∑

m=1,2

μm

⎛
⎝qm(T − t) −

I+1∑
i=0

J+1∑
j=0

xi,j

∞∑
r1=0

∞∑
r2=0

rmπi,j(r1, r2)

⎞
⎠

+ θ(1 − q1 − q2).

Analogously to the single color case,

πi,j(k, l;x, t; Λ) = Pk(a1(T − t))Pl(a2(T − t))eλi,j−1+kμ1+lμ2−	i+k,j+l .
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The equation for q is

(T − t)(b− 1)

[
log

(
qm
am

)
+ 1

]
+ μm(T − t) − θ = 0,

so that

qm(x, t; Λ) = ame−
μm
b−1 e

θ
(T−t)(b−1) e−1.

For i = 0, . . . , I, I + 1, j = 0, . . . , J, J + 1 and m = 1, 2 let

Gi,j(x, t; Λ) =

(
1 −

∞∑
k=0

∞∑
l=0

πi,j(k, l;x, t; Λ)

)
,

Gm(x, t; Λ) =

⎛
⎝qm(x, t; Λ)(T − t) −

I+1∑
i=0

J+1∑
j=0

xi,j

∞∑
k=0

∞∑
l=0

rmπi,j(k, l;x, t; Λ)

⎞
⎠ ,

G3(x, t; Λ) = (1 − q1(x, t; Λ) − q2(x, t; Λ)).

When discussing uniqueness of the multipliers we must work with a matrix indexed by
the subscripts of these functions, and the particular ordering of the i, j as subscripts
is unimportant.

We next present three lemmas that are analogues of ones proved in the case of
a single color. Since the proofs of the first two are also direct analogues they are
omitted.

Lemma 3.2 (general properties). For any (x, t) ∈ D, F(x, t;T ) is nonempty,
minimizing measures π∗ exist, and if xi,j > 0, then π∗

i,j(k, l) > 0 for all k and l.
Lemma 3.3 (characterization of the minimizer). For any (x, t) ∈ D there ex-

ists Λ ∈ R
(I+2)×(J+2)+3 so that G(x, t; Λ) = 0, and πi,j(k, l;x, t; Λ), qm(x, t; Λ) is a

minimizer in the definition of U(x, t).
Lemma 3.4 (uniqueness of characterization). For (x, t) ∈ D, there is only one

Λ ∈ R
(I+2)×(J+2)+3 such that G(x, t,Λ) = 0.

Proof. We have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂πi,j(k,l;x,t;Λ)
∂λi,j

= πi,j(k, l;x, t; Λ),

∂πi,j(k,l;x,t;Λ)
∂μ1

= kπi,j(k, l;x, t; Λ),

∂πi,j(k,l;x,t;Λ)
∂μ2

= lπi,j(k, l;x, t; Λ),

∂qm(x,t;Λ)
∂μm

= − 1
b−1qm(x, t; Λ),

∂qm(x,t;Λ)
∂θ = 1

(T−t)(b−1)qm(x, t; Λ),

and all other partial derivatives are zero. As in the single color case it is enough
to show the negative definiteness of DΛG. Using a suitable dominating function to
justify the interchange of differentiation and summation and the definitions

αi,j =

∞∑
k,l=0

πi,j(k, l;x, t; Λ),

T i,j
m =

∞∑
r1,r2=0

rmπi,j(r1, r2;x, t; Λ),

C1,1 =

I+1∑
i=0

J+1∑
j=0

xi,j

∞∑
r1,r2=0

r2
1πi,j(r1, r2;x, t; Λ),
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C2,2 =

I+1∑
i=0

J+1∑
j=0

xi,j

∞∑
r1,r2=0

r2
2πi,j(r1, r2;x, t; Λ),

C1,2 =

I+1∑
i=0

J+1∑
j=0

xi,j

∞∑
r1,r2=0

r1r2πi,j(r1, r2;x, t; Λ),

DΛG equals [with qm = qm(x, t; Λ)]

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−α0,0 · · · 0 −T 0,0
1 −T 0,0

2 0
...

. . .
...

...
...

...

0 · · · −αI+1,J+1 −T I+1,j+1
1 −T I+1,j+1

2 0

−x0,0T
0,0
1 · · · −xI+1,J+1T

I+1,J+1
1 −T−t

b−1 q1 − C1,1 −C1,2 − 1
b−1q1

−x0,0T
0,0
2 · · · −xI+1,J+1T

I+1,J+1
2 −C1,2 −T−t

b−1 q2 − C2,2 − 1
b−1q2

0 · · · 0 1
b−1q1

1
b−1q2 − q1+q2

(T−t)(b−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since diagonalizing all, save the lower right 3×3 submatrix, produces strictly negative
values on the diagonal, we need only check the negative definiteness of⎛
⎜⎜⎝
∑

i,j
xi,j

αi,j
(T i,j

1 )2 − T−t
b−1 q1 − C1,1

∑
i,j

xi,j

αi,j
T i,j

1 T i,j
2 − C1,2 − 1

b−1q1∑
i,j

xi,j

αi,j
T i,j

1 T i,j
2 − C1,2

∑
i,j

xi,j

αi,j
(T i,j

2 )2 − T−t
b−1 q2 − C2,2 − 1

b−1q2
1

b−1q1
1

b−1q2 − q1+q2
(T−t)(b−1)

⎞
⎟⎟⎠ .

Since ⎛
⎜⎜⎝

−T−t
b−1 q1 0 − 1

b−1q1

0 −T−t
b−1 q2 − 1

b−1q2
1

b−1q1
1

b−1q2 − q1+q2
(T−t)(b−1)

⎞
⎟⎟⎠

is obviously negative definite, we need only check the 2 × 2 matrix( ∑
i,j

xi,j

αi,j
(T i,j

1 )2 − C1,1

∑
i,j

xi,j

αi,j
T i,j

1 T i,j
2 − C1,2∑

i,j
xi,j

αi,j
T i,j

1 T i,j
2 − C1,2

∑
i,j

xi,j

αi,j
(T i,j

2 )2 − C2,2

)
.

However, letting πi,j(r1, r2) = πi,j(r1, r2;x, t; Λ) and pre- and postmultiplying by the
nonzero vector (z1, z2) produces

∑
i,j

xi,j

αi,j

(∑
r1,r2

(z1r1 + z2r2)πi,j(r1, r2)

−
∑
r1,r2

(z1r1 + z2r2)
2πi,j(r1, r2) ·

∑
r1,r2

πi,j(r1, r2)

)
≤ 0.

Thus the entire matrix is negative definite.
Since we have restricted our attention to the case of MB there is no analogue of

the nonsmooth function τ(x, t), and hence the existence of a smooth extension of U
to a neighborhood of D follows directly from the implicit function theorem. The next
result expresses the derivatives in terms of the multipliers.
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Theorem 3.5. Fix (x, t) ∈ D, and let Λ∗ be the associated Lagrange multiplier.
Then

Dxi,jU(x, t) = (λ∗
i,j − 1)

and

DtU(x, t) = (b− 1) − θ∗

(T − t)
.

Proof. With

H(x, t; Λ)
.
= L(x, t; Λ, πi,j(·, x, t; Λ), qm(x, t; Λ))

we can write

U(x, t) = H(x, t; Λ(x, t)),

where Λ(x, t) is the unique solution to the constraint equations. Then

Dxi,jU(x, t) = Dxi,jH(x, t; Λ∗) + DΛH(x, t; Λ∗)Dxi,jΛ(x, t).

As in the single color case DΛH(x, t; Λ∗) = 0, and so Dxi,j
U(x, t) = Dxi,j

H(x, t; Λ∗),
and an analogous argument also gives DtU(x, t) = DtH(x, t; Λ∗). Note that both
πi,j(k, l;x, t; Λ) and qm(x, t; Λ) are actually independent of x, and hence can be written
as πi,j(k, l; t; Λ) and qm(t; Λ). Keeping in mind the t dependence but temporarily
suppressing both t and Λ∗ in the notation, we will use

(T − t)(b− 1)R(q ‖a ) = −(T − t) [q1μ
∗
1 + q2μ

∗
2] + [θ∗ − (T − t)(b− 1)](q1 + q2).

The quantity to be differentiated is thus

I+1∑
i=0

J+1∑
j=0

xi,j

∞∑
k=0

∞∑
l=0

[
λ∗
i,j − 1 + kμ∗

1 + lμ∗
2

]
πi,j(k, l) − (T − t) [q1μ

∗
1 + q2μ

∗
2]

+ [θ∗ − (T − t)(b− 1)](q1 + q2)

+
I+1∑
i=0

J+1∑
j=0

λ∗
i,jxi,j

(
1 −

∞∑
k=0

∞∑
l=0

πi,j(k, l)

)

+
∑

m=1,2

μ∗
m

⎛
⎝qm(T − t) −

I+1∑
i=0

J+1∑
j=0

xi,j

∞∑
r1=0

∞∑
r2=0

rmπi,j(r1, r2)

⎞
⎠

+ θ∗(1 − q1 − q2)

= −
I+1∑
i=0

J+1∑
j=0

xi,j

∞∑
k=0

∞∑
l=0

πi,j(k, l) − (T − t)(b− 1)(q1 + q2) +

I+1∑
i=0

J+1∑
j=0

λ∗
i,jxi,j + θ∗.

Since

∂πi,j(k, l; t; Λ)

∂t
= eλi,j−1+kμ1+lμ2−	i+k,j+l

∂Pk(a1(T − t))Pl(a2(T − t))

∂t

=
eλi,j−1+kμ1+lμ2−	i+k,j+l

k!l!

∂e−(T−t)ak1(T − t)kal2(T − t)l

∂t

=

[
1 − k

T − t
− l

T − t

]
πi,j(k, l; t; Λ)
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and

∂qm(t; Λ)

∂t
=

[
θ

(T − t)2(b− 1)

]
qm(t; Λ),

it follows that

Dxi,j
U(x, t) = (λ∗

i,j − 1)

and

DtU(x, t) = −
I+1∑
i=0

J+1∑
j=0

xi,j

∞∑
k=0

∞∑
l=0

[
1 − k

T − t
− l

T − t

]
πi,j(k, l)

+ (b− 1) (q1 + q2) −
θ∗

(T − t)
(q1 + q2)

= −1 + q1 + q2 + (b− 1) − θ∗

(T − t)

= (b− 1) − θ∗

(T − t)
.

For the particular rate function of interest here,

b(γ) = sup [〈γ, q〉 − bR(q ‖a )]

= −b inf

[
−1

b
〈γ, q〉 + R(q ‖a )

]

= b log
(
e

γ1
b a1 + e

γ2
b a2

)
.

Hence by (3.1), the PDE to be satisfied by U takes the form

Wt − b log

⎛
⎜⎝
⎛
⎝ ∑

i,j,i≤I

e−(Wxi+1,j
−Wxi,j

)xi,j +
∑

i,j,i=I+1

xi,j

⎞
⎠

1
b

a1

+

⎛
⎝ ∑

i,j,j≤J

e−(Wxi,j+1
−Wxi,j

)xi,j +
∑

i,j,j=J+1

xi,j

⎞
⎠

1
b

a2

⎞
⎟⎠ = 0.(3.2)

Theorem 3.6. U satisfies (3.2) on D.
Proof. By Theorem 3.5, this will be true if

(3.3)

(b− 1) − θ∗

(T − t)
− b log

⎛
⎜⎝
⎛
⎝ ∑

i,j,i≤I

e−(λ∗
i+1,j−λ∗

i,j)xi,j +
∑

i,j,i=I+1

xi,j

⎞
⎠

1
b

a1

+

⎛
⎝ ∑

i,j,j≤J

e−(λ∗
i,j+1−λ∗

i,j)xi,j +
∑

i,j,j=J+1

xi,j

⎞
⎠

1
b

a2

⎞
⎟⎠ = 0.
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For i ≤ I,

πi+1,j(k, l)

πi,j(k + 1, l)
=

eλi+1,j−λi,je−μ1(k + 1)

a1(T − t)
.

Summing on k and l gives

eλi,j−λi+1,j =
e−μ1

a1(T − t)

∑
r1,r2

r1πi,j(r1, r2),

and the analogous formula

eλi,j−λi,j+1 =
e−μ2

a2(T − t)

∑
r1,r2

r2πi,j(r1, r2)

applies for j ≤ J . We also have

1 =
e−μ2

a2(T − t)

∑
r1,r2

r2πI+1,j(r1, r2) =
e−μ2

a2(T − t)

∑
r1,r2

r2πi,J+1(r1, r2)

if j ≤ J + 1 or i ≤ I + 1. Hence∑
i,j,i≤I

e−(λ∗
i+1,j−λ∗

i,j)xi,j +
∑

i,j,i=I+1

xi,j = e−μ∗
1
q1
a1

,

∑
i,j,j≤J

e−(λ∗
i,j+1−λ∗

i,j)xi,j +
∑

i,j,j=J+1

xi,j = e−μ∗
2
q2
a2

.

Now q1 + q2 = 1 implies

0 = log (q1(t; Λ) + q2(t; Λ))

= log
(
a1e

− μ1
b−1 e

θ
(T−t)(b−1)−1 + a2e

− μ2
b−1 e

θ
(T−t)(b−1)−1

)
= log

(
a1e

− μ1
b−1 + a2e

− μ2
b−1

)
+

θ

(T − t)(b− 1)
− 1.

The left-hand side of (3.3) becomes

(b− 1) − θ∗

(T − t)
− b log

((
e−μ∗

1q1/a1

) 1
b

a1 +
(
e−μ∗

2q2/a2

) 1
b

a2

)

= (b− 1) − θ∗

(T − t)
− b log

((
e−μ∗

1e−
μ∗
1

b−1 e
θ∗

(T−t)(b−1)−1

) 1
b

a1

+

(
e−μ∗

2e−
μ∗
2

b−1 e
θ∗

(T−t)(b−1)−1

) 1
b

a2

)

= −(b− 1) +
θ∗

(T − t)
− b

[
log

((
e−

bμ∗
1

b−1

) 1
b

a1 +

(
e−

bμ∗
2

b−1

) 1
b

a2

)
+

θ∗

b(T − t)(b− 1)
− 1

b

]

= −b +
bθ∗

(T − t)(b− 1)
− bθ∗

(T − t)(b− 1)
+ b

= 0,

and the theorem is proved.
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3.4. Minimizing trajectories. We end this section by stating without proof
the form of the minimizing trajectories. As in the case of a single color we consider
only the empty initial condition. In contrast with that case, here the minimizing q
must be determined first via Lagrange multipliers. Once q is given, we define

ϕ0,0(t1, t2)

.
= CP0(ρq1t1)P0(ρq2t2) +

I∑
k=0

J∑
l=0

(yk,l − CPk(ρq1T )Pl(ρq2T ))

(
1 − t1

T

)k (
1 − t2

T

)l

and

ϕi,j(t1, t2)
.
=

(−t1)
i

i!

(−t2)
j

j!
ϕ

(i,j)
0,0 (t1, t2).

In terms of these functions we set

ϕi,j(t)
.
= ϕi,j(t, t),

and for i ≤ I and j ≤ J ,

ϕI+,j(t) =

∞∑
i=I+1

ϕi,j(t), ϕi,J+(t) =

∞∑
j=J+1

ϕi,j(t), ϕI+J+(t) =

∞∑
i=I+1

∞∑
j=J+1

ϕi,j(t).

With q determined via Lagrange multipliers, the parameters ρ > 0 and C ≥ 0 are
chosen so that

ρT −
∑I

i=0

∑J
j=0(i + j)Pi(ρq1T )Pj(ρq2T )

1 −
∑I

i=0

∑J
j=0 Pi(ρq1T )Pj(ρq2T )

=
T −

∑I
i=0

∑J
j=0(i + j)yi,j

1 −
∑I

i=0

∑J
j=0 yi,j

and

C
.
=

1 −
∑I

i=0

∑J
j=0 yi,j

1 −
∑I

i=0

∑J
j=0 Pi(ρq1T )Pj(ρq2T )

=
T −

∑I
i=0

∑J
j=0(i + j)yi,j

ρT −
∑I

i=0

∑J
j=0(i + j)Pi(ρq1T )Pj(ρq2T )

.

The proof that these trajectories achieve the minimal cost parallels that of the single
color case, with an appropriate modification of the notion of completely monotone
that is suitable for functions of two independent variables.
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Abstract. We study the stabilizing effect of rotational forcing in the nonlinear setting of two-
dimensional shallow-water and more general models of compressible Euler equations. In [Phys. D,
188 (2004), pp. 262–276] Liu and Tadmor have shown that the pressureless version of these equations
admit a global smooth solution for a large set of subcritical initial configurations. In the present
work we prove that when rotational force dominates the pressure, it prolongs the lifespan of smooth
solutions for t <∼ ln(δ−1); here δ � 1 is the ratio of the pressure gradient measured by the in-
verse squared Froude number, relative to the dominant rotational forces measured by the inverse
Rossby number. Our study reveals a “nearby” periodic-in-time approximate solution in the small δ
regime, upon which hinges the long-time existence of the exact smooth solution. These results are
in agreement with the close-to-periodic dynamics observed in the “near-inertial oscillation” (NIO)
regime which follows oceanic storms. Indeed, our results indicate the existence of a smooth, “ap-
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1. Introduction and statement of main results. We are concerned here
with two-dimensional systems of nonlinear Eulerian equations driven by pressure and
rotational forces. It is well known that in the absence of rotation, these equations
experience a finite-time breakdown: for generic smooth initial conditions, the corre-
sponding solutions will lose C1-smoothness due to shock formation. The presence
of rotational forces, however, has a stabilizing effect. In particular, the pressureless
version of these equations admit global smooth solutions for a large set of so-called
subcritical initial configurations [17]. It is therefore a natural extension to investi-
gate the balance between the regularizing effects of rotation versus the tendency of
pressure to enforce finite-time breakdown (we mention in passing the recent work [21]
on a similar regularizing balance of different competing forces in the one-dimensional
Euler–Poisson equations). In this paper we prove the long-time existence of rapidly
rotating flows characterized by “nearby” periodic flows. Thus, rotation prolongs the
lifespan of smooth solutions over increasingly long time periods, which grow longer as
the rotation forces become more dominant over pressure.

Our model problem is the rotational shallow water (RSW) system of equations.
This system models largescale geophysical motions in a thin layer of fluid under the
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influence of the Coriolis rotational forcing (see, e.g., [18, section 3.3], [10, section 2.1]),

∂th + ∇ · (hu) = 0,(1.1a)

∂tu + u · ∇u + g∇h− fu⊥ = 0.(1.1b)

It governs the unknown velocity field u :=
(
u(1)(t, x, y), u(2)(t, x, y)

)
and height

h := h(t, x, y), where g and f stand for the gravitational constant and the Corio-
lis frequency, respectively. Recall that (1.1a) observes the conservation of mass and
(1.1b) describe balance of momentum by the pressure gradient, g∇h, and rotational
forcing, fu⊥ := f

(
u(2),−u(1)

)
.

For convenience, we rewrite system (1.1) in terms of rescaled, nondimensional
variables. To this end, we introduce the characteristic scales, H for total height h, D
for height fluctuation h−H, U for velocity u, L for spatial length, and correspondingly,
L/U for time, and we make the change of variables

u = u′
(
t′L

U
, x′L, y′L

)
U, h = H + h′

(
t′L

U
, x′L, y′L

)
D.

Discarding all the primes, we arrive at a nondimensional system,

∂th + u · ∇h +

(
H

D
+ h

)
∇ · u = 0,

∂tu + u · ∇u +
gD

U2
∇h− fL

U
u⊥ = 0.

We are concerned here with the regime where the pressure gradient and com-
pressibility are of the same order, gD

U2 ≈ H
D . Thus we arrive at the (symmetrizable)

RSW system,

∂th + u · ∇h +

(
1

σ
+ h

)
∇ · u = 0,(1.2a)

∂tu + u · ∇u +
1

σ
∇h− 1

τ
Ju = 0.(1.2b)

Here σ and τ , given by

(1.2c) σ :=
U√
gH

, τ :=
U

fL
,

are, respectively, the Froude number measuring the inverse pressure forcing and the
Rossby number measuring the inverse rotational forcing. We use J to denote the 2×2
rotation matrix J :=

(
0 1
−1 0

)
.

To trace their long-time behavior, we approximate (1.2a), (1.2b) with the succes-
sive iterations,

∂thj + uj−1 · ∇hj +

(
1

σ
+ hj

)
∇ · uj−1 = 0, j = 2, 3, . . . ,(1.3a)

∂tuj + uj · ∇uj +
1

σ
∇hj −

1

τ
Juj = 0, j = 1, 2, . . . ,(1.3b)

subject to initial conditions, hj(0, ·) = h0(·) and uj(0, ·) = u0(·). Observe that, given
j, (1.3a,b) are only weakly coupled through the dependence of uj on hj , so that
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we need only specify the initial height h1. Moreover, for σ � τ , the momentum
equations (1.2b) are “approximately decoupled” from the mass equation (1.2a) since
rotational forcing is substantially dominant over pressure forcing. Therefore, a first
approximation of constant height function will enforce this decoupling, serving as the
starting point of the above iterative scheme,

(1.3c) h1 ≡ constant.

This, in turn, leads to the first approximate velocity field, u1, satisfying the pressure-
less equations,

(1.4) ∂tu1 + u1 · ∇u1 −
1

τ
Ju1 = 0, u1(0, ·) = u0(·).

Liu and Tadmor [17] have shown that there is a “large set” of so-called subcritical ini-
tial configurations u0, for which the pressureless equations (1.4) admit global smooth
solutions. Moreover, the pressureless velocity u1(t, ·) is in fact 2πτ -periodic in time.
The regularity of u1 is discussed in section 2.

Having the pressureless solution, (h1 ≡ constant,u1) as a first approximation for
the RSW solution (h,u), in section 3 we introduce an improved approximation of the
RSW equations, (h2,u2), which solves an “adapted” version of the second iteration
(j = 2) of (1.3). This improved approximation satisfies a specific linearization of the
RSW equations around the pressureless velocity u1, with only a one-way coupling
between the momentum and the mass equations. Building on the regularity and
periodicity of the pressureless velocity u1, we show that the solution of this linearized
system subject to subcritical initial data (h0,u0), is globally smooth; in fact, both
h2(t, ·) and u2(t, ·) retain 2πτ -periodicity in time.

Next, we turn to estimating the deviation between the solution of the linearized
RSW system, (h2,u2), and the solution of the full RSW system, (h,u). To this end,
we introduce a new nondimensional parameter,

δ :=
τ

σ2
=

gH

fLU
,

measuring the relative strength of rotation versus the pressure forcing, and we assume
that rotation is the dominant forcing in the sense that δ � 1. Using the standard
energy method, we show in Theorem 4.1 and the follow-up Remark 4.1 that, starting
with Hm subcritical initial data, the RSW solution

(
h(t, ·),u(t, ·)

)
remains sufficiently

close to
(
h2(t, ·),u2(t, ·)

)
in the sense that

‖h(t, ·) − h2(t, ·)‖Hm−3 + ‖u(t, ·) − u2(t, ·)‖Hm−3
<∼

eC0tδ

(1 − eC0tδ)2
,

where constant C0 = Ĉ0(m, |∇u0|∞, |h0|∞) · ‖u0, h0‖m. In particular, we conclude
that for a large set of subcritical initial data, the RSW equations (1.2) admit smooth,
“approximate periodic” solutions for long time, t ≤ tδ := ln(δ−1), in the rotationally
dominant regime δ � 1.

We comment that our formal notion of “approximate periodicity” emphasizes the
existence of a periodic approximation (h2,u2) nearby the actual flow (h,u), with an
up-to O(δ) � 1-error for sufficiently long time. Therefore, strong rotation stabilizes
the flow by imposing on it approximate periodicity, which in turn postpones finite-time
breakdown of classical solutions for a long time. A convincing example is provided by
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the so-called “near-inertial oscillation” (NIO) regime, which is observed during the
days that follow oceanic storms; see, e.g., [22]. These NIOs are triggered when storms
pass by (large U ’s) and only a thin layer of the oceans is reactive (small aspect ratio
H/L), corresponding to δ = gH

fLU � 1. Specifically, with Rossby number τ ∼ O(0.1)

and Froude number σ ∼ O(1) we find δ ∼ 0.1, which yields the existence of a smooth,
“approximate periodic” solution for t ∼ 2 days. We note that the clockwise rotation
of cyclonic storms on the Northern Hemisphere produce negative vorticity, which is
a preferred scenario of the subcritical condition (2.1b). Our results are consistent
with the observations regarding the stability and approximate periodicity of the NIO
regime.

Next, we generalize our result to Euler systems describing the isentropic gas-
dynamics, in section 4.2, and ideal gasdynamics, in section 4.3. We regard these
two systems as successive generalizations of the RSW system using the following
formalism:

∂tρ + ∇ · (ρu) = 0,(1.5a)

∂tu + u · ∇u + ρ−1∇p̃(ρ, S) = fJu,(1.5b)

∂tS + u · ∇S = 0.(1.5c)

Here, the physical variables ρ, S are, respectively, the density and entropy. We use
p̃(ρ, S) for the gas-specific pressure law relating pressure to density and entropy. For
the ideal gasdynamics, the pressure law is given as p̃ := AργeS , where A, γ are two
gas-specific physical constants. The isentropic gas equations correspond to constant
S, for which the entropy equation (1.5c) becomes redundant. Setting A = g, γ = 2
yields the RSW equations with ρ playing the same role as h.

The general Euler system (1.5) can be symmetrized by introducing a “normalized”
pressure function,

p :=

√
γ

γ − 1
p̃

γ−1
2γ (ρ, S),

and by replacing the density equation (1.5a) with a pressure equation,

(1.5d) ∂tp + u · ∇p +
γ − 1

2
p∇ · u = 0.

We then nondimensionalize the above system (1.5b), (1.5c), (1.5d) into

∂tp + u · ∇p +
γ − 1

2

(
1

σ
+ p

)
∇ · u = 0,

∂tu + u · ∇u +
γ − 1

2

(
1

σ
+ p

)
eσS∇p =

1

τ
Ju,

∂tS + u · ∇S = 0.

The same methodology introduced for the RSW equations still applies to the more
general Euler system, independent of the pressure law. In particular, our first ap-
proximation, the pressureless system, remains the same as in (1.4) since it ignores any
effect of pressure. We then obtain the second approximation (p2,u2, S2) (or (p2,u2)
in the isentropic case) from a specific linearization around the pressureless velocity u1.
Thanks to the fact that h, p, and S share a similar role as passive scalars transported
by u, the same regularity and periodicity argument can be employed for (p2,u2, S2)
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in these general cases as for (h2,u2) in the RSW case. The energy estimate, however,
needs careful modification for the ideal gas equations due to additional nonlinearity.
Finally, we conclude in Theorem 4.2 and 4.3 that, in the rotationally dominant regime
δ � 1, the exact solution stays “close” to the globally smooth, 2πτ -periodic approxi-
mate solution (p2,u2, S2) for long time in the sense that, starting with Hm subcritical
data, the following estimate holds true for time t <∼ ln(δ−1):

‖p(t, ·) − p2(t, ·)‖m−3 + ‖u(t, ·) − u2(t, ·)‖m−3 + ‖S(t, ·) − S2(t, ·)‖m−3 <
eC0tδ

1 − eC0tδ
.

Our results confirm the stabilization effect of rotation in the nonlinear setting,
when it interacts with the slow components of the system, which otherwise tend
to destabilize of the dynamics. The study of such interaction is essential to the
understanding of rotating dynamics, primarily to geophysical flows. We can mention
only a few works from the vast literature available on this topic, and we refer the reader
to the recent book of Chemin et al. [6], and the references therein, for a state-of-the-art
of the mathematical theory for rapidly rotating flows. Embid and Majda [7, 8] studied
the singular limit of RSW equations under the two regimes τ−1 ∼ σ−1 → ∞ and
τ−1 ∼ O(1), σ−1 → ∞. Extensions to more general skew-symmetric perturbations
can be found in the work of Gallagher [9]. The series of works of Babin, Mahalov, and
Nicolaenko (consult [1, 2, 3, 4, 5] and references therein) establish long-term stability
effects of the rapidly rotating three-dimensional Euler, Navier–Stokes, and primitive
equations. Finally, we mention the work of Zeitlin, Reznik, and Ben Jelloul [23, 24]
which categorize several relevant scaling regimes and, correspondingly, derive formal
asymptotics in the nonlinear setting.

We comment here that the approach pursued in the above literature relies on
identifying the limiting system as τ → 0, which filters out fast scales. The full system is
then approximated to a first order by this slowly evolving limiting system. A rigorous
mathematical foundation along these lines was developed by Schochet [19], which can
be traced back to the earlier works of Klainerman and Majda [13] and Kreiss [14] (see
also [20]). The key point was the separation of (linear) fast oscillations from the slow
scales. The novelty of our approach, inspired by the critical threshold phenomena
[16], is to adopt the rapidly oscillating and fully nonlinear pressureless system as a
first approximation and then consider the full system as a perturbation of this fast
scale. This enables us to preserve both slow and fast dynamics, and especially, the
rotation-induced time periodicity.

2. First approximation—the pressureless system. We consider the pres-
sureless system

(2.1a) ∂tu1 + u1 · ∇u1 −
1

τ
Ju1 = 0

subject to initial condition u1(0, ·) = u0(·). We begin by recalling the main theorem
in [17] regarding the global regularity of the pressureless equations (2.1a).

Theorem 2.1. Consider the pressureless equations (2.1a) subject to C1-initial
data u1(0, ·) = u0(·). Then, the solution u1(t, ·) stays C1 for all time if and only if
the initial data satisfy the critical threshold condition,

(2.1b) τω0(x) +
τ2

2
η2
0(x) < 1 for all x ∈ R

2.

Here, ω0(x) = −∇×u0(x) = ∂yu0−∂xv0 is the initial vorticity and η0(x) := λ1−λ2 is
the (possibly complex-valued) spectral gap associated with the eigenvalues of gradient
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matrix ∇u0(x). Moreover, these globally smooth solutions, u1(t, ·), are 2πτ -periodic
in time.

In [17], Liu and Tadmor gave two different proofs of (2.1b). One was based on the
spectral dynamics of λj(∇u); the other was based on the flow map associated with
(2.1a), and here we note yet another version of the latter, based on the Riccati-type
equation satisfied by the gradient matrix M =: ∇u1,

M ′ + M2 = τ−1JM.

Here {·}′ := ∂t + u1 · ∇ denotes differentiation along the particle trajectories

(2.2) Γ0 := {(x, t) | ẋ(t) = u1(x(t), t), x(t0) = x0}.

Starting with M0 = M(t0, x0), the solution of this equation along the corresponding
trajectory Γ0 is given by

M = etJ/τ
(
I + τ−1J

(
I − etJ/τ

)
M0

)−1

M0,

and a straightforward calculation based on the Cayley–Hamilton theorem (for com-
puting the inverse of a matrix) shows that

(2.3) max
t,x

|∇u1| = max
t,x

|M | = max
t,x

∣∣∣∣∣polynomial(τ, etJ/τ ,∇u0)

(1 − τω0 − τ2

2 η2
0)+

∣∣∣∣∣ .
Thus the critical threshold (2.1b) follows. The periodicity of u1 is proved upon in-
tegrating u1

′ = 1
τ Ju and x′ = u1 along particle trajectories Γ0. It turns out both

x(t) and u1(t, x(t)) are 2πτ -periodic, which clearly implies that u1(t, ·) shares the
same periodicity. It follows that there exists a critical Rossby number, τc := τc(∇u0),
such that the pressureless solution, u1(t, ·), remains smooth for global time whenever
τ ∈ (0, τc). This emphasizes the stabilization effect of the rotational forcing for a
“large” class of subcritical initial configurations, [17, section 1.2]. Observe that the
critical threshold τc need not be small, and in fact, τc = ∞ for rotational initial data
such that η2

0 < 0, ω0 <
√
−η2

0 . We shall always limit ourselves, however, to a finite
value of the critical threshold, τc.

In the next corollary we show that, in fact, the pressureless solution retains higher-
order smoothness of the subcritical initial data. To this end, we introduce the following
notations.

Notations. Here and below, ‖ · ‖m denotes the usual Hm-Sobolev norm over the
two-dimensional torus T

2 and | · |∞ denotes the L∞ norm. We abbreviate a <∼m b for

a ≤ cb whenever the constant c depends only on the dimension m. We let Ĉ0 denote
m-dependent constants that have possible nonlinear dependence on the initial data
|h0|∞ and |∇u0|∞. The constant, C0 := Ĉ0 · ‖(h0,u0)‖m, will be used for estimates
involving Sobolev regularity, emphasizing that C0 depends linearly on the Hm-size of
initial data, h0 and u0)‖, and possibly nonlinearly on their L∞-size.

Corollary 2.2. Fix an integer m > 2 and consider the pressureless system
(2.1a) subject to subcritical initial data, u0 ∈ Hm. Then, there exists a critical value
τc := τc(∇u0) < ∞ such that for τ ∈ (0, τc] we have, uniformly in time,

|∇u1(t, ·)|∞ ≤ Ĉ0,(2.4a)

‖u1(t, ·)‖m ≤ C0.(2.4b)
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Proof. We recall the expression for |∇u1|∞ in (2.3). By a continuity argument,

there exists a value τc > 0 such that 1 − τω0 − τ2

2 η2
0 > 0 for all τ ∈ (0, τc], which in

turn implies (2.4a) with a constant Ĉ0 that depends on |∇u0|∞ and on τc.
Having control on the L∞ norm of ∇u1, we employ the standard energy method

to obtain the inequality,

d

dt
‖u1(t, ·)‖m <∼m |∇u1(t, ·)|L∞‖u1(t, ·)‖m.

Since u1(t, ·) is 2πτ -periodic, it suffices to consider its energy growth over 0 ≤ t <
2πτ < 2πτc. Combining with estimate (2.4a) and solving the above Gronwall inequal-
ity, we prove the Hm estimate (2.4b).

3. Second approximation—the linearized system. Once we establish the
global properties of the pressureless velocity u1, it can be used as the starting point
for a second iteration of (1.3). We begin with the approximate height, h2, governed
by (1.3a),

(3.1) ∂th2 + u1 · ∇h2 +

(
1

σ
+ h2

)
∇ · u1 = 0, h2(0, ·) = h0(·).

Recall that u1 is the solution of the pressureless system (2.1a) subject to subcritical
initial data u0, so that u1(t, ·) is smooth, 2πτ -periodic in time. The following key
lemma shows that the periodicity of u1 imposes the same periodicity on passive scalars
transported by such u1’s.

Lemma 3.1. Let scalar function w be governed by

(3.2) ∂tw + ∇ · (u1w) = 0,

where u1(t, ·) is a globally smooth, 2πτ -periodic solution of the pressureless equations
(2.1a). Then w(t, ·) is also 2πτ -periodic.

Proof. Let φ := ∇× u1 + τ−1 denote the so-called relative vorticity. By (2.1a) it
satisfies the same equation that w does, namely,

∂tφ + ∇ · (u1φ) = 0.

Coupled with (3.2), it is easy to verify that the ratio w/φ satisfies a transport equation(
∂t + u1 · ∇

)w
φ

= 0,

which in turn implies that w/φ remains constant along the trajectories Γ0 in (2.2).
But (2.1a) tells us that u1

′ = J
τ u1, yielding u1(t, x(t)) = e

t
τ Ju0(x0). We integrate

to find x(2πτ) = x(0), namely, the trajectories come back to their initial positions at
t = 2πτ . Therefore

w

φ
(2πτ, x0) =

w

φ
(0, x0) for all x0’s.

Since the above argument is time invariant, it implies that w/φ(t, ·) is 2πτ -periodic.
The conclusion follows from the fact that u1(t, ·) and thus φ(t, ·) are 2πτ -periodic.

Equipped with this lemma we conclude the following.
Theorem 3.2. Consider the mass equation (3.1) on a two-dimensional torus,

T
2, linearized around the pressureless velocity field u1 and subject to subcritical ini-

tial data (h0,u0) ∈ Hm(T2) with m > 5. It admits a globally smooth solution,
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h2(t, ·) ∈ Hm−1(T2), which is 2πτ -periodic in time, and the following upper bounds
hold uniformly in time,

|h2(t, ·)|∞ ≤ Ĉ0

(
1 +

τ

σ

)
,(3.3a)

‖h2(t, ·)‖m−1 ≤ C0

(
1 +

τ

σ

)
.(3.3b)

Proof. Apply Lemma 3.1 with w := σ−1 + h2 to (3.1) to conclude that h2 is
also 2πτ -periodic. We turn to examining the regularity of h2. First, its L∞ bound
(3.3a) is studied using the L∞ estimate for scalar transport equations, which yields
an inequality for |h2|∞ = |h2(t, ·)|∞,

d

dt
|h2|∞ ≤ |∇ · u1|∞(σ−1 + |h2|∞).

Combined with the L∞ estimate of ∇u1 in (2.4a), this Gronwall inequality implies

|h2|∞ ≤ eĈ0t|h0|∞ +
1

σ

(
eĈ0t − 1

)
.

As before, due to the 2πτ -periodicity of h2 and the subcritical condition τ ≤ τc, we
can replace the first t on the right with τc, the second t with 2πτ , and then (3.3a)
follows.

For the Hm−1 estimate (3.3b), we use the energy method and the Gagliardo–
Nirenberg inequality to obtain a similar inequality for |h2|m−1 = |h2(t, ·)|m−1,

d

dt
‖h2‖m−1

<∼m |∇u1|∞‖h2‖m−1 +

(
1

σ
+ |h2|∞

)
‖u1‖m.

Applying the estimate on u1 in (2.4) and the L∞ estimate on h2 in (3.3a), we find the
above inequality shares a similar form as the previous one. Thus the estimate (3.3b)
follows by the same periodicity and subcriticality argument as for (3.3a). We note in
passing the linear dependence of C0 on ‖(h0,u0)‖m.

To continue with the second approximation, we turn to the approximate momen-
tum equation (1.3b) with j = 2,

(3.4) ∂tu2 + u2 · ∇u2 +
1

σ
∇h2 −

1

τ
Ju2 = 0.

The following splitting approach will lead to a simplified linearization of (3.4)
which is “close” to (3.4) and still maintains the nature of our methodology. The idea
is to treat the nonlinear term and the pressure term in (3.4) separately, resulting in
two systems for ṽ ≈ u2 and v̂ ≈ u2,

∂tṽ + ṽ∇ · ṽ − 1

τ
J ṽ = 0,(3.5a)

∂tv̂ +
1

σ
∇h2 −

1

τ
J v̂ = 0,(3.5b)

subject to the same initial data ṽ(0, ·) = v̂(0, ·) = u0(·).
The first system (3.5a), ignoring the pressure term, is identified as the pressureless

system (2.1) and therefore is solved as

ṽ = u1,
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while the second system (3.5b), ignoring the nonlinear advection term, is solved using
Duhamel’s principle,

v̂(t, ·) = etJ/τ
(
u0(t, ·) −

∫ t

0

e−sJ/σ

σ
∇h2(s, ·) ds

)

≈ etJ/τ
(
u0(t, ·) −

∫ t

0

e−sJ/σ

σ
∇h2(t, ·) ds

)
= etJ/τu0(t, ·) +

τ

σ
J(I − etJ/τ )∇h2(t, ·).

Here, we make an approximation by replacing h2(s, ·) with h2(t, ·) in the integrand,
which introduces an error of order τ , taking into account the 2πτ periodicity of h(t, ·).

Now, synthesizing the two solutions listed above, we make a correction to v̂ by
replacing etJ/τu0 with u1. This gives the final form of our approximate velocity field
u2 (with tolerable abuse of notations)

(3.6a) u2 := u1 +
τ

σ
J(I − etJ/τ )∇h2(t, ·).

A straightforward computation shows that this velocity field, u2, satisfies the approx-
imate momentum equation

(3.6b) ∂tu2 + u1 · ∇u2 +
1

σ
∇h2 −

1

τ
u2

⊥ = R,

where

(3.6c)

R :=
τ

σ
J(I − etJ/τ )(∂t + u1 · ∇)∇h2(t, ·)

(by (3.1)) = − τ

σ
J(I − etJ/τ )

[
(∇u1)

�∇h2 + ∇
((

1

σ
+ h2

)
∇ · u1

)]
.

Combining Theorem 3.2 on h2(t, ·) with the Gagliardo–Nirenberg inequality, we
arrive at the following corollary on periodicity and regularity of u2.

Corollary 3.3. Consider the velocity field u2 in (3.6) subject to subcritical
initial data (h0,u0) ∈ Hm(T2) with m > 5. Then, u2(t, ·) is 2πτ -periodic in time,
and the following upper bound, uniformly in time, holds:

‖u2 − u1‖m−2 ≤ C0
τ

σ

(
1 +

τ

σ

)
.

In particular, since ‖u1‖m ≤ C0 for subcritical τ , we conclude that u2(t, ·) has the
Sobolev regularity,

‖u2‖m−2 ≤ C0

(
1 +

τ

σ
+

τ2

σ2

)
.

We close this section by noting that the second iteration led to an approxi-
mate RSW system linearized around the pressureless velocity field u1, (i.e., system
(3.1),(3.6)), which governs our improved, 2πτ -periodic approximation, (h2(t, ·),u2(t, ·)) ∈
Hm−1(T2) ×Hm−2(T2).
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4. Long-time existence of approximate periodic solutions.

4.1. The shallow-water equations. How close is (h2(t, ·),u2(t, ·)) to the ex-
act solution (h(t, ·),u(t, ·))? Below we shall show that their distance, measured in

Hm−3(T2), does not exceed eC0tδ
1−eC0tδ

. Thus for sufficiently small δ, the RSW solution

(h,u) is “approximate periodic” which in turn implies its long-time stability. This is
the content of our main result.

Theorem 4.1. Consider the RSW equations on a fixed two-dimensional torus,

∂th + u · ∇h +

(
1

σ
+ h

)
∇ · u = 0,(4.1a)

∂tu + u · ∇u +
1

σ
∇h− 1

τ
Ju = 0(4.1b)

subject to subcritical initial data (h0,u0) ∈ Hm(T2) with m > 5 and α0 := min(1 +
σh0(·)) > 0. Let

δ =
τ

σ2

denote the ratio between the Rossby number τ and the squared Froude number σ, with
subcritical τ ≤ τc(∇u0) so that (2.1b) holds. Assume σ ≤ 1 for a substantial amount
of pressure forcing in (4.1b). Then, there exists a constant C0, depending only on
m, τc, α0, and in particular depending linearly on ‖(h0,u0)‖m, such that the RSW
equations admit a smooth, “approximate periodic” solution in the sense that there
exists a nearby 2πτ -periodic solution, (h2(t, ·),u2(t, ·)), such that

(4.2) ‖p(t, ·) − p2(t, ·)‖m−3 + ‖u(t, ·) − u2(t, ·)‖m−3 ≤ eC0tδ

1 − eC0tδ
.

Here p is the “normalized height” such that 1+ 1
2σp =

√
1 + σh, and correspondingly,

p2 satisfies 1 + 1
2σp2 =

√
1 + σh2.

It follows that the lifespan of the RSW solution t <∼ tδ := ln(δ−1) is prolonged due
to the rapid rotation δ � 1, and in particular, it tends to infinity when δ → 0.

Proof. We compare the solution of the RSW system (4.1a), (4.1b) with the
solution (h2,u2) of approximate RSW system (3.1), (3.6). To this end, we rewrite the
latter in the equivalent form,

(4.3a)

∂th2 + u2 · ∇h2 +

(
1

σ
+ h2

)
∇ · u2 = (u2 − u1) · ∇h2 +

(
1

σ
+ h2

)
∇ · (u2 − u1),

(4.3b)

∂tu2 + u2 · ∇u2 +
1

σ
∇h2 −

1

τ
Ju2 = (u2 − u1) · ∇u2 + R.

The approximate system differs from the exact one, (4.1a), (4.1b), in the residuals
on the RHS of (4.3a), (4.3b). We will show that they have an amplitude of order δ.
In particular, the comparison in the rotationally dominant regime, δ � 1, leads to
a long-time existence of a smooth RSW solution, which remains “nearby” the time-
periodic solution, (h2,u2). To show that (h2,u2) is indeed an approximate solution
for the RSW equations, we proceed as follows.
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We first symmetrize both systems so that we can employ the standard energy
method for nonlinear hyperbolic systems. To this end, we set the new variable
(“normalized height”) p such that 1 + 1

2σp =
√

1 + σh. Compressing notation with
U := (p,u)�, we transform (4.1a), (4.1b) into the symmetric hyperbolic quasi-linear
system

(4.4) ∂tU + B(U,∇U) + K[U] = 0.

Here B(F,∇G) := A1(F)Gx + A2(F)Gy, where A1, A2 are bounded linear functions
with values being symmetric matrices, and K[F] is a skew-symmetric linear operator
so that 〈K[F],F〉 = 0. By standard energy arguments, (see, e.g., [12, 13, 15]), the
symmetric form of (4.4) yields an exact RSW solution U, which stays smooth for
finite time t <∼ 1. The essence of our main theorem is that for small δ’s, rotation
prolongs the lifespan of classical solutions up to t ∼ O(ln δ−1). To this end, we
symmetrize the approximate system (4.3a), (4.3b) using a new variable p2 such that
1 + 1

2σp2 =
√

1 + σh2. Compressing notation with U2 := (p2,u2)
�, we have

(4.5) ∂tU2 + B(U2,∇U2) + K(U2) = R,

where the residual R is given by

R :=

[
(u2 − u1) · ∇p2 +

(
2
σ + p2

)
∇ · (u2 − u1)

(u2 − u1) · ∇u2 − R

]
,

with R defined as in (3.6c). We will show R is small which in turn, using the
symmetry of (4.4) and (4.5), will imply that ‖U − U2‖m−3 is equally small. In-
deed, thanks to the fact that Hm−3(T2) is an algebra for m > 5, every term in
the above expression is upper-bounded in Hm−3, by the quadratic products of the
terms ‖u1‖m, ‖p2‖m−1, ‖u2‖m−2, ‖u2 − u1‖m−2, up to a factor of O(1 + 1

σ ). The
Sobolev regularity of these terms, u1,u2, and p2, is guaranteed, respectively, in
Corollary 2.2, Corollary 3.3, and Theorem 3.2. Moreover, the nonvacuum condi-
tion, 1 + σh0 ≥ α0 > 0, implies that 1 + σh2 remains uniformly bounded from below,
and by standard arguments (carried out in the appendix), ‖p2‖m−2 ≤ C0(1 + τ/σ).
Summing up, the residual R does not exceed,

(4.6) ‖R‖m−3 ≤ C2
0

(
δ +

τ

σ
+ · · · + τ4

σ4

)
<∼ C2

0δ

for subcritical τ ∈ (0, τc) and under scaling assumptions δ < 1, σ < 1.
We now claim that the same O(δ)-upperbound holds for the error E := U2 −U,

for a long time, t <∼ tδ. Indeed, subtracting (4.4) from (4.5), we find the error equation

∂tE + B(E,∇E) + K[E] = −B(U2,∇E) −B(E,∇U2) + R.

By the standard energy method using integration by parts and Sobolev inequalities,
while utilizing the symmetric structure of B and the skew-symmetry of K, we arrive
at

d

dt
‖E‖2

m−3
<∼m ‖E‖3

m−3 + ‖U2‖m−2‖E‖2
m−3 + ‖R‖m−3‖E‖m−3.

Using the regularity estimates of U2 = (p2,u2)
� and the upper bounds on R in

(4.6), we end up with an energy inequality for ‖E(t, ·)‖m−3,

d

dt
‖E‖m−3

<∼m ‖E‖2
m−3 + C0‖E‖m−3 + C2

0δ, ‖E(0, ·)‖m−3 = 0.
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A straightforward integration of this forced Riccati equation (consult, for example,
[16, section 5]) shows that the error ‖E‖m−3 does not exceed

(4.7) ‖U(t, ·) − U2(t, ·)‖m−3 ≤ eC0tδ

1 − eC0tδ
.

In particular, the RSW equations admits an “approximate periodic” Hm−3(T2)-
smooth solution for t ≤ 1

C0
ln(δ−1) for δ � 1.

Remark 4.1. The estimate on the actual height function h follows by applying
the Gagliardo–Nirenberg inequality to h−h2 = p(1+ σ

4 p)−p2(1+ σ
4 p2) = (p−p2)(1+

σ
4 (p− p2) + σ

2 p2),

‖h(t, ·) − h2(t, ·)‖m−3
<∼

eC0tδ

(1 − eC0tδ)2
.

Our result is closely related to observations of near inertial oscillations (NIOs) in
oceanography (see, e.g., [22]). These NIOs are mostly seen after a storm blows over
the oceans. They exhibit almost periodic dynamics with a period consistent with the
Coriolis force and stay stable for about 20 days, which is a long-time scale relative
to many oceanic processes such as the storm itself. This observation agrees with
our theoretical result regarding the stability and periodicity of RSW solutions. In
terms of physical scales, our rotationally dominant condition, δ = gH

fLU � 1, provides
a physical characterization of this phenomenon. Indeed, NIOs are triggered when
storms pass by (large U) and only a thin layer of the oceans is reactive (small aspect
ratio H/L). Upon using the multilayer model ([18, section 6.16]), we consider scales
f = 10−4s−1, L = 105m,H = 102m,U = 1ms−1, g = 0.01ms−2 (reduced gravity
due to density stratification—consult [18, section 1.3]). With this parameter setting
δ = 0.1, and Theorem 4.1 implies the existence of a smooth, approximate periodic
solution over a time scale of ln(δ−1)L/U ≈ 2 days. We note in passing that most
cyclonic storms on the Northern Hemisphere rotate clockwise, yielding a negative
vorticity, ω0 = ∂yu0 − ∂xv0 < 0, which is a preferred scenario of the subcritical
condition (2.1b) assumed in Theorem 4.1.

4.2. The isentropic gasdynamics. In this section we extend Theorem 4.1 to
rotational two-dimensional Euler equations for isentropic gas,

∂tρ + ∇ · (ρu) = 0,(4.8a)

∂tu + u · ∇u + ρ−1∇p̃(ρ) − fu⊥ = 0.(4.8b)

Here, u := (u(1), u(2))� is the velocity field, ρ is the density, and p̃ = p̃(ρ) is the
pressure, which for simplicity is taken to be that of a polytropic gas, given by the
γ-power law,

(4.8c) p̃(ρ) = Aργ .

The particular case A = g/2, γ = 2 corresponds to the RSW equations (1.1a), (1.1b).
The following argument for long term existence of the two-dimensional rapidly ro-
tating isentropic equations applies, with minor modifications, to the more general
pressure laws, p̃(ρ), which induce the hyperbolicity of (4.8a).

We first transform the isentropic Euler equations (4.8a) into their nondimensional
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form,

∂tρ + u · ∇ρ +

(
1

σ
+ ρ

)
∇ · u = 0,

∂tu + u · ∇u +
1

σ2
∇(1 + σρ)γ−1 − 1

τ
Ju = 0,

where the Mach number σ plays the same role as the Froude number in the RSW
equation. In order to utilize the technique developed in the previous section, we
introduce a new variable h by setting 1+σh = (1+σρ)γ−1, so that the new variables,
(h,u), satisfy

∂th + u · ∇h + (γ − 1)

(
1

σ
+ h

)
∇ · u = 0,(4.9a)

∂tu + u · ∇u +
1

σ
∇h− 1

τ
Ju = 0.(4.9b)

This is an analogue to the RSW equations (4.1a), (4.1b), except for the additional
factor (γ−1) in the mass equation (4.9a). We can therefore duplicate the steps which
led to Theorem 4.1 to obtain a long-time existence for the rotational Euler equations
(4.9a), (4.9b). We proceed as follows.

An approximate solution is constructed in two steps. First, we use the 2πτ -
periodic pressureless solution (h1 ≡ constant,u1(t, ·)) for subcritical initial data (h0,u0).
Second, we construct a 2πτ -periodic solution (h2(t, ·),u2(t·)) as the solution to an
approximate system of the isentropic equations, linearized around the pressureless
velocity u1,

∂th2 + u1 · ∇h2 + (γ − 1)

(
1

σ
+ h2

)
∇ · u1 = 0,

u2 := u1 +
τ

σ
J
(
I − etJ/τ

)
∇h2(t, ·).

In the final step, we compare (h,u) with the 2πτ -periodic approximate solution,
(h2,u2). To this end, we symmetrize the corresponding systems using U = (p,u)�

with the normalized density function p satisfying 1+ 1
2

√
1

γ−1σp =
√

1 + σh. Similarly,

the approximate system is symmetrized with the variables U2 = (p2,u2), where

1 + 1
2

√
1

γ−1σp2 =
√

1 + σh2. We conclude with the following.

Theorem 4.2. Consider the rotational isentropic equations on a fixed two-
dimensional torus, (4.9a), (4.9a), subject to subcritical initial data (ρ0,u0) ∈ Hm(T2)
with m > 5 and α0 := min(1 + σρ0(·)) > 0.
Let

δ =
τ

σ2

denote the ratio between the Rossby and the squared Mach numbers, with subcritical
τ ≤ τc(∇u0) so that (2.1b) holds. Assume σ < 1 for a substantial amount of pressure
in (4.9a). Then, there exists a constant C0, depending only on m, ‖(ρ0,u0)‖m, τc,
and α0 such that the RSW equations admit a smooth, “approximate periodic” solution
in the sense that there exists a nearby 2πτ -periodic solution (ρ2(t, ·),u2(t, ·)) such that

(4.10) ‖p(t, ·) − p2(t, ·)‖m−3 + ‖u(t, ·) − u2(t, ·)‖m−3 ≤ eC0tδ

1 − eC0tδ
.



LONG-TIME EXISTENCE OF RAPIDLY ROTATING EQUATIONS 1681

Here, p is the normalized density function satisfying 1 + σp = (1 + σρ)
γ−1

2 , and p2

results from the same normalization for ρ2.
It follows that the lifespan of the isentropic solution t <∼ tδ := 1 + ln(δ−1) is

prolonged due to the rapid rotation δ � 1, and in particular, it tends to infinity when
δ → 0.

Remark 4.2. For the actual density functions, ρ − ρ2 = 1
σ [(1 + σp)

2
γ−1 − (1 +

σp2)
2

γ−1 ] =
∫ 1

0
Cγ [1 + σ(θ(p− p2) + p2)]

2
γ −1 dθ,

‖ρ(t, ·) − ρ2(t, ·)‖m−3
<∼

eC0tδ

(1 − eC0tδ)
2

γ−1

,

in the physically relevant regime γ ∈ (1, 3).

4.3. The ideal gasdynamics. We turn our attention to the full Euler equations
in the two-dimensional torus,

∂tρ + ∇ · (ρu) = 0,

∂tu + u · ∇u + ρ−1∇p̃(ρ, S) = fJu,

∂tS + u · ∇S = 0,

where the pressure law is given as a function of the density, ρ and the specific en-
tropy S, p̃(ρ, S) := ργeS . It can be symmetrized by defining a new variable—the
“normalized” pressure function,

p :=

√
γ

γ − 1
p̃

γ−1
2γ ,

and by replacing the density equation (4.11a) by a (normalized) pressure equation,
so that the above system is recast into an equivalent and symmetric form (see, e.g.,
[12, 11])

eS∂tp + eSu · ∇p + Cγe
Sp∇ · u = 0,

∂tu + u · ∇u + Cγe
Sp∇p = fJu, Cγ :=

γ − 1

2
,

∂tS + u · ∇S = 0.

It is the exponential function, eS , involved in triple products such as eSp∇p, that
makes the ideal gas system a nontrivial generalization of the RSW and isentropic gas
equations.

We then proceed to the nondimensional form by substitution,

u → Uu′, p → P(1 + σp′), S = ln(pρ−γ) → ln(PR−γ) + σS′.

After discarding all the primes, we arrive at a nondimensional system

eσS∂tp + eσSu · ∇p + Cγ

(
eσS − 1

σ
+ eσSp

)
∇ · u = −Cγ

1

σ
∇ · u,(4.11a)

∂tu + u · ∇u + Cγ

(
eσS − 1

σ
+ eσSp

)
∇p = −Cγ

1

σ
∇p +

1

τ
Ju,(4.11b)

∂tS + u · ∇S = 0,(4.11c)



1682 BIN CHENG AND EITAN TADMOR

where σ and τ are, respectively, the Mach and the Rossby numbers. With abbreviated
notation, U := (p,u, S)�, the equations above amount to a symmetric hyperbolic
system written in the compact form,

(4.12) A0(S)∂tU + A1(U)∂xU + A2(U)∂yU = K[U].

Here, Ai(i = 0, 1, 2) are symmetric-matrix-valued functions, nonlinear in U, and in
particular, A0 is always positive definite. The linear operator K is skew-symmetric
so that 〈K[U],U〉 = 0.

Two successive approximations are then constructed based on the iterations (1.3),
starting with j = 1,

p1 ≡ constant,

∂tu1 + u1 · ∇u1 =
1

τ
Ju1,

S1 ≡ constant.

Identified as the pressureless solution, u1 is used to linearize the system, resulting in
the following approximation:

∂tp2 + u1 · ∇p2 + Cγp2∇ · u2 = −Cγ
1

σ
∇ · u2,(4.13a)

u2 − u1 =
τ

σ
J(I − etJ/τ )Cγe

σS2(1 + σp2)∇p2,(4.13b)

∂tS2 + u1 · ∇S2 = 0.(4.13c)

The 2πτ -periodicity and global regularity of U2 := (p2,u2, S2)
� follow along

the same lines outlined for the RSW equations in section 3 (and therefore omitted),
together with the following nonlinear estimate for eσS :

‖eσS − 1‖m =

∥∥∥∥∥∥
∞∑
j=1

(σS)j

j!

∥∥∥∥∥∥
m

<∼m

∞∑
j=1

(Cm|σS|∞)j−1

j!
‖σS‖m =

eCm|σS|∞ − 1

Cm|σS|∞
‖σS‖m;

for the latter, we apply recursively the Gagliardo–Nirenberg inequality to typical
terms ‖(σS)j‖m. Notice the entropy variables (both the exact and approximate ones)
satisfy a transport equation and therefore are conserved along particle trajectories,
which implies that the L∞ norm of the entropy variable is an invariant. Thus we
arrive at an estimate

(4.14) ‖eσS − 1‖m ≤ σĈ0‖S‖m.

Of course, the same type of estimate holds for the approximate entropy, S2.
Finally, we subtract the approximate system (4.13) from the exact system (4.12),

arriving at an error equation for E := U−U2 that shares the same form as the RSW
system in section 4.1, except that Ai(U)−Ai(U2) �= Ai(U−U2) due to nonlinearity,
which is essentially quadratic in the sense that 1

‖Ai(U) −Ai(U2)‖n <∼ ‖U − U2‖2
n + ‖U − U2‖n, i = 0, 1, 2,

Ai(U) −Ai(U2)‖W 1,∞ <∼ ‖U − U2‖2
W 1,∞ + ‖U − U2‖W 1,∞ , i = 0, 1, 2.

1Consider a typical term of Ai, e.g., eσSp. Applying (4.14) together with the Gagliardo–Nirenberg
inequality to eσS−eσS2 = eσS2 (eσ(S−S2)−1), we can show ‖eσS−eσS2‖n <∼ ‖S−S2‖n. The estimate
on ‖eσSp−eσS2p2‖n then follows by applying identity ab−a2b2 = (a−a2)(b−b2)+(a−a2)b2+a2(b−
b2) together with the triangle inequality and the Gagliardo–Nirenberg inequality. Here regularity of
S2 and p2 is a priori known.
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where n > 2. This additional nonlinearity manifests itself as three more multiplica-
tions in the energy inequality,

d

dt
‖E‖m−3

<∼ ‖E‖5
m−3 + · · · + ‖E‖m−3 + δ, ‖E(0, ·)‖m−3 = 0,

whose solution (developed around a simple root of the quintic polynomial on the right)
has the same asymptotic behavior as for the quadratic Riccati equations derived in
the previous sections.

Theorem 4.3. Consider the (symmetrized) rotational Euler equations on a fixed
two-dimensional torus (4.11) subject to subcritical initial data (p0,u0, S0) ∈ Hm(T2)
with m > 5. Let

δ =
τ

σ2

denote the ratio between the Rossby and the squared Mach numbers, with subcrit-
ical τ ≤ τc(∇u0) so that (2.1b) holds. Assume σ < 1 for a substantial amount
of pressure forcing in (4.11b). Then, there exists a constant C, depending only on
m, ‖(p0,u0, S0)‖m, τc, such that the ideal gas equations admit a smooth, “approxi-
mate periodic” solution in the sense that there exists a nearby 2πτ -periodic solution,
(p2(t, ·),u2(t, ·), S2(t, ·)) such that

(4.15)

‖p(t, ·) − p2(t, ·)‖m−3 + ‖u(t, ·) − u2(t, ·)‖m−3 + ‖S(t, ·) − S2(t, ·)‖m−3 ≤ eC0tδ

1 − eC0tδ
.

It follows that the lifespan of the ideal gas solution, t <∼ tδ := ln(δ−1), is prolonged
due to the rapid rotation δ � 1, and in particular, it tends to infinity when δ → 0.

5. Appendix. Staying away from vacuum. We will show the following
proposition on the new variable p2 defined in section 4.1.

Proposition 5.1. Let p2 satisfy

(5.1) 1 +
1

2
σp2 =

√
1 + σh2,

where h2 is defined as in (3.1), that is,

(5.2) ∂th2 + u1 · ∇h2 +

(
1

σ
+ h2

)
∇ · u1 = 0

subject to initial data h2(0, ·) = h0(·) that satisfies the nonvacuum condition
1 + σh0(·) ≥ α0 > 0. Then,

|p2|∞ ≤ Ĉ0

(
1 +

τ

σ

)
,

‖p2‖n ≤ C0

(
1 +

τ

σ

)
.

The proof of this proposition follows in two steps. First, we show that the L∞

and Hn norms of p2(0, ·) are dominated by h2(0, ·) due to the nonvacuum condition.
Second, we derive the equation for p2 and obtain regularity estimates using similar
techniques from section 4.1.



1684 BIN CHENG AND EITAN TADMOR

Step 1. For simplicity, we use p := p2(0, ·) and h := h2(0, ·).
Differentiation of (5.1) yields

p =
2h√

1 + σh + 1
, ∇p =

∇h√
1 + σh

.

Clearly, |p|∞ ≤ |h|∞. The above identities, together with the nonvacuum condition,
imply

‖p‖1 ≤ 2‖h‖1 and |∇p|L∞ ≤ |∇h|L∞
√
α0

.

For higher derivatives of p, we use the following recursive relation. Rewrite (5.1)
as p + 1

4σp
2 = h and then take the kth derivative on both sides,

Dkp +
1

4
σ2pDkp +

1

4
σ
(
Dk(q2) − 2pDkp

)
= Dkh

so that taking the L2 norm of this equation yields

I − II :=

∥∥∥∥
(

1 +
1

2
σp

)
Dkp

∥∥∥∥
0

− 1

4
σ
∥∥Dk(q2) − 2pDkp

∥∥
0
≤ ‖Dkh‖0.

Furthermore, we find I ≥ √
α0‖Dkp‖0 by (5.1) and the nonvacuum condition. We also

find II <∼n |∇p|∞‖p‖|k|−1 by the Gagliardo–Nirenberg inequalities. Thus we arrive at
a recursive relation

‖p‖|k| ≤ Ĉ0(‖p‖|k|−1 + ‖h‖|k|),

which implies that the Hn norm of p2(0, ·) = p is dominated by ‖h2(0, ·)‖n = ‖h‖n.
Step 2. We derive an equation for p2 using relation (5.1) and equation (5.2),

∂tp2 + 2u1 · ∇p2 +

(
1

σ
+ p2

)
∇ · u1 = 0.

This equation resembles the formality of the approximate mass equation (3.1) for h2,
and thus we apply a similar technique to arrive at the same regularity estimate for
p2,

|p2(t, ·)|∞ ≤ Ĉ0

(
1 +

τ

σ

)
,

‖p2(t, ·)‖n ≤ C0

(
1 +

τ

σ

)
.
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ON SOME PROPERTIES OF TRAVELING WATER WAVES WITH
VORTICITY∗

EUGEN VARVARUCA†

Abstract. We prove that for a large class of vorticity functions the crests of any corresponding
traveling gravity water wave of finite depth are necessarily points of maximal horizontal velocity.
We also show that for waves with nonpositive vorticity the pressure everywhere in the fluid is larger
than the atmospheric pressure. A related a priori estimate for waves with nonnegative vorticity is
also given.

Key words. water waves, vorticity, maximum principle
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1. Introduction. In this article we consider the classical hydrodynamical prob-
lem concerning traveling two-dimensional gravity water waves with vorticity. This
problem has attracted considerable interest in recent years, starting with the system-
atic study of Constantin and Strauss [8] on periodic waves of finite depth.

The problem arises from the following physical situation. A wave of permanent
form moves with constant speed on the surface of an incompressible flow, the bottom
of the flow domain being horizontal. With respect to a frame of reference moving with
the speed of the wave, the flow is steady and occupies a fixed region Ω in the upper
half of the (x, y)-plane, which lies between the real axis B := {(x, 0) : x ∈ R} and some
a priori unknown free surface S := {(x, η(x)) : x ∈ R}, where η is a periodic function.
Since the fluid is incompressible, the flow can be described by a (relative) stream
function ψ which is periodic in the horizontal direction and satisfies the following
equations and boundary conditions:

Δψ = −γ(ψ) in Ω,(1.1a)

ψ = B on B,(1.1b)

ψ = 0 on S,(1.1c)

|∇ψ|2 + 2gy = Q on S,(1.1d)

ψy < 0 in Ω,(1.1e)

where B, g, and Q are positive constants. Equation (1.1a) involves a vorticity function
γ : [0, B] → R and expresses the fact that the vorticity of the flow ω := −Δψ and the
stream function ψ are functionally dependent. Equations (1.1b) and (1.1c) mean that
the bottom and the free surface are streamlines, while (1.1d) means that the pressure
at the surface of the flow is a constant. The relative velocity of the fluid particles
is given by (ψy,−ψx). The requirement (1.1e) means that the horizontal velocity of
each fluid particle is smaller than the speed of the wave and is motivated both by field
observations and by laboratory experiments; see [8] for references. It is customary [8]
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to assume that the constants g,B and the vorticity function γ are given. The problem
consists in determining the curves S for which there exists a function ψ in Ω which
satisfies (1.1a)–(1.1e) for some value of the parameter Q. For a full justification of
the equivalence between the problem of seeking solution triples (S, ψ,Q) of (1.1) and
that of seeking traveling-wave solutions of the two-dimensional Euler equations, the
reader is referred to [8].

When γ ≡ 0, the corresponding flow is called irrotational. Nowadays the mathe-
matical theory dealing with this situation contains a wealth of results, mostly obtained
during the last three decades, concerning the existence of large-amplitude solutions
and their properties. Global bifurcation theories were given for various types of waves
(periodic or solitary of finite depth; periodic of infinite depth) by Keady and Nor-
bury [14] and by Amick and Toland [1, 2]. Moreover, it was shown by Toland [20]
and McLeod [16] that in the closure of these continua of solutions there exist waves
with stagnation points at their crests, a stagnation point being one at which the
relative fluid velocity is zero, i.e., |∇ψ| = 0. The existence of such waves, called “ex-
treme waves,” was predicted by Stokes [18], who also conjectured that their profiles
necessarily have corners with included angle of 120◦ at the crests. This conjecture
was proved independently by Amick, Fraenkel, and Toland [3] and by Plotnikov [17].
Recently, the method of [3] was simplified and extended in [22].

On the other hand, when γ �≡ 0, the flow is called rotational or with vorticity, and
significant advances in the corresponding mathematical theory have been made only
in the last few years. The existence of global continua of smooth solutions was proved
by Constantin and Strauss [8] for the periodic finite depth problem, and by Hur [13]
for the related problem of periodic waves of infinite depth. For the solutions found in
[8, 13] the wave profiles have exactly one crest and one trough per minimal period,
are monotone between crests and troughs, and have a vertical axis of symmetry. (The
symmetry assumption is in fact not a restriction since, for any vorticity function, any
wave profile with the above monotonicity properties is necessarily symmetric [5, 11].)
Of particular significance is the fact that the continuum of solutions found in [8]
contains waves for which the values of maxΩ ψy are arbitrarily close to 0. Thus it
is natural to expect that, as in the irrotational case, waves with stagnation points,
referred to above as “extreme waves,” exist for many vorticity functions, and that
they can be obtained as limits, in a suitable sense, of certain sequences of regular
waves found in [8]. In the case of constant vorticity, numerical evidence [15, 19]
strongly points to the existence of extreme waves for any negative vorticity and for
small positive vorticity, and also indicates that, for large positive vorticity, continua of
solutions bifurcating from a line of trivial solutions develop into overhanging profiles
(a situation which is not possible in the irrotational case; see [23] for references) and
do not approach extreme waves. Further references to numerical investigations of
waves with vorticity can be found in [15].

One of the questions addressed in this article concerns the location of the points
at which the maximum over Ω of the relative horizontal velocity ψy is attained for
smooth waves with vorticity. In the irrotational case, the crests of the wave are the
only such points; see Toland [21]. Very recently, Constantin and Strauss [9, Theorem
4.1] showed that this is also the case for the waves in the continuum in [8] under
the assumption that γ is a nonpositive constant which satisfies a smallness condition
involving B and g. Here we prove, with a novel approach, a slightly weaker result
under substantially more general assumptions. Namely, for wave profiles with finitely
many local extrema on a period, if the vorticity function γ satisfies γ ≤ 0 and γ′ ≥ 0
everywhere on [0, B], then any point of maximal relative horizontal velocity must lie on
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the free surface and the crests are necessarily such points. An immediate consequence
of this result is that, whenever γ ≤ 0 and γ′ ≥ 0, the continuum of solutions in [8]
contains waves for which the values of |∇ψ| at their crests are arbitrarily close to 0.
Thus in this case the existence of waves with stagnation points at their crests is to be
particularly expected.

Another contribution of this article is that we establish some new a priori bounds
for waves corresponding to vorticity functions γ which do not change sign, without any
assumptions on γ′. When γ ≤ 0, the estimate in question means that the pressure
everywhere in the fluid is larger than the atmospheric pressure. This estimate is
the main ingredient in the proof of the previously mentioned result concerning the
location of the points where maxΩ ψy is attained. When γ ≥ 0, a slightly different,
but related, estimate is given. Both these estimates play an essential role in the
investigation in [24] concerning the existence of extreme waves with vorticity and the
Stokes conjecture.

The proofs here are based on simple applications of the maximum principle [12,
Chapters 2 and 3]. Analogous results to those of this article hold in the case of
periodic rotational waves of infinite depth. They will be presented, together with
some applications, in a subsequent article.

Of the many other directions in which the theory of traveling gravity water waves,
with or without vorticity, has seen recent progress and is currently being further
developed, we mention here only a few: variational formulations [7], stability [10],
and properties of the fluid particle trajectories [4, 6].

2. The main results. We always deal with classical solutions of (1.1), in the
sense that γ ∈ C1([0, B]), η ∈ C3(R), ψ ∈ C3(Ω). We assume that η is a periodic
function of minimal period 2L, and that ψ is 2L-periodic in the horizontal direction.
However, we do not assume that η has exactly one local maximum and one local
minimum per minimal period.

Let Γ̂ : [0, B] → R be given by

(2.1) Γ̂(s) =

∫ s

0

γ(t) dt for all s ∈ [0, B].

(Note that in [8] a function Γ is considered which is related to Γ̂ by Γ̂(s) = −Γ(−s).
The quantity of interest both here and there is Γ̂(ψ), which is denoted there by
−Γ(−ψ); we find our notation more convenient.) Let us also consider the function
R : Ω → R given by

(2.2) R =
1

2
|∇ψ|2 + gy − 1

2
Q + Γ̂(ψ).

The function R is (up to a constant) the negative of the pressure in the fluid domain;
see [8].

Our next result shows that when γ is everywhere nonpositive the pressure in the
fluid domain is larger than the atmospheric pressure.

Theorem 2.1. Suppose that γ(s) ≤ 0 for all s ∈ [0, B]. Then R ≤ 0 in Ω.
Remark 2.2. Under the much more restrictive assumptions that

γ ≤ 0, γ′ ≤ 0 and −ψy(x, 0)γ(B) ≥ −g for all x ∈ R,

the conclusion of Theorem 2.1 was previously obtained in [9, Example 3.1].
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The importance of the inequality R ≤ 0 in Ω in relation to the monotonicity of
ψy along the free surface S was first recognized for waves with vorticity by Constantin
and Strauss [9, Proposition 3.4]. We give here a slightly more general statement of
their result and a somewhat more direct proof.

Theorem 2.3. Let η : R → R be such that there exists N ∈ N and points x0 <
x1 < · · · < x2N = x0 + 2L with the property that η′(xj) = 0 for all j ∈ {0, . . . , 2N},
η is strictly increasing on [x2j , x2j+1] for all j ∈ {0, . . . , N − 1}, and η is strictly
decreasing on [x2j−1, x2j ] for all j ∈ {1, . . . , N}. Suppose that R ≤ 0 in Ω. Then the
function x 	→ ψy(x, η(x)) is increasing on [x2j , x2j+1] for all j ∈ {0, . . . , N − 1} and
decreasing on [x2j−1, x2j ] for all j ∈ {1, . . . , N}. Therefore, maxS ψy is attained at
the points of maximal height on S.

The preceding result leads with little effort to one concerning the location of the
points where maxΩ ψy is attained.

Theorem 2.4. Let η : R → R be as in Theorem 2.3. Suppose that γ(s) ≤ 0 and
γ′(s) ≥ 0 for all s ∈ [0, B]. Then any point at which maxΩ ψy is attained lies on S,
and the crests of the wave are necessarily such points.

Remark 2.5. For a more restrictive class of wave profiles and under the assump-
tion that γ is a nonpositive constant which satisfies

g2 ≥ 2g(−2Bγ3)1/2 − 2Bγ3,

Constantin and Strauss [9, Theorem 4.1] proved that the crests of the wave are the
only points at which maxΩ ψy is attained. This slightly stronger conclusion does not
seem to be readily obtainable by the methods used in the proof of Theorem 2.4.

The next result gives a new estimate in the case when γ is everywhere nonnegative,
which is in the same spirit as that of Theorem 2.1. Let us consider the function
T : Ω → R given by

(2.3) T := R−�ψ,

where R is given by (2.2) and

(2.4) � :=
1

2
max

s∈[0,B]
γ(s).

Theorem 2.6. Suppose that γ(s) ≥ 0 for all s ∈ [0, B]. Then T ≤ 0 in Ω.

3. Proofs of the main results. A simple calculation shows that, everywhere
in Ω,

Rx = ψyψxy − ψxψyy,(3.1a)

Ry = ψxψxy − ψyψxx + g,(3.1b)

and

(3.2) ΔR = 2ψ2
xy − 2ψxxψyy.

Proof of Theorem 2.1. Note that R = 0 everywhere on the free surface S. We
claim that the maximum of R over Ω must be attained on S.

Observe first that, since Ry = g > 0 everywhere on the bottom B, maxΩ R cannot
be attained anywhere on B.
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Suppose now that maxΩ R is attained at some point A in Ω. Then necessarily

Rx(A) = 0, Ry(A) = 0, ΔR(A) ≤ 0.

It follows from this, (3.1), and (3.2) that

ψy(A)ψxy(A) = ψx(A)ψyy(A),(3.3a)

ψx(A)ψxy(A) < ψy(A)ψxx(A),(3.3b)

ψ2
xy(A) ≤ ψxx(A)ψyy(A).(3.3c)

Since (1.1e) holds, it follows that ψy(A) < 0. We now distinguish two cases, depending
on whether or not ψyy(A) = 0.

If ψyy(A) = 0, then (3.3a) implies that ψxy(A) = 0. It then follows from (3.3b)
that ψxx(A) < 0, and hence γ(ψ(A)) = −Δψ(A) > 0, which contradicts the assump-
tion that γ(s) ≤ 0 for all s ∈ [0, B].

If ψyy(A) �= 0, then it follows from (3.3a) and (3.3b) that

ψy(A)ψ2
xy(A)

ψyy(A)
< ψy(A)ψxx(A).

It then follows from this and (3.3c) that ψyy(A) < 0. We now deduce from (3.3c)
that ψxx(A) ≤ 0, and therefore γ(ψ(A)) = −Δψ(A) > 0, which again contradicts the
assumption that γ(s) ≤ 0 for all s ∈ [0, B].

We conclude that the maximum of R over Ω must be attained on S, which implies
that R ≤ 0 in Ω. This completes the proof of Theorem 2.1.

Proof of Theorem 2.3. The proof is based on a remarkable, though straightforward
to verify, identity observed by Toland [21] in the irrotational case and by Constantin
and Strauss [9] in the general case:

(3.4)
d

dx

[
1

2
ψ2
y(x, η(x))

]
= Rx(x, η(x)) for all x ∈ R.

Since R ≤ 0 in Ω and R = 0 on S, the required result concerning the monotonicity of
x 	→ ψy(x, η(x)) is immediate from (3.4). It follows that

(3.5) max
S

ψy = max
j∈{0,...,N−1}

ψy(x2j+1, η(x2j+1)).

But for every j ∈ {0, . . . , 2N}, ψx(xj , η(xj)) = 0 and therefore

ψy(xj , η(xj)) = −(Q− 2gη(xj))
1/2.

Hence maxS ψy is attained at the points of maximal height on S. This completes the
proof of Theorem 2.3.

Proof of Theorem 2.4. It follows from (1.1a) that

Δψy = −γ′(ψ)ψy in Ω.

Since ψy < 0 in Ω and γ′(s) ≥ 0 for all s ∈ [0, B], it follows immediately from the
maximum principle that maxΩ ψy cannot be attained anywhere in Ω.

We now show that maxΩ ψy cannot be attained anywhere on B either. This
is trivial when γ(B) < 0, since then ψyy = −γ(B) > 0 everywhere on B. When
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γ(B) = 0, we use a reflection argument. Let γ̃ : [0, 2B] → R be an extension of γ such
that γ̃(s) = −γ(2B − s) for all s ∈ (B, 2B]. Let ΩR be the reflection of Ω into B,

Ω̃ := Ω ∪ B ∪ ΩR,

and ψ̃ : Ω̃ → R be an extension of ψ such that ψ̃(x, y) = 2B − ψ(x,−y) for all

(x, y) ∈ ΩR. Then it is easily checked that γ̃ ∈ C1([0, 2B]), ψ̃ ∈ C3(Ω̃) and

Δψ̃ = −γ̃(ψ̃) in Ω̃.

Since ψ̃y < 0 in Ω̃ and γ̃′(s) ≥ 0 for all s ∈ [0, 2B], the maximum principle yields the
required result.

We conclude that maxΩ ψy can only be attained on S. Next note that, since
γ(s) ≤ 0 for all s ∈ [0, B], Theorem 2.1 shows that R ≤ 0 in Ω. An application of
Theorem 2.3 now yields that maxΩ ψy is attained at the crests of the wave. This
completes the proof of Theorem 2.4.

Proof of Theorem 2.6. Note first that Ty = g−�ψy > 0 everywhere on B, so that
the maximum of T over Ω cannot be attained anywhere on B.

Next note from (3.2) that

ΔR ≥ −1

2
γ2(ψ) in Ω.

Since

ΔT = ΔR + �γ(ψ),

it is immediate, upon using (2.4) and the assumption that γ(s) ≥ 0 for all s ∈ [0, B],
that T is a subharmonic function in Ω. Therefore, the maximum of T over Ω cannot
be attained anywhere in Ω.

We conclude that maxΩ T must be attained somewhere on S. Since T = 0
everywhere on S, it follows that T ≤ 0 in Ω. This completes the proof of Theorem
2.6.
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EXISTENCE AND UNIQUENESS OF SOLUTIONS TO A NONLOCAL
EQUATION WITH MONOSTABLE NONLINEARITY∗
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Abstract. Let J ∈ C(R), J ≥ 0,
∫

R
J = 1 and consider the nonlocal diffusion operator M[u] =

J �u−u. We study the equation Mu+f(x, u) = 0, u ≥ 0, in R, where f is a KPP-type nonlinearity,
periodic in x. We show that the principal eigenvalue of the linearization around zero is well defined
and that a nontrivial solution of the nonlinear problem exists if and only if this eigenvalue is negative.
We prove that if, additionally, J is symmetric, then the nontrivial solution is unique.
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1. Introduction. Reaction-diffusion equations have been used to describe a va-
riety of phenomena in combustion theory, bacterial growth, nerve propagation, epi-
demiology, and spatial ecology [13, 12, 15, 19]. However, in many situations, such
as in population ecology, dispersal is better described as a long range process rather
than as a local one, and integral operators appear as a natural choice. Let us mention
in particular the seminal work of Kolmogorov, Petrovsky, and Piskunov [16], who
in 1937 introduced a model for the dispersion of gene fractions involving a nonlocal
linear operator and a nonlinearity of the form u(1− u), which many authors now call
a KPP-type nonlinearity.

Nonlocal dispersal operators usually take the form M[u] =
∫

RN k(x, y)u(y)dy −
u(x), where k ≥ 0 and

∫
RN k(y, x)dy = 1 for all x ∈ R

N . They have been mainly used
in discrete time models [17], while continuous time versions have also been recently
considered in population dynamics [14, 18]. Steady state and travelling wave solutions
for single equations have been studied in the case k(x, y) = J(x− y), with J even, for
some specific reaction nonlinearities in [1, 10, 8, 2, 6, 21].

In this work we restrict ourselves to one dimension and take

k(x, y) = J(x− y).

We are interested in the existence/nonexistence and uniqueness of solutions of
the following problem:

M[u] + f(x, u) = 0 in R,(1.1)

where f(x, u) is a KPP-type nonlinearity, periodic in x, and

M[u] := J � u− u.(1.2)
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We assume that J satisfies

J ∈ C(R), J ≥ 0,

∫
R

J = 1,(1.3)

there exist a < 0 < b such that J(a) > 0, J(b) > 0.(1.4)

On f we assume that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f ∈ C(R × [0,∞)) and is differentiable with respect to u,

for each u, f(·, u) is periodic with period 2R,

fu(·, 0) is Lipschitz,

f(·, 0) ≡ 0 and f(x, u)/u is decreasing with respect to u,

there exists M > 0 such that f(x, u) ≤ 0 for all u ≥ M and all x.

(1.5)

The model example of such a nonlinearity is

f(x, u) = u(a(x) − u),

where a(x) is periodic and Lipschitz.
In a recent work, Berestycki, Hamel, and Roques [2] studied the analogue of (1.1)

with a divergence operator in a periodic setting. More precisely, they considered

−∇ · (A(x)∇u) = f(x, u), x ∈ R
N , u ≥ 0,(1.6)

where A(x) is a symmetric matrix of class C1,α, periodic with respect to all variables
and uniformly elliptic, and f is C1 and satisfies (1.5). They showed existence of non-
trivial solutions provided the linearization of the equation around zero has a negative
first periodic eigenvalue.

We prove the following result.
Theorem 1.1. Assume J satisfies (1.3), (1.4) and f satisfies (1.5). Then there

exists a nontrivial, periodic solution of (1.1) if and only if

λ1(M + fu(x, 0)) < 0,

where λ1 is the principal eigenvalue of the linear operator −(M + fu(x, 0)) in the
set of 2R-periodic continuous functions. Moreover, if λ1 ≥ 0, then any nonnegative
bounded solution is identically zero.

To prove Theorem 1.1, we first need to show that the principal periodic eigenvalue
of −(M + fu(x, 0)) is well defined. Let us introduce some notation:

Cper(R) = {u : R → R | u is continuous and 2R-periodic},

C0,1
per(R) = {u : R → R | u is Lipschitz and 2R-periodic}.

Theorem 1.2. Suppose a(x) ∈ C0,1
per(R). Then the operator −(M + a(x)) has a

unique principal eigenvalue λ1 in Cper(R); that is, there is a unique λ1 ∈ R such that

M[φ1] + a(x)φ1 = −λ1φ1 in R(1.7)

admits a positive solution φ1 ∈ Cper(R). Moreover, λ1 is simple, that is, the space of
Cper(R) solutions to (1.7) is one dimensional.
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In [2] the authors proved that (1.6) has at most one nontrivial bounded solution,
and that it has to be periodic. A similar result is true for the nonlocal problem (1.1),
but this time we need J to be symmetric, that is,

J(x) = J(−x) for all x ∈ R.(1.8)

Note, however, that for the existence result, Theorem 1.1, we do not need this
condition.

Theorem 1.3. Assume J satisfies (1.3), (1.4), (1.8) and f satisfies (1.5). Let u
be a nonnegative, bounded solution to (1.1) and let λ1 be the principal eigenvalue of
the operator −(M + fu(x, 0)) with periodic boundary conditions.

(a) If λ1 < 0, then either u ≡ 0 or u ≡ p, where p is the positive periodic solution
of Theorem 1.1.

(b) If λ1 ≥ 0, then u ≡ 0.

Part (b) of the preceding theorem is already covered in Theorem 1.1 and does not
depend on the symmetry of J .

When f is independent of x and satisfies (1.5), the principal eigenvalue of −(M+
f ′(0)) is given by λ1 = −f ′(0) and φ1 is just a constant. Thus in this case Theorem 1.1
says that a bounded, nonnegative, nontrivial solution exists if and only if f ′(0) > 0,
and this solution is just the constant u0 such that f(u0) = 0. Assuming that J is
symmetric, Theorem 1.3 then implies that the constant u0 is the unique solution in
the class of nonnegative, bounded functions.

Recently, considering a nonperiodic nonlinearity f , Berestycki, Hamel, and Rossi
[3] analyzed the analogue of Theorem 1.3 for general elliptic operators in R

N , find-
ing sufficient conditions that ensure existence and uniqueness of a positive bounded
solution. It is natural to ask whether the periodicity of f and the symmetry of J are
crucial hypotheses in Theorem 1.3. We believe that this is the case, since a general
nonlocal operator such as (1.2) may contain a transport term, and a standing wave
connecting the steady states of the system could appear. We shall investigate further
this issue in a forthcoming work.

Hypothesis (1.4) implies that the operator M satisfies the strong maximum princi-
ple. Suppose, for instance, that J satisfies (1.3), (1.4). If u ∈ C(R) satisfies M[u] ≥ 0
in R, then u cannot achieve a global maximum without being constant (see [9]).
However, we will need the following version.

Theorem 1.4. Assume J satisfies (1.3), (1.4) and let c ∈ L∞(R). If u ∈ L∞(R)
satisfies u ≤ 0 a.e. and M[u] + c(x)u ≥ 0 a.e. in R, then ess supKu < 0 for all
compact K ⊂ R or u = 0 a.e. in R.

If f satisfies the stronger hypothesis that, for any x, f(x, u) is concave with respect
to u, then actually the periodic solution p of Theorem 1.1 is continuous. To see this
notice that from the strong maximum principle, Theorem 1.4, J � p > 0 in R. The
concavity of f with respect to u implies that for any x the map u 
→ u − f(x, u) is
strictly increasing whenever u − f(x, u) > 0. Then from the continuity of J � p and
(1.1), which can be rewritten as in the form J � p = p − f(x, p), we deduce that p is
continuous.

In section 2 we review some spectral theory and give the argument of Theorem 1.2.
Then we prove Theorem 1.1 in section 3 and the uniqueness result, Theorem 1.3(a),
in section 4. We leave for an appendix a proof of Theorem 1.4.

2. Some spectral theory. In this section we deal with the principal eigenvalue
problem (1.7). Before stating our result, let us recall some basic spectral results for
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positive operators due to Edmunds, Potter, and Stuart [11] which are extensions of
the Krein–Rutmann theorem for positive noncompact operators.

A cone in a real Banach space X is a nonempty closed set K such that for all
x, y ∈ K and all α ≥ 0 one has x + αy ∈ K, and if x ∈ K, −x ∈ K, then x = 0. A
cone K is called reproducing if X = K−K. A cone K induces a partial ordering in X
by the relation x ≤ y if and only if x− y ∈ K. A linear map or operator T : X → X
is called positive if T (K) ⊆ K. The dual cone K∗ is the set of functionals x∗ ∈ X∗

which are positive, that is, such that x∗(K) ⊂ [0,∞).
If T : X → X is a bounded linear map on a complex Banach space X, its essential

spectrum (according to Browder [5]) consists of those λ in the spectrum of T such
that at least one of the following conditions holds: (1) the range of λI − T is not
closed, (2) λ is a limit point of the spectrum of T , (3) ∪∞

n=1 ker((λI − T )n) is infinite
dimensional. The radius of the essential spectrum of T , denoted by re(T ), is the
largest value of |λ| with λ in the essential spectrum of T . For more properties of
re(T ) see [20].

Theorem 2.1 (Edmunds, Potter, and Stuart [11]). Let K be a reproducing cone
in a real Banach space X, and let T ∈ L(X) be a positive operator such that T p(u) ≥ cu
for some u ∈ K with ‖u‖ = 1, some positive integer p, and some positive number c.

Then if c
1
p > re(T ), T has an eigenvector v ∈ K with associated eigenvalue ρ ≥ c

1
p

and T ∗ has an eigenvector v∗ ∈ K∗ corresponding to the eigenvalue ρ.
A proof of this theorem can be found in [11]. If the cone K has nonempty interior

and T is strongly positive, i.e., u ≥ 0, u �= 0 implies Tu ∈ int(K), then ρ is the unique
λ ∈ R for which there exists nontrivial v ∈ K such that Tv = λv and ρ is simple;
see [22].

Proof of Theorem 1.2. For convenience, in this proof we write the eigenvalue
problem

M[u] + a(x)u = −λu

in the form

L[u] + b(x)u = μu,(2.1)

where

L[u] = J � u, b(x) = a(x) + k, μ = −λ + 1 + k,

and k > 0 is a constant such that inf [−R,R] b > 0.
Observe that L : Cper(R) → Cper(R) is compact (Cper(R) is endowed with the

norm ‖u‖L∞([−R,R])). Indeed, let un ∈ Cper(R) be a bounded sequence, say
‖un‖L∞([−R,R]) ≤ B. Let ε > 0 and let A be large enough so that

∫
|x|≥A

J ≤ ε.

Since J is uniformly continuous in [−R − 2A,R + 2A] there is δ > 0 such that
|J(z1) − J(z2)| ≤ ε

2(A+R) for z1, z2 ∈ [−R− 2A,R + 2A] with |z1 − z2| ≤ δ. Then for

x1, x2 ∈ [−R,R],

|L[un](x1) − L[un](x2)| ≤
∫

R

|J(x1 − y) − J(x2 − y)| |un(y)| dy

≤ 2Bε + B

∫ R+A

−R−A

|J(x1 − y) − J(x2 − y)| dy

≤ 3Bε.
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This shows that L[un] is equicontinuous, and therefore by the Arzelà–Ascoli theorem,
L[un] is relatively compact.

Let us now establish some useful lemma.
Lemma 2.2. Suppose b(x) ∈ C0,1(R) is 2R-periodic, b(x) > 0, and let σ :=

max[−R,R] b(x). Then there exist p ∈ N, δ > 0, and u ∈ Cper(R), u ≥ 0, u �≡ 0, such
that

Lpu + b(x)pu ≥ (σp + δ)u.

Observe that the proof of Theorem 1.2 will then easily follow from the above
lemma. Indeed, if the lemma holds, then since u and b are nonnegative and L is a
positive operator, we easily see that

(L + b(x))p[u] ≥ Lp[u] + b(x)pu ≥ (σp + δ)u.

Using the compactness of the operator L, we have re(L + b(x)) = re(b(x))=σ, and

thus (σp + δ)
1
p > re(L + b(x)) and Theorem 2.1 applies. Finally, we observe that

the principal eigenvalue is simple since the cone of positive 2R-periodic functions has
nonempty interior and, for a sufficiently large p, the operator (L + b)p is strongly
positive.

Let us now turn our attention to the proof of the above lemma.
Proof of Lemma 2.2. Recall that for p ∈ N \ {0}, J �p u := J � (J �p−1 u) is well

defined by induction and satisfies J �p u = Jp � u with Jp defined as follows:

Jp := J � J � · · · � J � J︸ ︷︷ ︸
p times

.

By (1.4) it follows that there exists p ∈ N such that inf(−2R−1,2R+1) Jp > 0. Using
the definition of L, a short computation shows that

Lp[u] :=

∫ R

−R

J̃p(x, y)u(y) dy

with J̃p(x, y) =
∑

k∈Z
Jp(x + 2kR − y). Following the idea of Hutson et al. [14],

consider now the following function:

v(x) :=

{
η(x)

bp(x0)−bp(x)+γ in Ω2ε := (x0 − 2ε, x0 + 2ε),

0 elsewhere,

where x0 ∈ (−R,R) is a point of maximum of b(x), ε > 0 is chosen such that (x0 −
2ε, x0 + 2ε) ⊂ (−R,R), γ is a positive constant that we will define later on, and η
is a smooth function such that 0 ≤ η ≤ 1, η(x) = 1 for |x − x0| ≤ ε, η(x) = 0 for
|x− x0| ≥ 2ε. Let us compute Lp[v] + bp(x)v − σpv:

Lp[v] + bp(x)v − σpv =

∫ x0+ε

x0−ε

J̃p(x, y)
dy

bp(x0) − bp(y) + γ
+

∫
Ω2ε\Ωε

J̃p(x, y)v(y) dy

+ (bp(x) − bp(x0))v

≥
∫ x0+ε

x0−ε

J̃p(x, y)
dy

bp(x0) − bp(y) + γ
+ (bp(x) − bp(x0))v

≥
∫ x0+ε

x0−ε

J̃p(x, y)
dy

bp(x0) − bp(y) + γ
− 1.
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Using that inf(−2R−1,2R+1) Jp > 0, it follows that J̃p(x, y) ≥ c > 0 for x, y ∈ (−R,R).
Hence ∫ x0+ε

x0−ε

J̃p(x, y)
dy

bp(x0) − bp(y) + γ
≥ c

∫ x0+ε

x0−ε

dy

k|x0 − y| + γ
,

where k is the Lipschitz constant for bp. Using this inequality in the above estimate
yields

Lp[v] + bp(x)v − σpv ≥ c

∫ x0+ε

x0−ε

dy

k|x0 − y| + γ
− 1.

Therefore we have

Lp[v] + bp(x)v − (σp + δ)v ≥ 2c

k
log

(
1 +

kε

γ

)
− 1 − δv

≥ 2c

k
log

(
1 +

kε

γ

)
− 1 − δ

γ
.

Choosing now γ > 0 small so that 2c
k log (1 + kε

γ )− 1 > 1
2 and δ = γ

4 , we end up with

Lp[v] + bp(x)v − (σp + δ)v ≥ 1

4
> 0.

3. Existence of solutions.
Proof of Theorem 1.1. We follow the argument developed by Berestycki, Hamel,

and Roques in [2].
First assume that λ1 < 0. From Theorem 1.2 there exists a positive eigenfunction

φ1 such that

M[φ1] + fu(x, 0)φ1 = −λ1φ1 ≥ 0.

Computing M[εφ1] + f(x, εφ1), it follows that

M[εφ1] + f(x, εφ1) = f(x, εφ1) − fu(x, 0)εφ1 − λ1εφ1

= −λ1εφ1 + o(εφ1) > 0.

Therefore, for ε > 0 small, εφ1 is a periodic subsolution of (1.1). By definition of f ,
any constant M sufficiently large is a periodic supersolution of the problem. Choosing
M so large that εφ1 ≤ M and using a basic iterative scheme yields the existence of a
positive periodic solution u of (1.1).

Let us now turn our attention to the nonexistence setting and assume that λ1 ≥ 0.
Let u be a bounded nonnegative solution of (1.1). Observe that γφ1 is a periodic
supersolution for any positive γ. Indeed,

M[γφ1] + f(x, γφ1) < M[γφ1] + fu(x, 0)γφ1

≤ −λ1γφ1 ≤ 0.

Since φ1 ≥ δ for some positive δ we may define the following quantity:

γ∗ := inf{γ > 0|u ≤ γφ1}.
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We have the following claim.
Claim 3.1. γ∗ = 0.
Observe that we end the proof of the theorem by proving the above claim.
Proof of the claim. Assume that γ∗ > 0. Since v := u− γ∗φ1 satisfies v ≤ 0 in R

and

M[v] + c(x)v ≥ 0 in R,

where c(x) = f(x,u)−f(x,γ∗φ1)
v by the strong maximum principle, Theorem 1.4, we have

the following possibilities:
• either u ≡ γ∗φ1, or
• there exists a sequence of points (xn)n∈N such that |xn| → +∞ and

limn→+∞ γ∗φ1(xn) − u(xn) = 0.
In the first case we get the following contradiction:

0 = M[γ∗φ1] + f(x, γ∗φ1) < M[γ∗φ1] + fu(x, 0)γ∗φ1 ≤ 0.

Hence γ∗ = 0.
In the second case we argue as follows. Let (yn)n∈N be a sequence of points

satisfying, for all n, yn ∈ [−R,R] and xn − yn ∈ 2RZ. Up to extraction of a subse-
quence, yn → ȳ. Now consider the following sequence of functions un := u(. + xn),
φn := φ1(. + xn), and wn := γ∗φn − un so that wn > 0 in R. Since M is translation
invariant and f is periodic, un and φn > 0 satisfy

M[un] + f(x + yn, un) = 0 in R,

M[γ∗φn] + fu(x + yn, 0)γ∗φn ≤ 0 in R.

It follows that

J � wn ≤ an(x)wn,

where

an(x) = 1 − γ∗fu(x + yn, 0)φn − f(x + yn, un)

γ∗φn − un
.

Since wn > 0 we see that an is well defined and an ≥ 0. Using that f(x, u)/u is
nonincreasing with respect to u we have f(x, γ∗φn) ≤ γ∗fu(x, 0)φn. This implies

γ∗fu(x + yn, 0)φn − f(x + yn, un)

γ∗φn − un
≥ f(x + yn, γ

∗φn) − f(x + yn, un)

γ∗φn − un
≥ −C.

Thus

0 ≤ an ≤ C + 1 in R for all n,

with C independent of n. Observe that

J � wn(0) = an(0)(γ∗φ1(xn) − u(xn)) → 0,

which implies ∫
R

J(−y)wn(y) dy → 0 as n → +∞.
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Similarly,

J � J � wn(0) = J � (anwn)(0) =

∫
R

J(−y)an(y)wn(y) dy,

but ∫
R

J(−y)an(y)wn(y) dy ≤ ‖an‖L∞

∫
R

J(−y)wn(y) dy → 0.

Hence

J � J � wn(0) =

∫
R

(J � J)(−y)wn(y) dy → 0 as n → +∞.

Defining

Jk := J � · · · � J︸ ︷︷ ︸
k times

,

we see that for any fixed k ∈ N,∫
R

Jk(−y)wn(y) dy → 0 as n → +∞.

By (1.4) the support of Jk increases to all of R as k → +∞. Thus we may find
a new subsequence such that wn → 0 a.e. in R as n → +∞. Since φ1 is periodic
and continuous, φn(x) → φ̄(x) uniformly with respect to x, where φ̄(x) = φ(x + ȳ).
Hence ū(x) = limn→+∞ un(x) exists a.e. and is given by ū(x) = γ∗φ̄ . By dominated
convergence, ū is a solution to

M[ū] + f(x + ȳ, ū) = 0,

while by uniform convergence

M[γ∗φ̄] + fu(x + ȳ, 0)γ∗φ̄ ≤ 0 in R.

Since ū = γ∗φ̄ it follows that f(x + ȳ, γ∗φ̄) ≡ fu(x + ȳ, 0)γ∗φ̄. This contradicts the
fact that f(x, u)/u is decreasing in u. Hence, γ∗ = 0.

4. Uniqueness when J is symmetric. Throughout this section we assume
that J is symmetric. For the proof of Theorem 1.3 we follow the ideas in [2].

Proof of Theorem 1.3. Part (b) of this theorem is contained in Theorem 1.1 so
we concentrate on part (a).

Let p denote the positive periodic solution to (1.1) constructed in Theorem 1.1
and let u ≥ 0, u �≡ 0 be a bounded solution. We will prove that u ≡ p.

We show first that u ≤ p. Set

γ∗ := inf{γ > 0 | u ≤ γp}.

Note that γ∗ is well defined because u is bounded and p is bounded below by a positive
constant. We claim that

γ∗ ≤ 1.
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Suppose that γ∗ > 1 and note that u ≤ γ∗p. By Theorem 1.4 either u ≡ γ∗p or
ess infK(γ∗p−u) > 0 for all compact K ⊂ R. The first possibility leads to f(x, γ∗p) =
γ∗f(x, p) for all x ∈ R, which is not possible if γ∗ > 1. In the second case there exists
a sequence (xn)n∈N such that |xn| → +∞ and limn→+∞ γ∗p(xn) − u(xn) = 0. Let
(yn)n∈N be a sequence satisfying yn ∈ [−R,R] and xn − yn = kn2R for some kn ∈ Z.
We may assume that yn → ȳ. Let un := u(. + xn), which satisfies

M[un] + f(x + yn, un) = 0.

Let wn = γ∗p(. + yn) − un ≥ 0. Then wn > 0 in R and

J � wn = an(x)wn,

where

an(x) = 1 − γ∗f(x + yn, p(x + yn)) − f(x + yn, un(x))

γ∗p(x + yn) − un(x)
.

Since wn > 0 we deduce that an is well defined and an ≥ 0. Using that f(x, u)/u
is nonincreasing with respect to u and the fact that γ∗ > 1, we have f(x, γ∗p) ≤
γ∗f(x, p). This implies

γ∗f(x, p) − f(x, u)

γ∗p− u
≥ f(x, γ∗p) − f(x, u)

γ∗p− u
≥ −C.

Thus

0 ≤ an ≤ C + 1 in R for all n,

with C independent of n. Observe that

J � wn(0) = an(0)(γ∗p(yn) − u(xn)) = an(0)(γ∗p(xn) − u(xn)) → 0,

which implies ∫
R

J(−y)wn(y) dy → 0 as n → +∞.

Similarly,

J � J � wn(0) = J � (anwn)(0) =

∫
R

J(−y)an(y)wn(y) dy,

but ∫
R

J(−y)an(y)wn(y) dy ≤ ‖an‖L∞

∫
R

J(−y)wn(y) dy → 0.

Hence

J � J � wn(0) =

∫
R

(J � J)(−y)wn(y) dy → 0 as n → +∞.

Defining

Jk := J � · · · � J︸ ︷︷ ︸
k times

,
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we see that for all k ∈ N,∫
R

Jk(−y)wn(y) dy → 0 as n → +∞.

Hypothesis (1.4) implies that the support of Jk converges to all of R as k → +∞.
Therefore, for a subsequence, wn → 0 a.e. in R as n → +∞. Since p is periodic, for
possibly a new subsequence p(x+ yn) → p(x+ ȳ) a.e. Hence, ū(x) = limn→+∞ un(x)
exists a.e. and by dominated convergence, ū is a solution to

M[ū] + f(x + ȳ, ū) = 0.(4.1)

But since wn → 0 a.e. we have ū = γ∗p(· + ȳ). Thus γ∗p(· + ȳ) is a solution to (4.1),
which is impossible for γ∗ > 1 as argued before.

The proof that p ≤ u is analogous, but a key point is to prove first that under
the conditions of Theorem 1.3 any nontrivial, nonnegative solution is bounded below
by a positive constant. This is the content of Proposition 4.1.

Proposition 4.1. Assume that J satisfies (1.3), (1.4), and (1.8), f satisfies
(1.5), and that the operator −(M− fu(x, 0)) has a negative principal periodic eigen-
value. Suppose that u is a nonnegative, bounded solution to (1.1). Then u ≡ 0 or
there exists a constant c > 0 such that

u(x) ≥ c for all x ∈ R.

The basic tool to prove Proposition 4.1, following an idea in [2], is to study the
principal eigenvalue of the linearized operator in bounded domains. More precisely,
let Ω = (−r,+r) and a : Ω → R be Lipschitz. We consider the eigenvalue problem in
Ω with “Dirichlet boundary condition” in the following sense:⎧⎪⎪⎨

⎪⎪⎩
M[ϕ] + a(x)ϕ = −λϕ in Ω,

ϕ(x) = 0 for all x �∈ Ω,

ϕ|Ω is continuous.

(4.2)

We show that the principal eigenvalue for (4.2) exists and converges to the prin-
cipal periodic eigenvalue as r → +∞. The first step is to establish variational char-
acterizations of these eigenvalues, which is the argument that requires the symmetry
of J .

Lemma 4.2. Let Ω ⊂ R be a bounded open interval. Assume that J satisfies (1.3),
(1.4), and (1.8), and let a : Ω → R be Lipschitz. Then there exists a smallest λ1 such
that (4.2) has a nontrivial solution. This eigenvalue is simple and the eigenfunctions
are of constant sign in Ω. Moreover,

λ1 = min
ϕ∈C(Ω)

−
∫
Ω
(M[ϕ̃] + a(x)ϕ)ϕ∫

Ω
ϕ2

,(4.3)

where ϕ̃ denotes the extension by 0 of ϕ to R and the minimum is attained.
The statement and the proof are analogous to those of Theorem 3.1 in [14] except

that here we do not assume that J(0) > 0. A different formula for the principal
eigenvalue with a Dirichlet boundary condition appears in [7], where it is used to
characterize the rate of decay of solutions to a linear evolution equation.
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Proof. Define the operator X[ϕ] =
∫
Ω
J(x − y)ϕ(y) dy for ϕ ∈ C(Ω). Then

X : C(Ω) → C(Ω) is compact. Let c0 > 0 be such that infΩ a(x) + c0 > 0 and define
ã = a+c0. The eigenvalue problem (4.2) is equivalent to the following: find ϕ ∈ C(Ω)
and λ ∈ R such that

X[ϕ] + ãϕ = (−λ + 1 + c0)ϕ in Ω.

A calculation similar to Lemma 2.2 shows that there exists an integer p, u ∈ C(Ω),
and δ > 0 such that

(X + ã)pu ≥
((

max
Ω

ã

)p

+ δ

)
u in Ω.(4.4)

Using Theorem 2.1 we deduce that the operator X+ã has a unique principal eigenvalue
ρ > 0 and a principal eigenvector ϕ1 ∈ C(Ω). Let λ = 1 + c0 − ρ so that X[ϕ1] +
a(x)ϕ1 = (1 − λ)ϕ1. From (4.4) we deduce that σ+ defined by

σ+ = sup
ϕ∈C(Ω)

∫
Ω
(X[ϕ] + a(x)ϕ)ϕ∫

Ω
ϕ2

(4.5)

satisfies

σ+ ≥ 1 − λ > max
Ω

a.(4.6)

Now, using the same argument as in [14] we deduce that the supremum in (4.5) is
achieved. Indeed, it is standard [4] that the spectrum of X̂ + a(x) is to the left
of σ+ and that there exists a sequence ϕn ∈ C(Ω) such that ‖ϕn‖L2(Ω) = 1 and

‖(X + a(x) − σ+)ϕn‖L2(Ω) → 0 as n → +∞. By compactness of X : L2(Ω) → C(Ω)

for a subsequence, limn→+∞ X[ϕn] exists in C(Ω). Then, using (4.6), we see that
ϕn → ϕ in L2(Ω) for some ϕ and (X + a)ϕ = σ+ϕ. This equation implies ϕ ∈ C(Ω),
and hence σ+ is a principal eigenvalue for the operator X and by uniqueness of this
eigenvalue we have σ+ = 1 − λ.

Lemma 4.3. Assume that J satisfies (1.3), (1.4), and (1.8) and that a : R → R

is a 2R-periodic, Lipschitz function. Then the principal eigenvalue of the operator
−(M + a(x)) in Cper(R) is given by

λ1(a) = inf
‖ϕ‖L2(R)=1

−
∫

R

(M[ϕ] + a(x)ϕ)ϕ(4.7)

= min
ϕ∈Cper(R)

−
∫ R

−R
(M[ϕ] + a(x)ϕ)ϕ∫ R

−R
ϕ2

.(4.8)

Proof. By Theorem 1.2 we know that there exists a unique principal eigenvalue
λ1(a) of the operator −(M + a) in Cper(R). Let φ1 ∈ Cper(R) denote a positive
eigenfunction associated with λ1(a). We normalize φ1 such that∫ R

−R

φ2
1 = 2R.(4.9)

On the other hand, the quantity

λ̃1(a) = inf
ϕ∈Cper(R)

−
∫ R

−R
(M[ϕ] + a(x)ϕ)ϕ∫ R

−R
ϕ2
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is also an eigenvalue of −(M + a) on Cper(R) with a positive eigenfunction. By

uniqueness of the principal eigenvalue, λ1(a) = λ̃1(a).
We claim that

inf
‖ϕ‖L2(R)=1

−
∫

R

(M[ϕ] + a(x)ϕ)ϕ ≤ λ1(a).

Indeed, for r > 0 let ηr ∈ C∞
0 (R) be such that 0 ≤ ηr ≤ 1, ηr(x) = 1 for |x| ≤ r,

ηr(x) = 0 for |x| ≥ r + 1. It will be sufficient to show that

lim
r→+∞

∫
R
(M[φ1ηr] + aφ1ηr)φ1ηr∫

R
(φ1ηr)2

= −λ1(a).(4.10)

By (4.9) we have ∫
R

(φ1ηr)
2 = 2r + O(1) as r → +∞.(4.11)

Let 0 < θ < 1. Then

|M[φ1](x) −M[φ1ηr]| ≤ ‖φ1‖L∞

∫
|x−z|≥r

|J(z)| dz

≤ ‖φ1‖L∞

∫
|z|≥(1−θ)r

|J(z)| dz for all |x| ≤ θr

= o(1) uniformly for all |x| ≤ θr.(4.12)

We split the integral∫
R

(M[φ1ηr] + aφ1ηr)φ1ηr =

∫
|x|≤θr

. . . dx +

∫
|x|≥θr

. . . dx.(4.13)

Using ηr(x) = 1 for |x| ≤ θr and (4.12) we see that∫
|x|≤θr

(M[φ1ηr] + aφ1ηr)φ1ηr =

∫
|x|≤θr

(M[φ1ηr] + aφ1)φ1

=

∫
|x|≤θr

(M[φ1] + aφ1 + o(1))φ1

= −2θλ1(a)r + o(r) as r → +∞.

The second integral in (4.13) is bounded by∣∣∣∣∣
∫
|x|≥θr

(M[φ1ηr] + aφ1ηr)φ1ηr

∣∣∣∣∣ ≤ C(1 − θ)r.(4.14)

Thus from (4.11)–(4.14) we conclude that∣∣∣∣
∫

R
(M[φ1ηr] + aφ1ηr)φ1ηr∫

R
(φ1ηr)2

+ λ1(a)

∣∣∣∣ ≤ C(1 − θ) + o(1),

which proves (4.10).
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To establish (4.7) it remains to verify that

λ1(a) ≤ −
∫

R
(M[ϕ] + a(x)ϕ)ϕ∫

R
ϕ2

for all ϕ ∈ Cc(R).(4.15)

By uniqueness of the principal eigenvalue we have

λ1(a) = inf
ϕ∈Cper(Ωk)

−
∫ kR

−kR
(M[ϕ] + a(x)ϕ)ϕ∫ kR

−kR
ϕ2

,(4.16)

where

Ωk = (−kR, kR) for k ≥ 1

and Cper(Ωk) is the set of continuous 2kR-periodic functions on R.
Fix ϕ ∈ Cc(R) and consider k large enough so that supp(ϕ) ⊆ Ωk. Consider now

ϕk the 4kR-periodic extension of ϕ. Since ϕk ∈ Cper(Ω2k), (4.16) yields

λ1(a) ≤ −
∫ 2kR

−2kR
(M[ϕk] + a(x)ϕk)ϕk∫ 2kR

−2kR
ϕ2
k

= −
∫

R
(M[ϕk] + a(x)ϕ)ϕ∫

R
ϕ2

.(4.17)

For |x| ≤ kR we have

|M[ϕk](x) −M[ϕ](x)| ≤ ‖ϕ‖L∞

∫
|y|≥2kR

|J(x− y)| dy ≤ ‖ϕ‖L∞

∫
|z|≥kR

|J(z)| dz.

Hence

lim
k→+∞

∫
R

(M[ϕk] + a(x)ϕ)ϕ =

∫
R

(M[ϕ] + a(x)ϕ)ϕ.(4.18)

Thanks to (4.17) and (4.18), we conclude the validity of (4.15).
Lemma 4.4. Assume J satisfies (1.3), (1.4), and (1.8) and that a : R → R is a

2R-periodic, Lipschitz function. Let λr,y be the principal eigenvalue of (4.2) for

Ωr,y = Br(y)

and let λ1(a) denote the principal eigenvalue of −(M + a(x)) in Cper(R). Then

lim
r→+∞

λr,y = λ1(a).

Moreover, the applications y 
→ λr,y and y 
→ ϕr,y are periodic. The periodicity of the
application y 
→ ϕr,y is understood as follows:

ϕ
r,y+2R

(x) = ϕr,y (x− 2R).

Proof. For convenience we write

λr = λr,y

and let ϕr be a positive eigenfunction of (4.2) in Ωr.
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By the variational characterization (4.3) we see that r 
→ λr is nonincreasing, and
hence limr→+∞ λr exists. Moreover, using (4.7) we have

λr ≥ λ1(a) for all r > 0.(4.19)

Let φ1 ∈ Cper(R) be a positive eigenfunction of −(M + a(x)) with eigenvalue λ1(a)
normalized such that ∫ R

−R

φ2
1 = 2R.

Let ηr ∈ C∞
0 (R) be such that 0 ≤ η ≤ 1,

ηr(x) = 1 for |x− y| ≤ r − 1, ηr(x) = 0 for |x− y| ≥ r

and such that ‖ηr‖C2(R) ≤ C with C independent of r. Arguing in the same way as
in the proof of Lemma 4.3 we obtain

lim
r→+∞

∫
R
(M[φ1ηr] + aφ1ηr)φ1ηr∫

R
(φ1ηr)2

= −λ1(a).

Since

λr ≤ −
∫

R
(M[φ1ηr] + aφ1ηr)φ1ηr∫

R
(φ1ηr)2

we conclude that

lim
r→+∞

λr ≤ λ1(a).

This and (4.19) prove the desired result.
Let us now show the periodicity of the applications y 
→ λr,y and y 
→ ϕr,y.

Replace y by y+2R in the above problem (4.2) and let us denote by λ
r,y+2R

and ϕ
r,y+2R

the corresponding principal eigenvalue and the associated positive eigenfunction:

M[ϕ
r,y+2R

] + a(x)ϕ
r,y+2R

= −λ
r,y+2R

ϕ
r,y+2R

in Br(y + 2R).

We take the following normalization:∫
Ω

r,y+2R

ϕ2
r,y+2R

(x) dx = 1.

Let us defined ψ(x) := ϕ
r,y+2R

(x + 2R) for any x ∈ Br(y). A short computation
shows that

M[ψ](x) = M[ϕ]
r,y+2R

(x + 2R).

Therefore, using the periodicity of a(x), we have

M[ψ](x) + a(x + 2R)ψ(x) = λ
r,y+2R

ψ in Br(y),

M[ψ](x) + a(x)ψ(x) = λ
r,y+2R

ψ in Br(y).
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Thus, λ
r,y+2R

is a principal eigenvalue of the problem (4.2) with Ωr,y = Br(y). Hence,
by uniqueness of the principal eigenvalue we have λ

r,y = λ
r,y+2R

and ψ = γϕr,y

for some positive γ. Using the normalization, it follows that γ = 1. Therefore,
ϕ

r,y (x) = ϕ
r,y+2R

(x + 2R); in other words

ϕ
r,y+2R

(x) = ϕ
r,y

(x− 2R).

Remark 4.5. The proof of Lemma 4.4 yields the slightly stronger conclusion that
the convergence

lim
r→+∞

λr,y = λ1(a)

is uniform with respect to y ∈ R, since λr,y is continuous in y.
Proof of Proposition 4.1. Let u ≥ 0 be a bounded solution to (1.1) such that

u �≡ 0. By the strong maximum principle (Theorem 1.4) we must have infK u > 0 for
compact sets K ⊂ R.

Given y ∈ R and r > 0 we write Ωr,y = (y− r, y+ r), λr,y the principal eigenvalue
of −(M + fu(x, 0)) with Dirichlet boundary condition in Ωr,y as in (4.2), and ϕr,y a
positive Dirichlet eigenfunction normalized so that∫

Ωr,y

ϕ2
r,y = 1.

Since the principal eigenvalue λ1 := λ1(fu(x, 0)) of −(M + fu(x, 0)) with periodic
boundary conditions is negative by hypothesis, by Lemma 4.4 and Remark 4.5 we
may fix r > 0 large enough so that

λr,y < λ1/2 for all y ∈ R.

Note that for x ∈ Ωr,y,

M[γϕr,y] + f(x, γr,y) = −λr,yγϕr,y − fu(x, 0)γϕr,y + f(x, γϕr,y)

≥ −λ1/2γϕr,y − fu(x, 0)γϕr,y + f(x, γϕr,y)

≥ 0

if 0 ≤ γ ≤ γ0 with γ0 fixed suitably small. For x �∈ Ωy,r we have ϕy,r(x) = 0 and
M[ϕr,y] ≥ 0. Thus

M[γϕr,y] + f(x, γϕr,y) ≥ 0 in R(4.20)

for all 0 < γ < γ0.
We claim that

γ0ϕr,y ≤ u in R for all y ∈ R.(4.21)

This proves the proposition because there is a positive constant c such that ϕr,y(y) ≥ c
for all y ∈ R since the application y 
→ ϕr,y is periodic and ϕr,y(y) > 0 for any
y ∈ [−2R, 2R].

Now, to prove (4.21) fix y ∈ R and set

γ∗ = sup{ γ > 0 / γϕr,y ≤ u in R}.
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Since infK u > 0 for compact sets K ⊂ R and ϕr,y has compact support we see that
γ∗ > 0. Assume that γ∗ < γ0. Then by (4.20), γ∗ϕr,y is a subsolution of (1.1) while
u is a solution. By the strong maximum principle (Theorem 1.4) either γ∗ϕr,y ≡ u
in R or infK(u− γ∗ϕr,y) > 0 for compact sets K ⊂ R. The former case is impossible
because u is strictly positive, while the latter case yields a contradiction with the
definition of γ∗. It follows that γ∗ ≥ γ0 as desired.

Appendix. In this appendix we give a short proof of Theorem 1.4. We assume
that J satisfies (1.3), (1.4), c ∈ L∞(R), and u ∈ L∞(R) satisfies

u ≤ 0 a.e. in R,

M[u] + cu ≥ 0 a.e. in R.(A.1)

For ε > 0 define

uε(x) =
1

2ε

∫ x+ε

x−ε

u.

Then uε is continuous in R, uε ≤ 0, and uε → u a.e. as ε → 0. There are two cases:

(1) for any closed interval I one has lim supε→0 supI uε < 0, or

(2) for some closed interval I one has lim supε→0 supI uε = 0.

If case (1) occurs, we see that for all closed intervals I we have ess supIu <
0. Assume case (2) holds. Let I be a closed interval and εn → 0 be such that
limn→+∞ uεn(xn) = 0, where xn ∈ I is such that supI uεn = uεn(xn). Integrating
(A.1) from xn − εn to xn + εn and dividing by 2εn, we have

J � uεn(xn) ≥ uεn(xn) − 1

2εn

∫ xn+εn

xn−εn

cu.

But, since u ≤ 0 a.e.,

∣∣∣∣ 1

2εn

∫ xn+εn

xn−εn

cu

∣∣∣∣ ≤ −‖c‖L∞uεn(xn) → 0.

Hence

lim inf
n→+∞

J � uεn(xn) ≥ 0.

We may assume that xn → x ∈ I. Then by dominated convergence,

J � uεn(xn) =

∫
R

J(xn − y)uεn(y) dy →
∫

R

J(x− y)u(y) dy.

This shows that u = 0 a.e. in x−supp(J). Now, for any x1 in the interior of x−supp(J)
we have J �u(x1) ≥ 0, which shows that u = 0 a.e. in x−2supp(J), where 2supp(J) =
supp(J) + supp(J). Note that assumption (1.4) implies that k supp(J) covers all of
R as k → +∞, where k supp(J) is defined inductively as (k − 1) supp(J) + supp(J).
Repeating the previous argument we deduce that u = 0 a.e. in R.
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Abstract. We deal in this paper with a generalized gravitational Vlasov–Poisson system that
covers the three- and four-dimensional cases as well as the three-dimensional ultrarelativistic case.
This system admits polytropic stationary solutions which are orbitally stable. We study in this
paper the linear system obtained after a linearization close to these ground states and prove that the
linearized flow displays at most algebraic instabilities. The heart of the proof is the derivation of a
positivity property for the linearized Hamiltonian that implies a “quantitative” proof of the orbital
stability statement. Our strategy follows the analysis by Weinstein [SIAM J. Math. Anal., 16 (1985),
pp. 472–491], who obtained similar results for the nonlinear Schrödinger equation that turned out to
be fundamental preliminary properties for the further description of the fine qualitative properties
of the Hamiltonian system.
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1. Introduction.

1.1. The gravitational Vlasov–Poisson system. We consider in this paper
the following generalized gravitational Vlasov–Poisson system:

(1.1) (VP)

⎧⎪⎨
⎪⎩

∂tf + |v|α−2v · ∇xf − Ef · ∇vf = 0, (t, x, v) ∈ R+ × R
N × R

N ,

f(t = 0, x, v) = f0(x, v) ≥ 0

in the range of parameters

(1.2) (N,α) ∈ {(3, 1), (3, 2), (4, 2)}

and where we denote, for a given distribution f ≥ 0,

(1.3) Ef (x) = ∇xφf , φ(x) = − 1

N(N − 2)ωN

1

|x|N−2
� ρf , ρf (x) =

∫
RN

f(x, v) dv,

ωN being the volume of the unit ball in R
N (ω3 = 4π

3 and ω4 = π2

2 ). Our range of
parameters (1.2) covers the three following situations.

(1) The three-dimensional gravitational Vlasov–Poisson system (N,α) = (3, 2)
which describes the mechanical state of a stellar system subject to its own
gravity (see, for instance, [4, 9]) and whose classical solutions are global in
time; see Lions and Perthame [28], Pfaffelmoser [33], Schaeffer [38].
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(2) Classical calculations show that this model should be correct only for low
velocities and if high velocities occur, special relativistic corrections should
be introduced; see Van Kampen and Felderhof [41] and Glassey and Schaeffer
[11, 12]. A more accurate model is then provided by the relativistic three-
dimensional Vlasov–Poisson system
(1.4)

(RVP)

⎧⎪⎨
⎪⎩

∂tf +
v√

1 + |v|2
· ∇xf − Ef · ∇vf = 0, (t, x, v) ∈ R+ × R

3 × R
3,

f(t = 0, x, v) = f0(x, v) ≥ 0.

A major difference with the three-dimensional (VP) is that this system may
develop finite time blowup singularities (see [10, 11]), and a preliminary model
problem is given by the three-dimensional ultrarelativistic (VP) system which
is (1.1) with (N,α) = (3, 1).

(3) The four-dimensional Vlasov–Poisson system (N,α) = (4, 2) is a fundamental
mathematical model for the study of the singularity formation (see [22, 23]),
which shares a critical structure similar to (1.4) but admits extra fundamental
invariances, and in particular an explicit pseudoconformal symmetry.

A natural space to study the (VP) system is the energy space

E = {f ≥ 0 with |f |E = |f |L1 + |f |Lp + ||v|αf |L1 < +∞}

for pcrit < p < +∞, where

(1.5) pcrit =
Nα + (α + 2)N −N2

2α + (α + 2)N −N2
=

⎧⎨
⎩

9/7 for (N,α) = (3, 2),
2 for (N,α) = (4, 2),
3/2 for (N,α) = (3, 1).

Recall that (1.1) satisfies formally some conservation laws: ∀ q ∈ [1, p] the Lq norm
of a solution f is independent of time, as well as the Hamiltonian defined by

(1.6) H(f) =
1

α

∫
R2N

|v|αf − 1

2

∫
RN

|Ef |2.

Moreover, a large group of symmetries leaves (1.1) invariant: if f(t, x, v) solves (1.1),
then ∀(t0, x0, λ0, μ0) ∈ R × R

N × R
∗
+ × R

∗
+, so does

(1.7)
μN−α

0

λ2
0

f

(
t + t0

λ0μ
α−1
0

,
x + x0

λ0
, μ0v

)
.

The case α = 2 also enjoys the Galilean invariance: if f(t, x, v) solves (1.1), then
∀v0 ∈ R

N , so does f(t, x + v0t, v + v0).
In the classical case corresponding to α = 2, the existence of weak solutions for

(1.1) in the energy space E is due to Horst and Hunze [19] and Diperna and Lions
[7, 8]. These solutions verify an upper bound on the Hamiltonian

(1.8) H(f(t)) ≤ H(f0)

and the exact conservation of the Lq norm

(1.9) ∀1 ≤ q ≤ p, |f(t)|Lq = |f0|Lq .
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In the ultrarelativistic case α = 1, we are not aware of any result concerning the
Cauchy theory for (1.1).

In the energy space, we have the interpolation estimate

(1.10) ∀f ∈ E, |Ef |2L2 ≤ Cp ||v|αf |θ1L1 |f |θ2Lp |f |θ3L1

with

(1.11) θ1 =
N − 2

α
, θ2 =

(N − 2)p

N(p− 1)
, θ3 = 2 − θ1 − θ2.

Note that we have 0 < θi < 2 for i = 1, 2, 3 in the range of parameters (1.2) and
pcrit < p < +∞. In particular, for (N,α) = (3, 2), θ1 = 1

2 and thus the bound
on the Hamiltonian (1.8) and the conservation of the L1, Lp norms imply a uniform
bound on the kinetic energy, hence the existence of a global weak solution to (1.1);
on the contrary for (N,α) ∈ {(3, 1), (4, 2)}, θ1 = 1 and a blowup can indeed occur
from a classical virial identity; see [11]. The blowup problem in this case is of critical
nature in the sense that the strength of the kinetic and the potential energy in the
Hamiltonian is the same; see [22] for a further discussion on this problem.

1.2. Linear and nonlinear stability. Our aim in this paper is to study the
properties of the linear flow close to a specific class of stationary solutions, the so-called
polytropic ground states. This is a classical problem related to the question of the
linear and nonlinear stability of the stationary solutions which has been addressed in
a number of works for the case of the three-dimensional gravitational Vlasov–Poisson
system (1.1) for (N,α) = (3, 2).

A large class of stationary solutions to (1.1) for (N,α) = (3, 2) of the form

f(t, x, v) = F (e), where e = |v|2
2 + φ(x), has been constructed in [2] by solving the

associated nonlinear radial ODE. Two classical strategies then emerge to prove the
nonlinear stability of such solutions: variational techniques for those stationary solu-
tions that can be obtained as minimizers of a well-chosen functional; direct lineariza-
tion techniques using the conservation of the Hamiltonian and coercivity properties
of the linearized energy.

The first approach has been used in particular by Guo [13], Guo and Rein [14, 15,
16], and Rein [35] where part of these steady states including the polytropes have been
obtained as minimizers of appropriately chosen energy-Casimir functionals under a
constraint of prescribed mass. As observed in [22] (see also Sánchez and Soler [37]),
a direct application of the original concentration technique introduced by Lions in
[26, 27] allows one to recover the orbital stability of a two-parameter family of ground
states—while the energy-Casimir technique covers only one-parameter families—in
the energy space by proving the strong relative compactness up to space translation
of the minimizing sequences of the problem

(1.12) min
f≥0, |f |L1=M1, |j(f)|L1=Mj

H(f)

for a large class of convex functions j. Note that the two-parameter family is in cor-
respondence with the two-parameter scaling invariance of the Vlasov–Poisson system.
Here a difficulty arises, however, which is that uniqueness for (1.12) is known only in
two special cases: (i) when j(f) = fp, which is the case of polytropes where unique-
ness follows directly from the scaling invariance of the polytropic equation (1.17);
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(ii) when the minimizer of (1.12) is also a minimizer of the following one-constraint
minimization problem:

(1.13) min
f≥0, |f |L1+|j(f)|L1=M

H(f),

which can easily be proved to hold for a large subclass of solutions to (1.12), and then
one may use Schaeffer’s uniqueness result [39]. Using extra scaling invariances in the
case of the polytrope, we have the following result which was proved for α = 2 and
N = 3, 4 in [22] and easily adapts to (N,α) = (3, 1).

Proposition 1.1 (variational characterization of the ground state [22]). Let
(N,α) satisfy (1.2), p ∈ (pcrit,+∞), and (θi)1≤i≤3 be given by (1.11). The minimiza-
tion problem

(1.14) inf
f∈E, f �=0

||v|αf |θ1L1 |f |θ2Lp |f |θ3L1

|Ef |2L2

is attained on the four-parameter family

(1.15) γQ

(
x− x0

λ
, μv

)
, (γ, λ, μ, x0) ∈ R

∗
+ × R

∗
+ × R

∗
+ × R

N .

Here Q is the polytropic ground state

(1.16) Qα,p,N (x, v) =

⎧⎪⎪⎨
⎪⎪⎩

(
−1 − |v|α

α
− φQ(x)

) 1
p−1

for |v|α
α + φQ(x) < −1,

0 for |v|α
α + φQ(x) > −1,

where φQ is the unique nontrivial radial solution to
(1.17)

− 1

rN−1

d

dr
(rN−1φ′

Q) + γα,p,N (−1 − φQ)
1

p−1+N
α

+ = 0, φ(r) → 0 as r → +∞,

γ(α, p,N) is given by

(1.18) γα,p,N = σN

∫ 1

0

(αt)
N−α

α (1 − t)
1

p−1 dt.

For (N,α) = (3, 2), Q is moreover orbitally stable in the energy space by the flow
of (1.1) and orbital stability up to an additional scaling invariance holds as well for
(N,α) = (4, 2); see [22], Sánchez and Soler [37], and also Hadzic [18].

Theorem 1.2 (orbital stability of the ground state for (N,α) = (3, 2)). Let
(N,α) = (3, 2) and pcrit < p < +∞. Then ∀ η > 0, there exists δ(η) > 0 such that
the following holds true. Let f0 ∈ E with

H(f0) − H(Q) ≤ δ(η), |f0|L1 ≤ |Q|L1 + δ(η), |f0|Lp ≤ |Q|Lp + δ(η),

and let f(t) ∈ L∞([0,+∞),Ep) be a weak solution to (1.1) satisfying (1.9) and (1.8).
Then there exists a translation shift x(t) ∈ R

N such that

∀t ≥ 0, |f(t, x + x(t), v) −Q|E < η.

A similar statement holds in the critical case (N,α) = (4, 2) up to an additional
time-dependent rescaling of the solution; see [22] for precise statements.
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A different strategy to attack the question of the nonlinear stability is to consider
coercivity properties of the linearized Hamiltonian as already performed in the pio-
neering works by Antonov [1]. Let us for simplicity restrict our attention to the case
of the polytropes of Proposition 1.1. Consider the energy-Casimir functional which is
formally conserved by the flow of (1.1):

(1.19) HC(f) =
|f |pLp

p
+ |f |L1 + H(f) =

∫
R2N

(
|f |p
p

+ f +
|v|α
α

f

)
− 1

2

∫
RN

|Ef |2.

Then this functional is continuously differentiable on E, and Q is a critical point in
the following sense: let

K = Supp(Q) =

{
(x, v) ∈ R

N × R
N such that

|v|α
α

+ φQ(x) + 1 ≤ 0

}
,

then from (1.16) and (1.19),

∀f ∈ C∞
0 (K), dHC(Q)f =

∫
R2N

(
Qp−1 + 1 +

|v|α
α

+ φQ

)
f = 0.

The Hessian on C∞
0 (K) is given by

(1.20) d2HC(Q)(f, f) = (p− 1)

∫
K

Qp−2 f2 −
∫

RN

|Ef |2.

The understanding of the coercivity properties of this quadratic form in sufficiently
strong norms will allow us to prove from a simple bootstrap argument the nonlinear
stability of the polytrope. Of course this approach can be generalized to any station-
ary solution and in particular provides a strategy to prove nonlinear stability without
any variational structure. This problem has been addressed in several places in both
the physics and mathematics literature. It is known that this quadratic form will
be coercive for a well-chosen class of perturbations called “admissible” perturbations;
see, for example, [40, 20, 32]. A similar approach has been used recently by Guo
and Rein [17] to prove conditional stability for the King-type steady states of the
Vlasov–Poisson system and by Rein and Hadzic [36] for the relativistic gravitational
Vlasov–Poisson system. However, this kind of structure requires us to restrict the
class of the perturbation theory, whereas the perturbations authorized in the present
paper are in an open set of the energy space, which contains in particular these
“admissible” perturbations. A different approach was developed by Wan [42] which
obtains coercivity results for a large class of quadratic forms similar to (1.20), which
imply the proof of the nonlinear stability of ground states for a large class of nonvari-
ational problems. However, the specific case of the polytropes or more generally the
solutions to (1.12) do not enter this theory due to their lack of C1 regularity on the
boundary of their domain. Eventually, the linearized Vlasov–Poisson system close to
a large class of ground states was also considered in Batt, Morrison, and Rein [3],
but their analysis is restricted to stationary solutions for which the quadratic form
of the linearized energy-Casimir functional is the sum of two positive terms and thus
directly coercive. In particular, none of the ground states obtained from variational
techniques in the energy space in, for example, [16] or [22] is covered by this analysis.

Let us stress the fact that for the polytropes which have a nice variational charac-
terization, the sharp understanding of the coercivity properties of the quadratic form
(1.20) allows a quantification of the orbital stability statement which is crucial for the
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further understanding of the properties of the flow of (1.1) close to Q. By “sharp” we
mean a precise understanding of the instability directions. This situation is similar to
the one for the nonlinear Schrödinger equation iut = −Δu−|u|p−1u or the Korteweg–
de Vries (KdV) equation ut+(uxx+up)x = 0. Indeed, both these Hamiltonian systems
admit, for a suitable range of the parameter p, ground-state-type stationary solutions
which are orbitally stable; see Cazenave and Lions [6]. For these two systems, another
proof of the orbital stability has been given by Weinstein [43, 44] by linearizing the
conservation laws around the ground state and studying the coercivity properties of
the obtained quadratic forms. Moreover, this work provided a preliminary investiga-
tion of the dispersive structure of the linearized operator close to the ground state.
The obtained estimates are the starting point of a number of recent works regarding
the dynamical stability of some specific solutions to these systems; see, for example,
Martel, Merle, and Tsai [30] for the stability of the multisolitary waves for the KdV
equation, or Bourgain and Wang [5] and Merle and Raphaël [31] for the stability of
some nonlinear blowup dynamics for the nonlinear Schrödinger (NLS) system.

1.3. Statement of the results. Our aim in this paper is to adapt for (1.1)
Weinstein’s analysis in [43], which is the starting point for the further investigation
of the nonlinear dynamics of (1.1). In a forthcoming work [24], we will, in particular,
prove the existence and the stability of self-similar solutions for the three-dimensional
relativistic Vlasov–Poisson system (1.4), and the proof will partly rely on the under-
standing of the linearized operator close to the ground state as studied in this paper.
More generally, our aim, as with the NLS system, is to be able to quantify the orbital
stability statement of Theorem 1.2, and the obtained estimates are one of the keys to
further understand the dynamical couplings induced by the flow near Q. Let us con-
sider the quadratic form (1.20) obtained by linearizing the energy-Casimir functional
near the polytrope Q:

d2HC(Q)(f, f) = (p− 1)

∫
K

Qp−2 f2 −
∫

RN

|Ef |2.

Even though this quadratic form is not positive on its domain, we claim that we can
deduce from the variational structure of Q given by Proposition 1.1 the sharp coercive
structure of this quadratic form. More precisely, let us denote by

(f, g) =

∫
K

fg dxdv

the L2(K, dxdv) scalar product and consider on K the weighted L2 measure associated
with Q :

dμ = Qp−2 dxdv.

For f ∈ L2(K, dμ), we introduce the linear operator

(1.21) Mf =
(
(p− 1)Qp−2f + φf

)
1K ,

related to the quadratic form

(1.22) (Mf, f) = (p− 1)

∫
K

Qp−2 f2 −
∫

RN

|Ef |2,

and claim the following theorem.
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Theorem 1.3 (coercivity of the linearized energy-Casimir functional). Let (N,α)
satisfy (1.2) and pcrit < p < +∞. Then the quadratic form (Mf, f) defined by
(1.22) is continuous and self-adjoint on L2(K, dμ) and there exists a universal constant
δ = δ(N,α, p) > 0 such that ∀f ∈ L2(K, dμ), we have

(i) if N 	= α + 2,

(Mf, f) ≥ δ

∫
K

f2 Qp−2dxdv − 1

δ

{(
f,

|v|α
α

+ φQ

)2

+

N∑
i=1

(f, xi)
2

}
;

(ii) if N = α + 2,

(Mf, f) ≥ δ

∫
K

f2 Qp−2dxdv− 1

δ

{(
f,

|v|α
α

+ φQ

)2

+

N∑
i=1

(f, xi)
2 + (f, |v|2−α|x|2)2

}
.

Following [44], Theorem 1.3 provides a quantitative proof of the orbital stability
of the ground state Q. Let us stress again the fact that this improvement is one
of the key ingredients of the nonlinear dynamical analysis of the three-dimensional
relativistic Vlasov–Poisson system in the forthcoming work [24].

The quadratic form (Mf, f) is intimately related to the linearized Vlasov–Poisson
system which is obtained by linearizing (1.1) around Q:

(1.23) (LVP)

{
∂tf + Lf = 0,
f(t = 0, x, v) = f0(x, v)

with

(1.24) Lf = |v|α−2v · ∇xf − EQ · ∇vf − Ef · ∇vQ.

For a specific set of initial data, the linearized energy-Casimir functional (Mf, f) is
conserved by the flow of (1.24), and this allows us to prove that the linearized system
(1.23) displays at most algebraic instabilities. More precisely, consider the space

(1.25) LE = {f ∈ L1
loc(R

2N ) with f1K ∈ L2(K, dμ) and f1Kc ∈ E},

where Kc = R
2N \K. Then we have the following theorem.

Theorem 1.4 (algebraic instability for the linearized equations). Let (N,α) ∈
{(3, 2), (4, 2)} and f0 ∈ LE . Then (1.23) admits a unique solution f(t) = e−tLf0 ∈
C(R+,LE). Moreover, we have the following estimates.

(i) General dynamics: There holds the growth estimate

(1.26) ∀t ∈ R+,
∣∣e−tLf0

∣∣
LE

≤ C (1 + tk) |f0|LE

with k = 2 for N = 3, k = 3 for N = 4.
(ii) Dynamics on K: There holds a decomposition L2(K, dμ) = M ⊕ S where the

spaces M , S are both invariant through the flow e−tL and S is finite-dimensional.
Moreover, we have, ∀t ∈ R+,

(1.27) ∀g0 ∈ M,
∣∣e−tLg0

∣∣
L2(K,dμ)

≤ C |g0|L2(K,dμ) ,

∀g0 ∈ S,
∣∣e−tLg0

∣∣
L2(K,dμ)

≤
{

C (1 + t) |g0|L2(K,dμ) for N = 3,

C (1 + t2) |g0|L2(K,dμ) for N = 4.
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In fact, we have a complete understanding of the dispersive properties of the
flow e−tL. On the support of K, the decomposition L2(K, dμ) = M ⊕ S is explicit;
see Lemma 3.4. S is the so-called finite-dimensional “flag” space which contains
the algebraic instabilities generated by the large group of symmetries (1.7). On the
contrary, the linear dynamics are bounded on M according to (1.27). Note that no
further dispersion holds due to the fact that the quadratic form (Mf, f) is conserved
by the flow for Supp(f) ⊂ K and K is a compact set.

Now let Supp(f0) ⊂ Kc; then the solution decomposes into a part supported on
K and a part supported outside K. For this last part, the flow (1.23) reduces exactly
to the linear transport by the gravitational field EQ which is explicit. Note that the

characteristic curves of this field are contained in the level sets of e(x, v) = |v|α
α + φQ

and are trapped for e < 0, hence no dispersion occurs again, and nontrapped for e ≥ 0,
hence an explicit linear dispersion holds. The part supported on K is proved to grow
at most algebraically, thanks to a Gronwall-type argument, and this concludes the
proof of Theorem 1.4.

Remark 1. We have focused in this paper on the polytropic ground states only.
Let us recall that the class of ground states solutions is much wider and a large set of
convex functions j is known to generate a ground state Q(j); see [16, 22]. If we aim
at treating the case of a minimizer obtained from (1.12) for a more general convex
function j, a classical difficulty will occur which is the understanding of the kernel
of the linearized operator. For j(f) = fp, this kernel is explicit; see Lemma 2.4.
A similar statement is unknown for general j. Note that similar issues are in fact
addressed in Wan [42].

2. Coercivity of the linearized energy-Casimir functional. This section
is devoted to the proof of Theorem 1.3. We shall adapt to our setting the analysis by
Weinstein [43]. The proof relies on two main ingredients: the variational characteri-
zation of the ground state, as given by Proposition 1.1, and the complete description
of the kernel of M. This last fact relies in part on the uniqueness of the ground
state Q, which is typically a delicate problem for NLS- type equations (see Weinstein
[43], Kwong [21], and Maris [29]), but it is simple in our case, thanks to the scaling
invariance of (1.17).

2.1. The linearized problem for the potential. In this subsection, we study
the linearized problem around φQ of the nonlinear elliptic equation (1.17). We will in
particular give an explicit description of the kernel of the corresponding Schrödinger
operator that implies the explicit description of the kernel of M.

The nonlinear elliptic equation (1.17) linearized around φQ is

Aφ = 0 with A = −Δ − VQ

and with
(2.1)

VQ(x) = γα,p,N

(
N

α
+

1

p− 1

)
(−1−φQ(x))

N
α − p−2

p−1

+ =
1

p− 1

∫
|v|α
α <−φQ(x)−1

dv

Qp−2(x, v)
,

where γα,p,N was defined by (1.18). Note that N
α − p−2

p−1 > 0 under (1.2) and thus

VQ is a continuous function with compact support on R
N . Hence, classical operator

theory (see, e.g., Reed and Simon [34, Theorems XIII.15 and XIII.12]) gives that the
operator A on L2(RN ) with the domain H2(RN ) is self-adjoint, and that its spectrum
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can be written as

(2.2) σ(A) = {λi < 0}1≤i≤I ∪ [0,+∞),

where {λi < 0}1≤i≤I is the finite set of nonpositive eigenvalues with finite multiplicity
and [0,+∞) is the essential spectrum of A. 0 may be an eigenvalue. We shall denote
by (ψj)1≤j≤J , |ψj |L2 = 1, the finite set of eigenvectors associated with the nonpositive
eigenvalues that are well localized in space from standard argument.

Let Ḣ1 be the completion of C∞
0 (RN ) with respect to the norm |u|Ḣ1 = |∇u|L2 ,

or equivalently,

Ḣ1 =

{
φ ∈ L1

loc(R
N ) :

φ√
1 + |x|2

∈ L2(RN ) and ∇φ ∈ L2(RN )

}
.

We have the following coercivity property.
Lemma 2.1 (coercivity of the linearized problem close to φQ). Let (α,N, p) be

as in Theorem 1.3. Then the set of functions φ ∈ Ḣ1 such that Aφ = 0 in the
distributional sense coincides with the kernel of A which can be characterized as

(2.3) Ker(A) = span{∂xiφQ}1≤i≤N .

Moreover, there exists c0 > 0 such that ∀φ ∈ Ḣ1 with radial symmetry,

(2.4)

∫
RN

|∇φ|2 −
∫

RN

VQ |φ|2 ≥ c0

∫
|∇φ|2 − 1

c0

J∑
j=1

(φ, ψj)
2.

Proof of Lemma 2.1. We follow Weinstein’s strategy [43, proof of Proposition 2.8b];
see also Maris [29].

Step 1. Decomposition into spherical harmonics. Let φ ∈ Ker(A). Then

(2.5) −Δφ = VQφ with φ ∈ Ḣ1 ↪→ L
2N

N−2 ;

hence φ ∈ C2(RN ) from standard elliptic theory. One can thus decompose φ into
spherical harmonics. More precisely, let Pk be the space of spherical harmonics of
degree k, with dim Pk = ak = Ck

N+k−1 − Ck
N+k−3, and for each k, let {Y k

i }1≤i≤ai be
the L2 orthonormal basis of Pk. Then φ has a unique expansion

(2.6) φ(x) =

+∞∑
k=0

ak∑
i=1

ϕk,i(|x|)Y k
i

(
x

|x|

)

with

(2.7) ϕk,i(|x|) =

∫
SN−1

φ(|x|θ)Y k
i (θ)dθ → 0 as |x| → +∞.

Since the potential VQ has radial symmetry, (2.5) implies

(2.8) Ak ϕk,i = 0 with Ak = − d2

dr2
− N − 1

r

d

dr
+

k(k + N − 2)

r2
− VQ(r).

Let rQ > 0 be the unique solution to

(2.9) φQ(rQ) = −1.
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Then the potential VQ is compactly supported on [0, rQ]. Hence one can solve (2.8)
explicitly outside its support with the constraint ϕk,i ∈ L∞(R) deduced from φ ∈
L∞(RN ) and (2.6). We get

(2.10) ∀k ≥ 0, ∀i ∈ {1, . . . , ak}, ∀r > rQ, ϕk,i(r) =
Ck,i

rk+N−2

for some constant Ck,i.
Observe now that (2.3) is equivalent to

(2.11) ϕk,i = 0 when k 	= 1 and ϕ1,i(r) = a1,i φ
′
Q(r) for 1 ≤ i ≤ N.

Step 2. The case k ≥ 1. Let k ≥ 1. Observe that (2.10) implies φk,i ∈ H1
r ,

where H1
r denotes the set of H1 distributions of R

N with radial symmetry. We now
take the derivative of (1.17) with respect to the radial coordinate r and get after direct
calculations

A1 φ
′
Q = 0.

Therefore φ′
Q is an eigenfunction of A1 corresponding to the eigenvalue zero. Observe

from (1.17) that φ′
Q is nonnegative on (0,+∞) and it follows from standard spectral

analysis [34] that it is the ground state of A1 on H1
r . We conclude that

(2.12) ∀w ∈ H1
r , (A1w,w) ≥ 0 and (KerA1)H1

r
= span(φ′

Q),

and the case k = 1 of (2.11) follows.
For k ≥ 2, we have from (2.8),

0 = (Akφk,i, φk,i) = (A1φk,i, φk,i) + (k(k + N − 2) − (N − 1))

∫ +∞

0

|φk,i|2 rN−3 dr,

which gives φk,i = 0, thanks to the positivity of A1 (2.12), and the case k ≥ 2 in
(2.10) is also solved.

Step 3. The case k = 0. The remaining case k = 0 has to be treated in a different
way. The fact that ϕ0 = 0 is a consequence of the scaling structure of the φQ equation
(1.17). Indeed, ϕ0 solves

(2.13) A0 ϕ0 =

(
− d2

dr2
− N − 1

r

d

dr
− VQ

)
ϕ0 = 0

and, by (2.10), satisfies ϕ0(r) = C0

rN−2 for r large enough. In particular,

(2.14) ϕ0(r) → 0 as r → +∞.

Note also that from the C2 regularity of φ, ϕ′
0(0) = 0.

Now let

(2.15) h = −1 − φQ and β =
2α(p− 1)

α + (N − α)(p− 1)
.

We claim that

(2.16) A0 H = 0 with H(r) = βh(r) + rh′(r).
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Indeed, for λ > 0, let hλ(r) = λβh(λr). From (1.17) and the above choice of β, hλ

solves (
− d2

dr2
− N − 1

r

d

dr

)
hλ − γα,p,N (hλ)

1
p−1+N

α

+ = 0.

Differentiating this expression with respect to λ and evaluating the result at λ = 1
yield (2.16). We now observe from (2.10), (2.15), and (2.16) that H(r) → −β 	= 0 as
r → +∞. From standard ODE analysis, all the solutions to (2.13) with a vanishing
derivative at r = 0 are proportional. Since H ′(0) = −(β+1)φ′

Q(0) = 0, both functions
ϕ0 and H are proportional, which implies by (2.14) that ϕ0 is identically zero and
concludes the proof of (2.11). The proof of (2.3) is now complete.

Step 4. Proof of (2.4). We now conclude the proof of (2.4), which follows from
standard variational arguments. We briefly sketch the proof for the sake of complete-
ness. Let the quadratic form

(Aφ, φ) =

∫
|∇φ|2dx−

∫
VQ |φ|2dx

be continuous on Ḣ1 since VQ is compactly supported. Let Λ be the set of φ ∈ Ḣ1

with radial symmetry such that

(2.17) (φ, ψj) = 0 for j = 1, . . . , J.

Note that these L2 scalar products are well defined since the ψk’s are well localized
in space. The spectral property (2.2) implies

(2.18) ∀φ ∈ Λ ∩ L2(RN ), (Aφ, φ) ≥ 0.

From a standard density argument, (2.18) holds also on Λ. We claim that, in fact,

(2.19) inf
φ∈Λ, |∇φ|L2=1

(Aφ, φ) > 0.

This, together with the continuity of the quadratic form (Aφ, φ) on Ḣ1, now implies
(2.4).

Proof of (2.19). We argue by contradiction and consider a sequence φn such that

(2.20) φn ∈ Λ, (Aφn, φn) → 0 and |∇φn|L2 = 1.

Up to a subsequence, φn ⇀ φ in Ḣ1
r . Moreover, since the Sobolev embedding Ḣ1 ↪→

L
2N

N−2 is locally compact, we have φ ∈ Λ and

1 − (Aφn, φn) =

∫
VQ |φn|2 →

∫
VQ |φ|2 = 1 as n → +∞.

By lower semicontinuity, |∇φ|L2 ≤ 1 and thus (Aφ, φ) ≤ 0. Since φ ∈ Λ, this implies

(2.21) (Aφ, φ) = 0, |∇φ|L2 = 1,

and the convergence φn → φ holds in the strong Ḣ1 topology. Hence inf(Aφ, φ) is
attained and the Euler–Lagrange equation of this constrained variational problem
reads

(2.22) −λΔφ− VQφ =

J∑
j=1

bj ψj .
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We take the L2 inner product of (2.22) with φ and get λ|∇φ|2L2 =
∫
VQ |φ|2 = 1,

thanks to the orthogonality conditions (2.20). Thus λ = 1 and (2.22) becomes

(2.23) Aφ =

J∑
j=1

bj ψj .

Taking the scalar product of (2.23) with ψj0 now gives

bj0 = (Aφ, ψj0) = λj0(φ, ψj0) = 0,

where we also used (2.17) again. Hence bj0 = 0 and φ ∈ Ker(A) from (2.23). It
remains to remark that (2.3) and the radial symmetry of φ imply that φ = 0, which
contradicts (2.21). The proof of (2.19) is complete.

This concludes the proof of Lemma 2.1.

2.2. Variational estimates and proof of Theorem 1.3. In this subsection,
we study the linear operator M, defined by (1.21) on L2(K, dμ), and prove Theorem
1.3.

Let us start with the following continuity result.
Lemma 2.2 (continuity of M on L2(K, dμ)). Let (α,N, p) be as in Theorem

1.3. Then the quadratic form (Mf, f) is continuous and self-adjoint on L2(K, dμ).
Moreover, let a sequence fn ∈ L2(K, dμ) be such that

(2.24) fn ⇀ f in L2(K, dμ).

Then

(2.25) Efn → Ef in L2(RN ).

Proof of Lemma 2.2. Let the potential VQ be as given by (2.1). Then from the
Cauchy–Schwarz inequality, ∀f ∈ L2(K, dμ),

(2.26) |ρf (x)| =

∣∣∣∣
∫
K

f(x, v) dv

∣∣∣∣ ≤
(

(p− 1)

∫
K

f2(x, v)Qp−2dv

)1/2

(VQ(x))
1/2

.

Observe now that the potential VQ is a continuous function with compact support on
R

N . Thus (2.26) implies ρf ∈ L1∩L2(RN ) with Supp(ρf ) ⊂ {|x| ≤ rQ} (rQ is defined
by (2.9)). Sobolev embeddings now imply Ef ∈ L2(RN ) and the continuity of M on
L2(K, dμ) follows. The fact that M is self-adjoint follows from integration by parts.

Now let a sequence fn satisfy (2.24). The estimate (2.26) gives an L1 ∩L2 bound
for ρfn , and thus Efn is locally compact in L2(RN ) from Sobolev embeddings. Observe

now that |x| > 2rQ and |x− y| < rQ imply |y| > |x| − rQ > |x|
2 , and thus

|Ef (x)| ≤ C

∫
|x−y|≤rQ

|ρf (x− y)|
|y|N−1

dy ≤ C
2N−1

|x|N−1
|ρf |L1 .

We conclude that Efn is L2 compact and (2.25) follows. This concludes the proof of
Lemma 2.2.

We now claim the following positivity property for M that is a consequence of the
variational characterization of Q as given by Proposition 1.1 and is the very heart of
the proof of Theorem 1.3.
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Lemma 2.3 (positivity of M induced by the variational structure of Q). Let
(α,N, p) be as in Theorem 1.3. Let f ∈ L2(K, dμ) with

(2.27)

(
f,

|v|α
α

+ φQ

)
= 0.

Then the quadratic form defined by (1.22) satisfies

(2.28) (Mf, f) ≥ 0.

Proof of Lemma 2.3. Let f ∈ C∞
0 (K). Then for any η small enough, Q+ ηf ∈ E .

Let Jα,p,N be the functional defined by (1.14) and denote J(η) = Jα,p,N (Q+ηf). The
variational characterization of Q given by Proposition 1.1 implies

(2.29) J ′(0) = 0, J ′′(0) ≥ 0.

Now, from a direct computation using the identities

ω :=
αθ1

||v|αQ|L1

=
θ2

|Q|pLp

=
θ3

|Q|L1

=
2

|EQ|2L2

obtained during the construction of Q (see [22]), we get

(Mf, f) =
J ′′(0)

ωJ(0)
+ ω

{
α + 2 −N

N − 2

(
f,

|v|α
α

)2

+
p

θ2

(
f,Qp−1

)2
+

1

θ3
(f, 1)

2

}

+ω

(
f,

|v|α
α

+ φQ

)(
f,

|v|α
α

− φQ

)
.

Note that 3 ≤ N ≤ α + 2 in the range of parameters (1.2), and thus (2.29) and the
orthogonality condition (2.27) now imply (2.28). The general case f ∈ L2(K, dμ)
follows by density. This concludes the proof of Lemma 2.3.

The second key to the proof of Theorem 1.3 is the fact that the kernel of M

is explicit and in particular M is invertible when restricted to radially symmetric
distributions. Moreover, some inverses are explicit as a consequence of the action of
the large group of symmetries (1.7).

Lemma 2.4 (explicit description of the kernel of M). Let (α,N, p) be as in
Theorem 1.3. Then

(2.30) Ker (M) =
{
f ∈ L2(K, dμ) with Mf = 0

}
= span{∂xiQ}1≤i≤N .

Moreover, let
(2.31)

S1 =
N − α

2
x · ∇xQ− v · ∇vQ , S2 = −x · ∇vQ , S3 = M−1

(
|v|2−α|x|2

2

)
.

Then we have the following identities:
(2.32)

MS1 = α

(
|v|α
α

+ φQ

)
1K , MS2 = x · v |v|α−2 1K , MS3 =

|v|2−α|x|2
2

1K .
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Proof of Lemma 2.4.
Step 1. Description of Ker(M). We claim that

span {∂xiQ}1≤i≤N ⊂ Ker(M).

Indeed, we rewrite (1.16) of Q as

(2.33)

(
Qp−1 +

|v|α
α

+ φQ + 1

)
1K = 0

and take a derivative with respect to (xi)1≤i≤N to derive

(2.34)
(
(p− 1)Qp−2∂xi

Q + ∂xiφQ

)
1K = 0.

In particular, ∫
R2N

Qp−2 (∂xiQ)2 =
1

p− 1

∫
RN

(∂xiφQ)2 VQ < +∞,

where VQ is the potential defined by (2.1), and thus ∂xiQ ∈ L2(K, dμ). Using also
∂xiφQ = φ∂xi

Q, we deduce from (2.34) that ∂xi
Q ∈ Ker(M).

Now let f ∈ Ker(M). For (x, v) ∈ K we have

(2.35) (p− 1)Qp−2f(x, v) + φf (x) = 0

and thus, ∀|x| ≤ rQ,

(2.36) Δφf (x) = ρf (x) = − 1

p− 1

∫
K

φf (x)

Qp−2(x, v)
dv = −φf (x)VQ(x).

For |x| > rQ, ρf (x) = 0, so (2.36) still holds. We conclude that φf belongs to the

kernel of the operator A = −Δ − VQ on Ḣ1. By Lemma 2.1, there exists {ci}1≤i≤N

such that

φf =

N∑
i=1

ci ∂xiφQ.

It follows from (2.34) and (2.35) that

f =

N∑
i=1

ci ∂xiQ

and this concludes the proof of (2.30).
Step 2. Derivation of the algebraic identities (2.32). The first identity in (2.32) is

a consequence of the scaling invariance of (2.33). For a parameter μ > 0, define

Qμ(x, v) = μN−αQ(x, μv).

Then the corresponding microscopic energy defined by

e(x, v) =
|v|α
α

+ φQ(x)
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scales according to eμ(x, v) = 1
μα e(x, μv). We thus compute from (2.33)

(2.37)
(
μ−(p−1)(N−α) Qp−1

μ + μαeμ(x, v) + 1
)
1(x,μv)∈K = 0.

Differentiating this relation with respect to μ and evaluating the result at μ = 1 yield

(p− 1)Qp−2R− (p− 1)(N − α)Qp−1 + |v|α = 0 on K,

where we have denoted

R = (N − α)Q + v · ∇vQ =
dQμ

dμ |μ=1

.

Noting that

φR = −αφQ from ρR =

∫
((N − α)Q + v · ∇vQ) dv = −αρQ,

we get the following intermediate identity:

(2.38) MR = (p− 1)(N − α)Qp−1 − α

(
|v|α
α

+ φQ

)
.

We now rescale the x variable in Q and set for λ > 0:

Qλ(x, v) =
1

λ2
Q
(x
λ
, v
)
.

The microscopic energy scales according to eλ(x, v) = e
(
x
λ , v

)
and (2.33) becomes(

λ2(p−1) Qp−1
λ + eλ(x, v) + 1

)
1(x/λ,v)∈K = 0.

We differentiate this expression with respect to λ and evaluate the result at λ = 1 to
get

−(p− 1)Qp−2R̃ + 2(p− 1)Qp−1 − x · ∇xφQ = 0 on K,

where we have denoted

R̃ = 2Q + x · ∇xQ = −dQλ

dλ |λ=1
.

Now noting that

φR̃ = x · ∇xφQ,

we get the second intermediate inequality

(2.39) MR̃ = 2(p− 1)Qp−1.

Multiplying (2.39) by N−α
2 and subtracting (2.38) yield the first identity in (2.32).

The second identity in (2.32) can be proved by a direct computation, noting
simply that

φS2
= 0 from ρS2

= −
∫

x · ∇vQdv = 0
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and that by (1.16)

(2.40) ∇vQ = − 1

p− 1

v |v|α−2

Qp−2
.

Finally, the last identity in (2.32) is obvious as soon as we are able to define S3

according to (2.31). To this aim, we recall that since Q is radially symmetric, we have∫
R2N |v|2−α|x|2∂xiQ = 0 for 1 ≤ i ≤ N , and (2.30) implies that |v|2−α|x|2

2 ∈ Ker(M)⊥.
Hence Lemma 2.3 and the Lax–Milgram theorem ensure the invertibility of M on
Ker(M)⊥ and (2.31) defines S3 in L2(K, dμ) without ambiguity.

This concludes the proof of Lemma 2.4.
We are now in position to conclude the proof of Theorem 1.3, which follows from

standard variational techniques.
Proof of Theorem 1.3. Let I be the set of f ∈ L2(K, dμ) with

(2.41)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
f,

|v|α
α

+ φQ

)
= (f, xi) = 0, 1 ≤ i ≤ N, if N − α 	= 2,

(
f,

|v|α
α

+ φQ

)
= (f, xi) = (f, |v|2−α|x|2) = 0, 1 ≤ i ≤ N, if N − α = 2.

Note that the L2 inner products are well defined as, ∀f ∈ L2(K, dμ) and g ∈ L∞(K),

|(f, g)| ≤ |g|L∞

(∫
K

f2 Qp−2 dxdv

)1/2 (∫
K

1

Qp−2
dxdv

)1/2

≤ C|g|L∞ |f |L2(K,dμ) |VQ|1/2L∞

with VQ defined by (2.1). We now claim that

(2.42) I = inf
f∈ I, |f |L2(K,dμ)=1

(Mf, f) > 0.

Since (M·, ·) is a continuous quadratic form, (2.42) and the definition (2.41) of I imply
the coercivity property of Theorem 1.3.

Proof of (2.42). Arguing by contradiction and using the positivity property of
Lemma 2.3, we let a sequence fn be such that

(2.43) fn ∈ I,

∫
K

f2
n Qp−2 = 1 and (Mfn, fn) → 0 as n → +∞.

Up to a subsequence, fn ⇀ f in L2(K, dμ) and thus f ∈ I with

(2.44)

∫
K

f2 Qp−2 dxdv ≤ 1.

Now by Lemma 2.2, Efn → Ef in L2(RN ). Since, by (2.43), we have |Efn |2L2 → p−1,
we deduce that |Ef |2L2 = p− 1 and thus f 	= 0. Moreover, (2.44) implies (Mf, f) ≤ 0
and thus (Mf, f) = 0 from Lemma 2.3 and f ∈ I. This implies

∫
K
f2 Qp−2 = 1 and

the infimum I defined by (2.42) is attained at f .
We now write down the Euler–Lagrange equation for this constrained minimiza-

tion problem and get the existence of Lagrange multipliers β, (γi)1≤i≤N , κ, τ such
that

(2.45) Mf = β Qp−2f +

N∑
i=1

γi xi 1K + κ

(
|v|α
α

+ φQ

)
1K for N − α 	= 2,
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(2.46)

Mf = β Qp−2f+

N∑
i=1

γi xi 1K+κ

(
|v|α
α

+ φQ

)
1K+τ |v|2−α|x|2 1K for N−α = 2.

Take the L2(K, dxdv) inner product of (2.45) or (2.46) with f , use (Mf, f) = 0, the
orthogonality conditions (2.41), and

∫
f2Qp−2dxdv = 1 to obtain β = 0. Then take

the inner product of (2.45) or (2.46) with ∂xi
Q for 1 ≤ i ≤ N to get

−γi

∫
Q = (Mf, ∂xiQ) = (f,M∂xiQ) = 0,

where we used (A.2) from the appendix and (2.30). Hence the γi’s are all zero.
Now let N−α 	= 2 and take the inner product of (2.45) with S1 defined by (2.31).

Using (2.32), we get

κ

(
|v|α
α

+ φQ, S1

)
= (Mf, S1) = (f,MS1) = α

(
f,

|v|α
α

+ φQ

)
= 0.

Since, by (A.1) given in the appendix, in the subcritical case N − α 	= 2 the factor of
κ is not zero, we deduce that κ = 0. Hence Mf = 0. From (2.30), we thus have the
existence of (ci)1≤i≤n such that

f =

N∑
i=1

ci ∂xi
Q.

Multiplying this expression by xi and integrating, we deduce from (2.41) that ci = 0
for i = 1, . . . , N , and thus f = 0, which which is absurd.

Let N − α = 2. Taking the inner product of (2.46) with S1 and using (A.1),
(2.32), and (2.41), we get

0 = (f,MS1) = (Mf, S1) = τ(|v|2−α|x|2, S1) = −ατ

∫
|v|2−α|x|2Q and thus τ = 0.

Now take the inner product of (2.46) with S3 (defined by (2.31)). By the orthogonality
condition (2.41) we have

κ

(
|v|α
α

+ φQ, S3

)
= (Mf, S3) = (f,MS3) =

(
f,

|v|2−α|x|2
2

)
= 0,

so we deduce from (A.5) that κ = 0 and Mf = 0. The end of the proof is then
identical to the case N − α 	= 2.

This concludes the proof of Theorem 1.3.

3. The linearized Vlasov–Poisson system in dimension 3 or 4. In this
section, we fix α = 2 and take N = 3 or N = 4 and prove Theorem 1.4.

3.1. Well-posedness of the linearized Vlasov–Poisson system. We prove
in this subsection the well-posedness of the linearized equation (1.23) and some con-
servation laws associated with this flow.

We start with a technical lemma stating a few useful properties of the LE space
defined by (1.25) that is a natural space for the study of the linearized Vlasov–Poisson
problem.
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Lemma 3.1 (embedding of the E space). The space LE is continuously embedded

into L1(RN
x × R

N
v ) ∩ L

2N
N+2 (RN

x , L1(RN
v )). Moreover, there exists a constant C such

that

(3.1) ∀f ∈ LE, |Ef |L2 ≤ C|f |LE.

Proof of Lemma 3.1. Let f ∈ LE and decompose this function into f = f i + fe

with f i = f1K ∈ L2(K, dμ) and fe = f1Kc ∈ E. By (2.26) we have

|f i|L1 + |f i|L2
xL

1
v
≤ C|f i|L2(K,dμ),

and, by the standard interpolation inequality,

|fe|L1 + |fe|Lq
xL1

v
≤ C|fe|E

with q = (N+2)p−N
Np−N+2 . The assumption p > pcrit ensures that q > 2N

N+2 , thus, noting

also that 2 > 2N
N+2 , we get

|f |L1 + |f |
L

2N
N+2
x L1

v

≤ C|f |LE.

The estimate (3.1) of the field now follows from the Poisson equation and the gener-
alized Young inequality. This concludes the proof of Lemma 3.1.

We now state the well-posedness of the linearized Vlasov–Poisson system (1.23)
that is the main result of this subsection.

Proposition 3.2 (properties of the linearized flow in E). Let (N,α) = (3, 2) or
(4, 2). Let f0 ∈ L1(RN × R

N ). Then (1.23) admits a unique weak solution e−tLf0 ∈
C(R+, L

1(RN × R
N )). Assume, moreover, that f0 ∈ LE and decompose it as follows:

(3.2) f0 = f i
0 + fe

0 with f i
0 = f0 1K , fe

0 = f0 1Kc .

Let f i(t) = e−tLf i
0 , fe(t) = e−tLfe

0 . Then ∀t ≥ 0, we have f(t) = e−tLf0 =
f i(t) + fe(t) ∈ LE and the following conservation laws hold: ∀t ≥ 0,

(3.3) Supp f i(t) ⊂ K,
(
Mf i, f i

)
(t) =

(
Mf i

0, f
i
0

)
,

(3.4)

∫
Kc

(
1 +

|v|2
2

+ φQ(x, v)

)
fe(t, x, v) dxdv =

∫
Kc

(
1 +

|v|2
2

+ φQ

)
fe
0 dxdv,

(3.5) ∀q ∈ [1, p], |fe(t)|Lq(Kc) = |fe
0 |Lq ,

(3.6) (Mfe, fe) (t) = −2

∫ t

0

∫
K

fe(s) v · Efe1Kc (s)ds.

Here we extended the operator M to LE by

(3.7) Mf =
(
(p− 1)Qp−2f + φf1K

)
1K = M(f1K).

Remark 2. From (3.3), L2(K, dμ) is invariant under the flow (1.23) and the
linearized energy-Casimir functional (Mf, f) is conserved by the flow. This is, how-
ever, no longer true for a general initial data and the error to the conservation law is
measured by (3.6).



LINEAR STABILITY FOR VLASOV–POISSON SYSTEM 1729

Proof of Proposition 3.2.
Step 1. Transport by EQ. Let T be the linear transport operator induced by the

field of the ground state Q:

(3.8) T = v · ∇x − EQ · ∇v.

Thanks to the regularity of the field EQ = ∇xφQ, one can define the characteristics
associated with T. For (t, x, v), we denote by X(s; t, x, v), V (s; t, x, v) the global
solution of the differential system

(3.9)
d

ds
X = V,

d

ds
V = −EQ(X), X(s = t) = x, V (s = t) = v.

Recall that the energy is an invariant of this system, i.e., 1
2 |V (s; t, x, v)|2 +

φQ(X(s; t, x, v)) is independent of s, and that for any s, t the Jacobian of the La-
grangian change of variable

(3.10) (x, v) �→ (X(s; t, x, v), V (s; t, x, v))

is equal to 1. An important consequence of the energy invariant and the fact that Q
is a function of the microscopic energy is that a characteristic curve cannot cross the
boundary of the support Q: K and Kc are both invariant along the flow (3.9).

Step 2. Well-posedness of (1.23) in L1. It is a simple consequence of the existence
of the characteristics curves (3.9) and we briefly sketch the proof for the sake of
completeness. Let T > 0 and introduce the following mapping on C([0, T ], L1(RN ×
R

N )): for f in this space, G(f) is defined as the unique weak solution g of

(3.11) ∂tg + v · ∇xg − EQ · ∇vg = Ef · ∇vQ , g(t = 0) = f0,

given, thanks to the characteristics, by

G(f)(t, x, v) = f0(X(0; t, x, v), V (0; t, x, v))

+

∫ t

0

(Ef · ∇vQ) (s,X(s; t, x, v), V (s; t, x, v)) ds.(3.12)

It is useful to note that f ∈ C([0, T ], L1(RN × R
N )) implies ρf ∈ C([0, T ], L1(RN ))

and thus Ef ∈ C([0, T ], L
N

N−1 ,∞), where L
N

N−1 ,∞ stands for the weak L
N

N−1 space (or
Marcinkiewicz space). Hence Ef ∈ L1

loc(R
N ). Observe from (2.40) that∫

RN

|∇vQ(x, v)| dv ≤ CVQ(x)

is bounded on R
N and compactly supported. Thus the right-hand side of (3.11)

belongs to C([0, T ], L1(RN × R
N )) and ∀t ∈ [0, T ],

|Ef · ∇vQ|L1(t) ≤ C |f |L1(t).

Integrating (3.12) on R
N × R

N and performing the Lagrangian change of coordinate
(3.10), we get for any f1, f2 ∈ C([0, T ], L1(RN × R

N ))

|G(f1) −G(f2)(t)|L1 ≤ C

∫ t

0

|f1 − f2|L1(s) ds.
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This is enough to conclude by the Banach fixed point theorem for T small enough.
We have proved that (1.23) admits a unique solution that satisfies
(3.13)

f(t, x, v) = f0(X(0; t, x, v), V (0; t, x, v))+

∫ t

0

(Ef · ∇vQ) (s,X(s; t, x, v), V (s; t, x, v)) ds.

Step 3. Well-posedness in LE. Now let f = f i + fe ∈ LE. The simple remarks
that K and Kc remain invariant under the flow of the characteristics (3.9) and that
the source term Ef · ∇vQ in (1.23) is supported on K enable us to conclude that
Supp f i ⊂ K and that h := fe 1Kc = f 1Kc solves in the weak sense the equation

(3.14) ∂th + v · ∇xh− EQ · ∇vh = 0 , h(t = 0) = fe
0 .

It is clear then that fe 1Kc ≥ 0 a.e. on R+ × R
N × R

N and that (3.4) and (3.5) hold

(recall that |v|2
2 +φQ is invariant along the characteristics). Note that the boundedness

of φQ in L∞, (3.4), and (3.5) with q = 1 implies a uniform bound for |fe 1Kc(t)|E.
We now square (3.13), multiply by Qp−2, and integrate over K to get

|f(t)|2L2(K,dμ) ≤ 2|f0|2L2(K,dμ)

+ C(t)
∫ t

0

∫
K

(
Qp−2 |Ef · ∇vQ|2

)
(s,X(s; t, x, v), V (s; t, x, v)) dsdxdv,

where we used the fact that Q(x, v) = Q(X(s; t, x, v), V (s; t, x, v)). Then, performing
again the Lagrangian change of variable (3.10) and noting from (2.40) that

Qp−2 |∇vQ|2 =
|v| |∇vQ|
p− 1

∈ L∞(RN
x , L1(RN

v )),

we obtain

|f(t)|2L2(K,dμ) ≤ 2|f0|2L2(K,dμ) + C

∫ t

0

|Ef |2L2(RN )(s) ds

≤ 2|f0|2L2(K,dμ) + C

∫ t

0

|f(t)|2LE(s) ds,

where we used (3.1). Since we already have |f 1Kc |E ≤ C ∀ t, this is enough to
conclude with the Gronwall lemma that the function f belongs to L∞

loc(R+,LE).
Step 4. Derivation of the conservation laws. It remains to prove the conservation

laws (3.3) and (3.6). To this aim, let us first define a suitable regularization of f . Let
n ∈ N

∗ and let fn
0 be a sequence of C∞

0 (RN × R
N ) ∩ LE functions which converges

to f0 in the LE topology as n → +∞. Consider now a nonnegative C∞(R) function
θ such that θ(u) = 1 for u ≥ 1 and θ(u) = 0 for u ≤ 1/2 and let
(3.15)

θn(x, v) = θ

(
n

∣∣∣∣1 +
|v|2
2

+ φQ(x)

∣∣∣∣
)
, χn(x, v) = θ

(
n

(
−1 − |v|2

2
− φQ(x)

))
.

Now, we define fn as the solution of the following problem, which can be constructed
by a fixed point procedure similarly as above:

(3.16) ∂tf
n + v · ∇xf

n − EQ · ∇vf
n = θn Efn · ∇vQ , fn(t = 0) = fn

0 .

Since the function θn ∇vQ is C∞, it is readily seen that fn is a sequence of C∞

function that converges to fn in the LE topology as n → +∞.
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Now, from (3.16) and (2.40), we get
(3.17)
d

dt

∫
R2N

Qp−2(fn)2dxdv = 2

∫
K

Qp−2fn θn Efn · ∇vQdxdv

= − 2

p− 1

∫
K

fn χn v · Efn dxdv

= − 2

p− 1

∫
K

fnχn v · Efnχn dxdv − 2

p− 1

∫
K

fnχn v · Efn(1−χn) dxdv

=
2

p− 1

∫
RN

φfnχn∇x ·
(∫

RN

vfn χn dv

)
dx− 2

p− 1

∫
K

fnχn v · Efn(1−χn) dxdv,

where we used the equation v ·∇xQ−EQ ·∇vQ = 0 and noted that θn and χn coincide

on K . Multiply now (3.16) by χn. Since χn is a function of the energy |v|2
2 + φQ(x),

we have

(3.18) ∂t(f
nχn) + v · ∇x(fnχn) − EQ · ∇v(f

nχn) = (χn)2 Efn · ∇vQ.

Besides, for the same reason, the function (χn)2 ∇vQ is an exact derivative with
respect to v. Hence an integration of (3.18) with respect to v yields

∂t

∫
RN

(fnχn) dv + ∇x ·
(∫

RN

vfn χn dv

)
= 0

and, by the Poisson equation, the first integral in the right-hand side of (3.17) can be
rewritten as follows:

2

p− 1

∫
RN

φfnχn∇x ·
(∫

RN

vfn χn dv

)
dx =

1

p− 1

d

dt

∫
K

φfnχn fnχn dxdv.

Finally,

(M(fnχn), fnχn)(t) = (M(fn
0 χ

n), fn
0 χ

n)

−2

∫ t

0

∫
K

fn(s)χn v · Efn(1−χn)(s) dxdvds.

Since, ∀ T > 0, fn → f in L∞((0, T ),LE) as n → +∞, one can pass to the limit in
the various terms of this identity, thanks to Lemma 3.1 (recall that v is bounded on
K). Applying this inequality to f i and fe leads, respectively, to (3.3) and (3.6).

This concludes the proof of Proposition 3.2.
Let us conclude this section with the following commutation formula that will be

useful in the next subsections.
Lemma 3.3 (commutation formula). Let f0 ∈ LE and let f(t) = e−tLf0 be

the corresponding weak solution of (1.23). Let h ∈ L2(K, dμ) ∩ C1(
◦
K) be such that

Lh ∈ L2(K, dμ). Then

(3.19) (f(t),Mh) = (f0,Mh) +

∫ t

0

(f(s),MLh) ds−
∫ t

0

∫
K

v · (hEf1Kc ) (s)ds.

Moreover, for 1 ≤ i ≤ N , we have

(3.20) (f(t), xi 1K) = (f0, xi 1K) +

∫ t

0

(f(s), vi 1K) ds.
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Proof of Lemma 3.3. Let us observe the following algebraic identity, which follows
from a direct computation: Let L, T, M be, respectively, given by (1.24), (3.8), and
(1.21). Then

(3.21) ∀f ∈ L2(K, dμ), Lf =
1

(p− 1)Qp−2
T (Mf)

in the sense of distributions.
Introduce then the smooth function θn defined by (3.15) and let f̃n

0 be a C∞
0

regularization of f0. Then, setting fn
0 = f̃n

0 θn, we define fn as the classical solution
of (3.16). One can see that fn → f in LE as n → +∞. Moreover, since the flow (3.9)
preserves the energy and θn depends only on the energy, the support of fn is included
in the support of θn, where h is C1. We split fn = fn

i 1K + fn
e 1Kc = fn

i + fn
e with

fn
i,e smooth from the support localization of fn, and thus

d

dt
(fn,Mh) = −(Lfn,Mh) = −(Lfn

i ,Mh) − (Lfn
e ,Mh).

The first term is computed using (3.21), the self-adjointness of M, the skew-adjointness
of T, and the fact that T(F (e)) = 0 for any function F :

−(Lfn
i ,Mh) = −

(
1

(p− 1)Qp−2
T (Mfn

i ) ,Mh

)
=

(
Mfn

i ,T

[
1

(p− 1)Qp−2
Mh

])
= (Mfn

i ,Lh) = (fn
i ,MLh) = (fn,MLh).

For the second term, we use that fn
e and Mh have disjoint support to compute

−(Lfn
e ,Mh) =

∫
RN

Efn
e
· ∇vQ(p− 1)Qp−2h = −

∫
K

hv · Efn
e

from (2.40). We then integrate in time and pass to the limit as n → +∞, and (3.19)
follows. The second identity (3.20) can be proved by a similar regularization procedure
and by direct calculations. This concludes the proof of Lemma 3.3.

Remark 3. If the support of f0 is in K, then (3.19) becomes simpler:

(3.22) (f(t),Mh) = (f0,Mh) +

∫ t

0

(f(s),MLh) ds.

3.2. The linearized dynamics on the support of Q. From Proposition 3.2,
the solution e−tLf0 of (1.23) remains supported on K when it has this property at
t = 0. In this section we estimate the action of the linearized Vlasov–Poisson system
on L2(K, dμ).

Let us start by introducing the following decomposition of L2(K, dμ) whose proof
is given in the appendix.

Lemma 3.4 (decomposition of L2(K, dμ)). Let (N,α) ∈ {(3, 1), (3, 2), (4, 2)}.
There holds the decomposition

L2(K, dμ) = M ⊕ S,

where M is defined as the set of f ∈ L2(K, dμ) with⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

for N 	= α + 2,

(
f,

|v|α
α

+ φQ

)
= (f, xi) = (f, vi) = 0, 1 ≤ i ≤ N,

for N = α + 2,

(
f,

|v|α
α

+ φQ

)
= (f, x · v|v|α−2) = (f, |x|2|v|2−α)

= (f, xi) = (f, vi) = 0, 1 ≤ i ≤ N,
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and S is defined, thanks to the functions Si given by (2.31), according to

{
if N 	= α + 2, then S = span {S1 , ∂xiQ , ∂viQ , 1 ≤ i ≤ N} ,

if N = α + 2, then S = span {S1 , S2 , S3 , ∂xiQ , ∂viQ , 1 ≤ i ≤ N} .

Our main claim is now that S and M are invariant under the linearized flow
(1.23). The subspace S is the so-called flag space and contains the algebraically
growing modes induced by the large set of symmetries (1.7), while the free evolution
remains bounded on M in the LE norm.

Proposition 3.5 (splitting of the motion). Let (N,α) ∈ {(3, 2), (4, 2)}. Con-
sider the decomposition L2(K, dμ) = M ⊕ S, where the spaces M , S are defined in
Lemma 3.4. Then M and S are both invariant under the linearized flow (1.23) and
there holds: ∀t ∈ R+,

(3.23) ∀g0 ∈ M,
∣∣e−tLg0

∣∣
L2(K,dμ)

≤ C |g0|L2(K,dμ) ,

(3.24) ∀g0 ∈ S,
∣∣e−tLg0

∣∣
L2(K,dμ)

≤
{

C (1 + t) |g0|L2(K,dμ) for N = 3,

C (1 + t2) |g0|L2(K,dμ) for N = 4.

Proof of Proposition 3.5.
Step 1. The evolution on S. The free evolution is explicit on S. Indeed, letting

N = 3, 4 and (Si)1≤i≤3 be defined by (2.31), we claim that

(3.25) LS1 = 0 L(∂xiQ) = 0, L(∂viQ) = −∂xiQ,

and the extra relations for N = 4:

(3.26) LS2 = S1 , LS3 = S2.

Proof of (3.25) and (3.26). They follow from (2.32) and (3.21). Let us prove
(3.26). In the interior of K, (Si)1≤i≤3 are smooth. We then compute using (2.32):

∀(x, v) ∈
◦
K,

LS2 =
1

(p− 1)Qp−2
T (MS2) =

1

(p− 1)Qp−2
T(x · v) =

1

(p− 1)Qp−2
(|v|2 − x · EQ).

We now take the derivative of (2.33) in x and v to get

EQ + (p− 1)Qp−2∇xQ = 0, v + (p− 1)Qp−2∇vQ = 0,

and thus

LS2 =
1

(p− 1)Qp−2
(|v|2 − x · EQ)1K = −v · ∇vQ + x · ∇xQ = S1.

Similarly,

LS3 =
1

(p− 1)Qp−2
T (MS3) =

1

(p− 1)Qp−2
T

(
|x|2
2

)

=
x · v

(p− 1)Qp−2
= −x · ∇vQ = S2,
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where we used (2.40). In order to conclude the proof of (3.26), we use the following

technical remark. Let h ∈ L2(K, dμ) such that h ∈ C1(
◦
K) and denote by (Th)K

the function defined pointwise on
◦
K and continued by zero outside K. Assume that

(Th)K ∈ L1(K). Then, due to the fact that the boundary of K is a level set of the
microscopic energy, the distribution Th defined as the distributional derivative of h
by the derivation T and (Th)K coincide in D′(RN × R

N ). Applying this with h = S1

or S2 concludes the proof of (3.26). Next (3.25) follows similarly and is left to the
reader.

Now let g0 ∈ S, i.e., according to Lemma 3.4,

if N = 3, g0 = αS1 +

N∑
i=1

δi ∂xi
Q +

N∑
i=1

εi ∂viQ,

if N = 4, g0 = αS1 + β S2 + γ S3 +

N∑
i=1

δi ∂xiQ +

N∑
i=1

εi ∂viQ.

From (3.25) and (3.26), the evolution e−tLg0 is explicit:

if N = 3, e−tLg0 = αS1 +

N∑
i=1

(εi t + δi) ∂xiQ +

N∑
i=1

εi ∂viQ,

if N = 4, e−tLg0 =
(γ

2
t2 − βt + α

)
S1 + (−γt + β)S2 + γ S3

+

N∑
i=1

(εi t + δi) ∂xiQ +

N∑
i=1

εi ∂viQ,

which shows the stability of S and (3.24) is proved.
Step 2. The evolution on M . Now let g0 ∈ M . From (3.25) and (3.26), we have

MLS1 = 0 and for N = 4, MLS2 = MS1, MLS3 = MS2. Hence Lemma 3.3 and
Remark 3 give

(3.27)
d

dt
(e−tLg0,MS1) = 0,

and, if N = 4,

(3.28)
d

dt
(e−tLg0,MS2) = (e−tLg0,MS1),

d

dt
(e−tLg0,MS3) = (e−tLg0,MS2).

Furthermore, noting that M∂viQ = −vi, we deduce from (3.25), (3.22), (3.20), and
(2.30) that for 1 ≤ i ≤ N ,

(3.29)
d

dt
(e−tLg0, vi) = (e−tLg0,M∂xi

Q) = 0,
d

dt
(e−tLg0, xi) = (e−tLg0, vi).

Recalling from Lemma 3.4 and from (2.32) that M can be characterized as the set of
f ∈ L2(K, dμ) with{

for N = 3, (f,MS1) = (f, xi) = (f, vi) = 0, 1 ≤ i ≤ N,

for N = 4, (f,MSj) = (f, xi) = (f, vi) = 0, 1 ≤ j ≤ 3, 1 ≤ i ≤ N,

we infer from (3.27), (3.28), and (3.29) that g0 ∈ M implies e−tLg0 ∈ M ∀ t ≥ 0.
The uniform bound (3.23) on e−tLg in LE now follows from the conservation of the
linearized energy-Casimir functional (3.3) and the coercivity property of Theorem 1.3
which ensures that the quadratic form (M ·, ·) is coercive on M . This concludes the
proof of Proposition 3.5.
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3.3. Proof of Theorem 1.4. We are now in position to conclude the proof of
Theorem 1.4.

Let f0 = f i
0 + fe

0 ∈ LE according to the decomposition (3.2) and denote by,
respectively, f i(t) = e−tLf i

0, f
e(t) = e−tLfe

0 the corresponding solutions to (1.23).
The evolution of f i is already controlled, thanks to Proposition 3.5. It remains to
study the evolution of fe, which is not supported a priori in Kc and may spread onto
the whole space.

From Proposition 3.2, we have already

|fe 1Kc |E (t) ≤ C |fe
0 |E = C |fe

0 |LE.

In particular,

(3.30) |Efe1Kc |L2 ≤ C |fe
0 |LE.

It remains to bound fe1K . Using Lemma 3.3 with h = S1, h = S2, h = S3, and
h = ∂viQ (the Si’s are defined in (2.31)), we obtain successively

∣∣∣∣
(
fe,

(
|v|2
2

+ φQ

)
1K

)∣∣∣∣ (t) ≤ C(1 + t) |fe
0 |LE,

|(fe, vi1K)| (t) ≤ C(1 + t) |fe
0 |LE,

|(fe, xi1K)| (t) ≤ C(1 + t2) |fe
0 |LE,

and, if N = 4,

|(fe, x · v1K)| (t) ≤ C(1 + t2) |fe
0 |LE,

∣∣(fe, |x|21K

)∣∣ (t) ≤ C(1 + t3) |fe
0 |LE,

where we applied Lemma 2.4 and also used (3.30) to bound the various terms
∫
K
hv ·

E1Kc (s)ds. Therefore, Theorem 1.3 implies that

|fe(t)|2L2(K,dμ) ≤ C|(Mfe, fe)|(t) + C(1 + t2α) |fe
0 |

2
LE

with α = 2 if N = 3 and α = 3 if N = 4. Now, one deduces from (3.6) and (3.30)
that

|fe(t)|2L2(K,dμ) ≤ C |(Mfe, fe)| (t) + C(1 + t2α) |fe
0 |

2
LE

≤ C(1 + t2α) |fe
0 |

2
LE + C |fe

0 |LE

∫ t

0

|fe(s)|L2(K,dμ)ds,

and (1.26) follows from a standard sublinear Gronwall lemma. This concludes the
proof of Theorem 1.4.
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Appendix. This appendix is devoted to the proof of the orthogonal decomposi-
tion L2(K, dμ) = M ⊕ S of Lemma 3.4.

Proof of Lemma 3.4. Explicit computations using the identities

||v|αQ|L1 =
N − 2

2
|EQ|2L2 =

∫
R2N

x · ∇xφQ Qdxdv

lead to

(A.1)

(
|v|α
α

+ φQ , S1

)
= (N − α− 2)

(2α + (α + 2)N −N2)

4α
|EQ|2L2 .

Moreover, integrations by parts yield

(A.2)
(
xi , ∂xjQ

)
=

(
vi , ∂vjQ

)
= −δij

∫
Q , 1 ≤ i ≤ N, 1 ≤ j ≤ N,

and the radial symmetry of Q implies that
(A.3)

0 =

(
|v|α
α

+ φQ , S2

)
=

(
|v|α
α

+ φQ , ∂xi
Q

)
=

(
|v|α
α

+ φQ , ∂vi
Q

)
, 1 ≤ i ≤ N,

(A.4) (xi , Sj) = 0, 1 ≤ i ≤ N, 1 ≤ j ≤ 3.

Let N 	= α + 2 and f ∈ L2(K, dμ). We look for λ, (δi)1≤i≤N , (εi)1≤i≤N such that

f̃ = f − λS1 −
N∑
i=1

δi ∂xiQ−
N∑
i=1

εi ∂viQ ∈ M.

Taking the inner product of f̃ with |v|α
α + φQ and using (A.1) and (A.3), we get

λ =

(
f,

|v|α
α

+ φQ

)[
(N − α− 2)

(2α + (α + 2)N −N2)

4α
|EQ|2L2

]−1

.

Taking the inner product of f̃ with xi or vi and using (A.4) and (A.2), we get

δi = (f, xi)

[
−
∫

Q

]−1

, εi = (f, vi)

[
−
∫

Q

]−1

, 1 ≤ i ≤ N.

Since λ, the δi’s, and the εi’s are uniquely defined in order to ensure f̃ ∈ M , the result
is proved.

Let N = α + 2. By explicit computations and using the symmetries of Q, we get
(A.5)

α

(
|v|α
α

+ φQ , S3

)
= (MS1, S3) = (S1,MS3) =

(
S1,

|v|2−α|x|2
2

)
= − α

2

∫
|v|2−α|x|2Q,

(A.6)
(
|v|2−α|x|2, S2

)
=

(
|v|2−α|x|2, ∂xiQ

)
=

(
|v|2−α|x|2, ∂viQ

)
= 0, 1 ≤ i ≤ N,

(A.7)
(
x · v|v|α−2, S1

)
=

(
x · v|v|α−2, ∂xiQ

)
=

(
x · v|v|α−2, ∂viQ

)
= 0, 1 ≤ i ≤ N,



LINEAR STABILITY FOR VLASOV–POISSON SYSTEM 1737

(A.8)
(
x · v|v|α−2, S3

)
= (MS2, S3) = (S2,MS3) = 0,

(A.9)
(
x · v|v|α−2, S2

)
=

∫
|x|2Q + (α− 2)

∫
(x · v)2|v|α−4Q.

Let f ∈ L2(K, dμ). We deduce from (A.1)–(A.9) that

f̃ = f − λS1 − βS2 − γS3 −
N∑
i=1

δi ∂xiQ−
N∑
i=1

εi ∂vi
Q ∈ M

if and only if

γ =

(
f,

|v|α
α

+ φQ

)[
−1

2

∫
|v|2−α|x|2Q

]−1

,

λ =
[(
f, |v|2−α|x|2

)
− γ

(
S3, |v|2−α|x|2

)] [
−α

∫
|v|2−α|x|2Q

]−1

,

β =
(
f, x · v|v|α−2

) [∫
|x|2Q + (α− 2)

∫
(x · v)2|v|α−4Q

]−1

,

δi = (f, xi)

[
−
∫

Q

]−1

, εi = (f, vi)

[
−
∫

Q

]−1

, 1 ≤ i ≤ N,

where we have successively taken the inner product of f̃ with |v|α
α + φQ, |v|2−α|x|2,

x · v|v|α−2, xi, and vi. This concludes the proof of Lemma 3.4.
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[23] M. Lemou, F. Méhats, and P. Raphaël, Uniqueness of the critical mass blow up solution for
the four dimensional gravitational Vlasov–Poisson system, Ann. Inst. H. Poincaré Anal.
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HOMOGENIZATION OF DEGENERATE TWO-PHASE FLOW
EQUATIONS WITH OIL TRAPPING∗
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Abstract. We consider the one-dimensional degenerate two-phase flow equations as a model for
water drive in oil recovery. The effect of oil trapping is observed in strongly heterogeneous materials
with large variations in the permeabilities and in the capillary pressure curves. In such materials, a
vanishing oil saturation may appear at interior interfaces and inhibit the oil recovery. We introduce
a free boundary problem that separates a critical region with locally vanishing permeabilities from
a strictly parabolic region and we give a rigorous derivation of the effective conservation law.

Key words. degenerate parabolic equation, effective equations, free boundary problems, two-
phase flow
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1. Introduction. The equations of two-phase flow describe the motion of two
immiscible fluids in a porous medium, e.g., the flow of oil and water in rock. The equa-
tions are a challenging subject of modern analysis, in particular due to the nonlinear
and degenerate coefficient functions, the permeabilities of the two phases, and the
capillary pressure.

Oil trapping is an effect in media with large variations in the coefficients. Well
known to experimentalists [13, 14], the mathematical analysis of this effect was ini-
tiated in [5, 10, 9]. Let us consider the process of oil recovery from a medium that
consists of a mixture of fine and coarse materials. Starting with a high oil saturation
u and a high oil pressure p, after some time, the oil pressure falls below the entry
pressure of oil in the fine material. From this point on, despite a positive saturation in
the coarse material, oil can be trapped in regions that are surrounded by fine material.

In this work we analyze a one-dimensional medium that consists of two materials,
distributed periodically with period ε > 0 and with different permeabilities k and
different capillary pressures pc. We denote the saturation function of the correspond-
ing solutions by uε. Our aim is to find a macroscopic or effective equation, i.e., an
equation that characterizes weak limits u0 of the family uε for ε → 0. An effective
equation allows us to determine, e.g., in a numerical scheme, the averaged profile of
the solution uε without resolving the scale ε > 0.

With the method of two-scale convergence developed in [1] and measure-theoretic
tools from [3] we rigorously derive the macroscopic equation

∂tu
0 + div F(u0, ∂xu

0) = 0

with a nonlinear function F that is determined by the coefficient functions through
a finite-dimensional nonlinear problem. The effective flux function reflects the effect
of oil trapping: it satisfies F(u, v) = 0 for all v ∈ R and all u ≤ u∗/2, where u∗

is the residual oil saturation in the coarse material. Our contribution continues the
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2007; published electronically February 15, 2008.
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Fig. 1. Oil saturation uε, zoomed view. Due to different capillary pressure curves in fine and
coarse material, the saturation has jumps and oil is trapped in the coarse material. The saturation
vanishes at some points. At these points, the permeability degenerates, but the infinite slope ∂xuε =
−∞ makes transport of oil still possible. This figure is an unpublished numerical result and courtesy
of I. S. Pop.

analysis of [10, 9], where effective equations were formally derived with an asymptotic
expansion. In [10], which contains various scalings and treats our scaling as the
“capillary limit,” the authors mention the specific difficulties in the homogenization of
nonlinear equations and do not attempt a rigorous derivation of the effective equations.
In fact, in [9] a different law is derived by starting with another ansatz; our analysis
recovers the nonlinear function of [9]. For rigorous homogenization results of nonlinear
equations we refer the reader to [7] for a double porosity model, to [6] for a stochastic
setting, and to [4, 17] for models of capillary hysteresis. All these results concern the
case of nondegenerate coefficients.

We want to highlight two difficulties in the homogenization process. The first
concerns the nonlinear structure of the equations: loosely speaking, fluxes are of the
form g(uε)∂xu

ε. In order to pass to the two-scale limit in such a term, we need a
strong convergence of the argument in the nonlinear function. The strong convergence
is usually obtained from estimates for first derivatives. This procedure cannot be
performed in our case, since uε is an oscillatory function with jumps, and certainly
not strongly convergent. The key point in the derivation of macroscopic equations in
Proposition 1 is the compactness result of (3.14).

The second difficulty regards the degeneracy of the permeabilities. A strictly
positive permeability k results in L2-estimates for spatial derivatives and allows us
to use the compactness result. But the effect of oil trapping appears precisely in
the case that, in parts of the domain, the saturation vanishes; see Figure 1. In this
situation, a vanishing permeability appears and no estimate for gradients is available.
Our analysis uses the technique of a free boundary description in order to proceed.
We decompose the domain into a “good” region G of strictly positive saturation and
a “bad” region B; see Figure 2. We then derive the effective equations separately: in
region G we use two-scale convergence (Proposition 1) to find the effective equations
in Corollary 1. In region B, instead, the limit equations are trivial and are derived
in the form of two-sided a priori estimates. The main point is then the continuity
condition across the free boundary shown in Proposition 2. This condition allows us to
combine the equations again into a single equation on the whole domain. The method
exploits that oscillations of the free boundary do not appear; this is ensured by the
boundary and initial conditions which imply a monotonicity of the free boundary.
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Fig. 2. A free boundary separating the critical region from a region of uniformly positive
saturation and permeability. The graph illustrates that the free boundary is discontinuous for ε > 0.

As a by-product of our description, we learn more about qualitative features of
solutions. We may define an experimentally observable free boundary Xε

0 : (0, T ) → R

as the smallest function such that in all points (x, t) with x > Xε
0(t) the saturation

uε is strictly positive. We now ask about properties of the limiting function X̃0
0 (t) :=

limε→0 X
ε
0(t). We prove in Lemma 6 that the corresponding limit curve {(x, t) : x =

X̃0
0 (t)} is contained in the critical domain B ⊂ Ω̄T . Thus, the effective solution

provides bounds for the experimentally observable free boundary. In particular, if it
can be shown that the limit equation allows only solutions u0 with u0 > u∗/2 on ΩT ,
then the experimentally observable free boundary must vanish in the limit ε → 0.

Oil trapping in one-dimensional domains. We denote pressure and satura-
tion of the oil phase by p = p1 = poil and u = uoil and the corresponding quantities of
the water phase by p2 = pwater and uwater = 1 − u. The absolute permeability is de-
noted by k and the relative permeabilities by kr,1 = krel,oil and kr,2 = krel,water. The
equations in primary variables are the conservation laws for oil and water combined
with the Darcy law for the velocities and the capillary pressure relation:

∂tu = ∇ · (k(x)kr,1(u)∇p1),(1.1)

−∂tu = ∇ · (k(x)kr,2(u)∇p2),(1.2)

p1 − p2 = pc(u).(1.3)

Summing the conservation laws and inserting the relation between the pressure func-
tions yields, with K(x, u) = k(x)(kr,1(u) + kr,2(u)), and writing now p instead of
p1,

(1.4) ∇ · (K(x, u)∇p− k(x)kr,2(u)∇[pc(u)]) = 0.

One may regard this as an elliptic equation for p that defines the relation between p
and u. Together with this relation, at least formally, (1.1) is an evolution equation
for u.

In this work we study only the one-dimensional case with spatial domain x ∈ Ω =
(0, L). Equation (1.4) then implies that the expression in parentheses is constant in
space. Physically, the constant describes the total flux and we write

(1.5) K(x, u)∂xp− k(x)kr,2(u)∂x[pc(x, u)] = −q0.
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Fig. 3. Typical solutions for homogeneous materials. Left: The typical shape of oil saturation
u, oil pressure p1, and water pressure p2. Right: Shape of oil flux q1 = −k1(x, u)∂xp1 and water
flux q2 = −k2(x, u)∂xp2 for the chosen boundary conditions. The curves illustrate the shape for the
standard equations with spatially homogeneous coefficient functions. The solutions of the effective
equations in the oil trapping problem look similar, but they exhibit a residual oil saturation u ≥ u∗/2.

In order to describe imbibition from the left, we assume q0 > 0. The value of q0 is
given to us by the boundary conditions.1 In order to find a single evolution equation,
we solve (1.5) for ∂xp. With the shorthand ki(x, u) = k(x)kr,i(u) we find

(1.6) ∂xp = −q0
1

K(x, u)
+

k2(x, u)

K(x, u)
∂x[pc(x, u)].

Inserting into (1.1) yields

∂tu = −∂x (f(u) − k(x)λ(u)∂x[pc(x, u)])(1.7)

with

f(u) := q0
kr,1(u)

kr,1(u) + kr,2(u)
, λ(u) :=

kr,1(u)kr,2(u)

kr,1(u) + kr,2(u)
.

Equation (1.7) is an evolution equation of the form ∂tu + ∂xF = 0, where F is given
by

F (x, u) := f(u) − k(x)λ(u)∂x[pc(x, u)].

The qualitative shape of solutions is shown in Figure 3. We emphasize that the
coefficient functions are degenerate,

kr,1(s) → 0, f(s) → 0, λ(s) → 0 for s → 0.

Less critical in this context is an additional degeneracy ∂spc(s) → 0 for s → 0.
Regarding high oil saturation we have kr,2(s) → 0 and λ(s) → 0 for s → 1. Our
interest here is in the degeneracies for s → 0, and we consider a physical situation
where the saturation remains bounded away from 1 for all times.

1One choice of the boundary conditions is the following. At the inlet, x = 0, pure water enters
the medium at a given rate; hence we have u = 0 at the left boundary and q0 > 0 given. At the
right boundary, x = L, only the nonwetting fluid oil can exit; hence k2(L, u(L))∂xp2(L) = 0 or,
equivalently, −k1(L, u(L))∂xp1(L) = q0. Notationally simpler is to impose a fixed saturation at the
right boundary; we will therefore work with u(0) = 0 and pc(u(L)) = pmax in what follows.
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Fig. 4. Interfaces inside the material. Γε
− is a region with a fine material and Γε

+ is a
region with a coarse material. The permeabilities satisfy k+ > k−, the capillary pressure curves
pc+(s) < pc−(s) for all s.

u10 u*

pc
−

pc
+

2kε + 2εΓ εε x
2k ε Γ− +

uε

(a) (b)

Fig. 5. (a) The graphs pc+ and pc−. (b) Typical shape of a solution uε(., t) in a small interval
(2kε, 2kε + 2ε). The pressures pi and the fluxes qi are almost constant, and the capillary pressure
pcε(x, uε(x, t)) is continuous in x; hence the saturation uε jumps from high values on Γε

+ to low
values on Γε

−.

Oscillatory coefficient functions. In this work we are interested in oscillatory
coefficients kεi = k0

i (x/ε, u) and pc
ε = pc

0(x/ε, u). To simplify, we consider oscillations
between two different coefficient functions. We distinguish the subdomains Γε

− :=
ε(2Z + (0, 1)) ∩ (0, L) and Γε

+ := ε(2Z + (1, 2)) ∩ (0, L). For later use we additionally
introduce Γε := Γε

+ ∪ Γε
− for the spatial domain without the interfaces.

We study coefficients as sketched in Figure 4:

kε(x) =

{
k+ for x ∈ Γε

+,

k− for x ∈ Γε
−,

pc
ε(x, u) =

{
pc

+(u) for x ∈ Γε
+,

pc
−(u) for x ∈ Γε

−.
(1.8)

A typical shape of pc
± is indicated in Figure 5(a); the corresponding local behavior

of solutions is shown in Figure 5(b). The minimal pressure in Γε
− with a positive

saturation is p−min = limu↘0 pc
−(u). Of importance is the residual oil saturation u∗

in the coarse material, i.e., in Γε
+. It is defined by the relation pc

+(u∗) = p−min.
Our aim is to study solutions of (1.7) for this choice of coefficients. Understanding

the equations in the distributional sense means to demand at the interfaces ξ ∈ εZ
the continuity of flux and capillary pressure. Since the capillary pressure curves are
multivalued in general, we demand for all ξ ∈ εZ

F (ξ − 0, u(ξ − 0)) = F (ξ + 0, u(ξ + 0)),(1.9)

pc(ξ − 0, u(ξ − 0)) ∩ pc(ξ + 0, u(ξ + 0)) 	= ∅.(1.10)

Here, we use the notation h(x ± 0) for lim±δ↘0 h(x + δ), or, if h ∈ H1, for the cor-
responding trace. Relation (1.10) is a compact way to write the standard interface
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condition for the capillary pressure which was derived in [5]. We use set-valued cap-
illary pressure functions that assign to the saturations s = 0 and s = 1 an interval,
e.g., pc

−(ξ, 0) := (−∞, p−min] for ξ ∈ Γε
−. In this way, if the saturation vanishes at one

side of the interface, the pressure at the other side must be below the entry pressure
pmin, but the exact value is not determined. The classical description of (1.10) is that
we necessarily are in one of the following situations: (a) at both sides, the saturation
is strictly between 0 and 1, and the capillary pressures on both sides coincide; (b) we
have s = 0 at side A, s ∈ (0, 1) at side B, and there holds pc ≤ pmin, where pc is
evaluated at side B and pmin at side A; (c) we have s = 0 at both sides; (d) an
analogous case with s = 1 on one side.

In the next step we write the equations in a compact and symmetric form. The
conservation law (1.7) is recovered in (1.11) with g±(u) := k± λ(u) ∂upc

±(u) and
f±(u) := f(u).

Mathematical description and main result. We assume that the coefficients
are x-independent on each set Γε

±,

gε(x, u) :=

{
g+(u) for x ∈ Γε

+,

g−(u) for x ∈ Γε
−,

fε(x, u) :=

{
f+(u) for x ∈ Γε

+,

f−(u) for x ∈ Γε
−.

We study the conservation law

∂tu
ε + ∂xF

ε = 0 on Γε,

F ε = fε(x, uε) − gε(x, uε)∂xu
ε,

F ε and pc
ε(x, uε) are continuous in Zε.

(1.11)

Here, the continuity is understood in the classical sense for F ε, and in the sense
of (1.10) for pc

ε. From now on, we study solution sequences uε to this equation,
complemented with the initial condition pc

ε(uε)|t=0 = pmax on (0, L) for some initial
pressure value pmax ∈ (pc

−(0), pc
+(1)). As boundary conditions we impose uε(0, t) =

0 and pc
ε(uε(L, t)) = pmax for all t ∈ (0, T ). Throughout we assume the following

monotonicity and regularity of the coefficient functions.

Assumptions. On flux and diffusivity we assume 0 ≤ f± ∈ C0([0, 1],R), 0 ≤
g± ∈ C0,1([0, 1],R), f−(0) = g−(0) = 0. Furthermore, f± ≤ cg± on the interval
[0, (pc

+)−1(pmax)] for some constant c > 0, and f± > 0 on (0, 1). On the capillary
pressure we assume pc

+ ≤ pc
− with strictly monotone functions pc

± ∈ C1([0, 1],R).

Our main theorem is the rigorous derivation of effective equations. They are
characterized by a nonlinear flux function F : [0, 1]× R → R, which is constructed in
(3.1)–(3.7). For the particular choice of coefficients considered there, our flux function
F coincides with that of [9].

Theorem 1. Let (uε, F ε) be a family of entropy solutions to (1.11) on ΩT =
(0, L)×(0, T ), as in Definition 1 of section 2, satisfying the above boundary conditions.
Then, for a subsequence ε → 0 and for appropriate limiting functions, we find

uε ⇀ u0 in L∞(ΩT ) weak-�, F ε ⇀ F 0 in L2(ΩT ) weakly.

The limits satisfy the conservation law

(1.12) ∂tu
0 + ∂xF

0 = 0
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in the distributional sense on ΩT . The limit u0 ∈ L∞(ΩT ) has the distributional
derivative ∂xu

0 ∈ L1(ΩT ). The flux satisfies the relation

(1.13) F 0 = F(u0, ∂xu
0) almost everywhere in ΩT

with the nonlinear function F(u, ∂xu) = F0(u) −D(u)∂xu defined in (3.1)–(3.7).
The remaining sections are devoted to the proof of Theorem 1 and are organized as

follows. In section 2 we construct entropy solutions and derive comparison and mono-
tonicity results. Section 3 is devoted to a two-scale homogenization result for regions
with a strictly positive saturation. The homogenization in the general situation with
degenerate solutions is performed in section 4. We introduce a description with a
free boundary, derive the effective equations in the critical region, and determine the
continuity condition across the free boundary.

The analysis of the limit problem (1.12), (1.13) is not the aim of this contribution.
Interesting questions concern the existence and uniqueness of solutions to this degen-
erate problem, and the position of the free boundary X(t) := sup{x : u0(x, t) = u∗/2}.
We note that the results of [2] cannot be applied to the equations in the above form,
since, for a degenerate function D(u), the ellipticity assumption (Assumption 1.1(3))
of [2] is not satisfied. But the special structure F(u, ∂xu) = F0(u)−D(u)∂xu allows us
to introduce formally a new variable U with ∂xU = D(u)∂xu such that with u = b(U)
and a(u, ∂xU) = −F0(u) + ∂xU , the results of [2] and [15] may be applicable. The
appearance of free boundaries is well known in porous-media-type equations; we re-
fer the reader to [11] for results on the one-dimensional degenerate Cauchy problem
∂tu = ∂2

x[a(u)] + ∂x[b(u)] regarding existence, uniqueness, regularity, and speed of
propagation of the free boundary.

Notation. The value of the constant C in estimates may change from one line to
the next. For a set Q the function 1Q denotes the characteristic function 1Q(x) = 1
for x ∈ Q and 1Q(x) = 0 for x 	∈ Q.

2. Entropy solutions and monotonicity.

2.1. Entropy solutions and regularity. In this section we sketch a solution
concept that allows us to derive comparison principles for solutions. For other ex-
istence and uniqueness results we refer the reader to [8] and [12], where methods of
[2] are extended to two-phase flow. An existence proof that uses a smoothing of the
jump condition is performed in [5]. We refer the reader to [16] for a discussion of
approximation schemes to degenerate equations that are also used below.

We always assume pmax ∈ (pc
−(0), pc

+(1)) and consider only boundary conditions
as described above. We use the notion of a family of regularized equations: We assume
that, for a sequence η ↘ 0, we have coefficient functions g±η ∈ C1([0, 1],R), f±

η = f±,
and pc

±,η ∈ C1([0, 1],R) that are strictly monotone and satisfy the same inequalities as
the original coefficients. The equations are regularized in the sense that g±η ≥ η, pc

±,η

is single valued, and pc
−,η(0) = pc

+,η(0). They approximate the original equation in
the sense that pc

+,η = pc
+ on (0, 1), g±η → g± uniformly on [0, 1], and pc

−,η → pc
−

uniformly on compact subsets of (0, 1]. By an appropriate choice of the regularization
we can additionally achieve that the family g±η ∂upc

±,η is uniformly bounded on [0, 1].
In the following definition we use the primitive Gε(x, u) of gε, i.e., the func-

tion with ∂uG
ε(x, u) = gε(x, u) and Gε(x, 0) = 0. Since gε(., u) is piecewise con-

stant, we can interpret the term gε(uε)∂xu
ε as the distribution ∂xG

ε(x, uε)|Γε×(0,T ).
Since we will work with ∂xG

ε(x, u) 1Γε(x) ∈ L2(ΩT ), we have well-defined traces
Gε(x, uε)|∂Γε×(0,T ). Since Gε(x, .) is invertible, this defines also traces of uε and gives
a precise meaning to the interface conditions.
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We write the interface condition (1.10) in a more reader-friendly form, considering
pc

− as multivalued and pc
+ as a function.

Definition 1. A saturation-flux pair (uε, F ε) is a weak solution of (1.11) on
ΩT = (0, L) × (0, T ) if uε ∈ L∞(ΩT , [0, 1]) and F ε ∈ L2(ΩT ) satisfy

∂tu
ε + ∂xF

ε = 0 in D′(ΩT ),

F ε = fε(uε) − ∂x[Gε(uε)] in D′(Γε × (0, T )),

pc
+(uε(2kε− 0)) ∈ pc

−(uε(2kε + 0)) ∀k ∈ Z, 2kε ∈ (0, L),

pc
+(uε(2kε + ε + 0)) ∈ pc

−(uε(2kε + ε− 0)) ∀k ∈ Z, 2kε ∈ (0, L).

A weak solution (uε, F ε) is called an entropy solution if there exists a family of
regularized equations and a corresponding family of solutions (uε

η, F
ε
η ) with uε

η → uε

in L2(ΩT ) and F ε
η ⇀ F ε in L2(ΩT ) for η → 0.

Lemma 1 (existence and a priori estimate). For every ε > 0, there exists an en-
tropy solution (uε, F ε). With a constant C independent of ε there hold ‖F ε‖L2(ΩT ) ≤
C and the following regularity on the domain of positive saturation: For all δ > 0
there exists Cδ independent of ε such that∫ T

0

∫ L

0

|∂xuε|21{uε≥δ}1Γε ≤ Cδ.(2.1)

Proof. The regularized system (η > 0) is a parabolic problem with finitely many
transmission points and can be solved by standard methods. The maximum principle
implies the bounds 0 ≤ uε

η ≤ 1. They allow us to select a subsequence η → 0 and
a weak L2(ΩT )-limit uε. The monotonicity in t, shown in Lemma 3, implies the
boundedness of ∂tu

ε
η ∈ L1(ΩT ). Estimate (2.1) for η > 0 provides uniform bounds

for the positive part (uε
η − δ)+ ∈ L2((0, T ), H1(Γε)); hence the sequence (uε

η − δ)+
is precompact in L2(ΩT ) for every δ > 0. Choosing a diagonal sequence we find a
subsequence with uε

η → uε strongly in L2(ΩT ).
Below we derive an estimate for the sequence F ε

η ∈ L2(ΩT ) and thus, by bounded-
ness of fε, there is also a uniform bound for ∂xG

ε
η(x, u

ε
η) 1Γε ∈ L2(ΩT ). We can choose

a weakly convergent subsequence F ε
η ⇀ F ε in L2(ΩT ) and find also Gε

η(u
ε
η) → Gε(uε)

by the strong convergence of uε
η. This implies that the pair (uε, F ε) solves the con-

servation law and the characterization of F ε of the second equation.
The solutions of the regularized problems satisfy the interface inclusions as equal-

ities and we have a weak convergence of ∂xG(uε
η). The trace theorem implies that

the limit uε satisfies again the interface conditions, and hence it is a weak solution of
(1.11).

We now verify the a priori estimates, omitting everywhere the index η > 0. We
multiply the conservation law

∂tu
ε + ∂x[f(uε) − gε(uε)∂xu

ε] = 0 on Γε

by the continuous function pc
ε(uε) − pmax and integrate by parts. Interior boundary

integrals vanish due to the continuity of the flux. The right boundary integral vanishes
because of the boundary condition pc

ε(L, uε(L, t)) = pmax. We obtain∫ T

0

∫
Γε

[pc
ε(uε) − pmax]∂tu

ε +

∫ T

0

∫
Γε

gε(uε)∂xu
ε ∂x[pc

ε(uε)]

=

∫ T

0

∫
Γε

fε(uε) ∂x[pc
ε(uε)] +

∫ T

0

[f(uε) − gε(uε)∂xu
ε]x=0 (pc

−,η(0) − pmax).
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For the flux at the left boundary, which appears in the last integral, we calculate,
using ϕ(x, t) = L− x,

− L

∫ T

0

[f(uε) − gε(uε)∂xu
ε]x=0 =

∫ T

0

∫ L

0

∂x([f(uε) − gε(uε)∂xu
ε]ϕ)

=

∫ T

0

∫ L

0

∂x[f(uε) − gε(uε)∂xu
ε]ϕ−

∫ T

0

∫ L

0

[f(uε) − gε(uε)∂xu
ε]

= −
∫ T

0

∫ L

0

∂tu
εϕ−

∫ T

0

∫ L

0

[f(uε) − gε(uε)∂xu
ε]

≤ L2 + C +

∫
ΩT

gε(uε)|∂xuε|.

We continue the above calculation, exploiting that pc
ε(uε)∂tu

ε is the time derivative
of a bounded function, and use the uniform positivity ∂upc

ε ≥ c0 > 0 and the bound
f± ≤ cg±:∫ T

0

∫
Γε

gε(uε)∂upc
ε(uε)|∂xuε|2 ≤ C + C

∫ T

0

∫
Γε

gε(uε)∂upc
ε(uε)|∂xuε|.

Application of the Cauchy–Schwarz inequality yields, by the boundedness of gε ∂upc
ε,

a bound for the left-hand side, independent of ε and η. Exploiting once more ∂upc
ε ≥

c0 and g± > 0 on (0, 1], this implies (2.1). It furthermore shows that the family
F ε = [f(uε) − gε(x, uε)∂xu

ε]1Γε is uniformly bounded in L2(ΩT ).

2.2. Comparison principles and monotonicity. In this subsection we de-
rive results for entropy solutions of (1.11) and assume always the above bound-
ary conditions and the initial condition pc

ε(uε(., 0)) = pmax on (0, L) for pmax ∈
(pc

−(0), pc
+(1)).

Lemma 2 (lower bound for uε
). There exist δ0 > 0 and ε0 > 0 such that for all

δ ∈ (0, δ0) and ε ∈ (0, ε0) the following holds. Let (a, b) ⊂ (0, L) with a, b ∈ 2εZ + ε,
and let uε be an entropy solution of (1.11) with

uε(a− 0, t) ≥ δ, uε(b− 0, t) ≥ δ ∀t ∈ (0, t0).

Then there holds uε ≥ δ on (a, b) × (0, t0).
Proof. It is sufficient to show the claim for the regularized solutions uε

η and to take
the limit η → 0. We therefore perform all calculations for the more regular solutions
uε
η, but we omit in what follows the fixed index η.

Our aim is to construct a 2ε-periodic stationary subsolution U(y) = Uε
δ (y) ≥ δ for

y ∈ [a, b]. For a parameter q ∈ R+ which denotes the constant flux of the subsolution,
we define U = U(., q) : [0, 2ε] → R, y �→ U(y) as the solution of

fε(y, U(y)) − gε(y, U(y)) ∂yU(y) = q in (0, ε) ∪ (ε, 2ε),(2.2)

U(ε− 0) = δ, U(ε + 0) = (pc
+)−1(pc

−(δ)).(2.3)

We note that, by the positivity of gε, (2.2) is an ordinary differential equation which
can be solved locally with the boundary condition (2.3). The smallness of ε > 0
and the fact that q − fε(y, δ) becomes positive for δ → 0 imply that solutions can
be defined on the whole intervals (0, ε) and (ε, 2ε). The solution operator defines a
family of functions U(., q) and the continuous function G = Gδ : R+ → R:

G(q) := pc
+(U(2ε− 0)) − pc

−(U(0 + 0)).
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Our aim is to choose the parameter q = q∗ with G(q∗) = 0 such that the function
U = U(., q∗) can be extended to a 2ε-periodic stationary solution of (1.11).

For two special values of q we can evaluate the sign of G(q). For q1 = f−(δ),
the solution U(., q1) = δ is constant on the interval (0, ε). On the interval (ε, 2ε) the
derivative ∂yU is positive by the positivity of f+(u∗); here we exploit the continuity
of f±, f−(0) = 0 and the smallness of δ and ε. We find that

G(q1) ≥ pc
+(U(ε + 0)) − pc

−(δ) = 0.

On the other hand, for q2 = f+(U(ε+0)), the solution U(., q2) is constant on the
interval (ε, 2ε) and decreasing on (0, ε). Monotonicity of pc

± implies G(q2) ≤ 0. By
continuity, there is a critical value q∗ = q∗(δ, ε) ∈ [q1, q2] with G(q∗) = 0, and we use
U = U(., q∗) in what follows.

We now define the subsolution Uε(x, t) as the 2ε-periodic continuation of Uε
δe−λt(x),

where we replaced δ by δe−λt for a small constant λ > 0. We claim that uε can never
touch the subsolution Uε. Because ∂tU

ε < 0, this is the standard comparison princi-
ple for all points x that are not contained in εZ. Let us assume that t > 0 is the first
time instance at which the solutions touch each other and that, for a point x ∈ εZ,
we have uε(x + 0, t) = Uε(x + 0, t). Since uε and Uε both satisfy the pc-jump con-
dition, there also holds uε(x − 0, t) = Uε(x − 0, t). Then, because uε(., t) ≥ Uε(., t),
we have ∂xu

ε(x + 0, t) ≥ ∂xU
ε(x + 0, t) and ∂xu

ε(x − 0, t) ≤ ∂xU
ε(x − 0, t). The

subsolution Uε has the continuous flux q∗(δe−λt, ε) and uε also has a continuous flux;
since also f(uε) = f(Uε) and the same for g in the point x, the derivatives must
coincide, ∂xu

ε(x + 0, t) = ∂xU
ε(x + 0, t). As a consequence, also the fluxes of uε and

Uε coincide in x. In (x + 0, t) it holds that

−∂x[fε(uε) − gε(uε) · ∂xuε] = ∂tu
ε < 0 = −∂x[fε(Uε) − gε(Uε) · ∂xUε],

and hence ∂2
xu

ε < ∂2
xU

ε, which is a contradiction to uε ≥ Uε.
Lemma 3 (monotonicity of uε

). Let uε be an entropy solution of (1.11) as above.
Then the following hold:

1. Decay in time. The map t �→ uε(x, t) is monotonically nonincreasing for
almost every x.

2. Monotonicity in space. The map k �→ uε(2kε + y, t) is monotonically nonde-
creasing for every t ∈ (0, T ) and every y ∈ [0, 2ε].

Proof. As in the last proof, it suffices to verify the monotonicity for the ap-
proximate solutions u = uε

η. We therefore study, for the strictly positive coefficient
g = g(x, u) ≥ η and the strictly monotone single-valued function pc = pc(x, u), solu-
tions u of

∂tu + ∂x (f(x, u) − g(x, u)∂xu) = 0,

[pc(x, u)] = 0,

[f(x, u) − g(x, u)∂xu(x)] = 0,

where the last two relations hold in points x ∈ Zε. By regularity theory for strictly
parabolic equations we may assume that u is a classical solution of the above system.

Proof of part 1. We claim that ∂tu ≤ 0 holds on G. Indeed, the function v = −∂tu
is nonnegative at t = 0 and the equations are, with κ = 0,

∂tv + ∂x (fu(x, u) · v − gu(x, u) · v∂xu− g(x, u)∂xv) = κ,

[∂upc(x, u) · v] = 0,

[fu(x, u) · v − gu(x, u) · v∂xu(x) − g(x, u)∂xv(x)] = 0.
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The boundary conditions are v(0, t) = v(L, t) = 0 for all t ∈ (0, T ). In order to show
that v remains nonnegative, it suffices to show that the solutions vκ of the above
system with small right-hand side κ ∈ R, κ > 0, remain nonnegative.

Let t > 0 be the first time instance such that vκ(., t) has a zero in x. By the
standard comparison principle, the zero cannot be in (0, L) \ εZ. Let us therefore
assume x ∈ εZ. The first jump condition implies that, with vκ vanishing on one
side of x, it vanishes on both sides. Continuity implies vκ(., t) ≥ 0, and hence we
have the geometric conditions ∂xvκ(x− 0, t) ≤ 0 and ∂xvκ(x + 0, t) ≥ 0. The second
jump condition then implies that ∂xvκ = 0 from both sides. The geometric condition
∂tvκ(x, t) ≤ 0, together with κ > 0, implies

∂x (fu(x, u) · vκ − gu(x, u) · vκ∂xu− g(x, u)∂xvκ) > 0

in the vicinity of x. We conclude that ∂2
xvκ < 0 and thus a contradiction to vκ ≥ 0.

Proof of part 2. We claim that the function v(x, t) = u(x+2ε, t)−u(x, t), defined
on (0, L−2ε)×[0, T ], is nonnegative for all times. Indeed, v(., 0) = 0 initially, and there
hold v(0, t) ≥ 0 and v(L − 2ε, t) ≥ 0 for all t ∈ (0, T ). With u+(x, t) := u(x + 2ε, t),
the equations for v = u+ − u read

∂tv + ∂x (f(x, u+) − f(x, u) − g(x, u+)∂xu+ + g(x, u)∂xu) = 0,

[pc(x, u+) − pc(u)] = 0,

[f(x, u+) − g(x, u+)∂xu+(x) − f(x, u) + g(x, u)∂xu(x)] = 0;

the last two lines indicate again jumps over the interface points. With appropriate
evaluation points ζj(x, t) between u(x, t) and u+(x, t) we may write this as

∂tv + ∂x (fu(., ζ1)v − gu(., ζ2)v∂xu+ − g(., u)∂xv) = 0,

{∂upc(., ζ3)v} (kε + 0) = {∂upc(., ζ4)v} (kε− 0),

{fu(., ζ5)v − gu(., ζ6)v∂xu+ − g(., u)∂xv} (kε + 0)

= {fu(., ζ7)v − gu(., ζ8)v∂xu+ − g(., u)∂xv} (kε− 0)

for x = kε with k ∈ Z. Starting from this system for v, the nonnegativity of v follows
as in part 1.

Lemma 4 (bounds for averages of uε
). Let uε be a family of entropy solutions of

(1.11) as above.
1. Lower bound for averages. There exists c ∈ R such that for all ε > 0 and all

k ∈ Z with (2kε− ε, 2kε + ε) ⊂ (0, L), there holds

(2.4)

∫ 2kε+ε

2kε−ε

uε(., t) ≥ ε(u∗ − cε).

2. Upper bound for averages. For every ρ > 0 there exist τ > 0, δ > 0, and
ε0 > 0 such that for all ε ∈ (0, ε0), k ∈ Z with (2kε− ε, 2kε+ ε) ⊂ (0, L), and
t > τε2,

(2.5) uε(2kε + ε− 0, t− τε2) ≤ δ ⇒
∫ 2kε+ε

2kε−ε

uε(., t) ≤ ε(u∗ + ρ).

Proof. We consider again approximate solutions uε
η from the definition of entropy

solutions.
Proof of part 1. We approximate additionally the boundary condition at the left

boundary by the artificial condition uε
η(0, t) = δ. The subsolutions Uε of Lemma 2

satisfy Uε ≥ u∗ − O(ε) on Γε
+, independent of δ > 0, such that uε

η ≥ Uε provides
(2.4).
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Proof of part 2. We assume the contrary. Then, for some ρ > 0, for arbitrary
τ > 0, δ > 0, there exists a sequence εm → 0 such that inequality (2.5) fails to hold
for some k and t. Now let ρ > 0 be such a value. Below we give an explicit choice of
τ and δ that leads to a contradiction. We study now sequences of points km and time
instances tm ≥ τε2

m at which (2.5) fails for the sequence uεm , which we continue up
to time 2T . We define the rescaled solutions

Ũm : (−1, 1) × (0, T/ε2
m) → R,

Ũm(y, s) := uεm(2kmεm + εmy, tm − τε2
m + ε2

ms)

and recall that we assume the failure of (2.5), that is,

Ũm(1 − 0, s = 0) ≤ δ,

∫ 1

−1

Ũm(y, τ) dy > u∗ + ρ.

We now construct a function Um which serves as an upper bound for Ũm. We define
Um as the solution of the system

∂sU
m + ∂y (εmf(Um) − g(Um)∂yU

m) = 0 on (−1, 1) \ {0},
Um(1 − 0) = δ, Um(−1 + 0) = (pc

+)−1(pc
−(δ)),

pc
+(Um(0 − 0)) = pc

−(Um(0 + 0)),

[εmf(Um) − g(Um)∂yU
m](0 − 0) = [εmf(Um) − g(Um)∂yU

m](0 + 0),

but now augmented with the initial condition pc(U
m(., s = 0)) ≡ pmax. As in the

above proofs, exploiting Ũm(1 − 0, 0) ≤ δ and the monotonicity of Ũm, one derives
the comparison principle Ũm ≤ Um. The limit U∞ := limm→∞ Um exists and solves
the above system with εm replaced by 0. The solution U∞ approaches, as s → ∞, the
stationary solution

Ū∞(y) =

{
(pc

+)−1(pc
−(δ)) for y ∈ (−1, 0),

δ for y ∈ (0, 1).

We can now derive a contradiction. Given ρ > 0, we choose δ > 0 such that∫ 1

−1
Ū∞(y) dy < u∗+ρ/3. We then choose a time instance τ > 0 such that

∫ 1

−1
(U∞(y, τ)

− Ū∞(y)) dy < ρ/3. With these choices we have

u∗ + ρ <

∫ 1

−1

Ũm(y, τ) dy ≤
∫ 1

−1

Um(y, τ) dy →
∫ 1

−1

U∞(y, τ) dy ≤ u∗ + 2ρ/3,

a contradiction.

3. Homogenization for a positive saturation. We next define the nonlinear
flux function F(u0, v0) that maps an average oil saturation u0 with an average slope v0

to the effective flux. The continuity of the capillary pressure imposes a restriction on
the values of u0. Let U ∈ [0, 1] solve pc

−(U) = pc
+(1). Then, with u0

max := (1+U)/2,
the flux function is a map

F : [0, u0
max] × R �→ R, (u0, v0) �→ F(u0, v0).

We set F(u0, v0) := 0 for all (u0, v0) with u0 ≤ u∗/2 and construct F for other values
with the help of nonlinear equations. For (u0, v0) ∈ (u∗/2, u0

max] × R, the following
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system determines (u+, u−) ∈ [0, 1]2, representing typical values of uε in Γε
±:

u+ + u− = 2u0,(3.1)

pc
+(u+) = pc

−(u−).(3.2)

The monotonicity of pc
± assures the unique solvability of (3.1)–(3.2). We introduce

auxiliary real numbers u+,x and u−,x that will describe the average slope of u+ and
u− on a macroscopic scale. They are determined by

u+,x + u−,x = 2v0,(3.3)

∂upc
+(u+)u+,x = ∂upc

−(u−)u−,x.(3.4)

This linear system has a unique solution u±,x that depends linearly on v0. We note
that, for v0 ≥ 0, the average slope satisfies 0 ≤ u±,x ≤ 2v0. We next introduce the
pair (v+, v−) ∈ R

2 which describes the typical derivatives of uε inside a single interval
of Γε

±. They are determined by

f+(u+) − g+(u+)v+ = f−(u−) − g−(u−)v−,(3.5)

∂upc
+(u+)v+ + ∂upc

−(u−)v− = ∂upc
+(u+)u+,x + ∂upc

−(u−)u−,x.(3.6)

The unique solution v± depends in an affine way on u±,x. We now define the effective
flux function F as

(3.7) F(u0, v0) := f+(u+) − g+(u+)v+,

where (u+, v+) is determined by the system (3.1)–(3.6) of nonlinear equations. For
fixed u ∈ [0, u0

max], the map F(u, .) is affine. We may therefore also write F in the
form

F(u0, v0) = F0(u
0) −D(u0)v0.

A flux function of this form appears also in [10] and [9]. We note that F is continuous:
For u0 = u∗/2, the solution of system (3.1)–(3.2) is u− = 0 and u+ = u∗, and hence
f−(u−) = g−(u−) = 0, and (3.5) yields F(u0, v0) = 0.

Proposition 1 (homogenization). Let G = (a, b) × (0, t0) be a subdomain of
ΩT = (0, L) × (0, T ), δ, ε0 > 0 positive real numbers, and uε a family of solutions of
(1.11) with

uε ≥ δ on G ∀ε ≤ ε0,(3.8)

uε ⇀ u0, F ε ⇀ F 0 weakly in L2(G).(3.9)

Then u0 ∈ L2(G) solves ∂tu
0 + ∂xF

0 = 0 in the distributional sense on G and has
a space derivative ∂xu

0 ∈ L2(G), and, with F from (3.7), the following flux relation
holds almost everywhere:

(3.10) F 0 = F(u0, ∂xu
0).

Proof. The distributional conservation law is satisfied by the weak convergences.
Exploiting the strictly positive diffusivity, (2.1) provides an estimate for the regular
part of the derivative, and ∂xu

ε(x, t)1Γε(x) is bounded in L2(G). In the subsequent
proof we will define various two-scale limits for the above functions. For them we
derive the relations (3.1)–(3.6), F 0 = f+(u+) − g+(u+)v+, and ∂xu

0 = v0 ∈ L2(G).
With these verifications, the proof is complete.
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Step 1. Two-scale limits and (3.1). The uniform L2(G)-bounds allow us to con-
sider the two-scale limits

uε ⇀ u0(x, t, y) two-scale,

∂xu
ε1Γε(x) ⇀ v0(x, t, y) two-scale.

The L2(G)-estimate for ∂xu
ε immediately implies that u0 is independent of y on the

sets (0, 1) and (1, 2). Indeed, let y �→ ϕ(y) be smooth with support contained in one
of the two sets. We find, for Φε(x) = εψ(x)ϕ(x/ε),

0 ←
∫
G

∂xu
εΦε =

∫
G

uε∂xΦε →
∫
G

∫ 2

0

u0(x, t, y)ψ(x)∂yϕ(y) dy dx dt.

We conclude that u0 has the special form

(3.11) u0(x, t, y) = u−(x, t)1(0,1)(y) + u+(x, t)1(1,2)(y).

The weak limit u0 of the sequence uε coincides with the y-average of u0; hence (3.11)
implies relation (3.1).

We claim that also v0 is piecewise constant. To see this, we use the test function
Φε(x, t) = εψ(x, t)ϕ(x/ε) with ψ ∈ C∞

0 (G) and exploit the equation. We assume here
that ϕ is supported in (1, 2). We will verify the limit of the second line (marked with
an exclamation mark) in the next step of the proof:

0 ←
∫
G

∂tu
εΦε =

∫
G

fε(uε)∂xΦε −
∫
G

gε(uε)∂xu
ε∂xΦε

!→
∫
G

∫ 2

1

f+(u+(x, t))ψ(x, t)∂yϕ(y) dy dx dt(3.12)

−
∫
G

∫ 2

1

g+(u+(x, t))v0(x, t, y)ψ(x, t)∂yϕ(y) dy dx dt.

The first integral vanishes since ϕ is compactly supported in (1, 2) and we conclude
that v0 is independent of y, since u+ is positive by the lower bound on uε. We can
perform the same calculations with ϕ supported in (0, 1) to find the same equality
with + replaced by −,

(3.13) v0(x, t, y) = v−(x, t)1(0,1)(y) + v+(x, t)1(1,2)(y).

In particular, the quantities u± = u±(x) and v± = v±(x) that appear in (3.1)–(3.6)
are now defined. For brevity, we will often suppress the dependence on t in the
following.

Step 2. Compactness. To abbreviate notation we write I = (a, b) for the spatial
interval and set 1k := 1(2kε,2kε+2ε), 1−

k := 1(2kε,2kε+ε), and 1+
k := 1(2kε+ε,2kε+2ε). We

furthermore set 1ε
+ :=

∑
k 1+

k and 1ε
− :=

∑
k 1−

k . Our aim in this step of the proof is
the following result. Let h : [0, 1] → R be a continuous function. Then

(3.14) h(uε(x))1ε
−(x) − h(u−(x))1ε

−(x) → 0 strongly in L2(G),

and likewise for − replaced by +. We note that this result justifies, with h = g+, the
convergence in (3.12). We emphasize that (3.14) is not a consequence of the previous
results. For its proof we must control variations of uε on points in 2Zε. Loosely
speaking, it must jump down in 2kε + 2ε as much as it jumped up in 2kε + ε.
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In order to derive (3.14) we consider the capillary pressure function P ε(x) =
pc

ε(x, uε(x)). This function has no jumps across interfaces, and hence the spatial
derivative has no singular parts. On Γε we have the estimate |∂xP ε| ≤ C|∂xuε|, and
therefore a uniform estimate for P ε ∈ L2((0, t0), H

1(I)).
We have seen in Lemma 3 that t �→ uε(x, t) is monotone for almost every x ∈ I.

By the monotonicity of pc
±, this implies the monotonicity of t �→ P ε(x, t). For the

strong solutions of the strictly parabolic equations of the proposition we therefore
have |∂tP ε| = −∂tP

ε, and an integration yields ‖∂tP ε‖L1(G) ≤ L‖P ε‖L∞(G), which
is uniformly bounded. The spatial and the temporal regularity together provide the
boundedness of P ε in W 1,1(G), hence the precompactness of P ε in L1(G). Exploiting
once more the uniform bound in L∞(G), we find a subsequence that converges strongly
in L2(G) and almost everywhere in G to a limit P 0 ∈ L2(G).

The convergence almost everywhere can be exploited to conclude the strong con-
vergence of uε as claimed in (3.14). Since (P ε − P 0)1ε

− → 0 pointwise, also

(3.15) uε1ε
− − (pc

−)−1(P 0)1ε
− → 0

pointwise almost everywhere and, by the uniform boundedness, also strongly in L2(G).
In order to identify the limit function we recall that uε1ε

− → u−(x)1(0,1)(y) in the
sense of two-scale convergence. On the other hand, again in the sense of two-scale con-
vergence, (pc

−)−1(P 0(x))1ε
−(x) → (pc

−)−1(P 0)(x)1(0,1)(y), and hence (pc
−)−1(P 0) =

u−.
We can now also apply a nonlinear continuous function h to both expressions in

(3.15) and find h(uε)1ε
−−h(u−)1ε

− → 0 pointwise almost everywhere. By the uniform
bounds for uε, this provides (3.14).

Step 3. Derivation of the continuity conditions (3.2) and (3.5) and the flux equal-
ity. With the help of (3.14) it is not difficult to derive the continuity conditions. The
strong convergence P ε → P 0 in L2(G), together with P 0 ∈ L2((0, t0), H

1(I)), implies

pc
ε(uε)1ε

+ − pc
ε(uε)1ε

− = P ε1ε
+ − P ε1ε

− ⇀ 0 in L2(G).

On the other hand, by (3.14) and the two-scale convergences,

pc
ε(uε)1ε

+ − pc
ε(uε)1ε

− = pc
+(uε)1ε

+ − pc
−(uε)1ε

−

= pc
+(u+)1ε

+ − pc
−(u−)1ε

− + o(1)

⇀
1

2
(pc

+(u+) − pc
−(u−)).

Comparison of the two limits yields (3.2).
For the derivation of (3.5) we consider a test function ϕ ∈ C∞

0 ((0, 2),R), and
Φε(x) = εψ(x, t)ϕ(x/ε) as above. Exploiting (3.14) we find

0 ←
∫
G

∂tu
εΦε =

∫
G

f(uε)∂xΦε −
∫
G

gε(uε)∂xu
ε∂xΦε

→
∫
G

∫ 1

0

f−(u−)ψ ∂yϕdy +

∫
G

∫ 2

1

f+(u+)ψ ∂yϕdy

−
∫
G

∫ 1

0

g−(u−)v− ψ∂yϕdy −
∫
G

∫ 2

1

g+(u+)v+ ψ∂yϕdy

=

∫
G

ψ
[
f−(u−) − f+(u+)

]
ϕ(1) −

∫
G

ψ
[
g−(u−)v− − g+(u+)v+

]
ϕ(1).
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Since ψ was arbitrary, this yields (3.5). In order to derive the flux equality, we exploit
once more (3.14) and calculate

F ε = fε(uε) − gε(uε)∂xu
ε

= [f+(uε) − g+(uε)∂xu
ε]1ε

+ + [f−(uε) − g−(uε)∂xu
ε]1ε

−

⇀
1

2
[f+(u+) − g+(u+)v+] +

1

2
[f−(u−) − g−(u−)v−],

which, because of (3.5), is the result for F 0.
Step 4. The quantities u±,x and relation (3.3). Our aim is to derive u−,x :=

∂xu− ∈ L2(G). Loosely speaking, we need an estimate for the oscillations of uε

on Γε
−. Such an estimate is the consequence of the corresponding estimate for the

capillary pressures P ε. Our construction serves also as a preparation for Step 5.
We introduce a function P̂ ε as a piecewise affine approximation of P ε,

P̂ ε(2kε) =
1

ε

∫ 2kε+ε

2kε

P ε ∀k,

P̂ ε affine on (2kε, 2kε + 2ε) ∀k.

Exploiting the L2((0, t0), H
1(I))-regularity of P ε we find P̂ ε → P 0. Furthermore, as

a projection of P ε onto the space of piecewise affine functions, the projections P̂ ε are
again bounded in L2((0, t0), H

1(Ω)). Choosing a subsequence, we may assume

∂xP̂
ε =

∑
k

1k
1

2ε2

∫ 2kε+ε

2kε

[P ε(. + 2ε) − P ε(.)] ⇀ ∂xP
0 in L2(G).

We can now relate the function P̂ ε with a piecewise linear function ûε that ap-
proximates u−,

ûε(2kε) =
1

ε

∫ 2kε+ε

2kε

uε ∀k,

ûε affine on (2kε, 2kε + 2ε) ∀k

with derivative

∂xû
ε =

∑
k

1k
1

2ε2

∫ 2kε+ε

2kε

[uε(. + 2ε) − uε(.)].

We claim that the sequence ∂xû
ε is uniformly bounded in L2(G). Our aim is to

compare ∂xP̂
ε with ∂upc

−(u−) · ∂xûε. To this end we write the pressure derivative
with the fundamental theorem and the function ξ(x, λ) := λuε(x+ 2ε) + (1−λ)uε(x)
as

∂xP̂
ε =

∑
k

1k
1

2ε2

∫ 2kε+ε

2kε

{∫ 1

0

∂upc
−(ξ(x, λ)) dλ

}
[uε(x + 2ε) − uε(x)] dx.

The nonnegativity of the integrand provided by Lemma 3 and the lower bound for
∂upc

− imply a uniform bound for ∂xû
ε ∈ L2(G). In particular, we may assume that

ûε converges strongly in L2(G); the limit is easily identified with the weak limit u−.
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Furthermore, choosing a subsequence, we may assume that ∂xû
ε converges weakly in

L2(G). Denoting the limit function by u−,x we have

∂xû
ε ⇀ u−,x := ∂xu− in L2(G).

In a similar way one constructs functions ũε that approximate u+ with ∂xũ
ε bounded

in L2(G). We may assume that also this sequence converges weakly, ∂xũ
ε ⇀ u+,x :=

∂xu+ in L2(G).
The weak convergences ûε ⇀ u− and ũε ⇀ u+, together with (3.1), imply ûε +

ũε ⇀ 2u0. Then the distributional derivatives converge as well, and we conclude (3.3)
with v0 = ∂xu

0 ∈ L2(G).
Step 5. Derivation of (3.4) and (3.6). We have seen that the capillary pressure

functions P ε are bounded in L2((0, t0), H
1(I)) and that we may therefore assume

∂xP
ε ⇀ ∂xP

0 in L2(G). In this last step of the proof we calculate the derivative
∂xP

0 in three different ways.
The most direct approach is to calculate with the chain rule, exploiting (3.14) in

the second equality,

∂xP
0 ↼ ∂xP

ε = ∂upc
−(uε) ∂xu

ε 1ε
− + ∂upc

+(uε) ∂xu
ε 1ε

+

= ∂upc
−(u−) ∂xu

ε 1ε
− + ∂upc

+(u+) ∂xu
ε 1ε

+ + o(1)

⇀
1

2
∂upc

−(u−) v− +
1

2
∂upc

+(u+) v+.

We will now calculate ∂xP
0 in a different way. We introduce the function P ∗,ε :=

pc
−(ûε). The monotonicity of ûε in t implies a compactness and allows us to assume

the strong and the pointwise almost everywhere convergence ûε → u−. We calculate
with the chain rule

∂xP
∗,ε = ∂upc

−(ûε) · ∂xûε ⇀ ∂upc
−(u−) · u−,x in L2(G).

On the other hand, P ∗,ε = pc
−(ûε) → pc

−(u−) = P 0, and therefore the distributional
limits coincide,

∂xP
0 = ∂upc

−(u−) · u−,x.

The above calculation can also be performed with averages over the set Γ+
ε and with

the function p+
c . We find the analogous formula ∂xP

0 = ∂up
+
c (u+) · u+,x and thus

(3.4). In (3.6) we use the symmetric version

∂xP
0 =

1

2
∂upc

+(u+)u+,x +
1

2
∂upc

−(u−)u−,x .

From our first calculation of ∂xP
0 we see that the weighted average of u+,x and u−,x

coincides with the weighted average of v+ and v−, as claimed in (3.6).
As a preparation for the investigation of the interface condition in the free bound-

ary value problem, we investigate the regularity of solutions in the region of strictly
positive saturation.

Lemma 5 (Hölder’s estimate). We consider a family of entropy solutions uε and
fix positive numbers C0 and δ. We assume that t ∈ (0, T ) is a time instance of bounded
energy in the sense that

(3.16)

∫
Γε

|∂xuε(., t)|2 1{uε≥δ/2} ≤ C2
0 .
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Then there exist a constant CL = CL(δ), independent of C0 and ε, and a constant
ε0 = ε0(δ, C0) such that the following hold:

1. Let a = 2kε+ ε ∈ (0, L) with k ∈ Z and uε(a− 0, t) ≥ δ, and let b ∈ 2Zε+ ε,
b > a. Then

(3.17) |uε(b− 0, t) − uε(a− 0, t)| ≤ CLC0

√
|b− a|.

2. For all ε ≤ ε0(δ, C0) there holds

(3.18) uε(2kε + ε− 0, t) ≥ δ ⇒ uε(2kε− ε− 0, t) ≥ δ/2.

Proof. Cellwise estimate and (3.17). The monotonicity of Lemma 3, together
with the lower bound of Lemma 2, implies uε ≥ δ on (a, L)× (0, t0), and hence (3.16)
provides an L2(Γε)-bound for the spatial derivative. We claim that locally, across a
single interval (2kε + ε, 2kε + 3ε), we can control differences of the uε values by the
integral of the derivative. Indeed, with the variables

y0 := uε(2kε + ε− 0, t), y1 := uε(2kε + 2ε + 0, t), y2 := uε(2kε + 3ε− 0, t),

z0 := uε(2kε + ε + 0, t), z1 := uε(2kε + 2ε− 0, t),

we have the relations

y2 − y1 =

∫ 2kε+3ε

2kε+2ε

∂xu
ε(., t) =: Δ1,

z1 − z0 =

∫ 2kε+2ε

2kε+ε

∂xu
ε(., t) =: Δ2,

z0 = Φ(y0) and z1 = Φ(y1) for Φ(y) := (pc
+)−1(pc

−(y)).

They imply

y2 = y1 + Δ1 = Φ−1 (z0 + Δ2) + Δ1 = Φ−1 (Φ(y0) + Δ2) + Δ1.

Since Φ and its inverse Φ−1 have a bounded derivative on {y ≥ δ} we conclude the
local estimate

(3.19) |y2 − y0| ≤ CL(δ) (|Δ1| + |Δ2|) ≤ CL

∫ 2kε+3ε

2kε+ε

|∂xuε(., t)|1Γε .

Adding the inequalities (3.19) from k = (a− ε)/(2ε) to k′ = (b− ε)/(2ε)− 1, we find

|uε(b− 0, t) − uε(a− 0, t)| ≤ CL

∫ b

a

|∂xuε(., t)|1Γε

≤ CL |b− a|1/2
(∫ L

a

|∂xuε(., t)|21Γε

)1/2

.

This is estimate (3.17).
Implication (3.18) on jumps. Let C0 be fixed and let t be a time instance with

‖∂xuε(., t)1{uε≥δ/2}1Γε‖2
L2 ≤ C0. As shown in (3.19), we have the estimate

|uε(2kε + ε− 0) − uε(2kε− ε− 0)| ≤ c

(∫ 2kε+ε

2kε−ε

|∂xuε(., t)|21Γε

)1/2
√
ε

≤ cC0

√
ε,



1758 BEN SCHWEIZER

x

t

L

X0
0 X0

δ

Fig. 6. Possible shapes of the free boundaries X0
δ and X0

0 . We know that they are monotone
and that X0

δ → X0
0 pointwise almost everywhere. With the above graphs we illustrate that X0

0 may
have jumps and that we cannot expect X0

δ (t) → X0
0 (t) for every t > 0.

at least if we can assume (for the last inequality) that the saturation satisfies uε ≥ δ/2
in every point of the interval (2kε − ε, 2kε + ε). We choose ε0 = ε0(δ, C0) such that
cC0

√
ε0 ≤ δ/4. The arguments above can be repeated for every point x in the

interval (2kε, 2kε+ ε). Continuity of uε inside the interval allows us to conclude that
uε(2kε + 0) ≥ 3δ/4. We repeat the argument on the interval (2kε − ε, 2kε) and find
the result.

4. The free boundary problem. We study, for δ > 0 and ε > 0, the free
boundary separating the region of uniformly positive saturation from the rest:

Xε
δ (t) := inf {x ∈ (0, L) ∩ (2εZ + ε) : uε(x− 0, t) ≥ δ} ,(4.1)

Xε
0(t) := inf

δ>0
Xε

δ (t).(4.2)

We set Xε
δ (t) = L if the infimum is taken over the empty set.

Lemma 6. There are sequences εk ↘ 0 and δm ↘ 0 such that, for every ε = εk
and every δ = δm, the following hold:

1. The maps t �→ Xε
δ (t) and t �→ Xε

0(t) are monotonically nondecreasing.
2. The following limits hold pointwise for almost every t, and the limits are

monotone functions:

X0
δ (t) = lim

k→∞
Xεk

δ (t), X0
0 (t) = lim

m→∞
X0

δm(t),

Xε
0(t) = lim

m→∞
Xε

δm(t), X̃0
0 (t) = lim

k→∞
Xεk

0 (t).

We can select an upper semicontinuous representative t �→ X(t) of the L1-
function t �→ X0

0 (t).
3. There holds X0

δ ≤ X0
δ′ for all δ ≤ δ′ and X̃0

0 ≤ X0
0 .

Proof. Figure 6 indicates possible shapes of X0
0 and X0

δ and recalls the fact
that these functions need not be continuous. Lemma 3 provides that the function
t �→ uε(x, t) is monotonically nonincreasing. This implies the monotonicity of the
free boundaries stated in statement 1. The monotonicity of the family of functions
t �→ Xε

δ implies the uniform boundedness in BV ([0, T ],R), and hence we can extract
subsequences that converge strongly in L1 and pointwise almost everywhere. Limits
of monotone functions are again monotone. Since BV-functions have only countably
many jumps, we find an upper semicontinuous representative.
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The monotonicity in δ is an immediate consequence of the definition of Xε
δ . It

justifies the infimum of (4.2) and implies Xε
0 ≤ Xε

δ , which carries over in the limit

k → ∞ as X̃0
0 ≤ X0

δ . The limit δm → 0 yields statement 3.
With the help of the limiting free boundaries we can transform the results of

Proposition 1 into the following statement.
Corollary 1 (limit equations in region G). Let t �→ X(t) be as in Lemma 6

and G the open domain:

G := {(x, t) ∈ (0, L) × (0, T ) : x > X(t)} .

Let (u0, F 0) be limits of entropy solutions (uε, F ε) as in Theorem 1 and G′ � G a
subset of G. Then there holds ∂xu

0 ∈ L2(G′) and F 0 satisfies on G′ the relation
F 0 = F(u0, ∂xu

0).
Proof. The function X is monotone and the closure of G′ is a compact subset of

G; hence G′ can be covered by a finite collection of sets G0 = (x0, L) × (0, t0) with
x0 > X(t0). It suffices to verify the statements on one such subset G0. Our aim is to
find ε0 > 0 and δ > 0 such that uε ≥ δ on G0 for all ε ≤ ε0. Once this is done, the
application of Proposition 1 yields the result.

We start by choosing η > 0 such that x0 − η > X(t0 + η), which is possible, since
X is upper semicontinuous, and hence lim supη↘0 X(t0 + η) ≤ X(t0) < x0. We now
choose δ > 0 such that

(4.3) x0 −
η

2
> X0

δ

(
t0 +

η

2

)
.

In order to verify that for a small δ > 0 relation (4.3) is satisfied, we exploit that by
monotonicity X(t) < x0 − η for all t ∈ (t0 + η/2, t0 + η). The strong L2-convergence
X0

δ → X and Egoroff’s theorem imply that, for δ > 0 small, |X0
δ −X| < η/2 except

for a set of t’s with measure less than η/2. For such δ there necessarily exists s ∈
(t0 + η/2, t0 + η) with X0

δ (s) < x0 − η/2. By monotonicity of X0
δ , relation (4.3) holds.

We finally want to choose, in a similar way, a number ε0 > 0 with x0 > Xε
δ (t0).

We have X0
δ (t) < x0 − η/2 for all t ∈ (t0, t0 + η/2). By Egoroff’s theorem we find

ε0 > 0 such that, for all ε ≤ ε0, we find some s ∈ (t0, t0 + η/2) such that Xε
δ (s) < x0.

The monotonicity of Xε
δ (s) implies x0 > Xε

δ (t0) and thus G0 ⊂ (Xε
δ (t0), L) × (0, t0).

The definition of Xε
δ implies the desired lower bound for the sequence uε on the left

boundary of the domain (Xε
δ (t0), L)× (0, t0). Lemma 2 yields the lower bound on the

whole domain.
Proposition 2 (limit equations in region B). In the domain

B := {(x, t) ∈ (0, L) × (0, T ) : x ≤ X(t)} ,

there holds that u0 ≡ u∗

2 and F 0 ≡ 0 almost everywhere. The function u0 has no
jump across ∂B ∩ ΩT in the following sense: Let T0 ∈ (0, T ] be a time instance with
X(T0) < L, and let Ar, r > 0, be a family of averages of u0,

(4.4) Ar :=
1

T0 · r

∫ T0

0

∫ r

0

u0(X(t) + s, t) ds dt.

Then Ar satisfies

Ar → u∗

2
for r → 0.
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Proof. We select monotone sequences δj → 0 and εm → 0 with the convergences
of the free boundaries as in Lemma 6 and with uεm → u0 weakly in L2(ΩT ). Almost
all time instances t ∈ (0, T ) are points of continuity of the function X(.) and of all
functions X0

δj
(.), j ∈ N. Furthermore, in almost every point t ∈ (0, T ) the conver-

gences of Lemma 6 hold. In the following we consider only time instances t with all
these properties.

Step 1. On B it holds that u0 = u∗/2. We note that u0 ≥ u∗/2 follows immedi-
ately from the lower bound in Lemma 4.

For the upper bound let (x, t) ∈ B be with t as above and with x < X(t).
Moreover, let ρ > 0 be arbitrary. We choose τ > 0 and an index j ∈ N such that, for
δ = δj , implication (2.5) of Lemma 4 holds. Since X has no jump in t we find t′ < t
with x < X(t′). By monotonicity in δ, we have x < X0

δ (t′). We choose r > 0 smaller
than 1

2 (X0
δ (t′) − x); for later use we also demand r < 1

2 (t− t′). We find m0 > 0 such
that, for all m ≥ m0, additionally r < Xεm

δ (t′) − x. We may choose m0 large enough
to satisfy additionally τε2

m0
< t− t′ − r and εm0

< ε0 of Lemma 4. The upper bound
of Lemma 4 provides, for ε = εm with m ≥ m0,

uε(2kε + ε− 0, t′) ≤ δ ⇒
∫ 2kε+ε

2kε−ε

uε(., t′ + τε2) ≤ ε(u∗ + ρ).

By construction, the assertion is satisfied for all k ∈ Z with 2kε + ε ≤ x + r. The
monotone decay of uε in t implies

(4.5)
1

|Br((x, t))|

∫
Br((x,t))

uεm ≤ 1

2
(u∗ + ρ).

This carries over to the weak limit u0. Since ρ is arbitrary, we have the upper bound
in B by the Lebesgue differentiation theorem.

Step 2. Boundary condition. We assume that a small number ρ > 0 is given; our
aim is to choose r > 0 small to have Ar ≤ u∗/2 + cρ for some universal constant c.
We recall that Ar is defined with an integration over the thin region

Ur := {(x, t) ∈ ΩT0 : X(t) < x < X(t) + r} .

We use the numbers δ0 > 0 and τ > 0 that appear in the upper bound for averages
in Lemma 4 and choose δ = δj < δ0/2. We consider the ε-dependent set

E0 :=

{
(x, t) ∈ ΩT0 : x ∈ (0, L),

∫ L

0

|∂xuε(., t)|2 1{uε≥δ/2} > C2
0

}
,

where we denote by ∂xu
ε the regular part of the derivative. Choosing C0 large enough

we achieve |E0 ∩ Ur| ≤ ρrT0 for all ε. This is possible since by estimate (2.1) the
time integral over the above spatial integral is bounded. We now choose r > 0 small
enough to satisfy, with CL = CL(δ/2) of Lemma 5, CLC0(4r)

1/2 ≤ δ.
In order to show the upper bound for Ar we may still choose ε > 0 small. We

define further ε-dependent exceptional sets as

E1 :=
{
(x, t) ∈ ΩT0 : x ∈ (0, L), |Xε

δ (t) −X0
δ (t)| ≥ r

}
,

E′
1 :=

{
(x, t) ∈ ΩT0 : x ∈ (0, L), t ≥ τε2, |Xε

δ (t− τε2) −X0
δ (t− τε2)| ≥ r

}
,

E2 :=
{
(x, t) ∈ ΩT0

: Xε
δ (t− τε2) ≤ x ≤ Xε

δ (t)
}
,

E3 :=
{
(x, t) ∈ ΩT0 : |X(t) −X(t− τε2)| ≥ r

}
.
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For the first set we achieve |E1| ≤ ρrT0 for all small ε by the L1-convergence Xε
δ → X0

δ .
The set E′

1 is obtained from E1 by a shift, and hence this set also satisfies |E′
1| ≤ ρrT0.

The set E2 is contained in a τε2-neighborhood of the free boundary

Σε
δ :=

{
(x, t) ∈ ΩT0

: lim
s↗t

Xε
δ (s) ≤ x ≤ lim

s↘t
Xε

δ (s)

}
.

The set Σε
δ is a curve of finite length, and hence we achieve |E2| ≤ ρrT0 for ε > 0

small. Finally, |E3| ≤ ρrT0 for ε > 0 small, since X is a BV-function. We may
additionally impose on ε that ε < r and ε < ε0(δ, C0); the latter allows us to use the
implication of Lemma 5 outside the set E0,

(4.6) uε(2kε + ε− 0, t) ≥ δ ⇒ uε(2kε− ε− 0, t) ≥ δ/2.

We note that the set

E′
0 :=

{
(x, t) ∈ (0, L) × (τε2, T0) :

∫ L

0

|∂xuε(., t− τε2)|2 1{uε(.,t−τε2)≥δ/2} > C2
0

}

also satisfies |E′
0 ∩ Ur| ≤ ρrT0, since it is obtained by a shift of the set E0.

After these preparations, let us now consider an arbitrary point (x, t) = (2kε +
ε, t) ∈ Ur \ (E0 ∪ E′

0 ∪ E1 ∪ E′
1 ∪ E2 ∪ E3). We distinguish two cases.

Case (i). uε(x, t) is small, x = 2kε+ε < Xε
δ (t). Since (x, t) is not contained in E2,

we also have x < Xε
δ (t−τε2). Lemma 4 can be applied with the point (2kε+ε, t−ε2τ)

and yields ∫ 2kε+ε

2kε−ε

uε(., t) ≤ ε(u∗ + ρ).

Case (ii). uε(x, t) is large, x = 2kε + ε ≥ Xε
δ (t). We will derive the smallness

of uε(x, t) with the help of the Hölder-type estimate of Lemma 5 and conclude again
with Lemma 4.

We start by setting t′ := t − τε2 and denote by k′ the integer with 2k′ε + ε =
x′ := Xε

δ (t′). The definition of Xε
δ implies uε(x′ − 0, t′) ≥ δ, (x′, t′) 	∈ E′

0 allows us to
use (4.6) at the time instance t′, and we conclude that δ/2 ≤ uε(2k′ε− ε− 0, t′) < δ.
The lower bound allows us to apply the first part of Lemma 5 with a = 2k′ε− ε and
b = x = 2kε + ε. We find

uε(x− 0, t′) ≤ uε(2k′ε− ε− 0, t′) + CL(δ/2)C0(4r)
1/2 ≤ δ + δ = 2δ.

We used here (x, t) 	∈ E3 and (x, t) 	∈ E′
1 such that

x− x′ = (x−X(t)) + (X(t) −X(t′)) + (X(t′) −X0
δ (t′)) + (X0

δ (t′) −Xε
δ (t′))

≤ r + r + 0 + r = 3r.

Another application of the upper bound of Lemma 4 yields also in this case∫ 2kε+ε

2kε−ε

uε(., t) ≤ ε(u∗ + ρ).

In both cases we find the same estimate for averages of uε. Summation over k
and an integration over t ∈ (0, T0) yield

1

T0 · r

∫
Ur

uε ≤ u∗

2
+ cρ + O(ε)

1

T0 · r
.
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The factor c covers the error induced by the exceptional sets, and the error term O(ε)
is induced by the integration over a boundary strip of width 2ε that is necessary to
cover Ur with intervals of the form (2kε, 2kε + 2ε). We take the limit ε → 0. Since
ρ > 0 is arbitrary, we find (4.4).

Step 3. On B it holds that F 0 = 0. We have shown in Step 1 that u0 is constant
in B, and hence the conservation law implies ∂xF

0 = 0 and we have F 0(x, t) = F 0(t)
for almost all (x, t) ∈ B. Our aim is to conclude F 0(t) = 0 for almost all t.

Inequality F 0 ≤ 0. For the approximate solutions uε, the boundary condi-
tion uε(0, t) = 0, together with f(0) = 0, g ≥ 0, and uε ≥ 0, implies F ε(0, t) =
trace{f(uε) − g(uε)∂xu

ε} ≤ 0. This can be written in a weak form as∫ T

0

∫ L

0

{uε · ∂tϕ + F ε · ∂xϕ} ≥ 0 ∀ϕ ∈ C∞
0 ((0, T ) × [0, L)), ϕ ≥ 0.

We can take the limit ε → 0 in these integrals and conclude that F 0 ≤ 0 on B from
∂tu

0 = 0.
Inequality F 0 ≥ 0. This inequality is not a consequence of the boundary condi-

tions but must be concluded with the help of the positivity of the global convection
term f(u). We consider an arbitrary rectangle U � B and a number q > 0 and show
for some m0 that

F εm ≥ −q on U for all m ≥ m0.

Once this is shown, we have F 0 ≥ 0 almost everywhere on B.
We fix the rectangle U � B and the number q > 0. We choose δ > 0 small

compared to q · inf{x : (x, t) ∈ U} > 0 and refer the reader to the end of the proof for
the precise choice. We now select m0 such that, for all m ≥ m0, (i) x ≤ Xε

δ/2(t) for

all (x, t) ∈ U , (ii) uε(x, t) ≤ δ for all (x, t) ∈ U with x ∈ Γε
−, (iii) u∗/2 ≤ uε(x, t) ≤

(u∗ + 1)/2 for all (x, t) ∈ U with x ∈ Γε
−. The existence of such an m0 follows from

the BV-convergence Xε
δ/2 → X0

δ/2, the argument of (3.18), and the lower bound for

averages. We now assume that, for some (x, t) ∈ U and some m ≥ m0,

F εm(x, t) = fεm(x, uεm(x, t)) − gεm(x, uεm(x, t))∂xu
εm(x, t) < −q

and derive a contradiction.
Since ∂xF

ε = −∂tu
ε is nonnegative, F ε is monotonically increasing and we have

−gε(x, uεm(x′, t))∂xu
ε(x′, t) = F ε(x′, t) − fε(x, uεm(x′, t)) ≤ F ε(x′, t) ≤ −q

for all x′ ∈ (0, x). This implies that uε(., t) is increasing on Γε
− ∩ (0, x), and on

Γε
+ ∩ (0, x) it is strictly increasing with a lower bound

∂xu
ε ≥ q

g∗
with g∗ := sup

ξ∈(u∗/2,(1+u∗)/2)

g(ξ) > 0.

The monotonicity of pc
± implies that uε is increasing on (0, x)∩ 2εZ with an average

slope of at least q/2g∗. The boundary condition uε(0, t) = 0 leads to

uε(x, t) ≥ q

2g∗
x > δ

if δ was chosen with δ < q inf{x : (x, t) ∈ U}/2g∗. This is in contradiction with
uε(x, t) ≤ δ of (ii). The proof of F 0 = 0 on B is complete.



HOMOGENIZATION OF DEGENERATE TWO-PHASE FLOW 1763

Proof of Theorem 1. A priori estimates for uε and F ε are shown in Lemma 1 of
section 2, and we may therefore select weakly convergent subsequences. The weak
convergences allow us to take the distributional limit in the conservation law and we
find (1.12).

In Lemma 6 we constructed a monotone function X : [0, T ] → R such that
G = {(x, t)|x > X(t)} ⊂ ΩT is an open set. In Proposition 2 we derived u0 ≡ u∗/2
and F 0 = 0 almost everywhere on B := ΩT \ G; since F satisfies F(u∗/2, ζ) = 0
for all ζ ∈ R, (1.13) holds pointwise almost everywhere on B. Corollary 1 provides
∂xu

0 ∈ L2
loc(G) and (1.13) on G.

We already know that ∂xu
0 is an L2

loc-function on ΩT \ Σ for Σ = ∂G ∩ ∂B.
Lemma 3 implies that ∂xu

0 is nonnegative, and the boundedness of u0 implies that
the derivative ∂xu

0 is a nonnegative measure on ΩT . Each slice u0(., t) is a BV -
function, and hence the singular part of the measure ∂xu

0 is concentrated on Σ and
regular with respect to the one-dimensional Hausdorff measure. Proposition 2 shows
that this singular part of the measure ∂xu

0 vanishes. We thus verified the statement
∂xu

0 ∈ L1(ΩT ).
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[12] D. Kröner and S. Luckhaus, Flow of oil and water in a porous medium, J. Differential
Equations, 55 (1984), pp. 276–288.

[13] B. H. Kueper and E. O. Frind, Two-phase flow in heterogeneous porous media: 1. Model
development, Water Resources Research, 27 (1991), pp. 1049–1057.

[14] P. van Lingen, Quantification and Reduction of Capillary Entrapment in Cross-Laminated
Oil Reservoirs, Ph.D. thesis, Delft University of Technology, Delft, 1998.

[15] F. Otto, L1-contraction and uniqueness for quasilinear elliptic-parabolic equations, J. Differ-
ential Equations, 131 (1996), pp. 20–38.

[16] B. Schweizer, Regularization of outflow problems in unsaturated porous media with dry re-
gions, J. Differential Equations, 237 (2007), pp. 278–306.

[17] B. Schweizer, Averaging of flows with capillary hysteresis in stochastic porous media, Euro-
pean J. Appl. Math., 18 (2007), pp. 389–415.



SIAM J. MATH. ANAL. c© 2008 Society for Industrial and Applied Mathematics
Vol. 39, No. 6, pp. 1764–1787

BOUNDARY HOMOGENIZATION AND REDUCTION OF
DIMENSION IN A KIRCHHOFF–LOVE PLATE∗

DOMINIQUE BLANCHARD† , ANTONIO GAUDIELLO‡ , AND TARAS A. MEL’NYK§

Abstract. We investigate the asymptotic behavior, as ε tends to 0+, of the transverse displace-
ment of a Kirchhoff–Love plate composed of two domains Ω+

ε ∪ Ω−
ε ⊂ R

2 depending on ε in the
following way. The set Ω+

ε is a union of fine teeth, having small cross section of size ε and constant
height, ε-periodically distributed on the upper side of a horizontal thin strip with vanishing height hε,
as ε tends to 0+. The structure is clamped on the top of the teeth, with a free boundary elsewhere,
and subjected to a transverse load. As ε tends to 0+, we obtain a “continuum” bending model of
rods in the limit domain of the comb, while the limit displacement is independent of the vertical
variable in the rescaled (with respect to hε) strip. We show that the displacement in the strip is
equal to the displacement on the base of the teeth if hε � ε4. However, if the strip is thin enough
(i.e., hε � ε4), we show that microscopic oscillations of the displacement in the strip, between the
basis of the teeth, may produce a limit average field different from that on the base of the teeth; i.e.,
a discontinuity in the transmission condition may appear in the limit model.

Key words. Kirchhoff–Love plate, rough boundary, thick junctions, homogenization, dimension
reduction

AMS subject classifications. 74K20, 35B27

DOI. 10.1137/070685919

1. Introduction. Consider a bounded three-dimensional (3D) plate with small
thickness and with middle surface Ω+

ε ∪ Ω−
ε ⊂ R

2 like a comb, where ε is a small
positive parameter. Precisely, Ω+

ε is a set of fine teeth, with small cross section of size
ε and constant height, ε-periodically distributed on the upper side of a horizontal thin
strip Ω−

ε having a small height hε (see Figure 1). The structure is clamped on the top
of the teeth, with a free boundary elsewhere, and subjected to a transverse load (see
Remark 2.3 for other compatible boundary conditions). The transverse displacement
is assumed to satisfy the Kirchhoff–Love equation.

The problem under investigation here pertains to the field of stationary problems
posed on a domain which has a so-called rough boundary or highly oscillating boundary.
Boundary-value problems involving rough boundaries appear in many fields of physics
and engineering sciences such as the scattering of acoustic waves on small periodic
obstacles, the free vibrations of strongly nonhomogeneous elastic bodies, and the
behavior of fluids over rough walls or of coupled fluid-solid periodic structures. The
reader can find a detailed bibliography about this subject in [2], [4], and [16]. More
generally, for the study of thin structures and multistructures, we refer the reader
to the following monographs: [7], [9], [12], [13], [14], [17], [19], [20], [22], and the
references therein.
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Fig. 1. The middle surface of our 3D plate.

A physical example for the specific model and structure considered here appears
in MEMS1 acceleration sensors (see [15]) where the acceleration component in the
direction of the motion corresponds to a transverse load applied over the thin strip
and the deformation of the teeth is then proportional to the acceleration itself. These
sensors are widely used in automotive applications (antilock braking system (ABS),
electronic stability program (ESP), airbags, etc.). Our geometrical structure can also
model a thin elastic grid used to filter a liquid flow in which case the transverse
external forces are due to the action of the fluid on the grid (turn Figure 1 upside
down).

It is often impossible to approach these problems directly with numerical methods,
because the rough boundary of a comb requires a large number of mesh points in
their neighborhood. Thus, the computational cost associated with such a problem
grows rapidly when the scale of periodicity gets smaller. Moreover, it can occur
that the required discretization step becomes too small for the machine precision.
Then, the goal is to construct accurate and numerically implementable asymptotic
approximations.

The aim of this paper is to mark a first step in this direction by finding, via an
asymptotic analysis as ε tends to zero, a handier limit model which approximates
the Kirchhoff–Love equation in the comb. In our case, the asymptotic analysis is
still more complicated in consequence of the competition between the parameter of
periodicity ε and the parameter of thickness hε which vanishes as ε tends to zero.

According to an idea introduced by Ciarlet and Destuynder (see [8]), the terms
in the thin strip Ω−

ε are rescaled in a fixed domain Ω−. Moreover, in the following,
Ω+ denotes the “limit domain” of the teeth (see Figure 2). In the limit process,
under suitable convergence assumptions on the rescaled loads, we obtain, in Ω+, a

1Microelectromechanical systems.
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Fig. 2. The limit middle surface.

continuum bending model of rods subjected to a force f depending on the limit of
the transverse loads on the teeth. The rods are clamped on the upper side Γ and
subjected on the lower side Σ to applied forces but without applied momentum. The
forces on Σ depend on the limit density g of the transverse loads on the thin strip Ω−

ε

and on the measure of the cross section of the reference tooth.

The limit solution is independent of the vertical variable in Ω− and meets a
Dirichlet transmission condition between Ω+ and Ω− if hε � ε4, or if hε � ε4 and if
g is negligible. However, if the strip is thin enough, i.e., hε � ε4, and the transverse
loads on the thin strip are strong enough, a discontinuity in the Dirichlet transmission
condition appears. Roughly speaking, this means that microscopic oscillations of the
displacement in the strip, between the basis of the teeth of Ω+

ε , produce a limit average
field different from that on the base of the teeth.

Now, we give a short review on problems involving rough boundaries with two
small geometrical parameters in competition. As far as we know, these problems have
been recently treated in [3], [5], and [6]. Precisely, in [3] and [6] the authors studied
the asymptotic behavior of a monotone nonlinear second-order Neumann problem,
with growth p − 1 (p ∈ ]1,+∞[), in a multidomain of R

N (N ≥ 2) composed of a
“forest” of cylinders with fixed height and small cross section of size ε, distributed
with ε-periodicity upon an asymptotically flat part of thickness hε. They proved that
hε = εp is a critical size for the thickness of the thin domain. In [5], the homogenization
process for the junction of a periodic family of elastic rods with a thin elastic plate is
studied in the setting of the linearized elasticity. Here different critical sizes appear
leading to various limit models: bending-bending model for the rods and the two-
dimensional (2D) plate, rigid-bending, or microscopic effects. In [11] the authors
considered a thin multidomain of R

N (N ≥ 2) consisting (e.g., in a 3D setting) of only
one vertical rod upon a horizontal disk. In this thin multidomain they introduced a
bulk energy density of the kind W (D2U), where W is a convex function with growth
p ∈ ]1,+∞[. By assuming that the two volumes tend to zero with the same rate,
under suitable boundary conditions, they showed that the limit problem is uncoupled
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if 1 < p ≤ N−1
2 , “partially” coupled if N−1

2 < p ≤ N − 1, and coupled if N − 1 < p.
The main difficulty in analyzing the problem considered in the present paper is

twofold and it is essentially due to the fourth order of the Kirchhoff–Love model.
First, deriving a priori estimates on the displacement for this operator and for an
oscillating domain after rescaling is more intricate than for second-order problems.
Second, as far as the homogenization process is concerned, the use of the method of
oscillating test functions, introduced by Tartar in [21], is also more complicated than
for second-order problems since here we have to take into account also the oscillations
of the second derivatives of the solution.

Our paper is organized as follows. In section 2 the problem and the main results
are stated. In section 3, by making use of the results proved in [3], some a priori
norm-estimates are obtained. In section 4, these estimates provide some convergence
results in L2-norm, in the weak topology of L2, or in the setting of the two-scale
convergence method, proposed by Nguetseng in [18] and developed by Allaire in [1].
For convenience of the reader, in this section we also recall the definition and the
main properties of the two-scale convergence. Finally, in section 5, the limit problem
is derived by making use of the method of oscillating test functions.

2. Statement of the problem and main results. Let ω = ]a, b[ with 0 <
a < b < 1, c, d ∈ ]0,+∞[, and let {ε}, {hε} ⊂ ]0, 1[ be two sequences converging to
zero. For every ε, consider the 3D plate with small thickness t > 0 and with middle
surface Ω+

ε ∪ Ω−
ε ⊂ R

2 having the shape of a comb (see Figure 1), where

Ω+
ε =

⋃
{k∈N: εb+εk<c}

(εω + εk) × [0, d[

is a set of fine teeth of small cross section εω and constant height d, ε-periodically
distributed on the upper basis of the thin strip:

Ω−
ε = ]0, c[ × ] − hε, 0[,

which has a vanishing height hε and constant basis. Moreover, denote by Γε the top
of the teeth of the middle surface:

Γε =
⋃

{k∈N: εb+εk<c}
(εω + εk) × {d}.

When the plate is clamped on Γε×] − t
2 ,

t
2 [, with a free boundary on (∂(Ω+

ε ∪Ω−
ε )\

Γε) × ] − t
2 ,

t
2 [, and it is subjected to a transverse load, the Kirchhoff–Love equation

satisfied by the transverse displacement Uε of the middle surface Ω+
ε ∪Ω−

ε is given by
(see pages 205–207 in [10])

(2.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Et3

12(1 − μ2)
Δ2Uε = Fε in Ω+

ε ∪ Ω−
ε ,

Uε = ∂nUε = 0 on Γε,

ΔUε + (1 − μ)
(
2n1n2∂

2
x1x2

Uε − n2
2∂

2
x1
Uε − n2

1∂
2
x2
Uε

)
= 0

on ∂(Ω+
ε ∪ Ω−

ε ) \ Γε,

∂nΔUε + (1 − μ)∂τ
[
n1n2

(
∂2
x2
Uε − ∂2

x1
Uε

)
+ (n2

1 − n2
2)∂

2
x1x2

Uε

]
= 0

on ∂(Ω+
ε ∪ Ω−

ε ) \ Γε,
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where Fε ∈ L2(Ω+ ∪ Ω−
ε ) represents the transverse load, Ω+ = ]0, c[ × ]0, d[ is the

“limit domain” of the comb, n = (n1, n2) and τ denote the exterior unit normal and
the unit tangent to Ω+

ε ∪Ω−
ε , respectively, μ ∈ ]0, 1

2 [ is the Poisson ratio, and E > 0 is
the Young modulus of the plate. In the following, M will denote the flexural rigidity
modulus of the plate, i.e.,

(2.2) M =
Et3

12(1 − μ2)
.

We work on the weak formulation of problem (2.1) (see pages 205–207 in [10]):

(2.3)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uε ∈ H2(Ω+
ε ∪ Ω−

ε ), Uε = ∂nUε = 0 on Γε,

M

∫
Ω+

ε ∪Ω−
ε

ΔUεΔV + (1 − μ)
(
2∂2

x1x2
Uε ∂

2
x1x2

V − ∂2
x1
Uε ∂

2
x2
V − ∂2

x2
Uε ∂

2
x1
V
)
dx

=

∫
Ω+

ε ∪Ω−
ε

FεV dx ∀V ∈ H2(Ωε ∪ Ω−
ε ) : V = ∂nV = 0 on Γε.

The goal of our paper is to study the asymptotic behavior of problem (2.3) as ε
tends to zero. To this aim, by following an idea of Ciarlet and Destuynder (see [8]),
problem (2.3) can be reformulated on a domain independent of hε by using the maps

(x1, x2) ∈ Ω− = ]0, c[ × ] − 1, 0[ −→ (x1, hεx2) ∈ Ω−
ε .

Namely, by setting

{
fε(x) = Fε(x) a.e. x ∈ Ω+,
fε(x) = Fε(x1, hεx2) a.e. x ∈ Ω−,

(2.4) {
uε(x) = Uε(x) a.e. x ∈ Ω+

ε ,
uε(x) = Uε(x1, hεx2) a.e. x ∈ Ω−,

and Ωε = Ω+
ε ∪ Ω−, it turns out that uε belongs to the following space:

Vε =
{
v ∈ H1(Ωε) : v+ ∈ H2(Ω+

ε ), v− ∈ H2(Ω−),

v = 0, Dv = 0 on Γε, ∂x1v
+ = ∂x1v

− on Σ \ ∂Ωε,

hε∂x2v
+ = ∂x2v

− on Σ \ ∂Ωε} ,

where v+ = v|
Ω

+
ε

, v− = v|Ω− , Σ = ]0, c[ × {0} (note that, since v = 0 on Γε, the

boundary condition ∂nv = 0 on Γε is equivalent to Dv = 0 on Γε). Moreover, uε is
the unique solution of the following problem:
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(2.5)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uε ∈ Vε,

M

∫
Ω+

ε

ΔuεΔv + (1 − μ)
(
2∂2

x1x2
uε ∂

2
x1x2

v − ∂2
x1
uε ∂

2
x2
v − ∂2

x2
uε ∂

2
x1
v
)
dx

+Mhε

∫
Ω−

(
∂2
x1
uε +

1

h2
ε

∂2
x2
uε

)(
∂2
x1
v +

1

h2
ε

∂2
x2
v

)
dx

+M(1 − μ)hε

∫
Ω−

2
1

hε
∂2
x1x2

uε
1

hε
∂2
x1x2

v − ∂2
x1
uε

1

h2
ε

∂2
x2
v − 1

h2
ε

∂2
x2
uε ∂

2
x1
v dx

=

∫
Ω+

ε

fεvdx + hε

∫
Ω−

fεvdx ∀v ∈ Vε.

The study of the asymptotic behavior of problem (2.5) will be performed under
the following assumption:

(2.6)

{
fε|Ω+

→ f strongly in L2(Ω+),

hεfε|Ω− → g strongly in L2(Ω−),

as ε tends to zero. Moreover, the following spaces will be involved:

(2.7)
W 2(Ω+) =

{
v ∈ L2(Ω+) : ∂x2v ∈ L2(Ω+), ∂2

x2
v ∈ L2(Ω+), v = ∂x2v = 0 on Γ

}
,

where Γ = ]0, c[ × {d} and

H2
per(]0, 1[) =

{
v ∈ H2(]0, 1[) : v(0) = v(1), v′(0) = v′(1)

}
with v′ denoting the first derivative of v. Note that H2

per(]0, 1[) is the closure of
C∞

per([0, 1]) with respect to the H2(]0, 1[)-norm, where C∞
per([0, 1]) is the set of func-

tions in C∞(R) which are 1-periodic.
In the following, ṽ denotes the zero-extension to Ω+ of any function v defined in

a subset of Ω+, and

(2.8) |ω| = b− a.

We will show that the limit problem depends on

(2.9) lim
ε→0

ε4

hε
= l ∈ [0,+∞[

and
∫ 0

−1
g(x1, x2)dx2. Precisely, the following main result will be proved.

Theorem 2.1. Let uε be the unique solution of problem (2.5). Let W 2(Ω+) be
the space defined in (2.7). Assume (2.6) and (2.9). Then,

ũε ⇀ |ω|u weakly in W 2(Ω+),

∂̃2
x1
uε ⇀ −μ|ω|∂2

x2
u weakly in L2(Ω+),

˜∂2
x1x2

uε ⇀ 0 weakly in L2(Ω+),
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as ε → 0, where u is the unique solution of the following problem:

(2.10)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u ∈ W 2(Ω+),

|ω|Et3

12

∫
Ω+

∂2
x2
u ∂2

x2
v dx = |ω|

∫
Ω+

fv dx

+

∫ c

0

(∫ 0

−1

g(x1, x2) dx2

)
v(x1, 0) dx1 ∀v ∈ W 2(Ω+)

with |ω| defined in (2.8), μ ∈ ]0, 1
2 [ the Poisson ratio, E > 0 the Young modulus, t

denoting the small thickness of the 3D plate (see problem (2.1)), and f and g given
by (2.6). Moreover,

‖∂x2uε‖L2(Ω−) ≤ Ch
3
4
ε ,

∥∥∂2
x1x2

uε

∥∥
L2(Ω−)

≤ Ch
1
2
ε ,

∥∥∂2
x2
uε

∥∥
L2(Ω−)

≤ Ch
3
2
ε

for every ε, where C is a positive constant independent of ε, and

(2.11) uε ⇀ u|Σ +

∫ 1

0

v0 dy1 weakly in L2(Ω−),

as ε → 0, where v0 = 0 if l = 0 in (2.9), while if l ∈ ]0,+∞[, v0 (= v0(x1, y1)) is the
unique solution of the following problem:

(2.12)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v0 ∈ L2(]0, c[, H2
per(]0, 1[)),

v0(x1, y1) = 0 in ]0, c[ × ω,

Et3

12

1

l

∫
]0,c[ × ]0,1[

∂2
y1
v0(x1, y1)∂

2
y1
ϕ(x1, y1)dx1dy1

=

∫
]0,c[ × ]0,1[

(∫ 0

−1

g(x1, x2)dx2

)
ϕ (x1, y1) dx1dy1

∀ϕ ∈ L2(]0, c[, H2
per(]0, 1[)) : ϕ (x1, y1) = 0 in ]0, c[ × sω

with u|Σ denoting the function in L2(Ω−) independent of x2 and equal, on Σ, to the
trace of the solution u of (2.10). Furthermore, the convergence of the energies holds:

lim
ε→0

{
Et3

12(1 − μ2)

∫
Ω+

ε

|Δuε|2 + 2(1 − μ)
(
|∂2

x1x2
uε|2 − ∂2

x1
uε ∂

2
x2
uε

)
dx

+
Et3

12(1 − μ2)
hε

∫
Ω−

[ ∣∣∣∣∂2
x1
uε +

1

h2
ε

∂2
x2
uε

∣∣∣∣
2

+2(1 − μ)

(∣∣∣∣ 1

hε
∂2
x1x2

uε

∣∣∣∣
2

− 1

h2
ε

∂2
x2
uε ∂

2
x1
uε

)]
dx

}

=
Et3

12

(
|ω|
∫

Ω+

|∂2
x2
u|2dx +

1

l

∫
]0,c[ × ]0,1[

∣∣∂2
y1
v0(x1, y1)

∣∣2 dx1dy1

)
,

where ∞ · 0 means 0.
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Proof. Theorem 2.1 is an immediate consequence of Proposition 4.3, Corollary
4.4, and Propositions 5.1 and 5.2 (see sections 4 and 5). For the sake of clarity, we
detail the proof of (2.11) and (2.12). If l = 0 in (2.9), convergence (4.6), Corollary
4.4, and (ii) of Proposition 4.2 provide that

uε ⇀

∫ 1

0

u0(·, y1) dy1 = u|Σ weakly in L2(Ω−).

If l > 0, by setting v0(x1, y1) = u0(x1, y1) − u|Σ(x1, 0) in ]0, c[ × ω, convergence
(4.6), equality (4.10), and (ii) of Proposition 4.2 provide that

uε ⇀

∫ 1

0

u0(·, y1) dy1 = u|Σ +

∫ 1

0

v0(·, y1)dy1 weakly in L2(Ω−),

and, by virtue of (5.9) (since ∂2
y1
u0 = ∂2

y1
v0), v0 is the unique solution of the following

problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v0 ∈ L2(]0, c[, H2
per(]0, 1[)),

v0(x1, y1) = 0 in ]0, c[ × ω,

M
1 − μ2

l

∫
]0,c[ × ]0,1[

∂2
y1
v0(x1, y1)∂

2
y1
ϕ(x1, y1)dx1dy1

=

∫
]0,c[ × ]0,1[

(∫ 0

−1

g(x1, x2)dx2

)
ϕ (x1, y1) dx1dy1

∀ϕ ∈ L2(]0, c[, H2
per(]0, 1[)) : ϕ (x1, y1) = 0 in ]0, c[ × ω,

which coincides with problem (2.12) by virtue of definition (2.2). Note that, in prob-

lem (2.12), v0 = 0 if
∫ 0

−1
g(x1, x2)dx2 = 0 a.e. in ]0, c[.

The convergences of the energies are obtained by passing to the limit, as ε tends
to zero, in (2.5) with v = uε and by making use of assumption (2.6), the convergences
of {ũε}ε, and the equation satisfied by u and v0.

Remark 2.2. Problems (2.10) and (2.12) are the weak formulation of the following
problems:

(2.13)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Et3

12

∂4u

∂x4
2

= f in Ω+,

u =
∂u

∂x2
= 0 on Γ,

∂2u

∂x2
2

= 0 on Σ,

∂3u

∂x3
2

=
12

|ω|Et3

∫ 0

−1

g(x1, x2) dx2 on Σ,
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and for a.e. x1 ∈ ]0, c[

(2.14)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Et3

12

1

l

∂4v0

∂y4
1

(x1, y1) =

∫ 0

−1

g(x1, x2)dx2 for y1 ∈ ]0, a[,

Et3

12

1

l

∂4v0

∂y4
1

(x1, y1) =

∫ 0

−1

g(x1, x2)dx2 for y1 ∈ ]b, 1[,

v0(x1, a) =
∂v0

∂y1
(x1, a) = v0(x1, b) =

∂v0

∂y1
(x1, b) = 0,

v0(x1, 0) = v0(x1, 1),

∂v0

∂y1
(x1, 0) =

∂v0

∂y1
(x1, 1),

∂2v0

∂y2
1

(x1, 0) =
∂2v0

∂y2
1

(x1, 1),

∂3v0

∂y3
1

(x1, 0) =
∂3v0

∂y3
1

(x1, 1),

v0(x1, y1) = 0 for y1 ∈ ω = ]a, b[,

respectively.
The solution of problem (2.14) can be explicitly computed by solving a linear

system of 8 equations with 8 unknowns. Then, for a.e. x1 ∈ ]0, c[, it results that

(2.15) v0(x1, y1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

l

2Et3
(a− y1)

2(1 − b + y1)
2

∫ 0

−1

g(x1, x2)dx2 for y1 ∈ [0, a[,

0 for y1 ∈ ω = [a, b],

l

2Et3
(1 + a− y1)

2(b− y1)
2

∫ 0

−1

g(x1, x2)dx2 for y1 ∈ ]b, 1],

and consequently

(2.16)∫ 1

0

v0(x1, y1) dy1

=
l

2Et3

{
1

30
+

a

6
+

a2

3
+

a3

3
+

a4

6
+

a5

30
− b

6
− 2ab

3
− a2b− 2a3b

3
− a4b

6

+
b2

3
+ ab2 + a2b2 +

a3b2

3
− b3

3
− 2ab3

3
− a2b3

3
+

b4

6
+

ab4

6
− b5

30

}∫ 0

−1

g(x1, x2)dx2.

In the limit domain Ω+ of the comb, we obtain a continuum bending model of
rods subjected to a force f , clamped on the upper side Γ, and subjected on the lower
side Σ to applied forces but without applied momentum. The forces on Σ depend on
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the limit density g of the transverse loads on the thin strip Ω−
ε and on the measure

of the cross section ω of the reference tooth. The force f depends on the limit of the
transverse loads on the teeth.

The limit solution meets a Dirichlet transmission condition between Ω+ and the
rescaled strip Ω− if hε � ε4, or if hε � ε4 and

∫ 0

−1
g(x1, x2)dx2 = 0 a.e. in ]0, c[.

However, if the strip is thin enough and the transverse loads on the thin strip are

strong enough, i.e., hε � ε4 and
∫ 0

−1
g(x1, x2)dx2 = 0 in a subset of ]0, c[ with positive

measure, a discontinuity in the Dirichlet transmission condition appears. Roughly
speaking, this means that microscopic oscillations of the displacement in the strip,
between the basis of the teeth of Ω+

ε , produce a limit average field different from that

on the base of the teeth. We point out that (2.15) provides that
∫ 1

0
v0(x1, y1) dy1 = 0

in a subset of ]0, c[ with positive measure if and only if
∫ 0

−1
g(x1, x2)dx2 = 0 in the same

subset. Consequently, by taking into account the definition of g in (2.6), for obtaining
the additional term in (2.11) when hε � ε4, it is necessary that the transverse loads
in the thin strip Ω−

ε are strong enough to avoid that limε→0(hε

∫
Ω−

ε
|Fε|2dx) = 0. For

instance, if Fε = ε−4α in Ω−
ε , the additional term in the displacement of the strip

intervenes when α = 1 and it is given by formula (2.16) with g = 1; it does not appear
when α < 1.

As regards the Laplacian, in [6] the authors proved that hε � ε2 is a critical size
for the thickness of the thin strip. In particular, if hε � ε2, they gave an example in
which g = 0 and the sequence of the solutions is not even bounded in L1(Ω−). In our
paper, as regards the case hε � ε4, we think that a deterministic limit model may
hardly be expected, but we have no example to validate it.

Remark 2.3. Let us give a few comments about the boundary condition on
∂(Ω+

ε ∪ Ω−
ε ). Indeed, it is physically reasonable to assume that the plate is clamped

on a part of its boundary. An alternative to the condition Uε = ∂nUε = 0 on Γε could
be to impose Uε = ∂nUε = 0 on ]0, c[ × {−hε} (i.e., on the lower lateral surface
of the 3D plate modeled by the 2D plate Ω−

ε ). A similar and easier analysis than
that developed below shows that, in this case, the limit problem (2.13) (also when

limε→0
ε4

hε
= +∞) is replaced by the following one:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Et3

12

∂4u

∂x4
2

= f in Ω+,

∂2u

∂x2
2

=
∂3u

∂x3
2

= 0 on Γ,

u =
∂u

∂x2
= 0 on Σ.

Moreover, it results that (see Remark 3.3)

uε → 0 strongly in H1(Ω−),

and in this case there are no oscillations in the strip.

Concerning the original problem (2.3), the result below immediately follows from
Theorem 2.1.

Corollary 2.4. Let Uε be the solution of problem (2.3) under the assumptions
of Theorem 2.1 with {fε}ε defined by (2.4).
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Then, it results that

Ũε ⇀ |ω|u weakly in W 2(Ω+),

∂̃2
x1
Uε ⇀ −μ|ω|∂2

x2
u weakly in L2(Ω+),

˜∂2
x1x2

Uε ⇀ 0 weakly in L2(Ω+),

lim
ε→0

1

|Ω−
ε |

∫
Ω−

ε

Uε dx =
1

c

∫ c

0

(
u|Σ +

∫ 1

0

v0dy1

)
dx1,

lim
ε→0

1

|Ω−
ε |α

∫
Ω−

ε

∂x2
Uεdx= lim

ε→0

1

|Ω−
ε |β

∫
Ω−

ε

∂2
x1x2

Uεdx

= lim
ε→0

1

|Ω−
ε |β

∫
Ω−

ε

∂2
x2
Uεdx = 0 ∀α <

3

4
,∀β <

1

2
,

where u is the weak solution of problem (2.13), u|Σ denotes the trace of u on Σ, and
v0 = 0 if l = 0 in (2.9), while if l ∈ ]0,+∞[, v0 (= v0(x1, y1)) is the solution of
problem (2.14). Furthermore, the energies converge in the sense that

lim
ε→0

(
Et3

12(1 − μ2)

∫
Ω+

ε
⋃

Ω−
ε

|ΔUε|2 + 2(1 − μ)
(
|∂2

x1x2
Uε|2 − ∂2

x1
Uε ∂

2
x2
Uε

)
dx

)

=
Et3

12

(
|ω|
∫

Ω+

|∂2
x2
u|2dx +

1

l

∫
]0,c[ × ]0,1[

∣∣∂2
y1
v0(x1, y1)

∣∣2 dx1dy1

)
,

where ∞ · 0 means 0.

3. A priori norm-estimates. Define

D2(v) =

⎛
⎝ ∂2

x1
v ∂2

x1x2
v

∂2
x1x2

v ∂2
x2
v

⎞
⎠ , v ∈ H2(Ω+

ε );

D2
ε(v) =

⎛
⎜⎜⎜⎝

∂2
x1
v

1

hε
∂2
x1x2

v

1

hε
∂2
x1x2

v
1

h2
ε

∂2
x2
v

⎞
⎟⎟⎟⎠ , v ∈ H2(Ω−),

for every ε. This section is devoted to proving the following a priori norm-estimates.
Proposition 3.1. Let uε be the solution of problem (2.5). Assume (2.9) and

(2.6). Then, there exists a positive constant C, independent of ε, such that

(3.1) ‖uε‖H2(Ω+
ε ) ≤ C,

(3.2)
∥∥∥h 1

2
ε D2

ε(uε)
∥∥∥

(L2(Ω−))4
≤ C

for every ε.
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To prove Proposition 3.1, the following result is required.

Lemma 3.2. There exists a positive constant C, independent of ε, such that

(3.3)

‖v‖2
L2(Ω−) ≤ C

(
‖v‖2

L2(Σ\∂Ωε)
+ ε2 ‖∂x1v‖

2
L2(Ω−) + ‖∂x2v‖

2
L2(Ω−)

)
∀v ∈ H1(Ω−);

(3.4) ‖v‖2
L2(Σ\∂Ωε)

≤ C
(
‖v‖2

L2(Ω+
ε ) + ‖∂x2v‖

2
L2(Ω+

ε )

)
∀v ∈ H1(Ω+

ε );

(3.5)

‖v‖2
H2(Ω+

ε ) ≤ C
∥∥D2v

∥∥2

(L2(Ω+
ε ))

4 ∀v ∈
{
v ∈ H2(Ω+

ε ) : v = 0, Dv = 0 on Γε

}
for every ε.

Proof. The proof of inequality (3.3) is performed in the proof of Proposition 3.3
in [3]. Standard arguments using Poincaré inequality and Sobolev trace theorem lead
to inequalities (3.4) and (3.5). Obviously, boundary conditions v = 0 and Dv = 0 on
Γε intervene for obtaining estimate (3.5). In the case of other boundary conditions,
see Remark 3.3.

Proof of Proposition 3.1. In the following, C denotes any positive constant inde-
pendent of ε.

By choosing v = uε in (2.5), it results that

M

∫
Ω+

ε

∣∣∂2
x1
uε

∣∣2 +
∣∣∂2

x2
uε

∣∣2 + 2μ∂2
x1
uε ∂

2
x2
uε + 2(1 − μ)

∣∣∂2
x1x2

uε

∣∣2 dx

+Mhε

∫
Ω−

∣∣∂2
x1
uε

∣∣2 +

∣∣∣∣ 1

h2
ε

∂2
x2
uε

∣∣∣∣
2

+ 2μ∂2
x1
uε

1

h2
ε

∂2
x2
uε + 2(1 − μ)

∣∣∣∣ 1

hε
∂2
x1x2

uε

∣∣∣∣
2

dx

=

∫
Ω+

ε

fεuεdx + hε

∫
Ω−

fεuεdx

for every ε. Consequently, by taking into account that −α2 −β2 ≤ 2αβ, for α, β ∈ R,
and by making use of assumption (2.6), one obtains that

∫
Ω+

ε

∣∣∂2
x1
uε

∣∣2 +
∣∣∂2

x2
uε

∣∣2 − μ
∣∣∂2

x1
uε

∣∣2 − μ
∣∣∂2

x2
uε

∣∣2 + 2(1 − μ)
∣∣∂2

x1x2
uε

∣∣2 dx

+hε

∫
Ω−

∣∣∣∣∂2
x1
uε

∣∣∣∣
2

+

∣∣∣∣ 1

h2
ε

∂2
x2
uε

∣∣∣∣
2

−μ

∣∣∣∣∂2
x1
uε

∣∣∣∣
2

−μ

∣∣∣∣ 1

h2
ε

∂2
x2
uε

∣∣∣∣
2

+ 2(1−μ)

∣∣∣∣ 1

hε
∂2
x1x2

uε

∣∣∣∣
2

dx

≤ C
(
‖uε‖L2(Ω+

ε ) + ‖uε‖L2(Ω−)

)
for every ε, that is,

(3.6)
∥∥D2uε

∥∥2

(L2(Ω+
ε ))

4 + hε

∥∥D2
εuε

∥∥2

(L2(Ω−))4
≤ C

(
‖uε‖L2(Ω+

ε ) + ‖uε‖L2(Ω−)

)

for every ε.
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On the other hand, by applying (3.3) three times and by recalling that ∂x2
u−
ε =

hε∂x2u
+
ε on Σ \ ∂Ωε, one obtains that

‖uε‖2
L2(Ω−) ≤ C

(
‖uε‖2

L2(Σ\∂Ωε)
+ ε2 ‖∂x1uε‖2

L2(Ω−) + ‖∂x2uε‖2
L2(Ω−)

)

≤ C ‖uε‖2
L2(Σ\∂Ωε)

+Cε2
(
‖∂x1

uε‖2
L2(Σ\∂Ωε)

+ ε2
∥∥∂2

x1
uε

∥∥2

L2(Ω−)
+
∥∥∂2

x1x2
uε

∥∥2

L2(Ω−)

)

+C
(∥∥∂x2u

−
ε

∥∥2

L2(Σ\∂Ωε)
+ ε2

∥∥∂2
x1x2

uε

∥∥2

L2(Ω−)
+
∥∥∂2

x2
uε

∥∥2

L2(Ω−)

)

= C
(
‖uε‖2

L2(Σ\∂Ωε)
+ ε2 ‖∂x1uε‖2

L2(Σ\∂Ωε)
+
∥∥hε∂x2u

+
ε

∥∥2

L2(Σ\∂Ωε)

)

+C
(
ε4
∥∥∂2

x1
uε

∥∥2

L2(Ω−)
+ ε2

∥∥∂2
x1x2

uε

∥∥2

L2(Ω−)
+
∥∥∂2

x2
uε

∥∥2

L2(Ω−)

)
for every ε, from which, by taking into account (3.4) and that ε < 1 and hε < 1, it
follows that

(3.7)

‖uε‖2
L2(Ω−)

≤ C
(
‖uε‖2

H2(Ω+
ε ) + ε4

∥∥∂2
x1
uε

∥∥2

L2(Ω−)
+
∥∥∂2

x1x2
uε

∥∥2

L2(Ω−)
+
∥∥∂2

x2
uε

∥∥2

L2(Ω−)

)

= C

[
‖uε‖2

H2(Ω+
ε )

+hε

(
ε4

hε

∥∥∂2
x1
uε

∥∥2

L2(Ω−)
+ hε

∥∥∥∥ 1

hε
∂2
x1x2

uε

∥∥∥∥
2

L2(Ω−)

+ h3
ε

∥∥∥∥ 1

h2
ε

∂2
x2
uε

∥∥∥∥
2

L2(Ω−)

)]

≤ C

[
‖uε‖2

H2(Ω+
ε )

+hε

(
ε4

hε

∥∥∂2
x1
uε

∥∥2

L2(Ω−)
+

∥∥∥∥ 1

hε
∂2
x1x2

uε

∥∥∥∥
2

L2(Ω−)

+

∥∥∥∥ 1

h2
ε

∂2
x2
uε

∥∥∥∥
2

L2(Ω−)

)]

for every ε.
By combining (3.6) with (3.7), making use of (3.5), and assuming that the limit

(2.9) is finite, one has that

‖uε‖2
H2(Ω+

ε ) + hε

∥∥D2
εuε

∥∥2

(L2(Ω−))4
≤ C

(
‖uε‖2

H2(Ω+
ε ) + hε

∥∥D2
εuε

∥∥2

(L2(Ω−))4

) 1
2

for every ε, which provides estimates (3.1) and (3.2).
Remark 3.3. Let us remark that in the case of the alternative boundary conditions

mentioned in Remark 2.3, deriving of estimates (3.1) and (3.2) is easier (and they

hold true also when limε→0
ε4

hε
= +∞). Indeed, they follow easily from (3.6) by using
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∂x2
u−
ε = hε∂x2

u+
ε on Σ \ ∂Ωε and the Poincaré inequality in Ω− (which is licit since

one has that uε = ∂x2uε = 0 on ]0, c[ × {−1}). We point out that now inequality
(3.2) provides that uε → 0 strongly in H1(Ω−).

Corollary 3.4. Let uε be the solution of problem (2.5). Assume (2.9) and (2.6).
Then, there exists a positive constant C, independent of ε, such that

∥∥ε2∂2
x1
uε

∥∥
L2(Ω−)

≤ C,(3.8) ∥∥∥∥∥ 1

h
1
2
ε

∂2
x1x2

uε

∥∥∥∥∥
L2(Ω−)

≤ C,(3.9)

∥∥∥∥∥ 1

h
3
2
ε

∂2
x2
uε

∥∥∥∥∥
L2(Ω−)

≤ C,(3.10)

∥∥∥∥∥ 1

h
3
4
ε

∂x2uε

∥∥∥∥∥
L2(Ω−)

≤ C,(3.11)

‖ε∂x1
uε‖L2(Ω−) ≤ C,(3.12)

‖uε‖L2(Ω−) ≤ C(3.13)

for every ε.

Proof. Estimates (3.8), (3.9), and (3.10) follow immediately from estimate (3.2).
By combining estimate (3.2) with inequalities (3.3) and (3.4) and by recalling that
∂x2u

−
ε = hε∂x2u

+
ε on Σ \ ∂Ωε, it is easy to obtain (3.11), (3.12), and (3.13).

4. Convergence results. For convenience of the reader, we recall the definition
and the main properties of the two-scale convergence. We refer the reader to [1] and
[18] for the proofs.

Definition 4.1. Let O ⊂ R
N and Y = ]0, 1[N . A sequence {vε}ε ⊂ L2(O)

is said to two-scale converge to a limit v ∈ L2(O × Y ) if, for any function φ in
C∞

0

(
O, C∞

per(Y )
)
, it results that

lim
ε→0

∫
O
vε(x)φ

(
x,

x

ε

)
dx =

∫
O×Y

v(x, y)φ(x, y) dxdy.

Proposition 4.2. Let O ⊂ R
Nand Y = ]0, 1[N .

(i) Let {vε}ε ⊂ L2(O) be a sequence converging to v strongly in L2(O). Then,
{vε}ε two-scale converges to the same limit v.

(ii) Let {vε}ε ⊂ L2(O) be a bounded sequence, two-scale converging to v ∈ L2(O×
Y ). Then, {vε} converges to

∫
Y
v(·, y)dy weakly in L2(O).

(iii) Let {vε}ε be a bounded sequence in L2(O). Then, there exist a subsequence
of {ε}, still denoted by {ε}, and a function v ∈ L2(O × Y ) such that {vε}ε two-scale
converges to v.

(iv) Let {vε}ε ⊂ W 1,2(O) be a sequence such that {vε}ε and {εDvε}ε are bounded
in L2(O) and (L2(O))N , respectively. Then, there exist a subsequence of {ε}, still
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denoted by {ε}, and a function v ∈ L2(O,W 1,2
per(Y )) such that {vε}ε and {εDvε}ε

two-scale converge to v and Dyv, respectively.
The a priori norm-estimates of the solution uε of problem (2.5), obtained in section

3, provide the following convergence result.
Proposition 4.3. Let uε be the solution of problem (2.5). Let W 2(Ω+) be the

space defined in (2.7). Assume (2.6) and (2.9). Then,

(4.1) ‖∂x2
uε‖L2(Ω−) ≤ Ch

3
4
ε ,

(4.2)
∥∥∂2

x1x2
uε

∥∥
L2(Ω−)

≤ Ch
1
2
ε ,

∥∥∂2
x2
uε

∥∥
L2(Ω−)

≤ Ch
3
2
ε

for every ε, where C is a positive constant independent of ε. Moreover, there ex-
ist a subsequence of {ε}, still denoted by {ε}, u ∈ W 2(Ω+), η, ζ ∈ L2(Ω+), u0(=
u0(x1, y1)) ∈ L2(]0, c[, H2

per(]0, 1[)), and ξ(= ξ((x1, x2), (y1, y2))) ∈ L2(Ω−×]0, 1[2)
such that

(4.3) ũε ⇀ |ω|u weakly in W 2(Ω+),

(4.4) ∂̃2
x1
uε ⇀ η weakly in L2(Ω+),

(4.5) ˜∂2
x1x2

uε ⇀ ζ weakly in L2(Ω+),

(4.6) {u−
ε }ε two-scale converges to u0,

(4.7) {ε∂x1u
−
ε }ε two-scale converges to ∂y1u0,

(4.8) {ε2∂2
x1
u−
ε }ε two-scale converges to ∂2

y1
u0,

(4.9)

{
1

h
3
2
ε

∂2
x2
u−
ε

}
ε

two-scale converges to ξ,

as ε → 0, and

(4.10) u0(x1, y1) = u|Σ(x1, 0) in ]0, c[ × ω.

Proof. Estimates (4.1) and (4.2) follow from estimates (3.11), (3.9), and (3.10).
Convergences (4.3), (4.4), and (4.5) are a consequence of estimate (3.1). Estimates
(3.13), (3.12), (3.8), (4.1), and (4.2) provide convergences (4.6), (4.7), and (4.8) with
u0 ∈ L2(Ω−, H2

per(]0, 1[)). Moreover, u0 is independent of x2, too. In fact, it results
that

0 = lim
ε→0

∫
Ω−

∂x2uεϕ
(
x,

x1

ε

)
dx = − lim

ε→0

∫
Ω−

uε∂x2ϕ
(
x,

x1

ε

)
dx

= −
∫

Ω−×]0,1[

u0(x, y1)∂x2
ϕ (x, y1) dxdy1 ∀ϕ ∈ C∞

0

(
Ω− × ]0, 1[

)
.

Convergence (4.9) springs from estimate (3.10).
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Finally, statement (4.10) can be obtained by arguing as in the proof of Propo-
sition 6.4 in [6]. More precisely, let χω be the ]0, 1[-periodic extension to R of the
characteristic function of ω = ]a, b[ with respect to ]0, 1[. Then, by proceeding as in
the proof of (6.7) in [6], i.e., by using mainly (4.1) and (4.6), one obtains that

(4.11)
{
u−
ε (·, 0)χω

( ·
ε

)}
ε

two-scale converges to u0χω,

as ε → 0. On the other hand, by proceeding as in the proof of (6.13) in [6], i.e., by
using mainly (3.1), one proves that

(4.12) {ũ+
ε (·, 0)}ε two-scale converges to u(·, 0)χω,

as ε → 0. Finally, in order to obtain (4.10) it is enough to pass to the two-scale limit
in

u−
ε (x1, 0)χω

(x1

ε

)
= ũ+

ε (x1, 0) for a.e. x1 ∈ ]0, c[,

as ε → 0, and to make use of (4.11) and (4.12).
If l = 0 in (2.9), then u0 can be completely identified in terms of u.
Corollary 4.4. Let uε be the solution of problem (2.5). Assume (2.9), with

l = 0, and (2.6). Let u ∈ W 2(Ω+) and u0 ∈ L2(]0, c[, H2
per(]0, 1[)) be satisfying

Proposition 4.3. Then,

(4.13) u0(x1, y1) = u|Σ(x1, 0) in ]0, c[ × ]0, 1[.

Proof. Assumption (2.9) with l = 0 and estimate (3.2) ensure that

ε2∂2
x1
uε → 0 strongly in L2(Ω−),

as ε → 0. Consequently, by virtue of (4.8), it results that

(4.14) ∂2
y1
u0 = 0 in ]0, c[ × ]0, 1[.

By combining (4.10) with (4.14), one obtains (4.13).

5. The limit problem. The following proposition is devoted to identify the
limit problem in Ω+.

Proposition 5.1. Let uε be the solution of problem (2.5). Assume (2.9) and
(2.6). Let u ∈ W 2(Ω+) and η, ζ ∈ L2(Ω+) satisfy Proposition 4.3. Then,

(5.1) η = −μ|ω|∂2
x2
u a.e. in Ω+,

(5.2) ζ = 0 a.e. in Ω+,

and u ∈ W 2(Ω+) is the unique solution of

(5.3)

M |ω|(1 − μ2)

∫
Ω+

∂2
x2
u∂2

x2
v dx

= |ω|
∫

Ω+

fv dx +

∫ c

0

(∫ 0

−1

g(x1, x2) dx2

)
v(x1, 0) dx1 ∀v ∈ W 2(Ω+),
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where μ ∈ ]0, 1
2 [ is the Poisson ratio, M > 0 represents the flexural rigidity modulus

of the plate (see problem (2.5)), and f , g ∈ L2(Ω−) are given by (2.6).

Proof. At first, claim (5.1) will be proved. To this aim, choose v(x1, x2) = ε2ψ1(
x1

ε )
ϕ(x1, x2) as test function in (2.5), where ψ1 is the 1-periodic function defined by

ψ1(y1) = 1
2y1(y1 − 1) in [0, 1] and ϕ ∈ C∞

0 (Ω+) (point out that v ∈ C∞(Ω+
ε )
⋂
C0(Ω

+)
⊂ Vε). Then, it results that

(5.4)

M

∫
Ω+

ε

Δuε

(
ϕ + 2εψ′

1

(x1

ε

)
∂x1

ϕ + ε2ψ1

(x1

ε

)
∂2
x1
ϕ + ε2ψ1

(x1

ε

)
∂2
x2
ϕ
)
dx

+M(1 − μ)

∫
Ω+

ε

2∂2
x1x2

uε

(
εψ′

1

(x1

ε

)
∂x2

ϕ + ε2ψ1

(x1

ε

)
∂2
x1x2

ϕ
)
dx

−M(1 − μ)

∫
Ω+

ε

∂2
x1
uεε

2ψ1

(x1

ε

)
∂2
x2
ϕdx

−M(1 − μ)

∫
Ω+

ε

∂2
x2
uε

(
ϕ + 2εψ′

1

(x1

ε

)
∂x1ϕ + ε2ψ1

(x1

ε

)
∂2
x1
ϕ
)
dx

=

∫
Ω+

ε

fεε
2ψ1

(x1

ε

)
ϕdx

for every ε. By passing to the limit, as ε → 0, in (5.4) and by making use of (4.3),
(4.4), (4.5), and (2.6), it is easy to see that

∫
Ω+

ηϕ + μ|ω|∂2
x2
uϕdx = 0 ∀ϕ ∈ C∞

0 (Ω+),

which provides (5.1).

In the next step, it will be proved that the function ζ ∈ L2(Ω+) is independent of
x2. To this aim, choose v(x1, x2) = εψ2(

x1

ε )ϕ(x1, x2) as test function in (2.5), where
ψ2 is the 1-periodic function defined by ψ2(y1) = −y1 + 1

2 in [0, 1[ and ϕ ∈ C∞
0 (Ω+)

(point out that v ∈ C∞(Ω+
ε ) and supp v ⊂ Ω+, consequently v ∈ Vε). Then, it results

that

(5.5)

M

∫
Ω+

ε

Δuε

(
−2∂x1ϕ + εψ2

(x1

ε

)
∂2
x1
ϕ + εψ2

(x1

ε

)
∂2
x2
ϕ
)
dx

+M(1 − μ)

∫
Ω+

ε

2∂2
x1x2

uε

(
−∂x2ϕ + εψ2

(x1

ε

)
∂2
x1x2

ϕ
)
dx

−M(1 − μ)

∫
Ω+

ε

∂2
x1
uεεψ2

(x1

ε

)
∂2
x2
ϕdx

−M(1 − μ)

∫
Ω+

ε

∂2
x2
uε

(
−2∂x1

ϕ + εψ2

(x1

ε

)
∂2
x1
ϕ
)
dx

=

∫
Ω+

ε

fεεψ2

(x1

ε

)
ϕdx
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for every ε. By passing to the limit, as ε → 0, in (5.5) and by making use of (4.3),
(4.4), (4.5), (2.6), and (5.1), it is easy to see that∫

Ω+

2μ|ω|∂2
x2
u∂x1ϕ− 2μ|ω|∂2

x2
u∂x1ϕ− 2(1 − μ)ζ∂x2ϕdx = 0 ∀ϕ ∈ C∞

0 (Ω+),

that is, ∫
Ω+

ζ∂x2ϕdx = 0 ∀ϕ ∈ C∞
0 (Ω+),

which provides that ζ is independent of x2.
In the third step, claim (5.2) will be proved. To this aim, choose

v(x1, x2) =

⎧⎪⎪⎨
⎪⎪⎩

εψ2

(x1

ε

)
φ(x2)ϕ(x1) in Ω+

ε ,

εψ2

(x1

ε

)
ϕ(x1) in Ω−

as test function in (2.5), where ψ2 is defined as above, φ ∈ C∞([0, d]) is such that
φ = 1 in [0, d

4 ], φ = 0 in [3d4 , d], and ϕ ∈ C∞
0 (]0, c[) (it is evident that v ∈ Vε). Then,

it results that

(5.6)

M

∫
Ω+

ε

Δuε

(
−2φ∂x1

ϕ + εψ2

(x1

ε

)
φ∂2

x1
ϕ + εψ2

(x1

ε

)
ϕ∂2

x2
φ
)
dx

+M(1 − μ)

∫
Ω+

ε

2∂2
x1x2

uε

(
−ϕ∂x2φ + εψ2

(x1

ε

)
∂x1ϕ∂x2φ

)
dx

−M(1 − μ)

∫
Ω+

ε

∂2
x1
uεεψ2

(x1

ε

)
ϕ∂2

x2
φdx

−M(1 − μ)

∫
Ω+

ε

∂2
x2
uε

(
−2φ∂x1ϕ + εψ2

(x1

ε

)
φ∂2

x1
ϕ
)
dx

+Mh
1
2
ε

∫
Ω−

h
1
2
ε ∂

2
x1
uε

(
−2∂x1ϕ + εψ2

(x1

ε

)
∂2
x1
ϕ
)
dx

+Mh
1
2
ε

∫
Ω−

μ
1

h
3
2
ε

∂2
x2
uε

(
−2∂x1

ϕ + εψ2

(x1

ε

)
∂2
x1
ϕ
)
dx

=

∫
Ω+

ε

fεεψ2

(x1

ε

)
φϕdx +

∫
Ω−

hεfεεψ2

(x1

ε

)
ϕdx

for every ε. By passing to the limit, as ε → 0, in (5.6) and by making use of (4.3),
(4.4), (4.5), (5.1), (3.2), and (2.6), it is easy to see that∫

Ω+

ζϕ∂x2φdx = 0 ∀ϕ ∈ C∞
0 (]0, c[),

from which, by recalling the assumptions on φ and that ζ is independent of x2, it
follows that ∫ c

0

ζ(x1)ϕ(x1) dx = 0 ∀ϕ ∈ C∞
0 (]0, c[),

that is, (5.2).
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Now, the limit problem satisfied by u will be identified. To this aim, choose

v(x1, x2) =

⎧⎨
⎩

ϕ(x1, x2) in Ω+
ε ,

ϕ(x1, 0) + hεx2 (∂x2ϕ) (x1, 0) in Ω−

as test function in (2.5), where ϕ ∈ C∞(Ω+) and ϕ = 0, Dϕ = 0 on Γ. Then, it
results that

(5.7)

M

∫
Ω+

ε

ΔuεΔϕ + (1 − μ)
(
2∂2

x1x2
uε ∂

2
x1x2

ϕ− ∂2
x1
uε ∂

2
x2
ϕ− ∂2

x2
uε ∂

2
x1
ϕ
)
dx

+Mh
1
2
ε

∫
Ω−

(
h

1
2
ε ∂

2
x1
uε +

1

h
3
2
ε

∂2
x2
uε

)((
∂2
x1
ϕ
)
(x1, 0) + hεx2

(
∂3
x2
1x2

ϕ
)

(x1, 0)
)
dx

+M(1 − μ)

∫
Ω−

2∂2
x1x2

uε

(
∂2
x2x1

ϕ
)
(x1, 0) dx

−M(1 − μ)h
1
2
ε

∫
Ω−

1

h
3
2
ε

∂2
x2
uε

((
∂2
x1
ϕ
)
(x1, 0) + hεx2

(
∂3
x2
1x2

ϕ
)

(x1, 0)
)
dx

=

∫
Ω+

ε

fεϕdx + hε

∫
Ω−

fε (ϕ(x1, 0) + hεx2 (∂x2ϕ) (x′, 0)) dx

for every ε. By passing to the limit, as ε → 0, in (5.7), making use of (4.3), (4.4),
(4.5), (5.1), (5.2), (3.2), and (2.6), and recalling that

χΩ+
ε
⇀ |ω| weakly in L2(Ω+),

it is easy to see that

(5.8)

M |ω|(1 − μ2)

∫
Ω+

∂2
x2
u∂2

x2
ϕdx = |ω|

∫
Ω+

fϕ dx

+

∫ c

0

(∫ 0

−1

g(x1, x2) dx2

)
ϕ(x1, 0) dx1 ∀ϕ ∈ C∞(Ω+) : ϕ = 0, Dϕ = 0 on Γ,

which, by density arguments, provides that u ∈ W 2(Ω+) is the unique solution of
(5.3).

Now, the limit problem in Ω− will be identified. Point out that the two-scale
convergence method will be explicitly used in Proposition 5.2, while it is not necessary
in Proposition 5.1 for identifying the limit problem in Ω+.

Proposition 5.2. Let uε be the solution of problem (2.5). Assume (2.9), with
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l ∈ ]0,+∞[, and (2.6). Let u0 ∈ L2(]0, c[, H2
per(]0, 1[)) satisfy Proposition 4.3. Then,

(5.9)

M
1 − μ2

l

∫
]0,c[ × ]0,1[

∂2
y1
u0(x1, y1)∂

2
y1
ϕ(x1, y1)dx1dy1

=

∫
]0,c[ × ]0,1[

(∫ 0

−1

g(x1, x2)dx2

)
ϕ (x1, y1) dx1dy1

∀ϕ ∈ L2(]0, c[, H2
per(]0, 1[)) : ϕ (x1, y1) = 0 in ]0, c[ × ω,

where μ ∈ ]0, 1
2 [ is the Poisson ratio, M > 0 represents the flexural rigidity modulus

of the plate (see problem (2.5)), and g ∈ L2(Ω−) is given by (2.6).
Proof. In the following, ε takes values in a subsequence satisfying Proposition 4.3.
The proof of (5.9) will be performed in two steps.
At first, it will be proved that

(5.10)∫ 0

−1

∫ 1

0

ξ((x1, x2), (y1, y2))dx2dy2 = −μl−
1
2 ∂2

y1
u0(x1, y1) a.e. in ]0, c[ × (]0, 1[),

where ξ ∈ L2(Ω− × ]0, 1[2) satisfies Proposition 4.3. To this aim, choose

v(x1, x2) =

{
0 in Ω+

ε ,

h
3
2
ε x2

2ϕ
(
x1,

x1

ε

)
in Ω−

as test function in (2.5), where ϕ (= ϕ(x1, y1)) ∈ C∞
0 (]0, c[ × (]0, 1[)) (point out that

ϕ(x1, ·) admits an intrinsic 1-periodic extension on R). Then, it results that

(5.11)

Mhε

∫
Ω−

∂2
x1
uε∂

2
x1

(
h

3
2
ε x

2
2ϕ
(
x1,

x1

ε

))
dx

+Mhε

∫
Ω−

∂2
x1
uε

1

h2
ε

∂2
x2

(
h

3
2
ε x

2
2ϕ
(
x1,

x1

ε

))
dx

+Mhε

∫
Ω−

1

h2
ε

∂2
x2
uε ∂2

x1

(
h

3
2
ε x

2
2ϕ
(
x1,

x1

ε

))
dx

+Mhε

∫
Ω−

1

h2
ε

∂2
x2
uε

1

h2
ε

∂2
x2

(
h

3
2
ε x

2
2ϕ
(
x1,

x1

ε

))
dx

+M(1 − μ)hε

∫
Ω−

2
1

hε
∂2
x1x2

uε
1

hε
∂2
x1x2

(
h

3
2
ε x

2
2ϕ
(
x1,

x1

ε

))

−M(1 − μ)hε

∫
Ω−

∂2
x1
uε

1

h2
ε

∂2
x2

(
h

3
2
ε x

2
2ϕ
(
x1,

x1

ε

))

−M(1 − μ)hε

∫
Ω−

1

h2
ε

∂2
x2
uε ∂

2
x1

(
h

3
2
ε x

2
2ϕ
(
x1,

x1

ε

))
dx

= hε

∫
Ω−

fεh
3
2
ε x

2
2ϕ
(
x1,

x1

ε

)
dx
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for every ε.
Now, pass to the limit, as ε → 0, in each term of (5.11), after having simplified the

second term with the sixth one, as well as the third with the seventh. At first, Note

that the assumption l = 0 in (2.9) gives limε→0
h2
ε

ε = limε→0
h2
ε

ε2 = limε→0
h

1
2
ε

ε = 0 and

limε→0
h

1
2
ε

ε2 = l−
1
2 .

From (2.9), with l ∈ ]0,+∞[, and estimate (3.2) it follows that

(5.12)

lim
ε→0

(
hε

∫
Ω−

∂2
x1
uε∂

2
x1

(
h

3
2
ε x

2
2ϕ
(
x1,

x1

ε

))
dx

)

= lim
ε→0

∫
Ω−

h
1
2
ε ∂

2
x1
uεx

2
2

(
h2
ε∂

2
x1
ϕ + 2

h2
ε

ε
∂2
x1y1

ϕ +
h2
ε

ε2
∂2
y1
ϕ

)(
x1,

x1

ε

)
dx = 0.

From (2.9), with l ∈ ]0,+∞[, and (4.8) it follows that

(5.13)

lim
ε→0

∫
Ω−

hε∂
2
x1
uε

1

h2
ε

∂2
x2

(
h

3
2
ε x

2
2ϕ
(
x1,

x1

ε

))
dx = lim

ε→0

∫
Ω−

h
1
2
ε ∂

2
x1
uε2ϕ

(
x1,

x1

ε

)
dx

= lim
ε→0

∫
Ω−

2
h

1
2
ε

ε2
ε2∂2

x1
uεϕ

(
x1,

x1

ε

)
dx = 2l−

1
2

∫
]0,c[ × ]0,1[

∂2
y1
u0(x1, y1)ϕ(x1, y1)dx1dy1.

From (2.9), with l ∈ ]0,+∞[, and the second estimate in (4.2) (which involves
limε→0 ‖∂2

x2
uε‖L2(Ω−) = 0) it follows that

(5.14)

lim
ε→0

∫
Ω−

hε
1

h2
ε

∂2
x2
uε ∂2

x1

(
h

3
2
ε x

2
2ϕ
(
x1,

x1

ε

))
dx

= lim
ε→0

∫
Ω−

∂2
x2
uεx

2
2

(
h

1
2
ε ∂

2
x1
ϕ + 2

h
1
2
ε

ε
∂2
x1y1

ϕ +
h

1
2
ε

ε2
∂2
y1
ϕ

)(
x1,

x1

ε

)
dx = 0.

From (4.9) it follows that

(5.15)

lim
ε→0

∫
Ω−

hε
1

h2
ε

∂2
x2
uε

1

h2
ε

∂2
x2

(
h

3
2
ε x

2
2ϕ
(
x1,

x1

ε

))
dx= lim

ε→0

∫
Ω−

1

h
3
2
ε

∂2
x2
uε2ϕ

(
x1,

x1

ε

)
dx

= 2

∫
Ω−×]0,1[2

ξ((x1, x2), (y1, y2))ϕ (x1, y1) d(x1, x2)d(y1, y2).

From (2.9), with l ∈ ]0,+∞[, and the first estimate in (4.2) it follows that

(5.16)

lim
ε→0

∫
Ω−

hε2
1

hε
∂2
x1x2

uε
1

hε
∂2
x1x2

(
h

3
2
ε x

2
2ϕ
(
x1,

x1

ε

))
dx

= lim
ε→0

∫
Ω−

4∂2
x1x2

uε x2

(
h

1
2
ε ∂x1ϕ +

h
1
2
ε

ε
∂y1ϕ

)(
x1,

x1

ε

)
dx = 0.

From (2.6) it follows that

(5.17) lim
ε→0

∫
Ω−

hεfεh
3
2
ε x

2
2ϕ
(
x1,

x1

ε

)
dx = 0.
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Then, by passing to the limit, as ε → 0, in (5.11) and by making use of (5.12)–
(5.17), one obtains that

2l−
1
2

∫
]0,c[ × ]0,1[

∂2
y1
u0(x1, y1)ϕ(x1, y1)dx1dy1

+2

∫
Ω−×]0,1[2

ξ((x1, x2), (y1, y2))ϕ (x1, y1) d(x1, x2)d(y1, y2)

−(1 − μ)2l−
1
2

∫
]0,c[ × ]0,1[

∂2
y1
u0(x1, y1)ϕ(x1, y1)dx1dy1 = 0 ∀ϕ ∈ C∞

0 (]0, c[ × (]0, 1[)),

that is, (5.10).
Now, to prove (5.9), choose v(x1, x2) = ϕ(x1,

x1

ε ) as test function in (2.5), where
ϕ (= ϕ (x1, y1)) ∈ C∞ ([0, c], C∞

per ([0, 1])
)

such that ϕ (x1, y1) = 0 in [0, c]× ω. Then,
it results that

(5.18)

Mhε

∫
Ω−

∂2
x1
uε∂

2
x1

(
ϕ
(
x1,

x1

ε

))
dx+Mhε

∫
Ω−

1

h2
ε

∂2
x2
uε ∂2

x1

(
ϕ
(
x1,

x1

ε

))
dx

−M(1 − μ)hε

∫
Ω−

1

h2
ε

∂2
x2
uε ∂

2
x1

(
ϕ
(
x1,

x1

ε

))
dx = hε

∫
Ω−

fεϕ
(
x1,

x1

ε

)
dx

for every ε.
Pass to the limit, as ε → 0, in each term of (5.18).
From (2.9), with l ∈ ]0,+∞[, and (4.8) it follows that

(5.19)

lim
ε→0

∫
Ω−

hε∂
2
x1
uε∂

2
x1

(
ϕ
(
x1,

x1

ε

))
dx

= lim
ε→0

∫
Ω−

h
1
2
ε

ε2
ε2∂2

x1
uε

(
h

1
2
ε ∂

2
x1
ϕ + 2

h
1
2
ε

ε
∂2
x1y1

ϕ +
h

1
2
ε

ε2
∂2
y1
ϕ

)(
x1,

x1

ε

)
dx

=
1

l

∫
]0,c[ × ]0,1[

∂2
y1
u0(x1, y1)∂

2
y1
ϕ(x1, y1)dx1dy1.

From (2.9), with l ∈ ]0,+∞[, (4.9), and (5.10) it follows that

(5.20)

lim
ε→0

∫
Ω−

hε
1

h2
ε

∂2
x2
uε ∂2

x1

(
ϕ
(
x1,

x1

ε

))
dx

= lim
ε→0

∫
Ω−

1

h
3
2
ε

∂2
x2
uε

(
h

1
2
ε ∂

2
x1
ϕ + 2

h
1
2
ε

ε
∂2
x1y1

ϕ +
h

1
2
ε

ε2
∂2
y1
ϕ

)(
x1,

x1

ε

)
dx

=

∫
Ω−×]0,1[2

ξ((x1, x2), (y1, y2))
1

l
1
2

∂2
y1
ϕ (x1, y1) d(x1, x2)d(y1, y2)

= −μ

l

∫
]0,c[ × ]0,1[

∂2
y1
u0(x1, y1)∂

2
y1
ϕ(x1, y1)dx1dy1.
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From (2.6) it follows that

(5.21) lim
ε→0

∫
Ω−

hεfεϕ
(
x1,

x1

ε

)
dx =

∫
Ω−×]0,1[

g(x1, x2)ϕ (x1, y1) d(x1, x2)dy1.

Then, by passing to the limit, as ε → 0, in (5.18) and by making use of (5.19)–(5.21),
one obtains that

M
1 − μ2

l

∫
]0,c[ × ]0,1[

∂2
y1
u0(x1, y1)∂

2
y1
ϕ(x1, y1)dx1dy1

=

∫
]0,c[ × ]0,1[

(∫ 0

−1

g(x1, x2)dx2

)
ϕ (x1, y1) dx1dy1

∀ϕ ∈ C∞ ([0, c], C∞
per ([0, 1])

)
such that ϕ (x1, y1) = 0 in [0, c] × ω,

which provides (5.9) by density arguments.
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Verlag, 1997, pp. 21–44.

[22] L. Trabucho and J. M. Viano, Mathematical Modelling of Rods, Handb. Numer. Anal. 4,
North–Holland, Amsterdam, 1996.



SIAM J. MATH. ANAL. c© 2008 Society for Industrial and Applied Mathematics
Vol. 39, No. 6, pp. 1788–1820

ON THE DYNAMICS OF LIQUID-VAPOR PHASE TRANSITION∗

KONSTANTINA TRIVISA†

Abstract. We consider a multidimensional model for the dynamics of liquid-vapor phase tran-
sitions. In the present context, liquid and vapor are treated as different species with different volume
fractions and different molecular weights. The model presented here is a prototype of a “binary
fluid mixture” and is formulated by a system that generalizes the Navier–Stokes(–Fourier) equations
in Eulerian coordinates. This system takes now a new form due to the choice of rather complex
constitutive relations that can accommodate appropriately the physical context. The setting of the
problem presented in this work is motivated by physical considerations. The transport fluxes satisfy
rather general constitutive laws, the viscosity and heat conductivity depend on the temperature, and
the pressure law is a nonlinear function of the temperature depending on the mass density fraction
of the vapor (liquid) in the fluid as well as the molecular weights of the individual species. The exis-
tence of globally defined weak solutions of the relevant system of partial differential equations that
generalizes the Navier–Stokes(–Fourier) equations for compressible fluids is established by using weak
convergence methods, and compactness and interpolation arguments in the spirit of Feireisl [Dynam-
ics of Viscous Compressible Fluids, Oxford University Press, Oxford, 2004] and Lions [Mathematical
Topics in Fluid Mechanics, Vol. 2, The Clarendon Press, Oxford University Press, New York, 1998].

Key words. Navier–Stokes system, compressible fluids, liquid-vapor phase transitions, binary
fluid mixtures, oscillation and concentration phenomena

AMS subject classifications. 35L65, 76N10, 35B45

DOI. 10.1137/060652397

1. Introduction. A multidimensional model is presented for the liquid-vapor
phase transition formulated by the Navier–Stokes equations in Euler coordinates. In
the present context, these equations express the conservation of mass, the balance of
momentum and energy, and the balance of species density.

Consider a pure fluid which exhibits liquid-vapor phase changes. In the macro-
scopic description adopted here ρ = ρ(t, x) denotes the density of the mixture, u =
u(t, x) its average velocity, and θ = θ(t, x) the temperature, while ρ1 = ρf1 is the
density of 1-species (vapor) with f1 = f1(x, t) denoting the mass density fraction of
vapor in the fluid at time t ∈ R and at the spatial position x ∈ Ω ⊂ R

N , N = 3. These
macroscopic variables provide a precise characterization of the state of the mixture,
which in the present context consists of the species vapor and liquid. The balance of
the species density is given by

balance of species density: ∂t(ρf1) + div(ρf1u) + divF1 = w1.

Here and in what follows,
• fi(x, t) is the volume fraction of the i species. Vapor and liquid fill up the

space, namely,

f1 + f2 = 1.(1.1)
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• ρi(x, t) is the density of the i species

ρi = ρfi, ρ = ρ1 + ρ2.(1.2)

• wi is the reaction rate function denoting the mass of the i species produced
per unit volume per time unit. In accordance with the conservation of mass:

∂tρ + div(ρu) = 0,

we have

w1 + w2 = 0.(1.3)

The momentum conservation equation can be written as

balance of momentum: ∂t(ρu) + div(ρu ⊗ u) + ∇p = divS,

where ρ is the total mass density, u ⊗ u is the tensor product of velocity vectors, p
denotes the pressure, while S is the viscous stress tensor.

Finally, the energy conservation equation reads

balance of energy: ∂t(ρe) + div(ρue) + div q = S : ∇u− pdivu.

The physical properties of the mixture are expressed through constitutive rela-
tions, which specify the relation of the viscous stress tensor S, the heat flux q, the
pressure p, and the internal energy e to the macroscopic variables. The hypotheses
on the constitutive laws and on the special features of the model are the following.

1.1. Constitutive relations.
• The viscous stress tensor S is given by Newton’s viscosity formula

S = μ(θ)

(
∇u + ∇uT − 2

3
divu I

)
+ ζ(θ) divu I,(1.4)

where the shear viscosity μ and the bulk viscosity ζ are supposed to be nonneg-
ative and continuously differentiable functions of the absolute temperature.

• The pressure in the portion occupied by the ith component pi = p(ρi, θ)
depends in a crucial way on the volume fraction fi. In the case where the
fluid is in pure phase, either (pure) vapor or (pure) liquid, the pressure can
be determined quite accurately through experiments. Let us denote by p1 =
p(ρ1, θ) and p2 = p(ρ2, θ) the pressure of pure vapor phase and liquid phase,
respectively, with ρi the density of the ith component and θ the temperature
of the mixture (see Figure 1.1). The density at which the pressures of the
individual species coincide, namely, p1(m, θ) = p2(M, θ) = p0, is known as
the Maxwell equilibrium density and corresponds to ρ = m(θ), ρ = M(θ) in
Figure 1.1. At this density, both species, liquid and vapor, coexist and are
(as we say) in equilibrium, and in this case the pressure can be measured in
experiments. On the other hand, the region that corresponds to rapid phase
transition, namely, the area where the material instantly decomposes into
liquid, vapor, or their mixtures (ρ ∈ (a, b) in Figure 1.1), is highly unstable.
As a consequence this part of the so-called van der Waals pressure curve
(the dashed line in Figure 1.1) cannot be measured in experiments and it is
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p

p0

ραm β M

Fig. 1.1. Pressure.

regarded as artificial (see also the discussion in Fan [18], Fan and Slemrod
[19], Slemrod [29], and the references therein).
As in Fan [18], we proceed considering only the physically relevant part (the
part observed in experiments) and we extend each component of the function
p(ρ, θ) continuously as shown in Figure 1.2. This extension may appear at
first a bit artificial; however, this part of the pressure does not really affect
the outcome, as indicated by physical experiments. In other words, we treat
liquid and vapor as different species and specify the transition of the phases
by the reaction rate equation for w1.
Taking the above discussion into consideration, we assume the Dalton-type
law for the pressure of the mixture, namely,

p = pR + pB + pe,(1.5)

where the term pB satisfies Boyle’s law for the individual species

pB =
ρ1Rθ

m1
+

ρ2Rθ

m2
,(1.6)

where mi denotes the molecular weight of the ith component, pe = pe(ρ)
is the so-called elastic pressure whose properties will be discussed in what
follows, while pR accounts for radiation effects. We remark that the elastic
pressure may include higher order terms as in the Beattie–Bridgman model,
where the state equation for the pressure includes an elastic component of
the form

pe(ρ) = β1ρ
2 + β2ρ

3 + β3ρ
4

for appropriate constants βi (see [1], [20]).
The point of view presented here takes into consideration the classical as well
as the quantum aspects associated with the fluid. In the quantum case, the
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ρ

p

m Mβ

p0

α

Fig. 1.2. Modified pressure.

presence of the photons affects the total pressure p in the fluid. As a result
the pressure function now includes an additional (radiation) component pR,
which is related to the absolute temperature θ through the Stefan–Boltzmann
law

pR =
a

3
θ4 with a > 0 a constant.

The underlying assumption here (cf. [14], [24], [28]) is that the high tempera-
ture radiation is at thermal equilibrium with the fluid. Analogously, standard
thermodynamic relations require that the specific internal energy of the fluid
be also augmented by the term

eR = eR(ρ, θ) =
a

ρ
θ4.

We remark that radiation effects are of particular interest in astrophysical
plasma models [4].
The pressure therefore satisfies, in the present context, the general law

p =
a

3
θ4 +

ρ1Rθ

m1
+

ρ2Rθ

m2
+ pe(ρ).

Taking into consideration (1.1), (1.2) the pressure law now takes the form

p =
a

3
θ4 +

ρ

m2
Rθ + R

(
1 − m1

m2

)
ρ1

m1
θ + pe(ρ).

The molecular weight of the vapor is significantly less than that of the liquid,
namely, m1 � m2, which implies that the constant

L =

(
1 − m1

m2

)
1

m1
> 0,(1.7)
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and so the pressure law becomes

p =
a

3
θ4 +

R

m2
ρθ + LRρ1θ + pe(ρ).

Motivated by the above discussion, here and in what follows, the pressure law
has the form

p(ρ, θ, ρ1) = pradiation + pthermal + pelastic,

p(ρ, θ, ρ1) =
a

3
θ4 + θ

[
R

m2
pθ(ρ) + LRpθ(ρ1)

]
+ [pe(ρ) + pe(ρ1)](1.8)

with pe the elastic pressure and pθ the thermal pressure which are functions
satisfying certain structural properties to be specified in section 2.3.

• The internal energy e satisfies a general constitutive law e = e(ρ, θ, ρ1),
namely,

ρe = ρe(ρ, θ, ρ1) = aθ4 +
cv
m2

ρθ + Lcvρ1θ + ρPe(ρ) + ρ1Pe(ρ1)(1.9)

with cv the specific heat and

Pe(ρ) =

∫ ρ

1

pe(z)

z2
dz(1.10)

denoting the so-called elastic potential.
• We treat vapor and liquid as different species, each having its own density
ρ1 and ρ2, pressure p1 and p2, molecular weight m1 and m2, but with both
components having the same temperature at each point of the mixture.

• The diffusion flux Fi is determined by the law

Fi = −Dρi∇ log(ρiθ)(1.11)

with D denoting the species diffusion coefficient, which in accordance with
the kinetic theory of gases is a function of the form

D(ρ1) ≈
d

ρ1
, d = constant.

Taking the above into consideration, here and in what follows, the diffusion
flux Fi is of the form

Fi = −d∇ log(ρiθ).(1.12)

• The heat flux q = q(ρ, ρi, θ,∇θ) is given by a very general law and consists
in the present context of two parts:

q = qF + qfi .(1.13)

The first term qF is determined by the Fourier law, while the second term
qfi accounts for the effects of enthalpy, which is carried across the surface by
the individual species, namely,{

qF = −κF (ρ, θ)∇θ,

qfi = − 9γ−5
4 Ldθ∇ log(ρiθ),

(1.14)

where L is the constant introduced in (1.7). The term qfi constitutes an
additional contribution to q in binary and multicomponent systems.
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• The function w1 is the so-called reaction rate function which governs the
growth of vapor in the fluid. In general, w1 consists of two parts, wgrowth

and wnucleation. The former accounts for the creation of nuclei of new phase,
while the latter describes the subsequent growth of these nuclei,

w1 = wgrowth + wnucleation.

The species production rates wi are continuous functions of the absolute
temperature θ and the species densities ρ1, ρ2. For the sake of simplicity,
we shall assume that

−c1 ≤ w1(θ, ρ1, ρ2) ≤ c̄1 for all θ ≥ 0, 0 ≤ ρ1, ρ2 ≤ ρ.

Typical examples are presented in [12], [13] in the context of combustion
theory, where the rate function is typically given by the Arrhenius law, as
well as in Fan [18] and Fan and Slemrod [19] in the physical setting of liquid-
vapor phase transition. In that context, w1 is the probability of collision
between the particles of liquid and vapor multiplied by a parameter known
as the rate parameter.

Multiplying the conservation of mass equation by (ρPe(ρ))
′ we obtain

∂t(ρPe(ρ)) + div(ρPe(ρ)u) + pe(ρ)divu = 0.(1.15)

Analogously,

∂t(ρ1Pe(ρ1)) + div(ρ1Pe(ρ1)u) + pe(ρ1)divu = (ρ1Pe(ρ1))
′div[∇ log(ρ1θ)],

and so the conservation of energy equation yields the thermal equation

(1.16)

∂t

[
aθ4 +

cv
m2

ρθ + Lcvρ1θ + ρ1Pe(ρ1)

]
+ div

[(
aθ4 +

cv
m2

ρθ + Lcvρ1θ + ρ1Pe(ρ1)

)
u

]

+ divq = S : ∇u −
[
a

3
θ4 +

R

m2
θpθ(ρ) + LRθpθ(ρ1) + pe(ρ1)

]
divu −

2∑
i=1

hkwk

with hk denoting the formation enthalpies.
The internal energy is related to the specific entropy s through a rather general

thermodynamic relation

θDs = De + pD

(
1

ρ

)
−

2∑
i=1

giDρi,(1.17)

where D denotes the total differential and gi a quantity that depends on the specific
physical context and is typically a function of the temperature of the mixture, the
formation enthalpies hk and the formation entropies [25].

If the motion is smooth, starting from the energy balance, and in accordance with
(1.17), we derive now the entropy equation, which now reads

∂t(ρs) + div(ρsu) + div

[
−k(θ)

θ
∇θ − (ρsf1)Ld∇ log(ρ1θ)

]
= r.(1.18)
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Here r denotes the entropy production, which is expressed by

r =
1

θ

(
S : ∇u + k(θ)

|∇θ|2
θ

+ Lθd|∇ log(ρ1θ)|2 −
2∑

i=1

giwi

)
.(1.19)

In accordance with the second law of thermodynamics we assume here that

2∑
i=1

giwi ≤ 0,

so that the entropy production rate (1.19) is nonnegative.
The specific entropy s is given by

s = sF + sf1 ,(1.20)

where {
sF = 4a

3
θ3

ρ + cv
m2

log(θ) − R
m2

Pθ(ρ),

ρ1sf1
= Lcvρ1 log(θ) − LRρ1Pθ(ρ1) − LRρ1 log(ρ1)

(1.21)

with

Pθ(ρ) =

∫ ρ

1

pθ(z)

z2
dz.

The reader should contrast the form of the entropy in the present context to the
form of the entropy in earlier articles (cf. [12], [13], [14], [20]) to see the effect of the
presence of the individual components in the mixture.

In the case of a general nonsmooth motion now, and in the spirit of the second
law of thermodynamics as given in Truesdell [32], we can only assert that

∂t[ρ (sF + sf1)] + div [ρ (sF + sf1)u] + div

(
−k(θ)

θ
∇θ − (ρsf1)Ld∇ log(ρ1θ)

)

≥ 1

θ

(
S : ∇u + k(θ)

|∇θ|2
θ

+ Lθd|∇ log(ρ1θ)|2 −
2∑

i=1

giwi

)
.(1.22)

The equations which characterize the liquid-vapor phase transition now read

∂tρ + div(ρu) = 0,(1.23)

∂t(ρu) + div(ρu ⊗ u) + ∇p = divS,(1.24)

∂t(ρs) + div(ρsu) + div

[
−k(θ)

θ
∇θ,−(ρsf1)Ld∇ log(ρ1θ)

]
= r,(1.25)

∂t(ρ1) + div(ρ1u) + divF1 = w1.(1.26)

We assume that the mixture occupies a bounded domain Ω ⊂ R
N , N = 3, of class

C2+ν , ν > 0, and the whole physical system is both mechanically and thermally
isolated. The following boundary conditions hold:

u|∂Ω = 0, q · n|∂Ω = 0, F · n|∂Ω = 0,(1.27)

where n denotes the outer normal vector to ∂Ω.
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In accordance with the above discussion we infer that the total energy

E =
1

2
ρ
(
|u|2 + e

)
(1.28)

is constant of motion, specifically,

d

dt

∫
Ω

E(t)dx = 0.(1.29)

We consider the following initial conditions:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ρ(0, ·) = ρ0,

(ρu)(0, ·) = m0,

(ρ s)(0, ·) = ρ0s0,

(ρ1)(0, ·) = ρ10
,

(1.30)

together with the compatibility condition

m0 = 0 on the set {x ∈ Ω| ρ0(x) = 0}.(1.31)

The objective of this work is to establish the global existence of weak solutions to this
initial boundary value problem with large initial data. This article extends earlier
work on phase transitions [12], [13] (see also [24]) since it now takes into considera-
tion both the species concentration as well as the unique character of the individual
components as given by their distinct molecular weights. The constitutive relations
presented here, which differ from the ones given in [12], [13], [24], are able to accommo-
date both binary and multicomponent fluid mixtures, while at the same time yielding
nonnegative entropy production in the spirit of the second law of thermodynamics as
presented in Truesdell [32]. We remark that the complexity of the constitutive rela-
tions necessitates the derivation of delicate estimates on the new macroscopic variable
ρ1 = ρf. The reader should contrast these estimates to the ones in [12], [13], [24],
where the focus was on estimates of the mass fraction density. For results on the
one-dimensional setting, we refer the reader to the articles [5], [6], [7]. Related results
for multicomponent models are presented in [16], [23], [25], [31].

Moreover, some of the difficulties arising in the execution of our program involve
the following issues:

• Obtaining boundness of the oscillation defect measure (essential for the strong
convergence of the density ρ) requires the special treatment of additional
terms in the pressure and the equations.

• The presence of extra terms in the entropy production can be handled only
by deriving new energy and entropy estimates.

• The pressure estimates need refinement in dealing with concentration phe-
nomena.

The methods of use are weak convergence methods and compactness arguments
in the spirit of Feireisl [20] and Lions [27]. At the heart of the analysis lies the
quantity

p−
(

4

3
μ + ζ

)
divu,

known as the effective viscous pressure. The weak continuity property of the effec-
tive viscous pressure was first shown by Lions [27] for the barotropic Navier–Stokes
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equations, where p = p(ρ) and with constant viscosity coefficients. This result was
extended to include the case of general temperature-dependent viscosity coefficients
by Feireisl [21] with the aid of delicate commutator estimates in the spirit of Coif-
man and Meyer [8]. We remark that our analysis is valid for viscosity coefficients
depending only on the absolute temperature and are, in the present context, inde-
pendent of the viscosity. This may be viewed as a weakness of the present theory;
it is, however, physically relevant in the context of sufficient diluted fluid mixtures
(cf. Becker [1]).

In section 6 we establish the weak continuity of the effective viscous pressure,
which involves showing that the following relation holds true:(

p(ρ, θ, ρ1) −
(

4

3
μ(θ) + ζ(θ)

)
divu

)
b(ρ)

=

(
p(ρ, θ, ρ1) b(ρ) −

4

3
(μ(θ) + ζ(θ))divu

)
b(ρ)

for any bounded function b.
In the center of the analysis lies also the requirement that ρ is a renormalized

solution of the continuity equation, a notion introduced by DiPerna and Lions [10],
[11]. The role of this concept is twofold in the sense that it helps us deal both
with the problem of density oscillations as well as with the problem of temperature
concentration phenomena.

Another key ingredient in evaluating the propagation of density oscillations is
in fact showing boundness of a suitable oscillation defect measure, which is typically
expressed in terms of certain cutoff functions (cf. Feireisl [20]). We remark that the
choice of the constitutive relations affects in a crucial way the form of this measure.

The outline of this article is as follows. In sections 2 and 3 we present the weak
formulation of the problem and state the main result. Our analysis relies on the
concept of variational solution, which provides us with the appropriate space setting
for the admissible solutions of our system. The reader should contrast the notion
of variational solution presented in this work to earlier notions for relevant phase
transition models [14], [12], [13], [24].

In section 4 we introduce a series of approximating problems constituting a three-
level approximating scheme. This scheme consists of a set of regularized equations
(see also [12], [13], [20]). The regularization appears in terms of additional ε and δ
quantities accounting for artificial viscosity and artificial pressure. In section 5 we ob-
tain uniform bounds (energy and entropy estimates) necessary as we let the artificial
viscosity ε go to zero in section 6. Here, the weak continuity of the effective viscous
pressure needs to be established in order to obtain suitable estimates on the density
component ρ.

In section 7 we recover the original system by letting δ go to zero, getting rid of
the artificial pressure term {δρβ}. This process requires the introduction of a suitable
family of functions

Tk(z) = kT
( z
k

)
for z ∈ R, k = 1, 2, . . . ,

where T ∈ C∞ is a suitable cutoff function, whose choice depends in a crucial way
on the particular physical context, namely, on the choice of constitutive relations for
the equation of state for the pressure and other quantities in the system as well as
the assumptions on the viscosity coefficients. The main goal here is to show that the



BINARY FLUID MIXTURES 1797

so-called oscillation defect measure

oscβ+1[ ρδ → ρ ]((0, T ) × Ω) = sup
k≥1

(
lim sup

δ→0

∫ T

0

∫
Ω

|Tk(ρδ) − Tk(ρ)|β+1dxdt

)

is bounded.
Related results on phase-transition models are presented in [12], [13] in the context

of combustion models and in [14], [20], [21], [24] for related models in fluids and
astrophysics. We refer the reader also to [23] for further discussion on multicomponent
reacting flows.

The setting of the present article is motivated by physical considerations presented
in a series of articles by Fan [18], Fan and Slemrod [19], and Slemrod [29]. For related
work on van der Waals fluids and the issue of nonuniqueness of phase transition near
the Maxwell line we refer the reader to Benzoni-Gavage [2] and the references therein,
while for general discussion on nucleation phenomena we refer the reader to Springer
[30].

2. Weak formulation. Our objective in this article is the solvability of the
initial boundary value problem (1.23)–(1.26), together with (1.27) and (1.30), for
large initial data. To this end, we need to rely on the concept of variational solution.
Philosophically, this weak formulation is connected to the balance laws of continuum
physics. Balance laws are typically expressed in the form of integral identities and
therefore no additional requirement on the regularity of the integrand quantities is
imposed.

2.1. Dissipation of energy. In the framework of weak solutions, it is common
to replace the (formally derived) classical entropy equality by an inequality (cf. Trues-
dell [32]). This is due to the possible loss of some part of the kinetic energy of the
system. This loss of energy appears mathematically in the form of a measure, while in
the physical setting, this portion of the energy may be regarded as a new part of the
spatial domain. For further remarks on the topic, we refer the reader to Feireisl [20]
for relevant discussion in the context of compressible fluids, as well as to Dafermos [9]
for relevant discussion in the context of hyperbolic conservation laws.

The variational formulation of the entropy production is given by∫ T

0

∫
Ω

{
(ρs) ∂tφ + (ρs)u · ∇φ +

[
−k(θ)

θ
∇θ − (ρsf1

)Ld∇ log(ρ1θ)

]
· ∇φ

}
dxdt

≤
∫ T

0

∫
Ω

{
−S : ∇u

θ
− k(θ)|∇θ|2

θ2
− Ld|∇ log(ρ1θ)|2 −

2∑
i=1

giwi

}
φdx dt

(2.1)

for any nonnegative function φ ∈ D((0, T ) × R
N ).

Note that the fact that θ appears in the denominator in the above relation
{

S:∇u
θ

}
indicates that the absolute temperature θ must be positive in order for (2.1) to be
meaningful.

Motivated by this discussion, we introduce now the notion of a variational solution
to the initial boundary value problem (1.23)–(1.26) together with (1.27), (1.30), and
(1.31).

2.2. The class of admissible solutions. In this section we present the class of
admissible solutions for our system (1.23)–(1.26) motivated by the underlying physical
principles of continuum physics.
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Definition 2.1. We say that (ρ,u, θ, ρ1) is a variational solution of the initial
boundary value problem (1.23)–(1.26) on the interval (0, T ) if it satisfies the following
properties:

• The continuity equation (1.1) is satisfied in the sense of renormalized solutions,
specifically

ρ ∈ C([0, T ];L1(Ω)) ∩ L∞(0, T ;Lγ(Ω)), ρ(0, ·) = ρ0

satisfying the continuity equation (1.1) in the sense of D′((0, T ) × R
3) provided that

ρ,u were extended to be zero outside Ω:

u ∈ L2(0, T ;W 1,2
0 (Ω; R3)), ρu ∈ L∞(0, T ;L1(Ω; R3)),

and the integral identity∫ T

0

∫
Ω

(ρB(ρ)∂tφ + ρB(ρ)u · ∇xφ− b(ρ)divxu) dxdt = −
∫

Ω

ρ0B(ρ0)φ(0, ·)dx

holds for any test function φ ∈ D([0, T ) × Ω̄) and any

b ∈ BC[0,∞), B(ρ) = B(1) +

∫ ρ

1

b(z)

z2
dz.(2.2)

• The density of the individual component ρ1 is a nonnegative measurable function
belonging to the space

ρ1 ∈ L∞(0, T ;Lγ(Ω)), log(ρ1) ∈ L2(0, T ;W 1,2(Ω)),

while the temperature θ is a nonnegative function such that

θ, log(θ) ∈ L2(0, T ;W 1,2(Ω)),

and the integral identity∫ T

0

∫
Ω

ρ1∂tφ + ρ1u · ∇xφ + F · ∇xφdxdt =

∫ T

0

∫
Ω

w1φdxdt−
∫

Ω

ρ10φ(0, ·)dx(2.3)

holds for any test function φ ∈ D′([0, T ) × Ω̄).
• The momentum balance equation (1.2) is satisfied in the sense of distribu-

tions. Moreover, the pressure p ∈ L1((0, T ) × Ω) is related to the state variables
ρ, ρ1, and θ through the constitutive equation (1.8), the viscous stress tensor S ∈
L1(0, T ;L1(Ω; R3×3)) is given by Newton’s law of viscosity (1.4), while

ρu ⊗ u ∈ L1(0, T ;L1(Ω; R3×3)).

• The entropy ρs is determined by the formula (1.21). The density of the individ-
ual component ρ1 as well as the absolute temperature are positive a.a. on (0, T ) × Ω,
and the integral inequality∫ T

0

∫
Ω

{(ρs) ∂tφ + (ρs)u · ∇φ + q · ∇φ} dxdt

≤
∫ T

0

∫
Ω

{
−S : ∇u

θ
− k(θ)|∇θ|2

θ2
− Ld|∇ log(ρ1θ)|2 −

2∑
i=1

ρgiwi

}
φdx dt(2.4)
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holds for any nonnegative function ϕ ∈ D((0, T ) × R
N ).

Moreover,

ess lim
t→0+

∫
Ω

ρs(t)φdx ≥
∫

Ω

ρ0s0 φdx for any nonnegative φ ∈ D(Ω),

where

ρ0s0 =
4a

3
θ3
0 +

cv
m2

ρ0 log(θ0) − ρ0Pθ(ρ0) + Mcvρ10
log(θ0)

−MRρ10Pθ(ρ10) −MRρ10 log(ρ10).

• As there is no flux of energy through the kinematic boundary we require the
total energy E(t) to be constant of motion, that is,∫ T

0

∫
Ω

E(t) ∂tψ dx dt = 0 for any ψ ∈ D(0, T ).(2.5)

• The functions ρ, ρu, ρ θ, and ρ1 satisfy the initial conditions (1.30) in the weak
sense, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ess lim
t→0+

∫
Ω

ρ(t) η dx =

∫
Ω

ρ0 η dx,

ess lim
t→0+

∫
Ω

(ρu)(t) · ν dx =

∫
Ω

m0 · ν dx,

ess lim
t→0+

∫
Ω

(ρ θ)(t) ηdx =

∫
Ω

ρ0 θ0 η dx,

ess lim
t→0+

∫
Ω

ρ1(t) η dx =

∫
Ω

ρ10 η dx

(2.6)

for all η ∈ D(Ω).

2.3. Assumptions.
Pressure. The pressure p obeys the general pressure law (1.8), where the elastic

pressure pe and the thermal pressure pθ are continuously differentiable functions of
the density and in addition satisfy the properties (see also [20], [12], [13])

⎧⎪⎨
⎪⎩
pe(0) = 0,

p′e(ρ) ≥ a1ρ
γ−1 − c1, a1 > 0,

pe(ρ) ≤ a2ρ
γ + c2,

⎧⎪⎨
⎪⎩
pθ(0) = 0,

p′θ(ρ) ≥ 0,

pθ(ρ) ≤ a3ρ
G + c3

(2.7)

with

γ ≥ 2, γ >
4G

3
.

Transport coefficients.
• The viscosity parameters depend on the absolute temperature in the follow-
ing fashion:

{
0 < μ(1 + θα) ≤ μ(θ) ≤ μ̄(1 + θα),

0 < ζθα ≤ ζ(θ) ≤ ζ̄(1 + θα)
(2.8)

for α ≥ 1
2 .
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• The heat conductivity obeys the rule{
k = kC(θ) + σθ3,

0 < kC ≤ kC(θ) ≤ k̄C(1 + θ3),
(2.9)

where the term {σθ3} with σ > 0 accounts for the radiative effects.

3. Main results. We are now ready to state the existence result for the initial
boundary value problem introduced in section 1.

Theorem 3.1. Let Ω ⊂ R
3 be a bounded domain with a boundary ∂Ω ∈ C2+ν , ν >

0. Suppose that the pressure p is determined by the equation of state (1.21) with a > 0
and pe and pθ satisfying (1.8). In addition, let the viscous stress tensor S be given
by (1.4), where μ and ζ are continuous differentiable globally Lipschitz functions of θ
satisfying (2.8). Similarly, let the heat flux q be given by (1.14) with k(θ) satisfying
(2.9). Finally, assume that the initial data ρ0,m0, θ0, ρ10 satisfy⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρ0 ≥ 0, ρ0 ∈ Lγ(Ω),

m0 ∈ [L1(Ω)]3, |m0|2
ρ0

∈ L1(Ω),

θ0 ∈ L∞(Ω), 0 < θ ≤ θ0(x) ≤ θ̄ for a.e. x ∈ Ω,

ρ10
≥ 0, ρ10

∈ Lγ(Ω).

(3.1)

Then, for any given T > 0 the initial boundary value problem (1.1)–(1.4), together
with (1.27)–(1.30) and (1.31), has a variational solution on (0, T ) × Ω.

In the remaining part of this paper we will carry out the strategy outlined in the
introduction. The proof of this theorem will be given in detail in sections 4, 5, 6, and 7.

4. Solvability of approximating problems. In this section we construct a
sequence of approximate problems by adding appropriate regularizations in (1.23)–
(1.26).

Taking into account (2.7), the elastic pressure component pe(ρ) of the pressure
can be decomposed in two parts pm and pb:

pe(ρ) = pm(ρ) + pb(ρ),

where the former pm is a nondecreasing function, the latter pb is a bounded function
on [0,∞), while both are elements in C([0,∞)) (see also [14], [13]). The reason for
this decomposition will be apparent in what follows, where the properties of the two
components will be instrumental in obtaining useful energy and entropy estimates.

4.1. Faedo–Galerkin approximations. Let

Xn = span{ηj}nj=1

be a finite-dimensional space with ηj ∈ D(Ω; R3), j = 1, 2, . . . , a dense subset in
C1

0 (Ω̄; R3).
The approximate velocities un ∈ C([0, T ];Xn) satisfy a set of integral equations

of the form∫
Ω

ρun(τ) · η dx−
∫

Ω

m0,δ · η =

∫ τ

0

∫
Ω

(ρun ⊗ un − Sn) : ∇η dxdt

+

∫ τ

0

∫
Ω

(
pm(ρ) + pm(ρ1) +

a

3
θ4 +

R

m2
θpθ(ρ) + LRθpθ(ρ1) + δρβ

)
divη dxdt

+

∫ τ

0

∫
Ω

[pb(ρ) + pb(ρ1)]divη − ε[∇un∇ρ] · η dxdt(4.1)
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for any test function η ∈ Xn = span{ηj}nj=1, ηj ∈ D(Ω)N , and all τ ∈ [0, T ].
Having replaced the momentum equation with a family of integral relations, we

are ready to introduce a sequence of approximate problems obtained by adding appro-
priate regularization ε- and δ-terms to the set of original partial differential equations.
The addition of these extra terms yields a new set of equations which are easier to
solve assuming that ε and δ are fixed. The challenge in this approach arises in passing
to the limit for ε → 0 and δ → 0. The sequence of approximate problems is presented
below.

Modified continuity equation. The density ρ = ρ[un] is determined as the
(unique) solution of the initial boundary value problem⎧⎪⎨

⎪⎩
∂tρ + div(ρun) = εΔρ,

∇ρ · n|∂Ω = 0,

ρ(0, ·) = ρ0,δ

(4.2)

with the initial approximation of the density ρ0,δ ∈ C2+ν(Ω̄) also satisfying{
0 < δ ≤ ρ0,δ ≤ δ−

1
2β on Ω,

ρ0,δ → ρ0 in Lγ(Ω), |{ρ0,δ < ρ0}| → 0 for δ → 0.

With the aid of the maximum principle the problem (4.2) admits the a priori estimate(
inf
x∈Ω

ρ(0, x)

)
exp

(
−
∫ t

0

‖divun(s)‖L∞(Ω) ds

)
≤ ρ(t, x)

≤
(

sup
x∈Ω

ρ(0, x)

)
exp

(∫ t

0

‖divun(s)‖L∞(Ω) ds

)
;

in particular the (approximate) density of the mixture has positive lower and upper
bounds provided that we have control of the norm of {divun}.

For fixed ε, the solvability of the regularized problem for the continuity equation
(4.2) is obtained by a simple fixed point argument (see [20]).

Modified thermal equation. Now, given ρ,un, the temperature will be viewed
as a solution of the regularized thermal energy equation in (0, T ) × Ω supplemented
with boundary and initial conditions as follows:

(4.3)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂t

[
aθ4 + cv

m2
ρθ + LRρ1θ + ρ1Pe(ρ1)

]
+ div

[(
aθ4 + cv

m2
ρθ + Lρ1θ + ρ1Pe(ρ1)

)
un

]
−div

[
(κC(ρ, θ) + δθ3)∇θ + 9γ−5

4 Ldθ∇ log(ρ1θ)
]

= ε|∇ρ|2
(

p′
m(ρ)
ρ + δβρβ−2

)
+ Sn : ∇un −

[
a
3θ

4 + R
m2

θpθ(ρ) + Lθpe(ρ1) + pe(ρ1)
]
divun −

∑2
i=1 hiwi,

∇θ · n|∂Ω = 0,

θ(0, ·) = θ0,δ.

The functions θ0,δ ∈ C2+ν(Ω̄) satisfy in addition{
∇θ0,δ · n|∂Ω = 0, 0 < θ < θ0,δ ≤ θ̄ on Ω,

θ0,δ → θ0 in L1(Ω) δ → 0.
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The viscous stress tensor Sn is given by

Sn = μ(θ)

(
∇un + ∇un

T − 2

3
divun I

)
+ ζ(θ) divun I.

The modified thermal equation (4.3) is a nondegenerate parabolic equation with re-
spect to U = θ4 with sublinear coefficients, and hence the existence of the solution
temperature θn follows easily (we refer the reader also to [12], [13], [14], [26], where
relevant equations were treated).

By applying the classical maximum principle argument we can conclude that the
temperature θ = θ(t, x) is strictly positive, namely,

θ(t, x) ≥ C̄ > 0 for t ∈ [0, T ], x ∈ Ω.

We can therefore divide the modified thermal energy equation by θ in order to obtain
the approximate entropy balance,

∂t(ρs) + div(ρsun) + div

(
−κC(θn) + δθ3

θ
∇θ − sf1Ld∇ log(ρ1θ)

)

=

(
Sn : ∇un

θ
+

κC(θ) + δθ3

θ2
|∇θ|2 + Ld|∇ log(ρ1θ)|2 −

2∑
k=1

gkwk

)

+
εδΓ

θ
ρΓ−2|∇ρ|2 +

cv
m2

(log (θn) − 1) (εΔρn + w1(ρ1, ρ2, θ) − εΔρ1n) .(4.4)

Modified species conservation equation. The regularized species conserva-
tion equation is now given as⎧⎪⎨

⎪⎩
∂t(ρ1) + div(ρ1un) = εΔρ1 + w1(ρ1, ρ2, θ) + div(d∇ log(ρ1θ)),

∇ρ1 · n|∂Ω = 0,

ρ1(0, ·) = ρ10,δ
.

(4.5)

In accordance with physical considerations, we require that the density of the indi-
vidual component be less than the total density of the mixture, namely,

ρ1 = ρf1 ≤ ρ.

This property will be used in what follows to improve the time integrability of certain
terms such as {ρ1u}, {ρ1 log(θ)u}.

Finally, the initial approximations of the mass fraction of the reactant ρ10,δ
∈

C2+ν(Ω̄) satisfy {
∇ρ10,δ

· n|∂Ω = 0, 0 ≤ ρ10,δ
≤ ρ0 on Ω,

ρ10,δ
→ ρ10

in L1(Ω) δ → 0.

The regularized species conservation equation (4.5) is a parabolic quasi-linear
equation. Applying standard techniques [17], [26] one can deduce the existence of
solutions (see [20], [12], [13]). Finally, the solvability of the regularized momentum
equation is given by the Faedo–Galerkin method, with ρ, θ, ρ1 obtained from (4.2),
(4.3), (4.5).

We remark that an important consideration in the above construction is the ne-
cessity of keeping the total energy constant at each step of the approximation. The
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addition of the artificial pressure {δρβ−2} terms, on the other hand, is essential in
ensuring that the pressure estimates hold true even as the artificial viscosity vanishes
and in resolving some technical issues related to temperature estimates.

This approach yields for any fixed n = 1, 2, . . . a sequence of approximate solu-
tions {ρn,un, θn, ρ1n} for the system (4.2)–(4.5) defined on the whole time interval
(0, T ).

5. The second-level approximate solutions. Relation (4.1) can now be ex-
pressed as∫

Ω

∂t(ρnun) · η dx =

∫
Ω

[ρun ⊗ un − Sn] : ∇η dx

+

∫
Ω

[
pm(ρ) + pm(ρ1) +

a

3
θ4 +

R

m2
θpθ(ρ)

+ Lθpθ(ρ1) + δρβ
]
divη dx

+

∫
Ω

{[pb(ρ) + pb(ρ1)]divη − ε[∇un∇ρ] · η} dx,(5.1)

supplemented with the initial conditions∫
Ω

ρnun · η dx =

∫
Ω

m0,δ · η dx

to be satisfied for any η ∈ Xn with the initial momenta m0,δ given by

m0,δ(x) =

{
m0 if ρ0,δ(x) ≥ ρ0(x),

0 for ρ0,δ(x) < ρ0(x).

5.1. Energy and entropy estimates. The existence of the approximate solu-
tion sequence {ρn,un, θn, ρ1n

} has now been established and we are ready to proceed
with the program outlined in section 4.

Considering a suitable choice of test functions η = un(t) in (4.1), integrating in
space both the (regularized) thermal energy equation (4.3) and the species conserva-
tion equation (4.5), and adding the resulting relations give rise to an energy equality
of the form

d

dt

∫
Ω

[
1

2
ρn|un|2 +ρnPm(ρn) + ρ1nPe(ρ1n) +

δ

β − 1
ρβn + aθ4

n +
cv
m2

ρnθn + Lcvρ1nθ

]
dx

(5.2)

=

∫
Ω

[pb(ρn) + pb(ρ1n)]divundx +

∫
Ω

w1(ρ1, ρ2, θ)dx− ε

∫
Ω

Δρ1ndx

with

Pm(ρ) =

∫ ρ

1

pm(z)

z2
dz.

The approximate entropy balance (4.4) now yields the entropy inequality

∂t(ρnsn) + div(ρnsnun) + div

(
−κC(θn) + δθ3

n

θn
∇θn − sf1n

Ld∇ log(ρ1nθn)

)

≥
(

Sn : ∇un

θn
+

κC(θn) + δθ3
n

θ2
n

|∇θn|2 + Ld|∇ log(ρ1nθn)|2 −
2∑

k=1

gkwk

)

+
cv
m2

(log (θn) − 1) (εΔρn + w1(ρ1, ρ2, θ) − εΔρ1n) .(5.3)
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The regularized continuity equation (4.2) multiplied by ρn and integrated over Ω
yields

d

dt

∫
Ω

1

2
ρ2
ndx + ε

∫
Ω

|∇ρn|2dx = −1

2

∫
Ω

ρ2
ndivundx.(5.4)

Now (5.2), (5.3), (5.4) give rise to

d

dt

∫
Ω

[
1

2
ρn|un|2 + ρnPm(ρn) + ρ1nPm(ρ1n) +

δ

β − 1
ρβn

+ aθ4
n +

cv
m2

ρnθn + Lcvρ1nθn

]
dx

+
d

dt

∫
Ω

(
1

2
ρ2
n − ρn(sFn + sf1n

) + ρ1n + ε|∇ρn|2 + εΔρ1n

)
dx

+

∫
Ω

(
Sn : ∇un

θn
+

κC(θn) + δθ3
n

θ2
n

|∇θn|2 + Kd|∇ log(ρ1n
θn)|2 −

2∑
k=1

gkwk

)
dx

≤
∫

Ω

(
pb(ρn) + pb(ρ1n) − 1

2
ρ2
n

)
divundx +

∫
Ω

cv
m2

(log(θn) − 1)w1(ρ1, ρ2, θ)dx

+ ε

∫
Ω

cv
m2

(∇ log(θn)∇ρn + (log(θn) − 1)Δρ1n) dx.

(5.5)

5.2. Dissipation estimates. Starting from Newton’s law for viscosity and using
the hypotheses (2.8) on viscosity coefficients and Hölder’s inequality, we deduce (see
also [14], [13]) that

(5.6) |∇un + ∇ut
n|b ≤ c

(
θα−1
n |∇un + ∇ut

n|2 + θ4
n

)
, where b =

8

5 − α
.

Moreover, the hypothesis (2.9) on the heat conductivity gives us the following bounds
on the absolute temperature:

(5.7)

∫
Ω

|∇ log(θn)|2 + |∇θ
3
2
n |2dx ≤

∫
Ω

κC(θn) + σθ3
n

θ2
n

|∇θn|2dx.

As stated in Definition 2.1 the total energy is constant of motion. Boundness of the
total energy and properties (2.7) give rise to the following estimates:

√
ρn|un| bounded in L∞(0, T ;L2(Ω)),

ρn bounded in L∞(0, T ;Lβ(Ω)),

ρ1n bounded in L∞(0, T ;Lβ(Ω)),

and

ess sup
t∈(0,T )

∫
Ω

θ4
n(t) dx ≤ c.
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In addition, taking into consideration (5.5), (5.6), and (5.7) we get the following
estimates:

sup
t∈[0,T ]

{
‖ρn‖Lβ(Ω) + ‖ρn|un|2‖L1(Ω) + ‖ρnθn‖L1(Ω) + ‖ρ1n

‖Lβ(Ω)

}
≤ c(δ),(5.8)

sup
t∈[0,T ]

{
‖ log (θn)‖L1(Ω) + ‖ρn log (θn)‖L1(Ω) + ‖θn‖L4(Ω)

}
≤ c(δ),(5.9)

sup
t∈[0,T ]

{
‖ρ1n log (θn)‖L1(Ω)+‖ρ1nθn‖L1(Ω)+‖ρ1n log (ρ1n)‖L1(Ω)

}
≤c(δ),(5.10)

∫ T

0

∫
Ω

Sn : ∇un

θn
+|∇ log(θn)|2 + |∇θ

3
2
n |2+ε|∇ρn|2+||∇ log(ρ1n

θn)|2|dxdt≤c(δ),(5.11)

and

(5.12) ‖un‖Lb(0,T ;W 1,b
0 (Ω)) ≤ c(δ) with b =

8

5 − α
.

Lemma 5.1. For the density of the individual species ρ1n , the following hold
true: {

log(ρ1n
) is bounded in L2([0, T ];W 1,2(Ω)),

ε∇√
ρ1n is bounded in L2([0, T ];L2(Ω)).

(5.13)

Proof. Multiplying the regularized species conservation equations by F ′(ρ1n
) with

F (ρ1n
) = ρ1n log(ρ1n) and using the boundary conditions, we obtain

∫
Ω

F (ρ1n)(t) dx +

∫ t

0

∫
Ω

|∇ log(ρ1n)|2 dxds + ε

∫ t

0

∫
Ω

|∇ρ1n
|2

ρ1n

dxdt

=

∫
Ω

F (ρ1n)(0) dx−
∫ t

0

∫
Ω

ρ1n
divun dxds

−
∫ t

0

∫
Ω

∇ log(ρ1n)∇ log(θn) dx ds−
∫ t

0

∫
Ω

F ′(ρ1n)ω dxdt.

The last relation implies that∫
Ω

ρ1n log(ρ1n)(t) dx + c

∫ t

0

∫
Ω

|∇ log(ρ1n)|2 dxds + ε

∫ t

0

∫
Ω

|∇√
ρ1n |2 dxds

≤
∫

Ω

ρ1n
log(ρ1n

)(0) dx +

∫ t

0

∫
Ω

ρ1n
divun dxds + c̃

∫ t

0

∫
Ω

|∇ log(θn)|2dxds

−
∫ t

0

∫
Ω

(log(ρ1n) + 1)ω dxds.

The term ∫ t

0

∫
Ω

|∇ log(θn)|2 dxds

can be controlled using the estimates (5.11), whereas the term

∫ t

0

∫
Ω

ρ1n
divun dxds ≤ ‖ρ1n

‖L2(Ω)‖divu‖L2(Ω)
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can be balanced using (5.8) and (5.12).
Therefore,

∫
Ω

ρ1n log(ρ1n)(t) dx + c

∫ t

0

∫
Ω

|∇ log(ρ1n)|2 dxds + ε

∫ t

0

∫
Ω

|∇√
ρ1n |2 dxdt

≤
∫

Ω

ρ1n log(ρ1n)(0) dx + c2,(5.14)

or equivalently

‖ρ1n
log(ρ1n)(t)‖L1(Ω) + c1

∫ t

0

‖∇ log(ρ1n)‖2
L2(Ω) dt +

∫ t

0

‖∇√
ρ1n

‖2
L2(Ω) dt

≤ ‖ρ1n log(ρ1n)(0)‖L1(Ω) + c2.

This estimate yields the result.
Starting from the continuity equation and taking into consideration standard

compactness arguments by the aid of (5.8)–(5.12), we get

ρn −→ ρ in C([0, T ], Lβ
weak(Ω)),

and analogously

ρ1n −→ ρ1 in C([0, T ], Lβ
weak(Ω)).

By using the estimates obtained in the previous steps we can assume

un −→ u weakly in Lb(0, T ;W 1,b
0 (Ω)),

ρnun −→ ρu weakly-∗ in L∞(0, T ;L
2β

β+1 (Ω)),

where ρ, u satisfy (4.2) together in the sense of distribution. Taking now into ac-
count that the species density ρ1n is a nonnegative function satisfying the additional
requirement ρ1n

≤ ρn we have that

∫ t

0

∫
Ω

ρ1n
|un|2 dxdt ≤

∫ t

0

∫
Ω

ρn|un|2 dxdt < C < ∞

by the boundness of the total energy. In particular,

ρ1nun −→ ρ1u weakly-∗ in L∞(0, T ;L
2β

β+1 (Ω)),

where ρ1n , u satisfy the regularized species conservation equation (4.5). It is also
worth noting at this point that weak convergence preserves inequalities, and therefore
the requirement that we imposed in the construction of the approximating procedure
leading to the estimate satisfied by the approximate densities, namely,

0 ≤ ρ1n ≤ ρn

will also be verified in what follows for the corresponding limiting quantities.
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5.3. Gradient density estimate. Using standard Lp − Lq estimates for the
regularized continuity equation (4.2) and taking into consideration (5.8)–(5.12), we
get, in the spirit of Feireisl [20],

εp
∫ T

0

‖∇ρn‖
L

2β
β+1 (Ω);R3

dt ≤ c(δ, p) for any p ∈ [1,∞).

Using now the Sobolev embedding theorem W 1,r
0 (Ω) ⊂ L

3r
3−r (Ω) and standard inter-

polation estimates, we get

ε‖∇ρn‖Lq(0,T ;Lq(Ω;R3)) for some q > r′ with r =
8

5 − α
.

In fact, one can improve the estimates on ρn at this point using the Lp-theory of
parabolic equations to obtain the following lemma.

Lemma 5.2. There exists p > 1 such that

∂tρn, Δρn are bounded in Lp((0, T ) × Ω), p > 1,

independently of n. Consequently, the limit functions ρ, u satisfy (4.2) a.e. on (0, T )×
Ω, whereas the boundary condition and initial condition hold in the sense of traces.

Proof. The result is obtained by applying the Lp-theory of parabolic equations.
This process is rather standard; we included above some of the basic steps for com-
pleteness and refer the reader to [20], [22], [14], [26].

Similarly, the following lemma holds true.
Lemma 5.3. There exists p > 1 such that

∂tρ1n , Δρ1n are bounded in Lp((0, T ) × Ω), p > 1,

independently of n. Consequently, the limit functions ρ1, u satisfy (4.5) a.e. on
(0, T ) × Ω, whereas the boundary condition and initial condition hold in the sense of
traces.

The following lemma will be useful in order to obtain the pointwise convergence
of the temperature sequence θn.

Lemma 5.4. Let Ω ⊂ R
N , N ≥ 2, be a bounded Lipschitz domain and Λ ≥ 1 a

given constant. Let ρ ≥ 0 be a measurable function satisfying

0 < M ≤
∫

Ω

ρdx,

∫
Ω

ρβ ≤ K for β >
2N

N + 2
.

Then there exists a constant c = c(M,K) such that

‖v‖L2(Ω) ≤ c(M,K)

(
‖∇v‖L2(Ω) +

(∫
Ω

ρ|v| 1
Λ

)Λ
)

for any v ∈ W 1,2(Ω).
Proof. For the proof we refer the reader to Lemma 5.1 in [14].
Using the Poincaré inequality, as presented in Lemma 5.4, as well as the esti-

mates on {∇ log(θn)}, {∇θ
3
2
n } in (5.11), we deduce uniform bounds on log(θ) and θ

3
2 .

Therefore, it is possible to extract a subsequence of θn such that

(5.15)

⎧⎪⎨
⎪⎩
θn −→ θ weakly in L2(0, T ;W 1,2(Ω)),

θn −→ θ weakly-* in L∞(0, T ;L4(Ω)),

log(θn) −→ log(θ) weakly in L2(0, T ;W 1,2(Ω)).
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Using now the fact that {ρn log(θn), ρ1n
log(θn)} satisfy the entropy inequality

(5.3), we deduce that{
ρn log(θn) bounded in L∞(0, T ;L1(Ω)) ∩ L2(0, T ;L

6β
β+6 (Ω)),

ρnun log(θn) bounded in L2(0, T ;L
6β

4β+3 (Ω))

and {
ρ1n

log(θn) bounded in L∞(0, T ;L1(Ω)) ∩ L2(0, T ;L
6β

β+6 (Ω)),

ρ1n
un log(θn) bounded in L2(0, T ;L

6β
4β+3 (Ω)).

5.4. Pointwise convergence for the temperature. The following lemma will
be very useful in what follows.

Lemma 5.5. Let Ω ⊂ R
N , N ≥ 2, be a bounded Lipschitz domain. Let {vn} be a

sequence of functions bounded in

L2(0, T ;Lq(Ω)) ∩ L∞(0, T ;L1(Ω)), q >
2N

N + 2
.

Furthermore, assume that

∂tvn ≥ gn in D′((0, T ) × Ω),

where the distributions gn are bounded in the space L1(0, T ;W−m,p(Ω)) for m ≥ 1,
p > 1. Then

vn −→ v in L2(0, T ;W−1,2(Ω))

passing to a subsequence as the case may be.
Proof. The proof is given in Lemma 6.3 of Chapter 6 in [20].
By a direct application of Lemma 5.5 to the sequence{

4a

3
θ3 +

cv
m2

ρn log(θn) + Lcvρ1n log(θn)

}
,

we get ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4a
3 θ3 + cv

m2
ρn log(θn) + Lcvρ1n

log(θn)

↓
4a
3 θ̄3 + cv

m2
ρ log(θ) + Lcvρ1 log(θ)

weakly in L2(0, T ;W−1,2(Ω)).

Using now (5.15) we can conclude that⎧⎪⎪⎨
⎪⎪⎩

∫ T

0

∫
Ω

(
4a
3 θ3 + cv

m2
ρn log(θn) + Lρ1n log(θn)

)
θndxdt,

↓∫ T

0

∫
Ω

(
4a
3 θ̄3 + cv

m2
ρ log(θ) + Lcvρ1 log(θ)

)
θdxdt.

Since the function

y →
{

4a

3
y3 +

cv
m2

ρ log(y) + Lcvρ1 log(y)

}
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is nondecreasing we have

(5.16) θn −→ θ strongly in L1((0, T ) × Ω).

Now by interpolation arguments we have that{
θn −→ θ strongly in Lp((0, T ) × Ω) for p > 4,

Sn −→ S weakly in Lq((0, T ) × Ω) for q > 1.
(5.17)

Similarly, we get

(5.18) ρn −→ ρ in Lp((0, T ) × Ω) for p > β.

By using the same argument as in [12] we have

ρnun −→ ρu in C

(
[0, T ];L

2β
β+1

weak(Ω)

)
,

which allows us to pass to the limit and to get that the limit functions ρ, u, θ satisfy
the regularized momentum equation in D′((0, T ) × Ω).

In the same way we can let n → ∞ in the energy inequality (5.2) in order to get

∫ T

0

∫
Ω

∂tψ

(
1

2
ρ|u|2 + ρPm(ρ) + ρ1Pm(ρ1) +

δ

β − 1
ρβ+ aθ4 +

cv
m2

ρθ + Lcvρ1θ

)
dxdt

=

∫
Ω

(
1

2

m0,δ

ρ0,δ
+ ρ0,δPm(ρ0,δ) + ρ10,δPm(ρ10,δ

) +
δ

β − 1
ρβ0,δ + aθ4

0,δ

)
dx

+

∫
Ω

(
cv
m2

ρ0,δθ0,δ + Lcvρ10,δ
θ0,δ

)
dx

+

∫ T

0

∫
Ω

ψ ([pb(ρ) + pb(ρ1)]divu + w1(ρ1, ρ2, θ) − εΔρ1) dxdt

(5.19)

for any ψ ∈ C∞[0, T ], ψ(0) = 1, ψ(T ) = 0, ∂tψ ≤ 0. The following two lemmas will
be useful in what follows.

Lemma 5.6. Let Ω ⊂ R
N be a bounded Lipschitz domain. Suppose that ρ is a

given nonnegative function satisfying

0 < M ≤
∫

Ω

ρ dx,

∫
Ω

ρβ dx < K, β >
2N

N + 2
.

(a) Then the following two statements are equivalent:
(i) The function θ is strictly positive a.e. on Ω,

ρ| log(θ)| ∈ L1(Ω) and
∇θ

θ
∈ L2(Ω).

(ii) The function log(θ) belongs to the Sobolev space W 1,2(Ω). Moreover, if
this is the case, then

∇ log(θ) =
∇θ

θ
a.e. on Ω.

(b) The following two statements are equivalent:
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(i) Let ρ1 be a nonnegative function such that ρ1 = ρf1. The quantities

| log(ρ1θ)| ∈ L1(Ω),
∇(ρ1 θ)

ρ1θ
∈ L2(Ω),

and the function ρ1θ is strictly positive a.e. on Ω.
(ii) The function log(ρ1θ) belongs to the Sobolev space W 1,2(Ω). Moreover,

∇ log(ρ1θ) =
∇ρ1

ρ1
+

∇θ

θ
a.e. on Ω.

Proof. The proof of part (a) follows using a line of arguments similar to the ones
given in [14]. We shall give only some comments on part (b). Letting log (ρ1θ) ∈
W 1,2(Ω), it follows that the product ρ1θ is positive a.e. on Ω. Then one can use the
Sobolev embedding theorem to conclude that

| log(ρ1θ)| ∈ L1(Ω) is integrable.

The converse follows easily (see also [14]).
Lemma 5.7. Let θn → θ in L2((0, T ) × Ω and let log(θn) → log(θ) weakly in

L2((0, T )) × Ω. Then θ is strictly positive a.e. on (0, T ) × Ω and log(θ) = log(θ).
Proof. For the proof we refer the reader to [14].
Using the above analysis we can now pass to the limit in the entropy inequality

(5.3) to get

∫ T

0

∫
Ω

{
∂tϕ[ρ(sF + sf1)] + ∇ϕ[ρ(sF + sf1)] −

(
κC(θ) + σθ3

θ
∇θ

)
∇ϕ

}
dxdt

≤
∫

Ω

ε

(
cv
m2

∇[ϕ(log θ − 1)]∇ρ + Δρ1nϕ

)
dx

−
∫ T

0

∫
Ω

ϕ

(
S : ∇u

θ
+

κC(θ) + σθ3

θ3
|∇θ|2

)
dxdt

−
∫ T

0

∫
Ω

ϕ

(
cv
m2

(log (θ) − 1)w1(ρ1, ρ2, θ)

)
dxdt

−
∫

Ω

ϕ(0)[ρ0,δ(sF0,δ
+ sf10,δ

)]dx(5.20)

for any test function ϕ, ϕ ∈ C∞([0, T ] × Ω), ϕ ≥ 0, ϕ(T ) = 0.

6. The vanishing viscosity limit. Our aim in this section is to let the ar-
tificial viscosity ε go to zero in the family of approximate solutions {ρε,uε, θε, ρ1ε}
constructed in the previous section. We remark that during this process we expect
loss of regularity of ρε due to the fact that the parabolic regularization εΔρε now
vanishes. The main difficulty is to establish the strong convergence of the density ρε.

6.1. Refined pressure estimates. Our goal in this section is to improve the
estimates on the pressure, which so far yield only that p is bounded in the nonreflex-
ive space L∞(0, T, L1(Ω)), by improving the integrability properties of the modified
pressure

p(ρε,uε, θε, ρ1ε) + δρβε .
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We employ the method known as the multipliers technique introduced by Lions in
[27] for the barotropic case and by Feireisl in [20] for handling the full system. This
method involves placing a particular choice of test functions, namely,

ϕ(t, x) = χ(t)B[ρνε ], χ ∈ D(0, T ), 0 ≤ χ ≤ 1,

in the weak formulation of the momentum equation.
The quantity B[v] represents a suitable set of solutions to the problem (see [20])

div (B[v]) = v − 1

|Ω|

∫
Ω

vdx in Ω, B[v]|∂Ω = 0.

Integrating the modified pressure against suitable test functions yields the follow-
ing integral relation:

(6.1)

∫ T

0

∫
Ω

(
pe(ρε) +

a

3
θ4
ε +

R

m2
θεpθ(ρε) + Lθεpθ(ρ1ε

) + δρβε

)
ρνε dxdt =

8∑
j=1

Ljε ,

where ν is a positive constant and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1ε
=

∫ T

0
χ
(∫

Ω
pe(ρε) + a

3θ
4
ε + R

m2
θεpθ(ρε) + Lθεpθ(ρ1ε

) + δρβε dx
)
dt,

L2ε =
∫ T

0
χ
∫
Ω

Sε : ∇B
[
ρε − 1

|Ω|

]
dxdt,

L3ε = −
∫ T

0
χ
∫
Ω
[ρεuε ⊗ uε] : ∇B

[
ρε − 1

|Ω|

]
dxdt,

L4ε = ε
∫ T

0
χ
∫
Ω
(∇uε∇ρε) · B

[
ρε − 1

|Ω|

]
dxdt,

L5ε
= −

∫ T

0
χ
∫
Ω
ρε∇ψε · B

[
ρε − 1

|Ω|

]
dxdt,

L6ε =
∫ T

0
∂tχ

∫
Ω
ρεuε · B

[
ρε − 1

|Ω|

]
dxdt,

L7ε = −ε
∫ T

0
χ
∫
Ω
ρεuε · B[Δρε] dxdt,

L8ε =
∫ T

0
χ
∫
Ω
ρεuε · B[div(ρεuε)] dxdt.

Taking now into consideration the estimates in (5.8)–(5.12) as well as Lemma 5.1
and following the same line of arguments as in [14], [20], we show that the quantities
Sε, ρεu⊗u are bounded in Lp((0, T )×Ω) for a certain p > 1. Using now the fact that
the operator

B :

{
f ∈ Lp(Ω)|

∫
Ω

fdx = 0

}
→ [W 1,p

0 (Ω)]3

introduced earlier is a bounded linear operator, namely,

‖B[f ]‖[W 1,p
0 (Ω)]3 ≤ c(p)‖f‖Lp(Ω) for any 1 < p < ∞,

we conclude that the integrals L1ε–L3ε and L5ε are bounded uniformly with ε. The
integral L4ε

can be controlled using a standard density gradient estimate (see [20],
[14], [12], [13]), while the other integrals can be controlled using standard embedding
theorems and further properties of the operator B. Therefore, there exist ν > 0 and
a positive constant c(δ) independent of ε by which∫ T

0

∫
Ω

(
pe(ρε) +

a

3
θ4
ε +

R

m2
θεpθ(ρε) + Lθεpθ(ρ1ε) + δρβε

)
ρνε dxdt ≤ c(δ).
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Moreover, ∫ T

0

∫
Ω

ργ+ν
δ + δρβ+ν

δ dxdt ≤ c(δ).

6.2. Strong convergence of the temperature. Taking into consideration
estimates (5.8)–(5.12) we may now assume that⎧⎪⎨

⎪⎩
θε −→ θ weakly in L2(0, T ;W 1,2(Ω)),

θε −→ θ weakly-* in L∞(0, T ;L4(Ω)),

log(θε) −→ log(θ) weakly in L2(0, T ;W 1,2(Ω)),

(6.2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ρε −→ ρ in C([0, T ], Lβ

weak(Ω)),

ρ1ε −→ ρ1 in C([0, T ], Lβ
weak(Ω)),

uε −→ u weakly in Lb(0, T ;W 1,b
0 (Ω)),

ρεuε −→ ρu in C([0, T ], L
2β

β+1 (Ω)).

(6.3)

Combining (6.2) and (6.3) we obtain{
ρε log(θε)uε −→ ρlog θu weakly in Lp((0, T ) × Ω) for p > 1,

ρ1ε
log(θε)uε −→ ρ1log(θ)u weakly in Lp((0, T ) × Ω) for p > 1.

(6.4)

Following a similar procedure to the one of the previous section we end up with

(6.5) θε −→ θ strongly in L2((0, T ) × Ω).

6.3. Strong convergence for the density. The aim in this section is to show
the strong convergence of density sequence ρε. This involves understanding the time
evolution of the defect measure

(6.6) Bdft[ρε − ρ] =

∫
Ω

[ ρ log(ρ)(t) − ρ log(ρ)(t) ]dx.

Consider now the renormalized version of the regularized continuity equation

∂tβ(ρε) + div(β(ρε)uε) + (β′(ρε)ρε − β(ρε))divuε

= εdiv(χΩ∇β(ρε)) − εχΩβ
′′(ρε)|∇ρε|2 in D′((0, T ) × R

3)

with β ∈ C2[0,∞), β(0) = 0, a convex function, β′, β′′ bounded, and χΩ the charac-
teristic function on Ω. By a suitable approximation of z → z log z by smooth convex
functions we deduce for ε → 0 (see also [14], [13])

(6.7) Bdft[ρε − ρ] ≤
∫ τ

0

∫
Ω

[ ρdivu − ρdivu ]dxdt

for a.e. τ ∈ [0, T ].
In what follows we employ the multipliers technique as in Feireisl [20] and Lions

[27], which involves placing the quantities

ϕ(t, x) = ψ(t)η(x)(∇Δ−1)[ρε], ψ ∈ D(0, T ), η ∈ D(Ω),
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as test functions in the (approximate) momentum equation. Let us introduce the
following quantity:

C(ρ,u, θ, ρ1) = pe(ρ)+pe(ρ1)+
R

m2
θpθ(ρ)+Lθpθ(ρ1)+δρβ−

((
ζ(θ)−2

3

)
+2μ(θ)

)
divu.

Using now the smoothing properties of the operator {∇Δ−1} we get (see also [14],
[13])

lim
ε→0

∫ T

0

∫
Ω

ψη [C(ρε,uε, θε, ρ1ε)] ρε dxdt(6.8)

=

∫ T

0

∫
Ω

ψη

[
pe(ρ) + pe(ρ1) +

R

m2
θpθ(ρ) + Lθpθ(ρ1) + δρβ

−
((

ζ(θ) − 2

3

)
+ 2μ(θ)

)
divu

]
ρ dxdt

+
[(

I1 − lim
ε→0

I1
ε

)
+ 2

(
lim
ε→0

I2
ε − I2

)]
with

I1 =

∫ T

0

∫
Ω

ψηu · (ρR[ρu] −R[ρ](ρu)) dxdt,

I1
ε =

∫ T

0

∫
Ω

ψηuε · (ρR[ρεuε] −R[ρε](ρεuε)) dxdt,

I2 =

∫ T

0

∫
Ω

ψ(R[ημ(θ)∇u] − ημ(θ)R[∇u])ρ dxdt,

I2
ε =

∫ T

0

∫
Ω

ψ(R[ημ(θε)∇uε] − ημ(θε)R[∇uε])ρε dxdt,

where

R[A] =
∑
i,j

Ri,j [Ai,j ], R = Ri,j [v] = F−1
ξ→x

[
ξiξj
|ξ|2 Fx→ξ[v]

]
.

Using now the continuity property of the bilinear form

[v,w] → vR[w] −R[v]w,

one obtains as in [22], [20], [27] that

lim
ε→0

I1
ε = I1.

The convergence

lim
ε→0

I2
ε = I2

is obtained following the analysis presented in [20], [15] in the spirit of Coifman and
Meyer [8].

Now relation (6.8), together with the strong convergence of {θε}, yields

ρdivu − ρdivu ≤ 1

ζ(θ) − 2
3 + μ(θ)

(P1 + P2 + P3),
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where

P1 = pe(ρ)ρ− pe(ρ)ρ + pe(ρ1)ρ− pe(ρ1)ρ,

P2 =
Rθ

m2
(pθ(ρ) − pθ(ρ)) + Lθ(pθ(ρ1) − pθ(ρ1)), P3 = ρβρ− ρβ+1.

We can see immediately that P2 ≤ 0, P3 ≤ 0, while

P1 ≤ pb(ρ)ρ− pb(ρ)ρ + pb(ρ1)ρ− pb(ρ1)ρ,

where pb is the bounded, nonmonotone component of the elastic pressure. Using (6.7)
we get ∫

Ω

(
ρ log (ρ) − ρ log (ρ)

)
(s)dx ≤ 1

μ

∫ s

0

∫
Ω

pb(ρ)ρ− pb(ρ)ρ dxdt,

which yields

Bdft[ρε − ρ] ≤ Λ

μ

∫ τ

0

Bdft[ρε − ρ]dx,

and consequently

Bdft[ρε − ρ] = 0,

which implies that

(6.9) ρε −→ ρ in L1((0, T ) × Ω).

6.4. The limit process in the field equations (ε → 0). We are now ready
to let ε → 0 in the field equations. By the aid of the estimates obtained above, we
have, passing to a subsequence if needed, that⎧⎪⎨

⎪⎩
ρε → ρ in C([0, T ];Lβ(Ω)),

uε → u weakly in L2(0, T ;W 1.2
0 (Ω; R3)),

εdiv(χΩ∇ρε) → 0 in L2(0, T ;W−1,2(RN ));

(6.10)

therefore, the limit functions ρ, u satisfy the continuity equation in the sense of
distributions. From the energy estimates established above, we have{

ε∇uε∇ρε → 0 in L1(0, T ;L1(Ω)),

εdiv(χΩ∇ρ1ε) → 0 in L2(0, T ;W−1,2(RN )).

Keeping in mind the estimates (6.10), we get

ρεuε → ρu, ρ1εuε → ρ1u in C

(
[0, T ];L

2β
β+1

weak(Ω)

)
.

The limit functions ρ, u, θ, and ρ1 satisfy in the sense of distributions D′((0, T )×Ω)
the momentum equation

∂t(ρu) + div(ρu ⊗ u) + ∇
(
pe(ρ) +

R

m2
θpθ(ρ) +

a

3
θ4 + LRθpθ(ρ1) + δρβ

)
= divS.
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The species conservation equation is also verified in D′((0, T )×Ω) by the limit function
sequences ρ, u, θ, and ρ1 by virtue of the estimates above. Now passing to the limit in
the energy equality (5.19) comes as a consequence of the estimates established earlier
and so we recover the total energy balance,

−
∫ T

0

∫
Ω

∂tψ

(
1

2
ρ|u|2 + ρPe(ρ) + ρ1Pe(ρ1) +

δ

β − 1
ρβ + aθ4 +

cv
m2

ρθ + Lcv ρ1θ

)
dxdt

(6.11)

=

∫
Ω

(
1

2

m0,δ

ρ0,δ
+ ρ0,δPe(ρ0,δ) + ρ10,δ

Pe(ρ10,δ
) +

δ

β − 1
ρβ0,δ + aθ4

0,δ

+
cv
m2

ρ0,δ + Lcv ρ10,δ
θ0,δ

)
dx

for any ψ ∈ C∞[0, T ], ψ(0) = 1, ψ(T ) = 0, ∂tψ ≤ 0. Similarly, sending ε → 0 in
(5.20),

∫ T

0

∫
Ω

∂tϕ[ρ(sF + sf1
)] + ∇ϕ[ρ(sF + sf1

)] −
(
κC(θ) + σθ3

θ
∇θ

)
∇ϕdxdt

≤
∫ T

0

∫
Ω

ϕ

(
S : ∇u

θ
+

κC(θ) + σθ3

θ3
|∇θ|2

)
dxdt

−
∫ T

0

∫
Ω

ϕ

(
cv
m2

(log (θ) − 1)w1(ρ1, ρ2, θ)

)
dxdt

−
∫

Ω

ϕ(0)[ρ0,δ(sF0,δ
+ sf10,δ

)]dx(6.12)

for any test function ϕ, ϕ ∈ C∞([0, T ] × Ω), ϕ ≥ 0, ϕ(T ) = 0.

7. Passing to the limit in the artificial pressure term. In this last part we
pass to the limit for δ → 0 in the sequence ρδ, uδ, θδ, ρ1δ

of the approximate solutions
constructed in the previous section.

Taking into consideration the energy equality (6.11) we have{
ρδ ∈ L∞(0, T ;Lγ(Ω)),
√
ρδuδ ∈ L∞(0, T ;L2(Ω)),

{
ρδθδ ∈ L∞(0, T ;L1(Ω)),

θδ ∈ L∞(0, T ;L4(Ω)),
(7.1)

⎧⎪⎨
⎪⎩
ρ1δ

∈ L∞(0, T ;Lγ(Ω)),
√
ρ1δ

uδ ∈ L∞(0, T ;L2(Ω)),

ρ1,δθ ∈ L∞(0, T ;L1(Ω)).

(7.2)

By applying now the same procedure as in section 5 we get the following refined
estimate for ρδ:

(7.3) ργ+ν
δ + δρβ+ν

δ is bounded in L1((0, T ) × Ω), ν > 1.

The relation∫ T

0

∫
Ω

Sδ : ∇uδ

θδ
+|∇ log(θδ)|2 + |∇θ

3
2

δ |2+ε|∇ρδ|2+||∇ log(ρ1δ
θδ)|2|dxdt≤c(δ)
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is now valid using the energy estimates obtained in our earlier analysis. This last
relation implies, in particular, that

(7.4) ‖uδ‖Lb(0,T ;W 1,b
0 (Ω)) ≤ c(δ) with b =

8

5 − α
,

and in combination with Lemma 5.4,

‖ log(θδ)‖L2(0,T ;W 1,2(Ω)) + ‖θ
3
2

δ ‖L2(0,T ;W 1,2(Ω)) ≤ C̃,

yielding {
θ
3/2
δ ∈ L2(0, T ;W 1,2(Ω)),

log(θδ) ∈ L2(0, T ;W 1,2(Ω)),

{
Sδ ∈ La(0, T ;Ls(Ω)),

with a = 8
5−α , s = 8

7−α .
(7.5)

The bound of Sδ ∈ La(0, T ;Ls(Ω)) for the values of α and β specified above is a direct
consequence of Hölder’s inequality. Therefore,

(7.6)

{
ρδ −→ ρ in C([0, T ], Lγ

weak(Ω)),

uδ −→ u weakly in Lb(0, T ;W 1,b
0 (Ω)),

where ρ, u satisfy (1.23) in D′((0, T ) × R
3). We can also verify using the earlier

analysis that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρδuδ −→ ρu in C([0, T ], L
γ

γ+1 (Ω)),

log(θδ) −→ log(θ) weakly in L2(0, T ;W 1,2(Ω)),

ρδ log(θδ) −→ ρlog(θ) weakly in L2(0, T ;L
6γ

6+γ (Ω)),

ρδ log(θδ)uδ −→ ρlog(θ)u weakly in L2(0, T ;L
6γ

3+4γ (Ω)),

(7.7)

whereas estimates involving ρ1, namely,⎧⎪⎨
⎪⎩
ρ1δ

uδ −→ ρ1u in C([0, T ], L
γ

γ+1 (Ω)),

ρ1δ
log(θδ) −→ ρ1log(θ) weakly in L2(0, T ;L

6γ
6+γ (Ω)),

ρ1δ
log(θδ)uδ −→ ρ1log(θ)u weakly in L2(0, T ;L

6γ
3+4γ (Ω)),

(7.8)

are obtained using (7.2), (7.4), and (7.5).

7.1. Pointwise convergence of the temperature. Next we show the strong
convergence of the temperature sequence. In analogy with the above analysis, the
entropy inequality (6.12) in combination with Lemma 5.5 yields⎧⎪⎪⎪⎨

⎪⎪⎪⎩

4a
3 θ3

δ + cv
m2

ρδ log (θδ) − ρδPθ(ρδ) + Lcvρ1δ
log (θδ) − LRρ1δ

Pθ(ρ1δ
)

↓
4a
3 θ3 + cv

m2
ρlog (θ) − ρδPθ(ρδ) + Lcvρ1 log(θ) − LRρ1Pθ(ρ1)

in L2(0, T ;W−1,2(Ω)).

We remark that in the present context{
ρδ Pθ(ρδ) is bounded in L∞(0, T ;L

γ
G (Ω)) with γ

G > 4
3 ,

ρ1δ
Pθ(ρδ) is bounded in L∞(0, T ;L

γ
G (Ω)) with γ

G > 4
3 .

(7.9)
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In particular, we have⎧⎪⎪⎨
⎪⎪⎩

∫ T

0

∫
Ω

(
4a
3 θ3

δ + cv
m2

ρδ log (θδ) − ρδPθ(ρδ) + Lcvρ1δ
log (θδ) − LRρ1δ

Pθ(ρ1δ
)
)
θδdxdt,

↓∫ T

0

∫
Ω

(
4a
3 θ3 + cv

m2
ρlog (θ) − ρPθ(ρ) + Lcvρ1 log(θ) − LRρ1Pθ(ρ1)

)
θdxdt,

where we have used (6.3) and (6.4) to obtain that as δ → 0⎧⎨
⎩

lim
∫ T

0

∫
Ω
ρδ log(θδ)θδdxdt =

∫ T

0

∫
Ω
ρ log(θ)θ dxdt,

lim
∫ T

0

∫
Ω
ρ1δ

log(θδ)θδ dxdt =
∫ T

0

∫
Ω
ρ1 log(θ)θ dxdt.

In addition, taking into consideration that ρ is a renormalized solution of the conti-
nuity equation and using a standard approximation argument, we get⎧⎨

⎩
ρδPθ(ρδ) → ρPθ(ρ) in C([0, T ];L

γ
G

weak(Ω)),

ρ1δ
Pθ(ρ1δ

) → ρ1Pθ(ρ1) in C([0, T ];L
γ
G

weak(Ω)).

Therefore (6.3), (6.4) yield⎧⎪⎪⎨
⎪⎪⎩
∫ T

0

∫
Ω

(
4a
3 θ3

δ + cv
m2

ρδ log (θδ) + Lcvρ1δ
log (θδ)

)
θδdxdt,

↓∫ T

0

∫
Ω

(
4a
3 θ3 + cv

m2
ρlog (θ) + Lcvρ1 log(θ)

)
θdxdt,

which in turn implies

θδ −→ θ in L2((0, T ) × Ω).

7.2. Pointwise convergence of the density. In order to pass to the limit we
need the strong convergence of the density. The main part consists in showing that
the oscillation defect measure oscβ+1[ρδ → ρ] defined by

(7.10) oscβ+1[ρδ → ρ]((0, T ) × Ω) = sup
k≥1

(
lim sup

δ→0

∫ T

0

∫
Ω

|Tk(ρδ) − Tk(ρ)|β+1dxdt

)

is bounded. Here Tk(ρ) are cutoff functions:

Tk(y) = T
(y
k

)
with T ∈ C∞(R) a concave function,

T (x) = x for 0 ≤ x ≤ 1, T (x) = 2 if y ≥ 3.

In order to show that ρ,u represent a renormalized solution of (1.23) we have to
show that the oscillation defect measure associated with {ρδ} is bounded.

Taking into account that ρ1 ≤ ρ we estimate the amplitude of oscillations as in
[14] (see also [20]); namely, we write{

pe(ρ) = p
(c)
e (ρ) + p

(m)
e (ρ) + p

(b)
e (ρ),

pe(ρ1) = p
(c)
e (ρ1) + p

(m)
e (ρ1) + p

(b)
e (ρ1)
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with p
(b)
e uniformly bounded on [0,∞), p

(m)
e nondecreasing, and p

(b)
e a convex function

satisfying {
p(c)(ρ) ≥ aργ with a > 0,

p(c)(ρ1) ≥ aργ1 with a > 0.

Next, taking into account the monotonicity property of some of the quantities present
in the pressure we get⎧⎨

⎩
pθ(ρ)Tk(ρ) ≥ pθ(ρ) Tk(ρ),

pθ(ρ1)Tk(ρ) ≥ pθ(ρ1) Tk(ρ),

⎧⎨
⎩
p
(m)
e (ρ)Tk(ρ) ≥ p

(m)
e (ρ)Tk(ρ),

p
(m)
e (ρ1)Tk(ρ) ≥ p

(m)
e (ρ1)Tk(ρ),

(7.11)

which yield first that

lim sup
δ→0

∫ T

0

∫
Ω

|Tk(ρδ) − Tk(ρ)|β+1 dxdt

≤ lim sup
δ→0

∫ T

0

∫
Ω

∣∣∣∣[p(b)
e (ρδ) + p(b)

e (ρ1δ
)]

+

((
ζ(θ) − 2

3

)
+ 2μ(θ)

)
divuδ

∣∣∣∣|Tk(ρδ) − Tk(ρ)| dxdt,

and in what follows taking into consideration the properties (2.8) of the transport
coefficients and the estimates derived above and following a line of argument similar
to that presented in [14], [20], [13], we have that

oscβ+1[ρδ → ρ]((0, T ) × Ω) < ∞.

Now we use the fact that ρ,u represent a renormalized solution of (1.23) on (0, T )×Ω
(cf. Proposition 6.3 in [20]).

Proposition 7.1. Let Ω ⊂ R
N be a domain. Assume that ρδ ≥ 0, and that uδ

is a sequence of renormalized solutions to (1.23) on (0, T ) × Ω such that{
ρδ → ρ weakly-* in L∞(0, T ;Lγ(Ω)), γ > 1,

uδ → u weakly in Lr(0, T ;W 1,r(Ω; RN )), r > 1,
(7.12)

where

γ >
Nr

(N + 1)r −N
if r < N.

Furthermore, assume that

oscp[ρδ → ρ]((0, T ) × Ω) < ∞

for a certain p such that

1

p
+

1

r
< 1.

Then the limit functions ρ,u represent a renormalized solution of (1.23) on (0, T )×Ω.
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Note that in our case r = 8
5−α > 3

2 and so all the requirements of Proposition 7.1
are valid. Therefore we get that

(7.13) ρδ −→ ρ strongly in L1((0, T ) × Ω).

Property (7.10) implies now that the continuity equation (1.23) holds true in the
sense of distribution. Furthermore, the bound (7.3) yields that

δρβ −→ 0 in L
β+ν
β ((0, T ) × Ω),

and the momentum equation (1.24) is recovered as δ → 0.
The species conservation equation now can be also verified using Proposition 7.1

and the estimates in (7.2). In addition, the strong convergence of the density sequence
ρδ, together with the estimates established above, allows us to pass to the limit both
in the energy equality (6.11) and in the entropy inequality (6.12). The proof of
Theorem 3.1 has now been established.
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REACHABLE AND UNREACHABLE SETS IN THE SCATTERING
PROBLEM FOR THE ACOUSTICAL EQUATION IN RRR

3∗

MIKHAIL I. BELISHEV† AND ALEXSEI F. VAKULENKO†

Abstract. The scattering problem is to find u = uf (x, t) satisfying utt − Δu + qu = 0, (x, t) ∈
R

3 × (−∞,∞); u ||x|<−t= 0, t < 0; lims→∞ su((s + τ)ω,−s) = f(τ, ω), (τ, ω) ∈ [0,∞) × S2 for
a real-valued smooth compactly supported potential q = q(x) and a control f ∈ F = L2([0,∞);
L2(S2)). The corresponding control problem is as follows: given y ∈ H = L2(R3) find f ∈ F
provided uf (·, 0) = y; the reachable set is U =

{
uf (·, 0) | f ∈ F

}
; the subspace of unreachable

states is D = H � U . The main subject of the paper is the structure of U and D. We present
an example of the finite energy solution uf satisfying uf ||x|<|t| = 0, i.e., vanishing simultaneously
in the past and future cones (reversing wave) and we introduce the set of points at which such
a “reverse effect” occurs. The existence of reversing waves turns out to be equivalent to the lack
of controllability D �= {0}. Cauchy data of such waves belong to the classes D∓ of the incoming
and outgoing data simultaneously; in other words, D− ∩ D+ �= {0}. Also, simple conditions on f
ensuring ‖uf (·, t)‖H ≤ c‖f‖F for all t ∈ (−∞,∞) are described. We plan to apply these results to
the dynamical (time-domain) inverse problem, that is, determination of potential from the dynamical
scattering data. The study of controllability is the first step towards solving this problem by the
boundary control method.

Key words. 3D acoustical equation, time-domain scattering problem, control problem, reach-
able sets, reversing waves, stop points, stability conditions
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Introduction. In this section, we first introduce related notions, then formulate
the problem, state the main results, and finally discuss the motivation and give some
other comments.

0.1. Dynamical system. We denote Br :=
{
x ∈ R

3 | |x| < r
}
, S2 :=

{
θ ∈ R

3 |
|θ| = 1

}
, Σ := (0,∞)×S2. Let q = q(x), x ∈ R

3, be a real-valued smooth (everywhere
in the paper “smooth” means C∞-smooth) compactly supported function (potential),
supp q ⊂ Br∗ . The system under consideration is

utt − Δu + qu = 0, (x, t) ∈ R
3 × (−∞, 0),(0.1)

u ||x|<−t= 0, t < 0,(0.2)

lim
s→+∞

su((s + τ)θ,−s) = f(τ, θ), (τ, θ) ∈ Σ,(0.3)

where f is a control, u = uf (x, t) is a solution (wave). The value t = 0 is referred to
as a final moment; however, in what follows we also deal with problem (0.1)–(0.3) for
all t ∈ (−∞,∞).
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0.2. Spaces, sets, operators. With a dynamical system (0.1)–(0.3) one asso-
ciates the following:

• an outer space of controls F := L2([0,∞);L2(S
2)) and its subspaces

Fξ := {f ∈ F | supp f ⊂ [ξ,∞)} , ξ ≥ 0,

consisting of the delayed controls;
• an inner space of states H := L2(R

3) (we consider a wave uf (·, t) as a
time-dependent element of H) and its subspaces

Hξ :=
{
y ∈ H | supp y ⊂ R

3 \Bξ

}
, ξ ≥ 0;

• a control operator W : F → H

Wf := uf (·, 0)

and the subspace of null controls

N := KerW =
{
f ∈ F | uf (·, 0) = 0

}
;

• the reachable sets

Uξ := WFξ =
{
uf (·, 0) | f ∈ Fξ

}
, ξ ≥ 0

(we also denote U0 by U); by hyperbolicity of problem (0.1)–(0.3) one has
Uξ ⊂ Hξ;

• the defect subspaces (unreachable sets)

Dξ := Hξ � Uξ, ξ ≥ 0

(we denote D0 =: D = H� U).
We introduce also the polyharmonic subspaces Aξ ⊂ Hξ,

Aξ := clos
{
a ∈ Hξ | ∃ integer p ≥ 1 : (−Δ + q)p a = 0 in R

3 \Bξ

}
, ξ ≥ 0

(the closure in H; B0 := {0}), and denote A := A0. It is easy to see that dimAξ = ∞
for ξ > 0.

The evolution of system (0.1)–(0.3) is governed by a self-adjoint operator H :
H → H, Dom H = H2(R3), Hy = (−Δ+q)y. This operator can have at most a finite
number of negative eigenvalues of finite multiplicity, whereas its absolutely continuous
spectrum fills [0,∞). The spectral point λ = 0 can also belong to the point spectrum
σp(H), so that KerH can be a nonzero finite-dimensional subspace in H (see [14]).

0.3. The results. A control problem for system (0.1)–(0.3) is set up as follows:
given y ∈ H find f ∈ F such that

(0.4) uf (·, 0) = y.

Loosely speaking, we deal with a “wave shaping”: managing the control, one needs
to create the incoming (from infinity) wave of prescribed shape. We consider also the
same problem for delayed controls f ∈ Fξ.

To study the solvability of (0.4) is to investigate the structure of the reachable
sets U ,Uξ or, equivalently, of the defect subspaces D,Dξ. Our main result is the
following.
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Theorem 0.1. (i) The sets Uξ are closed. The relations

(0.5) Aξ ⊆ Dξ, ξ ≥ 0; KerH ⊆ A ⊆ D

and

(0.6) dim KerH ≤ dimD = dimN < ∞

hold.
(ii) If ||q||L∞(Br∗ ) is small enough, then U = H and D = {0}.
(iii) If the potential is radially symmetric, i.e., q = q(|x|), then

(0.7) Dξ = Aξ, ξ ≥ 0; D = KerH.

In control theory the equality U = H is interpreted as an exact controllability of
system (0.1)–(0.3). Thus, for small potentials the controllability occurs, whereas in
the case of radial q the only obstacle for controllability is 0 ∈ σp(H). The latter is not
true in the general case: we construct an example of (not radial) potential such that
0 /∈ σp(H) (i.e., KerH = {0}) but D �= {0}, realizing the strict inequality in (0.6).

The presence of the defect D �= {0} is equivalent to the existence of null controls
producing the waves, which exhibit rather curious behavior. If f ∈ N , then uf is an
L2-solution of (0.1)–(0.3) satisfying uf (·, 0) = 0. As a consequence, the function

wf (x, t) :=

{∫ t

−∞ uf (x, s) ds, t ≤ 0,∫ −t

−∞ uf (x, s) ds, t > 0,

turns out to be a finite (positive) energy solution of the acoustical equation (0.1) in
R

3 × (−∞,∞) satisfying

wf ||x|<|t|= 0, wf
t |t=0= 0, wf (·,−t) = wf (·, t),

i.e., vanishing in the past and future characteristic cones simultaneously. Thus, wf is
a wave, which comes from infinity, stops at the moment t = 0, and then returns back
to infinity along the same trajectory. An amazing peculiarity of such a behavior is
that this wave possesses a back front: it leaves supp q with no residual perturbation.
A noticeable fact is that the existence of such reversing waves is equivalent to the lack
of controllability of the system.

The Cauchy data of the reversing wave {wf (·, 0), wf
t (·, 0)} = {y, 0} belong to the

energy class (see [10], [13]). At the same time, since wf ||x|<|t|= 0, the pair {y, 0}
belongs to the classes D− and D+ of the incoming and outgoing data simultaneously
and, thus, provides an example of D+ ∩D− �= {0}. A noticeable fact is that such an
intersection is possible even in the case Ker H = {0}. Perhaps this example is new:
we did not succeed in finding analogues in literature.

The origin x = 0 plays the role of a point which stops the reversing waves. We
introduce the set Υ[q] ⊂ R

3 of such points and hope that it proves to be an interesting
object for further investigations.

At the end of the paper we present the orthogonality conditions on a control f
ensuring L2-stability of the trajectory: ‖uf (·, t)‖H ≤ c‖f‖F holds for all t ∈ (−∞,∞)
if and only if (f, gk)F = 0, k = 1, . . . , p, where gk are determined by the negative
spectrum of H in an explicit way.



1824 MIKHAIL I. BELISHEV AND ALEKSEI F. VAKULENKO

0.4. Motivation and comments.
• In the future, we plan to apply the results of this paper to the dynamical

(time-domain) inverse problem that is to recover the potential q from the
response operator R of system (0.1)–(0.3) (see section 2.4). By hyperbolicity
of the system, this operator depends locally on potential: its part R |Fξ

is determined by the restriction q |R3\Bξ
. Correspondingly, the recovering

procedure should be local in the following sense: given R |Fξ it must recover
q |R3\Bξ

. In other words, knowing the response of the system on delayed

controls f ∈ Fξ, one must determine the potential in the domain R
3\Bξ filled

with delayed incoming waves uf (·, 0). Such a locality is a specific feature of
the boundary control (BC) method, which is an approach to inverse problems
based upon their connections with control theory [2]. It is the approach,
which motivates the study of Uξ and Dξ: by philosophy of the BC method,
analysis of controllability of a system is the first step towards solving the
corresponding inverse problem.

• Dealing with the scattering problem of such a kind, one cannot avoid parallels
to the Lax–Phillips theory (LPT) and we do comment on such parallels in the
text. However, our presentation is independent. One of the reasons is that
at the moment we do not fully recognize the place of our central object Dξ

in the context of LPT. Also, we deal mainly with L2-solutions uf (not with

a complete state {uf , uf
t }) since for the incoming waves, the component uf

t

is determined by uf . In addition, we prefer L2-norms avoiding the indefinite
energy

∫
R3 u

2
t + |∇u|2 + qu2.

• Our paper extends the results of [5], which deals with q = 0, to the perturbed
case.

1. Unperturbed system. Here, dealing mainly with the case q = 0, we present
some results of [5] and supplement them with geometrical optics relations used in what
follows.

1.1. Expansions over spherical harmonics. Let Y m
l (θ), l ≥ 0, m = −l,

−l + 1, . . . , 0, . . . , l − 1, l, be the standard spherical functions (harmonics) satisfying

−ΔωY
m
l = l(l + 1)Y m

l on S2

(Δω is the Beltrami–Laplace operator) and constituting an orthonormal basis in
L2(S

2). The unperturbed system is

utt − Δu = 0, (x, t) ∈ R
3 × (−∞, 0),(1.1)

u ||x|<−t = 0,(1.2)

lim
s→∞

su((s + τ)θ,−s) = f(τ, θ), (τ, θ) ∈ [0,∞) × S2;(1.3)

its outer and inner spaces can be represented, respectively, in the form

(1.4) H = ⊕
∑
l,m

Hlm , Hlm :=

{
y =

v(r)

r
Y m
l (ω)

∣∣∣∣
∫ ∞

0

v2(r)dr < ∞
}

(we denote
∑

l,m :=
∑∞

l=0

∑m=l
m=−l, r := |x|, ω := x

|x| and keep these notations in what

follows) and

(1.5) F = ⊕
∑
l,m

Flm , Flm =

{
f = g(τ)Y m

l (ω)

∣∣∣∣
∫ ∞

0

g2(τ)dr < ∞
}

.
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1.2. Partial problems. Choose an f ∈ F . Separating variables in (1.1)–(1.3)
in accordance with decompositions (1.4), (1.5), we represent

(1.6) f(τ, θ) =
∑
l,m

flm(τ)Y m
l (θ)

and look for the solution u = uf (x, t) in the form

(1.7) uf (x, t) =
∑
l,m

ulm(r, t)

r
Y m
l (ω) ,

which reduces (1.1)–(1.3) to a series of partial problems

utt − urr +
l(l + 1)

r2
u = 0, (r, t) ∈ (0,∞) × (−∞, 0),(1.8)

u |r<−t = 0,(1.9)

lim
s→∞

u(s + τ,−s) = f(τ), τ ∈ [0,∞).(1.10)

Solving them for f = flm(τ), we get the solution u = ulm(r, t) and arrive at the
following results (e.g., see [5]).

(i) The partial problem can be solved explicitly: for any φ ∈ C∞
0 (0,∞) the

function

(1.11) uf (r, t) = rl
(

∂

∂r

1

r

)l

φ(r + t)

satisfies (1.8)–(1.10) with

(1.12) f(τ) =

(
d

dτ

)l

φ(τ).

For controls of the form (1.12), the inclusion supp f ⊂ [a, b] ⊂ (0,∞) implies

suppuf (·, t) ⊂ [a− t, b− t]

and, hence, the solution is compactly supported for all times t. One more important
fact is that the class of controls

Ll :=

(
d

dτ

)l

C∞
0 (0,∞), l = 0, 1, . . . ,

as well as each of its subclasses

L
(k)
l :=

(
d

dτ

)k

Ll , k = 0, 1, . . . ,

are dense in L2(0,∞). Note also the density of the classes
(∫ τ

0

)
L

(k)
l for l + k > 0.

(ii) Representations (1.11)–(1.12) determine the map W l : f �→ uf (·, 0), which is
an isometric operator from L2(0,∞) to L2(0,∞). Its extension to L2(0,∞) turns out
to be a unitary operator, which we denote also by W l. The L2-solutions of (1.8)–(1.10)
can be introduced through this operator by

(1.13) uf (·, t) := W lTtf, t ≤ 0,
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where Tt is a shift operator,

(Ttf)(τ) :=

{
0, 0 ≤ τ ≤ |t|,
f(τ − |t|), τ ≥ |t|.

(iii) The reachable sets of system (1.8)–(1.10) are

Uξ
l := W lL2(ξ,∞), ξ ≥ 0,

where L2(ξ,∞) := TξL2(0,∞) is the class of delayed controls; the defect subspaces
(unreachable sets) are

Dξ
l := L2(ξ,∞) � Uξ

l , ξ ≥ 0.

The following characterization of the defect is obtained in [5].

Assign a function a = a(r) ∈ L2(0,∞) to a class Aξ
l if supp a ⊂ [ξ,∞) and there

exists an integer p > 1 such that

(1.14)

[
− d2

dr2
+

l(l + 1)

r2

]p
a = 0, r > ξ.

For an a ∈ Aξ
l , define rank a as the minimal p providing (1.14), and put

rankAξ
l := max

a∈Aξ
l

rank a.

Then, one has

(1.15) Dξ
0 = Aξ

0 = {0} , ξ ≥ 0

(that is commented on as “s-waves are controllable”), whereas for l ≥ 1 the set Aξ
l

turns out to be a finite-dimensional subspace,

dimAξ
l = rankAξ

l = d(l) :=
l

2
+

1 − (−1)l

4
,

spanned on a basis

(1.16)
χ(r − ξ)

rl
,
χ(r − ξ)

rl−2
, . . . ,

χ(r − ξ)

r
3+(−1)l

2

,

where χ(s) := 1
2 [1 + sign s] is the Heaviside function. As is shown in [5], the equality

(1.17) Dξ
l = Aξ

l , l ≥ 0, ξ > 0,

holds. For ξ = 0, the functions (1.16) do not belong to L2(0,∞) and, hence,

(1.18) D0
l = A0

l = {0}.
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1.3. Control operator. Returning from the partial problems to system (1.1)–
(1.3), we define its L2-solutions in accordance with (1.6), (1.7), (1.13): for f ∈ F we
set

(1.19) uf (x, t) :=
∑
l,m

1

r

(
W lTtΠlmf

)
(r)Y m

l (ω),

where Πlm : F → L2(0,∞),

(Πlmf) (τ) :=

∫
S2

f(τ, θ)Y m
l (θ) dθ , τ ≥ 0.

By this, the control operator of the unperturbed system W0 : F → H, W0f = uf (·, 0)
is unitary1 and the relation

(1.20) uf (·, t) = W0Ttf, t ≤ 0,

holds (see (1.13)). It is easy to verify that an L2-solution uf satisfies (1.1) also in
the sense of distributions and, as an H-valued function of time (trajectory), belongs
to the class C((−∞, 0];H). Moreover, considering (1.1)–(1.3) for all times, one has
uf ∈ C((−∞,∞);H). For a smooth control f vanishing near τ = 0, the solution uf

is smooth and can be represented in the well-known form: assuming f extended to
τ < 0 by zero one has

(1.21) uf (x, t) =
1

2π

∫
S2

∂f

∂τ
(t + x · θ, θ) dθ

(e.g., see [10]). This formula yields

(1.22) (W0f)(x) =
1

2π

∫
S2

∂f

∂τ
(x · θ, θ) dθ.

For the later use, it is convenient to introduce one more special class of controls
and the corresponding solutions. Define

Llm := {f ∈ F | f = g(τ)Y m
l (θ), g ∈ Ll}

(see section 1.2(i)) and consider the class of controls

L :=

⎡
⎣⊕∑

l,m

Llm

⎤
⎦ ∩ C∞

0 (Σ),

which is dense in F . Its subclasses

L(k) :=

(
∂

∂τ

)k

L , k = 1, 2, . . . ,

are also dense. In addition, note that L(k) ∩ Fξ is dense in Fξ for every ξ ≥ 0.
If f ∈ L and supp f ⊂ [a, b] × S2 ⊂ Σ, then, in accordance with the results of

section 1.2(i), representation (1.7) yields

(1.23) suppuf (·, t) ⊂ Bb−t \Ba−t, t ≤ 0.

1This fact also easily follows from LPT.
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Thus, the controls f ∈ L produce the waves compactly supported in R
3.

The space of controls contains the Sobolev class

F1 :=

{
f ∈ F

∣∣∣∣ ∂f∂τ ∈ F
}

equipped with the norm ‖f‖2
1 = ‖f‖2

F + ‖∂f
∂τ ‖2

F and its subclass

F1,0 := {f ∈ F1

∣∣ f |τ=0 = 0},

the set L being dense in F1,0.
Take an f ∈ L. Integrating by parts with regard to the isometry of the control

operator and property (1.23), we have

‖f‖2
1 = ‖f‖2

F +

(
∂f

∂τ
,
∂f

∂τ

)
F

= ‖f‖2
F −

(
∂2f

∂τ2
, f

)
F

= ‖uf (·, 0)‖2
H −

(
u

∂2f

∂τ2 (·, 0), uf (·, 0)

)
H

= ‖uf (·, 0)‖2
H −

(
uf
tt(·, 0), uf (·, 0)

)
H

= ‖uf (·, 0)‖2
H −

(
Δuf (·, 0), uf (·, 0)

)
H = ‖uf (·, 0)‖2

H1(R3).

Extending to f ∈ F1,0, we obtain an isometric embedding

(1.24) W0F1,0 ⊂ H1(R3).

This simple straightforward derivation demonstrates the utility of the class L. How-
ever, (1.24) can be derived from LPT (see [10]).

1.4. Observation operator. The adjoint operator W ∗
0 : H → F plays the

role of an observation operator of system (1.1)–(1.3). Since W0 is unitary, one has
W ∗

0 = W−1
0 , which relates W ∗

0 to the Radon transform

(Ry) (τ, θ) :=

∫
σ·θ=τ

y(σ) dσ, (τ, θ) ∈ Σ,

as follows. For any y ∈ C∞
0 (R3), by the Radon inversion formula one has

y(x) = − 1

8π2
Δx

∫
S2

(Ry)(x · θ, θ) dθ = − 1

8π2

∫
S2

[
∂2

∂τ2
Ry

]
(x · θ, θ) dθ

=
1

2π

∫
S2

∂

∂τ

[
− 1

4π

∂

∂τ
Ry

]
(x · θ, θ) dθ = 〈see (1.22)〉

=

(
W0

[
− 1

4π

∂

∂τ
Ry

])
(x);

hence,

(1.25) W ∗
0 = W−1

0 = − 1

4π

∂

∂τ
R ,

whereas the isometry of W ∗
0 corresponds to the classical Plancherel formula for R (see

[7], [8], [10]).
The embedding

(1.26) W ∗
0 H

1(R3) ⊂ F1

will be used below; it easily follows from the properties of the Radon transform and
(1.25).



REACHABLE AND UNREACHABLE SETS IN 3D SCATTERING 1829

1.5. Controllability. To describe the structure of the sets Uξ and Dξ in the
unperturbed case one needs merely to reformulate the results of section 1.2(iii).

Recall that the polyharmonic subspaces Aξ are defined at the end of section 0.2.
In the case q = 0, by this definition and in accordance with (1.4), one easily gets

Aξ = ⊕
∑
l,m

{
y ∈ Hlm

∣∣∣∣ y =
a(r)

r
Y m
l (ω), a ∈ Aξ

l

}
.

By virtue of (1.15)–(1.18), the equalities

(1.27) Dξ = Aξ, ξ > 0; D0 = A0 = {0}

hold (see [5]). Thus, for ξ > 0 the defect sets are infinite dimensional, whereas the
reachable sets Uξ = W0Fξ are the closed subspaces determined by infinite number

of orthogonality conditions: y =
∑

l,m
ylm(r)

r Y m
l (ω) belongs to Uξ if and only if

ylm ⊥ Aξ
l .

1.6. Geometrical optics. Here we modify representations (1.21) and (1.22),
extending them to the case of controls with f |τ=0 �= 0. Such controls with a jump at
τ = 0 produce the waves with a jump at the characteristic cone {(x, t) | |x| = |t|},
i.e., at the forward front of the wave. The geometrical optics formulae express the
amplitude of the jump of uf through f |τ=0.

Fix ω ∈ S2 and define

πb(ω) :=

{{
θ ∈ S2 | ω · θ = b

}
, b ∈ [−1, 1],

∅, |b| > 1.

The set πb(ω) is a parallel on the unit sphere with the north pole ω, the length of the
parallel is equal to 2π

√
1 − b2; π0(ω) is the equator; π±1(ω) = ±ω. For a function g

on S2, denote by

[g]b(ω) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2π

√
1−b2

∫
πb(ω)

g(θ) dθ, b ∈ [−1, 1],

g(−ω), b = −1,

g(ω), b = 1,

0, |b| > 1,

the mean value of g on the parallel.
Lemma 1.1. For f ∈ F1, the representation

(1.28) uf (x, t) =
1

2π

∫
S2

fτ (t + rω · θ, θ) dθ +
1

r
[f(0, ·)]− t

r
(ω)

holds, where r = |x|, ω = x
|x| , and fτ is understood as a classical (Sobolev) derivative

of f |τ>0, the derivative being extended to τ < 0 by zero.
Proof. Let us begin with f ∈ F1 ∩ C1(Σ). Fix ε > 0 and denote

fε(τ, ω) :=

⎧⎪⎨
⎪⎩

0, τ < 0,
f(0,ω)

ε τ, 0 ≤ τ < ε,

f(τ − ε, ω), ε ≤ τ < ∞.



1830 MIKHAIL I. BELISHEV AND ALEKSEI F. VAKULENKO

Approximating fε ∈ F1,0 by smooth controls, we easily extend (1.21) to f = fε and
get

ufε

(x, t) =
1

2π

∫
S2

∂fε

∂τ
(t + x · θ, θ) dθ =

1

2πε

∫
0≤t+x·θ<ε

f(0, θ) dθ

+
1

2π

∫
t+x·θ≥ε

fτ (t + x · θ − ε, θ) dθ =: Iε + IIε.(1.29)

To analyze Iε, we introduce polar coordinates: choose ω′, ω′′ ∈ S2 such that
{ω, ω′, ω′′} form a Cartesian basis in R

3 and define ϕ = ϕ(θ) ∈ [0, 2π), ψ = ψ(θ) ∈
[0, π] by cosϕ = ω′ · θ, sinϕ = ω′′ · θ, cosψ = ω · θ. Since the set of integration in Iε
is determined by the inequalities

−t

r
≤ ω · θ ≤ −t

r
+

ε

r
,

one has

Iε =
1

2πε

∫ 2π

0

dϕ

∫ arccos −t
r

arccos[−t
r + ε

r ]

f (0, θ(ϕ,ψ)) sinψ dψ

=
1

2π

∫ 2π

0

dϕ
1

ε

∫ −t
r + ε

r

−t
r

f (0, θ (ϕ, arccos η)) dη.

Fix x, t such that |x| > −t. Sending ε → 0 we get

Iε →
1

2πr

∫ 2π

0

f

(
0, θ

(
ϕ, arccos

−t

r

))
dϕ =

1

r
[f(0, ·)]− t

r
(ω).

By the continuity of fτ , the limit passage in IIε for fixed x, t gives

IIε →
1

2π

∫
t+x·ω≥0

fτ (t + x · θ, θ) dθ =

∫
S2

fτ (t + rω · θ, θ) dθ.

Hence, the right-hand side (r.h.s.) of (1.29) tends pointwise in {(x, t) | 0 ≤ −t < |x|}
to the r.h.s. of (1.28). At the same time, fε → f in F that implies ufε

(·, t) → uf (·, t)
in H, and we arrive at representation (1.28). For (x, t) : |x| < −t the representation
takes the trivial form 0 = 0.

If f ∈ F1, then the value f |τ=0 is well defined as an element of L2(S
2), as well

as [f(0, ·)]b(·) ∈ L2(S
2).2 Therefore, approximating f by elements of F1 ∩ C1(Σ) in

F1-norm and passing to the limit, we justify (1.28).
A peculiarity of formula (1.28) is that, for a fixed t, the summands in its r.h.s.

not necessarily belong to H = L2(R
3) individually. The formula represents the wave

uf (·, t) in a neighborhood of x = 0 and enables one to analyze its behavior near the
forward front

{
x ∈ R

3 | |x| = −t
}
. Namely, if x approaches the front (|x| → −t + 0),

then the first summand vanishes (since mes {θ ∈ S2 | t + x · ω ≥ 0} → 0), whereas
the second summand tends to the limit r−1[f(0, ·)]1(ω) = r−1f(0, ω). Summarizing,
we get the relation

(1.30) uf (x, t)|x=(−t+0)ω = − f(0, ω)

t
,

2See the comments in section 1.7.
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which is a typical geometrical optics formula.
Fixing x �= 0 and taking t = 0 in (1.28), we represent the unperturbed control

operator in the form

(1.31) (W0f)(x) =
1

2π

∫
S2

fτ (rω · θ, θ) dθ +
1

r
[f(0, ·)]0(ω), x ∈ R

3.

The first summand belongs to H1
loc(R

3). Indeed, choose an (arbitrarily large) r′ > 0
and η = η(τ) ∈ C∞[0,∞) such that η |[0,r′]= 1, η |[r′+1,∞)= 0. Then, representing

f(τ, ·) = η(τ)[f(τ, ·) − f(0, ·)] + {η(τ)f(0, ·) + [1 − η(τ)]f(τ, ·)}
= f1(τ, ·) + f2(τ, ·)

with f1 ∈ F1,0 and supp (f2)τ ⊂ [r′,∞), we have∫
S2

fτ (rω · θ, θ) dθ =

∫
S2

f1τ (rω · θ, θ) dθ +

∫
S2

f2τ (rω · θ, θ) dθ = I1(x) + I2(x),

where I1 = W0f1 ∈ H1(R3) (see (1.24)) and supp I2 ⊂ R
3\Br′ . The second summand

in (1.31) is singular at x = 0 and does not belong to H1
loc(R

3).

1.7. Comments.
• In [5] we introduced one more representation of W ∗

0 through the so-called
M transform. This transform is constructed from the jumps appearing as a
result of projecting the functions on the reachable sets (see also [3]).

• The map g �→ [g]b(·) is known as the Minkowski–Funk transform [7]; for
|b| < 1 it is a compact operator in L2(S

2).
• Most probably, formulae (1.28), (1.30) are known but we did not succeed in

finding exact references.

2. Perturbed system. We study system (0.1)–(0.3) and prepare auxiliary re-
sults required for further investigation of its controllability.

2.1. Representation of uf . Recall that the potential is assumed compactly
supported: supp q ⊂ Br∗ .

One possible way to establish the solvability of problem (0.1)–(0.3) for all t ∈
(−∞,∞) is to present it in the form

(u− uf
0 )tt − Δ(u− uf

0 ) = −qu, (x, t) ∈ R
3 × (−r∗,∞),(2.1)

(u− uf
0 ) |t<−r∗= 0,(2.2)

where uf
0 is the solution of (1.1)–(1.3) and, applying the Poisson–Kirchhoff formula,

to reduce to a Volterra-type equation

(2.3) u(x, t) = uf
0 (x, t) − 1

4π

∫
Bt+r∗ (x)

q(η)u(η, t + r∗ − |x− η|)
|x− η| dη,

which can be analyzed by standard methods (e.g., see [15]). If f ∈ C∞
0 (Σ), the

solution u = uf (x, t) is classical (smooth).
The second representation is derived as follows. Analyzing (2.3), one establishes

the well-known property of finiteness of the domain of influence, which leads to

supp(uf − uf
0 ) ⊂ {(x, t) | t ≥ −r∗,−t ≤ |x| ≤ 2r∗ + t}
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Fig. 2.1. The set supp (uf − uf
0 ).

(this support is shadowed on Figure 2.1). Therefore, for times t ≤ 0 the problem for

the difference uf − uf
0 can be reduced to the cylinder B2r∗ × [−r∗, 0] and written in

the form

(u− uf
0 )tt − Δ(u− uf

0 ) = −qu, (x, t) ∈ B2r∗ × (−r∗, 0),

(u− uf
0 ) |t=−r∗= (u− uf

0 )t |t=−r∗= 0, x ∈ B2r∗ ,

(u− uf
0 ) |Σr∗ = 0,

where Σr∗ := ∂B2r∗ × [−r∗, 0]. Then, by an operator version of the Duhamel formula,
one has[

u(·, t) − uf
0 (·, t)

] ∣∣∣∣
B2r∗×[−r∗,0]

= −L− 1
2

∫ t

−r∗

sin
[
(t− s)L

1
2

]
Y [q(·)u(·, s)] ds,

where L : L2(B2r∗) → L2(B2r∗), Dom L = H2(B2r∗) ∩ H1
0 (B2r∗), Ly = −Δy; Y :

L2(R3) → L2(B2r∗) is a reduction, Y y := y |B2r∗ . Returning to R
3, we get

(2.4) u(·, t) = uf
0 (·, t) − Y ∗L− 1

2

∫ t

−r∗

sin
[
(t− s)L

1
2

]
Y [q(·)u(·, s)] ds.

The third representation uses a spectral decomposition of the operator H = −Δ+
q (see the end of section 0.2). Let {Eλ}λ∈R : Eλ = Eλ−0 be its spectral measure,
H− := E0H be the subspace of negative spectrum, H0 := (E+0 −E0)H = KerH, and
H+ := (I−E+0)H, so that H = H−⊕H0⊕H+. Let ϕ1, ϕ2, . . . , ϕp and ϕ0

1, ϕ
0
2, . . . , ϕ

0
n

be the orthonormal bases in H− and H0, respectively, Hϕk = −κ
2
kϕk, κk > 0,

Hϕ0
k = 0. Solving the problem

utt + Hu = 0, t ∈ (−∞,∞),

u |t=0 = uf (·, 0), ut |t=0 = uf
t (·, 0)
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by the Fourier method, we get

uf (·, t) =

p∑
k=1

{
cosh κkt

(
uf (·, 0), ϕk

)
H +

sinh κkt

κk

(
uf
t (·, 0), ϕk

)
H

}
ϕk

+

n∑
k=1

{
1(t)

(
uf (·, 0), ϕ0

k

)
H + t(uf

t (·, 0), ϕ0
k)H

}
ϕ0
k

+

∫ ∞

+0

{
cos

√
λ t dEλ u

f (·, 0) +
sin

√
λ t√
λ

dEλ u
f
t (·, 0)

}
.(2.5)

Each of the representations mentioned above can be used for introducing a gener-
alized solution of (0.1)–(0.3) and proving its existence and uniqueness. For instance,
considering (2.4) as a second-order Volterra equation in the space C([−r∗, 0];H), it is
easy to establish its solvability and the estimates

‖uf (·, t)‖H ≤ ‖uf‖C([−r∗,0];H) ≤ cq‖uf
0‖C([−r∗,0];H)

= 〈see (1.20)〉 = cq sup
t∈[−r∗,0]

‖W0Ttf‖H = cq‖f‖F(2.6)

(with regard to isometry of W0 and Tt), where a constant cq is determined by r∗ and
‖q‖L∞(Br∗ ). Then the solution of (2.4) is claimed to be an L2-solution of (0.1)–(0.3)
for f ∈ F .

Note in addition that for f ∈ L,

(2.7) diam suppuf (·, t) < ∞, t ∈ (−∞,∞),

holds. Indeed, for t < −r∗ one has uf (·, t) = uf
0 (·, t) and, hence, suppuf (·, t) is a

compact set (see (1.23)). For t ∈ [−r∗,∞) this property is preserved by finiteness of
domain of influence. Surely, the diameter tends to infinity as t → ∞.

2.2. Control operator. Along with L2-solution uf of (0.1)–(0.3), the operator
W : F → H, Wf = uf (·, 0) is well defined and bounded: ‖W‖ ≤ cq (see (2.6)). The
solution can be represented through the control operator in the form

(2.8) uf (·, t) = WTtf, t ≤ 0.

Putting t = 0 in (2.4) and changing s → −s in the integral, we obtain

uf (·, t) = uf
0 (·, t) − Y ∗L− 1

2

∫ r∗

0

sin
[
sL

1
2

]
Y [q(·)u(·,−s)] ds.

By (2.8), this is equivalent to an operator relation

(2.9) W = W0 −K,

where

K = Y ∗L− 1
2

∫ r∗

0

sin
[
sL

1
2

]
Y q̂ WTs ds

and q̂ multiplies functions by q(·). Since L− 1
2 maps L2(B2r∗) onto H1

0 (B2r∗) continu-
ously, the operator K : F → H is compact, RanK ⊂ Y ∗H1

0 (B2r∗) ⊂ H1(R3), and the
evident estimate

(2.10) ‖K‖ ≤ λ
− 1

2∗ r∗cq‖q‖L∞(Br∗ )
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holds, where λ∗ > 0 is the lowest eigenvalue of L.
Recall the definitions N := KerW , U := WF = RanW , and D := H � U (see

section 0.2). Since W0 is unitary and K is compact, (2.9) and Fredholm’s theorems
lead to dimN = dimD < ∞, proving part of (0.6). Recall also that Fξ = TξF is the
subspace of delayed controls. Later we will use the following property of the control
operator.

Lemma 2.1. The relation Fξ ∩N = {0}, ξ > 0, holds.
Proof. Fix ξ > 0 and choose f ∈ Fξ ∩N . We shall show that f = 0.
Since f ∈ N , one has uf (·, 0) = 0 and, hence, the odd extension

u(·, t) =

{
uf (·, t), t < 0,

−uf (·,−t), t ≥ 0,

turns out to be a solution of the class C((−∞,∞);H) of the equation

(2.11) utt − Δu + qu = 0, (x, t) ∈ R
3 × (−∞,∞).

Since f ∈ Fξ implies suppuf ⊂ {(x, t) | |x| ≥ −t + ξ}, such a solution satisfies
suppu ⊂ {(x, t) | |x| ≥ |t| + ξ} and, hence,

(2.12) u = 0, (x, t) ∈ Bξ × (−∞,∞).

Applying the Fourier transform in (2.11), (2.12), we see that the function

ũ(x, k) =
1

2π

∫ ∞

−∞
eiktu(x, t) dt

satisfies

−k2ũ− Δũ + qũ = 0, x ∈ R
3,

and

(2.13) ũ(x, k) = 0, x ∈ Bξ,

for all k ∈ (−∞,∞). By the well-known uniqueness theorem for homogeneous second-
order elliptic equations (see [9]), (2.13) implies ũ = 0 everywhere in R

3. Hence, u = 0,
uf = 0, and finally f = 0.

2.3. Observation operator. A dynamical system

vtt − Δv + qv = 0, (x, t) ∈ R
3 × (−∞, 0),(2.14)

v |t=0= 0, vt |t=0= y, x ∈ R
3,(2.15)

is called dual to system (0.1)–(0.3). For y ∈ H, its L2-solution v = vy(x, t) can be
introduced through an equivalent integral equation

(2.16) v(x, t) = − 1

4π|t|

∫
∂B|t|(x)

y(σ) dσ − 1

4π

∫
B|t|(x)

q(η)v(η, |t| − |x− η|)
|x− η| dη

(Br(x) is a ball centered at x) obtained by applying the Poisson–Kirchhoff for-
mula to (2.14), (2.15). This Volterra-type equation has a unique solution vy ∈
Cloc((−∞, 0];H).
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With the dual system one associates the observation operator O : H → F ,
DomO = S (the Schwartz class of the smooth rapidly decaying functions):

(Oy)(τ, ω) := lim
s→∞

s

[
∂vy

∂t
+

∂vy

∂r

]
((s + τ)ω,−s),

where ∂
∂r := ∂

∂|x| = x
|x| · ∇. The well-posedness of this definition (i.e., the existence

of the pointwise limit belonging to F) can be seen from (2.16): for smooth y, the
solution vy is classical (smooth) and straightforward calculations lead to

lim
s→∞

s

[
∂vy

∂t
+

∂vy

∂r

]
((s + τ)ω,−s)

= − 1

4π

∂

∂τ

∫
ω·σ=τ

y(σ) dσ +
1

4π

∫
ω·η≥τ

q(η) vyt (η, τ − ω · η) dη,(2.17)

where the first summand in the r.h.s. is W ∗
0 y (see (1.25)), and the second one is

smooth and compactly supported on Σ. Since |y|, |∇y| rapidly decrease at infinity,
the limit turns out to be uniform with respect to (τ, ω) ∈ Σ.

The following result clarifies a duality of systems (0.1)–(0.3) and (2.14), (2.15).
Lemma 2.2. The relation O∗ = W is valid.
Proof. For y ∈ Dom O and f ∈ L, the solutions uf and vf are smooth and (2.7)

holds. Integrating by parts, one has

0 =

∫
Bs×[−s,0]

[
uf
tt − Δuf + quf

]
vy dxdt

=

∫
Bs

dx
[
uf
t v

y − ufvft

] ∣∣∣∣
t=0

t=−s

−
∫
∂Bs×[−s,0]

[
∂uf

∂r
vy − uf ∂v

y

∂r

]
dσdt

+

∫
Bs×[−s,0]

uf [vytt − Δvy + qvy] dxdt

= 〈see (2.14), (2.15)〉

= −
{∫

Bs

uf (·, 0)y dx +

∫
Bs

[
uf
t v

y − ufvyt

] ∣∣∣∣
t=−s

dx

}

−
{∫ 0

−s

dt

∫
∂Bs

[
∂uf

∂r
vy − uf ∂v

y

∂r

]
dσ

}
=: −I(s) − II(s),(2.18)

where s > 0 is a large parameter. Since uf ||x|<−t = 0, one has uf (·,−s)|Bs
=

uf
t (·,−s)|Bs = 0 and, hence,

(2.19) I(s) →
∫

R3

uf (·, 0)y dx = (Wf, y)H

as s → ∞. Changing variables t → τ − s, σ → s2ω, one gets

(2.20) II(s) =

∫
[0,s]×S2

s2

[
∂uf

∂r
vy − uf ∂v

f

∂r

]
(sω, τ − s) dτdω.

For y ∈ L, the set supp f ⊂ Σ is compact and one can show that the limit in (0.3) is
uniform with respect to (τ, ω) ∈ Σ, whereas the asymptotic

(2.21) suf (sω, τ − s) = f(τ, ω) + o(1)
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is differentiable:

d

ds
[suf (sω, τ − s)] = o(1).

This implies

uf (sω, τ − s) + s

[
∂uf

∂r
− ∂uf

∂t

]
(sω, τ − s) = o(1)

and, combining these asymptotics, we get

s
∂uf

∂r
(sω, τ − s) = s

∂uf

∂t
(sω, τ − s) + o(1)

=
∂

∂τ
uf (sω, τ − s) + o(1)

uniformly with respect to (τ, ω) ∈ Σ. Substituting the asymptotics in (2.20), we have

II(s) =

∫
[0,s]×S2

{[
s
∂

∂τ
uf (sω, τ − s)

]
[svy(sω, τ − s)]

− [suf (sω, τ − s)]

[
s
∂vy

∂r
(sω, τ − s)

]}
dτdω + o(1).

Integrating by parts in the first summand in {· · ·} and taking into account the relations

uf (sω, 0)
∣∣
s�1

= 0, uf (sω,−s) = 0

provided by f ∈ L, one obtains

II(s) = −
∫

[0,s]×S2

[
suf (sω, τ − s)

]
s

[
∂vy

∂t
+

∂vy

∂r

]
(sω, τ − s) dτdω + o(1).

Passing to the limit with regard to (2.21), we get
(2.22)

II(s) → −
∫

[0,s]×S2

f(τ, ω)

{
lim
s→∞

s

[
∂vy

∂t
+

∂vy

∂r

]
(sω, τ − s)

}
dτdω = −(f,Oy)F .

Finally, sending s → ∞ in (2.18) and taking into account (2.19), (2.22), we arrive at

0 = −(Wf, y)H + (f,Oy)F ,

which leads to the assertion of the lemma in view of density of the used f ’s and y’s
in F and H, respectively.

Let us discuss some consequences of this result. The eigenfunctions ϕk of the
negative spectrum of H possess the well-known asymptotic as |x| → ∞:

(2.23) ϕk(x) = αk(ω)
e−κkr

r
[1 + o(1)] .

Put y = ϕk in (2.14), (2.15); the solution of the dual problem is

(2.24) vϕk(x, t) =
sinh κkt

κk
ϕk(x).
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Using (2.23), (2.24), one can find the limit, which defines the observation operator,
by straightforward calculation and then, applying Lemma 2.2, obtain

(2.25) (W ∗ϕk)(τ, ω) = αk(ω) e−κkτ , (τ, ω) ∈ Σ.

In the case of 0 ∈ σp(H) the eigenfunctions ϕ0
k have the asymptotics

(2.26) ϕ0
k(x) =

α0
k(ω)

r2
[1 + o(1)] .

Considering the dual problem with y = ϕ0
k, we have

(2.27) vϕ
0
k(x, t) = t ϕ0

k(x).

Using (2.26), (2.27), one can obtain the equality

(W ∗ϕ0
k)(τ, ω) = 0, (τ, ω) ∈ Σ ,

which yields

(2.28) KerH ⊂ KerW ∗.

One more general fact is the embedding W ∗H1(R3) ⊂ F1, which can be derived
from (1.26), (2.17), and Lemma 2.2.

2.4. Response operator. Dealing with system (0.1)–(0.3) for all times t ∈
(−∞,∞), one associates with it a response operator R : F → F , Dom R = L,

(Rf)(τ, ω) := lim
s→+∞

suf ((s + τ)ω, s), (τ, ω) ∈ Σ.

The well-posedness of this definition can be verified as follows. If f ∈ L and supp f ⊂
[a, b]×S2 (a > 0), then property (1.23) and the finiteness of domain of influence imply

uf
0

∣∣
0≤t≤|x|+a

= 0, uf
∣∣
0≤t≤|x|−2r∗

= 0

for a large enough |x| (see Figure 2.2: suppuf
0 and suppuf are shadowed; lτ = {(x, t) |

x = (s + τ)ω, t = s; s ≥ 0} is a space-time ray; the dotted line is the cone |x| = |t|).
As a result, suf

0 ((s + τ)ω, s) |τ≥0= 0 for large enough s and, taking into account
the asymptotic

s− |(s + τ)ω − η| → ω · η − τ + o(1),

the passage to the limit in (2.3) easily leads to

(Rf)(τ, ω) = lim
s→∞

suf ((s + τ)ω, s)

= − 1

4π

∫
ω·η≥τ−r∗

q(η)uf (η, ω · η − τ + r∗) dη.(2.29)

This justifies the definition and provides also a representation of the response operator.
Note a simple consequence of (2.29): since for τ > 2r∗ the domain of integration does
not intersect supp q, one has Rf |τ>2r∗= 0, i.e., suppRf ⊂ [0, 2r∗]. Using the same
representation, one can show that R acts continuously from F to C([0, 2r∗]×S2) and
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Fig. 2.2. The supports.

is a compact operator in F . Hence, R can be extended to F , representation (2.29)
remaining in force for f ∈ F .

An important property of R is the local character of its dependence on the poten-
tial: the response of the system on delayed controls RFξ is determined by q |R3\Bξ ,
ξ ≥ 0. One more general property, following from the time independence of q is the
relation RTξ = T ∗

ξ R, ξ ≥ 0 and its consequence

(2.30) R
∂

∂τ
f = − ∂

∂τ
Rf, f ∈ F1,0.

Note in addition that the operator R can be identified with some block of the scattering
operator of LPT in the translation representation.

2.5. Connecting operator. A map C : F → F ,

C := W ∗W,

is called a connecting operator of system (0.1)–(0.3). By this definition, for f, g ∈ F ,
one has

(2.31) (Cf, g)F = (Wf,Wg)H =
(
uf (·, 0), ug(·, 0)

)
H ,

i.e., C connects the Hilbert metrics of the outer and inner spaces.
Lemma 2.3. The relation

(2.32) C = I + R

holds.
Proof. Take f, g ∈ L and let uf , ug be the corresponding solutions of problem

(0.1)–(0.3) considered for all times t ∈ (−∞,∞). Blagovestchenskii’s function

b(s, t) :=
(
uf (·, s), ug(·, t)

)
H , −∞ < s, t < ∞,
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is well defined by (2.7) and possesses the following properties.
(i) Function b satisfies the wave equation

(2.33) btt − bss = 0.

Indeed[
∂2

∂t2
− ∂2

∂s2

]
b(s, t) =

∫
R3

[
uf (x, s)ug

tt(x, t) − uf
ss(x, s)u

g(x, t)
]
dx

=

∫
R3

{
uf (x, s) [Δug(x, t) − q(x)ug(x, t)]

−
[
Δuf (x, s) − q(x)uf (x, s)

]
ug(x, t)

}
dx

=

∫
R3

[
uf (x, s)Δug(x, t) − Δuf (x, s)ug(x, t)

]
dx = 0

by compactness of suppuf (·, t) and suppug(·, t).
(ii) The relation

(2.34) lim
s→∞

b(−s,−s) = (f, g)F

holds. Indeed, let supp f, supp g ⊂ (0, β] × S2 (β < ∞). Since uf and ug vanish in
the past cone one has

b(−s,−s) =

∫
R3

uf (x,−s)ug(x,−s) dx =

∫
|x|>−s

= 〈see (1.23)〉 =

∫ s+β

s

dr r2

∫
S2

uf (rω,−s)ug(rω,−s) dω

=

∫ β

0

dτ(s + τ)2
∫
S2

uf ((s + τ)ω,−s)ug((s + τ)ω,−s) dω

=

∫ β

0

dτ(1 +
τ

s
)2
∫
S2

[
suf ((s + τ)ω,−s)

]
[sug((s + τ)ω,−s)] dω

= 〈see (0.3)〉 → (f, g)F as s → ∞.

(iii) The relation

(2.35) lim
s→∞

b(s,−s) = (Rf, g)F

holds. Indeed,

b(s,−s) =

∫
R3

uf (x, s)ug(x,−s) dx = 〈see (1.23)〉

=

∫ s+β

s

dr r2

∫
S2

uf (rω, s)ug(rω,−s) dω

=

∫ β

0

dτ
[
1 +

τ

s

]2 ∫
S2

[suf ((s + τ)ω, s)] [sug((s + τ)ω,−s)] dω

→ (Rf, g)F as s → ∞.

(iv) The relation

(2.36) lim
s→∞

b(0,−s) = 0
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is valid. Indeed,

b(0,−s) =

∫
R3

uf (x, 0)ug(x,−s) dx

∣∣∣∣
s�1

= 0

since suppuf (·, 0) ⊂ Bβ and suppuf (·,−s) ⊂ R
3 \Bs.

Since b satisfies (2.33), it is a sum of two D’Alembert solutions:

b(s, t) = Φ(s + t) + Ψ(s− t).

At the same time, relations (2.34)–(2.36) imply

(f, g)F = Φ(−∞) + Ψ(0), (Rf, g)F = Φ(0) + Ψ(∞), 0 = Φ(−∞) + Ψ(∞).

Combining these equalities, one gets

(f, g)F + (Rf, g)F = Φ(0) + Ψ(0) = b(0, 0)

=
(
uf (·, 0), ug(·, 0)

)
H = 〈see (2.31)〉 = (Cf, g)F

and, hence, Cf = f + Rf for f ∈ L. By density of L, we arrive at (2.32).
The result of the lemma connects null controls f ∈ N with the response operator:

since KerC = KerW =: N , representation (2.32) implies

(2.37) N = Ker (I + R) .

Therefore f = −Rf and, by virtue of the inclusion supp Rf ⊂ [0, 2r∗], equality (2.37)
implies supp f ⊂ [0, 2r∗].

One more consequence is the representation

R = −W ∗
0 K −K∗W0 + K∗K

following from (2.32) and (2.9).

3. Controllability. Here we prove Theorem 0.1 and study the structure of the
defect subspaces in more detail.

3.1. Sets Uξ. Recall that the objects in use are defined in section 0.2.
Fix ξ ≥ 0. Since W = W0 −K, where W0 is unitary and K is compact, it follows

from the result of Lemma 2.1 and the Fredholm theory that the operator W maps Fξ

onto WFξ = Uξ isomorphically. Hence, the reachable sets Uξ are closed subspaces
and Uξ ⊂ Hξ holds.

Let us prove the first of inclusions (0.5). Let a ∈ Aξ be such that (−Δ+ q)pa = 0
in R

3 \ Bξ; take g ∈ Fξ ∩ L and put f = ( ∂
∂τ )2pg. Since the potential q does not

depend on time, the solution uf of (0.1)–(0.3) satisfies

uf (·, 0) = u( ∂
∂τ )2pg (·, 0) =

(
∂2

∂t2

)p

ug(·, 0) = (Δ − q)p ug(·, 0).

Therefore

(
a, uf (·, 0)

)
H =

∫
R3

a(x) (Δ − q)
p
ug(x, 0) dx

= 〈see (2.7)〉 =

∫
R3

[(Δ − q)
p
a(x)]ug(x, 0) dx = 0.(3.1)
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Since the set of f ’s used in this calculation is dense in Fξ (see section 1.3), the set
of the corresponding waves uf (·, 0) is dense in Uξ = WFξ. Thus, a⊥Uξ and, hence,
Aξ ⊂ Hξ�Uξ = Dξ. In addition, if ξ > 0, then dimAξ = ∞ and, hence, dimDξ = ∞.

For proving the second relation of (0.5), it is enough to take p = 1 in (3.1).
Another argument is relation (2.28) implying Ker H ⊂ Ker W ∗ = H � Ran W =
H� U = D. Thus, part (i) of the theorem is proved.

By (2.10), for small enough ‖g‖L∞(Br∗ ) one has ‖K‖ < 1 and W = W0 −K turns
out to be an isomorphism. This implies U = H, D = {0}, and proves part (ii).

Postponing the further proof, let us comment on the obtained results. Thus, at
the moment t = 0 the delayed incoming waves fill the subdomain R

3 \ Bξ, but the
set of such waves Uξ is not complete in Hξ = L2(R

3 \ Bξ) as ξ > 0 and, moreover,
dimHξ � Uξ = ∞. In the meantime, such a completeness occurs in the case of a
bounded domain. Namely, consider the problem

utt − Δu + q = 0, (x, t) ∈ BT × (−T, 0),(3.2)

u |t=−T= ut |t=−T= 0 inBT ,(3.3)

u |ΣT = f,(3.4)

where ΣT = ∂BT × [−T, 0], u = uf (x, t) is a solution. Denote

FT := L2(Σ
T ), FT,ξ :=

{
f ∈ FT

∣∣ supp f ⊂ ∂BT × [−T + ξ, 0]
}
,

H := L2(BT ), Hξ := {y ∈ H
∣∣ supp y ⊂ BT \Bξ};

introduce the reachable sets

Uξ := {uf (·, 0)
∣∣ f ∈ FT,ξ}.

By finiteness of the domains of influence, the inclusion Uξ ⊂ Hξ holds. The well-known
fact derived from the fundamental Holmgren–John–Tataru theorem (e.g., see [2]) is
the density of this inclusion:

(3.5) closUξ = Hξ, 0 ≤ ξ ≤ T,

which is interpreted as an approximate controllability of system (3.2)–(3.5) in sub-
domains filled with waves. Problem (0.1)–(0.3) may be considered as a limit case of
(3.2)–(3.4) as T → ∞: loosely speaking, system (0.1)–(0.3) is governed by controls
located at the sphere of infinite radius. However, the properties of the reachable sets
turn out to be different: comparing (3.5) and (0.5), we state a lack of controllability
in the limit case.3 One more noteworthy difference is that in a finite ball equality
(3.5) fails without the closure (see [1]), whereas in the limit case Uξ is closed.

The following result shows that, studying the general properties of the reachable
sets, it is hardly possible to find a simple characterization of their elements.

Lemma 3.1. If ξ > 0 and u is a compactly supported element of Uξ, then the set
R

3 \ suppu is disconnected.
Sketch of the proof. Assume the opposite: there exists a nonzero compactly

supported u ∈ Uξ such that R
3 \ suppu is an (open) connected set.

3This lack of controllability is in a sense partially compensated by the following property. It can
be shown that for any ξ, ξ′ such that 0 ≤ ξ < ξ′ < ∞, one has clos {uf (·, 0)|Bξ′\Bξ

| f ∈ Fξ} =
L2(Bξ′ \Bξ), i.e., the forward parts of delayed incoming waves possess a local completeness.
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Since Uξ is closed, one has u = uf (·, 0) for some 0 �= f ∈ Fξ. The function

w(x, t) =

{
uf (x, t), t ≤ 0,

−uf (x,−t), t > 0,

is a solution of

wtt − Δw + qw = −2uf (·, 0) δ ′

(δ = δ(t) is the Dirac function) satisfying

w(·, t)
∣∣
Bξ

= 0, t ∈ (−∞,∞).

Its Fourier transform w̃f (·, k) satisfies

Δw̃ + (k2 − q)w̃ = 2ik uf (·, 0)

and

w̃
∣∣
Bξ

= 0, k ∈ (−∞,∞).

Hence, out of suppuf (·, 0) the function w̃ is a solution of a homogeneous elliptic equa-
tion, which vanishes identically on Bξ. By [9], w̃ = 0 everywhere in R

3 \ suppuf (·, 0).
In particular,

w̃(·, k)
∣∣
R3\Bξ′

= 0, k ∈ (−∞,∞),

for large enough ξ′ provided supp uf (·, 0) ⊂ B
ξ′ \Bξ. This leads to

w(·, t)
∣∣
R3\Bξ′

= 0, t ∈ (−∞,∞),

yields uf = 0 in [R3 \ Bξ′ ] × (−∞, 0] and implies f = 0, which contradicts the
assumption f �= 0.

This rather subtle result is of general character for systems governed by hyperbolic
equations (see [1], [3], [4]).

3.2. Radial potential. Here we prove relations (0.7). Thus, in this section we
deal with the case q = q(r).

In this case, the sets Aξ, Dξ, and Uξ are invariant with respect to rotations and,
hence, are reduced by spherical harmonics. Namely,

Aξ = ⊕
∑
l,m

Aξ
lm , Aξ

lm :=

{
y ∈ Hξ

∣∣ y(x) =
a(r)

r
Y m
l (ω), a ∈ Aξ

l

}
,

where Aξ
l are defined in the same way as in unperturbed case, replacing (1.14) by(

− d2

dr2 +
l(l + 1)

r2
+ q(r)

)p

a = 0, r > ξ.

As well as in the unperturbed case, the ODE theory implies rank Aξ
l = dimAξ

l = d(l)
as ξ > 0. Quite analogously,

Uξ = ⊕
∑
l,m

Uξ
lm, Uξ

lm = WFξ
lm,

Dξ = ⊕
∑
l,m

Dξ
lm, Dξ

lm = Hξ
lm � Uξ

lm ⊃ Aξ
lm,
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where

Fξ
lm := Flm ∩ Fξ, Hξ

lm := Hlm ∩Hξ

(see (1.4), (1.5)). Marking the objects corresponding to q = 0 by the index {̊ }, one
has evidently

Aξ
lm

∣∣
ξ>r∗ = Åξ

lm, Uξ
lm

∣∣
ξ>r∗ = Ůξ

lm, Dξ
lm

∣∣
ξ>r∗ = D̊ξ

lm.

We say that a family of subspaces
{
Bξ
}

is continuous with respect to ξ if the or-
thogonal projection on Bξ is continuous in the strong operator topology. By Lemma 2.1,
as ξ > 0 the control operator W maps Fξ

lm onto Uξ
lm isomorphically. Therefore,

since
{
Fξ

lm

}
ξ>0

is continuous, the family
{
Uξ

lm

}
ξ>0

is also continuous. Accordingly,{
Dξ

lm

}
ξ>0

is continuous, which implies dimDξ
lm = const ≤ ∞. In the meantime,

dimDξ
lm

∣∣
ξ>r∗ = dim D̊ξ

lm = 〈see (1.27)〉 = dim Åξ
lm

= (2l + 1) dimAξ
l = 〈see section 1.2(iii)〉 = (2l + 1) d(l) < ∞;

hence, dimDξ
lm = (2l + 1)d(l) for all ξ > 0. On the other hand, by ODE theory one

has dimAξ
lm = dim Åξ

lm for all ξ > 0. Therefore, the evident inclusion Dξ
lm ⊃ Aξ

lm

leads to Dξ
lm = Aξ

lm and, finally, to Dξ = Aξ, ξ > 0.
Let us prove that D = A = KerH. If h ∈ D, then h

∣∣
R3\Bξ

∈ Dξ and, hence, for

ξ > 0 we have h
∣∣
R3\Bξ

∈ Aξ. Therefore, representing h(x) =
∑

l,m
hlm(r)

r Y m
l (ω) for

g := hlm we have

(3.6)

(
− d2

dr2 +
l(l + 1)

r2
+ q(r)

)p

g = 0, r > 0,

with an integer p > 0. If ξ > r∗, then g|(ξ,∞) ∈ Åξ
l and, hence, g|(ξ,∞) satisfies

(3.7)

(
− d2

dr2 +
l(l + 1)

r2

)d(l)

g = 0, r > ξ

(see (1.14)). Comparing (3.6) with (3.7), we conclude that (3.6) holds for p = d(l).
Since g is an L2-solution of (3.6) with p = d(l), by the ODE theory it has the

differentiable asymptotic g|r→0 = O(rl+1), whereas g|r>r∗ is a linear combination of

the solutions (1.16). From this it easily follows that g(r)
r Y m

l (ω) ∈ DomHj as j =

1, 2, . . . , d(l) and, hence, g(r)
r Y m

l (ω) ∈ KerHd(l). Since H is a self-adjoint operator,

the last inclusion implies g(r)
r Y m

l (ω) ∈ KerH and, returning to the element h, we
get h ∈ KerH. Thus, D ⊂ KerH, whereas the converse inclusion has been proved in
section 3.1. Thus, we arrive at D = KerH.

The proof of Theorem 0.1 is completed.

3.3. Example of D �= KerH = {0}. The result of this section shows that, in
the general (not radial) case, the defect subspace is not exhausted by Ker H. Here,
dealing with the operator H for different q’s, we denote it by Hq.

Take a smooth compactly supported q′ such that KerHq′ �= {0} (it does exist;
see [14]) and choose ϕ′ ∈ KerHq′ , so that

(−Δ + q′)ϕ′ = 0 in R
3.
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By ellipticity, one has ϕ′ ∈ C∞(R3). Let x0 and a (small) ε > 0 be such that
ϕ′(x) ≥ const > 0, x ∈ Bε(x0). Construct a function

ϕ′′(x) =

⎧⎪⎪⎨
⎪⎪⎩
ϕ′(x), x ∈ R

3 \Bε(x0),

≥ const
2 , x ∈ Bε(x0) \B ε

2
(x0),

1
|x−x0| , x ∈ B ε

2
(x0) \ {x0},

such that ϕ′′ ∈ C∞(R3 \ {x0}) and define

q′′(x) =

⎧⎪⎪⎨
⎪⎪⎩
q′(x), x ∈ R

3 \Bε(x0),

Δϕ′′(x)
ϕ′′(x) , x ∈ Bε(x0) \ {x0},

0, x = x0.

It is easy to see that q′′ ∈ C∞
0 (R3) and ϕ′′ satisfies

(−Δ + q′′)ϕ′′ = 0 in R
3 \ {x0}.

Note also that q′′ = 0 in B ε
2
(x0).

Defining ϕ(x) := ϕ′′(x− x0), q(x) := q′′(x− x0), we get

ϕ ∈ H, (−Δ + q)ϕ = 0 in R
3 \ {0},

which obviously implies ϕ ∈ A ⊂ D. In the meantime, ϕ �∈ Ker Hq because ϕ is
singular at x = 0, whereas Ker Hq ⊂ C∞(R3).

If KerHq = {0}, then the required example is provided. If, accidentally, KerHq �=
{0}, then one can deform q, preserving nontrivial defect but gaining KerHq = {0}.
This can be done in the following way. For simplicity we assume that λ = 0 is an
ordinary eigenvalue: dim Ker Hq = 1.

Take 0 �= ψ ∈ KerHq. Such an element satisfies (−Δ + q)ψ = 0 and, hence,

(3.8) ψ(x) = − 1

4π

∫
R3

q(y)ψ(y)

|x− y| dy, x ∈ R
3.

If supp q ⊂ Br∗ , then Δψ = 0 in R
3 \Br∗ ; therefore, ψ ∈ L2(R

3) implies ψ = O(r−2)
as r → ∞.

Take a ball B ⊂ B2r∗ \ Br∗ (ensuring q|B = 0) such that ϕ|B �= 0, where ϕ
has been constructed above. Choose η ∈ C∞

0 (R3), supp η ⊂ B; define a function
ϕε := ϕ + εη and a deformation of q by

qε :=
Δϕε

ϕε
=

Δϕ + εΔη

ϕ + εη
=

Δϕ

ϕ
+ ε

Δη

ϕ
+ o(ε) = q + ε

Δη

ϕ
+ o(ε).

Note that qε is analytic with respect to ε and qε = q out of B. We shall show that
the assumption KerHqε �= {0}, ε ∈ (0, ε0), leads to a contradiction.

Reducing (3.8) to B2r∗ , we get an integral equation

ψ(x) = (Gqψ)(x) := − 1

4π

∫
B2r∗

q(y)ψ(y)

|x− y| dy, x ∈ B2r∗ .

By the same arguments, for ψε ∈ Ker Hqε , we have

ψε(x) = − 1

4π

∫
B2r∗

qε(y)ψε(y)

|x− y| dy, x ∈ B2r∗ .
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The analyticity implies ψε = ψ + εh + o(ε) as ε → 0. Substituting this asymptotic
and the asymptotic of qε in the last equation, we easily obtain

h(x) +
1

4π

∫
B2r∗

q(y)h(y)

|x− y| dy = − 1

4π

∫
B2r∗

Δη
ϕ (y)ψ(y)

|x− y| dy =: g(x), x ∈ B2r∗ ,

so that h solves this integral equation. Note also the asymptotic g|r→∞ = r−1.
The solvability of the last equation is equivalent to the orthogonality condition

g⊥Ker (I −Gq
∗) in L2(B2r∗). In the meantime, writing (−Δ + q)ψ = 0 in the form

Δψ(x) = − q(x)

4π

∫
R3

Δψ(y)

|x− y| dy = − q(x)

4π

∫
B2r∗

Δψ(y)

|x− y| dy, x ∈ R
3,

we conclude that Δψ|B2r∗ ∈ Ker (I −Gq
∗). Therefore, by the orthogonality one has

0 = (Δψ, g)L2(B2r∗ ) =

∫
B2r∗

Δψ(x)g(x) dx =

∫
R3

Δψ(x)g(x) dx.

Integrating by parts with regard to the asymptotics of ψ and g (as r → ∞), we have

0 =

∫
R3

ψ(x)Δg(x) dx =

∫
R3

dx ψ(x)

[
Δη

ϕ
ψ

]
(x) dx

=

∫
B

η(x)

[
Δ
ψ2

ϕ

]
(x) dx = 2

∫
B

η(x)
|ψ(x)∇ϕ(x) − ϕ(x)∇ψ(x)|2

ϕ3(x)
dx.

In the last equality we have used the fact that ϕ and ψ are harmonic in B in view
of q|B = 0. By arbitrariness of η, we have |ψ∇ϕ− ϕ∇ψ| |B= 0. Hence, ϕ and ψ are
proportional in B and, by ellipticity, everywhere. The latter is impossible since ψ is
smooth, whereas ϕ has a singularity at x = 0.

This contradiction shows that one can choose ε > 0 provided KerHqε = {0},
and we assume such an ε chosen. Then, the corresponding function ϕε belongs to
H and satisfies (−Δ + qε)ϕε = 0 in R

3 \ {0}, and ϕε = 1
r near x = 0. Therefore,

ϕε ∈ Aqε ⊂ Dqε and we have Dqε �= {0} although Ker Hqε = {0}. Thus, the condition
0 ∈ σp(H) is sufficient but not necessary for the lack of controllability.

3.4. General properties of h ∈ D. Here we detail the behavior of unreachable
elements near x = 0.

Lemma 3.2. For h ∈ D, the representation

(3.9) h(x) =
α(ω)

r
+ h̃(x)

holds with α ∈ L2(S
2) and h̃ ∈ H1

loc(R
3).

Proof. By virtue of (2.9), an element h ∈ D = KerW ∗ satisfies (W0 −K)∗ h = 0;
this implies

(3.10) h = W0K
∗h.

The control f = K∗h can be written in the form

f =

∫ r∗

0

T ∗
s W

∗ q̂ Y ∗ sin
[
sL

1
2

]
L− 1

2Y h ds
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(see (2.9)). Analyzing step by step this representation, we have L− 1
2Y h ∈ H1(B2r∗);

a function q̂ Y ∗ sin[sL
1
2 ]L− 1

2Y h belongs to H1(R3) and is supported in B2r∗ for any
s; W ∗ transfers this function to a control of the class F1 supported in [0, 2r∗]; this
control is transferred by the left (reduced) shift T ∗

s to a control of the same class
supported on [0, 2r∗ − s]. At last, the integration gives f ∈ F1, supp f ⊂ [0, 2r∗].

Representing by (3.10) h = W0f , in accordance with (1.31) one obtains

h =
α(ω)

r
+ h̃,

where α = [f(0, ·)]0 and h̃ = 1
2π

∫
S2 fτ (x · θ, θ) dθ ∈ H1

loc(R
3).

If h ∈ KerH ⊂ D, then h is smooth and α in (3.9) equals zero. The singular
element ϕ ∈ D constructed in section 3.3 is of the form ϕ = 1

r + h̃, so that its α
equals 1. In this connection, the following question remains open: Do there exist the
defect elements with variable α? Furthermore, we know no simple conditions (besides
a smallness of q) ensuring D = {0}. For instance, does q ≥ 0 imply D = {0}? Is
the presence of the negative spectrum of H necessary for D �= {0}? These natural
questions are so far open.

3.5. Reversing waves and s-points. Let the potential q be such that D �= {0}.
In this case, N �= {0} (see (0.6)) and there exists a null control f �= 0 such that
uf (·, 0) = Wf = 0. It is easily proved that, owing to the last equality, the function

uf
−(·, t) :=

{
uf (·, t), t ≤ 0,

−uf (·,−t), t > 0,

turns out to be an L2-solution of problem (0.1)–(0.3) in R
3 × (−∞,∞). This solution

is odd with respect to time and vanishes in {(x, t) | |x| < |t|}, i.e., in the past and
future light cones simultaneously.

As a consequence, the function

wf (x, t) =

∫ t

−∞
uf (x, s) ds, (x, t) ∈ R

3 × (−∞,∞),

is an even L2-solution of the acoustical equation in R
3 × (−∞,∞) also vanishing in

both of the cones. As one can show, wf is a finite energy solution:∫
R3

{[
wf

t (x, t)
]2

+
∣∣∇wf (x, t)

∣∣2 + q(x)
[
wf (x, t)

]2}
dx = const > 0

and, hence, its Cauchy data {wf (·, 0), wf
t (·, 0)} = {y, 0} belong to the energy class

(see [10], [13]). At the same time, since wf ||x|<|t|= 0, the pair {y, 0} belongs to the
classes D− and D+ of the incoming and outgoing data simultaneously. Therefore, we
get an example of {y, 0} ∈ D+ ∩D− �= {0}. Note that such an intersection is possible
even in the case Ker H = {0}.

From the physical point of view, the behavior of the waves uf
− and wf is very

curious. They come from infinity, penetrate into supp q, and interact with the poten-
tial. Then the waves return back to infinity, leaving supp q with no trace remaining.
The absence of the residual perturbation in supp q is amazing and, probably, may be
interpreted as a subtle interference effect. The existence of such reversing waves is
equivalent to the lack of controllability of system (0.1)–(0.3).
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In the effect described above, the origin x = 0 plays the role of a point, which in a
sense stops the reversing waves. This observation motivates the following definition.
For s ∈ R

3, we denote the shift of q by qs(x) = q(x− s) (recall that σ(Hqs) = σ(Hq)).
An s ∈ R

3 is said to be a stop point (s-point) of the potential q if KerHq = {0} and
Dqs �= {0}. The set of s-points is denoted by Υ[q].

Loosely speaking, the potential q makes the space inhomogeneous and the set
Υ[q] consists of points that can stop incoming waves. We hope this set is worthy of
further investigation. At the moment our knowledge about Υ[q] is exhausted by the
following observations.

• Connection with the operator extensions: Assuming again KerH = {0}, fix
s ∈ R

3, and consider the operators Lp : H → H, DomLp = {y ∈ C∞
0 (R3) |

y = 0 near s}, Lpy = (−Δ+ q)py; p = 1, 2, . . . . Every Lp is a densely defined
symmetric semibounded operator and hence has the self-adjoint semibounded
extensions. If at least one Lp possesses an extension L̃p with Ker L̃p �= {0},
then s ∈ Υ[q]. Perhaps this gives a characterization of s-points.

• Connection with the factorization problem: If x = 0 ∈ Υ[q], then the s-matrix
associated with potential q does not admit the factorization in the sense of
Newton [11].

• Model example: Consider a singular potential q = δ(x). Understanding
−Δ − δ in a proper sense (see [6], [12]), one can show that this operator
has only one eigenvalue λ = −1 and Υ[δ] = S2. Other examples of this sort
motivate the following conjecture: any potential with negative spectrum has
a nonempty set of s-points.

3.6. Stability. Here we present necessary and sufficient conditions providing
a global L2-boundedness of a trajectory of system (0.1)–(0.3). We use the same
notations as in (2.5), (2.23) and denote gk := W ∗ϕk ∈ F (see (2.25)).

Lemma 3.3. The estimate ‖uf (·, t)‖2
H ≤ c‖f‖F holds for all t ∈ (−∞,∞) if and

only if (f, gk)F = 0, k = 1, 2, . . . , p.
Proof. (i) Orthogonality ⇒ stability : For t ≤ 0 one has

‖uf (·, t)‖H = 〈see (2.8)〉 = ‖WTtf‖H ≤ ‖W‖‖f‖F ,

so that uf |t<0 is bounded. Suppose t > 0. Take f ∈ C∞
0 (Σ) and find the Fourier

coefficients in (2.5):

cosh κkt
(
uf (·, 0), ϕk

)
H +

sinh κkt

κk

(
uf
t (·, 0), ϕk

)
H

=
eκkt

2

(
uf (·, 0) +

1

κk
uf
t (·, 0), ϕk

)
H

+
e−κkt

2

(
uf (·, 0) − 1

κk
uf
t (·, 0), ϕk

)
H

=
eκkt

2

(
W

[
f +

1

κk
fτ

]
, ϕk

)
H

+
e−κkt

2

(
W

[
f − 1

κk
fτ

]
, ϕk

)
H

= 〈see (2.25)〉 =
eκkt

2

(
f +

1

κk
fτ , gk

)
F

+
e−κkt

2

(
f − 1

κk
fτ , gk

)
F

= eκkt (f, gk)F

(we have used ( 1
κk

fτ , gk)F = (f, gk)F ) and

1(t)
(
uf (·, 0), ϕ0

k

)
H + t

(
uf
t (·, 0), ϕ0

k

)
H

= 1(t)
(
Wf,ϕ0

k

)
H + t

(
Wfτ , ϕ

0
k

)
H = 〈see (2.28)〉 = 0.



1848 MIKHAIL I. BELISHEV AND ALEKSEI F. VAKULENKO

Now (2.5) can be written in the form

uf (·, t) =

p∑
k=1

eκkt(f, gk)F ϕk

+

∫ ∞

+0

{
cos

√
λt dEλ u

f (·, 0) +
sin

√
λt√

λ
dEλ u

f
t (·, 0)

}
,(3.11)

whereas the orthogonality condition leads to

(3.12) uf (·, t) =

∫ ∞

+0

{
cos

√
λt dEλ u

f (·, 0) +
sin

√
λt√

λ
dEλu

f
t (·, 0)

}
,

so that uf (·, t) belongs to the subspace H+ = (I − E−0)H of absolutely contin-
uous spectrum of H. Since f⊥gk implies fτ⊥gk, the same is valid for ufτ (·,t) =
uf
t (·, t) ∈ H+.

To estimate the norm of the wave uf represented by (3.12) let us assume in
addition that (Jf)(τ, ω) =

∫ τ

0
f(s, ω) ds ∈ C∞

0 (Σ). The set of such f ’s is dense in F
and uJf (·, 0) ∈ DomH, uJf (·, 0)⊥KerH. Now, we have the inequality

∥∥uf (·, t)
∥∥2

H ≤ 2

⎡
⎣∥∥∥∥
∫ ∞

+0

cos
√
λt dEλ u

f (·, 0)

∥∥∥∥
2

H

+

∥∥∥∥∥
∫ ∞

+0

sin
√
λt√

λ
dEλ u

f
t (·, 0)

∥∥∥∥∥
2

H

⎤
⎦ =: 2 [I(t) + II(t)](3.13)

and the evident estimate

(3.14) I(t) ≤ ‖uf (·, 0)‖2
H ≤ ‖W‖2‖f‖2

F .

The part of the operator H in H � KerH is injective; its part H+ := H (I − E−0)
acting in H+ is a positive injective operator. This enables one to represent

uJf (·, 0) = H−1HuJf (·, 0) = H−1
(
−uJf

tt (·, 0)
)

= −H−1u(Jf)tt(·, 0) = −H−1ufτ (·, 0) = −H−1uf
t (·, 0)

and to get (
uJf (·, 0), uf

t (·, 0)
)
H

= −
(
H−1uf

t (·, 0), uf
t (·, 0)

)
H

= −
∥∥∥H− 1

2
+ uf

t (·, 0)
∥∥∥2

H
.

On the other hand, (
uJf (·, 0), uf

t (·, 0)
)
H

=
(
uJf (·, 0), ufτ (·, 0)

)
H

= 〈see (2.31), (2.32)〉 = ([I + R]Jf, fτ )F

= −
(

∂

∂τ
[I + R]Jf, f

)
F

= 〈see (2.30)〉

= − ([I −R] f, f)F = 〈see (2.32)〉
= − ([2I − C] f, f)F ,
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and we obtain∥∥∥H− 1
2

+ uf
t (·, 0)

∥∥∥2

H
= ([2I − C] f, f)F

≤ (2 + ‖C‖) ‖f‖2
F =

(
2 + ‖W‖2

)
‖f‖2

F .

Thereafter, we can estimate the second norm in (3.13):

II(t) =

∥∥∥∥∥
∫ ∞

+0

sin
√
λt√

λ
dEλ u

f
t (·, 0)

∥∥∥∥∥
2

H

=

∥∥∥∥
∫ ∞

+0

sin
√
λt dEλH

− 1
2

+ uf
t (·, 0)

∥∥∥∥
2

H

≤
∥∥∥H− 1

2
+ uf

t (·, 0)
∥∥∥2

H
≤
(
2 + ‖W‖2

)
‖f‖2

F .

Substituting this and (3.14) in (3.13), we get the estimate

(3.15)
∥∥uf (·, t)

∥∥2

H ≤
(
3 + ‖W‖2

)
‖f‖2

F

on a dense set of controls f . Extending (3.15) to F , we conclude that uf (·, t) is
bounded in H uniformly with respect to t ∈ (−∞,∞).

(ii) Stability ⇒ orthogonality : If the orthogonality does not hold, by (3.11) we
have

∥∥uf (·, t)
∥∥2

H ≥
p∑

k=1

e2κkt(f, gk)
2
F → ∞ as t → ∞,

so that uf |t>0 is unbounded, i.e., the trajectory is not stable.

3.7. Comments.
• Probably, the equality Aξ = Dξ, ξ > 0 (see (0.5)), is valid and not only for

radial potentials.
• Let us repeat once again an open problem of the principal nature: Is σp(H) �=

{∅} equivalent to D �= {0}?
• As we saw in section 3.5, if 0 ∈ Υ[q] and f ∈ N , then the solution uf

− is

a reversing wave satisfying uf
− ||x|<|t|= 0. Its Fourier transform ũf

−(x, k) =
1
2π

∫∞
−∞ eiktuf

−(x, t) dt = 1
2π

∫ |x|
−|x| e

iktuf
−(x, t) dt satisfies[

−Δ + (q − k2)
]
ũ(·, k) = 0 in R

3

and, hence, is an eigenfunction of continuous spectrum of H, which is an entire
function of k. Such eigenfunctions are associated with each point of Υ[q]. It
would be interesting to compare them with the entire (with respect to k)
solutions introduced in [11] and investigate their properties: completeness,
orthogonality, asymptotic as |x|, |k| → ∞, etc.
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DECAY ESTIMATES OF A TANGENTIAL DERIVATIVE TO THE
LIGHT CONE FOR THE WAVE EQUATION AND

THEIR APPLICATION∗
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Abstract. We consider wave equations in three space dimensions and obtain new weighted
L∞-L∞ estimates for a tangential derivative to the light cone. As an application, we give a new
proof of the global existence theorem, which was originally proved by Klainerman and Christodoulou,
for systems of nonlinear wave equations under the null condition. Our new proof has the advantage
of using neither the scaling nor the Lorentz boost operators.
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1. Introduction. Solutions to the Cauchy problem for nonlinear wave equations
with quadratic nonlinearity in three space dimensions may blow up in finite time no
matter how small initial data are, and we have to impose some special condition on
the nonlinearity to get global solutions. The null condition is one of such conditions
and is associated with the null forms Q0 and Qab, which are given by

Q0(v, w; c) = (∂tv)(∂tw) − c2(∇xv) · (∇xw),(1.1)

Qab(v, w) = (∂av)(∂bw) − (∂bv)(∂aw) (0 ≤ a < b ≤ 3)(1.2)

for v = v(t, x) and w = w(t, x), where c is a positive constant corresponding to the
propagation speed, ∂0 = ∂t = ∂/∂t, and ∂j = ∂/∂xj (j = 1, 2, 3). More precisely, let
c > 0 and consider the Cauchy problem for

(1.3) �cui = Fi(u, ∂u,∇x∂u) in (0,∞) × R
3 (1 ≤ i ≤ m)

with initial data

(1.4) u = εf and ∂tu = εg at t = 0,

where �c = ∂2
t −c2Δx, u = (uj), ∂u = (∂auj), and ∇x∂u = (∂k∂auj) with 1 ≤ j ≤ m,

1 ≤ k ≤ 3, and 0 ≤ a ≤ 3, while ε is a positive parameter. Let F = (Fi)1≤i≤m be
quadratic around the origin in its arguments and the system be quasi-linear. In other
words, we assume that each Fi has the form

(1.5) Fi(u, ∂u,∇x∂u) =
∑

1≤j≤m
1≤k≤3, 0≤a≤3

cijka(u, ∂u)∂k∂auj + di(u, ∂u),
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where cijka(u, ∂u) = O(|u| + |∂u|) and di(u, ∂u) = O(|u|2 + |∂u|2) around (u, ∂u) =

(0, 0). Without loss of generality, we may assume cijk� = cij�k for 1 ≤ i, j ≤ m and
1 ≤ k, � ≤ 3. In addition, we always assume the symmetry condition

cijka = cjika for 1 ≤ i, j ≤ m, 1 ≤ k ≤ 3, and 0 ≤ a ≤ 3.

Then it is well known that the null condition (for the above system (1.3)) is satisfied if
and only if the quadratic terms of Fi (1 ≤ i ≤ m) can be written as linear combinations
of the null forms Q0(uj , ∂

αuk; c) and Qab(uj , ∂
αuk) with 1 ≤ j, k ≤ m, 0 ≤ a < b ≤ 3,

and |α| ≤ 1, where ∂α = ∂α0
0 ∂α1

1 ∂α2
2 ∂α3

3 for a multi-index α = (α0, α1, α2, α3) (refer
to [3] and [14] for the precise description of the null condition). Klainerman [14]
and Christodoulou [3] proved the following global existence theorem independently
by different methods.

Theorem 1.1 (Klainerman [14], Christodoulou [3]). Suppose that the null con-
dition is satisfied. Then, for any f , g ∈ C∞

0 (R3; Rm), there exists a positive con-
stant ε0 such that the Cauchy problem (1.3)–(1.4) admits a unique global solution
u ∈ C∞([0,∞) × R

3; Rm) for any ε ∈ (0, ε0].

Christodoulou used the so-called conformal method which is based on Penrose’s
conformal compactification of Minkowski space. On the other hand, Klainerman
used the vector field method and showed the above theorem by deriving some decay
estimates in the original coordinates. In Klainerman’s proof, he introduced vector
fields

Lc,j =
xj

c
∂t + ct∂j (1 ≤ j ≤ 3), Ωij = xi∂j − xj∂i (1 ≤ i < j ≤ 3),

which are the generators of the Lorentz group, and the scaling operator

S = t∂t + x · ∇x.

These vector fields play an important role in getting Klainerman’s weighted L1-L∞

estimates for wave equations (see also Hörmander [5]). In addition, using them, we
can see that an extra decay factor is expected from the null forms. For example, we
have

Q0(v, w; c) =
1

t + r

{
(∂tv)

(
Sw + cLc,rw

)
− c

3∑
j=1

(Lc,jv)(∂jw)(1.6)

− c2(Sv)(∂rw) + c2
∑
j �=k

ωk(Ωjkv)(∂jw)

}
,

where r = |x|, ω = (ω1, ω2, ω3) = x/r, ∂r =
∑3

j=1 ωj∂j , Lc,r =
∑3

j=1 ωjLc,j , and
Ωij = −Ωji for 1 ≤ j < i ≤ 3.

Among the above vector fields, the Lorentz boost fields Lc,j depend on the prop-
agation speed c, and they are unfavorable when we consider the multiple speed case.
Thus, the vector field method without the Lorentz boost fields was developed by many
authors (see Kovalyov [17, 18], Klainerman and Sideris [16], Yokoyama [25], Kubota
and Yokoyama [19], Sideris and Tu [23], Sogge [24], Hidano [4], Katayama [9, 11], and
Katayama and Yokoyama [13], for example). In place of (1.6), the following identity
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was used in the above works relating to the null condition for the multiple speed case:

Q0(v, w; c) =
1

t2
(Sv + (ct− r)∂rv)(Sw − (ct + r)∂rw)(1.7)

+
c

t
{(Sv)(∂rw) − (∂rv)(Sw)} +

c2

r

∑
j �=k

ωk(∂jv)(Ωjkw),

whose variant was introduced by Hoshiga and Kubo [6]. Equation (1.7) leads to a
good estimate in the region r > δt with some small δ > 0, because r is equivalent to
t+ r in this region. Note that the operator S is still used in (1.7), and this is the only
reason why S was adopted in [9, 19, 25], because these works are based on variants of
L∞-L∞ estimates due to John [7] and Kovalyov [17], where only ∂a and Ωij are used
(see Lemma 3.2 below).

Our aim here is to get rid of not only Lc,j , but also S from the estimate of the null
forms, and prove Theorem 1.1 using only ∂a and Ωjk. Though the usage of the scaling
operator S has not caused any serious difficulty in the study of the Cauchy problem
for nonlinear wave equations so far, we believe that it is worthwhile developing a
simple approach with a smaller set of vector fields. For this purpose, we make use of
the identity

Q0(v, w; c) =
1

2

{
(D+,cv)(D−,cw) + (D−,cv)(D+,cw)

}
(1.8)

+
c2

r

∑
j �=k

ωk(∂jv)(Ωjkw),

where D±,c = ∂t ± c∂r. Note that this identity was already used implicitly to obtain
identities like (1.7) (see [23], for example). In view of (1.8), what we need to treat
the null forms is an enhanced decay estimate for the tangential derivative D+,c to the
light cone. We can say that, in the previous works, this enhanced decay has been
observed through

D+,c =
1

t

(
S + (ct− r)∂r

)
or D+,c =

1

ct + r

(
cS + cLc,r

)
with the help of S or also Lc,r =

∑3
j=1 ωjLc,j .

In this paper, we take a different approach. We will establish the enhanced decay
of D+,cu for the solution u to the wave equation directly. We formulate it as a
weighted L∞-L∞ estimate in Theorem 2.1 below, which is our main ingredient in this
paper. The point is that such an estimate can be derived by using only ∂a and Ωij .
This type of approach to D+,c goes back to the work of John [8].

2. The main result. Before stating our result precisely, we introduce several
notations. We put Z = {Za}1≤a≤7 = {(∂a)0≤a≤3, (Ωjk)1≤j<k≤3}. For a multi-index
α = (α1, . . . , α7), we define Zα = Zα1

1 Zα2
2 · · ·Zα7

7 . For a function v = v(t, x) and a
nonnegative integer s, we define

(2.1) |v(t, x)|s =
∑
|α|≤s

|Zαv(t, x)| and ‖v(t, ·)‖s =
∥∥|v(t, ·)|s∥∥L2(R3)

.

We put 〈a〉 =
√

1 + a2 for a ∈ R. Let c be a positive constant, and we fix
arbitrary positive constants cj (1 ≤ j ≤ N) (our theorem is true for any choice of
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these constants cj , but when we apply our estimate to nonlinear problems, we usually
choose cj as the propagation speeds and N as the number of different propagation
speeds in the system; c is also chosen from these propagation speeds). We define

(2.2) w(t, r) = w(t, r; c1, . . . , cN ) = min
0≤j≤N

〈cjt− r〉

with c0 = 0, and we define

(2.3) Aρ,μ,s[G; c](t, x) = sup
(τ,y)∈Λc(t,x)

|y| 〈τ + |y|〉ρ w(τ, |y|)1+μ|G(τ, y)|s

for ρ, μ ≥ 0, a nonnegative integer s, and a smooth function G = G(t, x), where
Λc(t, x) = {(τ, y) ∈ [0, t] × R

3 ; |y − x| ≤ c(t− τ)}. We also define

(2.4) Bρ,s[φ, ψ; c](t, x) = sup
y∈Λ′

c(t,x)

〈|y|〉ρ
(
|φ(y)|s+1 + |ψ(y)|s

)

for ρ ≥ 0, a nonnegative integer s, and smooth functions φ and ψ on R
3, where

Λ′
c(t, x) = {y ∈ R

3 ; |y − x| ≤ ct}.
The following theorem is our main result.

Theorem 2.1. Assume 1 ≤ κ ≤ 2 and μ > 0.

(i) Let u be the solution to

�cu = G in (0,∞) × R
3

with initial data u = ∂tu = 0 at t = 0. Then there exists a positive constant C,
depending on κ and μ, such that

〈|x|〉 〈t + |x|〉 〈ct− |x|〉κ−1 {log(2 + t + |x|)}−1 |D+,cu(t, x)|(2.5)

≤ CAκ,μ,2[G; c](t, x)

for (t, x) ∈ (0,∞) × R
3 with x �= 0, where Aκ,μ,2 is given by (2.3).

Moreover, if 1 < κ < 2, then for any δ > 0, there exists a constant C, depending
on κ, μ, and δ, such that

(2.6) 〈t + |x|〉2 〈ct− |x|〉κ−1 |D+,cu(t, x)| ≤ CAκ,μ,2[G; c](t, x)

for (t, x) ∈ (0,∞) × R
3 satisfying |x| > δt.

(ii) Let u∗ be the solution to

�cu
∗ = 0 in (0,∞) × R

3

with initial data u∗ = φ and ∂tu
∗ = ψ at t = 0. Then we have

(2.7) 〈|x|〉 〈t + |x|〉 〈ct− |x|〉κ−1 |D+,cu
∗(t, x)| ≤ CBκ+μ+1,2[φ, ψ; c](t, x)

for (t, x) ∈ (0,∞) × R
3 with x �= 0, where Bκ+μ+1,2 is given by (2.4).

Remark.

1. Similar estimates for radially symmetric solutions are obtained by Katayama
[11].
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2. Suppose that Aκ,μ,2[G; c](t, x) is bounded on [0,∞) × R
3 for some κ ∈ [1, 2)

and μ > 0 and that u solves �cu = G with zero initial data. Then, from Lemma 3.2
below, we see that u and ∂u decay like 〈t〉−1

Ψκ−1(t) along the light cone ct = |x|,
where Ψρ(t) = log(2 + t) if ρ = 0, and Ψρ(t) = 1 if ρ > 0. Compared with this decay

rate, we find from (2.5) and (2.6) that D+,cu gains extra decay of 〈t〉−1
and behaves

like 〈t〉−2
Ψκ−1(t) along the light cone.

3. For tangential derivatives Tc,j = (xj/|x|)∂t + c∂j (1 ≤ j ≤ 3), Alinhac
showed that

(∫ t

0

∫
R3

(
1 +

∣∣cτ − |x|
∣∣)−ρ|Tc,ju(τ, x)|2dxdτ

)1/2

with ρ > 1 is bounded by ‖∂u(0, ·)‖L2(R3) +
∫ t

0
‖�cu(τ, ·)‖L2(R3)dτ (see [1], for ex-

ample). Observe that Tc,j is closely connected to D+,c. In fact, we have D+,c =∑3
j=1(xj/|x|)Tc,j . Though Alinhac’s estimate does not need S and means enhanced

decay of tangential derivatives implicitly, it seems difficult to recover a pointwise de-
cay estimate from his weighted space-time estimate. On the other hand, Sideris and
Thomases [22] obtained the estimate for

∥∥(1 +
∣∣ct + | · |

∣∣)Tc,ju(t, ·)
∥∥
L2(R3)

; however,

S is used in their estimate.
4. The exterior problem for systems of nonlinear wave equations with the single

or multiple speed(s) is also widely studied (see Metcalfe, Nakamura, and Sogge [20]
and Metcalfe and Sogge [21] and the references cited therein). In the exterior do-
mains, because of their unbounded coefficients on the boundary, the Lorentz boosts
are unlikely to be applicable even for the single speed case. This is another reason why
the vector field method without the Lorentz boosts is widely studied. In addition, S
also causes a technical difficulty in the exterior problems. We will discuss the exterior
problem in a subsequent paper, and we will not go into further details here.

We will prove Theorem 2.1 in the next section, after stating some known weighted
L∞-L∞ estimates for wave equations. Though we can apply our theorem to exclude
S from the proof of the multiple speed version of Theorem 1.1 in [9, 19, 25], we
concentrate on the single speed case for simplicity, and we will give a new proof,
without using S and Lc,j , of Theorem 1.1 in section 4 as an application of our main
theorem.

Throughout this paper, various positive constants, which may change line by line,
are denoted just by the same letter C.

3. Proof of Theorem 2.1. For c > 0, φ = φ(x), and ψ = ψ(x), we write
U∗
c [φ, ψ] for the solution u to the homogeneous wave equation �cu = 0 in (0,∞)×R

3

with initial data u = φ and ∂tu = ψ at t = 0. Similarly, for c > 0 and G = G(t, x),
we write Uc[G] for the solution u to the inhomogeneous wave equation �cu = G in
(0,∞) × R

3 with initial data u = ∂tu = 0 at t = 0.

For U∗
c [φ, ψ] we have the following.

Lemma 3.1. Let c > 0. Then, for κ > 1, we have

〈t + |x|〉 〈ct− |x|〉κ−1 |U∗
c [φ, ψ](t, x)|(3.1)

≤ C sup
y∈Λ′

c(t,x)

〈|y|〉κ (〈|y|〉 |φ(y)|1 + |y| |ψ(y)|)

for (t, x) ∈ [0,∞) × R
3.
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For the proof, see Katayama and Yokoyama [13, Lemma 3.1] (see also Asakura [2]
and Kubota and Yokoyama [19]).

After the pioneering work of John [7], a wide variety of weighted L∞-L∞ estimates
for Uc[G] and ∂Uc[G] have been obtained (see [2, 9, 10, 12, 13, 17, 18, 19, 25]). Here
we restrict our attention to what will be used directly in our proofs of Theorems 1.1
and 2.1.

Lemma 3.2. Let c > 0. Define

Φρ(t, r) =

{
log

(
2 + 〈t + r〉 〈t− r〉−1)

if ρ = 0,

〈t− r〉−ρ
if ρ > 0,

(3.2)

Ψρ(t) =

{
log(2 + t) if ρ = 0,

1 if ρ > 0.
(3.3)

Assume κ ≥ 1 and μ > 0. Then we have

〈t + |x|〉Φκ−1(ct, |x|)−1|Uc[G](t, x)| ≤ CAκ,μ,0[G; c](t, x),(3.4)

〈|x|〉 〈ct− |x|〉κ Ψκ−1(t)
−1|∂Uc[G](t, x)| ≤ CAκ,μ,1[G; c](t, x)(3.5)

for (t, x) ∈ [0,∞) × R
3, where Aκ,μ,s[G; c] is given by (2.3).

Proof. For the proof of (3.4), see Katayama and Yokoyama [13, equation (3.6) in
Lemma 3.2, and section 8] for κ > 1 and Katayama [11] for κ = 1.

Next we consider (3.5) with κ > 1. From Lemma 8.2 in [13], we find that
(3.5) with ∂Uc[G] replaced by Uc[∂G] is true. Now (3.5) follows immediately from
Lemma 3.1, because we have ∂aUc[G] = Uc[∂aG] + δa0U

∗
c [0, G(0, ·)] for 0 ≤ a ≤ 3

with the Kronecker delta δab, and 〈|y|〉κ+1 |y| |G(0, y)| ≤ CAκ,μ,1[G; c](t) (note that
we have w(0, r) = 〈r〉). Equation (3.5) for the case κ = 1 can be treated similarly
(see [19] and [9]).

Note that we will use (3.5) in the proof of Theorem 1.1 but not in that of Theo-
rem 2.1.

Now we are in a position to prove Theorem 2.1. Suppose that all the assumptions
in Theorem 2.1 are fulfilled. Without loss of generality, we may assume c = 1.

For simplicity of exposition, we write D± for D±,1 = ∂t ± ∂r. Similarly, U∗[φ, ψ],
U [G], Aρ,μ,s(t, x), and Bρ,s(t, x) denote U∗

1 [φ, ψ], U1[G], Aρ,μ,s[G; 1](t, x), and
Bρ,s[φ, ψ; 1](t, x), respectively.

First we prove (2.5). Assume 0 < r = |x| ≤ 1. We have

|D+u| ≤ |∂tu| + |∇xu| ≤
∑

0≤a≤3

|U [∂aG]| + |U∗[0, G(0, ·)]| .

From (3.4) in Lemma 3.2, we get

(3.6) 〈t + r〉Φκ−1(t, r)
−1 |U [∂aG](t, x)| ≤ CAκ,μ,1(t, x),

while Lemma 3.1 leads to

〈t + r〉 〈t− r〉κ |U∗[0, G(0, ·)](t, x)| ≤ C sup
y∈Λ′

1(t,x)

|y| 〈|y|〉κ+1 |G(0, y)|

≤ CAκ,μ,0(t, x).

Thus we obtain (2.5) for 0 < |x| ≤ 1.
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We set v(t, r, ω) = ru(t, rω) for r > 0 and ω ∈ S2. Then we have

(3.7) D−D+v(t, r, ω) = rG(t, rω) +
1

r

∑
1≤j<k≤3

Ω2
jku(t, rω).

Let r = |x| ≥ 1 and 1 ≤ κ ≤ 2. From (3.4), we get

1

r

∑
1≤j<k≤3

|Ω2
jku(t, rω)| ≤ C 〈r〉−1 〈t + r〉−1

Φκ−1(t, r)Aκ,μ,2(t, rω)(3.8)

≤ C 〈t + r〉−κ
(〈r〉−1

+ 〈t− r〉−1
)Aκ,μ,2(t, rω),

where Φκ−1 is from (3.2). It is easy to see that

(3.9) |rG(t, rω)| ≤ 〈t + r〉−κ
w(t, r)−1−μAκ,μ,0(t, rω).

Note that we have

Aκ,μ,s(τ, (t + r − τ)ω) ≤ Aκ,μ,s(t, rω) for 0 ≤ τ ≤ t.

Therefore, by (3.7), (3.8), and (3.9), we get

|D+v(t, r, ω)| =

∣∣∣∣
∫ t

0

d

dτ
(D+v)(τ, t + r − τ, ω)dτ

∣∣∣∣(3.10)

=

∣∣∣∣
∫ t

0

(D−D+v)(τ, t + r − τ, ω)dτ

∣∣∣∣
≤ C 〈t + r〉−κ

Aκ,μ,2(t, rω)

∫ t

0

〈t + r − τ〉−1
dτ

+ C 〈t + r〉−κ
Aκ,μ,2(t, rω)

∫ t

0

〈t + r − 2τ〉−1
dτ

+ C 〈t + r〉−κ
Aκ,μ,0(t, rω)

∫ t

0

w(τ, t + r − τ)−1−μdτ

≤ C 〈t + r〉−κ
Aκ,μ,2(t, rω) log(2 + t + r).

Since we have

rD+u(t, rω) = D+v(t, r, ω) − u(t, rω),

from (3.10) and (3.4), we obtain

〈r〉 〈t + r〉 〈t− r〉κ−1 |D+u(t, x)| ≤ C log(2 + t + |x|)Aκ,μ,2(t, x)

for r = |x| ≥ 1. This completes the proof of (2.5).
To prove (2.6), we first note that 〈t + r〉 ≤ C 〈r〉 for r > δt. Let 1 < κ < 2. By

the first line of (3.8), we have

(3.11)
1

r

∑
1≤j<k≤3

|Ω2
jku(t, rω)| ≤ C 〈t + r〉−2 〈t− r〉−κ+1

Aκ,μ,2(t, rω)
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for r > max{δt, 1}. Obviously r > max{δt, 1} yields t + r − τ > max{δτ, 1} for
0 ≤ τ ≤ t. Hence following similar lines to (3.10), we obtain

|D+v(t, r, ω)| ≤ C 〈t + r〉−κ
Aκ,μ,2(t, rω) for r ≥ max{δt, 1}.

This immediately implies (2.6), because we already know that |D+u| (resp., |D+u−
r−1D+v|) has the desired bound for (δt <)r ≤ 1 (resp., r ≥ max{δt, 1}).

Now we are going to prove (2.7). Lemma 3.1 immediately implies

〈t + |x|〉 〈t− |x|〉κ+μ−1 |D+u
∗(t, x)| ≤ CBκ+μ+1,1(t, x),

which is better than (2.7) for 0 < |x| ≤ 1. Lemma 3.1 also implies

1

r

∑
1≤j<k≤3

|Ω2
jku

∗(t, x)|(3.12)

≤ C 〈r〉−1 〈t + r〉−1 〈t− r〉1−κ−μ
Bκ+μ+1,2(t, x)

≤ C 〈t + r〉−κ
(〈r〉−1−μ

+ 〈t− r〉−1−μ
)Bκ+μ+1,2(t, x)

for r = |x| ≥ 1. Set v∗(t, r, ω) = ru∗(t, rω) for r ≥ 0 and ω ∈ S2. For r ≥ 1, similarly
to (3.10), we get

|D+v
∗(t, r, ω)| =

∣∣∣∣(D+v
∗)(0, t + r, ω) +

∫ t

0

(D−D+v
∗)(τ, t + r − τ, ω)dτ

∣∣∣∣
≤ C 〈t + r〉−κ

Bκ+1,0(t, rω)

+ C 〈t + r〉−κ
Bκ+μ+1,2(t, rω)

∫ t

0

〈t + r − τ〉−1−μ
dτ

+ C 〈t + r〉−κ
Bκ+μ+1,2(t, rω)

∫ t

0

〈t + r − 2τ〉−1−μ
dτ

≤ C 〈t + r〉−κ
Bκ+μ+1,2(t, rω),

which ends up with

〈r〉 〈t + r〉 〈t− r〉κ−1 |D+u
∗(t, x)| ≤ CBκ+μ+1,2(t, x)

for r = |x| ≥ 1. This completes the proof of (2.7).

4. Proof of Theorem 1.1. As an application of Theorem 2.1, we give a new
proof of Theorem 1.1. First we derive estimates for the null forms.

Lemma 4.1. Let c be a positive constant, and v = (v1, . . . , vM ). Suppose that
Q is one of the null forms. Then, for a nonnegative integer s, there exists a positive
constant Cs, depending only on c and s, such that

|Q(vj , vk)|s ≤ Cs

{
|∂v|[s/2]

∑
|α|≤s

|D+,cZ
αv| + |∂v|s

∑
|α|≤[s/2]

|D+,cZ
αv|

+
1

r

(
|∂v|[s/2]|v|s+1 + |v|[s/2]+1|∂v|s

)}
.
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Proof. The case Q = Q0 and s = 0 follows immediately from (1.8). We can obtain
similar identities for other null forms by using

(∂t,∇x) =

(
1

2
,− x

2cr

)
D−,c +

(
1

2
,
x

2cr

)
D+,c −

(
0,

x

r2
∧ Ω

)

with Ω = (Ω23,−Ω13,Ω12) (see (5.2) in Sideris and Tu [23, Lemma 5.1]), and we can
show the desired estimate for s = 0. Since ZαQ(vj , vk) can be written in terms of
Q0(Z

βvj , Z
γvk; c) and Qab(Z

βvj , Z
γvk) (0 ≤ a < b ≤ 3) with |β| + |γ| ≤ |α|, the

desired estimate for general s follows immediately.
Now we are going to prove Theorem 1.1. Without loss of generality, we may

assume c = 1. Assume that the assumptions in Theorem 1.1 are fulfilled. Let u be
the solution to (1.3)–(1.4) on [0, T ) × R

3, and we set

eρ,k(t, x) = 〈t + |x|〉 〈t− |x|〉ρ |u(t, x)|k+2 + 〈|x|〉 〈t− |x|〉ρ+1 |∂u(t, x)|k+1

+ χ(t, x) 〈t + |x|〉2 〈t− |x|〉ρ
∑
|α|≤k

|D+,1Z
αu(t, x)|

for ρ > 0 and a positive integer k, where χ(t, x) = 1 if |x| > (1+t)/2, while χ(t, x) = 0
if |x| ≤ (1 + t)/2. We fix ρ ∈ (1/2, 1) and s ≥ 8, and assume that

(4.1) sup
0≤t<T

‖eρ,s(t, ·)‖L∞(R3) ≤ Mε

holds for some large M(> 0) and small ε(> 0), satisfying Mε ≤ 1. Our goal here
is to get (4.1) with M replaced by M/2. Once such an estimate is established, it is
well known that we can obtain Theorem 1.1 by the so-called bootstrap (or continuity)
argument.

In the following we always assume M is large enough, and ε is sufficiently small.
For simplicity of exposition, we will not write dependence of nonlinearities on the
unknowns explicitly. Namely we abbreviate F (u, ∂u,∇x∂u)(t, x) as F (t, x), and so on.

First we evaluate the energy. For any nonnegative integer k ≤ 2s, (4.1) implies

(4.2) |F (2)(t, x)|k ≤ CMε 〈|x|〉−1 〈t− |x|〉−1−ρ |∂u(t, x)|k+1,

where F (2) denotes the quadratic terms of F . Put H = F − F (2), and Zu =
(Z1u, . . . , Z7u). Since we have

(4.3) 〈r〉−1 〈t− r〉−1 ≤ C 〈t + r〉−1
for any (t, r) ∈ [0,∞) × [0,∞),

and since 〈|x|〉−1 |Zu| ≤ C|∂u|, from (4.1) we obtain

|H(t, x)|k ≤ C
(
|u|3 + |(u, ∂u)|2[k/2]+1(|Zu|k−1 + |∂u|k+1)

)
(4.4)

≤ CM3ε3 〈t + |x|〉−3 〈t− |x|〉−3ρ

+ CM2ε2 〈t + |x|〉−1 〈t− |x|〉−2ρ |∂u(t, x)|k+1

for any nonnegative integer k ≤ 2s. Similarly to (4.2) and (4.4), using (4.3), we obtain

(4.5) |Fi,α(t, x)| ≤ CMε(1 + t)−1|∂u(t, x)|2s + CM3ε3 〈t + |x|〉−3 〈t− |x|〉−3ρ
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for |α| ≤ 2s, where

Fi,α = ZαFi −
∑
j,k,a

cijka∂k∂a(Z
αuj)

with cijka coming from (1.5). It is easy to see that

(4.6) ‖ 〈t + | · |〉−3 〈t− | · |〉−3ρ ‖L2(R3) ≤ C(1 + t)−2

for ρ > 1/2. Therefore, from (4.5), we obtain

‖Fi,α(t, ·)‖L2 ≤ CMε(1 + t)−1‖∂u(t, ·)‖2s + CM3ε3(1 + t)−2

for |α| ≤ 2s. We also have∑
j,k,a

|cijka(t, x)|1 ≤ CMε(1 + t)−1.

Now, applying the energy inequality for the systems of perturbed wave equations
�1(Z

αui) −
∑

j,k,a c
ij
ka∂k∂a(Z

αuj) = Fi,α, we find

d

dt
‖∂u(t, ·)‖2s ≤ CMε(1 + t)−1‖∂u(t, ·)‖2s + CM3ε3(1 + t)−2,

and the Gronwall lemma leads to

(4.7) ‖∂u(t, ·)‖2s ≤ C(ε + M3ε3)(1 + t)C0Mε ≤ CMε(1 + t)C0Mε

with an appropriate positive constant C0 which is independent of M (note that the
energy inequality for the systems of perturbed wave equations is available because of
the symmetry condition).

In the following, we repeatedly use Theorem 2.1 and Lemmas 3.1 and 3.2 with
the choice of N = 1 and c1 = 1(= c). In other words, from now on we put w(t, r) =
min

{
〈r〉 , 〈t− r〉

}
. Note that we have

(4.8) 〈r〉−1 〈t− r〉−1 ≤ C 〈t + r〉−1
w(t, r)−1,

which is more precise than (4.3).
By (4.7) and the Sobolev-type inequality

〈|x|〉 |v(t, x)| ≤ C‖v(t, ·)‖2,

whose proof can be found in Klainerman [15], we see that

(4.9) 〈|x|〉 |∂u(t, x)|2s−2 ≤ CMε(1 + t)C0Mε.

Using (4.8) and (4.9), from (4.2) and (4.4) with k = 2s− 3, we obtain

|F (t, x)|2s−3 ≤ CM2ε2 〈r〉−1 〈t + |x|〉−1
w(t, |x|)−2ρ(1 + t)C0Mε,

which implies

(4.10) A1+ν,2ρ−1,2s−3[F ; 1](t, x) ≤ CM2ε2 〈t + |x|〉C0Mε+ν
,
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where ν is a positive constant to be fixed later (note that we have 〈τ + |y|〉 ≤ 〈t + |x|〉
for (τ, y) ∈ Λ1(t, x)). Since 2ρ > 1 and 1 + ν > 1, by Lemmas 3.1 and 3.2 with
Theorem 2.1, we obtain

e0,2s−5(t, x) ≤ eν,2s−5(t, x) ≤ Cε + CM2ε2 〈t + |x|〉C0Mε+ν
(4.11)

≤ CMε 〈t + |x|〉C0Mε+ν
.

Finally, we are going to estimate eρ,s(t, x). By (4.11) and (4.2) with k = 2s− 6,
we have

|F (2)(t, x)|2s−6 ≤ CM2ε2 〈t + |x|〉−2−ρ+C0Mε+ν 〈|x|〉−2

for (t, x) satisfying |x| ≤ (t + 1)/2. On the other hand, (4.1), (4.11), and Lemma 4.1
imply

|F (2)(t, x)|2s−6 ≤ CM2ε2 〈t + |x|〉−3+C0Mε+ν 〈t− |x|〉−1−ρ

for (t, x) satisfying |x| ≥ (t + 1)/2. Summing up, we obtain

(4.12) |F (2)(t, x)|2s−6 ≤ CM2ε2 〈|x|〉−1 〈t + |x|〉−2+C0Mε+ν
w(t, |x|)−1−ρ.

By the first line of (4.4) with k = 2s− 6, using (4.1) and (4.11), we get

(4.13) |H(t, x)|2s−6 ≤ CM3ε3 〈|x|〉−1 〈t + |x|〉−2+C0Mε+ν
w(t, |x|)−2ρ.

Equations (4.12) and (4.13) yield

(4.14) |F (t, x)|2s−6 ≤ CM2ε2 〈|x|〉−1 〈t + |x|〉−2+C0Mε+ν
w(t, |x|)−2ρ.

Now we fix some ν satisfying 0 < ν < 1 − ρ, and assume that ε is sufficiently
small to satisfy −2 + C0Mε + ν ≤ −1 − ρ. Then from (4.14) we find that

(4.15) A1+ρ,2ρ−1,2s−6[F ; 1](t, x) ≤ CM2ε2.

Since we have s + 2 ≤ 2s− 6, 1 + ρ > 1, and 2ρ > 1, from Theorem 2.1, Lemmas 3.1
and 3.2, we obtain

(4.16) eρ,s(t, x) ≤ C1

(
ε + M2ε2

)
for (t, x) ∈ [0, T )×R

3, with an appropriate positive constant C1 which is independent
of M . Finally, if M is large enough to satisfy 4C1 ≤ M , and ε is small enough to
satisfy C1Mε ≤ 1/4, by (4.16) we obtain

(4.17) sup
0≤t<T

‖eρ,s(t, ·)‖L∞(R3) ≤
M

2
ε,

which is the desired result. This completes the proof.
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AN INVERSE PROBLEM FOR A NONLINEAR PARABOLIC
EQUATION WITH APPLICATIONS IN POPULATION DYNAMICS

AND MAGNETICS∗
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Abstract. The parabolic equation of this paper is a nonlinear one with the unknown coefficient
depending on the derivative of the solution. A uniqueness result is proven by the method of Carleman
estimates. The applicability of this result is illustrated for parameter identification problems in
population dynamics and magnetics. For the latter application, we provide numerical results using
a reconstruction method based on a multiharmonic formulation of the problem.
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1. Introduction. Nonlinear parabolic PDEs arise in a large variety of applica-
tions ranging from combustion theory via environmental pollution, population dy-
namics, and nonlinear magnetics to the theory of the economic growth. Since the
coefficient depending nonlinearly on the solution of the PDE is often not accessible to
direct measurements, its determination from boundary measurements is an important
task.

In this paper we consider the question of identifiability, i.e., whether this coef-
ficient function can be uniquely determined from the given data. While there exist
results on the situation that the coefficient depends on values of the solution (as it
is relevant, e.g., in nonlinear heat conduction), here we concentrate on the problem
when this coefficient is a function of the derivative of the solution (as typical for non-
linear magnetics; cf., e.g., [2]) or where the equation is in nondivergence form (e.g.,
in diffusion models for population dynamics; cf. [1]).

To prove our uniqueness theorem, we apply the method of Carleman estimates;
see, e.g., [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [18], [19], [20], [21], [22], [23], [24] for
this method. The majority of works on this method is concerned with linear equations
in which the unknown coefficients depend on spatial variables. Nonlinear parabolic
equations were treated by this technique in [8], [18], [20], and Chapter 4 of [21]. Our
inverse problem is a problem with the data resulting from a single measurement event.
In the case of multiple measurements, uniqueness theorems for inverse problems for
nonlinear parabolic equations with unknown coefficients depending on solutions and
their first derivatives were proven in [13]. The case of single measurement data for
such equations was considered in, e.g., [8], [18], [20], [21], and [24]. However, in
these works the unknown coefficient depends on the solution of the original parabolic
equation (as well as on some spatial variables in the multidimensional case [20], [21]).
The case of the dependence on derivatives of the solution was not considered.
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Another significantly new element here is that the unknown coefficient k (ux) is
involved together with its first derivative. This leads to the necessity to prove some
new estimates for Volterra-like integrals in which Carleman weight functions (CWFs)
are involved; see Lemmata 3 and 4. In the past such estimates were established only for
t-dependent integrals [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [18], [19], [20], [21], [22],
[23], [24]. Now, however, we also consider the z-dependence (Lemma 3). In addition,
such estimates for iterated integrals (Lemma 4) were not previously established.

In the next five paragraphs we briefly outline the idea of the proof of the unique-
ness theorem. First, we differentiate the original parabolic PDE with respect to x
to obtain a new PDE with respect to the function v(x, t) = ux(x, t), the x-derivative
of the original solution u(x, t). Next, in order to be in a position of applicability
of the above-mentioned method of Carleman estimates, we “transform” the func-
tion v(x, t) into the spatial variable z using the change of variables (4.6), which is
v (w(z, t), t) = z. Naturally, by the implicit function theorem we need the condition
vx(x, t) = uxx(x, t) �= 0. Hence, for the sake of definiteness, we impose uxx (x, t) ≥
α = const. > 0; see (3.3). Next, we obtain a linear ordinary differential equation

(ODE) of second order with respect to the function k̃(z), where k̃(z) = k1(z) − k2(z)
is the difference of two possible target coefficients, and we need to prove that this
difference equals zero.

Note that the idea of considering ODEs with respect to the unknown coefficients
is new, because such ODEs were not considered in the past works on the method
of Carleman estimates for inverse problems. Because of the presence of the factor
z at k̃′′(z), we need to impose condition (3.6) in order to avoid the singularities in
that equation. We represent the solution of that ODE via Volterra-like integrals.
Since the function k(z) is independent of t, we follow one of the ideas of the original
work [4] (also, see [19], [21]) differentiating with respect to t and, thus, “eliminating”

the function k̃(z) from the resulting equation. Next, using the differentiation with
respect to z, we obtain an integral differential equation with respect to the function
p (z, t) = (w1t − w2t) (z, t), where functions w1 and w2 correspond to the coefficients
k1 and k2, respectively.

However, two major difficulties of the latter equation compared with the above
listed previous works on the method of Carleman estimates for inverse problems are
the following: (a) it contains not only t-dependent Volterra-like integrals (like the
ones in the past) but also z-dependent integrals as well as “mixed” (z, t)-dependent
Volterra-like integrals; and (b) second order derivatives pzz are involved as parts of
integrands. The element (a) arises because of the solution of the above ODE, thus
ultimately because the unknown coefficient is involved in the original PDE together
with its derivative. The element (b) is due to the nonlinearity of the original PDE.
To overome (a), we need to establish new estimates from the above for those “new”
Volterra-like integrals in which CWFs are involved (Lemmata 3 and 4). Note that
such estimates cannot be proven in the same way as Carleman estimates are proven
for differential operators, because the structure of Volterra-like integral operators is
different from the structure of differential operators.

It is not straightforward to deal with (b) because the term with the second z-
derivative stands with a small factor 1/λ in the Carleman estimate (4.50) for the
parabolic operator ∂t − h1∂

2
z . To overcome (b), we modify one of the ideas of [19].

Namely, we rescale variables (z, t) via the change of variables (4.30), which causes
some technical difficulties and rather long formulas, because we need to figure out
carefully the appearance of a small factor γ. As a result, this rescaling leads to the
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appearance of γ in the resulting integral differential inequality (4.43). The latter, as
well as Lemmata 2–4, enable us to come up with the “standard” inequality (4.54),
after which the proof is similar to previous works.

However, the move from the rescaling (4.30) to (4.54) can be done only if one
considers a small part of the rectangle R′ in (4.31), rather than the whole rectangle
“at once,” thus “exhausting” the entire R′ via a sequence of small δ-steps. Note
that it is unclear at this point whether the method of [11] for an inverse parabolic
problem can be adapted to our case to obtain a Lipschitz stability estimate, since it
is unclear whether it is possible to obtain analogues of Lemmata 3 and 4 if using the
CWF of [12]. It is also unclear whether the method of [12] for hyperbolic equations
can be adapted in this case, because of the necessity to exhaust the entire domain
via a sequence of small rectangles. Another important difference with the hyperbolic
case of [12] is that the Carleman estimate for a hyperbolic operator does not include
derivatives involved in the principal part of that operator, unlike the parabolic case
(see Lemma 1 for the latter). However, we do need that “inclusion” because some
integrals in (4.43) contain the second order derivative pzz, and our estimate should
incorporate it in the left-hand side.

The paper is organized as follows. In section 2, we state the inverse problem
under consideration, and in section 3 we formulate our uniqueness result. The proof
of this theorem is given in section 4. Section 5 describes two applications, namely in
population dynamics and in nonlinear magnetics. For the latter, the final section (sec-
tion 6) provides numerical results obtained with a method based on a multiharmonic
formulation.

2. Statement of the problem. The forward problem is

ut = (k (ux)ux)x , (x, t) ∈ (0, L) × (0, T ) ,(2.1)

u (x, 0) = r(x), x ∈ (0, L) ,(2.2)

u (0, t) = f0 (t) , u(L, t) = f1 (t) , t ∈ (0, T ) ,(2.3)

or with v(x, t) = ux(x, t), i.e., u(x, t) =
∫ x

0
v(ξ, t) dξ + f0(t),

vt = (k (v) v)xx , (x, t) ∈ (0, L) × (0, T ) ,(2.4)

v (x, 0) = r′(x), x ∈ (0, L) ,(2.5)

(k(v)v)x(0, t) = f ′
0(t), (k(v)v)x(L, t) = f ′

1(t), t ∈ (0, T ) ,(2.6)

which results from the previous setting by differentiation with respect to the space
variable. Naturally, it is assumed that the function k(z) ∈ C1 (R) and

(2.7) k (z) ≥ k0 = const. > 0 ∀z ∈ R.

It is well known that it is difficult to investigate the question of uniqueness of co-
efficient inverse problems for parabolic equations unless one assumes that the solution
of the forward problem is known at t = ε ∈ (0, T ). In the latter case, however, one
does not need to assume knowledge of the initial condition at {t = 0}; see, e.g., [5],
[11], and sections 3.3.1 and 3.3.2 in [21]. In other words, one needs to assume that
knowledge of the initial condition (2.2) is replaced with knowledge of the function
u(x, ε) for an arbitrary ε ∈ (0, T ) ; also see section 5 for a physical interpretation.
Because of this, we formulate the inverse problem as follows.
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Inverse problem. Assume that (2.1) is satisfied for (x, t) ∈ (0, L) × (−c, T ) ,
where c ∈ (0, T ] is an arbitrary number, and the function u (x, 0) = r(x) in (2.2)
is known, and assume that boundary conditions f0 (t) and f1 (t) are satisfied for
t ∈ (−c, T ) . Also, assume that the following two functions g0(t) and g1(t) are given:

(2.8) ux (0, t) = g0(t), ux (L, t) = g1(t), t ∈ (−c, T ) .

Let the interval (a, b) be the range of the function ux (x, t) for (x, t) ∈ (0, L)×(−c, T ) ,
i.e., a ≤ ux (x, t) ≤ b. Determine the interval (a, b) as well as the unknown coefficient
k (z) for z ∈ (a, b) .

3. Uniqueness theorem. The following uniqueness theorem holds.
Theorem 1. Let the conditions of the statement of the inverse problem be satis-

fied. Suppose that there exist two functions k1 (z) and k2 (z) satisfying condition (2.7)
and such that

(3.1) zk′i (z) + ki (z) ≥ const. > 0 ∀z ∈ R, i = 1, 2.

Let u1 (x, t) and u2 (x, t) be two corresponding solutions of the forward problem (2.1)–
(2.3) satisfying the same Neumann boundary conditions (2.8) and such that

(3.2) ∂s
t ∂

j
xui ∈ C ([0, L] × [−c, T ]) for s = 0, 1; j = 0, 1, 2, 3; i = 1, 2.

Assume also that in (0, L) × (−c, T )

(3.3) ∂2
xui ≥ α = const. > 0, i = 1, 2.

In addition, let

g′0(t) ≥ 0, t ∈ (−c, T ) ,(3.4)

g1(t) ≡ const. = g̃, t ∈ (−c, T ) .(3.5)

Also, assume that there exists a number ε ∈ (0, T ) such that

(3.6) 0 /∈ [g0 (ε) , g̃]

and

(3.7) k1 (z) = k2 (z) , z ∈ (g0(−c), g0 (ε)) .

Denote a = g0(−c), b = g̃. Then the range of both functions u1x and u2x coincides with
the interval (a, b) and k1 (z) = k2 (z) for z ∈ (a, b) . Furthermore, it is not necessary
to know the boundary condition f1(t) in (2.3).

Observe that by (2.8), (3.3), and (3.5)

(3.8) g0(t) ≤ g0(T ) < g̃, t ∈ [−c, T ] .

Hence, it should be demonstrated in the proof of this theorem that the function k(z)
can be uniquely determined for z ∈ [g0 (ε) , g̃] . It follows from (3.3) and (3.4) that the
range of the function ux (x, t) is the interval (a, b) indicated in Theorem 1.

Remark.
• As to the boundary condition f1(t) in (2.3), it is not actually used in the

proof. Instead, only the boundary condition g1(t) is used at x = L.
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• To explain the condition (3.5), we note that if it is not satisfied, then one
should apply the above outlined method (see the introduction) to the do-
main with curvilinear boundaries z = g0(t), which is the left boundary, and
z = g1(t), the right boundary. While we actually avoid working with the
left boundary assuming (3.7) (see (4.25)–(4.27)), we cannot avoid the right
boundary. In the latter case, however, we would need to assume that the
function k (g1(t)) is known. So, the condition (3.5) is imposed to avoid the
curvilinear right boundary and thus not to use the latter assumption.

• Note that the smoothness condition (3.2) can be guaranteed via imposing
certain assumptions on the coefficient k(z), the unknown “initial” condition
u(x,−c), and boundary conditions (2.3) (although it is not necessary to ac-
tually know the function u(x,−c)).

• Conditions (3.3) might also be guaranteed via applying the maximum princi-
ple and imposing additional conditions on the functions f0, f1, g0, g1, but this
is outside the scope of this publication.

• Note that (3.1), (3.4)–(3.7) follow sometimes from the physics of the problem;
see, e.g., section 5 below.

4. Proof of Theorem 1.

4.1. An integral differential equation. We first obtain an integral differential
equation which does not contain the difference (k1 − k2) (z) . Let (k(z), u(x, t)) be one
of the pairs (ki(z), ui(x, t)) , i = 1, 2. Rewrite (2.1) in the form

(4.1) ut = [k′ (ux)ux + k (ux)]uxx.

Denote v(x, t) = ux (x, t) . Differentiating (4.1) with respect to x, we obtain the fol-
lowing equation for the function v:

(4.2) vt = [k′ (v) v + k(v)] vxx + [k′′ (v) v + 2k′ (v)] v2
x, (x, t) ∈ (0, L) × (−c, T ) .

By (3.1), k′ (v) v + k(v) ≥ const. > 0, which implies that (4.1) is of the parabolic
type. In addition, (4.1), (2.2), (2.3), (2.8), and (3.5) imply that

v(x, 0) = r′(x),(4.3)

v(0, t) = g0 (t) , v(L, t) = g̃ = const.,(4.4)

vx (0, t) =
f ′
0(t)

k (g0(t)) + k′ (g0(t)) g0(t)
:= s0(t),(4.5)

vx (L, t) =
f ′
1(t)

k (g̃) + k′ (g̃) g̃
:= s1(t).

Note that by (2.8), (3.7), and (4.1) the function s0(t) is the same for both pairs (u1, k1)
and (u2, k2) as long as t ∈ (−c, ε) . On the other hand, the function s1(t) would even
be unknown if we would assume f1 to be known, because the numbers k (g̃) , k′ (g̃)
are unknown.

We now “turn” the function v(x, t) into a spatial variable z. To do so, we notice
that by (3.3), vx(x, t) ≥ α = const. > 0. Hence, we can introduce a new function
w (z, t) using the implicit function theorem as

(4.6) v (w (z, t) , t) = z.
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By (3.8), g0(t) < z < g̃. Hence, the function w (z, t) is defined in the domain D with
curvilinear boundaries,

(4.7) D = {(z, t) : g0 (−c) < g0(t) < z < g̃, t ∈ (−c, T )} .

Using (4.6), express derivatives of the function v via derivatives of the function w,

uxx (w (z, t) , t) = vx (w (z, t) , t) =
1

wz (z, t)
,(4.8)

vt (w (z, t) , t) = −wt (z, t)

wz (z, t)
,

vxx (w (z, t) , t) = −wzz (z, t)

w3
z (z, t)

.

Hence, conditions (4.2)–(4.5) become

wt =
[k′ (z) z + k(z)]

w2
z

wzz −
k′′ (z) z + 2k′ (z)

wz
, (z, t) ∈ D,(4.9)

w(z, 0) = r̃ (z) ,(4.10)

w (g0 (t) , t) = 0,(4.11)

wz (g0 (t) , t) =
1

s0(t)
, t ∈ (−c, ε) ,(4.12)

w (g̃, t) = L.(4.13)

Here r̃ (z) is the function inverse to the function r′(x), i.e., r′ (r̃ (z)) = z. The interval
t ∈ (−c, ε) is emphasized in (4.12) because the function s0(t) is known only on this
interval.

Denote q(z, t) = w1(z, t)−w2(z, t), k̃(z) = k1 (z)− k2(z), where functions w1 and
w2 correspond to functions u1 and u2, respectively. We need to prove that

(4.14) q(z, t) = 0 in D

and

(4.15) k̃(z) = 0 for z ∈ (a, b) .

Using the formula

a1b1 − a2b2 = (a1 − a2) b1 + (b1 − b2) a2 ∀a1, a2, b1, b2 ∈ R,

we obtain from (4.9) the following equation for the function q:

qt = h1 (z, t) qzz + h2 (z, t) qz(4.16)

−
[
zk̃′′(z) + k̃′(z)

(
2 − z

w2z
w2zz

)
− k̃(z)

w2z
w2zz

]
1

w2z
in D,
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where

h1 (z, t) =
k′1(z)z + k1(z)

w2
1z(z, t)

,

h2 (z, t) = − (k′1(z)z + k1(z))
w1z + w2z

w2
1zw

2
2z

w2zz +
k′′1 (z) z + 2k′1(z)

w1zw2z
.

Hence, functions

(4.17) h1, h2 ∈ C1
(
D
)

and (see (3.1), (3.3))

(4.18) β1 ≤ h1 ≤ β2, |h1z| + |h1t| ≤ β3 in D,

where β1, β2, and β3 are certain positive constants. In addition, conditions (4.10)–
(4.13) imply that

q (z, 0) = 0,(4.19)

q (g0 (t) , t) = 0, t ∈ (−c, T ) ,(4.20)

qz (g0 (t) , t) = 0, t ∈ (−c, ε) ,(4.21)

q (g̃, t) = 0.(4.22)

By (3.4), g0 (ε) ≥ g0 (−c) . Hence, by (3.7),

(4.23) k̃(z) = 0 for z ∈ (g0 (−c) , g0 (ε)) .

Hence, we obtain from (4.16)

(4.24) qt = h1 (z, t) qzz + h2 (z, t) qz, (z, t) ∈ {g0(t) < z < g0 (ε) ,−c < t < ε} .

Hence, (4.20), (4.21), (4.24), and the well-known unique continuation theorem for
parabolic equations with lateral Cauchy data (see, e.g., section 2.2.2 in [21] for this
theorem) imply that

q (z, t) = 0, (z, t) ∈ {g0(t) < z < g0 (ε) ,−c < t < ε} .

Thus, we will now consider (4.16) in the rectangle R,

R = {(z, t) : g0 (ε) < z < g̃, t ∈ (−ε, ε)} .

Conditions (4.20), (4.21), and (4.23) are replaced with

q (g0 (ε) , t) = 0, t ∈ (−ε, ε) ,(4.25)

qz (g0 (ε) , t) = 0, t ∈ (−ε, ε) ,(4.26)

k̃(g0 (ε)) = k̃′(g0 (ε)) = 0.(4.27)

Since the range of the function ux (x, t) coincides with the interval (a, b) , it is sufficient
to derive from (4.16), (4.25)–(4.27) that

(4.28) q (z, t) = 0 in R
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and

(4.29) k̃(z) = 0 for z ∈ (g0 (ε) , g̃) .

Thus, from now on we will consider (4.16) only in the rectangle R. Note that while
two boundary conditions (4.25) and (4.26) are given at the left side of R, only one
boundary condition (4.22) is given at its right side.

Since the first term in the right-hand side of the Carleman estimate (4.50) (sub-
section 4.2) stands with the small factor 1/λ, and the estimate of Lemma 2 (subsec-
tion 4.3) also gives this factor, we can apply the Carleman estimate successfully only
if a small factor stands at the Volterra t-integrals with the second z-derivative pzz;
see (4.43). For this reason we rescale variables as

(4.30) (z, t) ↔ (
√
γz∗, γt∗) ,

where γ ∈ (0, 1) is a small constant which we will choose later. The rectangle R
becomes

(4.31) R′ =

{
(z∗, t∗) :

g0 (ε)
√
γ

< z∗ <
g̃
√
γ
, t ∈

(
− ε

γ
,
ε

γ

)}
.

Then for any function Y (z, t) ∈ C1
(
R
)

(4.32)

|∂z∗Y (
√
γz∗, γt∗)| ≤ √

γ ‖∂zY (z, t)‖C(R) , |∂t∗Y (
√
γz∗, γt∗)| ≤ γ ‖∂tY (z, t)‖C(R) .

Since we need to work carefully with the new variables, we do not keep the same
notations as for the old variables for them. Also, because of (3.2) and (3.6), there
exists a positive constant b such that either g0(ε) < g̃ ≤ −b or b ≤ g0(ε) < g̃. Hence,
we will assume without loss of generality that 1 ≤ g0(ε) < g̃. Therefore, by (4.32),

(4.33) 1 ≤ √
γz∗ ≤ g̃ in R′.

Denote k̂(z∗) := k̃(
√
γz∗), s(z∗, t∗) := q(

√
γz∗, γt∗), ŵ(z∗, t∗) := w(

√
γz∗, γt∗), and

ĥi(z
∗, t∗) := hi(

√
γz∗, γt∗), i = 1, 2. Below, derivatives of k̂(z∗) are understood as

derivatives with respect to z∗.
Equation (4.16) now becomes

(4.34)

st∗(z
∗, t∗)

=
{
ĥ1sz∗z∗ +

√
γĥ2sz∗

}
(z∗, t∗)

−
[
(
√
γz∗) k̂′′(z∗) + k̂′(z∗)

(
2
√
γ −

√
γz∗

ŵ2z∗ (z∗, t∗)
ŵ2z∗z∗ (z∗, t∗)

)

−
√
γk̂(z∗)

ŵ2z∗ (z∗, t∗)
ŵ2z∗z∗ (z∗, t∗)

]
1

w2z

(√
γz∗, γt∗

)
in R′.
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Note that it is convenient to keep the z-derivative instead of the z∗-derivative in the
multiplier 1/w2z in (4.34). Our next goal is to obtain an ODE for the function k̂(z∗)

and solve it via Volterra-like integrals. Resolving (4.34) with respect to k̂′′(z∗), we
obtain

k̂′′(z∗) = −w2z(
√
γz∗, γt∗)

[
st∗ − ĥ1sz∗z∗ −√

γĥ2sz∗

]
(z∗, t∗) · 1

√
γz∗

+ d1(z
∗, t∗)k̂′(z∗) + d2(z

∗, t∗)k̂(z∗).(4.35)

Using (4.33), we obtain that 0 < g̃−1 ≤ (
√
γz∗)−1 ≤ 1 and functions d1, d2 ∈ C1(R

′
).

By (4.27),

k̂(z∗) =

∫ z∗

g0(ε)/
√
γ

k̂′ (y) dy.

Hence, using again (4.27), we obtain from (4.35)

k̂′(z∗) =

∫ z∗

g0(ε)/
√
γ

d1 (y, t∗) k̂′(y)dy +

∫ z∗

g0(ε)/
√
γ

d2 (y, t∗) dτ

∫ τ

g0(ε)/
√
γ

k̂′(y)dy1

+

∫ z∗

g0(ε)/
√
γ

w2z(
√
γy, γt∗)

[
st∗ − ĥ1sz∗z∗ −√

γĥ2sz∗

]
(y, t∗)

1
√
γy

dy.

Considering this as a Volterra integral equation with respect to k̂′(z∗) and solving it
via successive approximations, we obtain

k̂′(z∗) =

∫ z∗

g0(ε)/
√
γ

w2z(
√
γy, γt∗)

[
st∗ − ĥ1sz∗z∗ −√

γĥ2sz∗

]
(y, t∗)

1
√
γy

dy

+

∫ z∗

g0(ε)/
√
γ

G (z∗, y, t∗)w2z(
√
γy, γt∗)

[
st∗ − ĥ1sz∗z∗ −√

γĥ2sz∗

]
(y, t∗)dy,

(4.36)

where the functions G,Gz∗ , Gt∗ , Gt∗z∗ ∈ C(R
′
) and

(4.37) G (z∗, z∗, t∗) = Gt∗ (z∗, z∗, t∗) = 0.

Denote p (z∗, t∗) = st∗ (z∗, t∗) . Then (4.19) leads to

(4.38) s (z∗, t∗) =

∫ t∗

0

p (z∗, τ) dτ.

Denote

(4.39) N (z∗, t∗) = w2z (
√
γz∗, γt∗) .

Above and below, the function w2z

(√
γz∗, γt∗

)
is understood as follows: First we

calculate the derivative ∂zw2 (z, t) . Next we substitute in this derivative z =
√
γz∗, t =

γt∗. Hence, by (3.2), (4.3), and (4.8),

(4.40)
1

β
≤ N (z∗, t∗) ≤ 1

α
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and by (4.32) and (4.39),

(4.41) Nt∗ (z∗, t∗) ≤ γ

α
,

where the positive constant β is independent of γ (and so is α, of course; see (3.3)).

Differentiate (4.36) with respect to t∗. Since ∂tk̂
′(z∗) ≡ 0, we obtain using (4.38)

∫ z∗

g0(ε)/
√
γ

{
N
[
pt∗ − ĥ1pz∗z∗ −√

γĥ2pz∗

]}
(y, t∗)

dy
√
γy

+

∫ z∗

g0(ε)/
√
γ

(Nt∗p) (y, t∗)
dy
√
γy

−
∫ z∗

g0(ε)/
√
γ

[(
Nĥ1

)
t∗

(y, t∗)

∫ t∗

0

pz∗z∗ (y, τ) dτ

]
dy
√
γy

−
∫ z∗

g0(ε)/
√
γ

[
√
γ
(
Nĥ2

)
t∗

(y, t∗)

∫ t∗

0

pz∗ (y, τ) dτ

]
dy
√
γy

+

∫ z∗

g0(ε)/
√
γ

G (z∗, y, t∗)
{
N
[
pt∗ − ĥ1pz∗z∗ −√

γĥ2pz∗

]}
(y, t∗) dy

+

∫ z∗

g0(ε)/
√
γ

Gt∗ (z∗, y, t∗)

{
N (y, t∗)

[
p (y, t∗) − ĥ1 (y, t∗)

∫ t∗

0

pz∗z∗ (y, τ) dτ

−√
γĥ2 (y, t∗)

∫ t∗

0

pz∗ (y, τ) dτ

]}
dy

+

∫ z∗

g0(ε)/
√
γ

G (z∗, y, t∗) (Nt∗p) (y, t∗) dy

−
∫ z∗

g0(ε)/
√
γ

G (z∗, y, t∗)

[(
Nĥ1

)
t∗

(y, t∗)

∫ t∗

0

pz∗z∗ (y, τ) dτ

]
dy

−
∫ z∗

g0(ε)/
√
γ

G (z∗, y, t∗)

[
√
γ
(
Nĥ2

)
t∗

(y, t∗)

∫ t∗

0

pz∗ (y, τ) dτ

]
dy = 0.
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Differentiate this equality with respect to z∗ and use (4.37). We obtain{
N
[
pt∗ − ĥ1pz∗z∗ −√

γĥ2pz∗

]}
(z∗, t∗) + (Nt∗p) (z∗, t∗)

−
(
Nĥ1

)
t∗

(z∗, t∗)

∫ t∗

0

pz∗z∗ (z∗, τ) dτ −√
γ
(
Nĥ2

)
t∗

(z∗, t∗)

∫ t∗

0

pz∗ (z∗, τ) dτ

+
√
γz∗

∫ z∗

g0(ε)/
√
γ

Gz∗t∗ (z∗, y, t∗)

{
N (y, t∗)

[
p (y, t∗) − ĥ1 (y, t∗)

∫ t∗

0

pz∗z∗ (y, τ) dτ

−√
γĥ2 (y, t∗)

∫ t∗

0

pz∗ (y, τ) dτ

]}
dy

+
√
γz∗

∫ z∗

g0(ε)/
√
γ

Gz∗ (z∗, y, t∗) (Nt∗p) (y, t∗) dy

−√
γz∗

∫ z∗

g0(ε)/
√
γ

Gz∗ (z∗, y, t∗)

[(
Nĥ1

)
t∗

(y, t∗)

∫ t∗

0

pz∗z∗ (y, τ) dτ

]
dy

−√
γz∗

∫ z∗

g0(ε)/
√
γ

Gz∗ (z∗, y, t∗)

[
√
γ
(
Nĥ2

)
t∗

(y, t∗)

∫ t∗

0

pz∗ (y, τ) dτ

]
dy = 0.

(4.42)

Here and below, M denotes different positive constants independent of both γ
and the function p. Note that by (4.32), (4.33), the right inequality in (4.40), and
(4.41), ∥∥∥(Nĥ1

)
t∗

∥∥∥
C(R′)

+
∥∥∥(Nĥ2

)
t∗

∥∥∥
C(R′)

+ ‖Nt∗‖C(R′) ≤ Mγ

and

‖Gz∗t∗‖C(R′′) + ‖Gt∗‖C(R′′) ≤ Mγ,

where

R′′ =

{
g0 (ε)
√
γ

< z∗ <
g̃
√
γ

}
×R′.

Hence, dividing both sides of (4.42) by N and using the left inequality in (4.40), we
obtain an integral differential equation, from which the integral differential inequality
(4.43) follows immediately, where∣∣∣pt∗ − ĥ1pz∗z∗

∣∣∣ (z∗, t∗)
≤ M [|p| + |pz∗ |] (z∗, t∗) + Mγsgn(t∗)

∫ t∗

0

|pz∗z∗ (z∗, τ)| dτ

+Mγsgn(t∗)

∫ t∗

0

|pz∗ (z∗, τ)| dτ + M

∫ z∗

g0(ε)/
√
γ

|p (y, t∗)| dy

+Mγsgn(t∗)

∫ z∗

g0(ε)/
√
γ

∫ t∗

0

[|pz∗z∗ | + |pz∗ |] (y, τ) dτdy in R′,(4.43)
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where

sgn(t∗) =

{
1 if t∗ > 0

−1 if t∗ < 0

}
.

Hence,

sgn(t∗)

∫ t∗

0

|.| dτ =

∣∣∣∣∣
∫ t∗

0

|.| dτ
∣∣∣∣∣ .

Remark. Since we have now singled out the small factor γ, starting from (4.44),
below we use old notations for the variables (z∗, t∗) := (z, t) for brevity, keeping in
mind, however, that we have not actually returned to old variables.

Since p = st∗ , (4.25) and (4.26) imply zero Cauchy data at {z = g0(ε)√
γ },

(4.44) p

(
g0 (ε)
√
γ

, t

)
= pz

(
g0 (ε)
√
γ

, t

)
= 0, t ∈

(
− ε

γ
,
ε

γ

)
.

It is well known that when applying Carleman estimates, it is often more convenient
to work with inequalities rather than with equations; see, e.g., [21]. The goal of the
next three subsections is to prove that (4.43) and (4.44) imply that p(z, t) = 0 in R′,
which in turn obviously implies (4.28) and (4.29).

4.2. Carleman estimate. Let ξ = const. ∈ (0, 1) . Introduce the function
ψ (z, t) by

ψ (z, t) =

(
z − g0 (ε)

√
γ

)
+ t2 + ξ.

Choose an arbitrary constant δ > 0 such that

δ < min

[
1,

g̃ − g0 (ε)
√
γ

,

(
ε

γ

)2
]
.

Denote

Kδ =

{
(z, t) : ψ (z, t) < ξ + δ, z >

g0 (ε)
√
γ

}
.

Hence, the boundary ∂Kδ of the domain Kδ is

(4.45) ∂Kδ = ∂1Kδ ∪ ∂2Kδ,

where

∂1Kδ =

{
(z, t) : z =

g0 (ε)
√
γ

, t2 < δ

}
,(4.46)

∂2Kδ =

{
(z, t) :

(
z − g0 (ε)

√
γ

)
+ t2 + ξ = ξ + δ, z > 0

}
.(4.47)

Hence, by (4.44) and (4.46),

(4.48) p |∂1Kδ
= pz |∂1Kδ

= 0.



INVERSE PROBLEM FOR A NONLINEAR PARABOLIC EQUATION 1875

By (4.31), Kδ ⊂ R′. Clearly Kδ′ ⊂ Kδ for all δ′ ∈ (0, δ) .
Let λ, ν > 1 be two large parameters which we will choose later. Introduce the

CWF ϕ (z, t) by

(4.49) ϕ (z, t) = exp
(
λψ−ν

)
.

Lemma 1 (Carleman estimate; see, e.g., section 2.2 in [21] and section 1 of Chap-
ter 4 in [22]). There exist a sufficiently large number ν = ν0 = ν0 (ξ, δ, β1, β2, β3) (see
(4.18) for β1, β2, β3) and a positive constant C = C (ξ, δ, β1, β2, β3) , both ν0 and C
independent of the number γ, such that for all values of the parameter λ > 1 and all
functions u ∈ C2,1

(
Kδ

)
the following pointwise Carleman estimate holds in Kδ:

(4.50) (ut − h1uzz)
2
ϕ2 ≥ C

λ

(
u2
t + u2

zz

)
ϕ2 + Cλu2

zϕ
2 + Cλ3u2ϕ2 + Uz + Vt,

where functions U and V satisfy

(4.51) |U | + |V | ≤ Cλ
[
u2
t + u2

z + λ2u2
]
ϕ2.

Below, C denotes different positive constants dependent on numbers ξ, δ, β1, β2, β3

but independent of the number γ.

4.3. Estimates of integrals. While (4.50) provides an estimate of the left-
hand side of the inequality (4.43) from below, we also need to estimate its right-hand
side from above in the presence of the CWF ϕ. It is not a problem to estimate
M2 [|p| + |pz|]ϕ2. However, the presence of Volterra-like integrals in (4.43) presents
a difficulty. In the above cited previous works [4], [5], [6], [7], [8], [9], [10], [11], [12],
[18], [19], [20], [21], [22], [23], [24] only integrals with respect to time t,

∫ t

0

(.) dτ,

were estimated (Lemma 2). A new element of this publication is Lemmata 3 and 4,
which are concerned with estimates of integrals∫ z

g0(ε)

(.) dy,

∫ z

g0(ε)

∫ t

0

(.) dτdy.

The z-integration occurs because of the involvement of both the function k̃ and its
derivatives k̃′, k̃′′ in (4.16), which was not the case in the past.

Lemma 2 (see [21, p. 77]). The following estimate holds for all real valued
functions f ∈ L2 (Kδ):

∫
Kδ

(∫ t

0

f (z, τ) dτ

)2

ϕ2dzdt ≤ C

λ

∫
Kδ

f2 (z, t)ϕ2dzdt ∀λ > 1.

We now prove the following lemma.
Lemma 3. The following estimate holds for all real valued functions f ∈ L2(Kδ):

∫
Kδ

(∫ z

g0(ε)

f (y, t) dy

)2

ϕ2dzdt ≤ C

λ2

∫
Kδ

f2 (z, t)ϕ2dzdt ∀λ > 1.
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Proof.

(4.52)

∫
Kδ

(∫ z

g0(ε)

f (y, t) dy

)2

ϕ2dzdt =

∫ √
δ

−
√
δ

dt

∫ δ−t2

0

(∫ z

g0(ε)

f (y, t) dy

)2

ϕ2dz.

We have by (4.49)

∫ δ−t2

0

(∫ z

g0(ε)

f (y, t) dy

)2

ϕ2dz

=

∫ δ−t2

0

(∫ z

g0(ε)

f (y, t) dy

)2

exp
[
2λ
(
z + t2 + ξ

)−ν
]
dz

=
1

2λν

∫ δ−t2

0

(∫ z

g0(ε)

f (y, t) dy

)2

ψν+1 d

dz

[
− exp

(
2λψ−ν

)]
dz

≤ (ξ + δ)
ν+1

2λν

∫ δ−t2

0

(∫ z

g0(ε)

f (y, t) dy

)2
d

dz

[
− exp

(
2λψ−ν

)]
dz

≤ C

λ

{
− exp

(
2λ (ξ + δ)

−ν
)(∫ δ−t2

0

f (y, t) dy

)2

+ 2

∫ δ−t2

0

ϕ2f (z, t)

∫ z

g0(ε)

f (y, t) dydz

}

≤ C

λ

∫ δ−t2

0

ϕ2f (z, t)

∫ z

g0(ε)

f (y, t) dydz.

Hence, we have obtained that

(4.53)

∫ δ−t2

0

(∫ z

g0(ε)

f (y, t) dy

)2

ϕ2dz ≤ C

λ

∫ δ−t2

0

ϕ2f (z, t)

∫ z

g0(ε)

f (y, t) dydz.

By the Cauchy–Schwarz inequality

C

λ

∫ δ−t2

0

ϕ2f (z, t)

∫ z

g0(ε)

f (y, t) dydz

≤ C

λ

[∫ δ−t2

0

f2 (z, t)ϕ2dz

]1/2
⎡
⎣∫ δ−t2

0

(∫ z

g0(ε)

f (y, t) dy

)2

ϕ2dz

⎤
⎦

1/2

.

Substituting the latter into (4.53), we obtain

⎡
⎣∫ δ−t2

0

(∫ z

g0(ε)

f (y, t) dy

)2

ϕ2dz

⎤
⎦

1/2

≤ C

λ

[∫ δ−t2

0

f2 (z, t)ϕ2dz

]1/2

.
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Squaring both sides of this inequality, we obtain the target estimate of this lem-
ma.

Lemma 4. The following estimate holds for all real valued functions f ∈ L2 (Kδ):∫
Kδ

(∫ z

g0(ε)

∫ t

0

f (y, t) dτdy

)2

ϕ2dzdt ≤ C

λ3

∫
Kδ

f2 (z, t)ϕ2dzdt ∀λ > 1.

Proof. Denote

F (y, t) =

∫ t

0

f (y, t) dτ.

Applying sequentially Lemmata 3 and 2, we obtain

∫
Kδ

(∫ z

g0(ε)

∫ t

0

f (y, t) dτdy

)2

ϕ2dzdt

=

∫
Kδ

(∫ z

g0(ε)

F (y, t)dy

)2

ϕ2dzdt ≤ C

λ2

∫
Kδ

F 2 (z, t)ϕ2dzdt

≤ C

λ3

∫
Kδ

f2 (z, t)ϕ2dzdt.

4.4. Finishing the proof of Theorem 1. Square both sides of the inequality
(4.43), multiply by the function ϕ2, integrate over the domain Kδ, and apply (4.50)
and (4.51) to the left-hand side using Gauss’s formula and (4.45)–(4.48). Also, apply
Lemmata 2–4 to the right-hand side. We obtain

C

λ

∫
Kδ

(
p2
t + p2

zz

)
ϕ2dzdt + Cλ

∫
Kδ

(
p2
z + λ2p2

)
ϕ2dzdt

≤ M
γ2

λ

∫
Kδ

p2
zzϕ

2dzdt +
M

λ3

∫
Kδ

p2
zzϕ

2dzdt + M

∫
Kδ

(
p2
z + p2

)
ϕ2dzdt

+Cλ exp
[
2λ (ξ + δ)

−ν
] ∫

∂2Kδ

(
p2
t + p2

z + λ2p2
)
dS ∀λ > 1.

Since constants C and M are independent of γ, we choose γ so small that Mγ2 < C/4.
Next, we choose λ0 > 1 so large that M/λ2

0 < C/4 and M < Cλ0/2. Then we obtain
with a new constant C

1

λ

∫
Kδ

(
p2
t + p2

zz

)
ϕ2dzdt + λ

∫
Kδ

(
p2
z + λ2p2

)
ϕ2dzdt

≤ Cλ exp
[
2λ (ξ + δ)

−ν
] ∫

∂2Kδ

(
p2
t + p2

z + λ2p2
)
dS ∀λ ≥ λ0.(4.54)

Consider a number δ′ ∈ (0, δ) . Since ϕ2 ≥ exp[2λ(ξ+ δ′)−ν ] in Kδ′ and Kδ′ ⊂ Kδ, we
obtain from (4.54)

exp
[
2λ (ξ + δ′)

−ν
] ∫

Kδ′

p2dzdt

≤ C

λ2
exp

[
2λ (ξ + δ)

−ν
] ∫

∂2Kδ

(
p2
t + p2

z + λ2p2
)
dS ∀λ ≥ λ0.
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Dividing this inequality by exp[2λ(ξ + δ′)−ν ], we obtain∫
Kδ′

p2dzdt

≤ C

λ2
exp

{
−2λ

[
(ξ + δ′)

−ν − (ξ + δ)
−ν
]}∫

∂2Kδ

(
p2
t + p2

z + λ2p2
)
dS ∀λ ≥ λ0.

Note that (ξ + δ′)
−ν − (ξ + δ)

−ν
> 0. Hence, letting λ → ∞, we obtain∫

Kδ′

p2dzdt = 0.

Hence, p = 0 in Kδ′ . Since δ′ is an arbitrary number from the interval (0, δ), p = 0
in Kδ. By (4.38), the function q = 0 in Kδ. Hence, (4.16) together with (4.27) implies
that

k̃(z) = 0 for z ∈
(
g0 (ε)
√
γ

,
g0 (ε)
√
γ

+ δ

)
.

Dropping k̃(z) in (4.16) for z ∈ ( g0(ε)√
γ , g0(ε)√

γ + δ), we obtain a parabolic equation

qt − h1 (z, t) qzz − h2 (z, t) qz = 0, (z, t) ∈
(
g0 (ε)
√
γ

,
g0 (ε)
√
γ

+ δ

)
×
(
− ε

γ
,
ε

γ

)

with the Cauchy data at {z = g0(ε)√
γ },

q

(
g0 (ε)
√
γ

, t

)
= qz

(
g0 (ε)
√
γ

, t

)
= 0, t ∈

(
− ε

γ
,
ε

γ

)
.

Hence, the above-mentioned unique continuation theorem implies that q(z, t) = 0 for

(z, t) ∈ ( g0(ε)√
γ , g0(ε)√

γ + δ) × (− ε
γ ,

ε
γ ). Therefore, we can now “shift” the left boundary

{z = g0(ε)√
γ } of the rectangle R′ to the right by δ via replacing R′ with the rectangle

R′
δ =

(
g0 (ε)
√
γ

+ δ,
g0 (ε)
√
γ

+ 2δ

)
×
(
− ε

γ
,
ε

γ

)
.

Next, we can repeat the above process. This way we arrive at target equalities (4.28)
and (4.29).

5. Application examples.

5.1. A diffusion model in population dynamics. In this section we discuss
the assumptions of Theorem 1 for an example from population dynamics, given in the
form (2.4): Aronson in [1] proposes the diffusion model

(5.1) vt = (φ(v)v)xx

in the absence of drift, where v(x, t) is the population density at location x and time
t and the diffusion coefficient φ(v) is the population density dependent limit (as the
minimal individual step length tends to zero) of the second moment of the transition
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probability between different locations. The function φ plays the role of k in the
setting of Theorem 1. With u(x, t) =

∫ x

0
v(ξ, t) dξ + f0(t) and an integration with

respect to the space variable this can be rewritten as

(5.2) ut − (φ(ux)ux)x = c,

with c depending on time only, which without loss of generality we can set to zero (as
an inspection of the proof of Theorem 1 shows), which yields

(5.3) ut = (φ(ux)ux)x

so that with k = φ we get the PDE considered in Theorem 1. The boundary and initial
data as well as the conditions imposed on them have the following interpretation in
the context of this example:

• Conditions (2.7), (3.1) are natural assumptions according to [1]. Condition
(3.6) can be guaranteed by imposing nonvanishing population densities at the
boundary, which seems to be natural as well.

• u(x, 0) = r(x); i.e., v(x, 0) = r′(x) means that the population density is
known everywhere at time t = 0, e.g., from a census at that instance of time.

• u(0, t) = f0(t) is satisfied by our setting of the integration constants.
• ux(0, t) = v(0, t) = g0(t) with g′ ≥ 0: The population density at location
x = 0 is observed for all time instances and increases with time.

• ux(L, t) = v(L, t) = g1(t) = g̃ and [g0(ε), g̃] is the interval on which k can be
identified according to Theorem 1: The population density at location x = L
is observed for all time instances and is constant in time, where this constant
should be as large as possible, e.g., equal to some saturation value.

• uxx = vx ≥ α > 0: The population density increases from left to right.

5.2. Nonlinear magnetics. Quasi-static magnetic fields can be described by a
subset of Maxwell’s equations, more precisely, Ampère’s law in the quasi-static case

∇× H = J

and Faraday’s law

∇× E = −Bt ,

combined with the constitutive relations

J = γE + Jimp , H = νB,

where H is the magnetic field intensity, B the magnetic flux density, E the electric
field, γ the electric conductivity, ν the magnetic reluctivity (i.e., the reciprocal of the
magnetic permeability μ), and Jimp the impressed current density; see, e.g., [6], [10],
[16]. Using the fact that B is solenoidal,

∇ · B = 0 ,

we can make use of a magnetic vector potential A satisfying

B = ∇× A ,

which leads to the system of PDEs

(5.4) γAt + ∇× (ν∇× A) = Jimp
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Fig. 5.1. Schematic of probe with coil (left), quasi-straight detail (middle), and cut along x-z
plane (right).

for the vector field A. In the situation of high magnetic fields, the parameter ν is not
constant but depends on the magnetic flux density, i.e.,

(5.5) H = ν(B)B .

By an appropriate experimental setup, this can be reduced to the spatially one-
dimensional case: Consider a ring-shaped probe entwined with an excitation/mea-
surement coil according to Figure 5.1 (left) with a large interior radius so that the
curvature can be neglected (see Figure 5.1 (middle)), and the magnetic flux density
points into the z direction but does not vary in the z direction. Moreover, we consider
a cut along the x-z plane (see Figure 5.1 (right)), in which A must be parallel to the
y axis and dependence of A, B on y can be neglected, so that altogether

B(x, y, z) = (0, 0, Bz(x))T ,

or equivalently

A(x, y, z) = (0, Ay(x), 0)T .

With u(x) := Ay(x) the system (5.4) becomes the spatially one-dimensional model
problem

γut − (ν(ux)ux)x = 0 in (b, L) × (0, T );

i.e., with k = 1
γ ν we arrive at the PDE considered in Theorem 1. An interpretation

of the conditions of Theorem 1 in the context of this example can be made as follows:
• Conditions (2.7), (3.1) are natural conditions on the coefficient also in the

context of magnetics, unless very special materials are considered. Also, the
assumption of knowledge of the coefficient on a short interval (g0(−c), g0(ε))
according to (3.7) is not restrictive: Note that to resolve the full range of the
B-H curve, one will typically choose g0 small and g̃ large, i.e., close to the
saturation value. Hence (3.7) means that the coefficient is known for small
magnetic fields, which is actually the case, since for moderate amplitudes
of the fields, ν is a constant that is either known or can be determined from
simpler measurements. It therefore also makes sense to exclude zero magnetic
flux density from the range of measurements according to (3.6).
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• Neumann boundary data ux(0, t) = g0(t), ux(L, t) = g1(t) here have the
meaning of a magnetic flux density, which can be extracted from measure-
ments of the magnetic flux through two coils positioned on both sides of the
material strip. The magnetic flux can be controlled via the impressed current
through these coils such that it is monotonically nondecreasing (and small)
at the left endpoint as well as constant (and large) at the right endpoint to
achieve g′0 ≥ 0, g′1 = 0, and a wide interval (a, b).

• Via the relation ut = E with E the electric field, one can obtain the initial
and boundary data of u by time integration of electric field measurements.

The conventional measurement setup for determining ν consists of just an exci-
tation (and measurement) coil wound around the probe and does not enable us to
collect all the data required from the point of view of our uniqueness theorem (espe-
cially not electric field measurements inside the probe which would be required for
giving initial data for u). In this sense, there is a gap between theory and practice.
Still, the model problem considered in this paper gives important insight, since the
correct form of the PDE with a coefficient depending on the space derivative of u is
considered. For more details on a PDE-based approach for nonlinearity identification
in magnetics, we refer the reader to [17].

6. Numerical results. In this section, we briefly outline a numerical method
for determining the coefficient k in (2.1) and provide some computational results.

A method for forward magnetic field computations in the nonlinear case that
has recently attracted considerable interest is the so-called harmonic balancing finite
element method (cf., e.g., [2], [9], [25]). It is based on the idea of making a multi-
harmonic ansatz in time to capture the higher harmonics physically arising due to
nonlinearity. Mathematically speaking, one makes use of a special time discretization
based on trigonometric polynomials; i.e., in a complex valued setting, time harmonic
functions t �→ exp(ınt), where ı =

√
−1. An idea for using this approach in parameter

identification was presented in [15] for a hyperbolic PDE. Here we will derive such a
multiharmonic parameter identification method in the original context of magnetics,
i.e., a parabolic PDE.

Thinking of the boundary data as extended periodically and sufficiently smoothly
to the larger interval [0, T̄ ] = [0, T + T1] with some T1 > 0, we make an ansatz

(6.1) u(x, t) ≈ uN (x, t) :=

N∑
n=−N

exp(ınωt)ûn(x) ,

with ω = 2π/T̄ . (Note that continuation of the boundary values beyond T by the
causality of the problem does not influence u for t < T .) Inserting into the PDE, we
get

N∑
j=−N

eıjωt

⎛
⎝ıωjûj −

(
k

(
N∑

n=−N

eınωtûnx

)
ûj x

)
x

⎞
⎠ = 0 .

Testing this with the functions

t �→ 1

T̄
e−ılωt

and using the orthonormality

(6.2)
1

T̄

∫ T̄

0

e−ılωteıjωt dt = δlj ,
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where δlj is the Kronecker symbol, yields

(6.3)
ıωlûl −

1

T̄

∫ T̄

0

N∑
j=−N

eı(j−l)ωt

(
k

(
N∑

n=−N

eınωtûnx

)
ûj x

)
x

dt = 0

∀l ∈ {−N, . . . , N} .

To eliminate the time integral, we use an appropriate approximation for k that enables
us to take advantage of the orthogonality (6.2). For this purpose we make use of a
polynomial ansatz

k(z) ≈
P∑

p=0

αpz
p ,

which is justified by the fact that in the applications we have in mind, k is typically
a smooth function. Since the multinomial theorem yields(

N∑
n=−N

eınωtûnx

)p

=
∑

p = (p−N , . . . , pN ) ∈ N
2N+1
0∑N

n=−N pn = p

(
p
p

) N∏
m=−N

(
eımωtûmx

)pm
,

with the multinomial coefficients(
p

(p−N , . . . , pN )

)
=

p!

p−N ! · · · pN !
,

by (6.2) one arrives at a system of space dependent PDEs

(6.4) ıωlûl −
(

N∑
n=−N

P∑
p=0

αpc̄
p
l−nûnx

)
x

= 0, l ∈ {−N, . . . , N} ,

where

c̄ps =
∑

p∈I(p,s)

(
p
p

) N∏
m=−N

(ûmx)pm ,

I(p, s) =

{
p = (p−N , . . . , pN ) ⊆ N

2N+1
0

∣∣∣∣
N∑

n=−N

pn = p ∧
N∑

n=−N

npn = s

}
;

i.e., the coefficients c̄pl−n depend nonlinearly on (û−N x, . . . , ûN x). The boundary
conditions and measurements become

ûl x(0) = ĝ0 l, ûl x(L) = ĝ1 l, l ∈ {−N, . . . , N},(6.5)

ûl(0) = f̂0 l, ûl(L) = f̂1 l, l ∈ {−N, . . . , N},(6.6)

with

f̂i l =
1

T̄

∫ T̄

0

exp(−ılωτ)fi(τ) dτ ,
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and analogously for gi, i = 0, 1. Note that we consider the Neumann data as boundary
conditions (and the Dirichlet data as measurement) in our numerical tests below in
order to be able to directly prescribe g0 monotonically increasing on the subinterval
[0, T ] and g1 constant. To avoid singularity of the system due to the elliptic Neumann
problem for index l = 0, we make the additional normalization assumption û0 =
1
T̄

∫ T̄

0
uN (·, t) dt = 0. Physically, this corresponds to the fact that in experiments

only higher harmonics (i.e., multiples nω with |n| ≥ 1 of the basic frequency ω)
appear. From a mathematical point of view this normalization corresponds to a T̄
periodicity assumption on the antiderivative of uN , while the multiharmonic ansatz
implies periodicity of uN itself. To keep compatibility, we add this assumption of a
vanishing time integral also to the conditions imposed on the periodic extension of
the boundary values f0, f1, g0, g1.

If k is real valued, we expect to get a real valued solution and therefore additionally
stipulate

(6.7) û−n = ûn .

We refer the reader to [15] for more details in the context of a hyperbolic model
problem and to [2] for a well-posedness proof of the forward problem in this form under
the conditions we have made here for the coefficient function k. The inverse problem
of reconstructing k from boundary measurements of u in this kind of discretization
amounts to determining the vector of polynomial coefficients α = (α0, . . . , αp) from
boundary data of ûl, l = 0, . . . , N ; cf. [15]. Written as a system of equations

(6.8) FP
N (α) = yN ,

where FP
N : α �→ (ûn(0), ûn(L))

N
n=0 with (ûn)

N
n=0 solving (6.4), (6.5), (6.7), this can

be viewed as the projected version of an operator equation

(6.9) FP (α) = y

resulting from replacing N by ∞ in (6.1), i.e., taking the full expansion of u into ac-
count. More precisely, our special time discretization corresponds to an L2 projection
in data space to the subspace spanned by the first 2N + 1 trigonometric polynomi-
als. These L2 projections converge pointwise to the identity due to the fact that
{t �→ 1√

T̄
eıjωt | j ∈ Z} forms a complete orthonormal system in L2

C
(0, T̄ ). Keeping

in mind the fact that the original infinite-dimensional inverse problem of recovering
k is ill-posed in the sense of instability, here we rely on the regularizing effect of dis-
cretization. As a matter of fact, we can combine the approximation error estimates
from [2] with Theorem 1 in [14] to conclude that (6.8) is a regularization method for
the solution of (6.9) with N acting as a regularization parameter. Since the conver-
gence and stability properties of this method hold independently of the polynomial
degree P , this can be regarded as a regularization method for the original problem of
determining k from boundary measurements of u.

We can apply Newton’s method to (6.8),

αm+1 = αm + θβ with FP
N

′
(αm)β = y − FP

N (αm),

to iteratively recover α. Here θ is an appropriately chosen stepsize that guarantees
strictly monotone decrease of the residual. To fully discretize this method it remains
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(a)

(b) (c)

Fig. 6.1. Typical B-H curve for iron ((a), schematic) and two synthetic test examples ((b), (c)).

to define a space discretization of the space dependent functions ûl, which we do by
using finite elements on a uniform grid.

The application we have in mind here is nonlinear magnetics (cf. subsection 5.2),
where the nonlinearity is usually considered in terms of the so-called B-H curves, i.e., a
plot of the magnetic flux density B over the magnetic field intensity H. By the relation
(5.5), in our context this translates into plotting the function a, where a−1(z) = k(z)z.
A typical B-H curve for iron is displayed in Figure 6.1(a), where the ratio between the
slope at B = 0 and the slope at the saturation level B = Bsat amounts to the relative
reluctivity νrel ∼ 1

5000 . For testing the proposed method, we constructed two test
problems with similar behavior. Upon renormalization to Bnorm

sat = 1, νnormrel = 1
10 ,

the values Hnorm
sat = 3.6 and Hnorm

sat = 2.4 as they appear in the synthetic test examples
in Figure 6.1(b), (c) indeed turn out to be in a realistic range.

For the first test example (i.e., Figure 6.1(b)), Figure 6.2 shows the iteration
history of the proposed method for exact and for randomly perturbed data with a
noise level of 1 percent, as compared to the true curve aex in black. In our inverse
computations, we used N = 5 higher harmonics. To avoid an inverse crime, we
generated the data with a larger number N in the multiharmonic ansatz. Figure 6.3
shows the development of the residuals during the Newton iteration in the exact and
noisy case, respectively. In Figures 6.4 and 6.5 we give another example of such a
B-H curve, namely the one corresponding to Figure 6.1(c). This example exhibits
a changing sign of curvature as typical for some materials; see, e.g., Figure 6.1(a).
The proposed method is able to also satisfactorily reproduce this more complicated
behavior. Note that in each of these tests, the starting value for k is just a constant
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Fig. 6.2. Starting value a0 and Newton iterations a1, a2, a3, a4 of a, where a−1(z) = k(z)z,
compared to exact curve aex for the example in Figure 6.1(b); top: exact data, bottom: noisy data
(1 percent noise).

function, corresponding to the fact that in practice the constant reluctivity coefficient
for small magnetic fields is typically known.

Acknowledgment. The authors are grateful to anonymous referees for their
valuable comments, which helped to improve the quality of presentation.
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Fig. 6.3. Starting value and Newton iterations of the residual corresponding to Figure 6.2; top:
exact data, bottom: noisy data (1 percent noise).
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Fig. 6.4. Starting value a0 and Newton iterations a1, a2, a3, a4 of a, where a−1(z) = k(z)z,
compared to exact curve aex for the example in Figure 6.1(c); top: exact data, bottom: noisy data
(0.1 percent noise).
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Fig. 6.5. Starting value and Newton iterations of the residual corresponding to Figure 6.4; top:
exact data, bottom: noisy data (0.1 percent noise).
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Abstract. The Cauchy problem for the derivative nonlinear Schrödinger equation with periodic
boundary condition is considered. Local well-posedness for data u0 in the space Ĥs

r (T), defined by
the norms ‖u0‖Ĥs

r (T)
= ‖〈ξ〉sû0‖�r′ξ

, is shown in the parameter range s ≥ 1
2
, 2 > r > 4

3
. The proof

is based on an adaptation of the gauge transform to the periodic setting and an appropriate variant
of the Fourier restriction norm method.
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1. Introduction and main result. The Cauchy problem for the derivative
nonlinear Schrödinger equation

i∂tu + ∂2
xu = i∂x(|u|2u),

u(0, x) = u0(x)
(DNLS)

describes the propagation of nonlinear waves arising in plasma physics, nonlinear
optics, and other disciplines. For initial data u0 in the classical Sobolev spaces Hs(R)
of functions defined on the real line, (DNLS) is known to be locally well-posed for
s ≥ 1

2 . This was shown by Takaoka in [25], where he improved the earlier H1(R)-
result of Hayashi and Ozawa [16, 17] and Hayashi [15]. His method of proof combines
the gauge transform already used by Hayashi and Ozawa with Bourgain’s Fourier
restriction norm method. Global well-posedness in Hs(R) for s > 1

2 is derived by
Colliander et al. in [7, 8]. A counterexample of Biagioni and Linares [2] shows the
optimality of Takaoka’s local result on the Hs(R)-scale of data spaces: For s < 1

2 the
Cauchy problem (DNLS) is ill-posed in the C0-uniform sense, although the standard
scaling argument suggests only local ill-posedness for s < 0. This gap of 1/2 derivative
between the scaling prediction and Takaoka’s result can be closed by leaving the
Hs(R)-scale and considering data in the spaces Ĥs

r (R) defined by the norms

‖u0‖Ĥs
r (R)

= ‖〈ξ〉sû0‖Lr′
ξ
, 〈ξ〉 = (1 + ξ2)

1
2 ,

1

r
+

1

r′
= 1.

We remark that these spaces coincide with Br′,k (with weight k(ξ) = 〈ξ〉s), intro-
duced by Hörmander; cf. [20, section 10.1]. The idea to consider them as data spaces
for nonlinear Schrödinger equations goes back to the work of Cazenave, Vega, and

∗Received by the editors April 23, 2007; accepted for publication (in revised form) November 6,
2007; published electronically February 22, 2008.

http://www.siam.org/journals/sima/39-6/68913.html
†Bergische Universität Wuppertal, Fachbereich C: Mathematik/Naturwissenschaften, Gaußstraße

20, 42097 Wuppertal, Germany (axel.gruenrock@math.uni-wuppertal.de).
‡Rheinische Friedrich-Wilhelms-Universität Bonn, Mathematisches Institut, Beringstraße 1, 53115

Bonn, Germany (herr@math.uni-bonn.de). This author’s research was initially supported by German
Research Foundation (DFG) grant KO 1307/5-3.

1890



LOW REGULARITY LWP OF DNLS WITH PERIODIC INITIAL DATA 1891

Vilela [4], where corresponding weak norms are used. Yet another alternative class of
data spaces has been considered by Vargas and Vega in [26].

Concerning the (DNLS) equation on the real line, it was shown by the first

author in [13] that local well-posedness holds for data in Ĥs
r (R), provided s ≥ 1

2
and 2 ≥ r > 1. This generalization of Takaoka’s result almost reaches the case
(s, r) = ( 1

2 , 1), which is critical with respect to the scaling symmetry. The proof
uses the gauge transform again and an appropriate variant of the Fourier restriction
norm method, which was developed in [12]. Furthermore, it relies heavily on certain
smoothing properties of the Schrödinger group, expressed in terms of bi- and trilinear
estimates for free solutions.

On the other hand, it could be shown by the second author in [18] that Takaoka’s
result concerning the real line can be carried over to the periodic case with the same
lower bound s ≥ 1

2 on the Sobolev regularity. This is remarkable, since there is a
number of nonlinear Schrödinger and Korteweg–de Vries-type equations, which are—
due to a lack of smoothing properties—strictly worse behaved in the periodic setting
than in the continuous case. To prove the result concerning the one-dimensional torus,
the gauge transform had to be adjusted to the periodic case; see [18, section 2]. The
transformed equation is then treated by the Fourier restriction norm method. Here,
the L4 Strichartz estimate [27, 3] turned out to be a central tool in the derivation of
the nonlinear estimates.

Now it is natural to ask for a synthesis of the two last-mentioned results, i.e., to
consider the Cauchy problem (DNLS) with u0 in the following two parameter scale of
data spaces.

Definition 1.1. Let s ∈ R, 1 ≤ r ≤ ∞, and 1
r + 1

r′ = 1. Define Ĥs
r (T) as the

completion of all trigonometric polynomials with respect to the norm

(1) ‖f‖
Ĥs

r
:= ‖Ĵsf‖�r′ξ ,

where Js is the Bessel potential operator of order −s given by Ĵsf(ξ) = 〈ξ〉sf̂(ξ).

Remark 1. In contrast to the nonperiodic case the continuous embedding Ĥs
q (T)

⊂ Ĥs
r (T) holds true for any 1 ≤ r ≤ q ≤ ∞. Moreover, we have Hs

2(T) = Ĥs
2(T) and,

more generally, Hs
r (T) ⊂ Ĥs

r (T) for 1 ≤ r ≤ 2 by the Hausdorff–Young inequality,
where Hs

r (T) denotes the Bessel potential space of all u such that Jsu ∈ Lr(T). If
r = 2, we will usually omit the index r.

The main result of this paper is local well-posedness of (DNLS) in these data
spaces in the parameter range1 s ≥ 1

2 and 2 > r > 4
3 . More precisely, the following

theorem will be shown.
Theorem 1.2. Let 4

3 < q ≤ r ≤ 2. For every

u0 ∈ BR :=

{
u0 ∈ Ĥ

1
2
r (T) | ‖u0‖

Ĥ
1
2
q

< R

}

and T � R−2q′− there exists a solution u ∈ C([−T, T ], Ĥ
1
2
r (T)) of the Cauchy problem

(DNLS). This solution is the unique limit of smooth solutions, and the map(
BR, ‖ · ‖

Ĥ
1
2
r

)
−→ C([−T, T ], Ĥ

1
2
r (T)) : u0 �→ u

1For the sake of clearness of the exposition we state the main results only for the most interesting
case s = 1

2
, but standard arguments also provide persistence of higher regularity.
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is continuous but not locally uniformly continuous. However, on subsets of BR with
fixed L2-norm it is locally Lipschitz continuous.

Remark 2.

1. The uniqueness statement in the theorem above can be sharpened; see Re-
mark 5.

2. Our methods rely on the L2 conservation law, but not on the complete inte-
grability of (DNLS) (see [21]), and also apply to nonlinearities with (say) additional
polynomial terms of type |u|ku.

3. Solution always means solution of the corresponding integral equation

u(t) = eit∂
2
xu0 + i

∫ t

0

ei(t−t′)∂2
x∂x(|u|2u)(t′)dt′, t ∈ (−T, T ).

4. On any level of regularity the flow map is not uniformly continuous. This is
precisely due to the influence of a translation; see Lemma 6.3. However, our arguments
imply that the map u0 �→ u(t, x − t

π‖u‖2
L2) is real analytic for any s ≥ 1

2 ; see also
[19, Theorem 3.1.5]. In view of the counterexamples in [18, Theorem 5.3], and [19,
Theorem 3.1.5] for the corresponding modified equation, which are essentially of the
same kind as the one already given in [25, Proposition 3.3], we cannot expect any
positive result with smooth dependence (modulo the translation specified above) for
s < 1

2 . Observe that the examples concerning the periodic case are monochromatic

waves and thus do not distinguish between an �2ξ- and an �r
′

ξ -norm. Concerning the
second parameter r, we must leave open the question whether or not there is local
well-posedness for r ≤ 4

3 . Nonetheless, we will show below that our result is optimal
within the framework we use.

Before we turn to details, let us point out that in the periodic case almost nothing
is known about Cauchy problems with data in the Ĥs

r (T) spaces. The only result we
are aware of is due to Christ [6, 5], who considers the following modification of the
cubic nonlinear Schrödinger equation on the one-dimensional torus:

(NLS*) i∂tu + ∂2
xu =

(
|u|2 − 2−

∫ 2π

0

|u|2dx
)
u,

with initial condition u(0) = u0 ∈ Ĥs
r (T). He shows that for s ≥ 0 and r > 1 the

solution map

S : Hσ(T) −→ C([0,∞), Hσ(T)) ∩ C1([0,∞), Hσ−2(T))

(σ sufficiently large) “extends by continuity to a uniformly continuous mapping from

the ball centered at 0 of [arbitrary] radius R in” Ĥs
r (T) to C([0, τ ], Ĥs

r (T)), where
τ depends on R; see [6, Theorem 6.1.1].2 This result is shown by a new method
of solution, which is developed in [6]; a summary of this method is given in section
6.1.5 of that paper. The positive result in [6] is supplemented in [5] by a statement
of nonuniqueness: For 2 > r > 1 there exists a nonvanishing weak solution3 u ∈
C([0, 1], Ĥ0

r (T)) of (NLS*) with initial value u0 ≡ 0; see [5, Theorem 2.3].
Using the function spaces Xs,b

r , defined by the norms

‖u‖Xs,b
r

= ‖〈ξ〉s〈τ + ξ2〉bû‖�r′ξ Lr′
τ
,

2In [6] the data spaces are denoted as FLs,p(T), which corresponds to Ĥs
p′ (T) in our terms.

3A precise definition of a weak solution is given in [5, section 2.1].
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where 1
r + 1

r′ = 1 (cf. [12, section 2]), we can actually show local well-posedness of the

initial value problem associated with (NLS*) with data u0 ∈ Ĥ0
r (T), 2 > r > 1, thus

giving an alternative proof (based on the contraction mapping principle) of Christ’s
result from [6]. The argument also provides uniqueness of the solution in the re-
striction norm space based on X0,b

r ; see [12, formulas (2.37) and (2.38)]. It was the
starting point for our investigations concerning the (DNLS) equation and already
exhibits some of the main arguments; so let us sketch this proof.

We define the trilinear operator C1 by its partial Fourier transform (in the space
variable only)

̂C1(u1, u2, u3)(ξ) = (2π)−1
∑

ξ=ξ1+ξ2+ξ3
ξ1 �=ξ, ξ2 �=ξ

û1(ξ1)û2(ξ2)û3(ξ3),

so that the (partial) Fourier transform of the nonlinearity in (NLS*) becomes

̂C1(u, u, u)(ξ) − (2π)−1û2(ξ)û(−ξ).

By [12, Theorem 2.3] it is sufficient to estimate the latter appropriately in X0,b
r -norms.

Here, the second contribution turns out to be harmless; cf. the end of the proof of
Theorem 2.4 below. So matters essentially reduce to show the following estimate.

Proposition 1.3. Let r > 1, ε > 0, and b > 1
r . Then

‖C1(u1, u2, u3)‖X0,−ε
r

�
3∏

i=1

‖ui‖X0,b
r

.

Proof. Choosing fi ∈ �r
′

ξ Lr′

τ such that ‖fi‖�r′ξ Lr′
τ

= ‖ui‖X0,b
r

the above estimate

can be rewritten as

(2)

∥∥∥∥∥∥∥∥
〈σ0〉−ε

∑
ξ=ξ1+ξ2+ξ3
ξ1 �=ξ, ξ2 �=ξ

∫
τ=τ1+τ2+τ3

3∏
i=1

fi(ξi, τi)

〈σi〉b
dτ1dτ2

∥∥∥∥∥∥∥∥
�r

′
ξ Lr′

τ

�
3∏

i=1

‖fi‖�r′ξ Lr′
τ
,

where σ0 = τ + ξ2, σi = τi + ξ2
i (i = 1, 2), and σ3 = τ3 − ξ2

3 . By Hölder’s inequality
and Fubini’s theorem, (2) can be deduced from

(3) sup
ξ,τ

〈σ0〉−rε
∑

ξ=ξ1+ξ2+ξ3
ξ1 �=ξ, ξ2 �=ξ

∫
τ=τ1+τ2+τ3

3∏
i=1

〈σi〉−rb dτ1dτ2 < ∞.

Using the resonance relation

(4) 2|ξ1ξ2 + ξξ3| = 2|ξ − ξ1||ξ − ξ2| ≤
3∑

i=0

〈σi〉 ≤
3∏

i=0

〈σi〉

the left-hand side of (3) is bounded by

∑
ξ=ξ1+ξ2+ξ3
ξ1 �=ξ, ξ2 �=ξ

〈ξ − ξ1〉0−〈ξ − ξ2〉0−
∫

τ=τ1+τ2+τ3

dτ1dτ2

3∏
i=1

〈σi〉−1−

�
∑

ξ=ξ1+ξ2+ξ3
ξ1 �=ξ, ξ2 �=ξ

〈ξ − ξ1〉0−〈ξ − ξ2〉0−〈τ + ξ2 − 2(ξ − ξ1)(ξ − ξ2)〉−1−,
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where in the last step we have used Lemma 4.1 twice. Setting Z
∗ = Z\{0}, ni = ξ−ξi

for i = 1, 2, and r = n1n2 the last sum can be rewritten as∑
r∈Z∗

〈τ + ξ2 − 2r〉−1−〈r〉0−
∑

n1,n2∈Z
∗

r=n1n2

1,

which is bounded by a constant independent of ξ and τ , since the number of divisors
of r ∈ N can be estimated by cεr

ε for any positive ε.

Three aspects of the preceding are worth being emphasized in view of our inves-
tigations here.

Necessity of cancellations and correction terms. For r < 2 the above argu-
ment breaks down completely without the restrictions ξ �= ξ1 and ξ �= ξ2 in the sum
over the Fourier coefficients. As was pointed out already by Christ, this cancellation

comes from the correction term 2−
∫ 2π

0
|u|2dxu subtracted in the nonlinearity, and for

any other coefficient in front of this term one cannot obtain continuous dependence;
see [6, last sentence of section 6.1.3 and the remark before (6.2.6)]. A very similar
cancellation turns out to be fundamental in our analysis of the (DNLS) equation, but
here the corresponding correction term comes from the gauge transform in its periodic
variant, which is discussed in Remark 4 in section 6. In fact, the main contribution
to the cubic part of the transformed equation is given by T ∗(u, u, u), where

̂T ∗(u1, u2, u3)(ξ) = (2π)−1
∑

ξ=ξ1+ξ2+ξ3
ξ1 �=ξ, ξ2 �=ξ

û1(ξ1)û2(ξ2)iξ3û3(ξ3).

Again, our argument would not work without the restrictions ξ �= ξ1, ξ �= ξ2.

Modification of the norms. If we try to estimate the term T ∗(u1, u2, u3) in an
Xs,b

r -norm in a similar manner as in the proof of Proposition 1.3, we have to get control
over a whole derivative, that is, on the Fourier side, over the factor ξ3. The complete
absence of smoothing effects (gaining derivatives) in the periodic case forces us to get
this control from the resonance relation (4) only, which is the same for (DNLS) as
for (NLS*). This means that we have to choose the b-parameters equal to − 1

2 on the
left-hand side and to +1

2 on the right-hand side of the estimate. Now, the necessity
to cancel the ξ3-factor and the resonance relation lead to the consideration of eight
cases—some of them being symmetric—depending on which of the σ’s is maximal
and on whether or not |ξξ3| � |ξ1ξ2|; see the table in the proof of Theorem 2.4 below.
Picking out the (relatively harmless) subcase, where |ξξ3| � |ξ1ξ2| and σ0 is maximal,

so that
∏3

i=1 〈σi〉
1
6 ≤ 〈σ0〉

1
2 , we are in the situation of the above proof, with a half

derivative on each factor (as desired) but with a b-parameter on the right of at most 2
3 ,

which means that we end up with the nonoptimal restriction r > 3
2 . This leads us

to introduce a fourth parameter p in the Xs,b
r -norms, which is the Hölder exponent

concerning the τ -integration and may differ from r; see Definition 2.1 below. In our
application here we choose p = 2, thus going back to some extent to the meanwhile
classical Xs,b-spaces.

Number of divisor estimate. The number of divisor argument at the end of
the proof of Proposition 1.3 has already been used in Christ’s work and can be seen
as a substitute for Bourgain’s L6 Strichartz estimate for the periodic case, which
itself was shown by the aid of this argument; see [3, Proposition 2.36]. We will need
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a refined version thereof, which is shown by elementary geometric considerations in
section 3. Here, we use arguments similar to those of De Silva et al. [10, section 4].

Concerning the organization of the paper the following should be added: In sec-
tion 2 we introduce the relevant function spaces and state all the nonlinear estimates
needed as well as a sharpness result. The crucial trilinear estimates and a counterex-
ample are derived in section 4, which is very much in the spirit of [22]. Section 5 deals
with the quintilinear estimate. In both cases we have made some effort to extract
the correct lifespan from the nonlinear estimates and to obtain persistence of higher

regularity.4 By this we mean that the lifespan of a solution with Ĥ
1
2
r (T)-data depends

only on the smaller Ĥ
1
2
q (T)-norm of the initial value, where 2 ≥ r > q > 4

3 . Finally, in
section 7, the contraction mapping principle is invoked to prove local well-posedness
for the transformed equation (49); see Theorem 7.2. Our main result, Theorem 1.2,
is then a consequence of Lemma 6.4 on the gauge transform.

We close this section by fixing some notational conventions.
• The Fourier transform with respect to the space variable (periodic) is

Fxf(ξ) = f̂(ξ) =
1√
2π

∫ 2π

0

f(x)e−ixξdx (f ∈ L1(T)).

• The Fourier transform with respect to the time variable (nonperiodic) is

Ftf(τ) =
1√
2π

∫
R

f(t)e−itτdt (f ∈ L1(R)).

• The Fourier transform with respect to time and space variables is F = FtFx.
• For the mean value integral we write

−
∫ 2π

0

f(x)dx =
1

2π

∫ 2π

0

f(x)dx (f ∈ L1(T)).

• Let a ∈ R. The expressions a± denote numbers a ± ε for sufficiently small
ε > 0 (in the case a = ∞ the expression a− denotes a sufficiently large real
number). The implicit constraint on ε may involve the corresponding expres-
sions in the same line and the lines before in a natural way, and eventually
ε is chosen small enough such that it also fulfills the constraints imposed in
what follows.

• For a given set of parameters (typically a subset of ε, δ, ν, p, q, r, s) the state-
ment A � B means that there exists a constant C > 0 which depends only
on these parameters such that A ≤ CB. This is equivalent to B � A. We
may write A � B if it is possible to choose 0 < C < 1

4 .
• For all parameters 1 ≤ p ≤ ∞ the number 1 ≤ p′ ≤ ∞ is defined to be the

dual parameter satisfying 1
p + 1

p′ = 1.

2. Function spaces and main estimates. Let S(R × T) be the linear space
of all C∞-functions f : R

2 → C such that

f(t, x) = f(t, x + 2π), sup
(t,x)∈R2

|tα∂β
t ∂

γ
xf(t, x)| < ∞, α, β, γ ∈ N0.

4We refer the reader to [24, Theorem 2, part V] for the corresponding notion if data in the Hs-
scale are considered. In the Hs-case this property usually is a simple consequence of the convolution
constraint; see again [24, Remark 2 below Theorem 3]. We cannot see that a similar argument should
work in our setting.
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Definition 2.1. Let s, b ∈ R, 1 ≤ r, p ≤ ∞, and 1
r + 1

r′ = 1 = 1
p + 1

p′ . Define

the space Xs,b
r,p as the completion of S(R × T) with respect to the norm

(5) ‖u‖Xs,b
r,p

= ‖〈τ + ξ2〉b〈ξ〉sFu‖
�r

′
ξ Lp′

τ
.

In the case where r = p = 2 we write Xs,b
r,p = Xs,b as usual.

Lemma 2.2. Let s, b1, b2 ∈ R, 1 ≤ r ≤ ∞, and b1 > b2 + 1
2 . The following

embeddings are continuous:

Xs,b1
r,2 ⊂ Xs,b2

r,∞ ,(6)

Xs,0
r,∞ ⊂ C(R, Ĥs

r (T)).(7)

Proof. The first embedding is proved by the Cauchy–Schwarz inequality with
respect to the L1

τ -norm.
The second embedding follows from F−1

t L1(R) ⊂ L∞(R).
Definition 2.3. Let s ∈ R and 1 ≤ r ≤ ∞. We define

Zs
r := X

s, 12
r,2 ∩Xs,0

r,∞

and for 0 < T ≤ 1 the restriction space Zs
r (T ) of all v = w |[−T,T ] for some w ∈ Zs

r

with norm

‖v‖
Z

1
2
r (T )

:= inf

{
‖w‖

Z
1
2
r

|w ∈ Z
1
2
r : w |[−T,T ] = v

}
.

A main ingredient for the proof of Theorem 1.2 is an estimate on the trilinear
operator (suppressing the t dependence):

̂T (u1, u2, u3)(ξ) = (2π)−1
∑

ξ=ξ1+ξ2+ξ3
ξ1 �=ξ, ξ2 �=ξ

û1(ξ1)û2(ξ2)iξ3û3(ξ3)

+ (2π)−1û1(ξ)û2(ξ)iξû3(−ξ).

(8)

Theorem 2.4. Let 4
3 < q ≤ r ≤ 2 and 0 ≤ δ < 1

q′ . Then

(9) ‖T (u1, u2, u3)‖
X

1
2
,− 1

2
r,2

� T δ‖u1‖
X

1
2
, 1
2

q,2

‖u2‖
X

1
2
, 1
2

q,2

‖u3‖
X

1
2
, 1
2

r,2

if supp(ui) ⊂ {(t, x) | |t| ≤ T}, 0 < T ≤ 1.
Additionally, we will need the following estimate on T (u1, u2, u3).
Theorem 2.5. Let 4

3 < q ≤ r ≤ 2 and 0 ≤ δ < 1
q′ . Then

(10) ‖T (u1, u2, u3)‖
X

1
2
,−1

r,∞
� T δ‖u1‖

X
1
2
, 1
2

q,2

‖u2‖
X

1
2
, 1
2

q,2

‖u3‖
X

1
2
, 1
2

r,2

if supp(ui) ⊂ {(t, x) | |t| ≤ T}, 0 < T ≤ 1.
The above estimates are sharp with respect to the lower threshold on r within

the full scale of spaces X
1
2 ,

1
2

r,p . Note that in particular the estimates fail to hold in the
endpoint case r = 4

3 .
Remark 3. For all b ≤ 0, 1 ≤ r ≤ 4

3 , and 1 ≤ p, q ≤ ∞ the estimate

(11) ‖T (u1, u2, u3)‖
X

1
2
,b

r,p

�
3∏

i=1

‖ui‖
X

1
2
, 1
2

r,q
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is false.
We also consider the quintilinear expression defined as

(12) ̂Q(u1, . . . , u5)(ξ) = (2π)−2
∑
∗∗

û1(ξ1)û2(ξ2)û3(ξ3)û4(ξ4)û5(ξ5),

where we suppressed the t dependence and ∗∗ is shorthand for summation over the
subset of Z

5 given by the restrictions

ξ = ξ1 + · · · + ξ5; ξ1 + · · · + ξ4 �= 0; ξ1 + ξ2 �= 0; ξ3 + ξ4 �= 0.

Theorem 2.6. Let 4
3 < q ≤ r ≤ 2 and b > 1

6 + 1
3q . Then

(13) ‖u1u2u3u4u5‖
X

1
2
,−b

r,2

�
5∑

k=1

‖uk‖
X

1
2
,b

r,2

∏
1≤i≤5
i �=k

‖ui‖
X

1
2
,b

q,2

.

Additionally assume that for 0 < T ≤ 1 we have supp(ui) ⊂ {(t, x) | |t| ≤ T} and
0 ≤ δ < 2

q′ . Then

(14) ‖u1u2u3u4u5‖
X

1
2
,− 1

2
r,2 ∩X

1
2
,−1

r,∞
� T δ

5∑
k=1

‖uk‖
X

1
2
, 1
2

r,2

∏
1≤i≤5
i �=k

‖ui‖
X

1
2
, 1
2

q,2

and

(15) ‖Q(u1, u2, u3, u4, u5)‖
X

1
2
,− 1

2
r,2 ∩X

1
2
,−1

r,∞
� T δ

5∑
k=1

‖uk‖
X

1
2
, 1
2

r,2

∏
1≤i≤5
i �=k

‖ui‖
X

1
2
, 1
2

q,2

.

3. Number of divisor estimates and consequences. The next lemma con-
tains estimates on the number of divisors of a given natural number r. Part 1 is well
known; see Hardy and Wright [14, Theorem 315]. The approach used to prove part 2
of Lemma 3.1 is motivated by [10, Lemma 4.4].

Lemma 3.1.

1. Let ε > 0. There exists cε > 0 such that for all r ∈ N

(16) #
{
(n1, n2) ∈ N

2 | n1n2 = r
}
≤ cεr

ε.

2. For all r ∈ N

(17) #
{

(n1, n2) ∈ N
2 | n1n2 = r, 3|n1 − n2| ≤ r

1
6

}
≤ 2.

Proof of part 2. Let r ∈ N. Assume that there are three lattice points contained
in the above set. Then these points form a triangle of area μ ≥ 1

2 ; see Figure 1. This
triangle is located

(i) in the strip

S =
{
(x1, x2) ∈ R

2 |
√
r − δ ≤ x1 ≤

√
r + δ

}
,

where δ = 1
3r

1
6 , because |n1 −

√
r| ≤ |n1 − n2| ≤ δ;
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n1n2 = r

n1

P2

L = P1P2

P1

n2

√
r − δ

√
r + δ

Fig. 1. The notional triangle from the proof of Lemma 3.1.

(ii) below the line L = P1P2 which connects the points

P1 =

(√
r − δ,

r√
r − δ

)
, P2 =

(√
r + δ,

r√
r + δ

)
;

(iii) above the hyperbola

H =
{
(x1, x2) ∈ (0,∞)2 | x1x2 = r

}
because the function x �→ r

x is convex for x > 0.
Now, the area μ of the triangle is bounded from above by the area of the region

in the strip S below L and above H; hence

μ ≤ rδ

(
1√
r − δ

+
1√
r + δ

)
−
∫ √

r+δ

√
r−δ

r

x
dx

= r

(
2
√
rδ

r − δ2
− ln

(
1 +

2δ√
r − δ

))

≤ r

(
2
√
rδ

r − δ2
− 2δ√

r − δ
+

2δ2

(
√
r − δ)2

)
=

4rδ3

(
√
r − δ)2(

√
r + δ)

≤ 4
√
rδ3

(
√
r − δ)2

≤ 4

27

r

(
√
r − δ)2

≤ 1

3
,

which contradicts μ ≥ 1
2 .

Now, we use Lemma 3.1 to prove the following.
Corollary 3.2. Fix ε > 0.

1. There exists Cε > 0 such that for all ξ ∈ Z and a ∈ R

(18)
∑

ξ1,ξ2∈Z

ξ1,ξ2 �=ξ

〈ξ − ξ1〉−ε〈ξ − ξ2〉−ε〈a + 2(ξ − ξ1)(ξ − ξ2)〉−1−ε ≤ Cε.
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2. There exists Cε > 0 such that for all ξ1 ∈ Z and a ∈ R

(19)
∑

ξ,ξ2∈Z

ξ1,ξ2 �=ξ

〈ξ − ξ1〉−ε〈ξ − ξ2〉−ε〈a + 2(ξ − ξ1)(ξ − ξ2)〉−1−ε ≤ Cε.

3. There exists Cε > 0 such that for all ξ ∈ Z and a ∈ R

(20)
∑

ξ1,ξ2∈Z

ξ1,ξ2 �=ξ

〈ξ1〉−ε〈ξ2〉−ε〈a + 2(ξ − ξ1)(ξ − ξ2)〉−1−ε ≤ Cε.

4. There exists Cε > 0 such that for all ξ1 ∈ Z and a ∈ R

(21) 〈ξ1〉−ε
∑

ξ,ξ2∈Z

ξ1,ξ2 �=ξ

〈ξ2〉−ε〈a + 2(ξ − ξ1)(ξ − ξ2)〉−1−ε ≤ Cε.

Proof. The first and second part follow from the standard number of divisors
estimate (16) as follows: By the change of variables n1 = ξ− ξ1, n2 = ξ− ξ2 the sums
in (18) and (19) are equal to∑

n1,n2∈Z∗

〈n1〉−ε〈n2〉−ε〈a + 2n1n2〉−1−ε.

This can be written as∑
r∈Z∗

∑
n1,n2∈Z

∗
n1n2=r

〈n1〉−ε〈n2〉−ε〈a + 2n1n2〉−1−ε

≤
∑
r∈Z∗

〈a + 2r〉−1−ε〈r〉−ε#
{
(n1, n2) ∈ (Z∗)2 | n1n2 = r

}
≤ cε

∑
r∈Z∗

〈a + 2r〉−1−ε

for some cε > 1. We write a = 2b + δ, b ∈ Z, δ ∈ [0, 2), and∑
r∈Z∗

〈a + 2r〉−1−ε ≤
∑
r∈Z

〈r + δ〉−1−ε ≤ 3 + 2
∑
r∈N

〈r〉−1−ε =: sε.

Now, the estimates (18) and (19) hold with Cε := sεcε. In order to show formula (20)
of the third part we use the same change of variables as above and obtain∑

r∈Z∗

〈a + 2r〉−1−ε
∑

n1,n2∈Z
∗

n1n2=r

〈ξ − n1〉−ε〈ξ − n2〉−ε.

Let M(r) = {(n1, n2) ∈ (Z∗)2 | n1n2 = r}. Now, we split the inner sum into two
parts. Let

M1(r) =
{

(n1, n2) ∈ M(r) | 6|ξ − n1| ≥ |r| 16 or 6|ξ − n2| ≥ |r| 16
}

and

M2(r) =
{

(n1, n2) ∈ M(r) | 6|ξ − n1| ≤ |r| 16 and 6|ξ − n2| ≤ |r| 16
}
.
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Obviously we have M(r) = M1(r) ∪ M2(r). By part 1 of Lemma 3.1 there exists
cε > 1 such that

#M1(r) ≤ 2 #
{
(n1, n2) ∈ N

2 | n1n2 = r
}
≤ cε|r|

ε
6 ,

and it follows that∑
(n1,n2)∈M1(r)

〈ξ − n1〉−ε〈ξ − n2〉−ε ≤ 6ε|r|− ε
6 #M1(r) ≤ 6εcε.

For (n1, n2) ∈ M2(r) it holds that 3|n1 − n2| ≤ |r| 16 . An application of part 2 of
Lemma 3.1 shows that∑

(n1,n2)∈M2(r)

〈ξ − n1〉−ε〈ξ − n2〉−ε ≤ #M2(r) ≤ 4.

Therefore, we see that∑
ξ1,ξ2∈Z

ξ1,ξ2 �=ξ

〈ξ1〉−ε〈ξ2〉−ε〈a + 2(ξ − ξ1)(ξ − ξ2)〉−1−ε ≤ (6εcε + 4)
∑
r∈Z∗

〈a + 2r〉−1−ε,

and the third part is proved with constant Cε = sε(6
εcε + 4). Concerning the fourth

part we proceed similarly. After changing variables

〈ξ1〉−ε
∑

ξ,ξ2∈Z

ξ1,ξ2 �=ξ

〈ξ2〉−ε〈a + 2(ξ − ξ1)(ξ − ξ2)〉−1−ε

= 〈ξ1〉−ε
∑
r∈Z∗

〈a + 2r〉−1−ε
∑

n1,n2∈Z
∗

n1n2=r

〈ξ1 + n1 − n2〉−ε

we consider two subregions of summation. In the case where |r| 16 ≤ 6|ξ1| or |r| 16 ≤
6|ξ1 + n1 − n2| we apply estimate (16) from the first part of Lemma 3.1, while in the

remaining case it holds that 3|n1 − n2| ≤ |r| 16 , and we utilize estimate (17) from the
second part of Lemma 3.1.

4. The proof of the trilinear estimates. In this section we prove Theorems
2.4 and 2.5. We will frequently use the following well-known tool; see, e.g., [11,
Lemma 4.2].

Lemma 4.1. Let 0 ≤ α ≤ β such that α + β > 1 and ε > 0. Then

∫
R

〈s− a〉−α〈s− b〉−βds � 〈a− b〉−γ , γ =

⎧⎪⎨
⎪⎩
α + β − 1, β < 1,

α− ε, β = 1,

α, β > 1.

We write T = T ∗ + T ∗∗, where

̂T ∗(u1, u2, u3)(ξ) = (2π)−1
∑

ξ=ξ1+ξ2+ξ3
ξ1 �=ξ, ξ2 �=ξ

û1(ξ1)û2(ξ2)iξ3û3(ξ3),

̂T ∗∗(u1, u2, u3)(ξ) = (2π)−1û1(ξ)û2(ξ)iξû3(−ξ).
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Proof of Theorem 2.4. To fix notation, let σ0 = τ + ξ2, σj = τj + ξ2
j , j = 1, 2, and

σ3 = τ3−ξ2
3 . Throughout the proof the quantities ξ3, τ3 are defined as ξ3 = ξ−ξ1−ξ2

and τ3 = τ − τ1 − τ2, respectively. Let us denote μ = (τ, ξ), μi = (τi, ξi), i = 1, 2, 3,
for brevity. By the definition of the norms we may assume that ûj ≥ 0. Then

‖T (u1, u2, u3)‖
X

1
2
,− 1

2
r,2

≤ ‖T ∗(u1, u2, u3)‖
X

1
2
,− 1

2
r,2

+ ‖T ∗∗(u1, u2, u3)‖
X

1
2
,− 1

2
r,2

,

and we consider the contribution from T ∗ first: Let m be given by

m(μ, μ1, μ2) =
〈ξ〉 1

2 iξ3∏3
j=1 〈ξj〉

1
2

∏3
j=0 〈σj〉

1
2

.

Estimate (9) for the T ∗ contribution is equivalent to∥∥∥∥∥∥∥∥
∑

ξ1,ξ2∈Z

ξ1 �=ξ, ξ2 �=ξ

∫
m(μ, μ1, μ2)f1(μ1)f2(μ2)f3(μ3)dτ1dτ2

∥∥∥∥∥∥∥∥
�r

′
ξ L2

τ

� T δ‖f1‖�q′ξ L2
τ
‖f2‖�q′ξ L2

τ
‖f3‖�r′ξ L2

τ
,

(22)

where we may assume that f3(τ3, 0) = 0. The resonance relation

(23) σ0 − σ1 − σ2 − σ3 = 2(ξ − ξ1)(ξ − ξ2) = 2(ξ1ξ2 + ξξ3)

holds true; cf. [25, 13, 18]. Let us first consider the subregion where 〈ξ1〉〈ξ2〉 � 〈ξ〉〈ξ3〉.
Then

(24) 〈ξ〉 1
2 〈ξ3〉

1
2 �

3∑
k=0

〈σk〉
1
2 ,

and in this subregion we control |m| by the sum of all

mk,1(μ, μ1, μ2) =
1

〈ξ1〉
1
2 〈ξ2〉

1
2

∏3
j=0, j �=k 〈σj〉

1
2

for k = 0, . . . , 3. Second, in the subregion where 〈ξ〉〈ξ3〉 � 〈ξ1〉〈ξ2〉 (note that ξ1 �= ξ,
ξ2 �= ξ within the domain of summation) it holds that

(25) 〈ξ − ξ1〉
1
2 〈ξ − ξ2〉

1
2 �

3∑
k=0

〈σk〉
1
2 ,

and in this subregion we control |m| by the sum of all

mk,2(μ, μ1, μ2) =
1

〈ξ − ξ1〉
1
2 〈ξ − ξ2〉

1
2

∏3
j=0, j �=k 〈σj〉

1
2

for k = 0, . . . , 3. According to these multipliers we subdivide the proof into several
cases summarized in Table 1. For technical reasons, we will prove the slightly stronger
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Table 1

Summary of cases (with a preview of the lower bound on q for each subcase obtained by our
arguments below).

σ0 = max σ1 = max σ2 = max σ3 = max
〈ξ1〉〈ξ2〉 � 〈ξ〉〈ξ3〉 Case 0.1: Case 1.1: Case 2.1: Case 3.1:

q > 1 q > 4/3 q > 4/3 q > 4/3
〈ξ〉〈ξ3〉 � 〈ξ1〉〈ξ2〉 Case 0.2: Case 1.2: Case 2.2: Case 3.2:

q > 1 q > 4/3 q > 4/3 q > 4/3

estimates ∥∥∥∥∥∥∥∥
∑

ξ1,ξ2∈Z

ξ1 �=ξ, ξ2 �=ξ

∫
mk,j,ν(μ, μ1, μ2)f1(μ1)f2(μ2)f3(μ3)dτ1dτ2

∥∥∥∥∥∥∥∥
�r

′
ξ L2

τ

� ‖f1‖�q′ξ L2
τ
‖f2‖�q′ξ L2

τ
‖f3‖�r′ξ L2

τ

(26)

for any 0 ≤ ν < 1
3q′ , k = 0, . . . , 3, and j = 1, 2, where

mk,1,ν(μ, μ1, μ2) =
1

〈ξ1〉
1
2 〈ξ2〉

1
2

∏3
j=0, j �=k 〈σj〉

1
2−ν

,

mk,2,ν(μ, μ1, μ2) =
1

〈ξ − ξ1〉
1
2 〈ξ − ξ2〉

1
2

∏3
j=0, j �=k 〈σj〉

1
2−ν

for k = 0, . . . , 3. Clearly, (26) implies (22) with δ = 3ν because

(27)
∥∥〈σj〉−νfj

∥∥
�p

′
ξ L2

τ
� T ν‖fj‖�p′ξ L2

τ
, 1 ≤ p ≤ ∞.

Case 0.1. We consider the contribution

t0,1 :=

∥∥∥∥∥∥∥∥
∑

ξ1,ξ2∈Z

ξ1,ξ2 �=ξ

∫
f1(μ1)

〈ξ1〉
1
2 〈σ1〉

1
2−ν

f2(μ2)

〈ξ2〉
1
2 〈σ2〉

1
2−ν

f3(μ3)

〈σ3〉
1
2−ν

dτ1dτ2

∥∥∥∥∥∥∥∥
�r

′
ξ L2

τ

�

∥∥∥∥∥∥∥∥
∑

ξ1,ξ2∈Z

ξ1,ξ2 �=ξ

〈ξ1〉−
1
2 〈ξ2〉−

1
2 I(μ, μ1, μ2)

(∫
f2
1 f

2
2 f

2
3 dτ1dτ2

) 1
2

∥∥∥∥∥∥∥∥
�r

′
ξ L2

τ

,

where

I(μ, μ1, μ2) :=

(∫
dτ1dτ2

(〈σ1〉〈σ2〉〈σ3〉)1−2ν

) 1
2

� 〈σ(0)
res〉

1
q′ −

1
2−

with σ
(0)
res = τ + ξ2 − 2(ξ − ξ1)(ξ − ξ2) by two applications of Lemma 4.1. Hölder’s

inequality in ξ1, ξ2 leads to5

t0,1 �

∥∥∥∥∥∥∥Σ0,1(μ)

⎛
⎝ ∑

ξ1,ξ2∈Z

(∫
f2
1 (μ1)

〈ξ1〉1−
f2
2 (μ2)

〈ξ2〉1−
f2
3 (μ3)dτ1dτ2

) �
2

⎞
⎠

1
�

∥∥∥∥∥∥∥
�r

′
ξ L2

τ

,

5Note that here the exponents of 〈ξ1〉 and 〈ξ2〉 may be chosen arbitrarily close to 1, independently
of the implicit constraints on � and �′.
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where

Σ0,1(μ) :=

⎛
⎜⎜⎝ ∑

ξ1,ξ2∈Z

ξ1,ξ2 �=ξ

〈ξ1〉0−〈ξ2〉0−〈σ(0)
res〉−1−

⎞
⎟⎟⎠

1
�′

for � = 2q′

q′+2+ and �′ = 2q′

q′−2−. The sum Σ0,1(μ) is uniformly bounded due to

Corollary 3.2, estimate (20). Hence,

t0,1 �

∥∥∥∥∥∥∥
⎛
⎝ ∑

ξ1,ξ2∈Z

‖f1(·, ξ1)‖�L2

〈ξ1〉
�
2−

‖f2(·, ξ2)‖�L2

〈ξ2〉
�
2−

‖f3(·, ξ3)‖�L2

⎞
⎠

1
�

∥∥∥∥∥∥∥
�r

′
ξ

by Minkowski’s inequality because � ≤ 2. Now, we apply Hölder’s inequality to obtain

(28) t0,1 �

∥∥∥∥∥∥∥
⎛
⎝ ∑

ξ1,ξ2∈Z

‖f1(·, ξ1)‖r
′

L2

〈ξ1〉1−
r′
q′ +

‖f2(·, ξ2)‖r
′

L2

〈ξ2〉1−
r′
q′ +

‖f3(·, ξ3)‖r
′

L2

⎞
⎠

1
r′
∥∥∥∥∥∥∥
�r

′
ξ

.

Hölder’s inequality shows that⎛
⎝∑

ξi∈Z

‖fi(·, ξi)‖r
′

L2〈ξi〉
r′
q′ −1−

⎞
⎠

1
r′

� ‖fi‖�q′ξ L2
τ
, i = 1, 2.

Hence, Fubini’s theorem provides

t0,1 � ‖f1‖�q′ξ L2
τ
‖f2‖�q′ξ L2

τ
‖f3‖�r′ξ L2

τ

for any 1 < q ≤ r ≤ 2, as desired.
Case 0.2. We consider the contribution

t0,2 :=

∥∥∥∥∥∥∥∥
∑

ξ1,ξ2∈Z

ξ1,ξ2 �=ξ

∫
f1(μ1)

〈ξ − ξ1〉
1
2 〈σ1〉

1
2−ν

f2(μ2)

〈ξ − ξ2〉
1
2 〈σ2〉

1
2−ν

f3(μ3)

〈σ3〉
1
2−ν

dτ1dτ2

∥∥∥∥∥∥∥∥
�r

′
ξ L2

τ

.

By replacing the weight 〈ξ1〉−
1
2 〈ξ2〉−

1
2 by 〈ξ − ξ1〉−

1
2 〈ξ − ξ2〉−

1
2 in the expression t0,1,

the same arguments as in the previous case lead to

t0,2 �

∥∥∥∥∥∥∥
⎛
⎝ ∑

ξ1,ξ2∈Z

‖f1(·, ξ1)‖r
′

L2

〈ξ − ξ1〉1−
r′
q′ +

‖f2(·, ξ2)‖r
′

L2

〈ξ − ξ2〉1−
r′
q′ +

‖f3(·, ξ3)‖r
′

L2

⎞
⎠

1
r′
∥∥∥∥∥∥∥
�r

′
ξ

instead of (28), where we used Corollary 3.2, estimate (18) to bound the sum

Σ0,2(μ) :=

⎛
⎜⎜⎝ ∑

ξ1,ξ2∈Z

ξ1,ξ2 �=ξ

〈ξ − ξ1〉0−〈ξ − ξ2〉0−〈σ(0)
res〉−1−

⎞
⎟⎟⎠

1
�′

.
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By the change of variables ξ �→ ξ − ξ1 − ξ2 we obtain

t0,2 �

⎛
⎝ ∑

ξ,ξ1,ξ2∈Z

‖f1(·, ξ1)‖r
′

L2

〈ξ + ξ1〉1−
r′
q′ +

‖f2(·, ξ2)‖r
′

L2

〈ξ + ξ2〉1−
r′
q′ +

‖f3(·, ξ)‖r
′

L2

⎞
⎠

1
r′

.

Now, we sum first in ξ1, ξ2 and use

(29) sup
ξ∈Z

⎛
⎝∑

ξi∈Z

‖fi(·, ξi)‖r
′

L2〈ξ + ξi〉
r′
q′ −1−

⎞
⎠

1
r′

� ‖fi‖�q′ξ L2
τ
, i = 1, 2,

to obtain

t0,2 � ‖f1‖�q′ξ L2
τ
‖f2‖�q′ξ L2

τ
‖f3‖�r′ξ L2

τ

similarly as above.
Case 1.1. From now on we have to restrict ourselves to 2 ≤ q′ < 4, which is

mainly due to various applications of Young’s inequality. We use duality and consider
for ϕ ∈ �rξL

2
τ the quantity t1,1 defined by

∑
ξ∈Z

∫
ϕ(μ)

〈σ0〉
1
2−ν

∑
ξ1,ξ2∈Z

ξ1,ξ2 �=ξ

∫
f1(μ1)

〈ξ1〉
1
2

f2(μ2)

〈ξ2〉
1
2 〈σ2〉

1
2−ν

f3(μ3)

〈σ3〉
1
2−ν

dτ1dτ2dτ

=
∑
ξ1∈Z

∫
f1(μ1)

∑
ξ,ξ2∈Z

ξ1,ξ2 �=ξ

∫
ϕ(μ)

〈σ0〉
1
2−ν

f2(μ2)

〈ξ2〉
1
2 〈σ2〉

1
2−ν

f3(μ3)

〈ξ1〉
1
2 〈σ3〉

1
2−ν

dτdτ2dτ1.

The Cauchy–Schwarz inequality in τ, τ2 and two applications of Lemma 4.1 show that

t1,1 �
∑
ξ1∈Z

∫
f1(μ1)

∑
ξ,ξ2∈Z

ξ1,ξ2 �=ξ

〈σ(1)
res〉

1
q′ −

1
2−
(∫

ϕ2(μ)f2
2 (μ2)f

2
3 (μ3)

〈ξ1〉〈ξ2〉
dτdτ2

) 1
2

dτ1,

where with σ
(1)
res = τ1 + ξ2

1 + 2(ξ − ξ1)(ξ − ξ2) Hölder’s inequality in ξ, ξ2 leads to

t1,1 �
∑
ξ1∈Z

∫
f1(μ1)Σ1,1(μ1)

⎛
⎝ ∑

ξ,ξ2∈Z

(∫
ϕ2(μ)f2

2 (μ2)f
2
3 (μ3)

〈ξ1〉1−〈ξ2〉1−
dτdτ2

) �
2

⎞
⎠

1
�

dτ1

for � = 2q′

q′+2+ and �′ = 2q′

q′−2−, where

Σ1,1(μ1) :=

⎛
⎜⎜⎝〈ξ1〉0− ∑

ξ,ξ2∈Z

ξ1,ξ2 �=ξ

〈ξ2〉0−〈σ(1)
res〉−1−

⎞
⎟⎟⎠

1
�′

.

This is bounded by Corollary 3.2, estimate (21). The Cauchy–Schwarz inequality in
τ1 and Minkowski’s inequality provide

(30) t1,1 �
∑
ξ1∈Z

‖f1(·, ξ1)‖L2
τ

⎛
⎝∑

ξ,ξ2

‖ϕ(·, ξ)‖�L2
τ
‖f2(·, ξ2)‖�L2

τ
‖f3(·, ξ3)‖�L2

τ

〈ξ1〉
�
2−〈ξ2〉

�
2−

⎞
⎠

1
�

.
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Now, we use Hölder’s inequality in ξ1 to obtain

(31) t1,1 � ‖f1‖�q′ξ L2
τ

∥∥∥∥∥∥∥
⎛
⎝∑

ξ,ξ2

‖f2(·, ξ2)‖�L2
τ
‖f3(·, ξ3)‖�L2

τ
‖ϕ(·, ξ)‖�L2

τ

〈ξ2〉
�
2−

⎞
⎠

1
�

∥∥∥∥∥∥∥
��

′
ξ1

.

By the change of variables ξ2 �→ −ξ2, ξ �→ ξ the second factor equals

∥∥∥∥∥∥
∑
ξ,ξ2

‖f̃2(·, ξ2)‖�L2
τ

〈ξ2〉
�
2−

‖ϕ(·, ξ)‖�L2
τ
‖f̃3(·, ξ1 − ξ2 − ξ)‖�L2

τ

∥∥∥∥∥∥
1
�

�
�′
�

ξ1

,

where f̃j = fj(−·,−·), j = 2, 3. This convolution is bounded by∥∥∥∥∥ f̃2

〈ξ2〉
1
2−

∥∥∥∥∥
��ξ2

L2
τ

‖ϕ‖�rξL2
τ
‖f̃3‖�r′ξ L2

τ

due to Young’s inequality, because

2 +
�

�′
= 1 +

�

r
+

�

r′
.

Another application of Hölder’s inequality with respect to f2 yields

t1,1 � ‖ϕ‖�rξL2
τ
‖f1‖�q′ξ L2

τ
‖f2‖�q′ξ L2

τ
‖f3‖�r′ξ L2

τ

for 4/3 < q ≤ r ≤ 2.
Case 1.2. For the contribution t1,2 the same approach as above leads to

t1,2 �
∑
ξ1∈Z

‖f1(·, ξ1)‖L2
τ

⎛
⎝∑

ξ,ξ2

‖ϕ(·, ξ)‖�L2
τ
‖f2(·, ξ2)‖�L2

τ
‖f3(·, ξ3)‖�L2

τ

〈ξ − ξ1〉
�
2−〈ξ − ξ2〉

�
2−

⎞
⎠

1
�

instead of (30) by replacing 〈ξ1〉, 〈ξ2〉 in t1,1 by 〈ξ − ξ1〉, 〈ξ − ξ2〉, respectively. The
only difference is the use of Corollary 3.2, estimate (19) to bound the sum

Σ1,2(μ1) :=

⎛
⎜⎜⎝ ∑

ξ,ξ2∈Z

ξ1,ξ2 �=ξ

〈ξ − ξ1〉0−〈ξ − ξ2〉0−〈σ(1)
res〉−1−

⎞
⎟⎟⎠

1
�′

.

Hölder’s inequality in ξ1 and then in ξ, ξ2 provides

t1,2 � ‖f1‖�q′ξ L2
τ

∥∥∥∥∥∥∥
⎛
⎝∑

ξ,ξ2

‖f2(·, ξ2)‖�L2
τ
‖f3(·, ξ3)‖�L2

τ
‖ϕ(·, ξ)‖�L2

τ

〈ξ − ξ1〉
�
2−〈ξ − ξ2〉

�
2−

⎞
⎠

1
�

∥∥∥∥∥∥∥
�qξ1

� ‖f1‖�q′ξ L2
τ

⎛
⎝ ∑

ξ,ξ1,ξ2∈Z

‖ϕ(·, ξ)‖qL2

〈ξ − ξ1〉1−
q
q′ +

‖f2(·, ξ2)‖qL2

〈ξ − ξ2〉1−
q
q′ +

‖f3(·, ξ3)‖qL2

⎞
⎠

1
q

.
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Now, Hölder’s inequality in ξ and the change of variables ξ1 �→ ξ − ξ1 give

⎛
⎝ ∑

ξ,ξ1,ξ2∈Z

‖ϕ(·, ξ)‖qL2

〈ξ − ξ1〉1−
q
q′ +

‖f2(·, ξ2)‖qL2

〈ξ − ξ2〉1−
q
q′ +

‖f3(·, ξ3)‖qL2

⎞
⎠

1
q

� ‖ϕ‖�rξL2
τ

∥∥∥∥∥∥
∑
ξ2∈Z

‖f2(·, ξ2)‖qL2

〈ξ − ξ2〉1−
q
q′ +

∑
ξ1∈Z

‖f3(·, ξ1 − ξ2)‖qL2

〈ξ1〉1−
q
q′ +

∥∥∥∥∥∥
1
q

�
r

r−q
ξ

.

Let us define

ψ(ξ2) =
∑
ξ1∈Z

‖f3(·, ξ1 − ξ2)‖qL2

〈ξ1〉1−
q
q′ +

.

Young’s inequality shows that

‖ψ‖
�

r
r−q

� ‖f3‖q�r′ξ L2
τ

and therefore∥∥∥∥∥∥
∑
ξ2∈Z

‖f2(·, ξ2)‖qL2

〈ξ − ξ2〉1−
q
q′ +

ψ(ξ2)

∥∥∥∥∥∥
1
q

�
r

r−q
ξ

� ‖f3‖�r′ξ L2
τ

∥∥∥∥∥∥
∑
ξ2∈Z

‖f2(·, ξ2)‖rL2

〈ξ − ξ2〉
r
q−

r
q′ +

∥∥∥∥∥∥
1
r

�
q

r−q
ξ

by Hölder’s inequality in ξ2. Due to the fact that

1 +
r − q

q
=

r

q′
+

r

q
− r

q′
,

Young’s inequality shows that

t1,2 � ‖ϕ‖�rξL2
τ
‖f1‖�q′ξ L2

τ
‖f2‖�q′ξ L2

τ
‖f3‖�r′ξ L2

τ

for all 4/3 < q ≤ r ≤ 2.
Case 2.1. To control the contribution from m2,1,ν we exchange the roles of f1

and f2, and the arguments from Case 1.1 apply.
Case 2.2. To control the contribution from m2,2,ν we exchange the roles of f1

and f2, and the arguments from Case 1.2 apply.
Case 3.1. Fix 2 ≤ q′ < 4 and 0 ≤ ν < 1

3q′ . By the change of variables

(32) μ1 �→ −μ1, μ2 �→ −μ2, μ �→ μ− μ1 − μ2

we obtain for the contribution t3,1 the identity

∑
ξ∈Z

∫
ϕ(μ)

〈σ0〉
1
2−ν

∑
ξ1,ξ2∈Z

ξ1,ξ2 �=ξ

∫∫
f1(μ1)

〈ξ1〉
1
2 〈σ1〉

1
2−ν

f2(μ2)

〈ξ2〉
1
2 〈σ2〉

1
2−ν

f3(μ3)dτ1dτ2dτ

=
∑
ξ∈Z

∫
f3(μ)

∑
ξ1,ξ2∈Z

ξ1,ξ2 �=ξ

∫∫
f̃1(μ1)

〈ξ1〉
1
2 〈σ̃1〉

1
2−ν

f̃2(μ2)

〈ξ2〉
1
2 〈σ̃2〉

1
2−ν

ϕ(μ3)

〈σ̃3〉
1
2−ν

dτ1dτ2dτ,
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where σ̃1 = τ1− ξ2
1 , σ̃2 = τ2− ξ2

2 , σ̃3 = τ − τ1− τ2 +(ξ− ξ1− ξ2)
2, and f̃j = fj(−·,−·),

j = 1, 2. Using the Cauchy–Schwarz inequality in τ1, τ2 and Lemma 4.1, the quantity
t3,1 is bounded by

∑
ξ∈Z

∫
f3(μ)

∑
ξ1,ξ2∈Z

ξ1,ξ2 �=ξ

〈σ(3)
res〉

1
q′ −

1
2−
(∫∫

f̃2
1 (μ1)f̃

2
2 (μ2)ϕ

2(μ3)

〈ξ1〉〈ξ2〉
dτ1dτ2

) 1
2

dτ,

where σ
(3)
res = τ − ξ2 + 2(ξ − ξ1)(ξ − ξ2). Hölder’s inequality leads to

∑
ξ∈Z

∫
f3(μ)Σ3,1(μ)

⎛
⎜⎜⎝ ∑

ξ1,ξ2∈Z

ξ1,ξ2 �=ξ

(∫∫
f̃2
1 (μ1)f̃

2
2 (μ2)ϕ

2(μ3)

〈ξ1〉1−〈ξ2〉1−
dτ1dτ2

) �
2

⎞
⎟⎟⎠

1
�

dτ

as an upper bound for t3,1 with

Σ3,1(μ) =

⎛
⎜⎜⎝ ∑

ξ1,ξ2∈Z

ξ1,ξ2 �=ξ

〈ξ1〉0−〈ξ2〉0−〈σ(3)
res〉−1−

⎞
⎟⎟⎠

1
�′

which is uniformly bounded by Corollary 3.2, estimate (20). By the Cauchy–Schwarz
inequality in τ and Minkowski’s inequality t3,1 is dominated by

∑
ξ∈Z

‖f3(·, ξ)‖L2
τ

⎛
⎜⎜⎝ ∑

ξ1,ξ2∈Z

ξ1,ξ2 �=ξ

‖f̃1(·, ξ1)‖�L2
τ
‖f̃2(·, ξ2)‖�L2

τ
‖ϕ(·, ξ3)‖�L2

τ

〈ξ1〉
�
2−〈ξ2〉

�
2−

⎞
⎟⎟⎠

1
�

.

Now, we recall that r ≥ � for all 4/3 < q ≤ r ≤ 2 and apply Hölder’s inequality and
Fubini’s theorem to obtain

t3,1 � ‖f3‖�r′ξ L2
τ

∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎝ ∑

ξ1,ξ2∈Z

ξ1,ξ2 �=ξ

‖f̃1(·, ξ1)‖�L2
τ
‖f̃2(·, ξ2)‖�L2

τ
‖ϕ(·, ξ3)‖�L2

τ

〈ξ1〉
�
2−〈ξ2〉

�
2−

⎞
⎟⎟⎠

1
�

∥∥∥∥∥∥∥∥∥
�rξ

� ‖f3‖�r′ξ L2
τ

⎛
⎜⎜⎝ ∑

ξ,ξ1,ξ2∈Z

ξ1,ξ2 �=ξ

‖f̃1(·, ξ1)‖rL2
τ
‖f̃2(·, ξ2)‖rL2

τ
‖ϕ(·, ξ3)‖rL2

τ

〈ξ1〉1−
r
q′ +〈ξ2〉1−

r
q′ +

⎞
⎟⎟⎠

1
r

.(33)

Again, Hölder’s inequality shows that⎛
⎝∑

ξi∈Z

‖f̃i(·, ξi)‖rL2〈ξi〉
r
q′ −1−

⎞
⎠

1
r

� ‖fi‖�q′ξ L2
τ
, i = 1, 2.

Hence,

t3,1 � ‖f1‖�q′ξ L2
τ
‖f2‖�q′ξ L2

τ
‖f3‖�r′ξ L2

τ
‖ϕ‖�rξL2

τ
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for 4/3 < q ≤ r ≤ 2, as desired.
Case 3.2. To obtain the contribution t3,2 we replace 〈ξ1〉 and 〈ξ2〉 in t3,1 by

〈ξ − ξ1〉 and 〈ξ − ξ2〉, respectively. The change of variables (32) transforms 〈ξ − ξ1〉
into 〈ξ − ξ2〉 and vice versa, and we follow the arguments above to obtain

t3,2 � ‖f3‖�r′ξ L2
τ

⎛
⎜⎜⎝ ∑

ξ,ξ1,ξ2∈Z

ξ1,ξ2 �=ξ

‖f̃1(·, ξ1)‖rL2
τ
‖f̃2(·, ξ2)‖rL2

τ
‖ϕ(·, ξ3)‖rL2

τ

〈ξ − ξ1〉1−
r
q′ +〈ξ − ξ2〉1−

r
q′ +

⎞
⎟⎟⎠

1
r

instead of (33), with the only exception that

Σ3,2(μ) :=

⎛
⎜⎜⎝ ∑

ξ1,ξ2∈Z

ξ1,ξ2 �=ξ

〈ξ − ξ1〉0−〈ξ − ξ2〉0−〈σ(3)
res〉−1−

⎞
⎟⎟⎠

1
�′

is controlled by Corollary 3.2, estimate (18). Similar to Case 0.2, the change of
variables ξ �→ ξ − ξ1 − ξ2 and Hölder’s inequality

sup
ξ∈Z

⎛
⎝∑

ξi∈Z

‖fi(·, ξi)‖rL2〈ξ + ξi〉
r
q′ −1−

⎞
⎠

1
r

� ‖fi‖�q′ξ L2
τ
, i = 1, 2,

yield

t3,2 � ‖f1‖�q′ξ L2
τ
‖f2‖�q′ξ L2

τ
‖f3‖�r′ξ L2

τ
‖ϕ‖�rξL2

τ
,

and the estimate for T ∗ is done. Finally, we consider the harmless contribution from
T ∗∗ and show the much stronger estimate

(34) ‖T ∗∗(u1, u2, u3)‖
X

1
2
,0

r,2

� ‖u1‖
X

1
2
, 1
3
+

1,2

‖u2‖
X

1
2
, 1
3
+

1,2

‖u3‖
X

1
2
, 1
3
+

r,2

,

which immediately yields the desired estimate by trivial embeddings and (27). Indeed,
Young’s and Hölder’s inequalities provide∥∥∥∥〈ξ〉 1

2 ξ

∫
f1(τ1, ξ)

〈ξ〉 1
2 〈τ1 + ξ2〉 1

3+

f2(τ2, ξ)

〈ξ〉 1
2 〈τ2 + ξ2〉 1

3+

f3(τ3,−ξ)

〈ξ〉 1
2 〈τ3 − ξ2〉 1

3+
dτ1dτ2

∥∥∥∥
�r

′
ξ L2

τ

�
∥∥∥∥∥
∥∥∥∥ f1(τ1, ξ)

〈τ1 + ξ2〉 1
3+

∥∥∥∥
L

6
5
τ1

∥∥∥∥ f2(τ2, ξ)

〈τ2 + ξ2〉 1
3+

∥∥∥∥
L

6
5
τ2

∥∥∥∥ f3(τ3,−ξ)

〈τ3 − ξ2〉 1
3+

∥∥∥∥
L

6
5
τ3

∥∥∥∥∥
�r

′
ξ

� ‖f1‖�∞ξ L2
τ
‖f2‖�∞ξ L2

τ
‖f3‖�r′ξ L2

τ
.

This concludes the proof of Theorem 2.4.
Proof of Theorem 2.5. Due to the emdedding (6) the estimate for T ∗∗ is al-

ready covered by (34). With the same notation as above, the estimate (10) for the
contribution T ∗ is equivalent to∥∥∥∥∥∥∥∥

∑
ξ1,ξ2∈Z

ξ1 �=ξ, ξ2 �=ξ

∫
n(μ, μ1, μ2)f1(μ1)f2(μ2)f3(μ3)dτ1dτ2

∥∥∥∥∥∥∥∥
�r

′
ξ L1

τ

� T δ‖f1‖�q′ξ L2
τ
‖f2‖�q′ξ L2

τ
‖f3‖�r′ξ L2

τ
,

(35)
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where n = 〈σ0〉−
1
2m. We decompose nk,j = 〈σ0〉−

1
2mk,j as above. Again, due to the

embedding (6) the stronger estimate (26) already proves estimate (35) for n replaced
by nk,j,ν with k = 1, 2, 3, j = 1, 2, corresponding to Cases 1–3 above. Hence, it is
enough to consider the case k = 0, where 〈σ0〉 is the maximal modulation.

Case 0.1. Let us fix 1 < q ≤ r ≤ 2 and 0 ≤ δ < 1
q′ . We proceed similarly to the

Case 0.1 in the proof of Theorem 2.4:

t̃0,1 :=

∥∥∥∥∥∥∥∥
〈σ0〉−

1
2

∑
ξ1,ξ2∈Z

ξ1,ξ2 �=ξ

∫
f1(μ1)

〈ξ1〉
1
2 〈σ1〉

1
2−ν

f2(μ2)

〈ξ2〉
1
2 〈σ2〉

1
2−ν

f3(μ3)

〈σ3〉
1
2−ν

dτ1dτ2

∥∥∥∥∥∥∥∥
�r

′
ξ L1

τ

�

∥∥∥∥∥∥∥∥
∑

ξ1,ξ2∈Z

ξ1,ξ2 �=ξ

∫
g1(μ1)

〈ξ1〉
1
2 〈σ1〉

1
2−ν−

g2(μ2)

〈ξ2〉
1
2 〈σ2〉

1
2−ν−

g3(μ3)

〈σ3〉
1
2−ν− dτ1dτ2

∥∥∥∥∥∥∥∥
�r

′
ξ Lp

τ

for any p = 2−, where we define gj = 〈σj〉0−fj such that

(36) ‖gj‖�q′ξ Lp
τ

� ‖fj‖�q′ξ L2
τ
.

Now, by Hölder’s inequality and two applications of Lemma 4.1 we get

t̃0,1 �

∥∥∥∥∥∥∥∥
∑

ξ1,ξ2∈Z

ξ1,ξ2 �=ξ

〈ξ1〉−
1
2 〈ξ2〉−

1
2 〈σ(0)

res〉
1
q′ −

1
2−
(∫

gp1g
p
2g

p
3dτ1dτ2

) 1
p

∥∥∥∥∥∥∥∥
�r

′
ξ Lp

τ

with σ
(0)
res = τ + ξ2 − 2(ξ − ξ1)(ξ − ξ2). Hölder’s inequality in ξ1, ξ2 leads to

t̃0,1 �

∥∥∥∥∥∥∥Σ̃0,1(μ)

⎛
⎝ ∑

ξ1,ξ2∈Z

(∫
gp1(μ1)

〈ξ1〉1−
gp2(μ2)

〈ξ2〉1−
gp3(μ3)dτ1dτ2

) �
p

⎞
⎠

1
�

∥∥∥∥∥∥∥
�r

′
ξ Lp

τ

,

where

Σ̃0,1(μ) :=

⎛
⎜⎜⎝ ∑

ξ1,ξ2∈Z

ξ1,ξ2 �=ξ

〈ξ1〉0−〈ξ2〉0−〈σ(0)
res〉−1−

⎞
⎟⎟⎠

1
�′

for � = 2q′

q′+2+ and �′ = 2q′

q′−2−. The sum Σ̃0,1(μ) is uniformly bounded due to

Corollary 3.2, estimate (20). Hence,

t̃0,1 �

∥∥∥∥∥∥∥
⎛
⎝ ∑

ξ1,ξ2∈Z

‖g1(·, ξ1)‖�Lp

〈ξ1〉
�
2−

‖g2(·, ξ2)‖�Lp

〈ξ2〉
�
2−

‖g3(·, ξ3)‖�Lp

⎞
⎠

1
�

∥∥∥∥∥∥∥
�r

′
ξ

by Minkowski’s inequality because � ≤ p. Now, we apply Hölder’s inequality and
Fubini’s theorem as in Case 0.1 of the proof of Theorem 2.4 and obtain

t̃0,1 � ‖g1‖�q′ξ Lp
τ
‖g2‖�q′ξ Lp

τ
‖g3‖�r′ξ Lp

τ
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for any 1 < q ≤ r ≤ 2. Finally, (36) proves the desired estimate.
Case 0.2. We consider t̃0,2 defined as∥∥∥∥∥∥∥∥
〈σ0〉−

1
2

∑
ξ1,ξ2∈Z

ξ1,ξ2 �=ξ

∫
f1(μ1)

〈ξ − ξ1〉
1
2 〈σ1〉

1
2−ν

f2(μ2)

〈ξ − ξ2〉
1
2 〈σ2〉

1
2−ν

f3(μ3)

〈σ3〉
1
2−ν

dτ1dτ2

∥∥∥∥∥∥∥∥
�r

′
ξ L1

τ

.

The same arguments as in the previous case lead to

t̃0,2 �

∥∥∥∥∥∥∥
⎛
⎝ ∑

ξ1,ξ2∈Z

‖g1(·, ξ1)‖�Lp

〈ξ − ξ1〉
�
2−

‖g2(·, ξ2)‖�Lp

〈ξ − ξ2〉
�
2−

‖g3(·, ξ3)‖�Lp

⎞
⎠

1
�

∥∥∥∥∥∥∥
�r

′
ξ

,

where we used Corollary 3.2, estimate (18) to bound the sum

Σ̃0,2(μ) :=

⎛
⎜⎜⎝ ∑

ξ1,ξ2∈Z

ξ1,ξ2 �=ξ

〈ξ − ξ1〉0−〈ξ − ξ2〉0−〈σ(0)
res〉−1−

⎞
⎟⎟⎠

1
�′

.

By the change of variables ξ �→ ξ − ξ1 − ξ2 we obtain

t̃0,2 �

⎛
⎝ ∑

ξ,ξ1,ξ2∈Z

‖g1(·, ξ1)‖r
′

Lp

〈ξ + ξ1〉1−
r′
q′ +

‖g2(·, ξ2)‖r
′

Lp

〈ξ + ξ2〉1−
r′
q′ +

‖g3(·, ξ)‖r
′

Lp

⎞
⎠

1
r′

.

Now, we sum first in ξ1, ξ2 and use the analogue of (29) for ‖gi‖Lp
τ

(i = 1, 2) to obtain

t̃0,2 � ‖g1‖�q′ξ Lp
τ
‖g2‖�q′ξ Lp

τ
‖g3‖�r′ξ Lp

τ

and recall the property (36) of gj .
Proof of Remark 3. Assume that the estimate (11) is valid for some b ≤ 0,

1 ≤ r ≤ 4
3 , and 1 ≤ p, q ≤ ∞. Then for all fi ∈ �r

′

ξ Lq′

τ (1 ≤ i ≤ 3) and f0 ∈ �rξL
p
τ we

have

(37)
∑

ξ,ξ1,ξ2∈Z

ξ1 �=ξ, ξ2 �=ξ

∫ 〈ξ〉 1
2 f0(μ)f1(μ1)f2(μ2)|ξ3|f3(μ3)

〈σ0〉−b〈ξ1〉
1
2 〈σ1〉

1
2 〈ξ2〉

1
2 〈σ2〉

1
2 〈ξ3〉

1
2 〈σ3〉

1
2

dτdτ1dτ2 < ∞.

We choose

f0(0, τ) = χ(τ) and f0(ξ, τ) = 0 for ξ �= 0,

f2(1, τ2) = χ(τ2) and f2(ξ2, τ2) = 0 for ξ2 �= 1,

f1(0, τ1) = 0 and f1(ξ1, τ1) =
χ(τ1 + (ξ1 + 1)2)

〈ξ1〉
1
4 ln

1
3 (〈ξ1〉)

for ξ1 �= 0,

f3(0, τ3) = 0 and f3(ξ3, τ3) =
χ(τ3 − ξ2

3)

〈ξ3〉
1
4 ln

1
3 (〈ξ3〉)

for ξ3 �= 0,
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where χ denotes the characteristic function of [−1, 1]. Then f0 ∈ �rξL
p
τ and f2 ∈ �r

′

ξ Lq′

τ

for all 1 ≤ r, p, q ≤ ∞ and f1, f3 ∈ �r
′

ξ Lq′

τ for all r′ ≥ 4 and 1 ≤ q ≤ ∞. Let I(ξ1) be
defined as ∫

χ(τ)χ(τ1 + (ξ1 + 1)2)χ(τ2)χ(τ − τ1 − τ2 − (ξ1 + 1)2)dτdτ1dτ2

�
∫

χ(τ)χ(τ1 + (ξ1 + 1)2)χ(τ − τ1 − (ξ1 + 1)2)dτ1dτ

�
∫

χ(τ1 + (ξ1 + 1)2)dτ1 � 1.

Due to 〈σ1〉
1
2 � 〈ξ1〉

1
2 , the left-hand side of (37) becomes

∑
|ξ1|≥1

I(ξ1)

〈ξ1〉 ln
2
3 (〈ξ1〉)

�
∑

|ξ1|≥1

1

〈ξ1〉 ln
2
3 (〈ξ1〉)

= ∞,

which contradicts (37).

5. The proof of the quintilinear estimate. Before we start with the proof
of Theorem 2.6 we show the following trilinear refinement of the L6 Strichartz-type
estimate; see [3, Proposition 2.36]. The major point is that for one of the factors the
loss of ε derivatives can be avoided. In fact, this refinement also follows by carefully
using the decomposition arguments and the Galilean transformation in [3, section 5].
However, we decided to present a proof based on the representation ‖u‖3

L6
xt

= ‖u2u‖L2
xt

which we learned from [23], in combination with the estimates from section 3. Similar
arguments were already used in [10, Proposition 4.6 and its proof].

Lemma 5.1. For 1
3 < b < 1

2 and s > 3( 1
2 − b) the estimate

(38) ‖u1u2u3‖L2
xt

� ‖u1‖Xs,b‖u2‖Xs,b‖u3‖X0,b

holds true.
Proof. We rewrite u1u2u3 = C1(u1, u2, u3) + C2(u1, u2, u3) for

̂C1(u1, u2, u3)(ξ) = (2π)−1
∑

ξ=ξ1+ξ2+ξ3
ξ1 �=ξ, ξ2 �=ξ

û1(ξ1)û2(ξ2)û3(ξ3),

̂C2(u1, u2, u3)(ξ) = (2π)−1
∑

ξ=ξ1+ξ2+ξ3
ξ1=ξ or ξ2=ξ

û1(ξ1)û2(ξ2)û3(ξ3),

where we suppressed the t dependence. By Plancherel’s identity we observe that

C2(u1, u2, u3) = u1 −
∫ 2π

0

u2u3dy + u2 −
∫ 2π

0

u1u3dy − u1 ∗ u2 ∗ u3,

where ∗ denotes convolution with respect to normalized Lebesgue measure on [0, 2π].
Clearly,

‖C2(u1, u2, u3)‖L2
tL

2
x

�
∏

1≤k≤3

‖uk‖L6
tL

2
x

�
∏

1≤k≤3

‖uk‖
X0, 1

3

by Sobolev estimates in the time variable. For the convolution term we also used
Young’s inequality. So it remains to prove (38) with ‖u1u2u3‖L2

xt
on the left-hand
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side replaced by ‖C1(u1, u2, u3)‖L2
xt

. Now by the Cauchy–Schwarz inequality and
Fubini’s theorem (cf. the arguments in the previous section), matters reduce to show
that

sup
ξ,τ

Σ(ξ, τ) < ∞,

where Σ(ξ, τ) is defined as

∑
ξ=ξ1+ξ2+ξ3
ξ1 �=ξ, ξ2 �=ξ

〈ξ1〉−2s〈ξ2〉−2s

∫
〈τ1 + ξ2

1〉−2b〈τ2 + ξ2
2〉−2b〈τ3 − ξ2

3〉−2bdτ1dτ2.

Using Lemma 4.1 twice, we see that

Σ(ξ, τ) �
∑

ξ=ξ1+ξ2+ξ3
ξ1 �=ξ, ξ2 �=ξ

〈ξ1〉−2s〈ξ2〉−2s〈τ + ξ2 − 2(ξ − ξ1)(ξ − ξ2)〉2−6b

�

⎛
⎜⎜⎝ ∑

ξ=ξ1+ξ2+ξ3
ξ1 �=ξ, ξ2 �=ξ

〈ξ1〉0−〈ξ2〉0−〈τ + ξ2 − 2(ξ − ξ1)(ξ − ξ2)〉
2−6b
1−2s−

⎞
⎟⎟⎠

(1−2s)+

by Hölder’s inequality. Since by assumption 2−6b
1−2s < −1, a final application of Corol-

lary 3.2, part 3, completes the proof.
In the L2

xt-norm on the left-hand side of (38) we may, of course, replace any single
factor by its complex conjugate. Especially we have

(39) ‖u1u2u3‖L2
xt

� ‖u1‖X0,b‖u2‖Xs,b‖u3‖Xs,b .

Fixing u2 and u3 and considering the linear operator

X0,b → L2
xt : u1 �→ u1u2u3

we obtain by duality the estimate

(40) ‖vu2u3‖X0,−b � ‖v‖L2
xt
‖u2‖Xs,b‖u3‖Xs,b .

Choosing v = u1u4u5 and applying (39) (and (38), respectively) again, we have shown
the following quintilinear estimate.

Corollary 5.2. Set i = 1 or i = 4. For 1
3 < b0 < 1

2 and s0 > 3( 1
2 − b0) the

estimate

(41) ‖u1u2u3u4u5‖X0,−b0 � ‖ui‖X0,b0

5∏
k=1
k �=i

‖uk‖Xs0,b0

is valid.
In order to prove Theorem 2.6 we shall rely on the interpolation properties of our

scale of spaces obtained by the complex method.
Lemma 5.3. Let si, bi ∈ R, 1 < ri, pi < ∞ for i = 1, 2. Then

(Xs0,b0
r0,p0

, Xs1,b1
r1,p1

)[θ] = Xs,b
r,p (0 < θ < 1),
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where

s = (1 − θ)s0 + θs1, b = (1 − θ)b0 + θb1,

1

r
=

1 − θ

r0
+

θ

r1
,

1

p
=

1 − θ

p0
+

θ

p1
.

Proof. The map

F ◦ e−it∂2
x : Xs,b

r,p → �r
′

ξ (〈ξ〉s;Lp′

τ (〈τ〉b))

is an isometric isomorphism. Here, the image space is the space of sequences in �r
′

ξ

with weight 〈ξ〉s, taking values in Lp′

τ with weight 〈τ〉b (with the natural norm). Now,
arguing as in [1, Theorem 5.6.3] (replacing 2k by k) and using [1, Theorem 5.5.3] the
claim follows.

Proof of Theorem 2.6. By Sobolev-type embeddings and Young’s inequality, we
see that for r1, q1 > 1, s1 > 1

q1
, b1 > 1

3 , and an auxiliary exponent p with b1 + 1
2 >

1
p > 5( 1

2 − b1)

‖u1u2u3u4u5‖X0,−b1
r1,2

� ‖u1u2u3u4u5‖X0,0
r1,p

≤ ‖u1‖X0,0
r1,5p

5∏
i=2

‖ui‖X0,0
∞,5p

(42)

� ‖u1‖X0,b1
r1,2

5∏
i=2

‖ui‖Xs1,b1
q1,2

.

Now fix 4
3 < q ≤ r ≤ 2 and b > 1

6 + 1
3q . We will use complex multilinear6 interpolation

[1, Theorem 4.4.1] between (41) and (42) with interpolation parameter θ = 1
2 . To do

so, we choose

s0 =
3

2
− 2

q
− ε, b0 =

2

3q
+ ε

in the endpoint (41) and

1

r1
=

2

r
− 1

2
,

1

q1
=

2

q
− 1

2
, s1 =

2

q
− 1

2
+ ε, b1 =

1

3
+ ε

in the endpoint (42), where ε := b− 1
6 − 1

3q > 0, and we use Lemma 5.3. As a result,

‖u1u2u3u4u5‖X0,−b
r,2

� ‖u1‖X0,b
r,2

5∏
i=2

‖ui‖
X

1
2
,b

q,2

,

where in the last line of (42) as well as in the last expression we may exchange u1

and u4. Now our first claim (13) follows from 〈ξ〉 ≤
∑

1≤i≤5 〈ξi〉. We use (6) of

Lemma 2.2, that is, X
1
2 ,−

1
2+

r,2 ⊂ X
1
2 ,−1
r,∞ , and apply (27) with ν = 1

3q′− to all six norms

appearing, which gives a factor T
2
q′ −. Finally, (15) follows from (14), and the proof

of Theorem 2.6 is complete.

6Due to the fact that ‖〈ξ〉s〈τ + ξ2〉bû‖�rξLp
τ

= ‖〈ξ〉s〈τ − ξ2〉bû‖�rξLp
τ

it is equivalent to remove

the complex conjugate on the second and fourth functions at the expense of changing signs in the
weight of the respective norm. Of course, the analogue of Lemma 5.3 for the corresponding spaces
is valid. With this modification the estimate becomes complex linear in each factor.
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6. The gauge transform. In this subsection we study a nonlinear transforma-
tion which turned out to be a key ingredient to the well-posedness theory of (DNLS).
This type of transformation for (DNLS) was already used by Hayashi and Ozawa
[16, 17] and Hayashi [15], and later by Takaoka [25], in the nonperiodic case and then
adapted to the periodic setting by the second author in [18, 19]. Let us define for
u ∈ C([−T, T ], L2(T))

(43) G0u := exp (−iIu)u,

where

(44) Iu(t, x) := −
∫ 2π

0

∫ x

θ

(
|u(t, y)|2 −−

∫ 2π

0

|u(t, z)|2dz
)
dydθ

is the unique primitive of

x �→ |u(t, x)|2 −−
∫ 2π

0

|u(t, z)|2dz

with vanishing mean value.
Before we study the mapping properties of this transformation let us recall the

Sobolev multiplication law in our setting.
Lemma 6.1. Let 1 < r < ∞, 0 ≤ s ≤ s1, and s1 > 1

r . Then

(45) ‖u1u2‖Ĥs
r

� ‖u1‖Ĥs1
r
‖u2‖Ĥs

r
.

In particular, for 1 < r < ∞, s > 1
r we have

(46) ‖u1u2‖Ĥs
r

� ‖u1‖Ĥs
r
‖u2‖Ĥs

r
.

Proof. We have 〈ξ〉s � 〈ξ − ξ1〉s + 〈ξ1〉s1〈ξ − ξ1〉s−s1 , and by Young’s inequality

‖u1u2‖Ĥs
r

� ‖û1‖�1‖〈ξ〉sû2‖�r′ + ‖〈ξ〉s1 û1‖�r′ ‖〈ξ〉s−s1 û2‖�1

� ‖u1‖Ĥs1
r
‖u2‖Ĥs

r

because ‖〈ξ〉−s1 ûi‖�1 � ‖ûi‖�r′ , i = 1, 2.
Lemma 6.2. Let 1 < r ≤ 2 and s > 1

r − 1
2 or r = 2 and s ≥ 0. Then

G0 : C([−T, T ], Ĥs
r (T)) → C([−T, T ], Ĥs

r (T))

is a locally bi-Lipschitz homeomorphism with inverse G−1
0 u = exp (iIu)u.

Proof. We will transfer the ideas from the proof of [18, Lemma 2.3] (where the
claim is shown in the L2 setting) to the case 1 < r < 2 and s > 1

r − 1
2 . Obviously, it

suffices to prove

‖(exp(±iIf) − exp(±iIg))h‖
Ĥs

r

� exp(c‖f‖2
Ĥs

r

+ c‖g‖2
Ĥs

r

)‖f − g‖
Ĥs

r
‖h‖

Ĥs
r

(47)

for smooth f, g, h ∈ Ĥs
r . By the series expansion of the exponential and (45) we infer

that the left-hand side of (47) is bounded by

‖h‖
Ĥs

r
‖If − Ig‖

Ĥ
s1
r

∞∑
n=1

cn

n!

n−1∑
k=0

‖If‖k
Ĥ

s1
r
‖Ig‖n−1−k

Ĥ
s1
r
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for s1 = max{ 1
r+, s}. By the definition of I it follows that

‖If − Ig‖
Ĥ

s1
r

� ‖|f |2 − |g|2‖
Ĥ

s1−1
r

.

In the case s ≤ 1
r we have

‖|f |2 − |g|2‖
Ĥ

s1−1
r

� (‖f̂‖�2− + ‖ĝ‖�2−)‖f̂ − ĝ‖�2− .

Because s > 1
r − 1

2 we find

‖If − Ig‖
Ĥ

s1
r

�
(
‖f‖

Ĥs
r

+ ‖g‖
Ĥs

r

)
‖f − g‖

Ĥs
r
.

In the case s > 1
r we use (46) to deduce

‖|f |2 − |g|2‖
Ĥ

s1−1
r

� ‖f − g‖
Ĥs

r
(‖f‖

Ĥs
r

+ ‖g‖
Ĥs

r
),

and the estimate (47) follows.
The following lemma is contained in [19] in the r = 2 case.
Lemma 6.3. Let 1 < r ≤ 2 and s > 1

r − 1
2 or r = 2 and s ≥ 0. The translation

operators

τ∓ : C([−T, T ], Ĥs
r (T)) → C([−T, T ], Ĥs

r (T)),

τ∓u(t, x) := u

(
t, x∓ 2t−

∫ 2π

0

|u(t, y)|2dy
)

are continuous. However, their restrictions to arbitrarily small balls are not uniformly
continuous.

Proof. We sketch only the main ideas and refer the reader to [19, Propositions

3.2.1 and 3.2.2] for details in the Hs case which easily carry over to the Ĥs
r setting:

Because the embedding Ĥs
r ⊂ L2 is continuous, the continuity statement follows from

the continuity of the map

τ : R × C([−T, T ], Ĥs
r (T)) → C([−T, T ], Ĥs

r (T)),

τ(h, u)(t, x) := u(t, x + ht).

If we fix the time variable, the map

R × Ĥs
r (T) → Ĥs

r (T), (h, f) �→ f(· + h)

is continuous. This follows from the fact that a translation by a fixed amount is
an isometry in Ĥs

r (T) combined with eiξh → eiξh0 for h → h0 and the dominated
convergence theorem. Now, because [−T, T ] is compact, we may approximate u ∈
C([−T, T ], Ĥs

r (T)) uniformly by a piecewise constant (in time) function and apply
the result for t fixed.

For r > 0, the sequences of functions

un,j(t, x) = un,j(x) = rn−seinx + cn,j , n ∈ N, j = 1, 2,

with cn,1 = 1√
n

and cn,2 = 0 provide a counterexample to the uniform continuity on

balls.



1916 AXEL GRÜNROCK AND SEBASTIAN HERR

As in [18, 19] we define G = G0 ◦ τ−, i.e.,

(48) Gu(t, x) = (G0u)

(
t, x− 2t−

∫ 2π

0

|u(t, y)|2dy
)
.

Lemma 6.4. Let u, v ∈ C([−T, T ], H2)∩C1((−T, T ), L2) such that v = Gu. Then
u solves (DNLS) if and only if v solves

i∂tv(t) + ∂2
xv(t) = −iT (v)(t) − 1

2Q(v)(t), t ∈ (−T, T ),

v(0) = Gu(0),
(49)

where

(50) T (v) = v2∂xv̄ − 2i−
∫ 2π

0

Im (v∂xv̄) dx v

and

(51) Q(v) =

(
|v|4 −−

∫ 2π

0

|v|4dx
)
v − 2−

∫ 2π

0

|v|2dx
(
|v|2 −−

∫ 2π

0

|v|2dx
)
v,

i.e., T (v) = T (v, v, v) and Q(v) = Q(v, v, v, v, v) for T and Q defined in (8) and (12),
respectively. Moreover, the map

G : C([−T, T ], Ĥs
r (T)) → C([−T, T ], Ĥs

r (T))

is a homeomorphism with inverse G−1 = τ+ ◦ G−1
0 . The restrictions of G and G−1

to arbitrarily small balls fail to be uniformly continuous. However, G is locally bi-
Lipschitz on subsets of functions with prescribed L2-norm.

Proof. To see the equivalence of (DNLS) and (49) the calculations for the periodic
case may be found in [18, section 2]. The fact that we may represent T and Q via
convolution operators on the Fourier side where certain frequency interactions are
cancelled out was remarked in [19, Remark 3.2.7]. The verification of the precise
formulas are straightforward, using (suppressing the t dependence)

(2π)−1v̂ ∗ ∂̂xv(0) = i−
∫ 2π

0

Im (v∂xv) dx,

(2π)−1v̂ ∗ v̂(0) = −
∫ 2π

0

|v|2 dx,

(2π)−2v̂ ∗ v̂ ∗ v̂ ∗ v̂(0) = −
∫ 2π

0

|v|4 dx.

The mapping properties follow from Lemma 6.2.
Remark 4. The cancellation of certain frequency interactions due to the term

2−
∫ 2π

0

Im (v∂xv) dxv,

which is crucial for our arguments (cf. (8)), is an important feature of the gauge
transformation. We observe as well that this expression itself is not well defined in

Ĥ
1
2
r (T) for 1 < r < 2.
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7. Proof of well-posedness. Now, we show that the Cauchy problem (49) is
well-posed. Let χ ∈ C∞

0 (R) be nonnegative and symmetric such that χ(t) = 0 for

|t| ≥ 2 and χ(t) = 1 for |t| ≤ 1. Recall that Zs
r := X

s, 12
r,2 ∩Xs,0

r,∞. We have, similar to

the L2 case, the following linear estimates.
Lemma 7.1. Let s ∈ R, 1 < r < ∞.

‖χSu0‖Zs
r

� ‖u0‖Ĥs
r
,(52) ∥∥∥∥χ

∫ t

0

S(t− t′)u(t′)dt′
∥∥∥∥
Zs

r

� ‖u‖
X

s,− 1
2

r,2

+ ‖u‖Xs,−1
r,∞

.(53)

Proof. We use the approach from [9, Lemma 3.1]. Let u0 ∈ C∞(R) be periodic.
We calculate F(χSu0)(τ, ξ) = Ftχ(τ + ξ2)Fxu0(ξ), and (52) follows because Ftχ is
rapidly decreasing. It suffices to consider smooth u with supp(u) ⊂ {(t, x) | |t| ≤ 2}.
We rewrite

χ(t)

∫ t

0

S(t− t′)f(t′) dt′ = F1(t) + F2(t),

where

F1(t) =
1

2
χ(t)S(t)

∫
R

ϕ(t′)S(−t′)u(t′) dt′,

F2(t) =
1

2
χ(t)

∫
R

ϕ(t− t′)S(t− t′)u(t′) dt′,

and ϕ(t′) = χ(t′/10) sign(t′). Concerning ϕ we have

(54) |Ftϕ(τ)| � 〈τ〉−1.

Estimate (52) yields

‖F1‖Zs
r

�
∥∥∥∥
∫

R

ϕ(t′)S(−t′)u(t′) dt′
∥∥∥∥
Ĥs

r

.

Parseval’s equality implies that

Fx

(∫
R

ϕ(t′)S(−t′)u(t′) dt′
)

(ξ) =

∫
R

Ftϕ(τ + ξ2)Fu(τ, ξ) dτ,

which gives ∥∥∥∥
∫

R

ϕ(t′)S(−t′)u(t′) dt′
∥∥∥∥
Ĥs

r

� ‖u‖Xs,−1
r,∞

by (54). Now, let us consider F2. Due to Young’s inequality, we may remove the
cutoff function χ in front of the integral. The Fourier transform of the remainder is
given by

F
(∫

R

ϕ(t− t′)S(t− t′)u(t′) dt′
)

(τ, ξ) = Ftϕ(τ + ξ2)Fu(τ, ξ).

Estimate (54) proves (53).
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A standard application of the fixed point argument gives the following.
Theorem 7.2. Let 4

3 < q ≤ r ≤ 2. Then for every

v0 ∈ BR :=

{
v0 ∈ Ĥ

1
2
r (T) | ‖v0‖

Ĥ
1
2
q

< R

}

and T � R−2q′− there exists a solution

v ∈ Z
1
2
r (T ) ⊂ C([−T, T ], Ĥ

1
2
r (T))

of the Cauchy problem (49). This solution is unique in the space Z
1
2
q (T ), and the map(

BR, ‖ · ‖
Ĥ

1
2
r

)
−→ C([−T, T ], Ĥ

1
2
r (T)) : v0 �→ v

is locally Lipschitz continuous. Moreover, it is real analytic.
Sketch of proof. As a consequence of the estimates (53), (9), (10), and (15),

Φ(v)(t) :=

∫ t

0

ei(t−t′)∂2
x
(
− 1

2Q− iT
)
v(t′) dt′

extends to a continuous map Φ : Z
1
2
r (T ) → Z

1
2
r (T ) for 4

3 < r ≤ 2 along with the
estimate

‖Φ(v1) − Φ(v2)‖
Z

1
2
r (T )

� T
1
r′ −
(
‖v1‖

Z
1
2
r (T )

+ ‖v2‖
Z

1
2
r (T )

)2

‖v1 − v2‖
Z

1
2
r (T )

+ T
2
r′ −
(
‖v1‖

Z
1
2
r (T )

+ ‖v2‖
Z

1
2
r (T )

)4

‖v1 − v2‖
Z

1
2
r (T )

,

(55)

and with (52) we also have

‖eit∂2
xv0 + Φ(v)‖

Z
1
2
r (T )

� ‖v0‖
Ĥ

1
2
r1

+ T
1
r′ −‖v‖3

Z
1
2
r (T )

+ T
2
r′ −‖v‖5

Z
1
2
r (T )

.

Hence, for fixed v0 the operator eit∂
2
xv0 + Φ : D → D is a strict contraction in some

closed ball D ⊂ Z
1
2
r (T ) for small enough T . By the contraction mapping principle we

find a fixed point v ∈ Z
1
2
r (T ) which is a solution of (49) for small times. Similarly,

the implicit function theorem shows that the map v0 �→ v is real analytic, hence

locally Lipschitz. Uniqueness in Z
1
2
q (T ) follows by contradiction: A translation in

time reduces matters to uniqueness for an arbitrarily short time interval which follows
from the estimate (55) with r = q. The lower bound on the maximal time of existence
is a consequence of the mixed estimate

‖v‖
Z

1
2
r (T )

� ‖v(0)‖
Ĥ

1
2
r

+ T
1
q′ −‖v‖2

Z
1
2
q (T )

‖v‖
Z

1
2
r (T )

+ T
2
q′ −‖v‖4

Z
1
2
q (T )

‖v‖
Z

1
2
r (T )

for solutions v and an iteration argument.
By combining Theorem 7.2 with Lemma 6.4 and some approximation arguments,

Theorem 1.2 follows (this is carried out in detail in [13] for the nonperiodic case). In
particular, the claim concerning the nonuniform continuity is a consequence of the
properties of G and of the flow map of (49).
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Remark 5. In fact, our estimates also imply uniqueness of solutions of (49) in a

restriction space based on the X
1
2 ,

1
2

q,2 component only. Hence, the optimal uniqueness
statement concerning solutions of (DNLS) provided by our methods is the following:

Let 4/3 < q ≤ 2 and u1, u2 ∈ C([−T, T ], Ĥ
1
2
q (T)) be solutions of (DNLS) with u1(0) =

u2(0). If additionally Gu1,Gu2 ∈ X
1
2 ,

1
2

q,2 , which also satisfy (49), then u1 = u2.
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LOWER SEMICONTINUITY OF QUASI-CONVEX BULK ENERGIES
IN SBV AND INTEGRAL REPRESENTATION IN

DIMENSION REDUCTION∗

JEAN-FRANÇOIS BABADJIAN†

Abstract. A result of Larsen concerning the structure of the approximate gradient of certain
sequences of functions with bounded variation is used to present a short proof of Ambrosio’s lower
semicontinuity theorem for quasi-convex bulk energies in SBV . It enables us to generalize to the
SBV setting the decomposition lemma for scaled gradients in dimension reduction and also to show
that, from the point of view of bulk energies, SBV dimensional reduction problems can be reduced
to analog ones in the Sobolev spaces framework.

Key words. dimension reduction, Γ-convergence, functions of bounded variation, free disconti-
nuity problems, quasi convexity, equi-integrability
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1. Introduction. Since the pioneering work [22], the modeling of thin films
through dimensional reduction techniques and Γ-convergence analysis has become one
of the main issues in the field of the calculus of variations. In the membrane theory
framework in nonlinear elasticity, the problem rests on the study of the (scaled) elastic
energy

1

ε

∫
Ωε

W (ε)(y,∇v) dy

of such bodies. Here Ωε := ω × (−ε/2, ε/2), where ω is a bounded open subset of
R

2 and ε > 0, stands for the reference configuration of a nonlinear elastic thin film,
v : Ωε → R

3 is the deformation field which maps the reference configuration into
a deformed configuration, and W (ε) : Ωε × R

3×3 → [0,+∞) is the stored energy
density of the body which is a Carathéodory function satisfying uniform p-growth
and p-coercivity conditions (with 1 < p < ∞). From a mathematical point of view,
the previous energy is well defined, provided v is a Sobolev function in W 1,p(Ωε; R

3).
To study the limit problem as the thickness ε → 0, it will be useful to recast the

energy functional over the varying set Ωε into a functional with a fixed domain of
integration Ω := ω×(−1/2, 1/2). To this end, denoting by xα := (x1, x2) the in-plane
variable, we set u(xα, x3) := v(xα, ε x3) so that, after the (now standard) change of
variables

xα = yα, x3 =
y3

ε
,

we are equivalently led to study the following rescaled functional:

(1.1)

∫
Ω

Wε

(
x,∇αu

∣∣∣1
ε
∇3u

)
dx, u ∈ W 1,p(Ω; R3),
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where Wε : Ω×R
3×3 → [0,+∞) is the rescaled stored energy density expressed in the

new variables and defined by Wε(xα, x3, ξ) := W (ε)(xα, ε x3, ξ). From now on, ∇α

(resp., ∇3) will stand for the (approximate) gradient with respect to xα (resp., x3),
ξ = (ξα|ξ3) for some matrix ξ ∈ R

3×3, and z = (zα|z3) for some vector z ∈ R
3. Thus

in view of the p-growth of the energy, it is important to understand the structure of
what we call the scaled gradient of u, i.e.,

(1.2)

(
∇αu

∣∣∣1
ε
∇3u

)
.

In particular, if {uε} ⊂ W 1,p(Ω; R3) is a minimizing sequence uniformly bounded in
energy, up to a subsequence, there always exist u ∈ W 1,p(Ω; R3) such that D3u = 0
in the sense of distributions and b ∈ Lp(Ω; R3) such that uε ⇀ u in W 1,p(Ω; R3) and
(1/ε)∇3uε ⇀ b in Lp(Ω; R3). The limit function u is nothing but the deformation of
the midplane, while b is called the Cosserat vector. It thus seems natural to expect a
limit model depending on the pair (u, b). Unfortunately, this is still out of reach, and
we refer the reader to [19] for a more detailed discussion on the subject. However,
in [9] (see also [7]) a simplified model has been considered taking into account the
bending moment b ∈ Lp(ω; R3), i.e., the average in the transverse direction x3 of b,
instead of the full Cosserat vector field.

In the framework of fracture mechanics, one usually adds a surface energy term,
penalizing the presence of the crack. The simplest case consists of just penalizing
its area leading to the so-called Griffith surface energy. Thus, for a given crack, one
should study the energy given by the competing sum of the bulk and the surface
energies. Such fracture mechanics problems belong (among others) to the class of
free discontinuity problems, that is, variational problems where the unknown is not
only a function but a pair set/function. Based on the idea that the deformation may
be discontinuous across the crack, it is convenient to study the weak formulation,
replacing the crack by the jump set of the deformation and leading to a variational
problem stated in the space of (special) functions with bounded variation. Now the
energy in which we are interested is

1

ε

∫
Ωε

W (ε)(y,∇v) dy +
1

ε
H2(Sv), v ∈ SBV p(Ωε; R

3),

where ∇v is intended as the approximate gradient of v, Sv is the jump set of v, and
H2 stands for the 2-dimensional Hausdorff measure. Writing as before, this energy in
the rescaled variables yields

(1.3)

∫
Ω

Wε

(
x,∇αu

∣∣∣1
ε
∇3u

)
dx+

∫
Su

∣∣∣∣
(

(νu)α

∣∣∣1
ε

(νu)3

)∣∣∣∣ dH2, u ∈ SBV p(Ω; R3),

where νu is the generalized normal to Su and (1.2) is now referred to as the approxi-
mate scaled gradient of u.

The aim of this paper is to study the connections between variational problems
(1.1) and (1.3), possibly taking into account the presence of the bending moment
vector field. To this end, we will use Theorem 4.1 as the main ingredient, which
extends the decomposition lemma for scaled gradients (see [8, Theorem 1.1] or [13,
Theorem 3.1]) to the SBV setting. It states that any SBV sequence with bounded
rescaled bulk energy and whose derivative’s singular part behaves asymptotically well
can be energetically replaced, up to a set of vanishing Lebesgue measure, by a sequence
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of Lipschitz maps whose scaled gradient is p-equi-integrable. Thus it reduces the
free discontinuity problem to a usual dimensional reduction one in the framework of
Sobolev spaces. This result is nothing but a rescaled version of [21, Lemma 2.1] (see
also Theorem 3.1 below). Using this structure theorem, we are able to show two
integral representation theorems in SBV (Theorems 6.1 and 7.3) which say that, up
to a subsequence, the functional (1.3) Γ-converges (in an appropriate topology) to a
functional of the same kind, i.e., the sum of a bulk and a surface energy. Moreover,
the surface energy is still of Griffith’s type, while the bulk energy is exactly the same
as that obtained in the analog Sobolev spaces analysis. The main importance of
these representation theorems relies on the fact that results on dimension reduction
in Sobolev spaces can now be extended to SBV (see [5, 6, 7, 9, 22]).

Note that an integral representation result for dimensional reduction problems
in SBV already exists (see [11, Theorem 2.1] and also [10]). Even if this reference
may seem more general from the point of view of the hypothesis, it does not contain
as a special case our results because the authors made strong use of the fact that
their surface energy had to grow linearly with respect to the deformation jump. This
assumption was essential in order to get compactness in BV (Ω; R3) of minimizing
sequences. However, they suggested a way to remove that constraint by singular
perturbation [11, Remark 2.2]. In our study we use a direct argument based on
a trick introduced in [18] and which was already used in [4] in the framework of
dimensional reduction. It consists of defining an artificial functional exactly as we
usually do for the Γ-lim inf, except that we impose the minimizing sequences to be
uniformly bounded in L∞(Ω; R3). Thanks to a truncation argument (see Lemma 6.2)
we show that it actually coincides with the Γ-lim inf for deformations u ∈ L∞(Ω; R3),
and the advantage is that now minimizing sequences turn out to be relatively compact
in SBV (Ω; R3) thanks to Ambrosio’s compactness theorem. We refer the reader to
[4] for a deeper insight on that subject.

To close this introduction, we wish to stress that in this paper, we are mostly
interested in representation of effective bulk energies arising in 3D-2D dimensional
reduction problems stated in SBV . For this reason we will consider a large class for
such bulk energies, while surface energies will be restricted to the simplified case of
a Griffith-type one. However, we are convinced that the results presented here could
be generalized to a larger class of surface energies.

The overall plan of the paper is as follows: after recalling some useful notations in
section 2, and in order to show the technique in a more transparent way, we present
in section 3 a short proof of Ambrosio’s lower semicontinuity result for quasi-convex
integrands using [21, Lemma 2.1]. Then in section 4 we prove our main tool, Theo-
rem 4.1, thanks to a slicing argument together with [21, Lemma 2.1]. To reach our
goal, we need to prove a general integral representation for the Γ-limit of (1.1) in
W 1,p(Ω; R3) × Lp(ω; R3) as a function of the deformation and the bending moment.
This is the purpose of Theorem 5.1 in section 5 which contains as particular cases [9,
Theorem 3.1] (with Wε(x, ξ) = W (ξ)) and [7, Theorem 3.4] (with Wε(x, ξ) = W (x, ξ)).
In section 6, we refine the analysis of section 3, adding the difficulties of dimension
reduction. From the integral representation in Sobolev spaces, Theorem 5.1, we de-
duce an analog result in SBV , Theorem 6.1, which says that the Γ-limit of (1.3) in
BV (Ω; R3) × Lp(ω; R3) also has an integral representation and that the bulk energy
density is exactly the same one as that obtained in the W 1,p analysis. This will be
achieved thanks to Theorem 4.1 and a blow-up method which enables us to reduce the
problem to affine deformations and constant bending moments. Finally, we deduce a
similar result in section 7 without the presence of the bending moment.
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2. Notations and preliminaries. If Ω ⊂ R
N is an open set, we consider

the Lebesgue spaces Lp(Ω; Rd) and the Sobolev spaces W 1,p(Ω; Rd) in the usual
way. When needed, we will make precise what topology the space Lp(Ω; Rd) will
be endowed. In particular we will denote by Lp

s(Ω; Rd) (resp., Lp
w(Ω; Rd)) the space

Lp(Ω; Rd) endowed with the strong (resp., weak) topology. Strong convergence will
always be denoted by →, while weak (resp., weak*) convergence will be denoted by

⇀ (resp.,
∗−⇀).

We denote by M(Ω; Rd) the space of vector valued finite Radon measures. If μ ∈
M(Ω; Rd) and E is a Borel subset of Ω, we will write μ E for the restriction of μ to E;
that is, for every Borel subset F of Ω, μ E (F ) = μ(E ∩F ). The Lebesgue measure
in R

N will be denoted by LN , while HN−1 is the (N − 1)-dimensional Hausdorff
measure. We will denote by B the unit ball of R

N and by ωN := LN (B) its Lebesgue
measure. If x0 ∈ R

N and ρ > 0, B(x0, ρ) := x0 + ρB is the ball centered at x0 with
radius ρ. The notation −

∫
A

stands for the average LN (A)−1
∫
A
.

The space of functions of bounded variation is denoted by BV (Ω; Rd), and we
refer the reader to [3] for standard theory of BV functions. We recall here a few facts:
if u ∈ BV (Ω; Rd), then its distributional derivative Du ∈ M(Ω; Rd×N ), and thanks
to Lebesgue’s decomposition theorem, we can write Du = Dau + Dsu, where Dau
and Dsu stand for, respectively, the absolutely continuous and singular part of Du
with respect to the Lebesgue measure LN . Let Su be the complementary of Lebesgue
points of u. We say that u is a special function of bounded variation, and we write
u ∈ SBV (Ω; Rd), if

Du = ∇uLN + (u+ − u−) ⊗ νu HN−1 Su,

where ∇u is the approximate gradient of u, νu is the generalized normal to Su, and u±

are the traces of u on both sides of Su. If E ⊂ Ω, we say that E has finite perimeter
in Ω, provided χE ∈ SBV (Ω). We denote by ∂∗E (resp., ∂∗E) the reduced (resp.,
essential) boundary of E. When p > 1, we define

SBV p(Ω; Rd) :=
{
u ∈ SBV (Ω; Rd) : ∇u ∈ Lp(Ω; Rd×N ) and HN−1(Su ∩Ω) < +∞

}
.

We say that a sequence {un} ⊂ SBV p(Ω; Rd) converges weakly to u ∈ SBV p(Ω; Rd),
and we write un ⇀ u in SBV p(Ω; Rd), if⎧⎪⎨
⎪⎩

un → u in L1(Ω; Rd),

∇un ⇀ ∇u in Lp(Ω; Rd×N ),

(u+
n − u−

n ) ⊗ νunHN−1 Sun

∗−⇀ (u+ − u−) ⊗ νuHN−1 Su in M(Ω; Rd×N ).

If Ω := ω × I, where ω is a bounded open subset of R
2 and I := (−1/2, 1/2),

we will identify the spaces Lp(ω; R3), W 1,p(ω; R3), or SBV p(ω; R3) with the space
of functions v ∈ Lp(Ω; R3), W 1,p(Ω; R3), or SBV p(Ω; R3) such that D3v = 0 in the
sense of distributions.

By A(ω) we mean the family all open subsets of ω, while R(ω) stands for the
countable subfamily of A(ω) obtained by taking all finite unions of open cubes con-
tained in ω, centered at rational points and with rational edge length.

In what follows, we will denote by Q′ := (−1/2, 1/2)2 the unit cube of R
2 and by

Q′(x0, ρ) := x0 + ρQ′ the cube centered at x0 ∈ R
2 and side length ρ > 0. Similarly

B′ := {xα ∈ R
2 : |xα| < 1} stands for the unit ball in R

2, and B′(x0, ρ) := x0 + ρB′

denotes the ball of R
2 centered at x0 ∈ R

2 and of radius ρ > 0.
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3. Lower semicontinuity of quasi-convex bulk energies in SBV . This
section is devoted to give a short proof of Ambrosio’s lower semicontinuity result
for quasi-convex bulk energies in SBV using the following theorem proved in [21,
Lemma 2.1].

Theorem 3.1. Let Ω ⊂ R
N be a bounded open set with Lipschitz boundary and

let {un} ⊂ BV (Ω; Rd) be such that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sup
n∈N

‖un‖BV (Ω;Rd) < +∞,

sup
n∈N

‖∇un‖Lp(Ω;Rd×N ) < +∞ for some p > 1,

|Dsun|(Ω) → 0.

Then there exists a subsequence {nk} ↗ +∞ and a sequence {wk} ⊂ W 1,∞(Ω; Rd)
such that ⎧⎪⎪⎨

⎪⎪⎩
sup
k∈N

‖wk‖W 1,p(Ω;Rd) < +∞,

{|∇wk|p} is equi-integrable,

LN ({wk �= unk
} ∪ {∇wk �= ∇unk

}) → 0.

This theorem is nothing but the BV counterpart of the decomposition lemma, [20,
Lemma 1.2], in Sobolev spaces. We now use the previous result to give a short proof of
Ambrosio’s lower semicontinuity result for quasi-convex bulk energies in SBV (see [2,
Theorem 4.3] or [3, Proposition 5.29]). This will enable us to emphasize the techniques
used in this paper, occulting the difficulties of dimension reduction. The same kind
of arguments will be used in section 6 to prove the lower bound of Theorem 6.1.

Theorem 3.2. Let Ω be bounded open subset of R
N and f : Ω × R

d × R
d×N →

[0,+∞) be a Carathéodory function satisfying, for all (s, ξ) ∈ R
d × R

d×N and a.e.
x ∈ Ω,

(3.1) c|ξ|p ≤ f(x, s, ξ) ≤ a(x) + ψ(|s|)(1 + |ξ|p)

for some p > 1, c > 0, a ∈ L1(Ω) and some increasing function ψ : [0,+∞) →
[0,+∞). If ξ �→ f(x, s, ξ) is quasi-convex for every s ∈ R

d and a.e. x ∈ Ω, then

lim inf
n→+∞

∫
Ω

f(x, un,∇un) dx ≥
∫

Ω

f(x, u,∇u) dx

for any sequence {un} ⊂ SBV (Ω; Rd) converging in L1(Ω; Rd) to u ∈ SBV (Ω; Rd)
and satisfying supn HN−1(Sun) < +∞.

Proof. The proof is divided into three steps. We first apply the blow-up method
to reduce the study to an affine limit function. Then we prove that the resulting
sequence can be modified, without increasing the energy too much, into another one
uniformly bounded in L∞. Finally, we apply Theorem 3.1 to replace this last sequence
of SBV functions by a sequence of Sobolev functions.

Step 1. Up to a subsequence, there is no loss of generality to assume the exis-
tence of nonnegative and finite Radon measures λ and μ ∈ M(Ω) such that f(·, un,

∇un)LN ∗−⇀ λ and HN−1 Sun

∗−⇀ μ in M(Ω). To prove Theorem 3.2 it is enough to
check that

λ(Ω) ≥
∫

Ω

f(x, u,∇u) dx,
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and thanks to Lebesgue’s differentiation theorem, it suffices to show that

dλ

dLN
(x0) ≥ f(x0, u(x0),∇u(x0))

for LN -a.e. x0 ∈ Ω. Select x0 ∈ Ω such that
(a) x0 is a Lebesgue point of u and a and a point of approximate differentiability

of u;
(b) the Radon–Nikodým derivative of λ with respect to LN exists and is finite;
(c) the following limit exists and

(3.2) lim
ρ→0+

μ(B(x0, ρ))

ωN−1ρN−1
= 0;

(d) for any sequence {ρi} ↘ 0+ there exist a subsequence {ρi(k)} and a LN -
negligible set E ⊂ B such that

(3.3) lim
k→+∞

f(x0 + ρi(k)y, u(x0) + ρi(k)s, ξ) = f(x0, u(x0), ξ)

locally uniformly in R
d × R

d×N for any y ∈ B \ E.
Note that LN -a.e. points x0 in Ω satisfy these properties. Items (a) and (b) are
immediate, while item (d) is a consequence of [3, Lemma 5.38]. Concerning item (c),
we remark that, setting

Θ(x) := lim sup
ρ→0+

μ(B(x, ρ))

ωN−1ρN−1
,

then {Θ > 0} =
⋃+∞

h=1{Θ ≥ 1/h}, and using [3, Theorem 2.56], we get that HN−1({Θ ≥
1/h}) ≤ hμ({Θ ≥ 1/h}) < +∞. Thus LN ({Θ ≥ 1/h}) = 0 and consequently
LN ({Θ > 0}) = 0.

Consider a sequence {ρk} ↘ 0+ such that 0 < ρk < 1, μ(∂B(x0, ρk)) = 0, and
λ(∂B(x0, ρk)) = 0 for every k ∈ N, and (3.3) holds with ρk in place of ρi(k). Then

dλ

dLN
(x0) = lim

k→+∞

λ(B(x0, ρk))

ωNρNk

= lim
k→+∞

lim
n→+∞

1

ωNρNk

∫
B(x0,ρk)

f(x, un,∇un) dx

= lim
k→+∞

lim
n→+∞

1

ωN

∫
B

f(x0 + ρky, u(x0) + ρkun,k,∇un,k) dy,(3.4)

where we set un,k(y) = [un(x0 + ρk y)−u(x0)]/ρk. Since x0 is a point of approximate
differentiability of u, it follows that

(3.5) lim
k→+∞

lim
n→+∞

‖un,k − w0‖L1(B;Rd) = 0,

where w0(y) := ∇u(x0) y. Moreover, by (3.2) we get that

lim
k→+∞

lim
n→+∞

HN−1(Sun,k
∩B) = lim

k→+∞
lim

n→+∞

HN−1(Sun ∩B(x0, ρk))

ρN−1
k

= lim
k→+∞

μ(B(x0, ρk))

ρN−1
k

= 0.(3.6)



LOWER SEMICONTINUITY OF QUASI-CONVEX BULK ENERGIES 1927

From (3.4), (3.5), and (3.6), one can find a sequence n(k) ↗ +∞ such that, setting
vk := un(k),k, then vk → w0 in L1(B; Rd), HN−1(Svk

∩B) → 0, and

(3.7)
dλ

dLN
(x0) = lim

k→+∞

1

ωN

∫
B

f(x0 + ρky, u(x0) + ρkvk,∇vk) dy.

From now on, all the integrals will be restricted to the unit ball B.

Step 2. We now use the same truncation argument as in the proof of [3, Propo-
sition 5.37]. Define v̂k := (

√
1 + |vk − w0|2 − 2)+ so that by Theorem 3.96 and

Proposition 3.64(c) in [3], v̂k ∈ SBV (B), |∇v̂k| ≤ |∇vk − ∇w0| LN -a.e. in B, and
Sv̂k

⊂ Svk
. According to the coarea formula in BV [3, Theorem 3.40], we have that

∫ 1

0

HN−1
(
∂∗{v̂k > t} ∩ (B \ Sv̂k

)
)
dt ≤ |Dv̂k|(B \ Sv̂k

) =

∫
B

|∇v̂k| dx

≤
∫
B∩{|vk−w0|>

√
3}

|∇vk −∇w0| dx,

where we have used the fact that ∇v̂k = 0 LN -a.e. in B ∩ {|vk − w0| ≤
√

3}. From
(3.7) and the p-coercivity condition (3.1), the sequence {∇vk} is uniformly bounded in
Lp(B; Rd×N ), and since p > 1, it is equi-integrable. Using the fact that LN (B∩{|vk−
w0| >

√
3}) → 0 we obtain that the right-hand side of the previous relation tends to

zero as k → +∞. Consequently, one can find tk ∈ (0, 1) such that Ak := {v̂k > tk}
has finite perimeter in B and

(3.8) lim
k→+∞

HN−1(B ∩ ∂∗Ak \ Sv̂k
) = 0.

Define ṽk := vkχB\Ak
+ w0χB∩Ak

so that ṽk → w0 in L1(B; Rd). As |v̂k| ≤ tk < 1 in

B \Ak it follows that |vk − w0| ≤ 2
√

2 in B \Ak and thus

(3.9) ‖ṽk‖L∞(B;Rd) ≤ ‖vk‖L∞(B\Ak;Rd) + ‖w0‖L∞(B;Rd) ≤ M,

where M > 0 is independent of k. Denoting by v−k the exterior trace of vk on ∂∗Ak∩B
oriented by the inner normal of Ak, [3, Remark 3.85] implies that |v−k (x)| ≤ M for
HN−1-a.e. x ∈ ∂∗Ak ∩B and thus

∫
∂∗Ak∩B

|v−k | dHN−1 ≤ MHN−1(∂∗Ak ∩B) < +∞

so that [3, Theorem 3.84] ensures that ṽk ∈ SBV (B; Rd). Since Sṽk
⊂ Svk

∪∂∗Ak, by
(3.8) we get that

HN−1(B ∩ Sṽk
) ≤ HN−1(B ∩ Svk

) + HN−1(B ∩ ∂∗Ak \ Svk
)

≤ HN−1(B ∩ Svk
) + HN−1(B ∩ ∂∗Ak \ Sv̂k

) → 0,

where we used the fact that Sv̂k
⊂ Svk

and HN−1(B ∩ ∂∗Ak \ ∂∗Ak) = 0. Using the
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locality of approximate gradients and the p-growth condition (3.1), we get that∫
B

f(x0 + ρky, u(x0) + ρkṽk,∇ṽk) dy

=

∫
B\Ak

f(x0 + ρky, u(x0) + ρkvk,∇vk) dy

+

∫
B∩Ak

f(x0 + ρky, u(x0) + ρkw0,∇u(x0)) dy

≤
∫
B

f(x0 + ρky, u(x0) + ρkvk,∇vk) dy

+

∫
B∩Ak

[a(x0 + ρky) + ψ(|u(x0) + ρkw0|)(1 + |∇u(x0)|p)] dy.

By the choice of x0, the sequence {a(x0 + ρk·)} is strongly converging in L1(B) to
a(x0), and thus it is equi-integrable. Hence as LN (Ak) ≤ LN ({|vk −w0| ≥

√
3}) → 0

we deduce that the second term on the right-hand side of the previous relation tends
to zero as k → +∞, and thanks to (3.7) it follows that

(3.10)
dλ

dLN
(x0) ≥ lim sup

k→+∞

1

ωN

∫
B

f(x0 + ρky, u(x0) + ρkṽk,∇ṽk) dy.

Step 3. By (3.9) we have that |Dsṽk|(B) ≤ 2MHN−1(Sṽk
∩ B) → 0, while the

p-coercivity condition (3.1) and item (b) imply that

sup
k∈N

‖∇ṽk‖Lp(B;Rd×N ) < +∞.

Consequently the sequence {ṽk} fulfills the assumptions of Theorem 3.1 so that con-
sidering a suitable (not relabeled) subsequence, there exist a Lebesgue measurable set
Ek ⊂ B and a sequence {wk} ⊂ W 1,∞(B; Rd) such that {|∇wk|p} is equi-integrable,
wk = ṽk on B \Ek, and LN (Ek) → 0. From the proof of [21, Lemma 2.1], it can also
be checked that supk ‖wk‖L∞(B;Rd) ≤ M . As∫

B

|wk − w0| dy ≤
∫
B\Ek

|ṽk − w0| dy + 2MLN (Ek) → 0

it follows that wk → w0 in L1(B; Rd), and defining the set Bt
k := {x ∈ B : |∇wk(x)| ≤

t}, relation (3.10) leads to

dλ

dLN
(x0) ≥ lim sup

t→+∞
lim sup
k→+∞

1

ωN

∫
Bt

k\Ek

f(x0 + ρky, u(x0) + ρkwk,∇wk) dy.

Now using (3.3) with ρi(k) = ρk, we obtain that

lim
k→+∞

∫
Bt

k\Ek

|f(x0 + ρky, u(x0) + ρkwk,∇wk) − f(x0, u(x0),∇wk)| dy = 0

for each t > 0, implying that

(3.11)
dλ

dLN
(x0) ≥ lim sup

t→+∞
lim sup
k→+∞

1

ωN

∫
Bt

k\Ek

f(x0, u(x0),∇wk) dy.
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Since LN (Ek) → 0, according to the p-growth condition (3.1) we get that for every
t > 0,

(3.12)

∫
Ek∩Bt

k

f(x0, u(x0),∇wk) dy ≤
(
a(x0)+ψ(|u(x0)|)(1+ tp)

)
LN (Ek) −−−−−→

k→+∞
0.

On the other hand, Chebyshev’s inequality ensures the existence of a constant c > 0
(independent of k and t) such that LN (B \ Bt

k) ≤ c/tp → 0 as t → +∞, so that the
equi-integrability of {|∇wk|p} yields

sup
k∈N

∫
B\Bt

k

f(x0, u(x0),∇wk) dy

≤ sup
k∈N

∫
B\Bt

k

(
a(x0) + ψ(|u(x0)|)(1 + |∇wk|p)

)
dy −−−−→

t→+∞
0.(3.13)

Gathering (3.11), (3.12), and (3.13), we deduce that

dλ

dLN
(x0) ≥ lim sup

k→+∞

1

ωN

∫
B

f(x0, u(x0),∇wk) dy,

and since wk ⇀ w0 in W 1,p(B; Rd), we can apply [1, Theorem II-4] to conclude that

dλ

dLN
(x0) ≥ f(x0, u(x0),∇u(x0)),

which yields the desired result.

4. Structure of approximate scaled gradients. In this section we prove
the following theorem, Theorem 4.1, which is a result similar to Theorem 3.1 in the
context of dimension reduction. Note that it generalizes [8, Theorem 1.1] and [13,
Theorem 3.1] (with obvious changes for nD-(n − k)D dimensional reduction). Its
proof relies on a slicing argument similar to that used in [13, Theorem 3.1]. It will be
instrumental in section 6 to prove Theorem 6.1 because it will enable us to replace
SBV minimizing sequences by Lipschitz ones without increasing the energy.

From now on, Ω := ω × I, where ω is a bounded open subset of R
2 and I :=

(−1/2, 1/2).
Theorem 4.1. Assume that ω has a Lipschitz boundary and p > 1. Let {εn} ↘

0+ and {un} ⊂ SBV p(Ω; R3) be such that

sup
n∈N

{
‖un‖L∞(Ω;R3) +

∫
Ω

∣∣∣∣
(
∇αun

∣∣∣ 1

εn
∇3un

)∣∣∣∣
p

dx

}
< +∞,(4.1)

∫
Sun

∣∣∣∣
((

νun

)
α

∣∣∣ 1

εn

(
νun

)
3

)∣∣∣∣ dH2 → 0(4.2)

and that un ⇀ u in SBV p(Ω; R3), (1/εn)∇3un ⇀ b in Lp(Ω; R3) for some u ∈
W 1,p(ω; R3), and b ∈ Lp(Ω; R3). Then there exist a subsequence {εnk

} ⊂ {εn} and a
sequence {zk} ⊂ W 1,∞(Ω; R3) such that zk ⇀ u in W 1,p(Ω; R3), (1/εnk

)∇3zk ⇀ b in
Lp(Ω; R3), the sequence

{∣∣(∇αzk| 1
εnk

∇3zk
)∣∣p} is equi-integrable, and

L3({zk �= unk
} ∪ {∇zk �= ∇unk

}) → 0.
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Proof. The proof is based on a slicing argument. We first come back to the
nonrescaled cylinder Ωεn = ω × (−εn/2, εn/2) of thickness εn setting vn(xα, x3) :=
un(xα, x3/εn). It follows that for each n ∈ N, vn ∈ SBV p(Ωεn ; R3), and changing
variables in (4.1) we get that

(4.3) sup
n∈N

{
‖vn‖L∞(Ωεn ;R3) +

1

εn

∫
Ωεn

|∇vn|p dx
}

< +∞

and

(4.4) H2(Svn) = εn

∫
Sun

∣∣∣∣
((

νun

)
α

∣∣∣ 1

εn

(
νun

)
3

)∣∣∣∣ dH2.

We now periodize the functions vn in the transverse direction defining

v̂n(xα, x3) :=

⎧⎪⎨
⎪⎩

vn(xα,−εn − x3) if −εn < x3 ≤ − εn
2 ,

vn(xα, x3) if − εn
2 < x3 < εn

2 ,

vn(xα, εn − x3) if εn
2 ≤ x3 < εn.

Then v̂n ∈ SBV p
(
ω × (−εn, εn); R3

)
for each n ∈ N, and from (4.3) and (4.4) it

follows that

(4.5) sup
n∈N

{
‖v̂n‖L∞(ω×(−εn,εn);R3) +

1

εn

∫
ω×(−εn,εn)

|∇v̂n|p dx
}

< +∞

and

(4.6) H2(Sv̂n
) = 2εn

∫
Sun

∣∣∣∣
((

νun

)
α

∣∣∣ 1

εn

(
νun

)
3

)∣∣∣∣ dH2.

We are now in a position to extend v̂n by periodicity in the x3 direction. Note that
we do not create any additional jump set because periodicity ensures continuity at
the interface of each slice. Let

Nn :=

⎧⎪⎪⎨
⎪⎪⎩

1

4εn
− 1

2
if

1

4εn
− 1

2
∈ N,[

1

4εn
+

1

2

]
otherwise,

where [t] denotes the integer part of t. For every i ∈ {−Nn, . . . , Nn}, we set Ii,n :=(
(2i − 1)εn, (2i + 1)εn

)
and Ωi,n := ω × Ii,n. Note that Nn is the largest integer

such that Ω ∩ Ωi,n �= ∅ for every i ∈ {−Nn, . . . , Nn}. We define the function ṽn on
Ω(n) := ω × (−(2Nn + 1)εn, (2Nn + 1)εn) by extending v̂n by periodicity in the x3

direction on Ω(n):

ṽn(xα, x3) = v̂n(xα, x3 − 2iεn) if x3 ∈ Ii,n.

Since Ω ⊂ Ω(n), ṽn ∈ SBV p(Ω; R3) and thanks to (4.5) and the definition of Nn, we
have that

(4.7) sup
n∈N

{
‖ṽn‖L∞(Ω;R3) +

∫
Ω

|∇ṽn|p dx
}

< +∞,
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while (4.6), together with (4.2), implies that

H2(Sṽn) ≤ c

∫
Sun

∣∣∣∣
((

νun

)
α

∣∣∣ 1

εn

(
νun

)
3

)∣∣∣∣ dH2 → 0.(4.8)

As a consequence of (4.7) and (4.8), the sequence {ṽn} fulfills the assumptions of
Theorem 3.1. Hence there exist a subsequence {εnk

} ⊂ {εn} and a sequence {wk} ⊂
W 1,∞(Ω; R3) such that⎧⎪⎪⎨

⎪⎪⎩
sup
k∈N

‖wk‖W 1,p(Ω;R3) < +∞,

{|∇wk|p} is equi-integrable,

L3({ṽnk
�= wk} ∪ {∇ṽnk

�= ∇wk}) → 0.

From de La Vallée Poussin’s criterion, one can find an increasing and continuous
function ϑ : [0,+∞) → [0,+∞] such that ϑ(t)/t → +∞ as t → +∞ and

sup
k∈N

∫
Ω

ϑ(|∇wk|p) dx < +∞.

We claim that for at least half of the indexes i ∈ {−Nnk
+1, . . . , Nnk

−1}, there holds
that

2Nnk
− 1

2

∫
Ωi,nk

[
ϑ(|∇wk|p) + |wk|p + |∇wk|p

]
dx

≤
∫

Ω

[
ϑ(|∇wk|p) + |wk|p + |∇wk|p

]
dx.(4.9)

If not, define Jk to be the set of indexes i ∈ {−Nnk
+ 1, . . . , Nnk

− 1} such that (4.9)
does not hold. Then it would imply that #(Jk) > (2Nnk

− 1)/2 and∫
Ω

[
ϑ(|∇wk|p) + |wk|p + |∇wk|p

]
dx

≥
∑
i∈Jk

∫
Ωi,nk

[
ϑ(|∇wk|p) + |wk|p + |∇wk|p

]
dx

>
2

2Nnk
− 1

#(Jk)

∫
Ω

[
ϑ(|∇wk|p) + |wk|p + |∇wk|p

]
dx,

which is absurd. Similarly, one can show that for at least half of the indexes satisfying
(4.9), we have that

2Nnk
− 1

4
L3 Ωi,nk

({ṽnk
�= wk} ∪ {∇ṽnk

�= ∇wk})

≤ L3({ṽnk
�= wk} ∪ {∇ṽnk

�= ∇wk}).(4.10)

Let ik ∈ {−Nnk
+ 1, . . . , Nnk

− 1} be such that (4.9) and (4.10) hold at the same
time. Now define zk(xα, x3) := wk(xα, εnk

x3 + 2εnk
ik). Changing variables in (4.9)

and (4.10) and using the construction of ṽnk
from unk

we get that

εnk

2Nnk
− 1

2

∫
Ω

[
ϑ

(∣∣∣∣
(
∇αzk

∣∣∣ 1

εnk

∇3zk

)∣∣∣∣
p)

+ |zk|p +

∣∣∣∣
(
∇αzk

∣∣∣ 1

εnk

∇3zk

)∣∣∣∣
p]

dx

≤
∫

Ω

[
ϑ(|∇wk|p) + |wk|p + |∇wk|p

]
dx
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and

εnk

2Nnk
− 1

4
L3 Ω ({unk

�= zk} ∪ {∇unk
�= ∇zk})

≤ L3({ṽnk
�= wk} ∪ {∇ṽnk

�= ∇wk}).

Since εnk
(2Nnk

− 1) ≥ 1/4 for k large enough, it follows that⎧⎪⎨
⎪⎩

sup
k∈N

∫
Ω

[
ϑ

(∣∣∣∣
(
∇αzk

∣∣∣ 1

εnk

∇3zk

)∣∣∣∣
p)

+ |zk|p +

∣∣∣∣
(
∇αzk

∣∣∣ 1

εnk

∇3zk

)∣∣∣∣
p]

dx < +∞,

L3({unk
�= zk} ∪ {∇unk

�= ∇zk}) → 0,

and the equi-integrability of
{∣∣(∇αzk| 1

εnk
∇3zk

)∣∣p} follows from de La Vallée Poussin’s

criterion.
It remains to prove the weak convergence of zk and (1/εnk

)∇3zk. Let v ∈
Lp′

(Ω; R3) with 1/p + 1/p′ = 1; then∫
Ω

(zk − u) · v dx =

∫
{zk=unk

}
(unk

− u) · v dx +

∫
{zk 
=unk

}
(zk − u) · v dx.

As L3({zk �= unk
}) → 0, it follows that vχ{zk=unk

} → v in Lp′
(Ω; R3). Then, using

Hölder’s inequality, the fact that {zk} is uniformly bounded in Lp(Ω; R3), and the
fact that unk

⇀ u in Lp(Ω; R3), we obtain that

lim
k→+∞

∣∣∣∣
∫

Ω

(zk − u) · v dx
∣∣∣∣ ≤ lim

k→+∞

∣∣∣∣
∫

Ω

(unk
− u) · vχ{zk=unk

} dx

∣∣∣∣
+ lim

k→+∞
‖zk − u‖Lp(Ω;R3)‖vχ{zk 
=unk

}‖Lp′ (Ω;R3) = 0.

Similarly we may show that ∇zk ⇀ ∇u in Lp(Ω; R3×3) and that (1/εnk
)∇3zk ⇀ b in

Lp(Ω; R3).

5. Integral representation for dimension reduction problems in Sobolev
spaces involving the bending moment. Consider a Carathéodory function Wε :
Ω × R

3×3 → [0,+∞) satisfying uniform p-growth and p-coercivity conditions: there
exist 0 < β′ ≤ β < +∞ and 1 < p < +∞ such that

(5.1) β′|ξ|p ≤ Wε(x, ξ) ≤ β(1 + |ξ|p)

for a.e. x ∈ Ω and all ξ ∈ R
3×3. Define Jε : Lp(Ω; R3)×Lp(ω; R3)×A(ω) → [0,+∞]

by

Jε(u, b, A) :=

⎧⎪⎪⎨
⎪⎪⎩

∫
A×I

Wε

(
x,∇αu

∣∣∣1
ε
∇3u

)
dx if

{
u ∈ W 1,p(A× I; R3),

b = 1
ε

∫
I
∇3u(·, x3) dx3,

+∞ otherwise.

We prove the following integral representation for the Γ-limit.
Theorem 5.1. For every sequence {εn} ↘ 0+, there exist a subsequence (not

relabeled) and a Carathéodory function W ∗ : ω×R
3×2 ×R

3 → [0,+∞) (depending on
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the subsequence) such that for every A ∈ A(ω), the sequence Jεn(·, ·, A) Γ-converges
in Lp

s(A× I; R3) × Lp
w(A; R3) to J (·, ·, A), where

J (u, b, A) =

⎧⎪⎨
⎪⎩

∫
A

W ∗(xα,∇αu(xα)|b(xα)) dxα if u ∈ W 1,p(A; R3),

+∞ otherwise.

Proof. For every {εn} ↘ 0+, u ∈ Lp(Ω; R3), b ∈ Lp(ω; R3), and A ∈ A(ω), let

J (u, b, A) := inf
{un,bn}

{
lim inf
n→+∞

Jεn(un, bn, A) : un → u in Lp(A× I; R3)

and bn ⇀ b in Lp(A; R3)
}
.

Repeating word for word the (standard) proof of [9, Lemma 2.1] one can show that
there exists a subsequence, still labeled {εn}, such that for any A ∈ A(ω), J (·, ·, A)
is the Γ-limit in Lp

s(A × I; R3) × Lp
w(A; R3) of Jεn(·, ·, A), that J (u, b, A) = +∞ if

u ∈ Lp(Ω; R3) \ W 1,p(A; R3), and that for every (u, b) ∈ W 1,p(ω; R3) × Lp(ω; R3),
the set function J (u, b, ·) is the restriction to A(ω) of a Radon measure absolutely
continuous with respect to the Lebesgue measure L2. The remainder of the proof is
very close to that of [14, Theorem 1.1]; thus we will point out only the main changes.
Let ξ ∈ R

3×2, z ∈ R
3, and x0 ∈ ω and define

W ∗(x0, ξ|z) := lim sup
ρ→0+

J (uξ, bz, Q
′(x0, ρ))

ρ2
,

where we have denoted uξ(xα) := ξ xα and bz(xα) := z. Since J (uξ, bz, ·) is (the

restriction of) a Radon measure absolutely continuous with respect to L2, we have
for every A ∈ A(ω),

(5.2) J (uξ, bz, A) =

∫
A

W ∗(xα, ξ|z) dxα =

∫
A

W ∗(xα,∇αuξ|bz) dxα.

By additivity, it is clear that

(5.3) J (u, b, A) =

∫
A

W ∗(xα,∇αu|b) dxα

holds whenever u is piecewise affine and b is piecewise constant in A and we wish to
extend (5.3) to arbitrary functions u ∈ W 1,p(A; R3) and b ∈ Lp(A; R3).

Using the lower semicontinuity of J and a suitable choice of sequence, one can
show as in [14, Theorem 1.1] that ξ �→ W ∗(x0, ξ|z) is rank one convex. We claim
that z �→ W ∗(x0, ξ|z) is convex. To see this let θ ∈ [0, 1], z1, z2 ∈ R

3, and ξ ∈ R
3×2.

Fix x0 ∈ ω, ρ > 0 and take an open set A ⊂ Q′(x0, ρ) such that L2(∂A) = 0 and
L2(A) = θρ2 (take, e.g., A = Q′(x0,

√
θρ)). Define

bn(xα) := z1χ(nxα) + z2(1 − χ(nxα)),

where χ is the characteristic function of A in Q′(x0, ρ) which has been extended to
R

2 by ρ-periodicity. The Riemann–Lebesgue lemma asserts that bn ⇀ bθz1+(1−θ)z2
in
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Lp(Q′(x0, ρ); R
3), and since J (uξ, ·, Q′(x0, ρ)) is sequentially weakly lower semicon-

tinuous in Lp(Q′(x0, ρ); R
3), it follows that

J (uξ, bθz1+(1−θ)z2
, Q′(x0, ρ))

≤ lim inf
n→+∞

J (uξ, bn, Q
′(x0, ρ))

= lim inf
n→+∞

{
J (uξ, bz1 , An) + J (uξ, bz2 , Q

′(x0, ρ) \An)
}
,(5.4)

where An := {xα ∈ Q′(x0, ρ) : χ(nxα) = 1} is an open set. Note that in the last
equality, we have used the fact that since L2(∂An) = 0, then J (uξ, bn, ∂An) = 0
as well, and that J is local on open sets. Using once more the Riemann–Lebesgue
lemma together with (5.2), we get that

lim
n→+∞

J (uξ, bz1 , An) = lim
n→+∞

∫
Q′(x0,ρ)

χ(nxα)W ∗(xα, ξ|z1) dxα

= θ

∫
Q′(x0,ρ)

W ∗(xα, ξ|z1) dxα

= θJ (uξ, bz1
, Q′(x0, ρ))

and similarly for the second term of (5.4). Hence we deduce that

J (uξ, bθz1+(1−θ)z2
, Q′(x0, ρ)) ≤ θJ (uξ, bz1 , Q

′(x0, ρ)) + (1 − θ)J (uξ, bz2 , Q
′(x0, ρ)),

and the convexity of W ∗(x0, ξ|·) arises after dividing the previous inequality by ρ2 and
taking the lim sup as ρ tends to zero. It follows that (ξ|z) �→ W ∗(x0, ξ|z) is separately
convex for a.e. x0 ∈ ω, and since the following p-growth and p-coercivity conditions
hold,

(5.5) β′(|ξ|p + |z|p) ≤ W ∗(x0, ξ|z) ≤ β(1 + |ξ|p + |z|p),

for a.e. x0 ∈ ω and all (ξ, z) ∈ R
3×2 × R

3, we conclude that (ξ|z) �→ W ∗(x0, ξ|z) is
continuous for a.e. x0 ∈ ω, which proves that W ∗ is a Carathéodory function.

We now prove that (5.3) holds for any (u, b) ∈ W 1,p(A; R3) × Lp(A; R3). By
approximation and thanks to the lower semicontinuity of J (·, ·, A) for the strong
W 1,p(A; R3) × Lp(A; R3) topology, there holds that

J (u, b, A) ≤
∫
A

W ∗(xα,∇αu|b) dxα

for any (u, b) ∈ W 1,p(A; R3)×Lp(A; R3), and it remains to prove the converse inequal-
ity. This is achieved exactly as in the final step of the proof of [14, Theorem 1.1], by
considering the translated functional

J̃ (v, c, A) := J (u + v, b + c, A),

where (u, b) are arbitrary functions in W 1,p(A; R3) × Lp(A; R3).
We refer the reader to [8, 9] for more explicit formulas for the integrand W ∗ in

particular cases.
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The following technical proposition states some kind of blow-up result for func-
tionals through Γ-convergence. It will be of use in the proof of the lower bound in
Theorem 6.1 because at some point, we will need to get rid of small residual terms
occurring inside the integrand Wε. In [5, 6, 7], this difficulty was treated thanks to a
decoupling variable method which consisted of replacing the function Wε by a much
more regular one thanks to the Scorza–Dragoni and the Tietze extension theorems,
and the set where these two integrands did not match was controlled thanks to the
equi-integrability result [8, Theorem 1.1]. This method was quite powerful in that
context since the manner on which Wε was depending on ε was completely known.
However, in the generalized framework considered here, it no longer applies since we
have no information on the way Wε depends on ε. The following blow-up result,
together with a diagonalization argument (see Remark 5.3 below), will enable us to
overcome that problem.

Proposition 5.2. There exists a set N ⊂ ω with L2(N) = 0 such that for every
{ρk} ↘ 0+ and every x0 ∈ ω \N , the functional Jk : Lp(B′ × I; R3) × Lp(B′; R3) →
[0,+∞] defined by

Jk(u, b) =

⎧⎪⎨
⎪⎩

∫
B′

W ∗(x0 + ρkxα,∇αu(xα)|b(xα)) dxα if u ∈ W 1,p(B′; R3),

+∞ otherwise

Γ-converges in Lp
s(B

′ × I; R3) × Lp
w(B′; R3) to J : Lp(B′ × I; R3) × Lp(B′; R3) →

[0,+∞], where

J(u, b) =

⎧⎪⎨
⎪⎩

∫
B′

W ∗(x0,∇αu(xα)|b(xα)) dxα if u ∈ W 1,p(B′; R3),

+∞ otherwise.

Proof. The proof relies on the Scorza–Dragoni theorem (see, e.g., [17, Chapter
VIII]). For any q ∈ N, there exists a compact set Kq ⊂ ω with L2(ω \Kq) < 1/q and
such that W ∗ is continuous on Kq × R

3×2 × R
3. Let N := ω \

⋃
q K

∗
q , where

(5.6) K∗
q :=

{
x ∈ Kq : lim

ρ→0

L2(B′(x0, ρ) \Kq)

L2(B′(x0, ρ))
= 0

}
.

Since L2(Kq \K∗
q ) = 0, then L2(N) ≤ L2(ω \K∗

q ) = L2(ω \Kq) < 1/q → 0. Select a
point x0 ∈ ω \N , so that x0 ∈ K∗

q for some q ∈ N.

The upper bound. Assume first that u ∈ W 1,∞(B′; R3) and b ∈ L∞(B′; R3)
and set M := ‖(∇αu|b)‖L∞(B′;R3×3). Then according to the p-growth condition (5.5)

Jk(u, b) =

∫
B′

W ∗(x0 + ρkxα,∇αu|b) dxα

≤
∫
B′∩

(
Kq−x0

ρk

)W ∗(x0 + ρkxα,∇αu|b) dxα

+β(1 + Mp)L2

(
B′ \

(
Kq − x0

ρk

))
.(5.7)
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As W ∗ is uniformly continuous on Kq × B(0,M), there exists a continuous and in-
creasing function η : [0,+∞) → [0,+∞) such that η(0) = 0 and

(5.8)

∫
B′∩

(
Kq−x0

ρk

) |W ∗(x0 + ρkxα,∇αu|b) −W ∗(x0,∇αu|b)| dxα ≤ η(ρk).

Gathering (5.6), (5.7), and (5.8) and passing to the limit as k → +∞ yields

Γ- lim sup
k→+∞

Jk(u, b) ≤ lim sup
k→+∞

Jk(u, b) ≤ J(u, b).

The general case follows from the density of the space W 1,∞(B′; R3)×L∞(B′; R3) in
W 1,p(B′; R3) × Lp(B′; R3), the lower continuity of the Γ-limsup, and the continuity
of J for the strong W 1,p(B′; R3) × Lp(B′; R3)-topology.

The lower bound. Let (u, b) ∈ Lp(B′ × I; R3) × Lp(B′; R3) and {(uk, bk)} ⊂
Lp(B′×I; R3)×Lp(B′; R3) such that uk → u in Lp(B′×I; R3), bk ⇀ b in Lp(B′; R3),
and

lim inf
k→+∞

Jk(uk, bk) < +∞.

Up to a subsequence (not relabeled) we can suppose that u and uk ∈ W 1,p(B′; R3)
for each k ∈ N and that uk ⇀ u in W 1,p(B′; R3). According to the decomposition
lemma [20, Lemma 1.2] and Chacon’s biting lemma [3, Lemma 5.32], there is no loss
of generality to assume that {|∇αuk|p} and {|bk|p} are equi-integrable. Define the set
At

k :=
{
xα ∈ B′ : |(∇αuk(xα)|bk(xα))| ≤ t

}
. From Chebyshev’s inequality we have

that L2(B′ \At
k) ≤ c/tp for some constant c > 0 independent of t and k, and arguing

exactly as in the proof of the upper bound, one can show that for each t > 0,

lim inf
k→+∞

Jk(uk, bk) ≥ lim inf
k→+∞

∫
At

k∩
(

Kq−x0
ρk

)W ∗(x0,∇αuk|bk) dxα.(5.9)

According to the p-growth condition (5.5) and (5.6),∫
At

k\
(

Kq−x0
ρk

)W ∗(x0,∇αuk|bk) dxα

≤ β(1 + tp)L2

(
B′ \

(
Kq − x0

ρk

))
−−−−−→
k→+∞

0,(5.10)

while the equi-integrability of {|∇αuk|p} and {|bk|p} and the fact that L2(B′\At
k) → 0

as t → +∞ imply that

sup
k∈N

∫
B′\At

k

W ∗(x0,∇αuk|bk) dxα

≤ β sup
k∈N

∫
B′\At

k

(1 + |∇αuk|p + |bk)|p) dxα −−−−→
t→+∞

0.(5.11)

Hence gathering (5.9), (5.10), and (5.11) yields

lim inf
k→+∞

Jk(uk, bk) ≥ lim inf
k→+∞

J(uk, bk) ≥ J(u, b),
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where the last inequality holds because J is sequentially weakly lower semicontinuous
in W 1,p(B′; R3) × Lp(B′; R3).

Remark 5.3. One can show that in Theorem 5.1, the value of J does not change
when replacing Wεn by its quasi-convexification QWεn defined by

(5.12) QWεn(x, ξ) := inf
ϕ∈W 1,∞

0 ((0,1)3;R3)

∫
(0,1)3

Wεn(x, ξ + ∇ϕ(y)) dy

for all ξ ∈ R
3×3 and a.e. x ∈ Ω. Hence there is no loss of generality to assume in The-

orem 5.1 that Wε is quasi-convex. Since the weak topology on every normed bounded
subset of Lp(B′; R3) is metrizable, it follows from a diagonalization argument, Theo-
rem 5.1, Proposition 5.2, and the fact that Γ-convergence of coercive and lower semi-
continuous functionals on a metric space is metrizable (see [16, Theorem 10.22(a)])
that for every M > 0 and every sequence {ρk} ↘ 0+, there exists a subsequence
n(k) ↗ +∞ such that εn(k)/ρk → 0 and for every (u, b) ∈ Lp(B′×I; R3)×Lp(B′; R3)

with ‖b‖Lp(B′;R3) ≤ M , the Γ-limit in Lp
s(B

′ × I; R3) × Lp
w(B′; R3) of⎧⎪⎪⎨

⎪⎪⎩
∫
B′×I

Wεn(k)

(
x0 + ρkxα, x3,∇αu

∣∣∣ ρk
εn(k)

∇3u

)
dx if

{
u ∈ W 1,p(B′ × I; R3),

b = ρk

εn(k)

∫
I
∇3u(·, x3) dx3,

+∞ otherwise

coincides with ⎧⎪⎨
⎪⎩

∫
B′

W ∗(x0,∇αu|b) dxα if u ∈ W 1,p(B′; R3),

+∞ otherwise

for every x0 ∈ ω \N , where N ⊂ ω is the same exceptional set as in Proposition 5.2.

6. Integral representation for dimension reduction problems in SBV
involving the bending moment. We now come to the heart of this study, that
is, dealing with a similar problem to that in Theorem 5.1 but in the framework of
special functions with bounded variation, adding a surface energy term. Let us define
Gε : BV (Ω; R3) × Lp(ω; R3) → [0,+∞] by

Gε(u, b) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
Ω

Wε

(
x,∇αu

∣∣∣1
ε
∇3u

)
dx

+

∫
Su

∣∣∣∣
(

(νu)α

∣∣∣1
ε

(νu)3

)∣∣∣∣ dH2

if

{
u ∈ SBV p(Ω; R3),

b = 1
ε

∫
I
∇3u(·, x3) dx3,

+∞ otherwise.

Then the following Γ-convergence result holds.
Theorem 6.1. For every sequence {εn} ↘ 0+, there exists a subsequence, still

labeled {εn}, such that Gεn Γ-converges in L1
s(Ω; R3)×Lp

w(ω; R3) to G : BV (Ω; R3)×
Lp(ω; R3) → [0,+∞] defined by

G(u, b) :=

⎧⎪⎨
⎪⎩

∫
ω

W ∗(xα,∇αu|b) dxα + H1(Su) if u ∈ SBV p(ω; R3),

+∞ otherwise,

where W ∗ is given by Theorem 5.1.
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The remainder of this section is devoted to proving Theorem 6.1. We will first
localize the functional Gε on A(ω), and noticing that minimizing sequences are not
necessarily weakly relatively compact in BV , we will use the same truncation argu-
ment as in [4] (see also [18]), introducing an artificial functional. Then we will show
that it actually coincides with the Γ-limit whenever u ∈ BV (Ω; R3)∩L∞(Ω; R3) (see
Lemma 6.2 and Remark 6.3), and it will enable us to show that for such u’s the Γ-limit
is a measure absolutely continuous with respect to L2 + H1 Su (see Lemma 6.6).
Together with a blow-up argument, this property will be useful to prove the upper
bound in section 6.3, while the lower bound, in section 6.4, will be obtained thanks
to Theorem 4.1 and a suitable diagonalization argument (see Remark 5.3).

6.1. Localization. We start by localizing our functional on A(ω), defining Gε :
BV (Ω; R3) × Lp(ω; R3) ×A(ω) → [0,+∞] by

Gε(u, b, A) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫
A×I

Wε

(
x,∇αu

∣∣∣1
ε
∇3u

)
dx

+

∫
Su∩(A×I)

∣∣∣∣
(

(νu)α

∣∣∣1
ε

(νu)3

)∣∣∣∣ dH2

if

{
u ∈ SBV p(A× I; R3),

b = 1
ε

∫
I
∇3u(·, x3) dx3,

+∞ otherwise.

For every sequence {εn} ↘ 0+ and all (u, b, A) ∈ BV (Ω; R3) × Lp(ω; R3) ×A(ω), we
define

E(u, b, A) := inf
{un,bn}

{
lim inf
n→+∞

Gεn(un, bn, A) : un → u in L1(A× I; R3)

and bn ⇀ b in Lp(A; R3)
}
.(6.1)

Theorem 8.5 and Corollary 8.12 in [16] together with a diagonalization argument
imply the existence of a subsequence, still denoted {εn}, such that, for any A ∈
R(ω) (or A = ω), E(·, ·, A) is the Γ-limit of Gεn(·, ·, A) in L1

s(A× I; R3) × Lp
w(A; R3).

Extracting if necessary a further subsequence, one may assume that {εn} is chosen so
that Theorem 5.1 holds. To prove Theorem 6.1, it is enough to show that E(u, b, ω) =
G(u, b).

6.2. A truncation argument. As pointed out in [4], the main problem with
the definition of E in (6.1) is that minimizing sequences are not necessarily bounded
in BV (Ω; R3) and thus not necessarily weakly convergent in this space. Following [4],
we define for all (u, b, A) ∈ BV (Ω; R3) × Lp(ω; R3) ×A(ω)

E∞(u, b, A) := inf
{un,bn}

{
lim inf
n→+∞

Gεn(un, bn, A) : un → u in L1(A× I; R3),

bn ⇀ b in Lp(A; R3) and sup
n∈N

‖un‖L∞(A×I;R3) < +∞
}
.

It is immediate that E(u, b, A) ≤ E∞(u, b, A), while we will show that equality holds
when u belongs to BV (Ω; R3) ∩ L∞(Ω; R3). This will be obtained as a consequence
of Lemma 6.2. It means that for such deformation fields u ∈ BV (Ω; R3)∩L∞(Ω; R3),
strong L1(Ω; R3)-convergence and weak BV (Ω; R3)-convergence are, in a sense, equiv-
alent for the computation of the Γ-limit.
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Lemma 6.2. Let A ∈ A(ω), u ∈ BV (Ω; R3) ∩ L∞(Ω; R3), and b ∈ Lp(ω; R3).
If {un} ⊂ SBV p(A × I; R3) is such that un → u in L1(A × I; R3), 1

εn

∫
I
∇3un(·, x3)

dx3 ⇀ b in Lp(A; R3) and the limit

L := lim
n→+∞

Gεn

(
un,

1

εn

∫
I

∇3un(·, x3) dx3, A

)

exists and is finite. Then for any η > 0 one can find C > 0 and {wn} ⊂ SBV p(A×
I; R3) such that wn → u in L1(A × I; R3), 1

εn

∫
I
∇3wn(·, x3) dx3 ⇀ b in Lp(A; R3),

supn ‖wn‖L∞(A×I;R3) ≤ C, and

L ≥ lim sup
n→+∞

Gεn

(
wn,

1

εn

∫
I

∇3wn(·, x3) dx3, A

)
− η.

Proof. Let us define a smooth truncation function ϕi ∈ C1
c (R3; R3) satisfying

(6.2) ϕi(s) =

{
s if |s| < ei,

0 if |s| ≥ ei+1
and |∇ϕi(s)| ≤ 2.

Let wn,i := ϕi(un), thanks to the chain rule formula [3, Theorem 3.96], wn,i ∈
SBV p(A× I; R3), and

(6.3)

⎧⎪⎨
⎪⎩

‖wn,i‖L∞(A×I;R3) ≤ ei+1,

Swn,i
⊂ Sun ,

∇wn,i = ∇ϕi(un)∇un L3-a.e. in A× I.

Since u ∈ L∞(Ω; R3), we can choose i large enough (i ≥ m := [ln(‖u‖L∞(Ω;R3))] + 1)
so that u = ϕi(u) and thus according to (6.2)

(6.4) ‖wn,i − u‖L1(A×I;R3) = ‖ϕi(un) − ϕi(u)‖L1(A×I;R3) ≤ 2‖un − u‖L1(A×I;R3).

Since (a subsequence of) un → u a.e. in A× I and ∇ϕi is continuous, it follows that
∇ϕi(un) → ∇ϕi(u) = Id a.e. in A × I as n → +∞. Take v ∈ Lp′

(A; R3), where
1/p + 1/p′ = 1; as |∇ϕi(un)T v| ≤ 2|v| ∈ Lp′

(A), the dominated convergence theorem
implies that ∇ϕi(un)T v → v in Lp′

(A× I; R3) and thus

lim
n→+∞

∫
A

(
1

εn

∫
I

∇3wn,i(xα, x3) dx3

)
· v(xα) dxα

= lim
n→+∞

∫
A×I

1

εn
∇3un ·

(
∇ϕi(un)T v

)
dx =

∫
A

b · v dxα,

where we used the fact that (1/εn)∇3un ⇀ b in Lp(A× I; R3) and b =
∫
I
b(·, x3) dx3.

Hence

(6.5)
1

εn

∫
I

∇3wn,i(·, x3) dx3 −−−−−⇀
n→+∞

b in Lp(A; R3) for all i ≥ m.
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The growth condition (5.1), (6.2), and (6.3) imply that∫
A×I

Wεn

(
x,∇αwn,i

∣∣∣ 1

εn
∇3wn,i

)
dx

≤
∫
{|un|<ei}

Wεn

(
x,∇αun

∣∣∣ 1

εn
∇3un

)
dx + βL3({|un| ≥ ei+1})

+

∫
{ei≤|un|<ei+1}

Wεn

(
x,∇ϕi(un)∇αun

∣∣∣ 1

εn
∇ϕi(un)∇3un

)
dx

≤
∫
A×I

Wεn

(
x,∇αun

∣∣∣ 1

εn
∇3un

)
dx + β e−i ‖un‖L1(A×I;R3)

+ 2pβ

∫
{ei≤|un|<ei+1}

∣∣∣∣
(
∇αun

∣∣∣ 1

εn
∇3un

)∣∣∣∣
p

dx,(6.6)

where we have used Chebyshev’s inequality. Since νwn,i(x) = ±νun(x) for H2-a.e.
x ∈ Swn,i , (6.3) yields∫

Swn,i
∩(A×I)

∣∣∣∣
((

νwn,i

)
α

∣∣∣ 1

εn

(
νwn,i

)
3

)∣∣∣∣ dH2

≤
∫
Sun∩(A×I)

∣∣∣∣
(

(νun)α

∣∣∣ 1

εn
(νun)3

)∣∣∣∣ dH2.(6.7)

Let M ∈ N; from (6.6) and (6.7), a summation for i = m to M implies that

1

M −m + 1

M∑
i=m

[∫
A×I

Wεn

(
x,∇αwn,i

∣∣∣ 1

εn
∇3wn,i

)
dx

+

∫
Swn,i

∩(A×I)

∣∣∣∣
((

νwn,i

)
α

∣∣∣ 1

εn

(
νwn,i

)
3

)∣∣∣∣ dH2

]

≤
∫
A×I

Wεn

(
x,∇αun

∣∣∣ 1

εn
∇3un

)
dx +

∫
Sun∩(A×I)

∣∣∣∣
(

(νun)α

∣∣∣ 1

εn
(νun)3

)∣∣∣∣ dH2

+
c

M −m + 1
,

where 0 < c < +∞ is given by

c = β sup
n∈N

‖un‖L1(A×I;R3)

∑
i≥1

e−i + 2pβ sup
n∈N

∥∥∥∥
(
∇αun

∣∣∣ 1

εn
∇3un

)∥∥∥∥
p

Lp(A×I;R3×3)

.

We may find some in ∈ {m, . . . ,M} such that, setting wn := wn,in , then∫
A×I

Wεn

(
x,∇αwn

∣∣∣ 1

εn
∇3wn

)
dx +

∫
Swn∩(A×I)

∣∣∣∣
(

(νwn
)α

∣∣∣ 1

εn
(νwn

)3

)∣∣∣∣ dH2

≤
∫
A×I

Wεn

(
x,∇αun

∣∣∣ 1

εn
∇3un

)
dx +

∫
Sun∩(A×I)

∣∣∣∣
(

(νun)α

∣∣∣ 1

εn
(νun)3

)∣∣∣∣ dH2

+
c

M −m + 1
.(6.8)
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Moreover, in view of (6.4) and (6.5), wn → u in L1(A×I; R3), 1
εn

∫
I
∇3wn(·, x3) dx3 ⇀

b in Lp(A; R3), and (6.3) implies that ‖wn‖L∞(A×I;R3) ≤ ein+1 ≤ eM+1 =: C. The
proof is achieved passing to the limit as n tends to +∞ in (6.8) and choosing M large
enough so that c/(M −m + 1) ≤ η.

Remark 6.3. As a consequence of Lemma 6.2, we get that for any A ∈ R(ω)
(or A = ω), every u ∈ BV (Ω; R3) ∩ L∞(Ω; R3), and every b ∈ Lp(ω; R3), then
E(u, b, A) = E∞(u, b, A).

Remark 6.4. A similar statement of Lemma 6.2 can be proved in the framework
of Sobolev spaces, replacing Gεn by Jεn .

Remark 6.5. Using a relaxation argument as in the proof of [4, Lemma 3.4] and
Lemma 6.2, one can show that if u ∈ SBV p(ω; R3)∩L∞(ω; R3) and if b ∈ Lp(ω; R3),
the value of E∞ does not change when replacing Wεn by its quasi-convexification
QWεn defined in (5.12). The main point is that the diagonalization argument can
still be used despite the weak Lp(ω; R3)-convergence of the bending moment since
the dual of Lp(ω; R3) is separable. Hence we may assume without loss of generality
that Wε is quasi-convex. In particular (see [15, Lemma 2.2, Chapter 4]), the following
p-Lipschitz condition holds:

(6.9) |Wε(x, ξ1) −Wε(x, ξ2)| ≤ c(1 + |ξ1|p−1 + |ξ2|p−1)|ξ1 − ξ2|

for all ξ1, ξ2 ∈ R
3×3 and a.e. x ∈ Ω.

Lemma 6.2 and Remark 6.3 are essential for the proof of the following result
because they allow us to replace strong L1(Ω; R3)-convergence of any minimizing
sequence by strong Lp(Ω; R3)-convergence.

Lemma 6.6. For all u ∈ SBV p(ω; R3) ∩ L∞(ω; R3) and all b ∈ Lp(ω; R3),
E∞(u, b, ·) is the restriction to A(ω) of a Radon measure absolutely continuous with
respect to L2 + H1 Su.

Proof. Let u ∈ SBV p(ω; R3) ∩ L∞(ω; R3), A ∈ A(ω) and assume first that b is
smooth. Then taking un(xα, x3) := u(xα) + εnx3b(xα) and bn(xα) := b(xα) as test
functions for E∞(u, b, A) and using the p-growth condition (5.1), we get that

(6.10) E∞(u, b, A) ≤ β

∫
A

(1 + |∇αu|p + |b|p) dxα + H1(Su ∩A).

The same inequality holds for arbitrary functions b ∈ Lp(ω; R3) thanks to the den-
sity of smooth maps into Lp(ω; R3) and the sequential weak lower semicontinuity of
E∞(u, ·, A) in Lp(A; R3). The remainder of the proof is very classical and is essentially
the same as that of [4, Lemma 3.6]. As usual, the most delicate point is to prove the
subadditivity of E∞(u, b, ·), and this is done by gluing together suitable minimizing
sequences by means of a cut-off function. The argument still works with the presence
of the bending moment since the cut-off function is chosen independently of x3. One
should once more be careful when applying a diagonalization argument because of the
weak convergence in Lp. As already mentioned in Remark 6.5, it is still allowed in the
case where we include the bending moment since the dual of Lp is separable.

As a consequence of Lemma 6.6 and Lebesgue’s decomposition theorem, there
exists a L2-measurable function f and a H1 Su-measurable function g such that for
every A ∈ A(ω),

(6.11) E∞(u, b, A) =

∫
A

f dL2 +

∫
A∩Su

g dH1.
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Since the measures L2 and H1 Su are mutually singular, f is the Radon–Nikodým
derivative of E∞(u, b, ·) with respect to L2,

f(x0) = lim
ρ→0

E∞(u, b,B′(x0, ρ))

L2(B′(x0, ρ))
for L2-a.e. x0 ∈ ω,

and g is the Radon–Nikodým derivative of E∞(u, b, ·) with respect to H1 Su,

g(x0) = lim
ρ→0

E∞(u, b,B′(x0, ρ))

H1(Su ∩B′(x0, ρ))
for H1-a.e. x0 ∈ Su.

6.3. The upper bound. We first show the upper bound. To this end, we
will use the locality property of the Γ-limit proved in the previous subsection when
u ∈ BV (Ω; R3) ∩ L∞(Ω; R3) and the analog Γ-convergence result in Sobolev spaces
(Theorem 5.1).

Lemma 6.7. For all u ∈ BV (Ω; R3) and all b ∈ Lp(ω; R3), E(u, b, ω) ≤ G(u, b).
Proof. It is enough to consider the case where G(u, b) < +∞ and thus u ∈

SBV p(ω; R3). In fact, we will first restrict ourselves to the case where u ∈ L∞(ω; R3)∩
SBV p(ω; R3) because, thanks to Remark 6.3, it allows us to replace E by E∞. Ac-
cording to (6.11) and the definition of G, we must show that g(x0) ≤ 1 for H1-a.e.
x0 ∈ Su and f(x0) ≤ W ∗(x0,∇αu(x0)|b(x0)) for L2-a.e. x0 ∈ ω.

Let us first treat the surface term. By virtue of (6.10) with A = B′(x0, ρ), we
have that for H1-a.e. x0 ∈ Su,

g(x0) = lim
ρ→0

E∞(u, b,B′(x0, ρ))

H1(Su ∩B′(x0, ρ))

≤ lim sup
ρ→0

1

H1(Su ∩B′(x0, ρ))

{
β

∫
B′(x0,ρ)

(1 + |∇αu|p + |b|p) dxα

+H1(Su ∩B′(x0, ρ))

}

= lim sup
ρ→0

μ(B′(x0, ρ))

H1(Su ∩B′(x0, ρ))
+ 1,

where we set μ := β(1 + |∇αu|p + |b|p)L2. But since μ and H1 Su are mutually
singular, we have for H1-a.e. x0 ∈ Su

lim
ρ→0

μ(B′(x0, ρ))

H1(Su ∩B′(x0, ρ))
= 0,

which shows that g(x0) ≤ 1 for H1-a.e. x0 ∈ Su.
Concerning the bulk term, choose x0 ∈ ω to be a Lebesgue point of u, ∇αu, b,

and W ∗(·,∇αu(·)|b(·)) and such that

(6.12) lim
ρ→0

H1(Su ∩B′(x0, ρ))

L2(B′(x0, ρ))
= 0.

Remark that L2-a.e. points x0 in ω satisfy these properties and set u0(xα) :=
∇αu(x0)xα and b0(xα) := b(x0). For every ρ > 0, Theorem 5.1 implies the existence
of a sequence {vρn} ⊂ W 1,p(B′(x0, ρ)×I; R3) such that vρn → u0 in Lp(B′(x0, ρ)×I; R3)
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(thus in L1(B′(x0, ρ)×I; R3) as well), 1
εn

∫
I
∇3v

ρ
n(·, x3) dx3 ⇀ b0 in Lp(B′(x0, ρ); R

3),
and

lim
n→+∞

∫
B′(x0,ρ)×I

Wεn

(
x,∇αv

ρ
n

∣∣∣ 1

εn
∇3v

ρ
n

)
dx=

∫
B′(x0,ρ)

W ∗(xα,∇αu(x0)|b(x0)) dxα.

Since u0 ∈ L∞(ω; R3), by Lemma 6.2 and Remark 6.4, for any η > 0 we can find a
sequence {wρ

n} ⊂ W 1,p(B′(x0, ρ) × I; R3) and Cρ > 0 such that

sup
n∈N

‖wρ
n‖L∞(B′(x0,ρ)×I;R3) ≤ Cρ,

wρ
n → u0 in Lp(B′(x0, ρ) × I; R3), 1

εn

∫
I
∇3w

ρ
n(·, x3) dx3 ⇀ b0 in Lp(B′(x0, ρ); R

3),
and

lim sup
n→+∞

∫
B′(x0,ρ)×I

Wεn

(
x,∇αw

ρ
n

∣∣∣ 1

εn
∇3w

ρ
n

)
dx

≤
∫
B′(x0,ρ)

W ∗(xα,∇αu(x0)|b(x0)) dxα + L2(B′(x0, ρ))η.

Thanks to (5.5) and the separately convex character of W ∗(x0, ·|·) (see the proof of
Theorem 5.1), it follows that W ∗(x0, ·|·) is p-Lipschitz. Thus our choice of x0 implies
that

lim sup
ρ→0

lim sup
n→+∞

−
∫
B′(x0,ρ)×I

Wεn

(
x,∇αw

ρ
n

∣∣∣ 1

εn
∇3w

ρ
n

)
dx

≤ W ∗(x0,∇αu(x0)|b(x0)) + η,(6.13)

and from the coercivity condition (5.1), we get

(6.14) sup
ρ>0, n∈N

−
∫
B′(x0,ρ)×I

∣∣∣∣
(
∇αw

ρ
n

∣∣∣ 1

εn
∇3w

ρ
n

)∣∣∣∣
p

dx < +∞.

Let bk ∈ C∞
c (ω; R3) be such that bk → b in Lp(ω; R3) and define

uρ
n,k(x) := u(xα) + εnx3(bk(xα) − b(x0)) + wρ

n(xα, x3) −∇αu(x0)xα.

Then we have that uρ
n,k → u in L1(B′(x0, ρ) × I; R3), 1

εn

∫
I
∇3u

ρ
n,k(·, x3) dx3 ⇀ bk in

Lp(B′(x0, ρ); R
3) as n → +∞, and supn ‖u

ρ
n,k‖L∞(B′(x0,ρ)×I;R3) < +∞. Thus, since

Suρ
n,k

∩ (B′(x0, ρ) × I) = (Su ∩B′(x0, ρ)) × I, we get that

E∞(u, bk, B
′(x0, ρ)) ≤ lim inf

n→+∞

{∫
B′(x0,ρ)×I

Wεn

(
x,∇αu

ρ
n,k

∣∣∣ 1

εn
∇3u

ρ
n,k

)
dx

+

∫
Su

ρ
n,k

∩(B′(x0,ρ)×I)

∣∣∣∣
((

νuρ
n,k

)
α

∣∣∣ 1

εn

(
νuρ

n,k

)
3

)∣∣∣∣ dH2

}

≤ lim inf
n→+∞

∫
B′(x0,ρ)×I

Wεn

(
x,∇αu(xα) −∇αu(x0) + ∇αw

ρ
n(x)

+ εnx3∇αbk(xα)
∣∣∣ 1

εn
∇3w

ρ
n(x) + bk(xα) − b(x0)

)
dx

+H1(Su ∩B′(x0, ρ)).
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Thus from (6.12), we obtain

f(x0) ≤ lim inf
ρ→0

lim inf
k→+∞

lim inf
n→+∞

−
∫
B′(x0,ρ)×I

Wεn

(
x,∇αu(xα) −∇αu(x0) + ∇αw

ρ
n(x)

+ εnx3∇αbk(xα)
∣∣∣ 1

εn
∇3w

ρ
n(x) + bk(xα) − b(x0)

)
dx.

Relations (6.9), (6.13), (6.14), and Hölder’s inequality yield

f(x0) ≤ lim inf
ρ→0

lim inf
k→+∞

lim inf
n→+∞

{
−
∫
B′(x0,ρ)×I

Wεn

(
x,∇αw

ρ
n

∣∣∣ 1

εn
∇3w

ρ
n

)
dx

+ c−
∫
B′(x0,ρ)×I

(
1 + |∇αu(xα) −∇αu(x0)|p−1 + |bk(xα) − b(x0)|p−1

+
∣∣∣(∇αw

ρ
n(x)

∣∣∣ 1

εn
∇3w

ρ
n(x)

)∣∣∣p−1

+ εp−1
n |∇αbk(xα)|p−1

)

×
(
|∇αu(xα) −∇αu(x0)| + εn|∇αbk(xα)| + |bk(xα) − b(x0)|

)
dx

}

≤ W ∗(x0,∇αu(x0)|b(x0)) + η

+ c lim sup
ρ→0

{
−
∫
B′(x0,ρ)

(
1 + |∇αu−∇αu(x0)|p + |b− b(x0)|p

)
dxα

}(p−1)/p

×
{
−
∫
B′(x0,ρ)

(
|∇αu−∇αu(x0)|p + |b− b(x0)|p

)
dxα

}1/p

.

Thanks to our choice of x0 and letting η → 0, we conclude that

f(x0) ≤ W ∗(x0,∇αu(x0)|b(x0))

for L2-a.e. x0 ∈ ω, which completes the proof in the case where u ∈ L∞(ω; R3) ∩
SBV p(ω; R3). The general case can in turn be treated by approximation exactly as
in the proof of [4, Lemma 3.8].

6.4. The lower bound. Let us now prove the lower bound. The proof is essen-
tially based on Theorem 4.1 and a blow-up argument.

Lemma 6.8. For all u ∈ BV (Ω; R3) and all b ∈ Lp(ω; R3), E(u, b, ω) ≥ G(u, b).
Proof. It is not restrictive to assume that E(u, b, ω) < +∞. By Γ-convergence,

there exists a recovery sequence {un} ⊂ SBV p(Ω; R3) such that un → u in L1(Ω; R3),
1
εn

∫
I
∇3un(·, x3) dx3 ⇀ b in Lp(ω; R3), and

lim
n→+∞

[∫
Ω

Wεn

(
x,∇αun

∣∣∣ 1

εn
∇3un

)
dx

+

∫
Sun

∣∣∣∣
((

νun

)
α

∣∣∣ 1

εn

(
νun

)
3

)∣∣∣∣ dH2

]
= E(u, b, ω).(6.15)
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Arguing exactly as in the proof of [4, Lemma 3.9], we can actually show that u ∈
SBV p(ω; R3) and that un ⇀ u in SBV p(Ω; R3). Now for every Borel set E ⊂ ω,
define the following sequences of Radon measures:

λn(E) := Wεn

(
·,∇αun

∣∣∣ 1

εn
∇3un

)
L3 (E × I)

+

∣∣∣∣
((

νun

)
α

∣∣∣ 1

εn

(
νun

)
3

)∣∣∣∣H2 (Sun ∩ (E × I))

and

μn(E) :=

∣∣∣∣
((

νun

)
α

∣∣∣ 1

εn

(
νun

)
3

)∣∣∣∣H2 (Sun ∩ (E × I)).

Then for a subsequence (not relabeled), there exist nonnegative and finite Radon

measures λ and μ ∈ M(ω) such that λn
∗−⇀ λ and μn

∗−⇀ μ in M(ω). By the
Besicovitch differentiation theorem [3, Theorem 2.22], one can find three mutually
singular nonnegative Radon measures λa, λj , and λc such that λ = λa + λj + λc,
where λa � L2 and λj � H1 Su. It is enough to check that

(6.16)
dλj

dH1 Su
(x0) ≥ 1 for H1-a.e. x0 ∈ Su

and

(6.17)
dλa

dL2
(x0) ≥ W ∗(x0,∇αu(x0)|b(x0)) for L2-a.e. x0 ∈ ω.

Indeed, if (6.16) and (6.17) hold, we obtain from (6.15) that

E(u, b, ω) ≥ λ(ω) = λa(ω) + λj(ω) + λc(ω)

≥
∫
ω

W ∗(xα,∇αu|b) dxα + H1(Su) = G(u, b).

We first prove (6.16). Fix a point x0 ∈ Su such that

dλj

dH1 Su
(x0) =

dλ

dH1 Su
(x0)

exists and is finite and remark that H1-a.e. points in Su satisfy this property. Let
{ρk} ↘ 0+ be such that λ(∂B′(x0, ρk)) = 0 for each k ∈ N. Then

dλ

dH1 Su
(x0) = lim

k→+∞

λ(B′(x0, ρk))

H1(Su ∩B′(x0, ρk))

= lim
k→+∞

lim
n→+∞

λn(B′(x0, ρk))

H1(Su ∩B′(x0, ρk))

≥ lim inf
k→+∞

lim inf
n→+∞

H2(Sun ∩ (B′(x0, ρk) × I))

H1(Su ∩B′(x0, ρk))
.

By [3, Theorem 4.36], we have that

lim inf
n→+∞

H2(Sun ∩ (B′(x0, ρk) × I)) ≥ H1(Su ∩B′(x0, ρk));

hence we obtain (6.16).
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Let us prove that (6.17) holds at every point x0 ∈ ω \ N (where N ⊂ ω is the
exceptional set introduced in Proposition 5.2) which is a Lebesgue point of both ∇αu
and b, a point of approximate differentiability of u such that

dλa

dL2
(x0) =

dλ

dL2
(x0)

exists and is finite and which satisfies

(6.18) lim
ρ→0

μ(B′(x0, ρ))

2ρ
= 0.

It turns out that L2-a.e. points x0 in ω satisfy these properties. Indeed, the verification
of (6.18) is similar to the one of (3.2) used in the proof of Theorem 3.2. As before,
let {ρk} ↘ 0+ be such that λ(∂B′(x0, ρk)) = 0 for every k ∈ N; then

dλ

dL2
(x0) = lim

k→+∞

λ(B′(x0, ρk))

L2(B′(x0, ρk))

= lim
k→+∞

lim
n→+∞

λn(B′(x0, ρk))

L2(B′(x0, ρk))

≥ lim sup
k→+∞

lim sup
n→+∞

−
∫
B′(x0,ρk)×I

Wεn

(
x,∇αun

∣∣∣ 1

εn
∇3un

)
dx

= lim sup
k→+∞

lim sup
n→+∞

−
∫
B′×I

Wεn

(
x0 + ρkxα, x3,∇αun,k

∣∣∣ρk
εn

∇3un,k

)
dx,(6.19)

where un,k(xα, x3) = [un(x0+ρkxα, x3)−u(x0)]/ρk. Since x0 is a point of approximate
differentiability of u, we have that

(6.20) lim
k→+∞

lim
n→+∞

∫
B′×I

|un,k(x) −∇αu(x0)xα| dx = 0,

and using the fact that x0 is a Lebesgue point of b, for every v ∈ Lp′
(B′; R3) we get

that

(6.21) lim
k→+∞

lim
n→+∞

∫
B′

(
ρk
εn

∫
I

∇3un,k(xα, x3) dx3

)
· v(xα) dxα =

∫
B′

b(x0) · v dxα.

Changing variables in the surface term and thanks to (6.18), it yields

lim sup
k→+∞

lim sup
n→+∞

∫
Sun,k

∩(B′×I)

∣∣∣∣
((

νun,k

)
α

∣∣∣ρk
εn

(
νun,k

)
3

)∣∣∣∣ dH2

= lim sup
k→+∞

lim sup
n→+∞

1

ρk

∫
Sun∩(B′(x0,ρk)×I)

∣∣∣∣
((

νun

)
α

∣∣∣ 1

εn

(
νun

)
3

)∣∣∣∣ dH2

≤ lim sup
k→+∞

lim sup
n→+∞

μn(B′(x0, ρk))

ρk
≤ lim sup

k→+∞

μ(B′(x0, ρk))

ρk
= 0(6.22)
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because μ(∂B′(x0, ρk)) ≤ λ(∂B′(x0, ρk)) = 0. Set

(6.23) M := max

{(
L2(B′)

β′

(∣∣∣∣ dλdL2
(x0)

∣∣∣∣ + 1

))1/p

, |b(x0)|L2(B′)1/p

}
< +∞.

From (6.19)–(6.22), using a diagonalization argument, the fact that Lp′
(B′; R3) is

separable, and Remark 5.3, we can find a sequence n(k) ↗ +∞ such that, setting
δk := εn(k)/ρk, vk := un(k),k, u0(xα) := ∇u(x0)xα, and b0(xα) := b(x0), then δk → 0,

vk → u0 in L1(B′ × I; R3), 1
δk

∫
I
∇3vk(·, x3) dx3 ⇀ b0 in Lp(B′; R3),

lim
k→+∞

∫
Svk

∣∣∣∣
((

νvk

)
α

∣∣∣ 1

δk

(
νvk

)
3

)∣∣∣∣ dH2 = 0,(6.24)

dλ

dL2
(x0) ≥ lim sup

k→+∞

1

L2(B′)

∫
B′×I

Wεn(k)

(
x0 + ρkxα, x3,∇αvk

∣∣∣ 1

δk
∇3vk

)
dx,(6.25)

and for every (u, b) ∈ Lp(B′ × I; R3)×Lp(B′; R3) with ‖b‖Lp(B′;R3) ≤ M , the Γ-limit
in Lp

s(B
′ × I; R3) × Lp

w(B′; R3) of⎧⎪⎪⎨
⎪⎪⎩

∫
B′×I

Wεn(k)

(
x0 + ρkxα, x3,∇αu

∣∣∣ 1

δk
∇3u

)
dx if

{
u ∈ W 1,p(B′ × I; R3),

b = 1
δk

∫
I
∇3u(·, x3) dx3,

+∞ otherwise

coincides with ⎧⎪⎨
⎪⎩

∫
B′

W ∗(x0,∇αu|b) dxα if u ∈ W 1,p(B′; R3),

+∞ otherwise.

From (6.24), (6.25), and (a slight variant of) Lemma 6.2, for any 0 < η < 1, there exist
a constant C > 0 and {wk} ⊂ SBV p(B′×I; R3) such that wk → u0 in L1(B′×I; R3),
1
δk

∫
I
∇3wk(·, x3) dx3 ⇀ b0 in Lp(B′; R3), supk ‖wk‖L∞(B′×I;R3) ≤ C,

lim
k→+∞

∫
Swk

∣∣∣∣
((

νwk

)
α

∣∣∣ 1

δk

(
νwk

)
3

)∣∣∣∣ dH2 = 0,

and

dλ

dL2
(x0) ≥ lim sup

k→+∞

1

L2(B′)

∫
B′×I

Wεn(k)

(
x0 + ρkxα, x3,∇αwk

∣∣∣ 1

δk
∇3wk

)
dx− η.

From the p-coercivity condition (5.1) and [3, Theorem 4.36], the sequence {wk}
converges weakly to u in SBV p(Ω; R3), and it fulfills the assumptions of Theo-
rem 4.1. Thus, for a not relabeled subsequence, one can find another sequence {zk} ⊂
W 1,∞(B′ × I; R3) such that zk ⇀ u0 in W 1,p(B′ × I; R3), 1

δk

∫
I
∇3zk(·, x3) dx3 ⇀ b0

in Lp(B′; R3),
{∣∣(∇αzk| 1

δk
∇3zk

)∣∣p} is equi-integrable, and L3({zk �= wk} ∪ {∇zk �=
∇wk}) → 0. Hence

dλ

dL2
(x0) ≥ lim sup

k→+∞

1

L2(B′)

∫
{wk=zk}

Wεn(k)

(
x0 + ρkxα, x3,∇αzk

∣∣∣ 1

δk
∇3zk

)
dx− η,
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and using the p-growth condition (5.1), the fact that
{∣∣(∇αzk| 1

δk
∇3zk

)∣∣p} is equi-

integrable, and the fact that L3({zk �= wk}) → 0 we get that

lim sup
k→+∞

∫
{wk 
=zk}

Wεn(k)

(
x0 + ρkxα, x3,∇αzk

∣∣∣ 1

δk
∇3zk

)
dx = 0.

As a consequence

dλ

dL2
(x0) ≥ lim sup

k→+∞

1

L2(B′)

∫
B′×I

Wεn(k)

(
x0 + ρkxα, x3,∇αzk

∣∣∣ 1

δk
∇3zk

)
dx− η,

and by the p-coercivity condition (5.1) and (6.23),∥∥∥∥ 1

δk

∫
I

∇3zk(·, x3) dx3

∥∥∥∥
Lp(B′;R3)

≤ M, ‖b0‖Lp(B′;R3) ≤ M.

Thus by our choice of the subsequence n(k) and Remark 5.3, we get that

dλ

dL2
(x0) ≥ W ∗(x0,∇αu(x0)|b(x0)) − η.

Letting η tend to zero completes the proof of (6.17).
Remark 6.9. Note that it seems difficult to think of applying the decoupling

variable method introduced in [7] and further developed in [5, 6]. Indeed, this gener-
alized framework has the drawback that we have no information on the way that Wε

depends on ε, and it requires application of such abstract results as metrizability of
Γ-convergence. Remark also that the same kind of blow-up argument considered here
could have been used in [5, 6, 7] in place of the decoupling variable method, in order
to treat the presence of the spatial variable.

7. Case without bending moment. In this last section, we deduce from
Theorem 6.1 a similar result without the presence of the bending moment. Define
Iε : Lp(Ω; R3) → [0,+∞] by

Iε(u) :=

⎧⎨
⎩

∫
Ω

Wε

(
x,∇αu

∣∣∣1
ε
∇3u

)
dx if u ∈ W 1,p(Ω; R3),

+∞ otherwise.

In [12, Theorem 2.5], the following integral representation result has been proved.
Theorem 7.1. For every sequence {εn} ↘ 0+, there exist a subsequence (not

relabeled) and a Carathéodory function Ŵ : ω × R
3×2 → [0,+∞) (depending on the

subsequence) such that the sequence Iεn Γ-converges in Lp
s(Ω; R3) to I, where

I(u) =

⎧⎨
⎩

∫
ω

Ŵ (xα,∇αu) dxα if u ∈ W 1,p(ω; R3),

+∞ otherwise.

We refer the reader to [22, 12, 7, 5, 6] for more explicit formulas in particular
cases.

Remark 7.2. As it has been pointed out in [7] in the case where Wε was indepen-
dent of ε (see also [9]), it can still be seen here that

Ŵ (x0, ξ) = min
z∈R3

W ∗(x0, ξ|z)

for all ξ ∈ R
3×2 and a.e. x0 ∈ ω.
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Now define Fε : BV (Ω; R3) → [0,+∞] by

Fε(u) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
Ω

Wε

(
x,∇αu

∣∣∣1
ε
∇3u

)
dx

+

∫
Su

∣∣∣∣
(

(νu)α

∣∣∣1
ε

(νu)3

)∣∣∣∣ dH2

if u ∈ SBV p(Ω; R3),

+∞ otherwise.

As a consequence of Theorem 6.1, Theorem 7.1, Remark 7.2, and a standard mea-
surability selection criterion (see, e.g., [17, Theorem 1.2, Chapter VIII]) we get the
following integral representation result for dimension reduction problems in SBV
without bending moment.

Theorem 7.3. For every sequence {εn} ↘ 0+, there exists a subsequence, still
labeled {εn}, such that Fεn Γ-converges in L1

s(Ω; R3) to F : BV (Ω; R3) → [0,+∞]
defined by

F(u) :=

⎧⎨
⎩

∫
ω

Ŵ (xα,∇αu) dxα + H1(Su) if u ∈ SBV p(ω; R3),

+∞ otherwise,

where Ŵ is given by Theorem 7.1.

Acknowledgments. The author wishes to thank Irene Fonseca and Gilles Franc-
fort for having drawn this problem to his attention.
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[10] G. Bouchitté, I. Fonseca, G. Leoni, and L. Mascarenhas, A global method for relaxation
in W 1,p and in SBVp, Arch. Rational Mech. Anal., 165 (2002), pp. 187–242.

[11] A. Braides and I. Fonseca, Brittle thin films, Appl. Math. Optim., 44 (2001), pp. 299–323.
[12] A. Braides, I. Fonseca, and G. A. Francfort, 3D-2D asymptotic analysis for inhomoge-

neous thin films, Indiana Univ. Math. J., 49 (2000), pp. 1367–1404.
[13] A. Braides and C. I. Zeppieri, A note on equi-integrability in dimension reduction problems,

Calc. Var. Partial Differential Equations, 29 (2007), pp. 231–238.
[14] G. Buttazzo and G. Dal Maso, Integral representation and relaxation of local functionals,

Nonlinear Anal., 9 (1985), pp. 515–532.
[15] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer-Verlag, Berlin, 1989.
[16] G. Dal Maso, An Introduction to Γ-Convergence, Birkhäuser, Boston, 1993.
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LONG TAILS IN THE LONG-TIME ASYMPTOTICS OF
QUASI-LINEAR HYPERBOLIC-PARABOLIC SYSTEMS OF

CONSERVATION LAWS∗

GUILLAUME VAN BAALEN† , NIKOLA POPOVIĆ† , AND C. EUGENE WAYNE†

Abstract. The long-time behavior of solutions of systems of conservation laws has been ex-
tensively studied. In particular, Liu and Zeng [Mem. Amer. Math. Soc., 125 (1997), pp. viii–120]
have given a detailed exposition of the leading order asymptotics of solutions close to a constant
background state. In this paper, we extend the analysis of Liu and Zeng by examining higher order
terms in the asymptotics in the framework of the so-called two-dimensional p-system, though we
believe that our methods and results also apply to more general systems. We give a constructive
procedure for obtaining these terms, and we show that their structure is determined by the interplay
of the parabolic and hyperbolic parts of the problem. In particular, we prove that the corresponding
solutions develop long tails.

Key words. long-time asymptotics, long tails, hyberbolic-parabolic conservation laws, p-system
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1. Introduction. In this paper, we consider the long-time behavior of solutions
of systems of viscous conservation laws. This topic has been extensively studied. In
particular, for the case of solutions close to a constant background state, [6] (building
on work of [2]) contains a detailed exposition of the leading order long-time behavior
of such solutions. More precisely, it is shown in [6] that the leading order asymptotics
are given as a sum of contributions moving with the characteristic speeds of the
undamped system of conservation laws and that each contribution evolves either as
a Gaussian solution of the heat equation or as a self-similar solution of the viscous
Burger’s equation. Thus, with the exception of the translation along characteristics,
these leading order terms reflect primarily the dissipative aspects of the problem.

In this paper, in an effort to better understand the interplay between the hyper-
bolic and parabolic aspects of the problem, we examine higher order terms in the
asymptotics. We work with a specific two-dimensional system of equations–the p-
system, but we believe that its behavior is prototypical. In particular, we think that
our methods and results would extend to more complicated systems such as the “full
gas dynamics” and the equations of magnetohydrodynamics (MHD) as considered
in [6].

The specific set of equations we consider is the following:

(1.1)
∂ta = c1∂xb, a(x, 0) = a0(x),
∂tb = c2∂xa + ∂xg(a, b) + α

(
∂2
xb + ∂x(f(a, b)∂xb)

)
, b(x, 0) = b0(x).

We will make precise the assumptions on the nonlinear terms f and g below, but in
order to describe our results informally, we basically assume that |g(a, b)| ∼ O((|a| +
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|b|)2) and |f(a, b)| ∼ O((|a| + |b|)). We also note that, without loss of generality, we
can set c1 = c2 = 1 and α = 2 in (1.1), which can be achieved by appropriate scalings
of space, time and the dependent variables, and possible redefinition of the functions
f and g.

Physically, (1.1) is a model for compressible, constant entropy flow, where a
represents the volume fraction (i.e., the reciprocal of the density) and b is the fluid
velocity. The first of the two equations in (1.1) is the consistency relation between
these two physical quantities. In particular, it would not be physically reasonable to
include a dissipative term in this equation, whereas such a term arises naturally in the
second equation which is essentially Newton’s law, in which internal frictional forces
are often present. As a consequence of the form of the dissipation the damping here
is not “diagonalizable” in the terminology of [6].

Next, we note that, with the scaling c1 = c2 = 1 and α = 2 in (1.1), the character-
istic speeds are ±1. If the initial conditions a0 and b0 in (1.1) decay sufficiently fast as

|x| → ∞, Liu and Zeng [6] showed that a(x, t)±b(x, t) = 1√
1+t

g±0 ( x±t√
1+t

)+O((1+t)−
3
4 ),

where g±0 are self-similar solutions either of the heat equation or of Burger’s equation,
depending on the detailed form of the nonlinear terms. In this paper we derive simi-
lar expressions for the higher order terms in the asymptotics through a constructive
procedure that can be carried out to arbitrary order.

More precisely, we show that, for any N ≥ 1, there exist (universal) functions
{g±n }Nn=1 and constants {d±n }Nn=1 determined by the initial conditions such that

(1.2)

a(x, t) + b(x, t) =
1√

1 + t
g+
0

(
x + t√
1 + t

)
+

N∑
n=1

1

(1 + t)δn
d+
n g

+
n

(
x + t√
1 + t

)

+O
(

1

(1 + t)δN+1

)
,

a(x, t) − b(x, t) =
1√

1 + t
g−0

(
x− t√
1 + t

)
+

N∑
n=1

1

(1 + t)δn
d−n g

−
n

(
x− t√
1 + t

)

+O
(

1

(1 + t)δN+1

)
,

where

δn = 1 − 1

2n+1
.

We give explicit expressions for the functions g±n below, but focusing for the moment
on the case N = 1 and the variable a, we have

a(x, t) =
1

2
√

1 + t

(
g+
0

(
x + t√
1 + t

)
+ g−0

(
x− t√
1 + t

))

+
1

2(1 + t)
3
4

(
d+
1 g

+
1

(
x + t√
1 + t

)
+ d−1 g

−
1

(
x− t√
1 + t

))
+ O

(
1

(1 + t)
7
8

)
,

where the functions g±0 (z) and g±1 (z) are solutions of the following ordinary differential
equations:

∂2
zg

±
0 (z) +

1

2
z∂zg

±
0 (z) +

1

2
g±0 (z) + c±∂z(g

±
0 (z)2) = 0,(1.3)

∂2
zg

±
1 (z) +

1

2
z∂zg

±
1 (z) +

3

4
g±1 (z) + 2c±∂z(g

±
0 (z)g±1 (z)) = 0.(1.4)
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z

g+
0 (z)

z

g+
1 (z)

Fig. 1. Graphs of the functions g+
0 (left panel) and g+

1 (right panel). Note the long tail of g+
1

as z → ∞.

Here c± are constants that depend on the Hessian matrix of g(a, b) at a = b = 0
and that will be specified in the course of our analysis. We will prove that, while
all solutions of (1.3) have Gaussian decay as |x| → ∞, general solutions of the linear
equation (1.4) are linear combinations of two functions g1,±(z), where g1,±(z) decays

like a Gaussian as z → ∓∞ but only like |z|− 3
2 as z → ±∞; see also [5]. The graphs

of the functions g+
0 (z) and g+

1 (z) are presented in Figure 1.
Thus, the higher order terms in the asymptotics develop long tails. These tails are

a manifestation of the hyperbolic part of the problem (or perhaps more precisely of the
interplay between the parabolic and hyperbolic parts). Were we to consider just the
asymptotic behavior of the viscous Burger’s equation which gives the leading order
behavior of the solutions, we would find that, if the initial data are well-localized,
the higher order terms in the long-time asymptotics decay rapidly in space and have
temporal decay rates given by half-integers.

We also note one additional fact about the expansion in (1.2). Prior research
[3, 9] has shown that for both parabolic equations and damped wave equations the
eigenfunctions of the operator

Lu(z) = ∂2
zu +

1

2
z∂zu

play an important role for the asymptotics. In particular, on appropriate function
spaces this operator has a sequence of isolated eigenvalues whose associated eigen-
functions can be used to construct an expansion for the long-time asymptotics. In
this connection we prove that the functions g±n are closely approximated by eigen-
functions of L with eigenvalues λn = − 1

2 + 2−(n+1); more precisely, the functions g±n
are eigenfunctions of a compact perturbation of L; see, e.g., (1.4). However, so far
we have not succeeded in finding a function space which both contains these eigen-
functions (the functions g±n decay slowly as z → ±∞) and in which the corresponding
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eigenvalues are isolated points in the spectrum. We plan to investigate this point
further in future research.

Before moving to a precise statement of our results, we note that our approach
makes no use of Kawashima’s energy estimates for hyperbolic-parabolic conservation
laws [4]. Instead we prove existence by directly studying the integral form of (1.1).

We now state our results on the Cauchy problem (1.1). We begin by stating the
precise assumptions we make on the nonlinearities f and g in (1.1).

Definition 1. The maps f, g : R2 → R are admissible nonlinearities for (1.1)
if there is a quadratic map g0 : R2 → R and a constant C such that, for all |z|, |z1|,
and |z2| small enough,

|g(z)| ≤ C|z|2, |g(z1) − g(z2)| ≤ C|z1 − z2|(|z1| + |z2|),
|Δg(z)| ≤ C|z|3, |Δg(z1) − Δg(z2)| ≤ C|z1 − z2|(|z1| + |z2|)2,
|f(z)| ≤ C|z|, and |f(z1) − f(z2)| ≤ C|z1 − z2|,

where Δg(z) ≡ g(z) − g0(z).
The main result of this paper can be formulated as follows.
Theorem 2. Fix N > 0. There exists ε0 > 0 sufficiently small such that if
(i) |a0|H1(R) + |a0|L1(R) < ε0 and |b0|H2(R) + |b0|L1(R) < ε0,
(ii) |x2a0|L2(R) + |x2b0|L2(R) < ∞,

then (1.1) has a unique (mild) solution with initial conditions a0 and b0. Moreover,
there exist functions {g±n }Nn=0 (independent of initial conditions for n ≥ 1) and con-
stants CN , {d±n }Nn=1 determined by the initial conditions such that

a(x, t) + b(x, t) =
1√

1 + t
g+
0

(
x + t√
1 + t

)
+

N∑
n=1

1

(1 + t)1−
1

2n+1

d+
n g

+
n

(
x + t√
1 + t

)
+RN

u (x, t),

a(x, t) − b(x, t) =
1√

1 + t
g−0

(
x− t√
1 + t

)
+

N∑
n=1

1

(1 + t)1−
1

2n+1

d−n g
−
n

(
x− t√
1 + t

)
+RN

v (x, t),

(1.5)

where the remainders RN
u and RN

v satisfy the estimates

sup
t≥0

(1 + t)
3
4−

1

2N+2 ‖RN
{u,v}(·, t)‖L2(R) ≤ CN ,

sup
t≥0

(1 + t)
5
4−

1

2N+2 ‖∂xRN
{u,v}(·, t)‖L2(R) ≤ CN .

(1.6)

Furthermore, for n ≥ 1, the functions g±n satisfy g±n (z) ∼ |z|−2+ 1
2n as z → ±∞.

There is a slight incongruity in this result in that the norm in which we estimate
the remainder term is weaker than the one we use on the initial data; namely, we do not
give estimates for the remainder in H2(R) or in the localization norms L1(R) and the
weighted L2(R)-norm (on that aspect of the problem, see Remark 3 below). Theorem
2 actually holds for slightly more general initial conditions than those satisfying (i)–
(ii). Furthermore, we will prove that the estimates (1.6) hold for all initial conditions
(a0, b0) in a subset D2 ⊂ H1 × H2 that is positively invariant under the flow of (1.1).
However, since the topology used to define the subset D2 is somewhat nonstandard,
we have chosen to state the result initially in this slightly weaker, but hopefully more
comprehensible, form to keep the introduction as simple as possible.

Remark 3. It is interesting to note (see Proposition 7 below) that ‖x2a(·, t)‖L2(R)+
‖x2b(·, t)‖L2(R) is finite for all finite t > 0 but that the terms with n ≥ 1 in the
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asymptotic expansion do not satisfy this property due to the long tails of the functions
g±n .

Remark 4. As the asymmetry in the degree of x derivatives in (1.1) suggests,
we require more spatial regularity from the second component (the b variable) than
from the first (the a variable). It is then natural to expect that RN

u or RN
v are not

necessarily in H2 but that only their difference is.
We conclude this section with a few remarks. Define u±(x, t) = a(x, t) ± b(x, t).

Then the asymptotics of the solutions of (1.1) in the variables u± are the same as
those of the two-dimensional (generalized) Burger’s equation

∂tu+ = ∂2
xu+ + ∂xu+ + ∂x(c+u

2
+ − c−u

2
−),

∂tu− = ∂2
xu− − ∂xu− + ∂x(c−u

2
− − c+u

2
+),

(1.7)

where the constants c± are determined by the Hessian of g(a, b) at a = b = 0 through

c± = ±1

8
(1,±1) ·

(
∂2
ag ∂a∂bg

∂a∂bg ∂2
b g

)∣∣∣∣
a=b=0

·
( 1
±1

)
.

We will show that the hyperbolic effects manifest themselves through the “source”
terms −c−u

2
− (respectively, c+u

2
+) in the first (respectively, second) equation in (1.7).

In particular, none of the terms g±n , with n ≥ 1, would be present in the asymptotic
expansion if those terms were absent.

Finally, note that we have chosen to state Theorem 2 for finite N . As it turns
out, the sums appearing in (1.5) converge in the limit as N → ∞, in which case

the estimates (1.6) hold with time weights replaced by (1 + t)
3
4 ln(2 + t)−1 and (1 +

t)
5
4 ln(2 + t)−1. The proof can easily be done with the techniques used in this paper

and is left to the reader.
The remainder of the paper is organized as follows: In section 2, we discuss the

well-posedness of the Cauchy problem (1.1) in an appropriately defined topology. In
section 3, we explain our strategy for proving our main result (Theorem 2) on the long-
time asymptotics of solutions of (1.1). Namely, we decompose that proof into a series
of simpler subproblems which are then tackled in subsequent sections: In sections 4
and 5, we investigate properties of solutions of Burger-type equations (respectively, of
inhomogeneous heat equations) as they occur naturally in the asymptotic analysis. In
section 6, we collect some estimates that are used in the proof of the well-posedness
of (1.1). Finally, in section 7, we specify the sense in which the semigroup of the
linearization of (1.1) is close to heat kernels translating along the characteristics, and
we give estimates on the remainder terms occurring in Theorem 2.

2. Cauchy problem. To motivate our technical treatment of the problem and
in particular our choice of function spaces, we first note that, upon taking the Fourier
transform of the linearization of (1.1), it follows that

∂t

(a
b

)
= L

(a
b

)
≡
(

0 ik
ik −2k2

)(a
b

)
.(2.1)

We then find that the (Fourier transform of) the semigroup associated with (2.1) is

eLt = e−k2t

(cos(ktΔ) + k
Δ sin(ktΔ) i

Δ sin(ktΔ)

i
Δ sin(ktΔ) cos(ktΔ) − k

Δ sin(ktΔ)

)
,(2.2)
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where Δ =
√

1 − k2. The most important fact about the semigroup eLt is that it is
close to eL0t, the semigroup associated with the problem

∂t

(
u
v

)
= L0

(
u
v

)
≡
(
∂2
x + ∂x 0

0 ∂2
x − ∂x

)(
u
v

)
.(2.3)

Formally, eL0t can be obtained by setting Δ = 1 in eLt and by conjugating with the
matrix

S ≡
(

1 1
1 −1

)
.(2.4)

These two operations correspond to a long wavelength expansion and a change of
dependent variables to quantities that move along the characteristics. More precisely,
we will prove that eLt satisfies the intertwining property

SeLt ≈ eL0tS,

where the symbol ≈ means that the action of these two operators is the same in the
large-scale—long-time limit; see Lemma 19 at the beginning of section 7 for details.

Furthermore, eLt satisfies paraboliclike estimates

|eLt| ≤ Ce−min(k2,1) t
4

(
1 1√

1+k2

1√
1+k2

1

)
,(2.5)

∣∣∣∣ eLt
( 0
ik

) ∣∣∣∣ ≤ C
e−min(k2,1) t

4

√
t

( 1
1√

1+k2

)
(2.6)

uniformly in t ≥ 0 and k ∈ R.
Hence, to summarize, eLt behaves like a superposition of heat kernels translating

along the characteristics of the underlying hyperbolic problem. In view of the above
observations as well as of classical techniques for parabolic PDEs (see, e.g., [7, 1]), we
will consider (1.1) in the following (somewhat nonstandard) topology (cf. also [8]).

Definition 5. We define B0 (respectively, B) as the closure of C∞
0 (R,R2) (re-

spectively, C∞
0 (R × [0,∞),R2)) under the norm | · | (respectively, ‖ · ‖), where, for

z0 = (a0, b0) : R → R2 and z = (a, b) : R × [0,∞) → R2, we define

|z0| = ‖ẑ0‖∞ + ‖z0‖2 + ‖Dz0‖2 + ‖D2b0‖2,

‖z‖ = ‖ẑ‖∞,0 + ‖z‖2, 14
+ ‖Dz‖2, 34

+ ‖D2b‖2, 54
� .

Here (Da)(x, t) ≡ ∂xa(x, t), â(k, t) is the Fourier transform of a(x, t),

‖f‖p,q = sup
t≥0

(1 + t)q‖f(·, t)‖p, ‖f‖p,q� = sup
t≥0

(1 + t)q

ln(2 + t)
‖f(·, t)‖p,

and ‖ · ‖p is the standard Lp(R)-norm.
Before turning to the Cauchy problem with initial data in B0, we collect a few

comments on our choice of function spaces.
Consider first the requirements on the initial conditions in (1.1). While the use

of H1 space is quite natural in this context, we choose to replace the L1-norm by
the (weaker) control of the L∞-norm in Fourier space. This has the great advantage
that all estimates can then be done in Fourier space, where the semigroup eLt has the
simple, explicit, form (2.2).
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In turn, our choice of q-exponents in the norm ‖ · ‖ is motivated by the fact that
these are the highest possible exponents for which the ‖ · ‖-norm of the leading order
asymptotic term 1√

1+t
g±0 ( x±t√

1+t
) is bounded. Note also that, for the linear evolution

(2.1), we have

‖eLtz0‖ ≤ C|z0|,(2.7)

since ĵ(k, t) = e−min(k2,1)tu0(k) satisfies

‖Dnj(·, t)‖2 ≤ C
(
e−t‖Dnu0‖2 + min

(
t−

1
4−

n
2 ‖û0‖∞, ‖Dnu0‖2

))
for all n = 0, 1, . . . .

Finally, we note that, for admissible nonlinearities in the sense of Definition 1,
the map h(a, b) = f(a, b)∂xb + g(a, b) = h(z) satisfies

‖h(z)‖1, 12
+ ‖h(z)‖2, 34

+ ‖Dh(z)‖2, 54
≤ C‖z‖2,(2.8)

‖h(z1) − h(z2)‖1, 12
+ ‖h(z1) − h(z2)‖2, 34

≤ C‖z1 − z2‖(‖z1‖ + ‖z2‖),(2.9)

‖D(h(z1) − h(z2))‖2, 54
≤ C‖z1 − z2‖(‖z1‖ + ‖z2‖).(2.10)

We are now fully equipped to study the Cauchy problem (1.1) in B.
Theorem 6. For all z0 ∈ B0 with |z0| = |(a0, b0)| ≤ ε0 small enough, the Cauchy

problem (1.1) is (locally) well posed in B if the nonlinearities are admissible in the
sense of Definition 1. In particular, the solution satisfies ‖z‖ ≤ cε0 for some c > 1
and is unique among functions in B satisfying this bound.

Proof. Upon taking the Fourier transform of (1.1), we get

∂t

(a
b

)
=

(
0 ik
ik −2k2

)(a
b

)
+
( 0
ikh

)
,(2.11)

which gives the following representation for the solution:

z(t) ≡
(a(t)
b(t)

)
= eLt

(a0

b0

)
+

∫ t

0

ds eL(t−s)
( 0
∂xh(z(s))

)
≡ eLtz0 + N [z](t).(2.12)

We will prove below that for all zi ∈ B, i = 1, 2, we have

‖N [z]‖ ≤ C‖z‖2 and ‖N [z1] −N [z2]‖ ≤ C‖z1 − z2‖(‖z1‖ + ‖z2‖)(2.13)

for some constant C. The proof of Theorem 6 then follows from the fact that, for all
z0 ∈ B0 with |z0| ≤ ε0 small enough and c > 1, the right-hand side (r.h.s.) of (2.12)
defines a contraction map from some (small) ball of radius cε0 in B onto itself.

The general rule for proving the various estimates involved in (2.13) is to split the
integration interval into two parts, with s ∈ I1 ≡ [0, t

2 ] and s ∈ I2 ≡ [ t2 , t]. In I1, we
place as many derivatives (or, equivalently, factors of k) as possible on the semigroup
eL(t−s), while on I2, (most of) these derivatives need to act on h, since the integral
would otherwise be divergent at s = t.

Additional difficulties arise from the fact that eLt has very few smoothing prop-
erties (slow or no decay in k as |k| → ∞), so that in some cases we need to consider
separately the large-k part and the small-k part of the L2-norm, say. This is done
through the use of P, defined as the Fourier multiplier with the characteristic function
on [−1, 1].
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We decompose the proof of ‖N [z]‖ ≤ C‖z‖2 into that of

‖N [z]‖ ≤ ‖N̂ [z]‖∞,0 + ‖N [z]‖2, 14
+ ‖PDN [z]‖2, 34

+ ‖(1 − P)DN [z]‖2, 34

+ ‖(1 − P)D2N [z]2‖2, 54
� + ‖(1 − Q)PD2N [z]2‖2, 54

� + ‖QPD2N [z]2‖2, 54
�

≤ C‖z‖2,(2.14)

where Q is the characteristic function for t ≥ 1 and N [z]2 denotes the second compo-
nent of N [z].

We now consider ‖PDN [z]‖2, 34
as an example of the way we prove the above

estimates. We have

‖PDN [z](·, t)‖2 ≤ ‖h(z)‖2, 34

(
sup

|k|≤1,τ≥0

|k|
√
τe−

k2τ
4

) ∫ t
2

0

ds
(1 + s)−

3
4

t− s

+ ‖Dh(z)‖2, 54

(
sup

|k|≤1,τ≥0

e−
k2τ
4

) ∫ t

t
2

ds
(1 + s)−

5
4

√
t− s

≤ C‖z‖2

(
2

t

∫ t
2

0

ds

(1 + s)
3
4

+
1

(1 + t
2 )

5
4

∫ t

t
2

ds√
t− s

)

≤ C‖z‖2(1 + t)−
3
4(2.15)

for all t ≥ 0, which shows that ‖PDN [z]‖2, 34
≤ C‖z‖2. All other estimates in (2.14)

can be done similarly; we postpone their proof to section 6 below.
Finally, we note that the Lipschitz-type estimate in (2.13) can be obtained in the

same manner, mutatis mutandis, due to the similarity between (2.9) and (2.10) with
(2.8); we omit the details.

We can now turn to the question of the asymptotic structure of the solutions of
(1.1) provided by Theorem 6. Note that already if we wanted to prove that eLtz0

satisfies “Gaussian asymptotics” we would need more localization properties on z0

than those provided by the B0-topology. It will turn out to be sufficient to require
z0 ∈ B0 ∩ L2(R, xmdx) for (some) m ≥ 2. We now prove that this requirement is
forward invariant under the flow of (1.1).

Proposition 7. Let ρm(x) = |x|m, and define

Dm =
{

z0 ∈ B0 such that |z0| + ‖ρmz0‖2 < ∞
}
.

If z0 ∈ Dm and |z0| ≤ ε0 such that Theorem 6 holds, then the corresponding solution
z(t) of (1.1) satisfies z(t) ∈ Dm for all finite t > 0. Furthermore, there holds |z(t)| ≤
(1 + δ)ε0 for some (small) constant δ.

Proof. Note first that, by Theorem 6, |z(t)| ≤ ‖z‖ ≤ (1 + δ)ε0 since z0 ∈ B0 and
|z0| ≤ ε0. Then fix m ∈ N, m ≥ 1. The proof of Theorem 6 can easily be adapted to
show that (1.1) is locally (in time) well posed in Dm. Global existence then follows
from the fact that the quantity

N(t) =
1

2
‖ρmz(·, t)‖2 =

1

2

∫ ∞

−∞
dx |x|m(a(x, t)2 + b(x, t)2)
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grows at most exponentially as t → ∞. Namely, we have

∂tN(t) =

∫ ∞

−∞
dx |x|m

(
∂x(ab) + 2b∂2

xb + b∂x

(
f(a, b)∂xb + g(a, b)

))

= −
∫ ∞

−∞
dx m|x|m−1sign(x)

(
b(a + g(a, b)) + (2 + f(a, b))b∂xb

)

−
∫ ∞

−∞
dx |x|m(∂xb)

2
(
2 + f(a, b)

)

≤
∫ ∞

−∞
dx

(
(m− 1)m−1 + |x|m

)∣∣∣ b(a + g(a, b)) + (2 + f(a, b))b∂xb
∣∣∣

−
∫ ∞

−∞
dx |x|m(∂xb)

2
(
2 + f(a, b)

)

≤
∫ ∞

−∞
dx

(
(m− 1)m−1 + |x|m

)(
|b(a + g(a, b))| + 2−1|2 + f(a, b)|b2

)
≤ C1(m, ε0) + C2(ε0)N(t),

due to the estimates ‖f(a, b)‖∞ ≤ Cε0 � 2 and ‖ g(a,b)√
a2+b2

‖∞ ≤ Cε0.

3. Asymptotic structure—proof of Theorem 2. We can now state our main
result on the asymptotic structure of solutions of (1.1) in a definitive manner.

Theorem 8. Let Dm be as in Proposition 7 with m ≥ 2, let z0 ∈ Dm with
|z0| ≤ ε0 such that Theorem 6 holds, and write z(t) = (a(t), b(t)) for the corresponding
solution of (1.1). Then there exist functions {g±n }Nn=0 (independent of z0 for n ≥ 1)
and constants CN , {d±n }Nn=1 determined by z0 such that

a(x, t) + b(x, t) =
1√

1 + t
g+
0

(
x + t√
1 + t

)
+

N∑
n=1

1

(1 + t)1−
1

2n+1

d+
n g

+
n

(
x + t√
1 + t

)
+RN

u (x, t),

a(x, t) − b(x, t) =
1√

1 + t
g−0

(
x− t√
1 + t

)
+

N∑
n=1

1

(1 + t)1−
1

2n+1

d−n g
−
n

(
x− t√
1 + t

)
+RN

v (x, t),

(3.1)

where the remainders RN
u and RN

v satisfy the estimates

sup
t≥0

(1 + t)
3
4−

1

2N+2 ‖RN
{u,v}(·, t)‖L2(R) ≤ CN ,

sup
t≥0

(1 + t)
5
4−

1

2N+2 ‖∂xRN
{u,v}(·, t)‖L2(R) ≤ CN .

(3.2)

Furthermore, for n ≥ 1, the functions g±n satisfy g±n (z) ∼ |z|−2+ 1
2n as z → ±∞.

Remark 9. As will be apparent from the proof of Theorem 8, any hyperbolic-
parabolic system of the form

∂tz + f(z)x = (B(z)zx)x

with admissible nonlinearities in the sense of (the natural extension of) Definition 1
gives rise to solutions having the same asymptotic structure as those of the p-system
as long as the following two conditions are satisfied:

1. There exist two matrices S and A, with S nonsingular and A diagonal having
eigenvalues of multiplicity 1 for which SeLt ≈ eL0tS in the sense of Lemma
19 (see section 7), where L0 = ∂2

x + A∂x and L = B(0)∂2
x − f ′(0)∂x.
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2. The Cauchy problem with the initial condition in the corresponding function
space (the natural extension of B0 to the problem considered) is well-posed
and satisfies the analogues of Theorem 6 and Proposition 7.

We now briefly comment on the above assumptions for specific systems such as
the “full gas dynamics” and the MHD system. The intertwining property of item
1 above is proved in [6] for quite general systems, though not in exactly the same
topology as that used in Lemma 19. As for item 2, local well posedness for initial
data in B0 is certainly not an issue; the only difficulty is to prove that the various
norms of Definition 5 exhibit “paraboliclike” decay as t → ∞. This is very likely to
hold, particularly for systems satisfying item 1.

While the variables (a, b) are adapted to the study of the Cauchy problem because
of the inherent asymmetry of spatial regularity in (1.1), they are not the best frame-
work for studying the asymptotic structure of the solutions to (1.1). It turns out to be
more convenient to change variables to quantities that move along the characteristics.
We thus define

(u(x, t)
v(x, t)

)
≡
(
T −1 0

0 T

)(
1 1
1 −1

)(a(x, t)
b(x, t)

)
≡
(
T −1 0

0 T

)
Sz(x, t),

where T is the translation operator defined by

(T f)(x, t) = f(x + t, t) or, equivalently, by T̂ f(k, t) = eiktf̂(k, t).(3.3)

Note in passing that

a(x, t) =
1

2

(
u(x + t, t) + v(x− t, t)

)
and b(x, t) =

1

2

(
u(x + t, t) − v(x− t, t)

)
.

We then use the fact that z satisfies the integral equation

Sz(t) = SeLtz0 +

∫ t

0

ds SeL(t−s)
( 0
∂xh(z(s))

)

= eL0tSz0 +

∫ t

0

ds eL0(t−s)S
( 0
∂xg0(z(s))

)
+ R[z](t),(3.4)

where

R[z](t) =
(
SeLt − eL0tS

)
z0

+

∫ t

0

ds

[
SeL(t−s)

( 0
∂xh(z(s))

)
− eL0(t−s)S

( 0
∂xg0(z(s))

)]
.

To justify the notation, which suggests that R[z] = (Ru[z],Rv[z]) is a remainder
term, we will prove in section 7 that it satisfies the improved decay rates

‖R{u,v}[z]‖2, 34
� + ‖DR{u,v}[z]‖2, 54

� ≤ Cε0,(3.5)

because of the intertwining relation SeLt ≈ eL0tS (see Lemma 19) and the fact that
h(z) = g0(z) + h.o.t.
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Recalling that g0 is quadratic (cf. Definition 1), we will write

g0(z) = c+(a + b)2 − c−(a− b)2 + c3(a + b)(a− b)

= c+(T u)2 − c−(T −1v)2 + c3(T u)(T −1v)

for z = (a, b). We thus find from (3.4) that u and v satisfy

u(t) = e∂
2
xt(a0 + b0) + ∂x

∫ t

0

ds e∂
2
x(t−s)

(
c+u(s)2 − c−T −2v(s)2

)

+ T −1Ru[z](t) + c3∂x

∫ t

0

ds e∂
2
x(t−s)T −1

(
(T u(s))(T −1v(s))

)
,(3.6)

v(t) = e∂
2
xt(a0 − b0) + ∂x

∫ t

0

ds e∂
2
x(t−s)

(
c−v(s)

2 − c+T 2u(s)2
)

+ T Rv[z](t) − c3∂x

∫ t

0

ds e∂
2
x(t−s)T

(
(T u(s))(T −1v(s))

)
.(3.7)

Note that, but for the presence of the second lines in (3.6) and (3.7), these expressions
are precisely Duhamel’s formula for the solution of the model problem (1.7), written
in terms of u = T −1u+ and v = T u−. The next step is to write

u = u� + RN
u = u0 + u1 + RN

u and v = v� + RN
v = v0 + v1 + RN

v ,

considering RN
u and RN

v as new “unknowns” and

u0(x, t) =
1√

1 + t
g+
0

(
x√

1 + t

)
, u1(x, t) =

N∑
n=1

1

(1 + t)1−
1

2n+1

d+
n g

+
n

(
x√

1 + t

)
,

v0(x, t) =
1√

1 + t
g−0

(
x√

1 + t

)
, and v1(x, t) =

N∑
n=1

1

(1 + t)1−
1

2n+1

d−n g
−
n

(
x√

1 + t

)(3.8)

for some coefficients {d±n }Nn=1 and functions {g±n }Nn=0 to be determined later.
We now use

u2 = (u− u�)(u + u�) + u2
� = RN

u (u + u�) + u2
1 + 2u0u1 + u2

0,

v2 = (v − v�)(v + v�) + v2
� = RN

v (v + v�) + v2
1 + 2v0v1 + v2

0 ,

(T u)(T −1v) = (T RN
u )T −1

(v + v�
2

)
+ (T −1RN

v )T
(u + u�

2

)
+ (T u�)(T −1v�).

Since

g+
0 (x) = u0(x, 0), u1(x, 0) =

N∑
n=1

d+
n g

+
n (x),

g−0 (x) = v0(x, 0), and v1(x, 0) =

N∑
n=1

d−n g
−
n (x),
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we find that RN
u and RN

v satisfy

RN
u (t) = e∂

2
xt(a0 + b0 − g+

0 )

+

[
e∂

2
xtu0(0) + c+∂x

∫ t

0

ds e∂
2
x(t−s)u0(s)

2

]
− u0(t)

+

[
e∂

2
xtu1(0) + 2c+∂x

∫ t

0

ds e∂
2
x(t−s)u0(s)u1(s)

]
− u1(t)

− c−

[
∂x

∫ t

0

ds e∂
2
x(t−s)T −2

(
(v0(s)

2 + 2v0(s)v1(s))
)]

−
N∑

n=1

e∂
2
xtd+

n g
+
n

+ R̃u[z,RN ](t) + T −1Ru[z](t),(3.9)

RN
v (t) = e∂

2
xt(a0 − b0 − g−0 )

+

[
e∂

2
xtv0(0) + c−∂x

∫ t

0

ds e∂
2
x(t−s)v0(s)

2

]
− v0(t)

+

[
e∂

2
xtv1(0) + 2c−∂x

∫ t

0

ds e∂
2
x(t−s)v0(s)v1(s)

]
− v1(t)

− c+

[
∂x

∫ t

0

ds e∂
2
x(t−s)T 2

(
(u0(s)

2 + 2u0(s)u1(s))
)]

−
N∑

n=1

e∂
2
xtd−n g

−
n

+ R̃v[z,R
N ](t) + T Rv[z](t),(3.10)

where

R̃u[z,RN ](t) = c+E0[h1,u + h3,u](t) − c−E−2[h1,v + h3,v](t) + c3E−1[h2 + h4](t),

R̃v[z,R
N ](t) = c−E0[h1,v + h3,v](t) − c+E2[h1,u + h3,u](t) − c3E1[h2 + h4](t),

with RN = (RN
u , RN

v ), h1,u = RN
u (u + u�), h3,u = u2

1, h1,v = RN
v (v + v�), h3,v = v2

1 ,
h4 = (T u�)(T −1v�), and

h2 = (T RN
u )T −1

(v + v�
2

)
+ (T −1RN

v )T
(u + u�

2

)
,

Eσ[h](t) = ∂x

∫ t

0

ds e∂
2
x(t−s) T σh(s).

Note that we can write (3.9) and (3.10) as RN = F [z,RN ]. If we now consider z
fixed, we can interpret RN = F [z,RN ] as an equation for RN which can be solved
via a contraction-mapping argument. Namely, we will prove that, if ‖z‖ ≤ Cε0,
RN �→ F [z,RN ] defines a contraction map inside the ball

‖RN
u ‖2, 34−ε + ‖DRN

u ‖2, 54−ε + ‖RN
v ‖2, 34−ε + ‖DRN

v ‖2, 54−ε ≤ C(3.11)

for ε = 2−N−2, provided {g±n }Nn=0 and {d±n }Nn=1 are appropriately chosen.
Basically, we will choose u0, v0, u1, and v1 in such a way that the second and

third lines of (3.9) and (3.10) vanish. Note that if, for instance, we set the second
(respectively, third) lines of (3.9) and (3.10) equal to zero, the resulting equalities are
nothing but Duhamel’s formulas for Burger’s equations for u0 and v0 (respectively,
for linearized Burger’s equations for u1 and v1). Properties of solutions to these types
of equations are studied in detail in section 4 below.
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Once u0, v0, u1, and v1 are fixed, the time convolutions in the fourth lines of (3.9)
and (3.10) can then be viewed as the solution of inhomogeneous heat equations with
very specific inhomogeneous terms. Properties of solutions to this type of equation
are studied in detail in section 5 below.

Assuming all results of sections 4 and 5, we now explain how to proceed to prove
that F [z,RN ] defines a contraction map.

Obviously, the requirement on {g±n }Nn=0 and {d±n }Nn=1 is that the first four lines
in (3.9) and (3.10) satisfy (3.11). This is achieved in the following way:

1. The first line of (3.9) (respectively, of (3.10)) satisfies (3.11) for any g±0 such
that the total mass of g±0 is equal to that of a0 ± b0, provided a0 ± b0 and
g±0 satisfy ‖x2(a0 ± b0)‖2 < ∞ and ‖x2g±0 ‖2 < ∞. This fixes the total mass
of g±0 . Note also that we need the estimate ‖x2(a0 ± b0)‖2 < ∞. There
is no smallness assumption here, which is to be expected since generically
‖x2(a(·, t) ± b(·, t))‖2 will grow as t → ∞. Note, on the other hand, that
Proposition 7 shows that ‖x2(a(·, t) ± b(·, t))‖2 remains finite for all t < ∞,
so requiring ‖x2(a0 ± b0)‖2 < ∞ is acceptable.

2. We can set the second lines in (3.9) and (3.10) equal to zero by picking for
u0 and v0 any solution of Burger’s equations

∂tu0 = ∂2
xu0 + c+∂x(u0)

2 and ∂tv0 = ∂2
xv0 + c−∂x(v0)

2

(or of the corresponding heat equations if either c+ or c− happen to be zero).
In Proposition 12, we will prove that there exist unique functions u0 and v0

of the form given in (3.8) that satisfy the conditions of item 1 above (total
mass and decay properties). This uniquely determines u0 and v0.

3. We can also set the third lines in (3.9) and (3.10) equal to zero, by picking
any solutions u1 and v1 of linearized Burger’s equations

∂tu1 = ∂2
xu1 + 2c+∂x(u0u1) and ∂tv1 = ∂2

xv1 + 2c−∂x(v0v1).(3.12)

In Proposition 12, we will also prove that there is a choice of functions
{g±n }Nn=1 such that u1 and v1 in (3.8) satisfy (3.12) for any choice of the
coefficients {d±n }Nn=1. Furthermore, in Proposition 12, we will prove that the
choice of functions can be made in such a way that g±n (x) have Gaussian
tails as x → ∓∞ and algebraic tails as x → ±∞. This actually completely
determines g±n (x) up to multiplicative constants (this last indeterminacy will
be removed when the coefficients {d±n }Nn=1 are fixed).

4. We then further decompose the terms involving g±n in the fourth lines in (3.9)
and (3.10) as g±n (x) = fn(∓x)+R±

n (x). The definition and properties of fn(x)
are given in Lemma 10. In particular, in Proposition 12, we will prove that
R±

n (x) have zero total mass and Gaussian tails as |x| → ∞, which implies

that e∂
2
xtR±

n also satisfy (3.11).
5. Finally, in section 5, we will prove that the time convolution part of the fourth

lines in (3.9) and (3.10) can be split into linear combinations of e∂
2
xtfn(∓x),

with n = 1 . . . N + 1 plus a remainder that satisfies (3.11). The coefficients
{d±n }Nn=1 can then be set recursively by requiring that all of the terms with n =
1 . . . N coming from the time convolution are canceled by those coming from
item 4 above. This can always be done because the coefficient of e∂

2
xtfm(∓x)

in the time convolution part of the fourth lines in (3.9) and (3.10) depends
only on g±0 if m = 1 and on d±m−1 if m > 1. The only term that cannot be set
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to zero is the last term in the linear combination (the one with n = N + 1),
which is the one that “drives” the equations and fixes ε = 2−N−2.

The procedure outlined in 1–5 takes care of the first four lines in (3.9) and (3.10).
We will then prove in section 7 that the terms R{u,v}[z] satisfy (3.11) and that

1∑
α=0

‖DαR̃{u,v}[z,R
N ]‖2, 34+α

2 −ε ≤ Cε0

1∑
α=0

‖DαRN‖2, 34+α
2 −ε + C,(3.13)

1∑
α=0

‖Dα(ΔR̃{u,v})‖2, 34+α
2 −ε ≤ Cε0

1∑
α=0

‖Dα(ΔRN )‖2, 34+α
2 −ε,(3.14)

where ΔR̃{u,v} = R̃{u,v}[z,R
N
1 ] − R̃{u,v}[z,R

N
2 ] and ΔR = RN

1 − RN
2 . This fi-

nally proves that F [z,RN ] defines a contraction map and that the solution of RN =
F [z,RN ] satisfies (3.11), which completes the proof of Theorems 2 and 8.

4. Burger-type equations. In this section, we consider particular solutions of
Burger-type equations

∂tu0 = ∂2
xu0 + γ∂xu

2
0,(4.1)

∂tu
±
n = ∂2

xu
±
n + 2γ∂x(u0u

±
n )(4.2)

of the form

u0(x, t) =
1√

1 + t
g0

(
x√

1 + t

)
and u±

n (x, t) =
1

(1 + t)1−
1

2n+1

g±n

(
x√

1 + t

)
.(4.3)

We will show that for fixed M(u0) =
∫∞
−∞ dx u0(x, t) =

∫∞
−∞ dx g0(x) small enough,

there is a unique choice of g0 and g±n such that g±n (x) = fn(∓x) + R±
n (x), where

fn(z) =

∫ ∞

z

dξ
ξe−

ξ2

4

(ξ − z)1−
1

2n
(4.4)

and R±
n has zero mean and Gaussian tails as |x| → ∞. In particular, g±n (x) decays

algebraically as x → ±∞, as is apparent from (4.4).
Before proceeding to our study of (4.1) and (4.2), we prove key properties of the

functions fn.
Lemma 10. Fix 1 ≤ n < ∞. The function fn is the unique solution of

∂2
zfn(z) +

1

2
z∂zfn(z) +

(
1 − 1

2n+1

)
fn(z) = 0, with

fn(0) = 2
1

2n Γ

(
1 + 2−n

2

)
and lim

z→∞
z−1+ 1

2n e
z2

4 fn(z) < ∞.

(4.5)

It satisfies
∫∞
−∞ dz fn(z) = 0, and there exists a constant C(n) such that

sup
z∈R

2∑
m=0

ρ 1
2n −m,1+m− 1

2n
(z)

∣∣∣∂m
z

(
zfn(z) + 2∂zfn(z)

)∣∣∣ ≤ C(n),

sup
z∈R

3∑
m=0

ρ 1
2n −1−m,2+m− 1

2n
(z)|∂m

z fn(z)| ≤ C(n),

(4.6)
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where

ρp,q(z) =

{
(1 + z2)

p
2 e

z2

4 if z ≥ 0,

(1 + z2)
q
2 if z ≤ 0.

Proof. We first note that fn can be written as

fn(z) =

∫ ∞

0

dξ
(ξ + z)e−

(ξ+z)2

4

ξ1− 1
2n

= −2

∫ ∞

0

dξ ξ
1

2n −1∂ξ

(
e−

(z+ξ)2

4

)
.(4.7)

This shows that fn solves (4.5) since, by defining Lf ≡ ∂2
zf + 1

2z∂zf + (1 − 1
2n+1 )f ,

we find

Lfn(z) =

∫ ∞

0

dξ

[
ξ

1
2n ∂2

ξ

(
e−

(z+ξ)2

4

)
− 1

2n+1
(−2)ξ

1
2n −1∂ξ

(
e−

(z+ξ)2

4

)]
= 0.

Obviously, fn(z) is finite for all finite z, so we need only to prove that fn satisfies
the correct decay properties as |z| → ∞ so that (4.6) holds. It is apparent from (4.4)
that fn decays like a (modified) Gaussian as z → ∞ and algebraically as z → −∞.

Furthermore, substituting f(z) = C|z|p1 and f(z) = C|z|p2e−
z2

4 into Lf = 0 shows
that the only decay rates compatible with Lf = 0 are p1 = −2 + 1

2n and p2 = 1− 1
2n .

We now complete the proof of the decay estimates (4.6). Let Fn,m(ξ, z) = ∂m
z ((ξ+

z)e−
(ξ+z)2

4 ) and Gn,m(ξ, z) = ∂m
z (zFn(ξ, z) + 2∂zFn(ξ, z)).

We first consider the case z > 0 and note that Fn,m and Gn,m satisfy

|Fn,m(ξ, z)| ≤ |Fn,m(0, z)| and |Gn,m(ξ, z)| ≤ |Gn,m(0, z)|,

respectively, for all ξ ≥ 0 if z ≥ z0 for some z0 large enough. We thus get, e.g.,

|fn(z)| =

∣∣∣∣
∫ ∞

0

dξ Fn,0(ξ, z)ξ
1

2n −1

∣∣∣∣
≤ |Fn,0(0, z)|

∫ z−1

0

dξ ξ
1

2n −1 + z1− 1
2n

∫ ∞

z−1

dξ |Fn,0(ξ, z)| ≤ Cz1− 1
2n e−

z2

4 .

The estimates on |∂m
z (zfn(z) + 2∂zfn(z))| and |∂1+m

z fn(z)| when z > 0 and m ≥ 1
can be done in exactly the same way; hence we omit the details.

We now consider the case z < 0 and note that Fn,m and Gn,m satisfy

|Fn,m(ξ, z)| ≤
∣∣∣Fn,m

(
−z

2
, z
)∣∣∣ and |Gn,m(ξ, z)| ≤

∣∣∣Gn,m

(
−z

2
, z
)∣∣∣ ,

respectively, for all 0 ≤ ξ ≤ − z
2 if z ≤ −z0 for some z0 large enough. We thus find

(integrating by parts in the second integral below)

|fn(z)| =

∣∣∣∣
∫ ∞

0

dξ Fn,0(ξ, z)ξ
1

2n −1

∣∣∣∣
≤

∣∣∣Fn,0

(
−z

2
, z
)∣∣∣ ∫ − z

2

0

dξ ξ
1

2n −1 +

∣∣∣∣
∫ ∞

− z
2

dξ Fn,0(ξ, z)ξ
1

2n −1

∣∣∣∣
≤ C|z| 1

2n −1e−
z2

16 + 2

(
1 − 1

2n

)∫ ∞

− z
2

dξ e−
(ξ+z)2

4 ξ
1

2n −2 ≤ C|z| 1
2n −2.
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Since the remaining estimates can again be done in exactly the same way, we omit
the details. It remains only to show that fn(z) has zero total mass. This follows from

∫ ∞

−∞
dz fn(z) =

(
1

2
− 1

2n+1

)−1 ∫ ∞

−∞
dz Lfn(z) = 0,

since ∂2
zfn, z∂zfn and fn are all integrable over R.

Remark 11. By using the representation (4.7), splitting the integration interval
into [0, 2−

n
2 ) and [2−

n
2 ,∞), integrating by parts, and letting n → ∞, one can prove

that

lim
n→∞

2−nfn(z) = ze−
z2

4 ,

which shows that the constant C(n) in (4.6) grows at most like 2n.
We can now study in detail the solutions of (4.1) and (4.2) that are of the form

(4.3).
Proposition 12. Fix 1 ≤ n < ∞. For all α, γ ∈ R with |αγ| small enough,

there exist unique functions u0 and u±
n of the form (4.3) that solve (4.1) and (4.2),

with g0 satisfying

∫ ∞

−∞
dz g0(z) = α,

3∑
m=0

e
z2

4

(
√

1 + z2)m
|∂m

z g0(z)| ≤ C|α|

and with g±n (z) = fn(∓z) + R±
n (z), where R±

n satisfy

∫ ∞

−∞
dz R±

n (z) = 0 and sup
z∈R

3∑
m=0

e
z2

4

(
√

1 + z2)1+m− 1
2n

|∂m
z R±

n (z)| ≤ C|αγ|.

Proof. The (unique) solution of (4.1) of the form u0(x, t) = 1√
1+t

g0(
x√
1+t

) satis-

fying
∫∞
−∞ dz g0(z) = α is given by

g0(z) =
tanh(αγ2 )e−

z2

4

γ
√
π(1 + tanh(αγ2 )erf( z

2 ))
.

In particular, we have

3∑
m=0

e
z2

4

(
√

1 + z2)m
|∂m

z g0(z)| ≤ C|α|.(4.8)

We next note that substituting (4.3) into (4.2) gives

0 = ∂2
zg

±
n (z) +

1

2
z∂zg

±
n (z) +

(
1 − 1

2n+1

)
g±n (z) + 2γ∂z(g0(z)g

±
n (z))

≡ Lg±n (z) + 2γ∂z(u0(z)g
±
n (z)).(4.9)

We formally have (using integration by parts)

∫ ∞

−∞
dz g±n (z) =

(
1

2
− 1

2n+1

)−1 ∫ ∞

−∞
dz Lg±n (z) + 2γ∂z(u0(z)g

±
n (z)) = 0,(4.10)
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which shows that g±n have zero total mass, provided the formal manipulations above are
justified, i.e., provided g±n and its derivatives decay fast enough so that the integrals
are convergent.

As is easily seen, fn(z) and fn(−z) are two linearly independent solutions of
Lf = 0, whose general solution can thus be written as c1fn(z) + c2fn(−z). By
using the variation of constants formula, we get that the solution of (4.9) satisfies the
integral equation

g±n (z) = fn(z)

(
c±1 + 2γ

∫ z

0

dξ
fn(−ξ)∂ξ(g0(ξ)g

±
n (ξ))

W (ξ)

)

+ fn(−z)

(
c±2 − 2γ

∫ z

0

dξ
fn(ξ)∂ξ(g0(ξ)g

±
n (ξ))

W (ξ)

)
,

where the Wronskian W (z) is given by W (z) = fn(z)∂zfn(−z) − fn(−z)∂zfn(z) and
c±1 and c±2 are free parameters. Note that W (z) satisfies ∂zW (z) = − z

2W (z) and

hence W (z) = W (0)e−
z2

4 for some W (0) �= 0. We now set c±1 and c±2 in such a way
that (after integration by parts) we have

g±n (z) = fn(∓z) + R[g±n ](z),(4.11)

R[g±n ](z) =
γ

W (0)
fn(z)

∫ z

−∞
dξ e

ξ2

4 (ξfn(−ξ) + 2∂ξfn(−ξ))g0(ξ)g
±
n (ξ)

+
γ

W (0)
fn(−z)

∫ ∞

z

dξ e
ξ2

4 (ξfn(ξ) + 2∂ξfn(ξ))g0(ξ)g
±
n (ξ).

By using Lemma 10 and (4.8), it is then easy to show that, for |αγ| small enough,
(4.11) defines a contraction map in the norm

|f |2− 1
2n

≡ sup
z∈R

(
√

1 + z2)2−
1

2n |f(z)|.

Namely, we have the improved decay rates

sup
z∈R

1∑
m=0

e
z2

4

(
√

1 + z2)1+m− 1
2n

|∂m
z R[g±n ](z)| ≤ C|αγ| |g±n |2− 1

2n
.

This shows that (4.11) has a (locally) unique solution among functions with |f |2− 1
2n

≤
c0 if |αγ| is small enough. In particular, there holds

sup
z∈R

1∑
m=0

e
z2

4

(
√

1 + z2)1+m− 1
2n

|∂m
z R[g±n ](z)| ≤ C|αγ|,

from which we deduce, by using again (4.11) and Lemma 10, that |Dg±n |3− 1
2n

≤ c1
and thus

sup
z∈R

e
z2

4

(
√

1 + z2)3−
1

2n
|∂2

zR[g±n ](z)| ≤ C|αγ|.

Iterating this procedure shows that |Dmg±n |2+m− 1
2n

≤ cm and that

sup
z∈R

3∑
m=0

e
z2

4

(
√

1 + z2)1+m− 1
2n

|∂m
z R[g±n ](z)| ≤ C|αγ|
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as claimed. In turn, this proves that the formal manipulations in (4.10) are justified,
so that the functions g±n (z) have zero total mass, which shows that the remainders
R[g±n ](z) have zero total mass as claimed, since R[g±n ](z) = g±n (z)− fn(±z) and since
both g±n (z) and fn(z) have zero total mass.

5. Inhomogeneous heat equations. In this section, we consider solutions of
inhomogeneous heat equations of the form

∂tu = ∂2
xu + ∂x

(
(1 + t)

1
2n − 3

2 f

(
x− 2σt√

1 + t

))
, u(x, 0) = 0,(5.1)

where f is a regular function having Gaussian decay at infinity. Solutions of (5.1)
satisfy the following theorem.

Theorem 13. Let 1 ≤ n < ∞, σ = ±1, Ξ(x) = e
x2

8 , M(f) =
∫∞
−∞ dz f(z), and

(5.2)

un(x, t) =
σ

(1 + t)1−
1

2n+1

2−1− 1
2n

√
4π

fn

(
−σx√
1 + t

)
, with fn(z) =

∫ ∞

z

dξ
ξe−

ξ2

4

(ξ − z)1−
1

2n
.

The solution u of (5.1) satisfies

‖u− M(f)un‖2, 34
� + ‖D(u− M(f)un)‖2, 54

� ≤ C

2∑
m=0

‖ΞDmf‖∞(5.3)

for all f such that the r.h.s. of (5.3) is finite.
Remark 14. Note that, while u → M(f)un as t → ∞ in the Sobolev norm (5.3),

it does not do so in spatially weighted norms such as L2(R, x2dx), as un has infinite
spatial moments for all times, while all moments of u are bounded for finite time.

Proof. We first define

F (ξ) =

∫ ξ

−∞
dz

(
f(z) − M(f)

e−
z2

4

√
4π

)
, with M(f) =

∫ ∞

−∞
dz f(z),(5.4)

and note that F satisfies

‖D3F‖1 +

2∑
m=0

‖ρDmF‖1 +

2∑
m=1

‖DmF‖2 ≤ C

2∑
m=0

‖ΞDmf‖∞,(5.5)

where ρ(x) =
√

1 + x2. Namely, we first note that ‖ρF‖1 ≤ ‖F̂‖2 + ‖F̂ ′′‖2 and

F̂ (k) = (ik)−1(f̂(k) − f̂(0)e−k2

). Then, since ‖Ξf‖∞ < ∞ implies that f̂ is analytic,
F̂ is regular near k = 0. The proof of (5.5) now follows from elementary arguments.

We finally note that it follows from (5.4) that

(1 + t)
1

2n − 3
2 f

(
x− 2σt√

1 + t

)
= M(f)A(x, t) + ∂xB(x, t), where

A(x, t) =
(1 + t)

1
2n − 3

2

√
4π

e−
(x−2σt)2

4(1+t) ,

B(x, t) = (1 + t)
1

2n −1∂xF

(
x− 2σt√

1 + t

)
.(5.6)
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The proof of (5.3) is then completed by considering separately the solutions of heat
equations with inhomogeneous terms given by ∂xA(x, t) and ∂2

xB(x, t). This is done
in Propositions 15 and 16 below.

Proposition 15. Let σ = ±1, 1 ≤ n < ∞, and let un be defined as in (5.2).
The solution u of

∂tu = ∂2
xu + ∂xA, u(x, 0) = 0,(5.7)

with A defined in (5.6), satisfies

‖u− un‖2, 34
+ ‖D(u− un)‖2, 54

≤ C.(5.8)

Proof. The solution of (5.7) is given by

u(x, t) = ∂x

∫ t

0

ds

∫ ∞

−∞
dy

e−
(x−y)2

4(t−s)√
4π(t− s)

e−
(y−2σs)2

4(1+s)

√
4π(1 + s)

3
2−

1
2n

.(5.9)

To motivate our result, we note that performing the y-integration and changing vari-
ables from s to ξ ≡ 2s−σx√

1+t
in (5.9) leads to

lim
t→∞

(1 + t)1−
1

2n+1 u(−σz
√

1 + t, t) = lim
t→∞

σ2−1− 1
2n

√
4π

∫ 2t√
1+t

+z

z

dξ
ξe−

ξ2

4

(ξ − z + 2√
1+t

)1−
1

2n

=
σ2−1− 1

2n

√
4π

fn(z).

More formally, taking the Fourier transform of (5.9) gives

û(k, t) = ike−k2(1+t)

∫ t

0

ds
e2ikσs

(1 + s)1−
1

2n
.

We now use that∣∣∣∣
∫ t

0

ds
e2ikσs

(1 + s)1−
1

2n
−
∫ t

0

ds
e2ikσs

s1− 1
2n

∣∣∣∣ ≤ C(n),

∫ t

0

ds
e2ikσs

s1− 1
2n

= |k|− 1
2n

(
θ(σk)Jn(|k|t) + θ(−σk)Jn(|k|t)

)
,

where θ(k) is the Heaviside step function and we defined

Jn(z) =

∫ z

0

ds
e2is

s1− 1
2n

for z ≥ 0. This function satisfies

sup
z≥0

z1− 1
2n |Jn(z) − Jn,∞| ≤ 1

2
for Jn,∞ = lim

z→∞
Jn(z).

Now define

ûn(k, t) = ike−k2(1+t)|k|− 1
2n

(
θ(σk)Jn,∞ + θ(−σk)Jn,∞

)
.(5.10)
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We have

|û(k, t) − ûn(k, t)| ≤ (C(n)|k| + t−1+ 1
2n )e−k2(1+t) ≤ C̃(n)√

t
e−

k2(1+t)
2 ,(5.11)

from which (5.8) follows by direct integration. We complete the proof by showing
that the inverse Fourier transform of the function ûn(k, t) defined in (5.10) satisfies

un(x, t) =
σ

(1 + t)1−
1

2n+1

2−1− 1
2n

√
4π

fn

(
−σx√
1 + t

)
for fn(z) =

∫ ∞

z

dξ
ξe−

ξ2

4

(ξ − z)1−
1

2n
.

(5.12)

This follows easily from the fact that

ûn(k, t) = (1 + t)−
1
2+ 1

2n+1 ûn(k
√

1 + t, 0)

and that, since

fn(z) =

∫ ∞

0

dξ
(z + ξ)e−

(z+ξ)2

4

ξ1− 1
2n

,

we get

σ2−1− 1
2n

√
4π

f̂n(−σk) = 2−
1

2n ike−k2

∫ ∞

0

dξ
eikσξ

ξ1− 1
2n

= ike−k2 |k|− 1
2n

∫ ∞

0

dξ
e2isign(kσ)ξ

ξ1− 1
2n

= ike−k2 |k|− 1
2n

(
θ(kσ)Jn,∞ + θ(−kσ)Jn,∞

)
= ûn(k, 0)

as claimed.
Proposition 16. Let σ = ±1, 1 ≤ n < ∞, and ρ(x) =

√
1 + x2. The solution u

of

∂tu = ∂2
xu + ∂2

xB, u(x, 0) = 0,(5.13)

with B defined in (5.6), satisfies

‖u‖2, 34
� + ‖Du‖2, 54

� ≤ C

(
‖D3F‖1 +

2∑
m=0

‖ρDmF‖1 +

2∑
m=1

‖DmF‖2

)
(5.14)

for all F for which the r.h.s. of (5.14) is finite.
Proof. We first note that the Fourier transform of u is given by

û(k, t) = −k2

∫ t

0

ds e−k2(t−s)−2ikσsF̂ (k
√

1 + s)(1 + s)
1

2n − 1
2 ,

which implies that

‖(1 − Q)u‖2, 34
+ ‖(1 − Q)Du‖2, 54

≤ C
(
‖DF‖2 + ‖D2F‖2

)
sup

0≤t≤1

∫ t

0

ds√
t− s

.

Here Q is again defined as the characteristic function for t ≥ 1. Next, by integrating
by parts, we find

û(k, t) =
ikF̂ (k)e−k2t

2σ
− ikF̂ (k

√
1 + t)e−2ikσt

2σ(1 + t)
1
2−

1
2n

+ N̂(k, t),
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where N̂(k, t) =
ik

2σ

∫ t

0

ds e−k2(t−s)−2ikσs
(
k2 + ∂s

)( F̂ (k
√

1 + s)

(1 + s)
1
2−

1
2n

)
.

We then note that

‖u−N‖2, 34
+ ‖D(u−N)‖2, 54

≤ C
(
‖F‖1 + ‖DF‖2 + ‖D2F‖2

)

and that, by defining Ĝ(k) = 1
2∂kF̂ (k), we have N̂(k, t) = N̂0(k, t)+N̂1(k, t)+N̂2(k, t),

where

N̂0(k, t) =
ik3

2σ

∫ t

0

ds e−k2(t−s)−2ikσs

(
F̂ (k

√
1 + s)

(1 + s)
1
2−

1
2n

)
,

N̂1(k, t) =
ik2

2σ

∫ t

0

ds e−k2(t−s)−2ikσs

(
Ĝ(k

√
1 + s)

(1 + s)1−
1

2n

)
,

N̂2(k, t) =
ik

2σ

(
1

2n
− 1

2

)∫ t

0

ds e−k2(t−s)−2ikσs

(
F̂ (k

√
1 + s)

(1 + s)
3
2−

1
2n

)
.

The procedure is now similar to that outlined in the proof of Theorem 6: Split the
integration intervals into [0, t

2 ] and [ t2 , t], and distribute the derivatives (k-factors)
either on the functions F and G or on the Gaussian. By introducing the notation

B1

[p1,q1

p2,q2

]
(t) ≡

∫ t
2

0

ds
(1 + s)−q1

(t− s)p1
+

∫ t

t
2

ds
(1 + s)−q2

(t− s)p2
,(5.15)

we then find that

‖QDαN0‖2, 34+α
2
≤ C(‖F‖1 + ‖D2+αF‖1) sup

t≥1
t

3
4+α

2 B1

[ 7
4+α

2 ,0
3
4 ,1+

α
2

]
(t),

‖QDαN1‖2, 34+α
2
≤ C(‖G‖1 + ‖D1+αG‖1) sup

t≥1
t

3
4+α

2 B1

[ 5
4+α

2 , 12
3
4 ,1+

α
2

]
(t),

‖QDαN2‖2, 34+α
2

� ≤ C(‖F‖1 + ‖DαF‖1) sup
t≥1

t
3
4+α

2

ln(2 + t)
B1

[ 3
4+α

2 ,1
3
4 ,1+

α
2

]
(t)

for α = 0, 1. The proof is completed by a straightforward application of Lemma 18
below, where we consider generalizations of the function B1 in (5.15), since those will
occur later on in sections 6 and 7 (see Definition 17 below).

6. Proof of Theorem 6, continued. In view of the estimates (2.6) and (2.8)
on eLt and h, respectively, the estimates needed to conclude the proof of Theorem 6
will naturally involve the functions B0 and B, which are defined as follows.

Definition 17. We define

B0[q](t) =

∫ t

0

ds
e−

t−s
8

√
t− s(1 + s)q

,

B
[p1,q1,r1

p2,q2,r2,r3

]
(t) =

∫ t
2

0

ds
(1 + s)−q1

(t− s)p1(t− 1 + s)r1
+

∫ t

t
2

ds
(1 + s)−q2 ln(2 + s)r3

(t− s)p2(t− 1 + s)r2
.(6.1)

These functions satisfy the following estimates.
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Lemma 18. Let 0 ≤ p2 < 1, 0 ≤ r2 ≤ 1 − p2, p1, q1, q2, r1 ≥ 0, and r3 ∈ {0, 1}.
There exists a constant C such that for all t ≥ 0 there holds

B0[q1](t) ≤ C(1 + t)−q1 ,

B
[p1,q1,r1

p2,q2,r2,r3

]
(t) ≤ C ln(2 + t)α

{
1

(1+t)β
if 0 ≤ p1 ≤ 1,

1
tp1−1 (1+t)β−p1+1 if p1 > 1,

(6.2)

where β = min(p1 +min(q1 −1, 0)+ r1, p2 + q2 + r2 −1), α = max(δq1,1, δp2+r2,1 + r3),
and δi,j is the Kronecker delta. Furthermore, since

B1

[p1,q1

p2,q2

]
(t) = B

[p1,q1,0

p2,q2,0,0

]
(t),

the estimate in (6.2) applies for B1 as well.
Proof. The proof follows immediately from

B0[q1](t) ≤ e−
t
16

∫ t
2

0

ds√
t− s

+
1

( t
2 + 1)q1

∫ t
2

0

ds
e−

s
8

√
s
,

B
[p1,q1,r1

p2,q2,r2,r3

]
(t) ≤ 1

( t
2 )p1( t

2 + 1)r1

∫ t
2

0

ds

(1 + s)q1
+

ln(2 + t)r3

( t
2 + 1)q2

∫ t
2

0

ds

sp2(1 + s)r2
,

and straightforward integrations.
We can now complete the proof of Theorem 6.
Proof of Theorem 6 continued. First, we recall that our goal is to prove that the

map N defined by

N [z](t) =

∫ t

0

ds eL(t−s)
( 0
∂xh(z(s))

)
(6.3)

satisfies ‖N [z]‖ ≤ C for all z ∈ B with ‖z‖ = 1. The estimate ‖PDN [z]‖2, 34
≤ C has

already been proved. The other necessary estimates are done as follows:

‖N̂ [z]‖∞,0 ≤ C sup
t≥0

B1

[ 1
2 ,

1
2

1
2 ,

1
2

]
(t) ≤ C,

‖N [z]‖2, 14
≤ C sup

t≥0
(1 + t)

1
4B1

[ 1
2 ,

3
4

1
2 ,

3
4

]
(t) ≤ C,

‖PDN [z]‖2, 34
≤ C sup

t≥0
(1 + t)

3
4B1

[ 1, 34
1
2 ,

5
4

]
(t) ≤ C,

‖(1 − P)DN [z]‖2, 34
≤ sup

t≥0
(1 + t)

3
4B0[

5
4 ](t) ≤ C,

‖(1 − Q)PD2N [z]2‖2, 54
� ≤ C‖(1 − Q)PDN [z]2‖2, 34

≤ C‖PDN [z]2‖2, 34
≤ C,(6.4)

‖QPD2N [z]2‖2, 54
� ≤ C sup

t≥1

(1 + t)
5
4

ln(2 + t)
B
[ 3

2 ,
3
4 ,0

1
2 ,

5
4 ,

1
2 ,0

]
(t) ≤ C,(6.5)

‖(1 − P)D2N [z]2‖2, 54
� ≤ sup

t≥0
(1 + t)

5
4B0[

5
4 ](t) ≤ C.(6.6)

In (6.4), we used the obvious estimates ‖PDf‖2 ≤ ‖Pf‖2 and ‖(1 − Q)f‖2,p ≤
2p−q‖(1−Q)f‖2,q if q < p, while in (6.5), we made use of sup|k|≤1,t≥0|k|

√
1 + te−k2t ≤
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1, and finally in (6.6) we used supk∈R |k|(1 + k2)−
1
2 = 1. Incidentally, (6.6) is the

only place in the above estimates where the (crucial) presence of the extra factor

(1 + k2)−
1
2 in the second component of the r.h.s. of (2.6) is used. This concludes the

proof of Theorem 6.

7. Remainder estimates. We now make precise the sense in which the semi-
group eLt is close to that of (2.3), whose Fourier transform is given by

eL0t ≡
(

e−k2t+ikt 0

0 e−k2t−ikt

)
.(7.1)

Lemma 19. Let P be the Fourier multiplier with the characteristic function on
[−1, 1], and let eLt (respectively, eL0t) be as in (2.2) (respectively, (7.1)) and S be as
in (2.4). Then one has the estimates

sup
t≥0,k∈R

√
1 + te

k2t
2

∣∣∣∣
(

PSeLt − eL0tS
)

i,j

∣∣∣∣ ≤ C,(7.2)

where (PSeLt − eL0tS)i,j denotes the (i, j)-entry in the matrix PSeLt − eL0tS.
Proof. The proof follows by considering separately |k| ≤ 1 and |k| > 1. We first

rewrite

PSeLt − eL0tS = P

(
SeLt − eL0tS

)
+ (1 − P)eL0tS.

We then have

sup
t≥0,k∈R

√
1 + te

k2t
2

∣∣∣∣
(

(1 − P)eL0tS
)

i,j

∣∣∣∣ ≤ sup
t≥0,|k|≥1

√
1 + te−

k2t
2 ≤ C.

For |k| ≤ 1, we first compute

eL0tS = e−k2t

(
eikt eikt

e−ikt −e−ikt

)
,

SeLt = e−k2t

⎛
⎝cos(ktΔ) + 1−ik

Δ i sin(ktΔ) cos(ktΔ) + 1+ik
Δ i sin(ktΔ)

cos(ktΔ) − 1+ik
Δ i sin(ktΔ) −(cos(ktΔ) − 1−ik

Δ i sin(ktΔ))

⎞
⎠,

where we recall that Δ =
√

1 − k2. We next note that

P| sin(ktΔ) − sin(kt)| ≤ P| cos(kt(Δ − 1)) − 1| + P| sin(kt(Δ − 1))|
≤ P|

√
1 − k2 − 1| |k|t ≤ P|k|3t,

P| cos(ktΔ) − cos(kt)| ≤ P| cos(kt(Δ − 1)) − 1| + P| sin(kt(Δ − 1))|
≤ P|

√
1 − k2 − 1| |k|t ≤ P|k|3t,

P

∣∣∣∣
(

1

Δ
− 1

)
sin(ktΔ)

∣∣∣∣ ≤ P|
√

1 − k2 − 1| |k|t ≤ P|k|3t.

The proof is completed noting that

sup
|k|≤1,t≥0

t
m
2 |k|ne−

k2t
2 ≤ C(n)

for any (finite) 0 ≤ m ≤ n.
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We are now in a position to prove that the remainder

R[z](t) =
(
SeLt − eL0tS

)
z0

+

∫ t

0

ds

[
SeL(t−s)

(
0

∂xh(z(s))

)
− eL0(t−s)S

(
0

∂xg0(z(s))

)]

satisfies improved estimates as stated in (3.5).
Theorem 20. Let ε0 be again the (small) constant provided by Theorem 6. Then

for all z0 ∈ B0 with |z0| ≤ ε0, the solution z of (1.1) satisfies

‖R[z]‖2, 34
� + ‖DR[z]‖2, 54

� ≤ Cε0.(7.3)

Proof. We first note that(
SeLt − eL0tS

)
z0 =

(
SPeLt − eL0tS

)
z0 + S(1 − P)eLtz0 ≡ L1[z0](t) + L2[z0](t)

and then use the fact that by Lemma 19 we have

‖DαL1[z0]‖2, 34+α
2
≤ C sup

t≥0
(1 + t)

1
4+α

2 min
(
‖Dαz0‖2, t−

1
4−

α
2 ‖ẑ0‖∞

)
≤ C|z0|

for α = 0, 1, and finally

‖L2[z0]‖2, 34
+ ‖DL2[z0]‖2, 54

≤ C(‖z0‖2 + ‖Dz0‖2) sup
t≥0

(1 + t)
5
4 e−

t
4 ≤ C|z0|.

This proves ∥∥∥(SeLt − eL0tS
)
z0

∥∥∥
2, 34

+
∥∥∥D

(
SeLt − eL0tS

)
z0

∥∥∥
2, 54

≤ C|z0|

for all z0 ∈ B0. We then show that∥∥∥R[z](t) −
(
SeLt − eL0tS

)
z0

∥∥∥
2, 34

�
+
∥∥∥D

(
R[z](t) −

(
SeLt − eL0tS

)
z0

)∥∥∥
2, 54

�
≤ C‖z‖2

for all z ∈ B. We need only to prove the estimates for ‖z‖ = 1. We first decompose

R[z](t) −
(
SeLt − eL0tS

)
z0 = SN1[z](t) + SN2[z](t) + N3[z](t),(7.4)

where

N1[z](t) = (1 − P)

∫ t

0

ds eL(t−s)
( 0
∂xh(z(s))

)
,

N2[z](t) = P

∫ t

0

ds eL(t−s)
( 0
∂xh(z(s)) − ∂xg0(z(s))

)
,

N3[z](t) =

∫ t

0

ds
(

PSeL(t−s) − eL0(t−s)S
)( 0

∂xg0(z(s))

)
.

We then recall that h(z) satisfies

‖h(z)‖2, 34
+ ‖Dh(z)‖2, 54

≤ C‖z‖2,
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which implies that

‖N1[z]‖2, 34
≤ C sup

t≥0
(1 + t)

3
4B0[

3
4 ](t) ≤ C, ‖DN1[z]‖2, 54

≤ C sup
t≥0

(1 + t)
5
4B0[

5
4 ](t) ≤ C.

Moreover h0(a, b) ≡ f(a, b)∂xb + g(a, b) − g0(a, b) satisfies

‖h0(z)‖1,1 + ‖Dh0(z)‖1, 32
� ≤ C‖z‖2.

Here we need to consider separately t ∈ [0, 1] and t ≥ 1 when estimating ‖PDN2

[z]‖2, 54
� . By writing again Q for the characteristic function for t ≥ 1, we find that

‖PN2[z]‖2, 34
� ≤ C sup

t≥0

(1 + t)
3
4

ln(2 + t)
B1

[ 3
4 ,1
3
4 ,1

]
(t) ≤ C,

‖(1 − Q)PDN2[z]‖2, 54
� ≤ C sup

0≤t≤1
(1 + t)

5
4 B1

[ 3
4 ,

3
2

3
4 ,

3
2

]
(t) ≤ C,

‖QPDN2[z]‖2, 54
� ≤ C sup

t≥1

(1 + t)
5
4

ln(2 + t)
B
[ 5

4 ,1,0
3
4 ,

3
2 ,0,1

]
(t) ≤ C.

We finally note that

‖g0(z)‖2, 34
+ ‖Dg0(z)‖2, 54

≤ C‖z‖2,

and so, by using Lemma 19, we find

‖N3[z]‖2, 34
� ≤ sup

t≥0

(1 + t)
3
4

ln(2 + t)
B
[ 1

2 ,
3
4 ,

1
2

1
2 ,

3
4 ,

1
2 ,0

]
(t) ≤ C,

‖DN3[z]‖2, 54
� ≤ sup

t≥0

(1 + t)
5
4

ln(2 + t)
B
[ 1, 34 ,

1
2

1
2 ,

5
4 ,

1
2 ,0

]
(t) ≤ C.

This completes the proof.
It now remains only to prove the estimates (3.13) and (3.14) on the maps R̃{u,v},

where we recall that

R̃u[z,RN ](t) = c+E0[h1,u + h3,u](t) − c−E−2[h1,v + h3,v](t) + c3E−1[h2 + h4](t),

R̃v[z,R
N ](t) = c−E0[h1,v + h3,v](t) − c+E2[h1,u + h3,u](t) − c3E1[h2 + h4](t),

with h1,u = RN
u (u+u�), h3,u = u2

1, h1,v = RN
v (v+v�), h3,v = v2

1 , h4 = (T u�)(T −1v�),
and

h2 = (T RN
u )T −1

(v + v�
2

)
+ (T −1RN

v )T
(u + u�

2

)
,

Eσ[h](t) = ∂x

∫ t

0

ds e∂
2
x(t−s) T σh(s).

Here we will prove only that

1∑
α=0

‖DαR̃{u,v}[z,R
N ]‖2, 34+α

2 −ε ≤ Cε0

1∑
α=0

‖DαRN‖2, 34+α
2 −ε + C.(7.5)
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It is then straightforward to show (3.14), namely, that the maps R̃{u,v} are Lipschitz
in their second argument; we omit the details.

To prove (7.5), we first need estimates on h1 = (h1,u, h1,v), h2, h3 = (h3,u, h3,v),
and h4. We note that u0 = (u0, v0) and u1 = (u1, v1) satisfy

‖u0‖1,0 + ‖u1‖1,0 + ‖Du0‖1, 12
+ ‖Du1‖1, 12

≤ C,

sup
t≥0

(1 + t)
3
2

(
|u0(±t, t)| + |u1(±t, t)|

)
+ (1 + t)2

(
|Du0(±t, t)| + |Du1(±t, t)|

)
≤ C

for some constant C; see Proposition 12. We thus find that

‖h1‖1,1−ε + ‖Dh1‖1, 32−ε ≤ Cε0

1∑
α=0

‖DαRN‖2, 34+α
2 −ε,

‖h2‖1,1−ε + ‖Dh2‖1, 32−ε ≤ Cε0

1∑
α=0

‖DαRN‖2, 34+α
2 −ε,

‖h3‖1,1 + ‖Dh3‖1, 32
+ ‖h4‖1, 32

+ ‖Dh4‖2,2 ≤ C.

(7.6)

The proof of (7.5) then follows from Proposition 21, which implies that

1∑
α=0

‖DαEσ[h1]‖2, 34+α
2 −ε + ‖DαEσ[h2]‖2, 34+α

2 −ε ≤ Cε0

1∑
α=0

‖DαRN‖2, 34+α
2 −ε,

1∑
α=0

‖DαEσ[h3]‖2, 34+α
2

� + ‖DαEσ[h4]‖2, 34+α
2

� ≤ C

for any σ ∈ {−2,−1, 0, 1, 2} if the estimates in (7.6) are satisfied.
Proposition 21. Let ε > 0 and σ ∈ {−2,−1, 0, 1, 2}. Then there holds

1∑
α=0

‖DαEσ[h1]‖2, 34+α
2 −ε ≤ C

1∑
α=0

‖Dαh1‖1,1+α
2 −ε,

1∑
α=0

‖DαEσ[h2]‖2, 34+α
2

� ≤ C

1∑
α=0

‖Dαh2‖1,1+α
2
.

Proof. Let ui = Eσ[hi]. By taking the Fourier transform, we find that

ûi(k, t) = ik

∫ t

0

ds e−k2(t−s)+iσksĥi(k, s).

We can restrict ourselves to
∑1

α=0 ‖Dαh1‖1,1+α
2 −ε = 1 and

∑1
α=0 ‖Dαh2‖1,1+α

2
= 1.

Then it follows that

‖Dαu1‖2, 34+α
2 −ε ≤ C sup

t≥0
(1 + t)

3
4+α

2 −ε B1

[ 3
4+α

2 ,1−ε
3
4 ,1+

α
2 −ε

]
(t) ≤ C,

‖Dαu2‖2, 34+α
2

� ≤ C sup
t≥0

(1 + t)
3
4+α

2

ln(2 + t)
B1

[ 3
4+α

2 ,1
3
4 ,1+

α
2

]
(t) ≤ C

for α = 0, 1 as claimed.
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LARGE TIME BEHAVIOR OF RADIALLY SYMMETRIC SURFACES
IN THE MEAN CURVATURE FLOW∗

MITSUNORI NARA†

Abstract. The large time behavior of radially symmetric surfaces in R
n+1 moving by the mean

curvature flow is studied. By studying a Cauchy problem, we deal with moving surfaces represented
by entire graphs on a hyperplane. Here an initial surface is given by a function that is bounded and
radially symmetric. It is proved that the solution converges uniformly to the solution of the Cauchy
problem of the heat equation with the same initial value. The difference is of order O(t−1/2) as time
goes to infinity. The proof is based on the construction of the Green’s function and the decay estimates
for the derivatives of the solution. By virtue of the stability results for the heat equation, our result
gives the sufficient and necessary conditions on the asymptotic stability of constant functions that
represent stationary hyperplanes in the mean curvature flow.

Key words. large time behavior, mean curvature flow, heat equation, radially symmetric
solution
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1. Introduction. In this paper, we study the mean curvature flow in R
n+1.

Especially we study the large time behavior of the solution to the Cauchy problem of
a scalar parabolic equation

ut√
1 + |∇u|2

= div

(
∇u√

1 + |∇u|2

)
, x ∈ R

n, t > 0,(1)

u(x, 0) = u0(x), x ∈ R
n.(2)

Here we assume that n ≥ 2 and that the initial value u0(x) is bounded and radially
symmetric. Throughout this paper, we say that a function f(x) is radially symmetric
when it depends only on r = |x|.

The mean curvature flow is a mathematical model that describes motion of ori-
ented hypersurfaces. Let S(t) be a moving hypersurface in R

n+1. We are interested
in the dynamics of S(t) given by V = −κ, where V and κ are the outward normal
velocity and the mean curvature of S(t), respectively. This model appears in several
fields. For example, this describes the motion of phase boundaries in the Allen–Cahn
equation [2] and also in the reaction-diffusion systems of a competition type [7].

The mean curvature flow of compact surfaces is extensively studied. It is well
known that a compact surface S(t) in R

n+1 shrinks to a single point when n = 1
or S(0) is convex. This fact has been proved by Gage and Hamilton [11], Grayson
[12], and Huisken [13]. When n ≥ 2, smooth initial surfaces may develop geometric
singularities. Evans and Spruck [9] and Chen, Giga, and Goto [1] developed a level
set approach for handling such geometric singularities.

On the other hand, some researchers focus on the mean curvature flow of graphical
surfaces. In this case, an initial surface S(0) is given by a scalar function y = u0(x), x ∈

∗Received by the editors March 26, 2007; accepted for publication (in revised form) September
25, 2007; published electronically March 18, 2008.
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R
n, and a moving surface S(t), t > 0, is expressed by a scalar function y = u(x, t), x ∈

R
n, t > 0. Under these assumptions, the mean curvature flow V = −κ is rewritten as

the Cauchy problem (1)–(2).
A pioneering work for the mean curvature flow of graphical surfaces is given by

Ecker and Huisken [6]. They showed the existence of expanding self-similar solutions
and the large time behavior of solutions. It is proved that a graphical solution u(x, t)
of (1)–(2) converges to an expanding self-similar solution, if an unbounded initial
graph u0(x) satisfies linear growth and additional assumptions. Ishimura [14] also
studied the same problem in detail.

Our aim in this paper is to study the large time behavior of graphical surfaces
with bounded initial graphs, i.e., the large time behavior of the solution u(x, t) to the
Cauchy problem (1)–(2) with bounded initial values u0(x). The major interest is the
asymptotic stability of the hyperplane u(x, t) = 0, which is the simplest stationary
surface in the mean curvature flow.

Now we briefly mention the stability results for the heat equation. For the Cauchy
problem of the heat equation

Ht = ΔH, x ∈ R
n, t > 0,(3)

H(x, 0) = Φ(x), x ∈ R
n,(4)

the necessary and sufficient conditions for the asymptotic stability of H(x, t) = 0 are
obtained as follows. This result is shown in [5, 8, 15, 18], for example.

Proposition 1.1. Let Φ(x) be a bounded function. Then the solution H(x, t) of
(3)–(4) satisfies limt→∞ H(0, t) = 0 if and only if Φ(x) satisfies

lim
R→∞

1

(2R)n

∫
y∈VR

Φ(y) dy = 0.

Moreover it satisfies limt→∞ supx∈Rn |H(x, t)| = 0 if and only if Φ(x) satisfies

lim
R→∞

sup
x∈R

1

(2R)n

∣∣∣∣
∫
y∈VR

Φ(y − x) dy

∣∣∣∣ = 0,

where VR is the cube with the center at the origin and the side 2R.
Here we note that an initial value Φ(x) does not need to decay to zero as |x| → ∞.

It may oscillate with some amplitude. Collet and Eckmann [4] showed a remarkable
example where an initial value does not satisfy the criterion for the asymptotic sta-
bility of H(x, t) = 0 and the solution H(x, t) does not converge to any fixed constant
as t → ∞.

Proposition 1.2 (see [4]). Let H(x, t) be the solution of the Cauchy problem of
the heat equation

Ht = Hxx, x ∈ R, t > 0,

H(x, 0) = Φ∗(x), x ∈ R.

Suppose that Φ∗(x) is a smooth even function that satisfies |Φ∗(x)| ≤ 1 for x ∈ R and

Φ∗(x) = (−1)m, x ∈ [m! + 2m, (m + 1)! − 2m+1 ]

for m ≥ 5. Then it holds that

lim inf
t→∞

H(0, t) = −1, lim sup
t→∞

H(0, t) = 1.
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This implies that the solution H(x, t) oscillates forever as t → ∞ with an ampli-
tude of 2. Here the initial value Φ∗(x) does not decay but oscillates slower and slower
as |x| → ∞. This example shows the difficulty in considering the asymptotic stability
of the zero solution for spatially nondecaying initial values.

In the case of n = 1, the asymptotic stability of u(x, t) = 0 of the problem (1)–(2)
with bounded initial values is obtained in [17]. In this case, the problem (1)–(2) is
rewritten as follows:

ut =
uxx

1 + u2
x

, x ∈ R, t > 0,(5)

u(x, 0) = u0(x), x ∈ R.(6)

This describes the motion of curves in R
2 expressed by the function y = u(x, t), x ∈

R, t > 0. The constant solution u(x, t) = 0 means the stationary line in R
2. Equation

(5) is rewritten as ut = (arctanux)x = uxx−(ux−arctanux)x = uxx+Fx(x, t), which
is considered to be the heat equation with the flux Fx(x, t). Then u(x, t) is given by

u(x, t) =

∫
R

Γ(x− y, t)u0(y) dy +

∫ t

0

∫
R

Γ(x− y, t− s)Fy(y, s) dy ds,

where Γ(ξ, τ) is the heat kernel. In [17], under the assumption of u0 ∈ C2+α(R), it is
proved that ∣∣∣∣

∫ t

0

∫
R

Γ(x− y, t− s)Fy(y, s) dy ds

∣∣∣∣ ≤ C t−
1
2 , t > 0.

This means that the contribution of the flux Fx can be ignored as t → ∞, and the
large time behavior of u(x, t) of (5)–(6) is derived directly from that of the Cauchy
problem of the heat equation with the same initial value u0(x). Here the initial value
u0(x) does not need to decay to zero as |x| → ∞. Consequently, the asymptotic
stability of the stationary line u(x, t) = 0 of (5)–(6) is obtained as in Proposition 1.1.
In addition, a similar result to Proposition 1.2 holds true for the problem (5)–(6). We
briefly mention why such a result holds true. One reason is that the mean value of
Fx(x, t) is zero at each t ≥ 0 when |ux| is bounded. Thus Proposition 1.1 gives that,
for each s ≥ 0,

lim
t→∞

∫
R

Γ(x− y, t− s)Fy(y, s) dy = 0.

This means that the contribution of the flux Fy(y, s) at each s ≥ 0 may be ignored as
t → ∞. Another reason is that the flux Fy(y, s) itself decays fast enough as s → ∞.
Then the whole contribution of the flux may be neglected in considering the large
time behavior.

Our motivation in this paper is to answer the question of whether similar results
hold true for the problem (1)–(2) with n ≥ 2. The following is the main result in this
paper.

Theorem 1.3. Suppose that n ≥ 2 and that u0 ∈ C(Rn) ∩W 1,∞(Rn) is radially
symmetric. Then there exists a classical solution u(x, t) to the Cauchy problem (1)–(2)
up to t = +∞. Moreover it satisfies

sup
x∈Rn

∣∣∣∣u(x, t) −
∫

Rn

Γ(x− y, t)u0(y) dy

∣∣∣∣ ≤ C t−
1
2 , t ≥ 2,
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for a constant C > 0 depending only on n and u0. Here Γ(ξ, τ) is the heat kernel
given by Γ(ξ, τ) = 1/(4πτ)n/2 exp(−|ξ|2/(4τ)).

Thus the large time behavior of the solution of (1)–(2) with n ≥ 2 is also derived
directly from that of the Cauchy problem of the heat equation with the same initial
value u0(x) if it is radially symmetric. The difference is of order O(t−1/2). We also
note that the initial value u0(x) does not need to decay to zero as |x| → ∞ and that
it does not need to converge to any fixed constant as |x| → ∞. It may oscillate with
some amplitude.

From Proposition 1.1 and Theorem 1.3, we obtain the necessary and sufficient
conditions for the asymptotic stability of the hyperplane u(x, t) = 0 of (1)–(2) with
radially symmetric initial values as follows.

Corollary 1.4. Suppose that n ≥ 2 and that u0 ∈ C(Rn) ∩ W 1,∞(Rn) is
radially symmetric. Then the solution u(x, t) to the Cauchy problem (1)–(2) satisfies
limt→∞ u(0, t) = 0 if and only if u0(x) satisfies

(7) lim
R→∞

1

(2R)n

∫
y∈VR

u0(y) dy = 0.

Moreover it satisfies limt→∞ supx∈Rn |u(x, t)| = 0 if and only if u0(x) satisfies

(8) lim
R→∞

sup
x∈R

1

(2R)n

∣∣∣∣
∫
y∈VR

u0(y − x) dy

∣∣∣∣ = 0,

where VR is the cube with the center at the origin and the side 2R.
To prove Theorem 1.3, we will extend the idea given by [17] to the case where an

initial value is radially symmetric and n ≥ 2. If the initial value is radially symmetric,
the solution of (1)–(2) is also radially symmetric and satisfies

ut =
urr

1 + u2
r

+
n− 1

r
ur = urr +

n− 1

r
ur + Fr(r, t), r > 0, t > 0,

where r = |x| and Fr(r, t) = −(ur − arctanur)r. An extra difficulty in most of
the radial problems is to handle a singularity appearing at the origin properly. Our
idea in this paper is to construct the Green’s function Z(n) of the equation ut =
urr + (n − 1)ur/r, which is the heat equation for radially symmetric solutions. In
section 3, we give an explicit expression for the Green’s function Z(n) and its estimates.
Once we obtain the Green’s function Z(n), we will have the expression

(9) u(r, t) =

∫ ∞

0

Z(n)(r, ξ, t)u0(ξ) dξ +

∫ t

0

∫ ∞

0

Z(n)(r, ξ, t− s)Fξ(ξ, s) dξ ds.

The first term of the right-hand side is the radially symmetric solution of the heat
equation with the same initial value. The remaining problem is to estimate Fr(r, t).
For this purpose, we show the decay estimates for the derivatives of u(r, t) in section
4. In section 5, we give the proof of Theorem 1.3. We estimate the second term of the
right-hand side of (9) by making use of the estimates for the Green’s function Z(n)

and the derivatives of u(r, t) obtained in sections 3 and 4, respectively.
Here we introduce the notation. L∞(Rn) and W 1,∞(Rn) denote the Lebesgue and

the Sobolev spaces, respectively. For α ∈ (0, 1), Cα(Rn) denotes the Hölder space,
that is, the space of functions that are bounded and uniformly Hölder continuous
with exponent α on R

n. C2+α(Rn) means the space of functions with u, uxi
, uxixj

∈
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Cα(Rn). For a domain RT = R
n × [0, T ], Cα,α/2(RT ) denotes the space of functions

that are bounded and uniformly Hölder continuous with exponent α and α/2 with
respect to xi and t, respectively, on RT . C2+α,1+α/2(RT ) means the space of functions
that satisfy u, uxi , uxixj , ut ∈ Cα,α/2(RT ). The norm in the space C2+α,1+α/2(RT ) is
denoted by ‖ · ‖C2+α,1+α/2(RT ).

2. Preliminaries. Before proving our results for large time behavior, we briefly
mention the existence and some estimates of the solutions u(x, t) to the problem
(1)–(2). Throughout this paper, we always assume that n ≥ 2 and that an initial
value belongs to C(Rn) ∩W 1,∞(Rn) even if it is not mentioned specifically. First we
introduce the existence result given by Ecker and Huisken [6].

Proposition 2.1 (see [6]). Suppose that u0(x) is uniform Lipschitz continuous
on R

n. Then there exists a solution u(x, t) of (1)–(2) globally in time. Moreover it
satisfies

(10) |∇u(x, t)| ≤ ‖∇u0‖L∞(Rn), x ∈ R
n, t > 0.

They assumed only uniform Lipschitz continuity of initial surfaces to study the
large time behavior of solutions with linear growth. In the present paper, we focus on
the large time behavior of bounded solutions and assume that u0 ∈ C(Rn)∩W 1,∞(Rn).
In this case, the existence of the solution follows directly from Proposition 2.1. In
addition, the following estimate holds true.

Proposition 2.2. Suppose that u0(x) belongs to C(Rn) ∩ W 1,∞(Rn). Then
there exists a solution u(x, t) of (1)–(2) globally in time. Moreover it belongs to
C2+α,1+α/2(Rn × [1, T ]) for any T > 0 and satisfies the estimate

(11) ‖u‖C2+α,1+α/2(Rn×[1,T ]) ≤ C1,

where C1 > 0 is a constant that depends only on n and u0 and is independent of
T > 0.

Proof. Proposition 2.1 implies that the solution exists globally in time, and the
estimate (10) holds true. The estimate (10) implies that (1) is considered to be a
uniformly parabolic equation, and hence the comparison principle is valid. Thus the
L∞-bound for u is obtained, since the constants ±‖u0‖L∞(Rn) are both stationary
solutions of (1)–(2). The L∞-bound for u and the estimate (10) imply that

‖uxi‖Cα,α/2(Rn×[1,T ]) ≤ C for 1 ≤ i ≤ n,

where C > 0 is a constant that depends only on n and u0 and is independent of
T > 0. This fact follows from the general theory for quasi-linear parabolic equations.
See Chapter XII of [16], for instance. Finally we apply the Schauder theory of linear
parabolic equations and hence obtain (11). Thus the proof is completed.

All discussions in this paper will construct on the basis of Propositions 2.1 and
2.2. The existence of solutions to the problem (1)–(2) is obtained also in other papers.
For example, Chou and Kwong [3] proved the existence of solutions for smooth initial
values without the restriction of growth order.

3. Green’s function for radially symmetric solutions. As is mentioned in
the introduction, our idea in this paper is to express radially symmetric solutions
of (1)–(2) by using the Green’s function of the heat equation for radially symmetric
solutions. For this purpose, we begin with the Cauchy problem of the heat equation

Ht = ΔH, x ∈ R
n, t > 0,

H(x, 0) = Φ(x), x ∈ R
n.
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It is well known that the solution H(x, t) is expressed by the heat kernel as follows:

(12) H(x, t) =

∫
Rn

1

(4π t)n/2
exp

(
−|x− y|2

4t

)
Φ(y) dy.

When the initial value Φ(x) is radially symmetric, the solution H(x, t) is also radi-
ally symmetric. Here we denote H(x, t) and Φ(x) by h(r, t) and ϕ(r) for r = |x|,
respectively. Then we have the initial value problem of the heat equation for radially
symmetric solutions, that is,

ht = hrr +
n− 1

r
hr, r > 0, t > 0,(13)

h(r, 0) = ϕ(r), r > 0.(14)

By changing the variables in (12) to the polar coordinate system, we obtain an ex-
plicit expression for h(r, t), which is useful to our discussions. We give the following
proposition.

Proposition 3.1. The solution h(r, t) of (13)–(14) is given by

(15) h(r, t) =

∫ ∞

0

Z(n)(r, ξ, t)ϕ(ξ) dξ,

where Z(n)(r, ξ, t) is the function defined by

(16) Z(n)(r, ξ, t) =
Kn ξ

n−1

(4π t)n/2

∫ π

0

exp

(
− (r − ξ cos θ)2 + (ξ sin θ)2

4t

)
sinn−2 θ dθ.

The constant Kn is given by K2 = 2, K3 = 2π, and

Kn =
2(2π)m+1

1 · 3 · 5 . . . (2m + 1)
if n = 2m + 4 ≥ 4,(17)

Kn =
(2π)m+2

2 · 4 · 6 . . . 2(m + 1)
if n = 2m + 5 ≥ 5.(18)

Proof. First we consider the case of n = 2. In this case, we use the polar coordinate
system with x1 = r cos Θ, x2 = r sin Θ and denote H(x, t) and Φ(x) by H̃(r,Θ, t) and

Φ̃(r,Θ), respectively. Then by changing the variables in (12), we have

(19) H̃(r,Θ, t) =

∫ ∞

0

∫ 2π

0

1

4π t
exp

(
−d(r,Θ, ξ, θ)

4t

)
Φ̃(ξ, θ) ξ dθ dξ,

where d(r,Θ, ξ, θ) = (r cos Θ − ξ cos θ)2 + (r sin Θ − ξ sin θ)2. If the initial value

Φ̃(r,Θ) is radially symmetric, the solution H̃(r,Θ, t) is also radially symmetric; that

is, H̃(r,Θ, t) is independent of Θ. Thus the solution h(r, t) of (13)–(14) is given by

h(r, t) = H̃(r, 0, t), for example. By setting Θ = 0 in (19), we obtain

h(r, t) = H̃(r, 0, t) =

∫ ∞

0

∫ 2π

0

1

4π t
exp

(
− (r − ξ cos θ)2 + (ξ sin θ)2

4t

)
ϕ(ξ) ξ dθ dξ

=

∫ ∞

0

ξ

2π t

∫ π

0

exp

(
− (r − ξ cos θ)2 + (ξ sin θ)2

4t

)
dθ ϕ(ξ) dξ.

This implies (15)–(16) with K2 = 2. Thus the proof for the case n = 2 is completed.
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Next we consider the case of n ≥ 3. In this case, we use the polar coordinate
system with

x1 = r cos Θ1,
x2 = r sin Θ1 cos Θ2,
x3 = r sin Θ1 sin Θ2 cos Θ3,
· · ·

xn−1 = r sin Θ1 sin Θ2 . . . sin Θn−2 cos Θn−1,
xn = r sin Θ1 sin Θ2 . . . sin Θn−2 sin Θn−1,

where

(r,Θ1, . . . ,Θn−2,Θn−1) ∈ [0,∞) × [0, π] × · · · × [0, π] × [0, 2π].

We denote H(x, t) and Φ(x) by H̃(r,Θ, t) and Φ̃(r,Θ) with Θ = (Θ1, . . . ,Θn−1),
respectively. Then by changing the variables in (12), we have

H̃(r,Θ, t) =

∫ ∞

0

∫ 2π

0

∫ π

0

. . .

∫ π

0

1

(4π t)n/2
exp

(
−d(r,Θ, ξ,θ)

4t

)
Φ̃(ξ,θ)

× ξn−1 sinn−2 θ1 . . . sin θn−2 dθ1 . . . dθn−1 dξ,

where θ = (θ1, . . . , θn−1) and the function d(r,Θ, ξ,θ) is given by

d(r,Θ, ξ,θ) = (r cos Θ1 − ξ cos θ1)
2

+ (r sin Θ1 cos Θ2 − ξ sin θ1 cos θ2)
2

+ · · ·
+ (r sin Θ1 . . . sin Θn−2 cos Θn−1 − ξ sin θ1 . . . sin θn−2 cos θn−1)

2

+ (r sin Θ1 . . . sin Θn−2 sin Θn−1 − ξ sin θ1 . . . sin θn−2 sin θn−1)
2.

Similarly to the case of n = 2, the solution h(r, t) of (13)–(14) is given by h(r, t) =

H̃(r,0, t), with 0 = (0, . . . , 0). By setting Θ = 0, we have

d(r,0, ξ,θ) = (r − ξ cos θ1)
2 + (ξ sin θ1 cos θ2)

2

+ · · ·
+ (ξ sin θ1 . . . sin θn−2 cos θn−1)

2 + (ξ sin θ1 . . . sin θn−2 sin θn−1)
2

= (r − ξ cos θ1)
2 + (ξ sin θ1)

2.

Thus h(r, t) is given as follows:

h(r, t) =

∫ ∞

0

∫ π

0

1

(4π t)n/2
exp

(
−d0(r, ξ, θ1)

4t

)
ϕ(ξ) ξn−1 sinn−2 θ1 dθ1 dξ

×
∫ π

0

sinn−3 θ2 dθ2 × · · · ×
∫ π

0

sin θn−2 dθn−2 ×
∫ 2π

0

dθn−1

=

∫ ∞

0

ξn−1

(4π t)n/2

∫ π

0

exp

(
−d0(r, ξ, θ1)

4t

)
sinn−2 θ1 dθ1 ϕ(ξ) dξ

×
n−3∏
i=1

∫ π

0

sini θ dθ × 2π,
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where d0(r, ξ, θ1) = (r− ξ cos θ1)
2 + (ξ sin θ1)

2. By setting Kn = 2π
∏n−3

i=1

∫ π

0
sini θ dθ

for n ≥ 4 and K3 = 2π, we obtain (15)–(16). Here Kn for n ≥ 4 is given by (17)–(18),
since we have ∫ π

0

sini θ dθ = π · 1 · 3 · 5 . . . (2m− 1)

2 · 4 · 6 . . . 2m for i = 2m,∫ π

0

sini θ dθ = 2 · 2 · 4 · 6 . . . 2m
1 · 3 · 5 . . . (2m + 1)

for i = 2m + 1.

This completes the proof.
For later discussions, we need some properties of the Green’s function Z(n)(r, ξ, t).

These properties look like that of the usual heat kernel.
Lemma 3.2. The function Z(n)(r, ξ, r) defined in Proposition 3.1 has the following

properties:
(i) For every r ≥ 0, it satisfies∫ ∞

0

|Z(n)(r, ξ, t)| dξ =

∫ ∞

0

Z(n)(r, ξ, t) dξ = 1, t > 0.

(ii) For every r ≥ 0, it satisfies∫ ∞

0

|Z(n)
ξ (r, ξ, t)| dξ ≤ C2 t

− 1
2 , t > 0.

(iii) For every ξ with 0 ≤ ξ ≤ 1, it satisfies

sup
r≥2

|Z(n)(r, ξ, t)| ≤ C3 (1 + t)−
n
2 , t > 0,

where C2 > 0 and C3 > 0 are constants depending only on n.
Proof. First we show property (i). By the definition of Z(n), it is obvious that∫ ∞

0

Z(n)(r, ξ, t) dξ =

∫
Rn

1

(4π t)n/2
exp

(
−|x− y|2

4t

)
dy = 1, t > 0,

holds true for |x| = r. In addition, Z(n)(r, ξ, t) > 0 also holds true. Thus we obtain
property (i).

Next we show property (iii). By the definition of Z(n), we have

|Z(n)(r, ξ, t)| ≤ Kn

(4π t)n/2

∫ π

0

exp

(
− 1

4t

)
sinn−2 θ dθ, t > 0,

for 0 ≤ ξ ≤ 1 and r ≥ 2. This implies that

sup
r≥2

|Z(n)(r, ξ, t)| ≤ min

{
Kn

(4π t)n/2
, C

}
, t > 0,

for every ξ with 0 ≤ ξ ≤ 1, where C is a constant depending only on n. Thus we
obtained property (iii).

Finally we show property (ii). For simplicity, we define a function E(n) as

E(n)(r, ξ, θ, t) =
Kn

(4π t)n/2
exp

(
− (r − ξ cos θ)2 + (ξ sin θ)2

4t

)
.
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Then by definition, we have∫ ∞

0

|Z(n)
ξ | dξ ≤

∫ ∞

0

∫ π

0

∣∣∣∣(ξn−1E(n) sinn−2 θ
)
ξ

∣∣∣∣ dξ dθ
≤

∫ π

0

∫ ∞

0

[
(n− 1)ξn−2E(n) + ξn−1|E(n)

ξ |
]
sinn−2 θ dξ dθ.

Noting that E
(n)
ξ = (r cos θ − ξ)/2t · E(n) and E(n) > 0, we divide it into four terms

as follows:∫ ∞

0

|Z(n)
ξ | dξ ≤

∫ π

0

∫ ∞

0

(n− 1)ξn−2E(n) sinn−2 θ dξ dθ

+

(
−
∫ π

π
2

∫ ∞

0

−
∫ π

2

0

∫ ∞

r cos θ

+

∫ π
2

0

∫ r cos θ

0

)
ξn−1E

(n)
ξ sinn−2 θ dξ dθ

=

∫ π

0

∫ ∞

0

(n− 1)ξn−2E(n) sinn−2 θ dξ dθ + J1 + J2 + J3.

By integrating by parts, we have

J1 =

∫ π

π
2

∫ ∞

0

(n− 1) ξn−2E(n) sinn−2 θ dξ dθ,

J2 =

∫ π
2

0

[
ξn−1E(n)

]
ξ=r cos θ

sinn−2 θ dθ +

∫ π
2

0

∫ ∞

r cos θ

(n− 1) ξn−2E(n) sinn−2 θ dξ dθ,

J3 =

∫ π
2

0

[
ξn−1E(n)

]
ξ=r cos θ

sinn−2 θ dθ −
∫ π

2

0

∫ r cos θ

0

(n− 1) ξn−2E(n) sinn−2 θ dξ dθ.

By combining these results, we have

∫ ∞

0

|Z(n)
ξ | dξ ≤ 2

∫ π
2

0

[
ξn−1E(n)

]
ξ=r cos θ

sinn−2 θ dθ

+ 2

∫ π

0

∫ ∞

0

(n− 1)ξn−2E(n) sinn−2 θ dξ dθ = J4 + J5.

Here J4 is estimated as

J4 = 2

∫ π
2

0

(r cos θ)n−1 Kn

(4π t)n/2
exp

(
− (r sin θ)2

4t

)
sinn−2 θ dθ

≤ Kn

πn/2
· t− 1

2

∫ ∞

0

zn−2 exp
(
−z2

)
dz = C t−

1
2 ,

where C is a constant depending only on n. For J5, we have

J5 =
2Kn√

4πtKn−1

∫ π

0

∫ ∞

0

(n− 1)ξn−2E(n−1) sinn−2 θ dξ dθ

= Ĉ t−
1
2

∫ π

0

∫ ∞

0

ξn−2E(n−1) sinn−3 θ · sin θ dξ dθ

≤ Ĉ t−
1
2

∫ ∞

0

Z(n−1) dξ = Ĉ t−
1
2 if n ≥ 3.
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If n = 2, we have

J5 = 2

∫ π

0

∫ ∞

0

E(2) dξ dθ = 2

∫ π

0

∫ ∞

0

K2

4π t
exp

(
− (r − ξ cos θ)2 + (ξ sin θ)2

4t

)
dξ dθ

≤
∫ π

0

∫ ∞

0

K2

2π t
exp

(
− (ξ − r cos θ)2

4t

)
dξ dθ

=
K2

π
t−

1
2

∫ π

0

∫ ∞

−∞
exp

(
−z2

)
dz dθ = C̃ t−

1
2 ,

where C̃ is a constant depending only on n. Thus we obtain property (ii). This
completes the proof.

Finally we give an expression for radially symmetric solutions of (1)–(2) by using
the Green’s function Z(n)(r, ξ, t) obtained above. This expression plays an essential
role in our discussion.

Lemma 3.3. Let u(r, t) be the solution to the initial value problem of the form

ut =
urr

1 + u2
r

+
n− 1

r
ur, r > 0, t > 0,(20)

u(r, 0) = u0(r), r > 0.(21)

Then the solution u(r, t) of (20)–(21) is expressed by

(22) u(r, t) =

∫ ∞

0

Z(n)(r, ξ, t)u0(ξ) dξ −
∫ t

0

∫ ∞

0

Z(n)(r, ξ, t− s)
uξξ u

2
ξ

1 + u2
ξ

dξ ds,

where the function Z(n)(r, ξ, t) is defined as in Proposition 3.1.
Proof. Since (1) is rewritten as

ut = Δu−
n∑

i,j=1

uxiuxjuxixj

1 + |∇u|2 ,

we have the expression

u(x, t) =

∫
Rn

1

(4π t)n/2
exp

(
−|x− y|2

4t

)
u0(y) dy

−
n∑

i,j=1

∫ t

0

∫
Rn

1

(4π(t− s))n/2
exp

(
−|x− y|2

4(t− s)

)
uyiuyjuyiyj

1 + |∇u|2 dy ds.

If the solution u(x, t) is radially symmetric, we have ∂/∂xi = xi/r · ∂/∂r and hence
obtain

n∑
i,j=1

uxiuxjuxixj

1 + |∇u|2 =
urru

2
r

1 + u2
r

.

Thus we obtain (22) by changing the variables to the polar coordinate system similarly
to the proof of Proposition 3.1. This completes the proof.
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4. Decay estimates for the derivatives. In this section, we show the decay
estimates for derivatives of radially symmetric solutions of (1)–(2). When we consider
radially symmetric solutions, the problem (1)–(2) is rewritten as follows:

ut =
urr

1 + u2
r

+
n− 1

r
ur, r > 0, t > 0,(23)

u(r, 0) = u0(r), r > 0,(24)

ur(0, t) = 0, utr(0, t) = 0, t > 0,(25)

where r = |x|. The boundary condition (25) is necessary to derive the decay estimates
for the derivatives. In what follows, we focus on this problem to study the large time
behavior of radially symmetric solutions.

First we prepare maximum principles. In Chapter 2 of [10], the maximum prin-
ciple for the Cauchy problem of usual parabolic equations is given. As a modification
of discussions in [10], we provide the maximum principles on the half-space with the
Neumann boundary condition. We need to take care of the coefficient (n − 1)/r in
(23).

Lemma 4.1. Let g = g(r, t) be a continuous and bounded function for r ≥ 0 and
t ≥ 0. Suppose that a function w = w(r, t) is continuous and bounded for r ≥ 0 and
t ≥ 0, has continuous derivatives wt, wr, wrr for r ≥ 0 and t > 0, and satisfies

L[w] = wt −
wrr

1 + g2
− n− 1

r
wr ≤ 0, r > 0, t > 0,

wr(0, t) = 0, t > 0.

Then w(r, t) satisfies

sup
r>0, t>0

w(r, t) ≤ ‖w(r, 0)‖L∞(0,∞).

Proof. We define a function

E(r, t) = exp

(
r2

1 − μt
+ νt

)
on R0 = [0,∞) ×

[
0,

1

2μ

]
.

By taking constants μ = 16 and ν > 4n, we have L[E]/E > 0 on R0. Indeed, because
of 1/2 ≤ 1 − μt ≤ 1, it follows that

L[E]

E
=

1

E

(
Et −

Err

1 + g2
− n− 1

r
Er

)

=
μr2

(1 − μt)2
+ ν − 1

1 + g2

(
2

1 − μt
+

4r2

(1 − μt)2

)
− n− 1

r
· 2r

1 − μt

≥ μr2 + ν − (4 + 16r2) − 4(n− 1) = ν − 4n.

For the constant M = ‖w(r, 0)‖L∞(0,∞), we consider the function v = (w−M)/E
on R0. Then v satisfies

vt −
vrr

1 + g2
− n− 1

r
vr −

2Er

E(1 + g2)
vr +

L[E]

E
v ≤ 0,(26)

v(r, 0) ≤ 0.(27)

Moreover limr→∞ v(r, t) = 0 holds true for 0 ≤ t ≤ 1/2μ, since w is bounded by the
assumption. Thus the inequality (27) implies that v satisfies one of the following:
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(i) v takes the positive maximum on R0 at a point (0, t0) with 0 < t0 ≤ 1/2μ.
(ii) v takes the positive maximum on R0 at a point (r0, t0) with r0 > 0 and

0 < t0 ≤ 1/2μ.
(iii) v(x, t) ≤ 0 on R0.

Case (i) cannot happen. Indeed, by passing to the limit as r → 0 in (26), we have

(28) vt(0, t) −
(

1

1 + g2
+ (n− 1)

)
vrr(0, t) +

L[E]

E
v(0, t) ≤ 0,

by the boundary condition vr(0, t) = 0. On the other hand, we have vt(0, t0) ≥ 0,
vrr(0, t0) ≤ 0, and v(0, t0) > 0, since v(0, t0) is the positive maximum. Because of
L[E]/E > 0, these values do not satisfy (28). This is a contradiction.

Case (ii) also leads to a contradiction. Indeed, for any R > 0, v takes the positive
maximum on [r0/2, r0 + R] × [0, 1/2μ] at the interior point (r0, t0). Thus the strong
maximum principle implies that v is positive and constant on [r0/2, r0+R]× [0, 1/2μ].
Since R > 0 is arbitrary, this contradicts limr→∞ v(r, t) = 0.

Consequently, case (iii) holds true. Namely, we have v = (w −M)/E ≤ 0 on R0.
Since E is positive, this implies that w ≤ M on R0. By repeating a similar argument
for t ≥ 1/2μ, we obtain w ≤ M for r ≥ 0 and t ≥ 0. This completes the proof.

Similarly to the above, we obtain the following lemma. Here the equation differs
slightly from that of Lemma 4.1.

Lemma 4.2. Let g = g(r, t) be a given function such that g and gr are continuous
and bounded for r ≥ 0 and t ≥ 0. Suppose that a function w = w(r, t) is continuous
and bounded for r ≥ 0 and t ≥ 0, has continuous derivatives wt, wr, wrr for r ≥ 0 and
t > 0, and satisfies

L[w] = wt −
(

wr

1 + g2

)
r

− n− 1

r
wr ≤ 0, r > 0, t > 0,

wr(0, t) = 0, t > 0.

Then w(r, t) satisfies

sup
r>0, t>0

w(r, t) ≤ ‖w(r, 0)‖L∞(0,∞).

Proof. We define a function

E(r, t) = exp

(
r2

1 − μt
+ νt

)
on R0 = [0,∞) ×

[
0,

1

2μ

]
.

By taking constants μ ≥ 16+8‖ggr‖L∞((0,∞)×(0,∞)) and ν > 4n+8‖ggr‖L∞((0,∞)×(0,∞)),
we have L[E]/E > 0 on R0. Indeed, because of 1/2 ≤ 1 − μt ≤ 1, we have

L[E]

E
=

1

E

(
Et −

(
Er

1 + g2

)
r

− n− 1

r
Er

)

=
μr2

(1 − μt)2
+ ν − 1

1 + g2

(
2

1 − μt
+

4r2

(1 − μt)2

)
+

2ggr
(1 + g2)2

2r

1 − μt
− n− 1

r

2r

1 − μt

≥ μr2 + ν − (4 + 16r2) − 8‖ggr‖L∞((0,∞)×(0,∞)) · r − 4(n− 1)

≥
(
μ− 16 − 8‖ggr‖L∞((0,∞)×(0,∞))

)
r2 + ν − 4n− 8‖ggr‖L∞((0,∞)×(0,∞)).



1990 MITSUNORI NARA

For the constant M = ‖w(r, 0)‖L∞(0,∞), we consider the function v = (w−M)/E
on R0. Then v satisfies

vt −
(

vr
1 + g2

)
r

− n− 1

r
vr −

2Er

E(1 + g2)
vr +

L[E]

E
v ≤ 0,

v(r, 0) ≤ 0.

Moreover limr→∞ v(r, t) = 0 holds true for 0 ≤ t ≤ 1/2μ. Thus, similarly to the
proof of Lemma 4.1, we obtain w ≤ M on R0. By repeating a similar argument for
t ≥ 1/2μ, we obtain w ≤ M for r ≥ 0 and t ≥ 0. This completes the proof.

Now we show the decay estimates for derivatives of the solution of (23)–(25). The
following estimate for |ut| is derived by using the idea of Ecker and Huisken [6].

Proposition 4.3. The solution u(r, t) of (23)–(25) satisfies the following esti-
mate:

(29) sup
r>0

|ut(r, t)| ≤ C4 t
− 1

2 , t ≥ 1,

where C4 > 0 is a constant depending only on n and u0.
Proof. For the solution u(r, t) of (23)–(25), we define an operator L as follows:

L[w] = wt −
(

wr

1 + u2
r

)
r

− n− 1

r
wr.

We consider a function V (r, t) defined by

V (r, t) = u2
r +

t

n− 1
u2
t .

Here we note that V (r, t) is continuous and bounded for r ≥ 0 and t ≥ 1 by virtue of
the estimate (11) in Proposition 2.2. Then we obtain

L[V ] = L[u2
r] +

1

n− 1
u2
t +

t

n− 1
L[u2

t ] ≤ − u2
t

n− 1
+

1

n− 1
u2
t = 0.

Indeed, we have

L[u2
r] = − 2u2

rr

1 + u2
r

− 2(n− 1)

r2
u2
r ≤ − 2

n− 1

[(
urr

1 + u2
r

)2

+

(
n− 1

r
ur

)2
]

≤ − 1

n− 1

(
urr

1 + u2
r

+
n− 1

r
ur

)2

= − u2
t

n− 1
,

L[u2
t ] = − 2u2

rt

1 + u2
r

≤ 0.

Since the boundary condition (25) gives

Vr(0, t) =

(
2ururr +

2t

n− 1
ututr

)∣∣∣∣
r=0

= 0, t > 0,

we can apply Lemma 4.2 and hence obtain

sup
r>0

V (r, t) = sup
r>0

(
u2
r +

t

n− 1
u2
t

)
≤ ‖V (r, 1)‖L∞(0,∞).
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The estimate (11) in Proposition 2.2 implies that ‖V (r, 1)‖L∞(0,∞) depends only on
n and u0. Thus the decay estimate (29) follows. This completes the proof.

Next we use a similar technique for deriving the decay estimate for |ur|. Note
that the definition of the operator L differs slightly from that in Proposition 4.3.

Proposition 4.4. The solution u(r, t) of (23)–(25) satisfies the following esti-
mate:

(30) sup
r>0

|ur(r, t)| ≤ C5 (1 + t)−
1
2 , t ≥ 0,

where C5 > 0 is a constant depending only on ‖u0‖W 1,∞(0,∞).
Proof. For the solution u(r, t) of (23)–(25), we define an operator L as follows:

L[w] = wt −
wrr

1 + u2
r

− n− 1

r
wr.

We denote the derivative of u0(r) with respect to r by u′
0(r). For the constant M =

‖u′
0‖L∞(0,∞), we consider a function V (r, t) defined by

V (r, t) = u2 +
1 + t

1 + M2
u2
r.

Since Proposition 2.1 gives |ur| ≤ M , we have

L[V ] = L[u2] +
1

1 + M2
u2
r +

1 + t

1 + M2
L[u2

r] ≤ − 2u2
r

1 + u2
r

+
1

1 + M2
u2
r ≤ 0.

Indeed, we have

L[u2] = − 2u2
r

1 + u2
r

and L[u2
r] = − 4u2

ru
2
rr

(1 + u2
r)

2
− 2(n− 1)

r2
u2
r −

2u2
rr

1 + u2
r

≤ 0.

Noting that

Vr(0, t) =

(
2uur +

2(1 + t)

1 + M2
ururr

)∣∣∣∣
r=0

= 0, t > 0,

we apply Lemma 4.1 and hence obtain

sup
r>0

V (r, t) = sup
r>0

(
u2 +

1 + t

1 + M2
u2
r

)
≤ ‖u0‖2

L∞(0,∞) +
‖u′

0‖2
L∞(0,∞)

1 + M2
, t ≥ 0.

This implies the estimate (30). This completes the proof.
Now we give the decay estimate for |urr| by combining the estimates established

above. The following estimate may have room for improvement. But this suffices to
prove Theorem 1.3.

Proposition 4.5. The solution u(r, t) of (23)–(25) satisfies the following esti-
mate:

(31) |urr(r, t)| ≤ C6 · min

{
1,

1

r
t−

1
2

}
, r > 0, t ≥ 1,

where C6 > 0 is a constant depending only on n and u0.
Proof. The estimate (11) in Proposition 2.2 implies that |urr| is bounded uni-

formly for t ≥ 1. On the other hand, by substituting the decay estimates for |ut| and
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|ur| to (23), we find that |urr| decays with the rate of 1/r × t−1/2. Thus we obtain
the estimate (31).

Theorem 1.3 will be proved in section 5 by using the decay estimates for |ur| and
|urr| given by Propositions 4.4 and 4.5. Finally, we modify the proof of Proposition
4.3 and improve the estimate for |ut| which, however, will not be used in the later
discussions.

Proposition 4.6. The solution u(r, t) of (23)–(25) satisfies the following esti-
mate:

(32) sup
r>0

|ut(r, t)| ≤ C7 t
−1

√
log t, t > e2,

where C7 > 0 is a constant depending only on n and u0.
Proof. Similarly to the proof of Proposition 4.3, we define an operator L as follows:

L[w] = wt −
(

wr

1 + u2
r

)
r

− n− 1

r
wr.

Let σ be any constant with 0 < σ < 1/2. We consider a function V (r, t) defined
by

V (r, t) = t1−σu2
r +

t2−σ

(2 − σ)(n− 1)
u2
t ,

where V (r, t) is continuous and bounded for r ≥ 0 and t ≥ 1 from Proposition 2.2.
By noting that the inequalities L[u2

r] ≤ −u2
t/(n−1) and L[u2

t ] ≤ 0 hold true as in the
proof of Proposition 4.3, we have

L[V ] = (1 − σ) t−σu2
r + t1−σL[u2

r] +
t1−σ

n− 1
u2
t +

t2−σ

(2 − σ)(n− 1)
L[u2

t ]

≤ (1 − σ) t−σu2
r.

By substituting the decay estimate for |ur| established in Proposition 4.4, we have

L[V ] ≤ C(1 − σ) t−(1+σ),

where C > 0 is a constant depending only on u0. Now we define

P (t) = ‖V (r, 1)‖L∞(0,∞) +
C(1 − σ)

σ

(
1 − t−σ

)
for t ≥ 1. Then we find that V̂ (r, t) = V (r, t)−P (t) satisfies L[V̂ ] ≤ 0 and V̂ (r, 1) ≤ 0.

Thus Lemma 4.2 gives V̂ (r, t) ≤ 0 for t ≥ 1, and thus

V (r, t) ≤ P (t) ≤ P (∞) = ‖V (r, 1)‖L∞(0,∞) +
C(1 − σ)

σ
, t ≥ 1.

Since 0 < σ < 1/2 by the definition, this implies that

t2−σu2
t ≤ (2 − σ)(n− 1)

(
‖V (r, 1)‖L∞(0,∞) +

C(1 − σ)

σ

)

≤ 2(n− 1)

σ

(
‖V (r, 1)‖L∞(0,∞) + C

)
, t ≥ 1.
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Here ‖V (r, 1)‖L∞(0,∞) depends only on n and u0 from Proposition 2.2. Consequently,

there exists a constant C̃ > 0 depending only on n and u0 such that, for any constant
0 < σ < 1/2, it holds that

|ut| ≤
C̃√
σ
t−1+σ

2 , t ≥ 1.

Now we set σ = 1/ log t for each t ≥ 1. Here we assume that t > e2 for σ < 1/2. Then
we have

|ut| ≤
C̃√
σ
· t−1 exp

(
log t · σ

2

)
= C̃

√
log t · t−1

√
e, t > e2.

This implies the estimate (32). The proof is completed.

5. Proof of Theorem 1.3. In this section, we give a proof of Theorem 1.3. We
analyze the expression for u(r, t) obtained in Lemma 3.3 by using the properties of
the Green’s function Z(n)(r, ξ, r) and the decay estimates for the derivatives ur and
urr.

Proof of Theorem 1.3. Proposition 2.1 gives the existence of the solution globally
in time. It suffices to show large time behavior of the solution. In this proof, we always
write C or C̃ for positive constants depending only on n and u0, which may take a
different value in each context. From Lemma 3.3, the solution u(r, t) of (23)–(25) is
given by

u(r, t) =

∫ ∞

0

Z(n)(r, ξ, t)u0(ξ) dξ −
∫ t

0

∫ ∞

0

Z(n)(r, ξ, t− s)
uξξu

2
ξ

1 + u2
ξ

dξ ds

= h(r, t) −
∫ t

0

∫ ∞

0

Z(n)(r, ξ, t− s)
uξξu

2
ξ

1 + u2
ξ

dξ ds.

Since the function h(r, t) is the solution of the Cauchy problem of the heat equation,
it suffices to show the decay estimate for the second term of the right-hand side. For
this purpose, we divide it into two terms and define I, I1, and I2 as follows:

I = −
(∫ t/2

0

+

∫ t

t/2

)∫ ∞

0

Z(n)(r, ξ, t− s)
uξξu

2
ξ

1 + u2
ξ

dξ ds = −(I1 + I2).

First we evaluate I1. By noting that uξξu
2
ξ/(1 + u2

ξ) = (uξ − arctanuξ)ξ and
integrating I1 by parts, we have

|I1| ≤
∫ t/2

0

∫ ∞

0

|Z(n)
ξ | |uξ − arctanuξ| dξ ds.

Here the Taylor expansion for f(p) = arctan p implies that

|p− f(p)| =

∣∣∣∣ p−
(
f(0) + f ′(0) p +

f ′′(0)

2
p2 +

f ′′′(δp)

3!
p3

)∣∣∣∣
=

∣∣∣∣ 3(δp)2 − 1

3(1 + (δp)2)3
p3

∣∣∣∣ ≤ |p|3
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for a constant δ with 0 < δ < 1. Thus by virtue of property (ii) of Z(n) in Lemma 3.2
and the decay estimate for |ur| in Proposition 4.4, we obtain

|I1| ≤
∫ t/2

0

∫ ∞

0

|Z(n)
ξ | |uξ|3 dξ ds ≤ C

∫ t/2

0

(t− s)−
1
2 (1 + s)−

3
2 ds

≤
√

2C t−
1
2

∫ t/2

0

(1 + s)−
3
2 ds ≤ 2

√
2C t−

1
2 , t > 0.

Next we evaluate |I2|. We divide I2 into three terms as follows:

I2 = −
∫ t

t/2

⎛
⎝∫ s−

1
2

0

+

∫ 1

s−
1
2

+

∫ ∞

1

⎞
⎠Z(n)(r, ξ, t− s)

uξξu
2
ξ

1 + u2
ξ

dξ ds

= −(I21 + I22 + I23).

Here we assume that t ≥ 2 for s−1/2 ≤ 1. To evaluate I21, we use the decay estimate
for |ur| given by Proposition 4.4 and the L∞-bounds for Z(n) and |urr| given by
property (iii) of Lemma 3.2 and Proposition 4.5. Then, for r ≥ 2, we have

|I21| ≤
∫ t

t/2

∫ s−
1
2

0

∣∣∣Z(n)(r, ξ, t− s)
∣∣∣
∣∣∣∣∣ uξξu

2
ξ

1 + u2
ξ

∣∣∣∣∣ dξ ds ≤ C

∫ t

t/2

∫ s−
1
2

0

s−1 dξ ds

= C

∫ t

t/2

s−
3
2 ds ≤ 2

√
2C t−

1
2 , t ≥ 2.

Next, for I22, we use property (iii) of Z(n) and the decay estimates for |urr| and |ur|.
Then, for r ≥ 2, we have

|I22| ≤
∫ t

t/2

∫ 1

s−
1
2

∣∣∣Z(n)(r, ξ, t− s)
∣∣∣
∣∣∣∣∣ uξξu

2
ξ

1 + u2
ξ

∣∣∣∣∣ dξ ds
≤ C

∫ t

t/2

∫ 1

s−
1
2

(1 + t− s)−
n
2 · 1

ξ
s−

3
2 dξ ds

≤ C

2

∫ t

t/2

(1 + t− s)−
n
2 s−

3
2 log s ds

≤
√

2C t−
3
2 log t

∫ t

t/2

(1 + t− s)−
n
2 ds

≤
√

2C t−1

∫ t

t/2

(1 + t− s)−
n
2 ds ≤ C̃ t−

1
2 , t ≥ 2.

Finally, for I23, we use property (i) of Z(n) and the decay estimates for |urr| and |ur|.
Then we have

|I23| ≤ C

∫ t

t/2

∫ ∞

1

∣∣∣Z(n)(r, ξ, t− s)
∣∣∣ s− 3

2 dξ ds ≤ C

∫ t

t/2

s−
3
2 ds ≤ 2

√
2C t−

1
2

for t ≥ 2. By combining all estimates established above, we obtain the following
estimate:

sup
r≥2

|u(r, t) − h(r, t)| ≤ C t−
1
2 , t ≥ 2.
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Thus it remains to show the large time behavior of u(r, t) for r ∈ [0, 2]. If 0 ≤ r ≤ 2,
we have

|u(r, t) − h(r, t)| ≤ |u(r, t) − u(2, t)| + |u(2, t) − h(2, t)| + |h(2, t) − h(r, t)|
≤ 2 sup

r>0
|ur(r, t)| + 2 sup

r>0
|hr(r, t)| + C t−

1
2 , t ≥ 2.

For the heat equation, it is well known that supr>0 |hr(r, t)| ≤ t−
1
2 ‖u′

0‖L∞(0,∞) for
t > 0. By this fact and the decay estimate for |ur| in Proposition 4.4, we obtain the
estimate

sup
r>0

|u(r, t) − h(r, t)| ≤ C t−
1
2 , t ≥ 2.

This completes the proof of Theorem 1.3.
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EXISTENCE, NONUNIQUENESS, AND DECAY RATES
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Abstract. The logarithmic fourth-order equation ∂tu + 1
2

∑d
i,j=1 ∂

2
ij(u∂

2
ij log u) = 0, called

the Derrida–Lebowitz–Speer–Spohn equation, with periodic boundary conditions is analyzed. The
global-in-time existence of weak nonnegative solutions in space dimensions d ≤ 3 is shown. Further-
more, a family of entropy-entropy dissipation inequalities is derived in arbitrary space dimensions,
and rates of the exponential decay of the weak solutions to the homogeneous steady state are es-
timated. The proofs are based on the algorithmic entropy construction method developed by the
authors and on an exponential variable transformation. Finally, an example for nonuniqueness of
the solution is provided.
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of weak solutions, long-time behavior of solutions, decay rates, nonuniqueness of solutions

AMS subject classifications. 35K30, 35B40, 35Q40, 35Q99

DOI. 10.1137/060676878

1. Introduction. The logarithmic fourth-order equation

(1.1) ∂tu +
1

2
∂2
ij(u∂

2
ij log u) = 0, u(0, ·) = u0 ≥ 0,

appears in various places in mathematical physics (notice that we employed the sum-
mation convention). It has been first derived by Derrida, Lebowitz, Speer, and Spohn
[10, 11], and we shall therefore refer to (1.1) as the DLSS equation. Derrida et al. stud-
ied in [10, 11] interface fluctuations in a two-dimensional spin system, the so-called
(time-discrete) Toom model. In a suitable scaling limit, a random variable u related
to the deviation of the interface from a straight line satisfies the one-dimensional equa-
tion (1.1). The multidimensional DLSS equation appears in quantum semiconductor
modeling as the zero-temperature, zero-field limit of the quantum drift-diffusion model
[18]. The variable u describes the electron density in a microelectronic device or in a
quantum plasma. In both applications, the variable u is a nonnegative quantity.

In fact, the proof of positivity or nonnegativity of solutions constitutes the main
analytical difficulty in rigorous studies of (1.1). There is generally no maximum
principle available for fourth-order equations, which would allow to conclude from
u0 ≥ 0 that also u(t, ·) ≥ 0 at later times t > 0. Consequently, one has to rely on
suitable regularization techniques and a priori estimates. The latter are difficult to
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obtain because of the highly nonlinear structure of the equation. We remark that
similar difficulties appear in studies of the thin-film equation

∂tu + div(uα∇Δu) = 0, u(0, ·) = u0 ≥ 0.

For this equation it is well known that preservation of positivity strongly depends on
the parameter α > 0. For a certain range of α’s, there are solutions which are strictly
positive initially, but which vanish at certain points after finite time [2].

In the present paper, we prove global-in-time existence of nonnegative weak solu-
tions to (1.1) on the d-dimensional torus T

d, and we calculate rates for the exponential
decay of the solutions to the homogeneous steady state. Moreover, we provide a fam-
ily of initial data u0 for which there exist at least two solutions. These results are
new in the literature (also see below). Our method of proof is based on the entropy
construction method recently developed in [16] to derive a priori estimates and an
exponential transformation of variables to prove the nonnegativity of solutions.

The first mathematically rigorous treatment of (1.1) is due to [4]. There, local-
in-time existence of classical solutions for strictly positive W 1,p(Td) initial data with
p > d was proven. The existence result is obtained by means of classical semigroup
theory applied to the equation

2∂t
√
u + Δ2

√
u− (Δ

√
u)2√
u

= 0,
√
u(0, x) =

√
u0(x) > 0, x ∈ T

d,

which is equivalent to (1.1) as long as u remains bounded away from zero. Lacking
suitable a priori estimates, existence was proven only locally in time (for d > 1), even
for strictly positive solutions.

More information is available in dimension d = 1 because (1.1) is then well posed
in H1. The Fisher information

F =

∫
T

(
√
u)2xdx

is a Lyapunov functional, dF/dt ≤ 0, which allows to relate global existence of solu-
tions to strict positivity: if a classical solution breaks down at t = t∗, then the limit
profile limt↗t∗ u(t, x) is still in H1 but vanishes at some point x ∈ T.

This observation has motivated the study on nonnegative weak solutions in-
stead of positive classical solutions. In [17] global existence for the one-dimensional
DLSS equation was shown in the class of functions with finite generalized entropy,
Ẽ0 =

∫
T
(u− log u)dx < ∞ and with physically motivated boundary conditions. The

key ingredient in the proof is the observation that Ẽ0 constitutes another Lyapunov
functional for (1.1), providing nonnegativity of the solutions. The restriction to one

spatial dimension is essential, since Ẽ0 is seemingly not a Lyapunov functional in
dimensions d > 1.

In the following years, the one-dimensional DLSS equation with (mainly) periodic
boundary conditions was extensively studied in the context of entropy-entropy pro-
duction methods, and the exponentially fast decay of the solutions to the steady state
has been proved [6, 7, 12, 14, 16, 19]. A numerical study of the long-time asymptotics
for various boundary conditions can be found in [8].

Concerning the multidimensional problem, we remark that an independent inves-
tigation of (generalizations to) the DLSS equation has been just finished [13]. There,
it is proven that (1.1) constitutes the gradient flow for the Fisher information with
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respect to the Wasserstein distance. The resulting existence theorem is more general
than ours as it also holds in the nonphysical dimensions d ≥ 4 and on unbounded
domains. Clearly, the treatment of the DLSS equation as a gradient flow promotes a
deeper understanding of its nature. Our approach in the present note is complemen-
tary as it is very direct and much simpler (and also much shorter). Furthermore, we
point out that the decay estimates derived by our methods are slightly sharper than
those of [13], and we are able to present an example of nonuniqueness of solutions.

In the following we describe our results in more detail. The global existence result
is based on the fact that the physical entropy

(1.2) Ẽ1 =

∫
Td

u log

(
u∫
udx

)
dx ≥ 0

is a Lyapunov functional in any space dimension d ≥ 1. In fact, multiplying (1.1)
formally by log u, integrating over T

d, and integrating by parts lead to

dẼ1

dt
+

1

2

∫
Td

u‖∇2 log u‖2dx = 0,

where ∇2 log u is the Hessian of log u and ‖ · ‖ is the Euclidean norm. We call the
above integral the entropy production. Since there is no lower bound for u available,
this does not yield an H2 bound on log u. However, we are able to show that, for
periodic functions with positive lower bound,

(1.3)
1

4

∫
Td

u‖∇2 log u‖2dx ≥ κ1

∫
Td

‖∇2
√
u‖2dx, where κ1 =

4d− 1

d(d + 2)
,

leading to an H2 bound for
√
u. This inequality was proved independently in [13,

equation (1.82)]; we will show a more general version below (see Lemma 2.2). This
motivates rewriting the nonlinearity in (1.1) in terms of

√
u, yielding the following

(formally) equivalent equation:

∂tu + ∂2
ij

(√
u∂2

ij

√
u− ∂i

√
u∂j

√
u
)

= 0, x ∈ T
d, t > 0,(1.4)

u(0, x) = u0(x), x ∈ T
d.(1.5)

The other crucial idea, which eventually provides nonnegativity of u, is an exponential
variable transformation. To be more precise, for the fixed-point argument leading to
the existence result, we also work in the original formulation (1.1),

∂tu +
1

2
∂2
ij(u∂

2
ijy) = 0

with the exponential variable y = log u. In a suitable regularization regime, y is
bounded in modulus, and hence u = exp(y) is strictly positive.

Our proof of the crucial inequality (1.3) and its generalizations presented below
is inspired by the algorithmic entropy construction method of [16]; there, the task of
deriving inequalities like (1.3) is reformulated as a decision problem for polynomial
systems. The latter can be solved (at least in principle) by computer algebra systems.
The solution of the decision problem determines how to perform integration by parts
in a way which leads to the desired inequality. By this method, the proof of (1.3)
becomes quite short and elementary. Positivity of u is needed to make the computer-
aided manipulations mathematically rigorous.
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Our existence result reads as follows.
Theorem 1.1. Let T > 0 and d ≤ 3. Furthermore, let u0 be a nonnegative

measurable function on T
d with finite physical entropy E1(u0) =

∫
T
(u0(log u0 − 1) +

1)dx < +∞. Then there exists a weak solution u to (1.4)–(1.5) satisfying

u(t, ·) ≥ 0 a.e., u ∈ W 1,1(0, T ;H−2(Td)),
√
u ∈ L2(0, T ;H2(Td)),

and for all z ∈ L∞(0, T ;H2(Td)),∫ T

0

〈∂tu, z〉H−2,H2dt +

∫ T

0

∫
Td

(√
u∂2

ij

√
u− ∂i

√
u∂j

√
u
)
∂2
ijzdx = 0.

The theorem is valid in the physically relevant dimensions d ≤ 3. This restriction
is related to the lack of certain Sobolev embeddings in higher dimensions d ≥ 4. Most
prominently, the fixed-point argument exploits the continuous embedding H2(Td) ↪→
L∞(Td) to conclude absolute boundedness of y and hence strict positivity of u =
exp(y). We have chosen periodic boundary conditions in order to avoid boundary
integrals. For the treatment of nonhomogeneous boundary conditions of Dirichlet–
Neumann-type in one space dimension, we refer the reader to [14].

Our second result concerns the long-time behavior of weak solutions to the ho-
mogeneous steady state u∞, and generally the systematic investigation of Lyapunov
functionals. More specifically, we determine a range of parameters γ > 0, for which
the entropies

Ẽγ =
1

γ(γ − 1)

∫
Td

(
u(t, ·)γ − uγ

∞
)
dx

monotonically decay to zero. (Recall that Ẽ1 is the physical entropy from (1.2).)
Starting from the results of [4], Lyapunov functionals of this (and more general) type
have been investigated for d = 1. Here, we extend the entropy construction method
developed in [16] to the multidimensional case.

To prove entropy decay, we multiply (1.4) formally by v2(γ−1)/(γ − 1), where
v =

√
u, integrate over the torus, and integrate by parts. This leads to

dẼγ

dt
+

1

γ − 1

∫
Td

v2∂2
ij(log v)∂2

ij(v
2(γ−1))dx = 0.

Next, we need to relate the entropy production to the entropy itself. For this, in-
equality (1.3) is generalized. We show, by using the method of [16], that if 0 < γ <
2(d + 1)/(d + 2), then

(1.6)
1

2(γ − 1)

∫
Td

v2∂2
ij(log v)∂2

ij(v
2(γ−1))dx ≥ κγ

∫
Td

(Δvγ)2dx,

where

κγ =
−(d + 2)2γ2 + 2(d + 1)(d + 2)γ − (d− 1)2

γ2(−(d + 2)2γ2 + 2(d + 1)(d + 2)γ)
.

The constant κγ is positive if and only if (
√
d− 1)2/(d+ 2) < γ < (

√
d+ 1)2/(d+ 2).

By a Beckner-type inequality, we can relate the integral of Δvγ to the entropy itself,
giving dẼγ/dt + cẼγ ≤ 0 for some c > 0. A similar strategy works for the physical
entropy, γ = 1. Eventually, Gronwall’s lemma yields the following exponential decay
estimates.
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Theorem 1.2. Assume that u is either a positive classical solution to (1.4)–(1.5)
or the weak solution constructed in the proof of Theorem 1.1. Let

u∞ ≡ meas(Td)−1

∫
Td

u0 dx > 0.

Then the entropies decay exponentially fast,

Ẽγ(u(t, ·)) ≤ Ẽγ(u0) exp(−16π4γ2κγt) for 1 ≤ γ <
(
√
d + 1)2

d + 2
,

and the solution itself decays exponentially in the L1 norm,

‖u(t, ·) − u∞‖L1(Td) ≤ (2Ẽ1(u0))
1/2 exp(−8π4κ1t).

In order to make the above inequalities rigorous, we consider a regularized semidis-
crete version of (1.4) for which we obtain positive H2 solutions. Since the fourth-order
differential operator in (1.1) is not strictly elliptic in y = log u (u = 0 may be possible),
we add the regularization −ε(Δ2y+y) for ε > 0 to the right-hand side of (1.1). Unfor-
tunately, this regularization destroys the dissipative structure of the DLSS equation,
and we cannot prove anymore the entropy-entropy production inequality for γ = 1.
To cure this problem, we need to add the expression

εdiv(|∇ log max{v, μ}|2∇y) for some μ > 0.

The third main result of this paper concerns the nonuniqueness of solutions. We
show that, for a family of particular initial data, there exist at least two solutions
to (1.4)–(1.5) in the class of nonnegative functions in L1(0, T ;H2(Td)) with finite

physical entropy Ẽ1. Recall that uniqueness holds in the class of positive smooth
functions [4]. Here, the initial data are chosen in such a way that they vanish on a
set of measure zero and that they represent classical solutions to the stationary and,
hence, to the transient equation. On the other hand, our existence result provides a
solution which converges to the homogeneous positive steady state u∞. Therefore,
this solution is not equal to the first one. This observation may give a criterium how
to choose the physically relevant solution: it should dissipate the physical entropy.

Throughout this paper, we make the following simplification. Due to the scaling
invariance of (1.5) with respect to x → ξx, t → ξ4t, and u → ηu for ξ, η > 0, we
may assume that the torus T

d is normalized, T
d ∼= [0, 1]d. We further assume that

the initial datum has unit mass,
∫

Td u0dx = 1; notice that the DLSS equation is mass
preserving.

The paper is organized as follows. In section 2 we show some inequalities needed
for the analysis of the DLSS equation. In particular we prove (1.3) and (1.6). Theorem
1.2 is proved in section 3 for smooth positive solutions. Then the existence of solutions
is shown in section 4. Section 5 is devoted to the proof of Theorem 1.2 for weak
solutions. Finally, in section 6 the nonuniqueness result is presented.

2. Some inequalities. We collect some inequalities which are needed in the
following sections. We start with a lower bound on the Euclidean norm of a matrix.
Let A = (aij) ∈ R

d×d be a matrix and let a ∈ R
d be a vector. We define the Euclidean

norm of A and a, respectively, by ‖A‖2 =
∑

i,j a
2
ij and ‖a‖2 =

∑
j a

2
j . Furthermore,

trA =
∑

j ajj is the trace of A and

A : (a)2 =

d∑
i,j=1

aijaiaj .
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Lemma 2.1. Let A ∈ R
d×d be a real symmetric matrix and let a ∈ R

d be a
nonzero vector. Then

(2.1) ‖A‖2 ≥ 1

d
(trA)2 +

d

d− 1

(
A : (a)2

‖a‖2
− trA

d

)2

.

Proof. Since A is real and symmetric, one can assume (by the spectral theorem),
without loss of generality, that A is a diagonal matrix, A = diag(λ1, . . . , λd); recall
that norms and traces are invariant under orthogonal transformations. Furthermore,
one can also assume, by homogeneity of (2.1), that a = (a1, . . . , ad)

� is a unit vector,∑
j a

2
j = 1. Thus, inequality (2.1) becomes

(2.2)
1

d

d∑
j=1

λ2
j −

⎛
⎝1

d

d∑
j=1

λj

⎞
⎠

2

≥ 1

d− 1

⎛
⎝ d∑

j=1

λja
2
j −

1

d

d∑
j=1

λj

⎞
⎠

2

.

Set σ =
∑d

j=1 λj/d and ρj = λj − σ. Then (2.2) is equivalent to

(2.3)
1

d

d∑
j=1

ρ2
j ≥ 1

d− 1

⎛
⎝ d∑

j=1

ρja
2
j

⎞
⎠

2

,

where
∑d

j=1 ρj = 0. Without loss of generality, we assume that ρd is the term with

maximal modulus. We employ the identity
∑d−1

j=1 ρj = −ρd and the elementary in-
equalities

d−1∑
j=1

ρ2
j ≥ 1

d− 1

⎛
⎝d−1∑

j=1

ρj

⎞
⎠

2

and ρ2
d ≥

⎛
⎝ d∑

j=1

ρja
2
j

⎞
⎠

2

to obtain

1

d

d∑
j=1

ρ2
j =

1

d
ρ2
d +

1

d

d−1∑
j=1

ρ2
j ≥ 1

d
ρ2
d +

1

d(d− 1)

⎛
⎝d−1∑

j=1

ρj

⎞
⎠

2

=
1

d
ρ2
d +

1

d(d− 1)
ρ2
d =

1

d− 1
ρ2
d ≥ 1

d− 1

⎛
⎝ d∑

j=1

ρja
2
j

⎞
⎠

2

.

This shows (2.3) and finishes the proof.
The main result of this section is the following inequality.
Lemma 2.2. Let v ∈ H2(Td) ∩ W 1,4(Td) ∩ L∞(Td) in dimension d ≥ 2, and

assume that infTd v > 0. Then, for any 0 < γ < 2(d + 1)/(d + 2),

(2.4)
1

2(γ − 1)

∫
Td

v2∂2
ij(log v)∂2

ij(v
2(γ−1))dx ≥ κγ

∫
Td

(Δvγ)2dx

if γ = 1, or

(2.5)

∫
Td

v2∂2
ij(log v)2dx ≥ κ1

∫
Td

(Δv)2dx
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if γ = 1, respectively, where

(2.6) κγ =
p(γ)

γ2(p(γ) − p(0))
and p(γ) = −γ2 +

2(d + 1)

d + 2
γ −

(d− 1

d + 2

)2

.

The function ∇2v denotes the Hessian of v. By Sobolev embedding, it is suf-
ficient to assume v ∈ H2(Td) in space dimensions d ≤ 3. The condition 0 < γ <
2(d + 1)/(d + 2) ensures that p(γ) > p(0) so that κγ is well defined; if the stronger

condition (
√
d − 1)2/(d + 2) < γ < (

√
d + 1)2/(d + 2) holds, then κγ > 0. Finally,

we remark that the method of [16] directly applies to the one-dimensional situation,
yielding (2.4) and (2.5), respectively, for 0 ≤ γ ≤ 3

2 , with κγ = min(γ, 12 − 8γ)/γ3.
Proof. In order to simplify the computations, we introduce the functions θ, λ,

and μ, respectively, by (recall that v > 0)

θ =
|∇v|
v

, λ =
1

d

Δv

v
, (λ + μ)θ2 =

1

v3
∇2v : (∇v)2,

and ρ ≥ 0 by

‖∇2v‖2 =
(
dλ2 +

d

d− 1
μ2 + ρ2

)
v2.

We need to show that ρ is well defined. But this is clear since

‖∇2v‖2 ≥
(
dλ2 +

d

d− 1
μ2

)
v2

follows directly from (2.1) after taking A = ∇2v and a = ∇v.
We compute the left-hand side of (2.4),

J =
1

2(γ − 1)

∫
Td

v2∂2
ij(log v)∂2

ij(v
2(γ−1))dx

=
1

2(γ − 1)

∫
Td

(v∂2
ijv − ∂iv∂jv)∂

2
ij(v

2(γ−1))dx

=

∫
Td

(v∂2
ijv − ∂iv∂jv)v

2(γ−2)
(
v∂2

ijv + (2γ − 3)∂iv∂jv
)
dx

=

∫
Td

v2γ

(
‖∇2v‖2

v2
− 2(2 − γ)

∇2v

v2
:
(∇v

v

)2

+ (3 − 2γ)
|∇v|4
v4

)
dx,

and express it in terms of the functions θ, λ, μ, and ρ defined above,

J =

∫
Td

v2γ
(
dλ2 +

d

d− 1
μ2 + ρ2 − 2(2 − γ)(λ + μ)θ2 + (3 − 2γ)θ4

)
dx.

This integral is compared to

K =
1

γ2

∫
Td

(Δvγ)2dx =

∫
Td

v2(γ−2)
(
vΔv + (γ − 1)|∇v|2

)2
dx

=

∫
Td

v2γ
(
dλ + (γ − 1)θ2

)2
dx.

More precisely, we shall determine a constant c0 > 0 independent of v such that
J − c0K ≥ 0 for all (positive) functions v. Our strategy is an adaption of the method
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developed in [16]. We formally perform integration by parts in the expression J−c0K
by adding a linear combination of certain “dummy” integrals—which are actually zero
and hence do not change the value of J − c0K. The coefficients in the linear com-
bination are determined in such a way that makes the resulting integrand pointwise
nonnegative. The latter is a decision problem from real algebraic geometry, and it is
solved with computer aid.

We shall rely on the following two “dummy” integral expressions:

J1 =

∫
Td

div
(
v2γ−2(∇2v − ΔvI) · ∇v

)
dx,

J2 =

∫
Td

div
(
v2γ−3|∇v|2∇v

)
dx,

where I is the unit matrix in R
d×d. Clearly, in view of the periodic boundary

conditions, J1 = J2 = 0. The goal is to find constants c0, c1, and c2 such that
J − c0K = J − c0K + c1J1 + c2J2 ≥ 0; moreover, c0 should be as large as possible.
Since, with the above notations,

J1 =

∫
Td

v2(γ−2)
(
v2(‖∇2v‖2 − (Δv)2) + 2(γ − 1)v(∇2v − ΔvI) : (∇v)2

)
dx

=

∫
Td

v2γ
(
− d(d− 1)λ2 +

d

d− 1
μ2 + ρ2 + 2(γ − 1)(−(d− 1)λθ2 + μθ2)

)
dx

and

J2 =

∫
Td

v2(γ−2)
(
(2∇2v + ΔvI) : (∇v)2 + (2γ − 3)|∇v|4

)
dx

=

∫
Td

v2γ
(
(d + 2)λθ2 + 2μθ2 + (2γ − 3)θ4

)
dx,

we obtain

J − c0K + c1J1 + c2J2 =

∫
Td

v2γ
{
dλ2

[
1 − dc0 − (d− 1)c1

]
+ λθ2

[
2(γ − 1)(1 − dc0 − (d− 1)c1) + (d + 2)c2 − 2

]
+ Q(θ, μ, ρ)

}
dx,(2.7)

where Q is a polynomial in θ, μ, and ρ with coefficients depending on c0, c1, and c2
but not on λ. We choose to eliminate λ from the above integrand by defining c1 and
c2 appropriately. The linear system

1 − dc0 − (d− 1)c1 = 0,

2(γ − 1)(1 − dc0 − (d− 1)c1) + (d + 2)c2 − 2 = 0

has the solution c1 = (1 − dc0)/(d − 1) and c2 = 2/(d + 2). With this choice, the
polynomial Q in (2.7) reads as

Q(θ, μ, ρ) =
1

(d− 1)2(d + 2)

(
b1μ

2 + 2b2μθ
2 + b3θ

4 + b4ρ
2
)
,

where

b1 = d2(d + 2)(1 − c0),

b2 = d(d− 1)
(
(d + 2)(γ + c0(1 − γ)) − 2d− 1

)
,

b3 = (d− 1)2
(
d(3 − 2γ) − c0(d + 2)(γ − 1)2

)
,

b4 = d(d + 2)(d− 1)(1 − c0).
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If c0 ≤ 1, then b4 ≥ 0. We wish to choose c0 ≤ 1 in such a way that the remaining
sum b1μ

2 + 2b2μθ
2 + b3θ

4 is nonnegative as well for any μ and θ. This is the case if
(i) b1 > 0 and (ii) b1b3 − b22 ≥ 0. Condition (ii) is equivalent to

0 ≤ (1 − c0)(d + 2)
(
2(d + 1)γ − (d + 2)γ2

)
− (d− 1)2

= (1 − c0)(d + 2)2(p(γ) − p(0)) − (d− 1)2,

which is further equivalent to (recall that p(γ) > p(0) on the considered range of γ’s)

c0 ≤ p(γ)

p(γ) − p(0)
.

The best choice for c0 is obviously to make it equal to the right-hand side. As p(0) < 0,
one has in particular that c0 < 1, so condition (i) is satisfied as well. Thus we have
found constants c0, c1, and c2 for which the expression J − c0K + c1J1 + c2J2 is
nonnegative. With κγ = c0/γ

2, Lemma 2.2 is proven.
Remark 2.3. Elimination of λ from the integrand in (2.7) is clearly not the

only strategy to initiate the polynomial reduction process. However, from numerical
studies of the multivariate polynomial, there is strong evidence that this strategy
leads to the optimal values for c0, at least for γ close to one.

As a consequence of Lemma 2.2 for v =
√
u and γ = 1, we obtain inequality (1.3)

which connects the entropy production of (1.4) to the smoothness of its solution.
Lemma 2.4. For all d ≥ 1 and all strictly positive functions u such that

√
u ∈

H2(Td) ∩ L∞(Td) it holds that

1

4

∫
Td

u‖∇2 log u‖2dx ≥ κ1

∫
Td

‖∇2
√
u‖2dx, where κ1 =

4d− 1

d(d + 2)
.

We also need the following generalized convex Sobolev inequalities.
Lemma 2.5. Let f ∈ H2(Td) be nonnegative. Then, for 1 < p ≤ 2,

(2.8)
p

p− 1

(∫
Td

f2dx−
(∫

Td

f2/pdx

)p)
≤ 1

8π4

∫
Td

(Δf)2dx.

Furthermore,

(2.9)

∫
Td

f2 log
(
f2/‖f‖2

L2

)
dx ≤ 1

8π4

∫
Td

(Δf)2dx.

Inequality (2.9) represents the limit of (2.8) as p ↘ 1. Unfortunately, (2.8) does
seemingly not generalize for parameters 0 < p < 1 in dimensions d > 1. The reason
is that the functional on the left-hand side is convex in f only if 1 ≤ p ≤ 2; see the
discussion in [5]. This limits our decay estimates to entropies Eγ with γ ≥ 1.

Proof. We only prove inequality (2.8) as (2.9) follows in a completely analo-
gous manner. The estimate is a consequence of the Beckner-type inequality and the
Poincaré inequality. For the one-dimensional torus T, the former reads as (see [3])

p

p− 1

(∫
T

f2dxj −
(∫

T

f2/pdxj

)p)
≤ 1

2π2

∫
T

|∂jf |2dxj

(see, e.g., [12] for an easy proof). In several space dimensions, we obtain the same
result since the above inequality tensorizes. Indeed, by employing the relation∫

Td

f2dx−
(∫

Td

f2/pdx

)p

≤
d∑

j=1

∫
Td

(∫ 1

0

f2dxj −
(∫ 1

0

f2/pdxj

)p
)
dx
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from Proposition 4.1 in [21], it follows that

p

p− 1

(∫
Td

f2dx−
(∫

Td

f2/pdx

)p)
≤ 1

2π2

d∑
j=1

∫
Td

(∫ 1

0

(∂jf)2dxj

)
dx

=
1

2π2

∫
Td

|∇f |2dx.

Now, Poincaré’s inequality for multiperiodic functions with zero mean,∫
Td

|∇f |2dx ≤ 1

4π2

∫
Td

‖∇2f‖2dx =
1

4π2

∫
Td

(Δf)2dx,

gives the assertion.
In section 4 we frequently refer to the Gagliardo–Nirenberg inequalities which we

recall for convenience [15].
Lemma 2.6. Let m, k ∈ N0 with 0 ≤ k ≤ m, 0 ≤ θ < 1, and 1 ≤ p, q, r ≤ ∞. If

both

k − d

p
≤ θ

(
m− d

q

)
+ (1 − θ)

(
−d

r

)
and

1

p
≤ θ

q
+

1 − θ

r
,

then any function f ∈ Wm,q(Td) ∩ Lr(Td) belongs to W k,p(Td), and there exists a
constant C > 0 independent of f such that

(2.10) ‖f‖Wk,p ≤ C‖f‖θWm,q‖f‖1−θ
Lr .

If additionally k ≥ 1, we conclude from (2.10) that

(2.11) ‖∇kf‖Lp ≤ C‖∇mf‖θLq‖f‖1−θ
Lr

by means of the Poincaré inequality.

3. Decay rates for smooth positive solutions. We show Theorem 1.2 first for
smooth positive solutions by using Lemmas 2.2 and 2.5. The proof for weak solutions is
based on estimates for the semidiscrete, regularized problem and is therefore presented
later in section 5. Both proofs are identical in their structure, but the proof for smooth
solutions is stripped of the technicalities that are introduced by the regularization
process.

The essential tool to derive the a priori estimates are the so-called relative en-
tropies, as introduced in [1],

Eγ(u1|u2) =

∫
Td

φγ

(u1

u2

)
u2dx, γ ∈ {0, 1},

where u1 and u2 are nonnegative functions on T
d with unit mean value, and φγ is

given by

(3.1) φγ(s) =
1

γ(γ − 1)

(
sγ − γs + γ − 1

)
, s ≥ 0.

The natural continuation for γ = 1 is φ1(s) = s(log s − 1) + 1; the functional E1

corresponds to the physical entropy. The functions φγ are nonnegative and convex
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and attain their minimal value at s = 1. Consequently, Eγ is nonnegative (possibly
+∞) and vanishes if and only if u1 = u2.

To obtain the a priori estimates (and the decay rates), we consider entropies of
solutions u1 = u relative to the spatial homogeneous steady state u2 ≡ 1:

(3.2) Eγ(u(t, ·)) =
1

γ(γ − 1)

(∫
Td

u(t, x)γdx− 1

)
, γ ≥ 1.

We obtain the following entropy-entropy production estimate.
Proposition 3.1. Assume that u is a smooth positive solution to (1.4)–(1.5) in

dimensions d ≥ 2. Then

(3.3)
dEγ

dt
+ 2κγ

∫
Td

(Δuγ/2)2dx ≤ 0 for 0 < γ <
2(d + 1)

d + 2
,

where κγ > 0 is defined in (2.6).
Proof. For convenience, we work with the function v =

√
u instead of u. If γ = 1,

we integrate the DLSS equation (1.4) against the test function v2(γ−1)/2(γ−1). Then
we obtain for the time derivative

1

2(γ − 1)

∫
Td

∂t(v
2)v2(γ−1)dx =

1

2γ(γ − 1)

∫
Td

∂t(v
2γ)dx =

1

2

dEγ

dt
.

In combination with Lemma 2.2,

1

2

dEγ

dt
= − 1

2(γ − 1)

∫
Td

v2∂2
ij(log v)∂2

ij(v
2(γ−1))dx ≤ −κγ

∫
Td

(Δvγ)2dx.

If γ = 1, we use the test function log v instead.
Remark 3.2. As pointed out before, the coefficient function κγ follows a different

law in dimension d = 1; see the remarks after Lemma 2.2. In conclusion, the entropy
production is estimated as

dEγ

dt
+

2μγ

γ2

∫
T

|(uγ/2)xx|2dx ≤ 0,

where

μγ =

{
1 for 0 < γ < 4/3,
12/γ − 8 for 4/3 < γ < 3/2.

Estimates for the limiting case γ = 0 are also available (see Theorem 3 in [7]).
The proof of Theorem 1.2 in the case of smooth positive solutions is immediate:

applying Lemma 2.5 to f = uγ/2 with p = γ and taking into account that u has unit
mass, we obtain from Proposition 3.1

dEγ

dt
+ (2π)4γ2κγEγ ≤ 0.

Gronwall’s lemma shows the entropy decay. The decay in the L1 norm is a straight-
forward consequence of the Csiszár–Kullback inequality [9, 20].

The values of κγ as a function of γ are plotted in Figure 3.1 (left). For γ ≥ 1,
these correspond to exponential decay rates of the respective entropy Eγ . (There is
no immediate interpretation of κγ for 0 < γ < 1.) The right figure shows the decay
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Fig. 3.1. Decay rates for the entropy Eγ (left) and in the L1 norm for γ = 1 (right) depending
on the dimension d.

rate 8π4κ1 in the L1 norm for γ = 1 as a function of the dimension d. This rate is
given by

8π4κ1 = 8π4 4d− 1

d(d + 2)
;

this is slightly better than the rate obtained in [13], which amounts to 24π4/(d + 2)
for (1.1).

4. Existence of solutions. In this section we prove Theorem 1.1. The proof is
divided into a series of lemmas. We continue to use v =

√
u for easier notation.

4.1. Existence of a time-discrete solution. Let T > 0 be a terminal time
and τ > 0 a time step. Let w be a given function. We wish to find a solution
v ∈ H2(Td) to the semidiscrete equation

(4.1)
1

τ
(v2 − w2) = −∂2

ij

(
v∂2

ijv − ∂iv∂jv
)
.

Lemma 4.1. Let d ≤ 3. Assume that w is a nonnegative measurable function on
T
d with finite entropy E1(w

2) < +∞ and unit mass
∫

Td w
2dx = 1. Then there exists

a nonnegative weak solution v ∈ H2(Td) to (4.1). Furthermore, v2 has unit mass, the
physical entropy is dissipated in the sense

(4.2) E1(v
2) + 2τκ1

∫
Td

‖∇2v‖2dx ≤ E1(w
2),

and the entropies Eγ(v2) and Eγ(w2) are related by

(4.3) (1 + 16π4τγ2κγ)Eγ(v2) ≤ Eγ(w2),

where 1 ≤ γ < (
√
d + 1)2/(d + 2) and κγ is defined in (2.6).

Proof.
Step 1. Definition of the regularized problem. The solution to (4.1) is obtained

as the limit of solutions to a regularized problem. For this, recall that (1.4) can be
written as

∂t(v
2) = −1

2
∂2
ij(v

2∂2
ijy) with y = log(v2).
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We regularize (4.1) in the above formulation by adding a strongly elliptic operator in
y:

(4.4)
1

τ
(v2 − w2) = −1

2
∂2
ij(v

2∂2
ijy) − ε(Δ2y + y) + εdiv

(
|∇ log[v]μ|2∇y

)
,

where ε, μ > 0 are regularization parameters and [v]μ = max{v, μ}. The fourth-order
operator ε(Δ2y + y) guarantees coercivity of the above right-hand side with respect
to y. The nonlinear second-order operator allows to derive the a priori estimates for
the general entropy Eγ .

Step 2. Solution of the regularized problem. In order to solve (4.4) we employ
the Leray–Schauder fixed-point theorem (see Theorem B.5 in [23]). Let σ ∈ [0, 1] and
v̄ ∈ W 1,4(Td) ↪→ L∞(Td), and introduce for y, z ∈ H2(Td),

a(y, z) =
1

2

∫
Td

v̄2∂2
ijy∂

2
ijzdx + ε

∫
Td

(ΔyΔz + yz + |∇ log[v̄]μ|2∇y · ∇z)dx,

f(z) =
σ

τ
〈v̄2 − w2, z〉H−2,H2 .

Since v̄ ∈ W 1,4(Td), also log[v̄]μ ∈ W 1,4(Td), hence |∇ log[v̄]μ|2∇y · ∇z is integrable.
The bilinear form a is continuous and coercive since, by the Gagliardo–Nirenberg
inequality (2.11),

(4.5) a(y, y) ≥ ε

∫
Td

(
(Δy)2 + y2

)
dx ≥ Cε‖y‖2

H2 .

Moreover, w2 has finite physical entropy, so w2 ∈ L1(Td) ↪→ H−2(Td) in space dimen-
sions d ≤ 3, yielding continuity of the linear form f . Consequently, Lax–Milgram’s
lemma provides the existence of a unique solution to

−a(y, z) = f(z) for all z ∈ H2(Td).

Define the fixed-point operator S : W 1,4(Td) × [0, 1] → W 1,4(Td) by S(v̄, σ) := v =
ey/2. Since y ∈ H2(Td) ↪→ L∞(Td), we have indeed that v ∈ H2(Td) ↪→ W 1,4(Td).

We shall now verify the hypotheses of the Leray–Schauder theorem; the latter
provides a solution v of S(v, 1) = v. The operator S is constant at σ = 0, S(v̄, 0) = 1.
By standard results for elliptic equations, S is continuous and compact since the
embedding H2(Td) ↪→ W 1,4(Td) is compact. It remains to show a uniform bound for
all fixed points of S(·, σ). This bound is obtained from the production of the physical
entropy and Lemma 2.4.

Let v ∈ H2(Td) be a fixed point of S(·, σ) for some σ ∈ [0, 1]. Then v is a
solution to (4.4) with σ/τ instead of 1/τ , and with v = ey/2 > 0, y ∈ H2(Td). Since
φ(s) = s(log s − 1) + 1 is convex, φ(s1) − φ(s2) ≤ φ′(s1)(s1 − s2) for all s1, s2 ≥ 0.
Hence,

σ

τ
(E1(v

2) − E1(w
2)) =

σ

τ

∫
Td

(φ(v2) − φ(w2))dx

≤ σ

2τ

∫
Td

(v2 − w2) log(v2)dx = −a(y, y)(4.6)

≤ −1

2

∫
Td

v2‖∇2 log(v2)‖2dx− ε

∫
Td

((Δy)2 + y2)dx.



THE DERRIDA–LEBOWITZ–SPEER–SPOHN EQUATION 2009

The estimate of Lemma 2.4 shows that

σ

τ
(E1(v

2) − E1(w
2)) + 2κ1

∫
Td

‖∇2v‖2dx ≤ 0.

As a consequence,

E1(v
2) ≤ E1(w

2) and ‖∇2v‖2
L2 ≤ 1

2τκ1
E1(w

2).

In particular, ∇2v is uniformly bounded in L2(Td). Together with the elementary
inequality s ≤ φ(s) + (e− 1) for all s ≥ 0, we obtain

‖v‖2
L2 ≤

∫
Td

(φ(v2) + e− 1)dx = E1(v
2) + e− 1.

This means that v is uniformly bounded in L2(Td). Then the Gagliardo–Nirenberg
inequality gives the desired uniform bound for v:

(4.7) ‖v‖2
H2 ≤ C(‖∇2v‖2

L2 + ‖v‖2
L2) ≤ C

(
1 +

1

2τκ1

)
E1(w

2) + 2C.

The Leray–Schauder fixed-point theorem provides a solution v to S(v, 1) = v, which
we denote by vε. Obviously, vε satisfies (4.4).

Step 3. Lower bound for vε. By construction of vε, there exists yε ∈ H2(Td) such
that vε = eyε/2. Going back to (4.6), we see that

1

2τ
(E1(v

2
ε) − E1(w

2)) ≤ −ε

∫
Td

((Δyε)
2 + y2

ε)dx ≤ −εC‖yε‖2
H2 ,

using the Gagliardo–Nirenberg inequality. Hence,

(4.8) ‖yε‖H2 ≤
(
E1(w

2)

2ετC

)1/2

≤ cε−1/2,

where c > 0 is, here and in the following, a generic constant independent of ε. In
combination with the embedding H2(Td) ↪→ L∞(Td), this gives ‖yε‖L∞ ≤ cε−1/2.
Consequently, vε is strictly positive:

vε = exp
(yε

2

)
≥ exp

(
− c

2ε1/2

)
= μ(ε) > 0.

Thus, with μ := μ(ε), it holds that [vε]μ = vε, and the respective fixed point vε ∈
H2(Td) satisfies

1

τ
(v2

ε − w2) = −∂2
ij(vε∂

2
ijvε − ∂ivε∂jvε)(4.9)

− ε(Δ2 log vε + log vε) + εdiv(|∇ log vε|2∇ log vε).

Step 4. The limit ε → 0. The estimate (4.7) shows that the sequence (vε) is
bounded in H2(Td). Thus, for a subsequence which is not relabeled, vε ⇀ v weakly in
H2(Td) and vε → v strongly in W 1,4(Td) and L∞(Td) as ε → 0 for some v ∈ H2(Td).
For the first expression on the right-hand side in (4.9), we thus obtain

vε∂
2
ijvε − ∂ivε∂jvε ⇀ v∂2

ijv − ∂iv∂jv weakly in L2(Td).
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In order to prove that v is indeed a solution to (4.1), we verify that the expressions
involving the factor ε vanish as ε → 0. From the refined coercivity estimate

a(yε, yε) ≥ ε(c‖yε‖2
H2 + ‖∇yε‖4

L4),

we learn that

‖∇yε‖L4 ≤ cε−1/4.

In combination with (4.8), this gives∣∣〈ε(Δ2 log vε + log vε − div(|∇ log vε|2∇ log vε)
)
, z
〉
H−2,H2

∣∣
≤ ε

(
‖ log vε‖H2‖z‖H2 + ‖ log vε‖L2‖z‖L2 + ‖∇ log vε‖3

L4‖z‖W 1,4

)
≤ c(ε1/2 + ε1/4)‖z‖H2

for any test function z ∈ H2(Td). Therefore,

ε
(
Δ2 log vε + log vε − div(|∇ log vε|2∇ log vε)

)
⇀ 0 weakly in H−2(Td),

so v satisfies (4.1).
Step 5. Verification of (4.2) and (4.3). Conservation of mass follows from the

weak formulation of (4.1) by using z ≡ 1 as a test function. From (4.6) and Lemma
2.4 it follows that

E1(v
2
ε) + 2τκ1

∫
Td

‖∇2vε‖2dx ≤ E1(w
2).

In the limit ε → 0, this inequality gives (4.2) since (a subsequence of) vε converges
weakly to v in H2(Td) and the L2 norm of the Hessian of vε constitutes a weakly
lower semicontinuous functional on H2(Td).

Next, we prove (4.3). Recall that the solutions vε of the regularized equation
(4.4) are strictly positive and bounded in modulus. Hence log vε and vpε , for arbitrary
exponents p ∈ R, are well-defined functions in H2(Td). Using the test function

φ′
γ(vε)/2 = (v

2(γ−1)
ε − 1)/2(γ − 1) in (4.9) gives (see (3.1) for the definition of φγ)

1

2τ
(Eγ(v2

ε) − Eγ(w2)) =
1

2τ

∫
Td

(
φγ(v2

ε) − φγ(w2)
)
dx

≤ 1

2τ

∫
Td

φ′
γ(v2

ε)(v
2
ε − w2)dx =

1

2(γ − 1)τ

∫
Td

(v2
ε − w2)∂2

ij(v
2(γ−1)
ε )dx

= − 1

2(γ − 1)

∫
Td

(vε∂
2
ijvε − ∂ivε∂jvε)∂

2
ij(v

2(γ−1)
ε )dx

− ε

γ − 1

∫
Td

(
Δ(v2(γ−1)

ε )Δ(log vε) + |∇ log vε|2∇(log vε) · ∇(v2(γ−1)
ε )

)
dx

− ε

2(γ − 1)

∫
Td

vγ−1
ε log vεdx

= A1 − εA2 − εA3.

Now, by Lemma 2.2,

A1 ≤ −κγ

∫
Td

(Δuγ/2)2dx.
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Furthermore, by Lemma 2.5, applied to f = uγ/2 and p = γ, and since u has unit
mass, we obtain

γ

γ − 1

(∫
Td

uγdx− 1

)
≤ 1

8π4

∫
Td

(Δuγ/2)2dx,

so finally,

A1 ≤ −8π4γκγ

γ − 1

(∫
Td

uγdx− 1

)
= −8π4γ2κγEγ(v2

ε).

Now, we show that A2 and A3 are bounded from below, uniformly in ε > 0. This is
clear for A3 since γ > 1. The remaining integral can be written as

A2 = 2

∫
Td

v2(γ−1)
ε

((Δvε
vε

)2

− 2(2 − γ)
Δvε
vε

∣∣∣∇vε
vε

∣∣∣2 + 2(2 − γ)
∣∣∣∇vε
vε

∣∣∣4)dx
= 2

∫
Td

v2(γ−1)
ε

((Δvε
vε

− (2 − γ)
∣∣∣∇vε
vε

∣∣∣2)2

+ γ(2 − γ)
∣∣∣∇vε
vε

∣∣∣4)dx
≥ 0

since γ < (
√
d + 1)2/(d + 2) ≤ 3/2. These estimates give

1

τ
(E1(v

2
ε) − E1(w

2)) ≤ −16π4γ2κγEγ(v2
ε).

We pass to the limit ε → 0 in this inequality. As vε → v strongly in L∞(Td),
integration and limit commute and we conclude that

1

τ
(Eγ(v2) − Eγ(w2)) ≤ −16π4γ2κγEγ(v2)

from which (4.3) follows. This finishes the proof.

4.2. A priori estimates. Let an arbitrary terminal time T > 0 be fixed in
the following. Define the step function v(τ) : [0, T ) → L2(Td) recursively as follows.
Let v0 =

√
u0, and for given k ∈ N, let vk ∈ H2(Td) be the nonnegative solution

(according to Lemma 4.1) to (4.1) with w = vk−1. Now define v(τ)(t) := vk for
(k − 1)τ < t ≤ kτ . Then v(τ) satisfies

(4.10)
1

τ

(
(v(τ))2 − (στv

(τ))2
)

= −∂2
ij

(
v(τ)∂2

ijv
(τ) − ∂iv

(τ)∂jv
(τ)

)
,

where στ denotes the shift operator (στv
(τ))(t) = v(τ)(t−τ) for τ ≤ t < T . In order to

pass to the continuum limit τ → 0 in (4.10), we need the following a priori estimate.
Lemma 4.2. The function v(τ) satisfies

(4.11) ‖(v(τ))2‖L11/10(0,T ;H2(Td)) + τ−1‖(v(τ))2 − (στv
(τ))2‖L11/10(0,T ;H−2(Td)) ≤ c,

where the constant c > 0 is independent of τ .
Proof. From Lemma 4.1 we know that

‖v(τ)‖L∞(0,T ;L2(Td)) = ‖u0‖1/2

L1(Td)
= 1, ‖∇2v(τ)‖L2(0,T ;L2(Td)) ≤ c.
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In order to derive (4.11), we employ the Gagliardo–Nirenberg and Hölder inequalities.
The former inequality shows that

‖v(τ)‖8/3

L8/3(0,T ;L∞(Td))
≤ C

∫ T

0

‖v(τ)(t, ·)‖8θ/3
H2 ‖v(τ)(t, ·)‖8(1−θ)/3

L2 dt

≤ C‖v(τ)‖8(1−θ)/3

L∞(0,T ;L2(Td))

∫ T

0

‖v(τ)(t, ·)‖8θ/3
H2 dt,(4.12)

where θ = d/4. Since 8θ/3 = 2d/3 ≤ 2 in dimensions d ≤ 3, the right-hand side is
uniformly bounded. Applying Hölder’s inequality with respect to t, for p = 9/5 and
p′ = 9/4, we infer that

‖v(τ)∂2
ijv

(τ)‖11/10

L11/10(0,T ;L2(Td))
≤ C

∫ T

0

‖v(τ)(t, ·)‖11/10
H2 ‖v(τ)(t, ·)‖11/10

L∞ dt

≤ C‖v(τ)‖11/10

L11p/10(0,T ;H2(Td))
‖v(τ)‖11/10

L11p′/10(0,T ;L∞(Td))
.(4.13)

Since 11p/10 = 99/50 ≤ 2 and 11p′/10 = 99/40 ≤ 8/3, the right-hand side is uni-
formly bounded in view of the boundedness of v(τ) in L8/3(0, T ;L∞(Td)). On the
other hand, by the Gagliardo–Nirenberg inequality,

‖v(τ)‖16/7

L16/7(0,T ;W 1,4(Td))
≤ C

∫ T

0

‖v(τ)(t, ·)‖16θ/7
H2 ‖v(τ)(t, ·)‖16(1−θ)/7

L2 dt

≤ C‖v(τ)‖16(1−θ)/7

L∞(0,T ;L2(Td))
‖v(τ)‖16θ/7

L16θ/7(0,T ;H2(Td))
,(4.14)

where θ = (d+4)/8. As 16θ/7 = 2(d+4)/7 ≤ 2 in dimensions d ≤ 3, v(τ) is uniformly
bounded in L16/7(0, T ;W 1,4(Td)). As a straightforward conclusion,

‖∂iv(τ)∂jv
(τ)‖11/10

L11/10(0,T ;L2(Td))
≤

∫ T

0

‖∇v(τ)(t, ·)‖22/10
L4 dt

≤ ‖v(τ)‖22/10

L22/10(0,T ;W 1,4(Td))
≤ c,(4.15)

since 22/10 < 16/7. Estimates (4.13) and (4.15) together yield

‖∇2(v(τ))2‖L11/10(0,T ;L2(Td))

≤ 2

d∑
i,j=1

‖v(τ)∂ijv
(τ) + ∂iv

(τ)∂jv
(τ)‖L11/10(0,T ;L2(Td)) ≤ c.

Moreover, by (4.12) and (4.14), since 22/10 < 8/3 and 22/10 < 16/7,

‖∇(v(τ))2‖L11/10(0,T ;L2(Td)) ≤ 2‖v(τ)‖L22/10(0,T ;L4(Td))‖∇v(τ)‖L22/10(0,T ;L4(Td)).

The right-hand side is bounded by the considerations above. This estimates the first
term in (4.11). To obtain a uniform bound on the second term in (4.11), we combine
again (4.13) and (4.15):

1

τ
‖(v(τ))2 − (στv

(τ))2‖L11/10(0,T ;H−2(Td))

≤
d∑

i,j=1

(
‖v(τ)∂2

ijv
(τ)‖L11/10(0,T ;L2(Td)) + ‖∂iv(τ)∂jv

(τ)‖L11/10(0,T ;L2(Td))

)
≤ c.
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4.3. The limit τ → 0. The a priori estimates of the previous subsection are
sufficient to pass to the limit τ → 0.

Lemma 4.3. There exists some nonnegative function u ∈ W 1,1(0, T ;H−2(Td))
with

√
u ∈ L2(0, T ;H2(Td)) such that, for a subsequence of (v(τ)), which is not rela-

beled, as τ → 0,

1

τ

(
(v(τ))2 − στ (v

(τ))2
)
⇀ ∂tu weakly in L11/10(0, T ;H−2(Td)),

v(τ)∂2
ijv

(τ) ⇀
√
u∂2

ij

√
u weakly in L1(0, T ;L2(Td)),

∂iv
(τ)∂jv

(τ) ⇀ ∂i
√
u∂j

√
u weakly in L1(0, T ;L2(Td)).

Moreover, u is a weak solution to (1.4)–(1.5).
Proof. Estimate (4.11) allows to apply the Aubin lemma [22], showing that, up to

a subsequence, (v(τ))2 → u in L11/10(0, T ;L∞(Td)) as τ → 0 for some limit function u.
Here, we have used that H2(Td) embeds compactly into L∞(Td) in dimensions d ≤ 3.
In particular, (v(τ)) converges pointwise a.e. Since obviously, (v(τ))2 is nonnegative, so
is u, and we can define

√
u ∈ L22/10(0, T ;L∞(Td)); note that v(τ) converges strongly

to
√
u in this space.
Now, the first claim follows directly from (4.11) and the construction of v(τ).

Estimate (4.11) further yields weak convergence of v(τ) in L2(0, T ;H2(Td)). The
weak limit necessarily coincides with

√
u, the strong limit from above.

By Hölder’s inequality,

‖v(τ) −
√
u‖2

L2(0,T ;L∞(Td) ≤ ‖(v(τ) −
√
u)2‖L11/10(0,T ;L∞(Td)) · T 1/11

≤ ‖(v(τ))2 − u‖L11/10(0,T ;L∞(Td)) · T 1/11.(4.16)

In the last step, we have used that (a − b)2 ≤ |a2 − b2| for arbitrary nonnegative
a, b ∈ R. Now, by the Gagliardo–Nirenberg and Hölder inequalities,

‖∇(v(τ) −
√
u)‖2

L2(0,T ;L4(Td))

≤ C‖v(τ) −
√
u‖L2(0,T ;H2(Td))‖v(τ) −

√
u‖L2(0,T ;L∞(Td)).

The first term in the product is bounded (cf. estimate (4.2)); the second term con-
verges to zero by (4.16) above. Thus v(τ) →

√
u strongly in L2(0, T ;W 1,4(Td)) and

∂iv
(τ)∂jv

(τ) ⇀ ∂i
√
u∂j

√
u weakly in L1(0, T ;L2(Td)).

The remaining limit follows from (4.16) and weak convergence of v(τ) to
√
u in

L2(0, T ;H2(Td)). Finally, since L2(0, T ;H2(Td)) ↪→ L2(0, T ;L∞(Td)), one verifies
that u =

√
u ·

√
u ∈ L1(0, T ;H2(Td)) by the Hölder and Gagliardo–Nirenberg esti-

mates.

5. Decay rates for nonnegative weak solutions. We prove Theorem 1.2 for
the solutions constructed in the previous section.

First, we show that κγ > 0 for 1 ≤ γ < (
√
d + 1)2/(d + 2). Indeed, by definition,

κγ > 0 if p(γ) > 0, with the quadratic polynomial p(γ) given in (2.6). But p(γ) > 0 if
and only if γ− < γ < γ+ where γ± are the two roots of p. Now, a computation yields
γ± = (

√
d± 1)2/(d + 2), and it is immediately seen that γ− < 1 < γ+.
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Next, set tn = nτ for n = 0, . . . ,M . From (4.3) we know that

Eγ

(
v(τ)(tn+1, ·)2

)
− Eγ

(
v(τ)(tn, ·)2

)
≤ −(2π)4τγ2κγEγ

(
v(τ)(tn+1, ·)2

)
.

Summation over n = 0, . . . ,M − 1 gives

Eγ

(
v(τ)(tM , ·)2

)
− Eγ(u0) ≤ −(2π)4τγ2κγ

M∑
j=1

Eγ

(
v(τ)(tj , ·)2

)

≤ −(2π)4τγ2κγ

∫ tM

τ

Eγ

(
v(τ)(s, ·)2

)
ds.

Keep t fixed; perform the limits τ → 0 and M → ∞ such that tM = Mτ → t. Since
v(τ) →

√
u strongly in L2(0, T ;L∞(Td)) as τ → 0,

Eγ

(
u(t, ·)

)
≤ Eγ(u0) − (2π)4τγ2κγ

∫ t

0

Eγ

(
u(s, ·)

)
ds.

Gronwall’s lemma leads to the desired decay estimate. Decay in the L1 norm follows
immediately from the Csiszár–Kullback inequality. This finishes the proof of Theorem
1.2.

6. Nonuniqueness of solutions. In dimensions d ≤ 3, we provide a family of
initial conditions for which the DLSS equation (1.4)–(1.5) has at least two solutions
in the class L1(0, T ;H2(Td)) for all T > 0. Namely, for arbitrary integers n1, . . . , nd,
let

û(t, x) = cos2(n1πx1) · · · cos2(ndπxd), x = (x1, . . . , xn)� ∈ T
d.

This function is C∞ smooth, time-independent, spatially multiperiodic, and has finite
physical entropy,

∫
Td(û(log û−1)+1)dx < +∞. Moreover, a simple calculation shows

that the distribution

∂2
ij

(√
û∂2

ij

√
û− ∂i

√
û∂j

√
û
)

is identically zero. In other words, û is a weak solution of the stationary and, hence,
also of the transient equation. This time-independent function is clearly not physical:
it does not converge to the homogeneous steady state and it does not dissipate the
physical (or any other) entropy.

On the other hand, Theorems 1.1 and 1.2 provide the existence of a weak solution
u(t, ·) to (1.4) with initial datum u0(x) = û(0, x) which converges to the constant
steady state as t → ∞. Thus, u = û. Hence, we have found two weak solutions to
(1.4)–(1.5) in the class of nonnegative functions in L1(0, T ;H2(Td)).

Moreover, the above observation makes clear that one cannot expect strict posi-
tivity of weak solutions for t > 0 if the initial conditions attain zero somewhere. On
the other hand, numerical experiments (see, e.g., [8]) lead to the conjecture that for
strictly positive initial data, the solutions are also strictly positive.

We remark that the stationary solution û does not have the regularity stated in
the conclusions of Theorem 1.1: observe that

√
û /∈ L2(0, T ;H2(Td)). Whether the

condition
√
u ∈ L2(0, T ;H2(Td)) is sufficient to obtain entropy-dissipative solutions

(or perhaps even uniqueness and positivity) remains an open question.
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A FLUID DYNAMIC MODEL FOR T -JUNCTIONS∗
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Abstract. Motivated by real road junctions, we consider a new fluid dynamic model for traffic
flow on networks. In particular at T -junctions, beside some flows distribution and/or merging, there
happen some interactions of cars coming from different roads and going to different destinations.
After determining some rules to uniquely solve Riemann problems, we prove existence of solutions
on complete networks for initial data with bounded variation (and their limits in L1

loc).
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1. Introduction. In recent years, many authors contributed to the development
of fluid dynamic theory for flows on networks, see [4, 6, 7, 10, 11, 13, 14, 15, 16, 19].
The most important applications are in urban car traffic [5, 12], telecommunication
data networks [9, 21, 22], gas pipelines [2], supply chains [1], and others.

The main approach used for car traffic is based on the idea of a junction (cor-
responding to the nodes of the network), with no particular relationships between
incoming and outgoing roads. Then, real crossings are modeled splitting them into
many junctions of lower complexity; see, e.g., [6, 13]. This means that the traffic flow
from incoming roads distributes to outgoing roads according to certain preferences,
which in [7] were modeled by a traffic distribution matrix. Then, in general, to solve
uniquely Riemann problems, i.e., Cauchy problems with constant initial data on each
road, one also needs to impose the maximization of a functional, e.g., the total flux.

In this paper we consider a different point of view for junctions, inspired by
modeling need. To illustrate our approach, let us focus on a simple example of T -
junction, represented in Figure 1. Here we have three roads with both directions of
traffic. Then we can individuate the incoming flows, denoted by 1, 2, and 3, and
the outgoing ones, denoted by A, B, and C. Each incoming flux at the junction
splits into two parts depending on the final destination. Thus flux 1 is split into
fluxes 1B and 1C (assuming that U -turns are not possible). As Figure 1 shows, there
are many interactions among the various fluxes at the junction. However, not all
such interactions can be considered in the same way. In fact, for instance, fluxes 1B
and 3B must flow to the same final direction, thus clearly their sum cannot exceed
the possible outgoing flow towards B. On the contrary, fluxes 1B and 3A share
conflicting trajectories, but they do not share the same final destination, thus their
sum is bounded only by the junction capacity.

To capture this situation, we model the T -junction as in Figure 2. More precisely,
to encompass the whole dynamic happening at the T -junction, we use nine virtual
junctions denoted by letters G, H, and K. The three junctions G are formed by an
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Fig. 2. The model for a T -junction.

incoming road and two outgoing roads, thus the described phenomenon is simply a
flux split. Such junctions were already modeled in [7].

Instead, the three junctions H are formed by two incoming and one outgoing
roads. In this case, clearly some right of way or yielding rule should show up to
describe the traffic distribution. This is in fact the case and the theory was first
developed in [6].

The junctions K have a quite different meaning. In this case there are two
incoming and two outgoing roads. However, the traffic from each incoming road
goes to a precise outgoing road, while sharing the junction space. Our main aim
is then to model these new types of junctions. Let us illustrate the mathematical
counterpart of this example.

We use the Lighthill–Whitham–Richards model (see [20, 23]), which consists of a
single conservation law:

(1.1) ρt + f(ρ)x = 0,

where ρ ∈ [0, ρmax] is the car density and f(ρ) = ρv(ρ) is the flux with v(ρ) the average
velocity. A junction J is called a crossing junction if it has the same characteristic of
junctions K above. Thus J has n incoming roads, denoted for simplicity by I1, . . . , In,
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and n outgoing roads, denoted by In+1, . . . , I2n. Also, we denote by ρi(t, x), i =
1, . . . , n, and ρj(t, x), j = n + 1, . . . , 2n, the traffic densities, respectively, on the
incoming roads and the outgoing ones. To describe the dynamics at J , we assume the
following.

(1) The flux from road Ii is the same of the corresponding exiting road In+i.
(2) The total flux through J does not exceed its maximum capacity ΓJ .
(3) The total flux through J is maximal respecting rules (1) and (2).

In case of high traffic, rules (1), (2), and (3) are not enough to isolate a unique solution
to Riemann problems at J . This need of a new rule is not at all surprising, since such
rules were used in car traffic for junctions with more incoming than outgoing roads,
see [6], and also for telecommunication networks; see [9].

Therefore, we introduce a flux proportion rule, which is active only when the
maximal incoming fluxes overcome the maximal junction capacity ΓJ . More precisely,
we assume that there exist ideal equilibrium flux proportions among incoming roads.
Thus, there exist coefficients r̄i so that the following holds.

(FPR) The flux from road Ii+1 is r̄i times the flux from road Ii, for i = 1, . . . , n−1.
The rule (FPR) well captures the situation in the example of the T -junction above.
Indeed, for instance, the flux 3A must yield to the flux 2C, thus the corresponding
flux proportion coefficient will be less than 1. While, usually the flux 1B must give
precedence to the flux 3A, unless yielding signs are deciding the contrary.

Let us further illustrate the role of rule (FPR), for simplicity restricting to the
case of two incoming and two outgoing roads. First, (FPR) is used only if the sum
of incoming maximal fluxes exceeds ΓJ . Then, to respect (FPR), we should set the
incoming fluxes γ1 and γ2 so that γ2 = r̄1γ1. However, this may be in contrast with
(3) (if, for example, r̄1 = 1, the maximal flux γmax

1 from road 1 exceeds ΓJ and the
maximal flux from road 2 is less than ΓJ/2). In the latter case, we set the proportion
between incoming fluxes so to respect rule (3) (i.e., summing up to ΓJ) and be as
close as possible to the value prescribed by (FPR).

We first show how to define the solution to Riemann problems for the new type
of junctions: the crossing junctions. The procedure to define the solution is based on
rules (1), (2), (3), and (FPR). The obtained solution effectively defines a Riemann
solver with consistency properties; see Proposition 2.

Then we provide estimates on the total variation of the flux for a wave interacting
with a crossing junction, having two incoming and two outgoing roads. Such estimates
are the key point to prove bounded variation (BV) estimates on the flux along wave
front tracking approximate solutions.

More precisely, a wave front tracking algorithm is defined as in [7], i.e., approxi-
mating initial data with a piecewise constant function and solving Riemann problems
(RPs) for interactions between waves and of waves with junctions. To provide a well-
defined construction, estimates on the number of waves and interactions are in order.
The latter are obtained with a careful analysis based on the special properties of the
introduced Riemann solver. Then, to pass to the limit, BV estimates on the flux
are used, together with standard weak compactness arguments. The final result is
existence of solutions to Cauchy problems on networks.

The paper is organized as follows. Section 2 provides the basic definitions and
results from previous papers, while in section 2.1 we describe the Riemann solver for
crossing junctions. Section 3 contains flux variation estimates for waves interacting
with crossing junctions. Finally, in section 4, we prove existence of solutions on the
whole network for L1

loc initial data, which can be approximated by BV functions with
uniformly bounded variation.
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2. Basic definitions. We use the same approach as in [16, 7, 11]. For reader
convenience, we recall the main notation and results.

We consider a network formed by a collection I of unidirectional roads Ii, mod-
eled by real (possibly unbounded) intervals [ai, bi], whose natural order respects the
direction of the road. Roads meet at junctions: each junction J is given by a col-
lection of incoming roads and outgoing roads, and we indicate by J the collection of
junctions. Thus the network can be identified with a directed graph. On each road
the evolution is given by (1.1) and we assume

(F) The flux f is a smooth, strictly concave function (with f(0) = f(ρmax) = 0),
thus there exists a unique σ ∈ [0, ρmax] such that f ′(σ) = 0 and it is the
maximum of f over [0, ρmax].

For notational simplicity, we assume that ρmax = 1.
Definition 1. We let τ : [0, 1] → [0, 1] be the map such that f(ρ) = f(τ(ρ)) and

τ(ρ) �= ρ if ρ �= σ. Thus τ sends ρ to the other density value with the same flux (and
τ(σ) = σ).

We restrict to crossing junctions as explained in the introduction. Then each
junction J has n = n(J) incoming roads and n outgoing roads.

Let us fix now a junction J and for simplicity assume that the incoming roads are
I1, . . . , In and the outgoing roads are In+1, . . . , I2n. A Riemann problem for system
(1.1), on the real line, is a Cauchy problem with Heaviside-type initial data. We define
a Riemann problem at J to be a Cauchy problem with initial datum constant on each
road. Thus let us fix an initial condition ρ0 = (ρ1,0, . . . , ρ2n,0). We look for centered
self-similar solutions (as it is natural for conservation laws, see [3]), thus we want to
determine a (2n)-tuple ρ̂ = (ρ̂1, . . . , ρ̂2n) ∈ [0, 1]2n, so that the following holds. On
each incoming road Ii, i = 1, . . . , n, the solution consists of the single wave solution
to the Riemann problem (ρi,0, ρ̂i), while on each outgoing road Ij , j = n + 1, . . . , 2n,
the solution consists of the single wave (ρ̂j , ρj,0).

We consider waves with negative speed on incoming roads and positive on outgo-
ing ones, thus

(2.1) ρ̂i ∈
{

{ρi,0} ∪ ]τ(ρi,0), 1] if 0 ≤ ρi,0 ≤ σ,
[σ, 1] if σ ≤ ρi,0 ≤ 1,

i = 1, . . . , n, and

(2.2) ρ̂j ∈
{

[0, σ] if 0 ≤ ρj,0 ≤ σ,
{ρj,0} ∪ [0, τ(ρj,0)[ if σ ≤ ρj,0 ≤ 1,

j = n + 1, . . . , 2n. As a consequence, not every flux can be obtained on each road.
More precisely, we define

(2.3) γmax
i =

{
f(ρi,0) if ρi,0 ∈ [0, σ],
f(σ) if ρi,0 ∈ ]σ, 1] ,

i = 1, . . . , n,

and

(2.4) γmax
j =

{
f(σ) if ρj,0 ∈ [0, σ],
f(ρj,0) if ρj,0 ∈ ]σ, 1] ,

j = n + 1, . . . , 2n.

The quantities γmax
i and γmax

j represent the maximum flux that can be obtained by
a single wave solution on each road.

Remark 1. We may consider waves with zero speed on incoming or outgoing
roads. However, this would generate shocks which stay at the intersection, without
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entering roads. Since solutions are usually considered in L1, such shocks are not part
of the solution on roads (because they affect the value only at one point).

Remark 2. The maximum fluxes on incoming and outgoing roads can be in-
terpreted as maximal demands and supplies, according to the theory introduced by
Lebacque; see [17, 18, 11]. Notice that for each road Ii and possible flux γ̂i, there
exists a unique ρ̂i, satisfying (2.1) or (2.2), such that f(ρ̂i) = γ̂i. Moreover, by rule
(1), outgoing fluxes are obtained once incoming fluxes are fixed. Then we obtain the
following.

Proposition 1. To solve a Riemann problem at a crossing junction J , it is
enough to determine the fluxes on incoming roads.

We aim at finding a systematic way of solving RP at junctions as described by
next definition.

Definition 2. Given a crossing junction J , we call Riemann solver for J a
map RS : [0, 1]

n × [0, 1]n → [0, 1]n × [0, 1]n that associates with Riemann data ρ0 =
(ρ1,0, . . . , ρ2n,0) at J a vector ρ̂ = (ρ̂1, . . . , ρ̂2n) so that the solution on an incoming
road Ii, i = 1, . . . , n, is given by the wave (ρi,0, ρ̂i) and on an outgoing one Ij, j =
n + 1, . . . , 2n, is given by the wave (ρj,0, ρ̂j) . We require the consistency condition:

(CC) RS (RS (ρ0)) = RS (ρ0) .
Once a Riemann solver is introduced for every junction J , we can define the

concept of solution on the network as in [11].

2.1. Riemann solver at crossing junctions. The aim of this section is to
describe the solution to a Riemann problem at a crossing junction J , using rules (1),
(2), (3), and (FPR).

Fix a crossing junction J with n incoming roads, I1, . . . , In and n outgoing roads
In+1, . . . , I2n. We denote by ρi(t, x), i = 1, . . . , n, and ρj(t, x), j = n + 1, . . . , 2n,
the traffic densities, respectively, on the incoming roads and the outgoing ones and
by (ρi,0, ρj,0) the initial data of a Riemann problem. The rules (1), (2), and (3) can
be rewritten as

(1) f(ρ̂i) = f(ρ̂n+i) for each i = 1, . . . , n,
(2)

∑
i f(ρ̂i) ≤ ΓJ ,

(3)
∑

i f(ρ̂i) is maximal respecting rules (1) and (2).
The rules (1) and (2) alone do not give a unique solution (ρ̂1, . . . , ρ̂2n). Moreover,

since the solution (ρ̂1, . . . , ρ̂2n) must satisfy conditions (1) and (2), we denote by Ω
the admissible region for the fluxes γi = f(ρi)

Ω = {(γ1, . . . , γn) :
∑

γi ≤ ΓJ , 0 ≤ γi ≤ γ∧
i , i = 1, . . . , n},

where γ∧
i = min{γmax

i , γmax
n+i }.

Let us now quantify rule (FPR). We can rewrite the rule as
(FPR) r̄i is the ratio among the fluxes on two successive roads f(ρ̂i) and f(ρ̂i+1).

Now, we want to determine a unique solution to the Riemann problem using rules
(1), (2), (3), and (FPR). More precisely, we try to fit rule (FPR) as much as possible
respecting rules (1), (2), and (3).

Recall that, by Proposition 1, to solve the Riemann problem, it is enough to
determine the fluxes γ̂i = f(ρ̂i), i = 1, . . . , n. (Then γ̂n+i = f(ρ̂i), i = 1, . . . , n.)

Then, let us determine γ̂i, i = 1, . . . , n. We denote Γ =
∑

i γ
∧
i . We have to

distinguish two cases:
(I) Γ ≤ ΓJ ,
(II) Γ > ΓJ .
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In the first case we set γ̂i = γ∧
i , i = 1, . . . , n. Let us analyze the second case in which

we use the flux proportion coefficients r̄1, . . . , r̄n−1.
Consider the space (γ1, . . . , γn) and denote by γr the point that satisfy the fol-

lowing system of equations:

(2.5)

{ ∑
i γi = ΓJ ,

γi+1 = r̄iγi.

Recall that the final fluxes should belong to Ω. We distinguish two cases:
(a) γr belongs to Ω,
(b) γr is outside Ω.
In the first case the solution is γ̂ = γr, which, by direct computations, is given by

(2.6)

γ̂1 = γ̂n+1 =
1

p(r)
ΓJ ,

γ̂2 = γ̂n+2 =
r̄1
p(r)

ΓJ ,

γ̂3 = γ̂n+3 =
r̄1r̄

min
2

p(r)
ΓJ ,

...

γ̂n = γ̂2n =
r̄1r̄2 · · · r̄n−1

p(r)
ΓJ ,

where p(r) = 1 + r̄1 + r̄1r̄2 + · · · + r̄1r̄2 · · · r̄n−1.
In the second case, we project γr on the admissible region. More precisely, for

the case of two incoming and outgoing roads, i.e., for n = 2, the solution is as follows.
If γr1 > γ∧

1 , we set

γ̂1 = γ̂3 = γ∧
1 ,

γ̂2 = γ̂4 = ΓJ − γ∧
1 .

If otherwise γr2 > γ∧
2 , we set

γ̂2 = γ̂4 = γ∧
2 ,

γ̂1 = γ̂3 = ΓJ − γ∧
2 .

For reader convenience, we illustrate the cases I, IIa, and IIb for the case of n = 2
in Figure 3.

For n > 2 we chose γ̂ to be the projection prΩ̂(γr) on the convex set Ω̂ = Ω ∩
{γ :

∑n
i=1 γi = ΓJ}. (Notice that γr already belongs to the hyperplane {γ :

∑n
i=1 γi =

ΓJ}.)
For future convenience we make a little abuse of notation as follows.
Notation. We define

Ω̃ = {(γ1, . . . , γn) : 0 ≤ γi ≤ γ∧
i , i = 1, . . . , n}

and denote by Case IIa the case where γr ∈ Int(Ω̃) and by Case IIb the case where
γr �∈ Int(Ω̃).

Roughly speaking, the case of γr belonging to the boundary of Ω̃ is included in
Case IIb, in fact this corresponds to have equality constraints on some flux solutions,
as it will be more clear later.
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Fig. 3. Solutions at junctions for n = 2: Case I (top), Case IIa (centre), Case IIb (bottom).
The bold point represents the values of the fluxes in the solution to the Riemann problem.

Moreover, we introduce the following.
Notation. For all i ∈ {1, . . . , n} we denote
Case H0. ρi ∈ [0, σ] and ρn+i ∈ [σ, 1].
Case H1. ρi ∈ [0, σ[ and ρn+i ∈ [0, σ[.
Case H2. ρi ∈]σ, 1] and ρn+i ∈]σ, 1].
Case H3. ρi ∈]σ, 1] and ρn+i ∈ [0, σ[.
Proposition 2. Given an initial condition (ρi,0, ρj,0), there exists a unique

(ρ̂1, . . . , ρ̂2n) satisfying rules (1), (2), (3), and (FPR). Such solution uniquely defines
a Riemann solver at J , which respects the compatibility condition (CC).

Proof. Assume first that Γ ≤ ΓJ , i.e., we are in Case I, then (2) is automatically
satisfied. From (1) and (3), the solution to the RP is the point with coordinates
γ̂i = γ̂n+i = min{γmax

i , γmax
n+i }. Then there is no need to apply rule (FPR). The

following situations represent an equilibrium point for the RP, i.e., RS(ρ0) = ρ0.
(i) Case H0 with ρn+i,0 = τ(ρi,0). Indeed γ̂i = γ̂n+i = γ∧

i and the unique
solution ρ̂i that satisfies f(ρ̂i) = γ̂i and (2.1) is ρ̂i = ρi,0. The same can be
said for ρ̂n+i.

(ii) Case H1 with ρi,0 = ρn+i,0. Indeed γ̂i = γ̂n+i = γmax
1 and, as for Case

H0, we have ρ̂i = ρi,0, while the unique ρ̂n+i, such that f(ρ̂n+i) = γmax
1 , is

ρ̂n+i = ρn+i,0.
(iii) Case H2 with ρi,0 = ρn+i,0. This case is the opposite of (ii) and we reason in

the same way.
Now the following cases may happen, for i = 1, . . . , n.
• If γmax

i = γmax
n+i and the initial condition is described by Case H0, then we are

in case (i).
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• If γmax
i = γmax

n+i and (ρi,0, ρn+i,0) is described by Case H3, then f(ρ̂i) = γ̂i =
γmax
i = f(σ) and f(ρ̂n+i) = γ̂n+i = γmax

n+i = f(σ). Then the solution to the
RP is given by ρ̂i = ρ̂n+i = σ, thus falling in (i).

• If γmax
i < γmax

n+i , then it must be ρi,0 ∈ [0, σ[ and ρn+i,0 ∈ [0, τ(ρi,0)[. Thus
f(ρ̂i) = γ̂i = γmax

i = f(ρi,0), hence ρ̂i = ρi,0, and f(ρ̂n+i) = γ̂i = γmax
i =

f(ρi,0) and ρ̂n+i,0 = ρ̂i since this is the unique solution that satisfies (2.2).
The solution to the RP falls in case (ii).

• If γmax
i > γmax

n+i , then, reasoning as in the previous case, the solution falls in
case (iii).

Finally, we proved that, for every ρ0 satisfying Case I, RS(ρ0) is an equilibrium,
therefore condition (CC) is satisfied.

Assume now Case IIa occurs, which means Γ > ΓJ and γr, obtained by solving
(2.5), belongs to Int(Ω̃). Then this is the only point satisfying all rules. Thus the so-
lution is given by γ̂ = γr (see (2.6)). The following situations represent an equilibrium
point for the RP, i.e., RS(ρ0) = ρ0.

(iv) Case H3 with ρn+i,0 = τ(ρi,0) and f(ρi,0) = γr,i. Indeed γ̂i = γ̂n+i = γr,i and
the unique solution (ρ̂i, ρ̂n+i) such that f(ρ̂i) = f(ρ̂n+i) = γr,i and (2.1) and
(2.2) are satisfied is (ρi,0, ρn+i,0).

Now γ̂ ∈ Ω̃ by assumption hence for i = 1, . . . , n, it holds that γ̂i < γ∧
i . Moreover,

the unique solution (ρ̂i, ρ̂n+i) such that f(ρ̂i) = f(ρ̂n+i) = γ̂i and (2.1) and (2.2) are
satisfied is ρ̂n+i = τ(ρ̂i) ∈ [0, σ[. This new point is described by case (iv).

Again, condition (CC) is satisfied.
Finally, assume that Case IIb holds true, i.e., Γ > ΓJ and γr �∈ Int(Ω̃). Then the

solution given by prΩ̂(γr) maximizes the flux from each road, while respecting rules
(1), (2), (3), and (FPR) (if not in contrast with previous rules). For i = 1, . . . , n we
have either γ̂i = γ̂n+1 = γ∧

i or γ̂i = γ̂n+i < γ∧
1 . In the first case we have the same

analysis as for Case I, while in the second case we have the same analysis as for Case
IIa.

Then condition (CC) is again satisfied and we are done.

3. Interaction estimates for 2 × 2 crossing junctions. The aim of this
section is to obtain estimates for the flux variation in case of interactions of a wave
with a 2 × 2 junction J , i.e., a junction with two incoming and two outgoing roads.

For simplicity, we assume that the incoming roads are I1 and I2, while the out-
going roads are I3 and I4. We use the superscript “−” to indicate all quantities
before the interaction and “+” to indicate all quantities after the interaction. Thus,
for example, the initial data are given by (ρ−1 , . . . , ρ

−
4 ), while the solution after the

interaction is (ρ+
1 , . . . , ρ

+
4 ). We have four possible situations for the initial data:

Case I: Γ ≤ ΓJ .
Case IIa: Γ > ΓJ and γr ∈ Int(Ω̃).
Case IIb1: Γ > ΓJ , γr /∈ Int(Ω̃), and γr1 ≥ γ∧

1 .
Case IIb2: Γ > ΓJ , γr /∈ Int(Ω̃), and γr2 ≥ γ∧

2 .
We assume that the interaction with J happens for a wave (ρ1, ρ

−
1 ) coming from road

I1, being the other cases entirely similar. In next sections, we provide estimates on
the flux variation in the different cases.

3.1. Case I. We consider first the case Γ ≤ ΓJ . As explained in the proof of
Proposition 2, at the equilibrium before the interaction, for roads I1 and I3, and for
roads I2 and I4 the following cases may happen: (i), (ii), and (iii). Now we describe
the equilibrium type after the interaction of the wave (ρ1, ρ

−
1 ) in the different cases.
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Case i. We have that ρ−1 = τ(ρ−3 ) ≤ σ. Now ρ1 is such that the speed of the wave
(ρ1, ρ

−
1 ) is positive then it must be ρ1 ∈ [0, σ] \ {ρ−1 }.
• If ρ1 ∈ [0, ρ−1 [, then γmax

1 < γmax,−
1 = γmax,−

3 . We fall in Case I.H1 with
ρ+
3 = ρ+

1 where ρ+
1 = ρ1 since f(ρ+

1 ) = γmax
1 . The new equilibrium is then

(ρ1, ρ
−
2 , ρ1, ρ

−
4 ).

• If otherwise ρ1 ∈]ρ−1 , σ], then γmax
1 > γmax,−

1 = γmax,−
3 . We therefore fall

in Case I.H2 with the equilibrium ρ+
1 = ρ+

3 = ρ−3 . The new equilibrium is
(τ(ρ−1 ), ρ−2 , ρ

−
3 , ρ

−
4 ).

Case ii. In this case we have ρ−1 ∈ [0, σ] and ρ−3 = ρ−1 . Again, since the wave
(ρ1, ρ

−
1 ) must have positive speed, ρ1 must satisfy ρ1 ∈ [0, σ] \ {ρ−1 }. Different cases

may arise. To distinguish among them we denote by ρlim
1 the density for which

f(ρlim
1 ) + γ∧,−

2 = ΓJ . Notice that, since we are in the situation ΓJ ≥ Γ−, it must be
ρlim
1 ≥ ρ−1 .

• ρ1 ∈ [0, ρ−1 [. Thus γmax
1 < γmax,−

1 < γmax,−
3 . This is the case denoted by

Case I.H1 with ρ+
3 = ρ+

1 and ρ+
1 = ρ1. The new equilibrium is then given by

(ρ1, ρ
−
2 , ρ1, ρ

−
4 ).

• ρ1 ∈]ρ−1 , ρ
lim
1 ]. Thus γmax,−

3 = f(σ) ≥ γmax
1 > γmax,−

1 and γmax
1 = γ∧

1 ≤
ΓJ − γ∧,−

2 . We fall in Case I.H1 with ρ+
3 = ρ+

1 = ρ1 and the new equilibrium
is given by (ρ1, ρ

−
2 , ρ1, ρ

−
4 ).

• If ρ1 ∈]ρlim
1 , σ], then γmax,−

3 = f(σ) ≥ γmax
1 > γmax,−

1 and γmax
1 = γ∧

1 >
ΓJ − γ∧,−

2 . This situation is described by the following cases:
– if γmax

1 ≤ γr1 and γ∧,−
2 > γr2, then we fall in Case IIb1.H1. The

new equilibrium is (ρ1, ρ
+
2 , ρ1, ρ

+
4 ), where f(ρ+

2 ) = f(ρ+
4 ) = ΓJ − f(ρ1).

Notice that f(ρ+
2 ) = f(ρ+

4 ) < γ∧,−
2 therefore, for roads I2 and I4 we are

in Case H3;
– if γmax

1 > γr1 and γ∧,−
2 ≤ γr2, then we fall in Case IIb2.H3. The new

equilibrium is (ρ+
1 , ρ

−
2 , ρ

+
3 , ρ

−
4 ) with f(ρ+

1 ) = f(ρ+
3 ) = ΓJ − γ∧

2 ;
– if γmax

1 > γr1 and γ∧,−
2 > γr2, then we fall in Case IIa.H3 and then

the new equilibrium is (ρ+
1 , ρ

+
2 , ρ

+
1 , ρ

+
4 ), where f(ρ+

1 ) = γr1 and f(ρ+
2 ) =

f(ρ+
4 ) = ΓJ − f(ρ+

1 ) = γr2. Roads I2 and I4 also fall in the situation
described by Case H3.

Case iii. We have that ρ−1 = ρ−3 > σ. Since ρ1 is such that the speed of wave
(ρ1, ρ

−
1 ) is positive, it must be ρ1 ∈ [0, τ(ρ−3 )[. Thus γmax

1 < γmax,−
3 and we fall in

Case H1 with new equilibrium (ρ1, ρ
−
2 , ρ1, ρ

−
4 ).

In Case i, Case ii with 0 ≤ ρ1 ≤ ρlim
1 , and Case iii we have that ρ+

2 = ρ−2 and
ρ+
4 = ρ−4 hence the variation of the flux at the junction is given only by the variation

of the flux in roads I1 and I3. Only in Case ii with ρlim
1 < ρ1 ≤ σ we may have that

ρ+
2 �= ρ−2 and ρ+

4 �= ρ−4 . In this case, it holds that

f(ρ+
2 ) = f(ρ+

4 ) = ΓJ − f(ρ+
1 ).

Then for the flux variation we have

0 ≤ f(ρ−2 ) − f(ρ+
2 ) = f(ρ−2 ) − ΓJ + f(ρ+

1 ) ≤ f(ρ+
1 ) − f(ρ−1 ) ≤ f(ρ1) − f(ρ−1 ),

and similarly for road I4.

3.2. Case IIa. Assume now that Γ > ΓJ with γr ∈ Int(Ω̃). Then at the equi-
librium we are in Case iv.

We have ρ−1 = τ(ρ−3 ) ∈]σ, 1]. Then it must be ρ1 ∈ [0, τ(ρ−1 )[ for the wave (ρ1, ρ
−
1 )

to have positive speed. In this case we get that γmax
1 < f(σ) = γmax,−

1 = γmax,−
3 .

Define again ρlim
1 by f(ρlim

1 ) + γ∧,−
2 = ΓJ , then we may have the following:
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• ρ1 < ρlim
1 , then γmax

1 < γmax,−
1 = γmax,−

3 and Γ ≤ ΓJ . Then we fall in Case
I.H1 and the equilibrium is given by (ρ1, ρ

+
2 , ρ1, ρ

+
4 ) with f(ρ+

2 ) = γ∧,−
2 . The

situation in the roads I2 and I4 falls in one among Case H0, Case H1, and
Case H2. For the flux variation on roads I2 and I4 we have

f(ρ+
2 ) = γ∧,−

2 = ΓJ − f(ρlim
1 ) < ΓJ − f(ρ1)

and f(ρ−2 ) = ΓJ − f(ρ−1 ). Thus

f(ρ+
2 ) − f(ρ−2 ) < f(ρ−1 ) − f(ρ1).

• ρ1 = ρlim
1 . This case is similar to the previous one: we fall in Case I.H1 with

equilibrium (ρ1, ρ
+
2 , ρ1, ρ

+
4 ), with f(ρ+

2 ) = f(ρ+
4 ) = γ∧,−

2 = ΓJ − f(ρ1) and
the flux variation on roads I2 and I4 is

f(ρ+
2 ) − f(ρ−2 ) = f(ρ−1 ) − f(ρ1).

• ρlim
1 < ρ1 < γr1, then we fall in Case IIb1.H1 with equilibrium (ρ1, ρ

+
2 , ρ1, ρ

+
4 )

where f(ρ+
2 ) = f(ρ+

4 ) = ΓJ −f(ρ1). The situation in roads I2 and I4 remains
in Case H3 and the flux variation is

f(ρ+
2 ) − f(ρ−2 ) = ΓJ − f(ρ1) − (ΓJ − f(ρ−1 )) = f(ρ−1 ) − f(ρ1).

• γr1 ≤ ρ1 < τ(ρ−1 ), then we remain in Case IIa.H3 with equilibrium (ρ−1 , ρ
−
2 ,

ρ−3 , ρ
−
4 ) and no flux variation occurs.

3.3. Case IIb1. Assume finally that Γ > ΓJ with γr1 ≥ γ∧,−
1 . Then roads I1

and I3 are in one among Case i, Case ii, and Case iii, while roads I2 and I4 are in
Case iv. Let us consider now the equilibrium after the interaction of a wave (ρ1, ρ

−
1 ).

Case i. In this case ρ−1 ∈ [0, σ] and ρ−3 = τ(ρ−1 ). Then since (ρ1, ρ
−
1 ) must have

positive speed, ρ1 ∈ [0, σ].
• If ρ1 ∈ [0, ρ−1 [, we have γmax

1 < γmax,−
1 = γmax,−

3 and we have to distinguish
among ρ1 < ρlim

1 , ρ1 = ρlim
1 , and ρ1 > ρlim

1 . In all cases the new equilibrium
is given by (ρ1, ρ

+
2 , ρ1, ρ

+
4 ) with f(ρ+

2 ) = f(ρ+
4 ) = ΓJ − f(ρ1) or f(ρ+

2 ) =
f(ρ+

4 ) = γ∧,−
2 and, since f(ρ−2 ) = ΓJ − f(ρ−1 ), the flux variation satisfies

f(ρ+
2 ) − f(ρ−2 ) ≤ f(ρ−1 ) − f(ρ1).

• If ρ1 ∈]ρ−1 , σ], then γmax
1 > γmax,−

1 = γmax,−
3 . This is Case IIb1.H2 and the

new equilibrium is given by (τ(ρ−1 ), ρ−2 , ρ
−
3 , ρ

−
4 ).

Case ii. Now ρ−1 ∈ [0, σ[ and ρ−3 = ρ−1 . Then it must be ρ1 ∈ [0, σ].
• If ρ1 ∈ [0, ρ−1 [∪]ρ−1 , f

−1(γr1)], then we distinguish among the cases ρ1 < ρlim
1 ,

ρ1 = ρlim
1 , and ρ1 > ρlim

1 . The new equilibrium is (ρ1, ρ
+
2 , ρ1, ρ

+
4 )) with

f(ρ+
2 ) = f(ρ+

4 ) = ΓJ −f(ρ1) or f(ρ+
2 ) = f(ρ+

4 ) = γ∧,−
2 . For the flux variation

we have

f(ρ+
2 ) − f(ρ−2 ) ≤ f(ρ−1 ) − f(ρ1).

• If ρ1 ∈]f−1(γr1), σ], then we fall in Case IIa.H3 and the new equilibrium is
(ρ+

1 , ρ
+
2 , τ(ρ+

1 ), τ(ρ+
2 )) with f(ρ+

1 ) = γr1 and f(ρ+
2 ) = ΓJ − f(ρ+

1 ) = γr1.
Since ρ1 > ρ+

1 , then f(ρ1) > f(ρ+
1 ) and the flux variation is

f(ρ−2 ) − f(ρ+
2 ) = f(ρ+

1 ) − f(ρ−1 ) < f(ρ1) − f(ρ−1 ).
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Case iii. In this case we have that ρ−1 ∈]σ, 1] and ρ−3 = ρ−1 . Then it must be
ρ1 ∈ [0, τ(ρ−1 )] with γmax

1 < γmax,−
3 . We may have the following cases:

• ρlim
1 ≤ ρ1 ≤ τ(ρ−1 ). Then we fall in Case IIb1.H1 and the new equilibrium

is (ρ1, ρ
+
2 , ρ1, ρ

+
4 )) with f(ρ+

2 ) = f(ρ+
4 ) = ΓJ − f(ρ1). The flux variation is

given by

f(ρ+
2 ) − f(ρ−2 ) = f(ρ−1 ) − f(ρ1).

• 0 ≤ ρ1 ≤ ρlim
1 . This is the situation described by Case I.H1 with equilibrium

(ρ1, ρ
+
2 , ρ1, ρ

+
4 )) with f(ρ+

2 ) = f(ρ+
4 ) = γ∧,−

2 . Then the flux variation is

f(ρ+
2 ) − f(ρ−2 ) = γ∧,−

2 − f(ρ−2 ) = −f(ρlim
1 ) + f(ρ−1 ) < f(ρ−1 ) − f(ρ1).

3.4. Case IIb2. Assume finally that Γ > ΓJ with γr2 ≥ γ∧,−
2 . Then roads I2

and I4 are in one among Case i, Case ii, and Case iii while roads I1 and I3 are in
Case iv. Let us consider now the equilibrium after the interaction of a wave (ρ1, ρ

−
1 ).

We have ρ−1 = τ(ρ−3 ) ∈]σ, 1] then it must be ρ1 ∈ [0, τ(ρ−1 )[. In this case, since
f(ρ−1 ) = ΓJ − γ∧,−

2 , γmax
1 + γ∧,−

2 < ΓJ and we fall in Case I.H1 with equilibrium
(ρ1, ρ

−
2 , ρ1, ρ

−
4 ). No flux variation occurs on roads I2 and I4.

3.5. Interaction estimates. By the analysis of previous subsections, we have
the following. Define I(γ, γ′) to be the closed interval with extreme points γ and γ′,
then we have the following.

Proposition 3. For the interaction of a wave (ρ1, ρ
−
1 ) with the junction J , we

get f(ρ+
1 ) ∈ I(f(ρ−1 ), f(ρ1)). Moreover, |f(ρ+

2 ) − f(ρ−2 )| ≤ |f(ρ1) − f(ρ−1 )|.
Let us denote by TV ±

1,3(f) the sum of flux variations on roads I1 and I3 before
and after the interaction and define similarly TV ±

2,4(f). Then

TV −
1,3(f) = f(ρ1) − f(ρ−1 ).

Recalling that f(ρ±3 ) = f(ρ±1 ),

TV +
1,3(f) = |f(ρ1) − f(ρ+

1 )| + |f(ρ+
3 ) − f(ρ−3 )| = |f(ρ1) − f(ρ+

1 )| + |f(ρ+
1 ) − f(ρ−1 )|.

Now, from Proposition 3, it follows that

TV +
1,3(f) = TV −

1,3(f).

Moreover, for the total variation of f on roads I2 and I4, we have

TV +
2,4(f) = 2|f(ρ+

2 ) − f(ρ−2 )| ≤ 2|f(ρ1) − f(ρ−1 )| = 2TV −
1,3(f).

Finally, we get the following.
Proposition 4. The total variation of the flux on the whole junction satisfies

TV (f)+ = TV +
1,3(f) + TV +

2,4(f) ≤ 3TV −
1,3(f) = 3TV (f)−.

4. Existence of solutions. The aim of this section is to prove the existence of
solutions for networks with only crossing junction having (at most) two incoming and
two outgoing roads. The existence is obtained via wave-front tracking algorithm.

Fix a decreasing sequence δν > 0 such that δν → 0 as ν → ∞. Given an initial
data ρi,0 on each road Ii ∈ I with bounded total variation, one approximates ρi,0
by a piecewise constant function with smaller total variation. Then one solves the
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Riemann problems on the roads and at junctions, using Proposition 2. Moreover,
rarefaction waves are replaced by rarefaction fans, i.e., collection of small shocks of
size ≤ δν traveling with the speed of the right state. When two waves interact inside
a road, or a wave interact with a junction, then one solves a new Riemann problem
and so on. The obtained weak solution ρν is called a wave-front tracking approximate
solution. See [3, 11] for further details.

For the wave-front tracking algorithm to work we need three basic estimates:
(i) bound on the number of waves;
(ii) bound on the number of interactions among waves and of waves with junc-

tions;
(iii) bound on the total variation of ρν .

The first two estimates are necessary to construct the wave-front tracking approxi-
mation, while the third is necessary to pass to the limit in ν and obtain a solution on
the network ρ.

Therefore one has to prove (i), (ii), and (iii) for networks with crossing junctions
having two incoming (and two outgoing roads). From now on, we fix a wave-front
tracking approximate solution ρ = ρν and provide estimates on it. Notice that (i),
(ii), and (iii) hold on each road if no wave is generated by the junction J . In fact the
total variation decreases in time. Thus the crucial point is to estimate the number of
interactions with junctions and total variation increase due to such interactions.

4.1. Estimates on number of waves and interactions. The first estimate
is achieved via a series of lemmas: the obtained results permits to avoid explosions in
the number of interactions with a junction and thus on the number of waves.

We first need to recall some results from [11].
Theorem 1. Consider a network (I,J ), and a Riemann solver RSJ , assigned

for every J ∈ J . Let ρ0 be a piecewise constant (taking a finite number of values)
initial datum and assume:
(H∗) For every vertex J , consider a network formed by only the vertex J , replacing

incoming and outgoing edges by infinite length ones. Then there exists a
constant CJ such that, using the corresponding Riemann solver RSJ , the
following holds. For every wave-front tracking approximate solution, denoting
by M the number of waves in the initial datum, at most CJM waves are
produced by the vertex J and there are at most CJM interactions of waves
with the vertex J .

Then, for every T > 0, we can construct a wave-front tracking approximate solution
on [0, T ].

Theorem 1 essentially says that it is enough to consider each junction separately.
In fact, via finite speed of waves, the interactions of waves with different junctions
may happen only in a time interval whose length is bounded below.

Then for the rest of the section, we fix a network formed by a single junction J
with two incoming roads with infinite length, namely I1 and I2, and two outgoing
roads I3 and I4 with infinite length: our aim is to prove (H∗).

Again, we recall some definitions and results from [11].
Definition 3. A wave (ρ−, ρ+) is a big shock if ρ− < ρ+ and

sgn(ρ− − σ) · sgn(ρ+ − σ) < 0.

Definition 4. We say that an incoming road Ii has a good datum at J at time
t > 0 if

ρi(t, bi−) ∈ [σ, 1]
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and a bad datum otherwise. We say that an outgoing road Ij has a good datum at J
at time t > 0 if

ρj(t, aj+) ∈ [0, σ]

and a bad datum otherwise.
Definition 5. For every road Ii, i = 1, . . . , 4, we indicate by

(ρθ−, ρ
θ
+), θ ∈ Θ = Θ(ρ, t, i), Θ finite set,

the discontinuities on road Ii at time t and by xθ(t), λθ(t), θ ∈ Θ, respectively,
their positions and velocities at time t. We also refer to the wave θ to indicate the
discontinuity (ρθ−, ρ

θ
+).

For each discontinuity (ρθ−, ρ
θ
+) at time t̄ on road Ii, we call yθ(t), t ∈ [t̄, tθ], the

trace of the wave so defined. We start with yθ(t̄) = xθ(t̄) and we continue up to the
first interaction with another wave or a junction. If at time t̃ an interaction with

a wave or a junction occurs, then either a single new wave (ρθ̃−, ρ
θ̃
+) on road Ii is

produced or no wave is produced. In the latter case we set tθ = t̃, otherwise we set

yθ(t̃) = xθ̃(t̃) and follow xθ̃(t) for t ≥ tθ̃ up to next interaction and so on.
We have the following lemma whose proof can be found in [11, Lemma A.1.1,

page 122].
Lemma 1. Consider a trace of a wave yθ such that
(a) yθ is generated at time t̄ from J ,
(b) yθ interacts at time t̃ > t̄ with J ,
(c) yθ does not interact with the junction J on the interval ]t̄, t̃[.
Then
(i) yθ(t) is a big shock for some t ∈]t̄, t̃[,
(ii) if yθ(t̄) is generated on an incoming road and yθ(t̃) = (ρl, ρr), then ρl is a

bad datum and f(ρl) < f(ρr); for outgoing roads, ρr is a bad datum and it holds that
f(ρl) > f(ρr).

The previous lemma essentially tells us that waves produced by the junction J can
come back only if they are big shocks. Now we need two additional results describing
the effect of a big shock interacting back with a junction.

Lemma 2. Let (ρ1,0, . . . , ρ4,0) be an equilibrium at J and (ρi, ρi,0) a wave inter-
acting from road Ii, i ∈ {1, 3}, such that f(ρi) < f(ρi,0) (f(ρi) > f(ρi,0)). Call ρ̂ the
solution after the interaction, then f(ρ̂j) ≥ f(ρj,0) (f(ρ̂j) ≤ f(ρj,0)) for j = 2, 4.

The same conclusion holds for roads Ii, i ∈ {1, 3}, if the wave interacts from a
road Ij, j ∈ {2, 4}.

Proof. It is enough to reason on the space of incoming fluxes γi (i = 1, 2).
At interaction time, we move from the equilibrium (γ1,0, γ2,0) to a new equilibrium
(γ̂1, γ̂2). Both equilibria can be in one of the Cases I, IIa, or IIb. However, notice that
the new equilibrium is always obtained from the old one either moving along the line∑

i γi = ΓJ or along the line γ2 = γ∧
2 . In both cases a decrease in the flux on roads

I1 and I3 produces an increase of the flux on roads I2 and I4, and vice versa. Thus
the conclusion follows.

Lemma 3. If either on road I1 or road I3 there is a bad datum, then nothing can
happen on such roads when a big shock comes back to J from roads I2 and I4.

The same conclusion holds for roads I2 and I4.
Proof. Assume, to fix the notation, that ρ1 is a bad datum and a big shock (ρ̄2, ρ2)

interacts back to J . From Lemma 1, f(ρ̄2) < f(ρ2). Moreover, from Lemma 2, on
roads I1 and I3 there is an increase of the flux. However, a bad datum can give rise
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only to a wave decreasing the flux; see formulas (2.1), (2.2). Thus no wave can be
produced on roads I1 and I3.

Lemma 4. Assumption (H∗) holds true.
Proof. We can reason in the following way. The increase in the number of waves

may happen only by interactions with the junction J .
Let yθ, θ ∈ Θ0, be the traces of waves in the initial data and every road, thus the

trace ends at the first time of interaction with J . Let t′ < t′′ be an interval between
two consecutive interactions of traces yθ with J or with waves produced by J . Our
aim is to estimate the number of waves in the time interval [t′, t′′].

First, by Lemma 1, an interaction with J may happen only with a big shock
coming back to J . Assume, for instance, that the first of such interactions happens
for a big shock coming from road I1 at time t1 with t′ ≤ t1 < t′′. Then the datum on
road I1 is bad after the interaction and no wave produced by J on road I1. Nothing
can happen on road I1, unless a big shock interacts from road I3, say at time t3 with
t1 < t3 < t′′. In this case, a bad datum is on road I3, after time t3, and a big shock
may be produced on road I1. After time t3, and before time t′′, by Lemma 3 no wave
is produced from J on roads I1 and I3. In particular, the (possible) big shock on road
I1 cannot interact with any wave produced by J and also with any wave of the initial
data by definition of t′′. Notice that at most four new waves on roads I2 and I4 are
produced in this way and there are at most four interactions of waves with J .

The same reasoning can be done for roads I2 and I4.
Finally, in the time interval [t′, t′′] at most four new waves are produced.
Since the estimate is valid on each interval of the type [t′, t′′], we can bound the

total number of waves by 4 · #(Θ0), where #(Θ0) indicates the cardinality of Θ0,
i.e., the number of waves in the initial data. Similarly, the number of interactions is
bounded again by 5 · #(Θ0), thus the proof is finished.

4.2. BV estimates. Reasoning as for Theorem 1, it is enough to consider every
junction one at a time.

So, first we consider a network formed by a single junction J with two incoming
roads with infinite length, namely I1 and I2, and two outgoing roads I3 and I4 with
infinite length. Then we can prove the following.

Lemma 5. For every wave-front tracking approximate solution ρ, we have

(4.1) TV (f(ρ(t))) ≤ 3TV (f(ρ(0))) + 2f(σ).

Proof. First notice that only interactions with J may increase the total variation
of the flux.

We need to reason on waves coming back to J . So let t1 be the first time in
which a wave generated by J comes back to J , say from road I1. On the time interval
[0, t1], waves may interact with J only from one road; otherwise to have interaction
from two different roads, at least one wave should have come back to J . Then, using
Proposition 4, we have

TV (f(ρ(t1))) ≤ 3TV (f(ρ(0))).

Now, necessarily on road I1, we have a bad datum at time t1. By Lemma 3, road I1
does not change its status because of interactions with J of waves from roads I2 and
I4. If a wave interacts with J from I1, then I1 still has a bad datum (because of the
positive velocity of the wave). If a wave interacts with J from I3, then the following
happens. If the wave increases the flux, then it is simply reflected back. While a wave
decreasing the flux, again because of the velocity, necessarily brings road I3 to a bad
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datum. Then, we proved that after time t1, at least one of the two roads I1 or I3 has
a bad datum. Then, again by Lemma 3, the interactions with J from roads I2 and I4
can only decrease the flux variation.

On the other side, interactions with J from I1 and I3 can only decrease the
flux, because at least one road has a bad datum. Thus, by Lemma 2, the total
variation produced on roads I2 and I4, after time t1, is bounded by 2f(σ). Then we
conclude.

Let us now pass to the case of a complete network.
Proposition 5. Consider a network (I,J ) and a wave-front tracking approx-

imate solution ρ. Let δ = min{bi − ai : Ii ∈ I}, i.e., the minimum length of a
road, and let λ̄ = max{|f ′(0)|, |f ′(ρmax)|}, i.e., the maximum velocity of a wave. For
t ∈ [(n− 1) δ/λ̄, n δ/λ̄[, it holds that

TV (f(ρ(t))) ≤ 3n TV (f(ρ(0))) +

n∑
�=1

3� 2 f(σ).

Proof. On a time interval of length Δt = δ/λ̄, no wave generated from a junction
may interact with another junction. Thus we can reason as if junctions were isolated,
and so apply Lemma 5. Then defining TVk = TV (f(ρ(kΔt))), we get

TVk ≤ 3TVk−1 + 2f(σ),

and the desired estimate is readily obtained.
Remark 3. Notice that Proposition 5 says that the increase in the flux total

variation is exponential in time, we can in fact rewrite the estimate as

TV (f(ρ(t))) ∼ e
λ̄t
δ ln(3)

(
TV (f(ρ(0))) +

λ̄t

δ
2f(σ)

)
.

4.3. Existence of solutions. Once an estimate on the flux variation is ob-
tained, we can prove existence of solutions by the same technique of [11].

Definition 6. Consider a road network (I,J ) and consider an approximate
wave-front tracking solution ρ. For every road Ii, we define two curves Y i,ρ

− (t), Y i,ρ
+ (t),

called boundary of external flux, briefly BEF, in the following way. We set the initial
condition Y i,ρ

− (0) = ai, Y
i,ρ
+ (0) = bi (if ai = −∞, then Y i,ρ

− ≡ −∞ and if bi = +∞,

then Y i,ρ
+ ≡ +∞). We let Y i,ρ

± (t) follow the generalized characteristic as defined in

[8], letting Y i,ρ
− (t) = ai (resp., Y i,ρ

+ (t) = bi) if the generalized characteristic reaches

the boundary and f ′(ρ(t, ai)) < 0 (resp., f ′(ρ(t, bi)) > 0). (In this way Y i,ρ
± (t) may

coincide with ai or bi for some time intervals.) Let t̄ be the first time t̄ such that
Y i,ρ
− (t̄) = Y i,ρ

+ (t̄) (possibly t̄ = +∞), then we let Y i,ρ
± be defined on [0, t̄]. Finally, we

define the sets

Di
1(ρ) =

{
(t, x) : t ∈ [0, t̄) : Y i,ρ

− (t) ≤ x ≤ Y i,ρ
+ (t)

}
and

Di
2(ρ) = [0,+∞) × [ai, bi] \Di

1(ρ).

Clearly Y i
±(t) bound the set on which the datum is not influenced by the other

roads through the junctions.
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Lemma 6. The curves t �→ Y i
±(t) are uniformly Lipschitz.

Proof. The curves Y i
± are generalized characteristics, thus their velocity is uni-

formly bounded by max{f ′(0), |f ′(1)|}.
Lemma 7. For every t ≥ 0, there exist at most two big waves on{

x : (t, x) ∈ Di
2(ρ)

}
⊆ [ai, bi].

Proof. A big wave can originate at time t on road Ii from J only if road Ii has a
bad datum at J at time t. If this happens, then road Ii does not have a bad datum
at J up to the time in which a big wave is absorbed from Ii. Then we reach the
conclusion.

We are able to state and prove the main result.
Theorem 2. Fix a road network (I,J ). Given C > 0 and T > 0, there exists

an admissible solution defined on [0, T ] for every initial data ρ̄ ∈ cl{ρ : TV (ρ) ≤ C},
where cl indicates the closure in L1

loc.
Proof. We fix a sequence of initial data ρ̄ν piecewise constant such that TV (ρ̄ν) ≤

C for every ν ≥ 0 and ρ̄ν → ρ̄ in L1
loc as ν → +∞. For each ρ̄ν we consider an ap-

proximate wave-front tracking solution ρν such that ρν(0, x) = ρ̄ν(x) and rarefactions
are split in rarefaction shocks of size 1

ν .
For every road Ii, we notice that on Di

1(ρν), ρν is not influenced by other roads and
so the estimates of [3] hold. Since the curves Y i,ρν

± are uniformly Lipschitz continuous,
they converge uniformly in time, up to a subsequence, to a limit curve. Therefore the
regions Di

1(ρν) converge in measure to a limit region Di
1. More precisely, we have the

estimate

meas(Di
1(ρν+1)ΔDi

1(ρν)) ≤ T · ‖Y i,ν+1
± − Y i,ν

± ‖L∞ ,

where Δ is the symmetric difference of sets, namely AΔB = (A \B)∪ (B \A). Then
ρν → ρ in L1

loc on Di
1 with ρ admissible solution to the Cauchy problem.

On Di
2 := [0,+∞[×[ai, bi]\Di

1, we have that, up to a subsequence, ρν ⇀∗ ρ weak∗

on L1 and, using Proposition 5, f(ρν) → f̄ in L1 for some f̄ . By Lemma 7, there are
at most two big waves on Di

2 for every time, hence, splitting the domain Di
2 into a

finite number of pieces where we can invert the function f , getting ρν → f−1(f̄) in
L1. Together with ρν ⇀∗ ρ weak∗ on L1, we conclude that ρν → ρ strongly in L1.

The other requirements of the definition of admissible solution are clearly
satisfied.

5. Summary. We considered a fluid dynamic model for traffic flow on networks.
On each road we used the established Lighthill–Witham–Richards model, while special
type of junctions, called crossing junctions, are treated, coming from modeling of real
junctions of T type.

We first defined a Riemann solver at crossing junctions, taking into account the
maximal load of the junction and equilibrium flux proportions among incoming roads.
Then we established existence of solutions on the whole network by a wave-front
tracking algorithm.

Since the flux variation is not conserved for interactions of waves with junctions
(see Proposition 4), we cannot expect Lipschitz continuous dependence of solutions;
see [11, section 5.4, page 111].

Acknowledgment. The authors thanks the anonymous referees for indications
to improve the paper.
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HOPF BIFURCATION FROM VISCOUS SHOCK WAVES∗

BJÖRN SANDSTEDE† AND ARND SCHEEL‡

Abstract. Using spatial dynamics, we prove a Hopf bifurcation theorem for viscous Lax shocks
in viscous conservation laws. The bifurcating viscous shocks are unique (up to time and space
translation), exponentially localized in space, periodic in time, and their speed satisfies the Rankine–
Hugoniot condition. We also prove an “exchange of spectral stability” result for super- and subcritical
bifurcations and outline how our proofs can be extended to cover degenerate, over-, and undercom-
pressive viscous shocks.
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1. Introduction. The purpose of this paper is to study Hopf bifurcation from
viscous shock waves. While Hopf bifurcations from equilibria are well understood in
ordinary differential equations (ODEs) and in dissipative partial differential equations
(PDEs) on bounded domains, a variety of new phenomena and difficulties arise when
studying Hopf bifurcations for PDEs on unbounded domains.

In particular, Hopf bifurcations from travelling waves are complicated by the
presence of a neutral mode at the origin which is induced by spatial translation.
If the essential spectrum of the linearization around the travelling wave is bounded
away from the imaginary axis, appropriate center-manifold reductions and equivari-
ant parametrizations as in [4, 6, 17] show that the bifurcation problem reduces to a
standard Hopf bifurcation, and standard results on bifurcation and exchange of sta-
bility [2] immediately carry over to this setting [15, section 2]; the only effect of the
translation mode is an adjustment of the wave speed. When the Hopf instability is
caused by essential spectrum that crosses the imaginary axis, a variety of interesting
new phenomena can occur, including failure of bifurcation [15] and bifurcation of mul-
tiple solution branches [16, section 2.3]. The situation becomes more involved when
the instability caused by the essential spectrum is stationary, as the wave will then
typically decay only algebraically at onset which leads to significant complications in
the analysis [16, sections 2.1, 2.2, and 3].

From the preceding list, one can easily envision yet another possible scenario
where the complex Hopf eigenvalues belong to the point spectrum, whilst the transla-
tion mode is embedded in the continuous spectrum. This situation arises, for instance,
when the primary wave is not spatially localized, but the Hopf eigenfunctions are lo-
calized: Examples are Hopf bifurcations from coherent structures such as sources and
sinks in one spatial dimension, and spiral waves in two dimensions. A model problem
in higher space dimensions, but with a space-dependent potential, has recently been
analyzed in [1]. Viscous shock waves provide another prominent example where the
translation mode is embedded into the continuous spectrum. In fact, conservation
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laws can often be derived formally and rigorously in spatially extended systems where
the primary pattern breaks the underlying continuous symmetry [3, 7].

In this article, we investigate Hopf bifurcations from viscous shock waves using
the spatial-dynamics techniques we developed in [13, 14, 15] for Hopf bifurcations
from fronts and pulses in reaction-diffusion systems. Our paper is strongly motivated
by recent work of Texier and Zumbrun [19, 20] in which they analyzed oscillatory
instabilities of viscous shocks using delicate estimates for the temporal period map of
the linearized semigroup. Texier and Zumbrun proved the existence of a continuous
branch of oscillatory viscous shocks with a 1/x decay estimate at spatial infinity. In
a personal communication, Zumbrun asked us whether spatial-dynamics techniques
can be used to obtain the same or stronger results than those in [19, 20]. We demon-
strate here that the spatial-dynamics approach yields indeed sharper results, while
simplifying the analysis and adding geometric insight into the problem: We show
that the bifurcating oscillatory shocks are unique, exponentially localized, and de-
pend smoothly on the bifurcation parameter, and we calculate the spectra of the
linearization about the bifurcating oscillating shock waves, thereby confirming the
expected exchange of stability. Instead of analyzing the temporal semigroup whose
linearization has essential spectrum up to the imaginary axis, we consider the spatial
evolution of temporally periodic functions for which we gain compactness of the resol-
vent due to the imposed time periodicity. While this method may appear nonintuitive,
it is completely analogous to the usual phase-plane analysis used to prove existence
of viscous shocks and to study their stationary bifurcations. After this paper was
completed, Texier and Zumbrun were able to extend their approach to prove in [21]
exponential localization of the bifurcating solutions for compressible Navier–Stokes
and magnetohydrodynamics.

Outline. In section 2, we state our main result on bifurcation and spectral stability
of modulated shocks. The bifurcation result is proved in section 3. In section 4, we
review the precise characterization of spectra and prove stability and instability in the
case of super- and subcritical bifurcations, respectively. We conclude with a discussion
of several extensions and generalizations in section 5.

2. Setup and main results. Consider the viscous conservation law

ut + f(u)y = uyy, y ∈ R, u ∈ R
n,(2.1)

where f is a smooth flux function. We are interested in viscous shocks q0(y − c0t)
which connect the constant rest states u0

± at y = ±∞ so that

lim
x→±∞

q0(x) = u0
±.

Viscous shocks are stationary solutions in the moving reference frame x = y − ct in
which (2.1) becomes

ut = ∂x [ux + cu− f(u)] , x ∈ R, u ∈ R
n,(2.2)

and they therefore satisfy the integrated steady state equation

ux = [f(u) − f(u0
−)] − c[u− u0

−],(2.3)

where the speed c is given necessarily by the Rankine–Hugoniot condition

c =
fj(u

0
+) − fj(u

0
−)

u0
+,j − u0

−,j

, j = 1, . . . , n.(2.4)
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In particular, q0(x) lies in the intersection of the unstable manifold W̃ u
− of u0

− and

the stable manifold W̃ s
+ of u0

+ for (2.3).
The most common viscous shocks are Lax shocks for which u0

± are hyperbolic

equilibria of (2.3) with dim W̃ u
− = p+1 and dim W̃ s

+ = n−p for some p ∈ {0, . . . , n−1}.
We assume that the intersection of W̃ u

− and W̃ s
+ is transverse along q0 and that the

Jacobian fu(u0
±) has only real and distinct eigenvalues. If uε

± are smooth curves
that depend on a real parameter ε ≈ 0, then we find a smooth family of Lax shocks
qε(x) with a smooth speed relation c = cε given by the Rankine–Hugoniot condition.
Since the eigenvalues of fu(u) are the characteristic speeds of propagation at u, the

condition on the dimensions of W̃ s,u
± merely states that p+1 characteristics enter the

shock from the left and n− p characteristics enter from the right.
We are interested in the scenario where the Lax shocks undergo a Hopf instability

upon increasing ε through zero. We therefore consider the linearization at the shock
which is given by the linear operator

Lε := ∂x [∂x + cε − fu(qε(x))] ,

which we view as a closed unbounded operator on L2(R,Rn). Its essential spectrum
is readily seen to be contained in the closed left half-plane, touching the imaginary
axis only at the origin with a quadratic tangency. We assume that the point spectrum
lies in the open left half-plane, bounded away from the imaginary axis, except for an
isolated pair λ(ε) and λ(ε) of simple complex eigenvalues with

λ(0) = iω0 �= 0, Reλε(0) > 0.(2.5)

Theorem 2.1 (bifurcation). Under the above assumptions, there are positive
constants K, η, and δ and a smooth function

[0, δ) −→ C2
unif(R × S1,Rn) × R × R,

a �−→ (q∗(a), ε(a), ω(a)),

so that u∗(x, t; a) := q∗(x, ω(a)t; a) satisfies (2.2) with c = cε(a) for all a,

|q∗(x, τ ; a) − u
ε(a)
± | ≤ Ke−η|x|, q∗(x, τ ; 0) = q0(x), ω(0) = ω0,

and q∗(x, ·; a) has minimal period 2π in τ for each a > 0. Furthermore, any non-
stationary time-periodic solution u(x, t) of (2.2), which is pointwise close to q0(x)
and converges to uε

± as x → ±∞, is in fact an appropriate space and time translation
of u∗.

Note that u∗(x, t; a) and qε(a)(x) have the same asymptotic rest states and travel
with the same (average) wave speed. Theorem 2.1 remains true if f = f(u; ε) depends
smoothly on the parameter ε.

Spectral stability of the modulated shocks u∗(x, t; a) is determined by the Floquet
spectrum

Σ = {λ ∈ C; eλT ∈ spectrum of ΦT },

where T = 2π/ω is the temporal period of u∗, and Φt is the evolution operator of the
linearization

vt = ∂x[∂x + cε(a) − fu(u∗(x, t; a))]v

of (2.2) about u∗ on L2 or C0
unif .
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Re λ

Im λ

εaa(0) < 0
subcritical

∂Σess

Im λ

Re λ

εaa(0) > 0
supercritical

∂Σess

Fig. 1. The Floquet spectra of the oscillatory shocks u∗ from Theorem 2.1 is shown for a > 0:
λ = 0 has geometric and algebraic multiplicity two, while the location of the remaining simple Floquet
exponent near the origin depends on the sign of εaa(0).

Theorem 2.2 (stability). Assume that the hypotheses of Theorem 2.1 are met
and that the Evans function associated with q0 has a simple zero at the origin (see
section 4 for details). If εaa(0) �= 0, then the Floquet spectrum Σ of the oscillatory
shock u∗ given in Theorem 2.1 is as indicated in Figure 1.

We refer the reader to [5, section 3.4] and [23, sections 9, 10] for explicit conditions
which imply that the Evans function of q0 has a simple zero at the origin.

3. Existence of modulated viscous shocks. In this section, we prove Theo-
rem 2.1.

3.1. Preparations. We begin by collecting some properties of the linearization

Lε = ∂x [∂x + cε − fu(qε(x))]

about the viscous shocks that we need later on. Since we assumed in (2.5) that the
Hopf eigenvalues λ(0) = iω0 �= 0 and λ(0) of L0 are simple, we know that there are
nonzero L2-functions vj and ψj for j = 1, 2 that form a basis of the eigenspaces of
L0 and its adjoint [L0]∗, respectively, associated with these Hopf eigenvalues. We can
choose these functions so that

〈ψi, vj〉L2 = 〈ψi, ψj〉L2 = δij ,(3.1)

L0v1 = −ω0v2, L0v2 = ω0v1.

The result [10, Theorem 5.4 in Chapter II] gives the characterization

Reλε(0) =
1

2

2∑
j=1

〈ψj , ∂εLε|ε=0vj〉L2(3.2)

of the derivative Reλε(0) which we assumed in (2.5) to be positive.

3.2. Spatial dynamics. To find time-periodic solutions of (2.2), we rescale time
τ := ωt to get

ω∂τu + f(u)x − cux = uxx,

which we then cast as the first-order system(
ux

vx

)
=

(
v

ω∂τu + f(u)x − cv

)
=

(
v

ω∂τu + fu(u)v − cv

)
.(3.3)
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We view (3.3) as an equation for U = (u, v) in Y = H1(S1) × H1/2(S1) with S1 =
[0, 2π]/ ∼. The space Y is natural for various reasons: First, we wish to work on
spaces of time-periodic functions and shall see later in (3.13), see also [13, section
3], that the spaces Hs+1/2(S1) × Hs(S1) for s ≥ 0 are the only spaces compatible
with the linear leading-order part of (3.3). We choose s = 1/2 since H1(S1) embeds
into C0(S1) which guarantees that the nonlinearity fu(u) in (3.3) is well defined and
differentiable on Y . Finally, we remark that we shall often use, for convenience, the
scalar product

〈U, V 〉X :=
1

2π

∫ 2π

0

〈U(τ), V (τ)〉R2n dτ

of the space X = L2(S1)× L2(S1) to define complements and compute adjoints; this
scalar product is also an inner product on Y as Y embeds continuously into X.

The system (3.3) is invariant under the S1-action

Γ : S1 −→ L(Y, Y ), σ �−→ Γσ, [ΓσU ](τ) = U(τ − σ).(3.4)

We record that the fixed-point space Fix Γ ∼= R
n×R

n of this action consists precisely
of all time-independent functions, and (3.3) restricted to Fix Γ becomes the usual
travelling-wave ODE (

ux

vx

)
=

(
v

fu(u)v − cv

)
(3.5)

which is equivalent to (2.3). Equation (3.5) possesses the equilibria Ueq = (u, 0) for
u ∈ R

n and the heteroclinic orbits Qε(x) := (qε, qεx)(x) for c = cε: Qε(x) connects
U−

eq(ε) = (uε
−, 0) to U+

eq(ε) = (uε
+, 0) with

TQε(x)W
u
− + TQε(x)W

cs
+ = R

2n,(3.6)

where W j
± := W j(U±

eq(ε)). The transversality of the intersection in (3.6) is a con-
sequence of the following dimension count for ε = 0. Since dimW u

− = p + 1 and
dimW cs

+ = 2n − p, it suffices to show that the only nontrivial elements in the in-
tersection of the tangent spaces are multiples of Q0

x(x). This, in turn, can be seen
as follows. Starting with any nontrivial bounded solution (u, v)(x) of the variational
equation (

ux

vx

)
=

(
0 1

fuu(q0)[q0
x, ·] fu(q0) − c0

)(
u
v

)
(3.7)

of (3.5) about Q0 = (q0, q0
x), we find that its first component u(x) is a nontrivial

bounded solution of

uxx = [(fu(q0) − c0)u]x.(3.8)

If a nontrivial bounded solution (u, v)(x) of (3.7) lies, in addition, in TQε(x)W
u
−, then

u(x) decays exponentially at x = −∞ and is therefore also a nontrivial bounded
solution of the variational equation

ux = [fu(q0) − c0]u(3.9)
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of (2.3) about q0 since we can integrate (3.8) once, starting at x = −∞. To complete
the argument, we recall our assumption that q0 lies in the transverse intersection of the
unstable and stable manifolds of the hyperbolic rest states u0

± of (2.3); this hypothesis
implies that each nontrivial bounded solution of (3.9) is necessarily exponentially
localized and must, in fact, be a multiple of q0

x as claimed.
Next, we linearize the full system (3.3) in the solution Q0 = (q0, q0

x) for ω = ω0

to get

Vx =

(
0 1

ω0∂τ + fuu(q0)[q0
x, ·] fu(q0) − c0

)
V, V ∈ Y.(3.10)

For x → ±∞, we obtain the asymptotic systems

Vx =

(
0 1

ω0∂τ fu(u0
±) − c0

)
V, V ∈ Y,(3.11)

whose properties we discuss first. Equations (3.10) and (3.11) leave each subspace
Yk := {eikτ V̂ ; V̂ ∈ C

2n} invariant for k ∈ Z. If we restrict (3.11) to Yk, we obtain the
system

V̂x =

(
0 1

ikω0 fu(u0
±) − c0

)
V̂ , V̂ ∈ C

2n,(3.12)

where V = eikτ V̂ . For k �= 0, the matrices in (3.12) are hyperbolic: ν = iκ is an
eigenvalue if and only if det[−κ2− iκ(fu(u0

±)−c0)− ikω0] = 0, which is excluded since
fu(u0

±) was assumed to have only real eigenvalues.1 For |k| → ∞, the eigenvalues of
the matrices in (3.12) are

νj = ±
√

iω0k(1 + O(|k|−1/2)) with eigenfunction

(
νjej
ej

)
,(3.13)

where ej denotes the canonical basis in R
n. In particular, the stable and unstable

eigenspaces have a uniform angle in H1(S1) × H1/2(S1) as |k| → ∞, and therefore
for all k �= 0; see also [13, Lemma 3.3]. Thus, we can apply the results in [11, 13]

to conclude that (3.11) restricted to Yh :=
⊕

k �=0 Yk has exponential dichotomies

Φs,u
±,h(x, y) on R

± since the perturbation

(
0 0

fuu(q0(x))[q0
x(x), ·] fu(q0(x)) − fu(u0

±)

)
: H1 ×H1/2 −→ H1 ×H1/2

is bounded independently of x and converges to zero as |x| → ∞. We define

νs
± := −1

2
sup

{
Re νj ; Re νj < 0, νj is an eigenvalue of (3.12)± for some k ∈ Z

}
,

νu
± :=

1

2
inf
{
Re νj ; Re νj > 0, νj is an eigenvalue of (3.12)± for some k ∈ Z

}
,

1Purely imaginary spatial eigenvalues ν = iκ are actually equivalent to essential spectrum at
λ = iω0k so that, for more general viscosity matrices and fluxes, the analysis goes through provided
the Hopf eigenvalue iω0 is not resonant with essential spectrum on the imaginary axis.



HOPF BIFURCATION FROM VISCOUS SHOCK WAVES 2039

and observe that νs
±, ν

u
± > 0 due to (3.13). The spaces

Ecs
+ =

{
V0 ∈ Y ; ∃ solution V (x) of (3.10) on R

+ with V (0) = V0, sup
x≥0

|V (x)| < ∞
}
,

Eu
− =

{
V0 ∈ Y ; ∃ solution V (x) of (3.10) on R

− with V (0) = V0,

sup
x≤0

|V (x)|eνu
−|x| < ∞

}

are closed subspaces of Y .
Claim. We have

Ecs
+ ∩ Eu

− = RQ0
x(0) ⊕ RV1(0) ⊕ RV2(0),(3.14)

Y = [Ecs
+ + Eu

−] ⊕ RΨ1(0) ⊕ RΨ2(0),(3.15)

where, using the definitions of vj and ψj from section 3.1,

V1(x) := cos τ

(
v1

∂xv1

)
(x) + sin τ

(
v2

∂xv2

)
(x),

(3.16)

V2(x) := − sin τ

(
v1

∂xv1

)
(x) + cos τ

(
v2

∂xv2

)
(x)

and

Ψ1(x) := cos τ

(
ψ̃1

ψ1

)
(x) + sin τ

(
ψ̃2

ψ2

)
(x),

(3.17)

Ψ2(x) := − sin τ

(
ψ̃1

ψ1

)
(x) + cos τ

(
ψ̃2

ψ2

)
(x)

with ψ̃j := −∂xψj − [fT
u (q0) − c0]ψj for j = 1, 2.

Proof. The characterization of Ecs
+ and Eu

− is a consequence of the existence of
exponential dichotomies on Yh and the dynamics of the travelling-wave ODE (3.5).
First, recall that the dynamics on the Fourier subspaces Yk decouple, so that we can
write

Ecs
+ =

⊕
k∈Z

(Ecs
+ ∩ Yk), Eu

− =
⊕
k∈Z

(Eu
− ∩ Yk).

We know that the strong unstable manifold W u(U−
eq(0)) and the center-stable manifold

W cs(U+
eq(0)) of (3.5) intersect transversely along Q0(x); see (3.6). Thus,

spanQ0
x(0) = Ecs

+ ∩ Eu
− ∩ Y0.

Next, V0 ∈ Yh, the subspace of nonzero Fourier modes k �= 0, lies in Ecs
+ ∩ Eu

− if
and only if V (x) satisfies (3.11) on R with V (x) → 0 exponentially as |x| → ∞.
Since (3.11) on Y decouples, we find that such a solution can be taken in the form
V (x) = eikτ (v, vx)(x) for some integer k �= 0. In particular, v(x) satisfies

L0v = ikω0v,
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and is therefore an L2-eigenfunction of L0 to the eigenvalue λ = ikω0. Inspecting our
hypotheses on L0, (3.14) follows. To prove (3.15), we consider the adjoint equation

Ψx = −
(

0 −ω0∂τ + fT
uu(q0)[q0

x, ·]
1 fT

u (q0) − c0

)
Ψ, Ψ ∈ Y,(3.18)

of (3.11), taken with respect to the inner product in the space X = L2(S1)×L2(S1).
We note that the functions Ψj(x) from (3.17) satisfy (3.18). A calculation shows that

d

dx
〈V (x),Ψ(x)〉X = 0 for all x ∈ R

for solutions V (x) of (3.11) and Ψ(x) of (3.18); see [14] for similar arguments. Using
the relation between (3.18) and [L0]∗, we conclude that (3.15) is met.

Note that the direction Q0
x(0) ∈ Ecs

+ ∩ Eu
− corresponds to the flow direction. To

remove it, we shall later use the hyperplane

S := [RQ0
x(0)]⊥ ⊂ Y.(3.19)

We are now ready to discuss the nonlinear equation (3.3) near the orbit Q0(x) for ω
close to ω0 and ε close to zero. It is convenient to set

ω = ω0 + Ω

and to consider (
ux

vx

)
=

(
v

(ω0 + Ω)∂τu + fu(u)v − cεv

)
(3.20)

near the orbit Q0 = (q0, q0
x) for (ε,Ω) close to zero. We employ the smooth coordinate

change

z = x
√

ω0 + Ω, (ũ, ṽ) =
(
u, v/

√
ω0 + Ω

)
which transforms (3.20) into the equation(

ũz

ṽz

)
=

(
ṽ

∂τ ũ + (ω0 + Ω)−1/2[fu(ũ) − cε]ṽ

)
.(3.21)

The advantage of (3.21) over (3.20) is that the Ω-dependent part of the right-hand
side of (3.21) is a smooth mapping from Y into itself which depends smoothly on
(ε,Ω) for (ε,Ω) near zero; in contrast, the dependence on Ω of the right-hand side of
(3.20) is through the term u �→ Ω∂τu which is not even bounded from H1 into H1/2.
Using the fact that the linearized equation (3.10) can be solved using exponential
dichotomies (whose existence we established above), we can proceed as in [13, section
3.5] and [22] to prove the existence of unstable and center-stable manifolds for (3.21),
and therefore for (3.20), near the viscous shock. More precisely, there exist constants
δ > 0 and K > 0 such that

Wu
ε,Ω := {U0 ∈ Y ; ∃ solution U(x) of (3.20) on R

− : U(0) = U0, |U0 −Q0(0)| < δ,

|U(x) − U−
eq(ε)| ≤ Ke−νu

−|x| for x ≤ 0},
Wcs

ε,Ω := {U0 ∈ Y ; ∃ solution U(x) of (3.20) on R
+ : U(0) = U0, |U0 −Q0(0)| < δ,

∃U+
eq ∈ Y0 with |U+

eq − U+
eq(0)| < δ so that |U(x) − U+

eq| ≤ Ke−νs
+|x|

for x ≥ 0}
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are smooth manifolds that are invariant under the action of the group Γ defined in
(3.4) and that depend smoothly on (ε,Ω) near zero (smoothness with respect to the
parameters follows from [22] since the right-hand side of the rescaled equation (3.21)
is smooth in the parameters). Moreover, Qε(0) ∈ Wu

ε,Ω∩Wcs
ε,Ω, and the tangent spaces

of the invariant manifolds at this point of intersection are given by

TQ0(0)Wu
0,0 = Eu

−, TQ0(0)Wcs
0,0 = Ecs

+ .

Note that the center-stable manifold Wcs
ε,Ω is in effect given as the union of stable

manifolds to the manifold {U+
eq = (u, 0); u ∈ R

n} of asymptotic states, and therefore
unique.

Finding solutions of (2.2), with temporal frequency ω near ω0, that converge
asymptotically to constants as x → ±∞ is therefore equivalent to finding elements
U0 in the intersection

Wu
ε,Ω ∩Wcs

ε,Ω ∩
[
Q0(0) + S

]
(3.22)

for Ω close to zero, with S as in (3.19). Note that U0 will have nontrivial time-τ
dependence if and only if U0 has a nonzero Yh-component. The minimal period will
be 2π/ω if the component of U0 in Y1 does not vanish. We use Lyapunov–Schmidt
reduction to determine the intersection (3.22). To this end, we write

Ecs
+ ∩ S = Ẽcs

+ ⊕ span{V1(0), V2(0)}, Eu
− ∩ S = Ẽu

− ⊕ span{V1(0), V2(0)}.

There are then unique smooth maps

Gcs(·; ε,Ω) : Ẽcs
+ ⊕ span{V1(0), V2(0)} −→ Ẽu

− ⊕ span{Ψ1(0),Ψ2(0)},
Gu(·; ε,Ω) : Ẽu

− ⊕ span{V1(0), V2(0)} −→ Ẽcs
+ ⊕ span{Ψ1(0),Ψ2(0)}

with

Qε(0) + graphGj(·; ε,Ω) = Wj
ε,Ω ∩ [Q0(0) + S], j = cs,u,

and DUG
j(0; 0, 0) = 0 for j = cs,u. In particular, both maps are equivariant under

the S1-action Γ. Thus, intersections of Wu
ε,Ω and Wcs

ε,Ω in Q0(0)+S are in one-to-one
correspondence with the zeroes of the mapping

G(·; ε,Ω) : R × Ẽu
− × Ẽcs

+ −→ Ẽu
− ⊕ Ẽcs

+ ⊕ span{Ψ1(0),Ψ2(0)},
(a,wu, wcs) �−→ wu + Gu(wu + aV1(0); ε,Ω) − [wcs + Gcs(wcs + aV1(0); ε,Ω)],

where we factored out the nontrivial S1-action on span{V1(0), V2(0)}. Lyapunov–
Schmidt reduction shows that there is a unique map

W : Uδ(0) ⊂ R
3 −→ Ẽu

− × Ẽcs
+ , (a, ε,Ω) �−→ (W u(a, ε,Ω),W cs(a, ε,Ω)),

so that G(a,wu, wcs; ε,Ω) = 0 if and only if

〈Ψj(0), G(a,W (a, ε,Ω); ε,Ω)〉X = 0 for j = 1, 2.

Furthermore, W is smooth in (a, ε,Ω) and we have D(a,ε,Ω)W (0, 0, 0) = 0. In fact,
since G(0, 0, 0; ε,Ω) ≡ 0 due to Qε(0) ∈ Wu

ε,Ω∩Wcs
ε,Ω for all (ε,Ω), we have in addition

that W (0, ε,Ω) = 0 for all small (ε,Ω), so that

W (a, ε,Ω) = aO(|a| + |ε| + |Ω|).(3.23)
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It suffices therefore to solve the reduced equations

〈Ψj(0), G(a,W (a, ε,Ω); ε,Ω)〉X = 0 for j = 1, 2.(3.24)

To derive an expression for (3.24), we write (3.20) as

Ux = F (U, ε,Ω).(3.25)

Using the coordinates U = Qε + Ũ , we find that Ũ satisfies

Ũx = FU (Q0, 0, 0)Ũ + N (Ũ , ε,Ω, x),(3.26)

where

N (Ũ , ε,Ω, x) := F (Qε + Ũ , ε,Ω) − F (Qε, ε,Ω) − FU (Q0, 0, 0)Ũ(3.27)

= O(|Ũ |(|Ũ | + |ε| + |Ω|)).

Using the variation-of-constant formula that captures unstable and center-stable man-
ifolds (see, e.g., [22] or [13, Proposition 3.13]) and the fact that Ψj(x) satisfies (3.18)
together with [14, Lemma 5.1], we find that (3.24) is given by∫ ∞

−∞

〈
Ψj(x),N (Ũ±(x), ε,Ω, x)

〉
X

dx = 0, j = 1, 2,(3.28)

where Ũ±(x) satisfies (3.26) on R
± with Ũ−(0) = aV1(0) +W u(a, ε,Ω) and Ũ+(0) =

aV1(0) + W cs(a, ε,Ω). If we write (3.28) as Π(a, ε,Ω) = 0, then we know from the
preceding discussion that Π(0, ε,Ω) = 0 for all (ε,Ω): this solution corresponds to
the persisting Lax shocks in Fix Γ. To obtain genuinely time-periodic solutions cor-
responding to a �= 0, we write

Π(a, ε,Ω) = aΠ̃(a, ε,Ω)(3.29)

and consider Π̃(a, ε,Ω) = 0, which can be solved by the implicit function theorem

provided the 2 × 2 matrix D(ε,Ω)Π̃(0, 0, 0) is invertible. Equations (3.29) and (3.28)
show that

D(ε,Ω)Π̃(0, 0, 0) = DaD(ε,Ω)Π(0, 0, 0)

=

[
DaD(ε,Ω)

∫ ∞

−∞
〈Ψj(x),N (Ũ±(x), ε,Ω, x)〉X dx

∣∣∣
(a,ε,Ω)=0

]
j=1,2

(3.30)

which we now compute. We know that

Ũ+(x) = aV1(x) + W cs(a, ε,Ω)(x), Ũ−(x) = aV1(x) + W u(a, ε,Ω)(x)

which we rewrite as

Ũ±(x) = a[V1(x) + W̃±(x; a, ε,Ω)](3.31)

with

W̃−(x; a, ε,Ω) :=
1

a
W u(a, ε,Ω)(x) = O(|a| + |ε| + |Ω|), x ∈ R

−,
(3.32)

W̃+(x; a, ε,Ω) :=
1

a
W cs(a, ε,Ω)(x) = O(|a| + |ε| + |Ω|), x ∈ R

+,
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due to the estimate (3.23). Thus,

d2

d(ε,Ω)da
N (Ũ±(x), ε,Ω, x)|(a,ε,Ω)=0 = D(ε,Ω)FU (Qε(x), ε,Ω)|(a,ε,Ω)=0V1(x).

Upon comparing (3.25) with (3.20), we see that

d2

dΩda
N|(a,ε,Ω)=0 =

(
0 0
∂τ 0

)
V1,

d2

dεda
N|(a,ε,Ω)=0 =

(
0 0

∂ε(fuu(qε)[qεx, ·])|ε=0 ∂ε[fu(qε) − cε]|ε=0

)
V1.

Substituting the expressions (3.16) and (3.17) for V1 and Ψj and using the normal-
ization (3.1), we obtain[

d2

dΩda

∫ ∞

−∞

〈
Ψj(x),N (Ũ±(x), ε,Ω, x)

〉
X

dx
∣∣∣
(ε,Ω)=0

]
j=1,2

=

(
0
1

)
∈ R

2.(3.33)

An analogous computation for the derivative with respect to ε gives[
d2

dεda

∫ ∞

−∞

〈
Ψ1(x),N (Ũ±(x), ε,Ω, x)

〉
X

dx
∣∣∣
(ε,Ω)=0

]

=
1

2

2∑
j=1

〈
ψj , ∂ε∂x [fu(qε)vj − cεvj ]ε=0

〉
L2

= −1

2

2∑
j=1

〈ψj , ∂εLε|ε=0vj〉L2

= −Reλε(0),

where we used (3.2) to obtain the last step. Hence, we find that the Jacobian in (3.30)
is given by

D(ε,Ω)Π̃(0, 0, 0) =

(
−Reλε(0) 0

� 1

)
(3.34)

which is invertible due to our hypothesis on the transverse crossing of the Hopf eigen-
values.

Upon applying the implicit function theorem to solve Π̃(a, ε,Ω) = 0, we conclude
that there exist unique functions (ε∗,Ω∗)(a) ∈ R

2 and Q∗(0; a) ∈ Y , defined for
|a| < δ, so that

Q∗(0; a) ∈ Wu
(ε∗,Ω∗)(a) ∩Wcs

(ε∗,Ω∗)(a) ∩
[
Q0(0) + S

]
.

These functions are smooth and satisfy ∂a(ε∗,Ω∗)|a=0 = 0, Q∗(0; 0) = Q0(0), and

Q∗(x; a) = Qε∗(a)(x) + a[V1(x) + W̃±(x; a, ε∗(a),Ω∗(a))](3.35)

=: Qε∗(a)(x) + aQ̃∗(x; a).

By construction, we have Q∗(x; a) → U−
eq(ε∗(a)) as x → −∞. Furthermore, we have

Q∗(x; a) ∈ Wcs
(ε∗,Ω∗)(a) from which we infer that there exists a U+

∗ (a) ∈ R
n with
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|U+
∗ (a) − U+

eq(ε∗(a))| < δ, so that Q∗(x; a) → U+
∗ (a) exponentially as x → ∞ with

rate νs
+. We claim that U+

∗ (a) = U+
eq(ε∗(a)). To prove this claim, consider the smooth

functional

E : Y −→ R
n, (u, v) �−→

∫ 2π

0

[v − f(u) + cu] dτ.(3.36)

This functional is conserved under the evolution of (3.3). If U(x) = (u, v)(x) ∈ Y is
a solution of (3.3), then v = ux and

d

dx
E(U(x)) =

d

dx

∫ 2π

0

[v − f(u) + cu] dτ(3.37)

=

∫ 2π

0

[vx − fu(u)v + cv] dτ

(3.3)
=

∫ 2π

0

ωuτ dτ = 0

since u is 2π-periodic in τ . Furthermore, for U = (u0, v0) ∈ Fix Γ ⊂ Y , we have

DUE(u0, v0)

(
ũ

ṽ

)
=

∫ 2π

0

[ṽ − fu(u0)ũ + cũ] dτ = ṽ0 − fu(u0)ũ0 + cũ0 ∈ R
n.

In particular, DUE(u0
±, 0) restricted to R

n × {0} ⊂ Y0 is invertible, since we assumed
that none of the characteristic speeds vanishes in the frame that moves with speed c0.
Since Qε∗(a)(x) connects U−

eq(ε∗(a)) to U+
eq(ε∗(a)), they have the same E-values, and

the preceding argument shows that there is no other equilibrium U+
eq near U+

eq(ε∗(a))
with the E-value of U+

eq(ε∗(a)). Therefore, Q∗(x; a) → U±
eq(ε∗(a)) for x → ±∞.

This completes the existence proof of the bifurcating oscillatory viscous shock
waves. The uniqueness statement in Theorem 2.1 is a consequence of our construction
which captures all solutions that lie in the intersection of Wu

ε,Ω and Wcs
ε,Ω. We remark

that (3.37) also shows that any time-periodic localized travelling viscous shock wave
satisfies the Rankine–Hugoniot condition (2.4).

To prepare the ground for the following spectral stability proof, we derive an
expression for εaa(0). First, we set (ε,Ω) = 0 and compute the derivatives

dj

daj
Πi(a, 0, 0) =

dj

daj

∫ ∞

−∞

〈
Ψi(x),N (Ũ±(x), 0, 0, x)

〉
X

dx

at a = 0 for i = 1, 2. Using the expressions (3.27) for N and (3.31) for Ũ± together

with the estimate (3.32) for W̃ (x; a, 0, 0), we easily find that the first and second
derivatives vanish at a = 0 for i = 1, 2, while

κ3 :=
d3

da3
Π1(a, 0, 0)(3.38)

=

∫ ∞

−∞

〈
Ψ1(x), FUUU (Q0(x), 0, 0)[V1(x)]3+

+ 3FUU (Q0(x), 0, 0)[V1(x), W̃a(x; 0, 0, 0)]
〉
X

dx.

A straightforward calculation using (3.34) then shows that

εaa(0) =
κ3

3 Reλε(0)
.(3.39)
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4. Stability of the bifurcating modulated viscous shocks. This section is
devoted to the proof of Theorem 2.2. Our goal is to determine the Floquet spectrum

Σ = {λ ∈ C; e2πλ ∈ spectrum of Φ2π}

associated with the evolution Φt of the linearization

ωvτ = ∂x[∂x + c− fu(q∗(x, τ ; a))]v

of (2.2) about q∗ on C0
unif . Note that (ε, ω) and q∗ depend smoothly on the parameter

a introduced in section 3, and so do the wave speed c = cε and the asymptotic rest
states uε

± through ε = ε∗(a); we will suppress this dependence for most of the proof.
The Floquet spectrum Σ is the disjoint union of the essential spectrum Σess and

the point spectrum Σpt, which consists, by definition, of all isolated eigenvalues with
finite multiplicity. Since the modulated shock q∗(x, τ ; a) converges exponentially to
the constants uε

± as x → ±∞, uniformly in τ , the set Σess is bounded to the right by
the essential spectra

Σ±
ess = {λ ∈ C; det(k2 + ik[fu(uε

±) − cε] + λ) = 0 for some k ∈ R}

of uε
± (see, for instance, [14, Proposition 2.10]), which touch the imaginary axis at

λ = 0 and lie otherwise in the open left half-plane due to our hypothesis that the
eigenvalues of fu(uε

±) are real and simple.
It therefore suffices to locate point spectrum, that is, isolated Floquet exponents

λ which are captured, via the ansatz v(x, τ) = eλτu(x, τ) with u(x, τ + 2π) = u(x, τ)
for all τ , by the equation

ω∗(a)uτ + λu = ∂x[∂x + cε∗(a) − fu(q∗(x, τ ; a))]u

which we rewrite as

Vx =

(
0 1

ω∂τ + λ + fuu(q∗)[q∗x, ·] fu(q∗) − c

)
V

= [FU (Q∗(x; a), ε∗(a),Ω∗(a)) + λB]V, V ∈ Y,(4.1)

with Q∗(x; a) = (q∗, q∗x)(x, ·; a) from (3.35).
Since we assumed spectral stability for ε = 0 except for the Hopf eigenvalues

and the translational eigenvalue at the origin (which all contribute to the Floquet
exponent λ = 0), it suffices to find all isolated Floquet exponents of (4.1) in a fixed
small neighborhood of the origin. We choose an open set Ω ⊂ C as indicated in
Figure 2. Standard theory implies that λ ∈ Ω is a Floquet exponent if and only if
(4.1) has a nontrivial exponentially decaying solution on R. Taking the limit x → ±∞
in (4.1), we obtain the asymptotic operators(

0 1
ω∂τ + λ fu(u±) − c

)
.(4.2)

We denote the eigenvectors and eigenvalues of [fu(u±)−c] by r±j and ν±j , respectively.
As discussed in section 3, the operators in (4.2) are hyperbolic for λ = 0 except for
the n-fold eigenvalue V = 0 with eigenvectors (r±j , 0) ∈ Y0. This eigenvalue and the
associated eigenvectors become

V±
j = − λ

ν±j
+ O(λ2), R±

j =

(
r±j

V±
j r±j

)
, j = 1, . . . , n,(4.3)
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Im λ

Re λ

Ω

∂Σess

Fig. 2. The definition of the open set Ω ⊂ C in the complex Floquet plane is shown. The
embedded Floquet exponent at the origin has multiplicity at least equal to two with eigenfunctions
q∗x and q∗τ .

for λ near zero. For λ ∈ Ω, the unstable eigenspace E∞
− (λ, a) at x = −∞ and the

stable eigenspace E∞
+ (λ, a) at x = ∞ are therefore given by

E∞
+ := Es

+ ⊕R+, E∞
− := Eu

− ⊕R−, R± = span{R±
j ; ν±j ≷ 0},

and these spaces depend smoothly on a and are analytic in λ for λ near zero. Note
that dimR+ = p and dimR− = n− p− 1 with p as in section 2.

Lemma 4.1. There are unique closed subspaces E±(λ, a) of Y , defined and an-
alytic in λ near zero and smooth in a ≥ 0, such that V (x) is a bounded solution of
(4.1) on R

± for some λ ∈ Ω if and only if V (0) ∈ E±(λ, a).
Proof. We begin by considering (4.1) with Q∗ replaced by Qε. In this case, (4.1)

decouples on each Fourier space Yk, and the claimed statement holds for Qε due to
the Gap lemma [5, 9] applied in Y0 and exponential dichotomy theory together with
estimates as in [13, Lemma 3.3] in the other Fourier spaces. Since the difference of Qε

and Q∗ is small for all x and decays to zero exponentially as |x| → ∞, these results
carry over to (4.1) using, for instance, the integral formulation in [12, (4.12) in section
4.3]; see also [18, section 7.6] for a slightly different proof.

Lemma 4.1 shows that Floquet exponents in Ω can be found by seeking nontrivial
intersections of E−(λ, a) and E+(λ, a). To determine their intersections, we first set
(λ, a) = 0 to see what these spaces look like at onset and then use perturbation theory
to analyze the case when (λ, a) �= 0.

Hence, let λ = 0, then (4.1) is simply the variational equation

Vx = FU (Q∗(x; a), ε∗(a),Ω∗(a))V, V ∈ Y,(4.4)

of the modulated wave Q∗. When a = 0, we have Q∗ = Q0, and (4.4) describes
Floquet exponents at λ = 0 of the unperturbed viscous shock q0. In particular, (4.4)
decouples on each Fourier space Yk, and our hypotheses on the Evans function and
the spectral properties of the viscous shock imply that

E+(0, 0) ∩ E−(0, 0) = span{Q0
x(0), V1(0), V2(0)},

(4.5)
[E+(0, 0) + E−(0, 0)]⊥ = span{Ψ0,Ψ1(0),Ψ2(0)}

for an appropriate nonzero vector Ψ0 ∈ Y0. Next, consider (4.4) for an arbitrary a
near zero. First, note that the gradient of the jth component Ej of the conserved
quantity E from (3.36), computed in the X = L2(S1) × L2(S1) scalar product, is
given by

∇Ej(u, v) = ∇〈E(u, v), ej〉Rn =

(
−[fT

u (u) − c]ej
ej

)
, j = 1, . . . , n,(4.6)
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where ej denotes the jth canonical basis vector in R
n. Our analysis of E in section

3 implies that these n gradients are linearly independent for a = 0, and we therefore
have dimE∗(a) = n for all small a where

E∗(a) := span {∇〈E(Q∗(0; a)), ej〉Rn ; j = 1, . . . , n} .

The gradients in (4.6) also satisfy the adjoint equation of (4.4), again computed in
X, which shows that

d

dx
〈∇〈E(Q∗(x; a)), ej〉Rn , V (x)〉X ≡ 0, j = 1, . . . , n,(4.7)

for each solution V (x) of (4.4); this can also be verified directly by evaluating (4.7).
We denote by �±j (a) the smooth eigenvectors of [fT

u (uε
±)− cε] at ε∗(a) associated with

the eigenvalues ν±j and define

E∗
±(a) = span

{
∇〈E(Q∗(0; a)), �±j (a)〉Rn ; ν±j ≶ 0

}
⊂ E∗(a).(4.8)

Set a = 0, then dimE∗
+(0) = n − p and dimE∗

−(0) = p + 1. Equations (4.3), (4.6),
and (4.7) imply that E∗

±(0) ⊥X E±(0, 0) and, in fact, that E∗
±(0) are perpendicular

to each solution of (4.4) at a = 0 that decays exponentially at x = −∞ or x =
∞. Equation (4.5) implies then that E∗

+(0) ∩ E∗
−(0) = span{Ψ0}, and therefore

dim[E∗
+(0) + E∗

−(0)] = n. Since E∗
±(a) ⊂ E∗(a) for all a, and the latter space is n-

dimensional for all a, we conclude that E∗
+(a) + E∗

−(a) = E∗(a), and the dimensions
of the sum and intersection of E∗

±(a) cannot change for a close to zero. Hence,
we can choose a nonzero basis vector Ψ∗

0(0; a) in the one-dimensional intersection
E∗

+(a) ∩ E∗
−(a) that depends smoothly on a as well as linearly independent smooth

elements Ψ±
j (0; a) ∈ E∗

±(a), with j = 1, . . . , n− p− 1 for the + sign and j = 1, . . . , p

for the − sign, so that Ψ±
j (0; a) ⊥X Ψ∗

0(0; a) for all j. Using (4.3), (4.6), and (4.8),
we see that

Ψ±
j (0; a) ⊥X E±(0, a), Ψ∗

0(0; a) ⊥X [E+(0, a) + E−(0, a)](4.9)

for all a. Lastly, we define

Ψ∗
1,2(0; a) := [1 − P (a)]Ψ1,2(0; a),(4.10)

where P (a) is the orthogonal projection in X onto E∗
+(a) + E∗

−(a).
Having prepared the ground for the forthcoming analysis, we now return to the

full eigenvalue problem (4.1)

Vx = [FU (Q∗(x; a), ε∗(a),Ω∗(a)) + λB]V.

We seek solutions V ±(x) on R
± of the form

V ±(x) = b0Q
∗
x(x; a) + b1V1(x) + b2Q̃

∗
τ (x; a) + Ṽ ±(x;λ, a)b(4.11)

with b = (b0, b1, b2), Q
∗ = Qε + aQ̃∗ as in (3.35), and

Ṽ ±(0;λ, a)b ⊥ span{Q∗
x(0; a), V1(0), Q̃∗

τ (0; a)}(4.12)

for all b, so that

V +(0) − V −(0) ∈ span{Ψ∗
j (0; a); j = 0, 1, 2},(4.13)

dist

(
1

|V ±(x)|X
V ±(x), E∞

± (λ, a)

)
→ 0 as x → ±∞.(4.14)
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Using exponential dichotomies as in section 3, we can then easily show that the
system (4.1), (4.11)–(4.14) has unique solutions for each b ∈ R

3 and (λ, a) near zero
and that these solutions depend analytically on λ and smoothly on a. In particular,
E+(λ, a) ∩ E−(λ, a) �= {0} if and only if detD(λ, a) = 0 where

D(λ, a) : R
3 −→ R

3, b �−→ D(λ, a)b =
(
〈Ψ∗

j (0; a), V +(0) − V −(0)〉X
)
j=0,1,2

.

We will now compute the Taylor expansion of D to solve detD(λ, a) = 0.

First, we set a = 0 so that Q∗ = Q0, Q0
x =: V0, and Q̃∗

τ = V2. A calculation
similar to the derivation of (3.28) gives

∂λD(0, 0) =

(∫
R

〈Ψ∗
i (x; 0),BVj(x)〉X dx

)
i,j=0,1,2

= diag

(∫
R

〈Ψj(x),BVj(x)〉X dx

)
= diag(M0, 1, 1),

where we used the normalization (3.1). Our hypothesis that λ = 0 is a simple zero of
the Evans function of the viscous shock at ε = 0 implies that M0 �= 0.

Next, we set λ = 0 and compute derivatives with respect to a. Since λ = 0,
the eigenvalue problem reduces to the variational equation (4.4). In particular, both

∂xQ
∗(x; a) and ∂τ Q̃

∗(x; a) are solutions of (4.4) that satisfy (4.14), and we can set
b0 = b2 = 0 as they make no contribution to D(0, a). We focus therefore on V ±(x) =

V1(x) + Ṽ ±(x; 0, a) for which (4.9) and (4.14) together imply

〈Ψ∗
0(0; a), V +(0) − V −(0)〉X = 0(4.15)

for all a. The equation for Ṽ is

Ṽx = FU (Q0(x), 0, 0)Ṽ(4.16)

+ [FU (Q∗(x; a), ε∗(a),Ω∗(a)) − FU (Q0(x), 0, 0)](V1(x) + Ṽ )

and, proceeding as before and using (3.35), we obtain

d

da

〈
Ψ∗

j (0; a), Ṽ +(0; 0, a) − Ṽ −(0; 0, a)
〉
X

∣∣∣
a=0

=

∫
R

〈
Ψj(x), FUU (Q0(x), 0, 0)[V1(x), V1(x)]

〉
X

dx

for j = 1, 2. Inspecting (3.16) and (3.17), we see that the integrands vanish pointwise
for each x. Summarizing the findings obtained so far, we have

D(λ, a) =

⎛
⎝ M0λ 0 0

0 λ + O(a2) 0
0 O(a2) λ

⎞
⎠+ O(|λ|(|λ + |a|)).

Thus, it remains to compute the diagonal O(a2) term. Expanding (4.16), we see that
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the second derivative with respect to a of this diagonal term is given by

∂2
aD22(0, 0) =

∫ ∞

−∞
〈Ψ1(x), FUUU (Q0(x), 0, 0)[V1(x)]3

+ 3FUU (Q0(x), 0, 0)[V1(x), ∂aṼ (x; 0, 0)]

+ εaa(0)Dε(FU (Qε(x), ε, 0))|ε=0V1(x)

+ Ωaa(0)∂ΩFU (Q0(x), 0, 0)V1〉X dx

=

∫ ∞

−∞
〈Ψ1(x), FUUU (Q0(x), 0, 0)[V1(x)]3

+ 3FUU (Q0(x), 0, 0)[V1(x), ∂aṼ (x; 0, 0)]〉X dx− εaa(0) Reλε(0),

where the term involving Ω vanishes for the same reason that shows that the first
component in (3.33) is zero. Comparing the integral term in the above expression

with (3.38), we see that they coincide provided ∂aṼ (x; 0, 0) = ∂aW̃ (x; 0, 0, 0). The
following lemma, whose proof we postpone until after we finished the discussion of
D(λ, a), states that this identity indeed holds.

Lemma 4.2. We have ∂aṼ (x; 0, 0) = ∂aW̃ (x; 0, 0, 0).
Thus, we can conclude that

∂2
aD22(0, 0) = κ3 − εaa(0) Reλε(0)

(3.39)
= 2εaa(0) Reλε(0)

and consequently

D(λ, a) =

⎛
⎝ M0λ 0 0

0 λ + εaa(0) Reλε(0)a2 + O(a3) 0
0 O(a2) λ

⎞
⎠+ O(|λ|(|λ + |a|)).

The equation detD(λ, a) = 0 has therefore precisely three solutions, counted with
multiplicity, near zero which are given by λ = 0 with multiplicity two and a simple
zero at

λ∗(a) = −εaa(0) Reλε(0)a2 + O(a3),

so that λ∗(a) and ε∗(a) have opposite signs since we assumed that Reλε(0) > 0.
Subject to establishing Lemma 4.2, this completes the proof of Theorem 2.2.

Proof of Lemma 4.2. Expanding the relevant equations for Ṽ and W̃ , we find that

both ∂aṼ
±(x; 0, 0) and ∂aW̃

±(x; 0, 0, 0) satisfy the linear inhomogeneous differential
equation

Vx = FU (Q0(x), 0, 0)V + FUU (Q0(x), 0, 0)[V1(x), V1(x)].

The asymptotic boundary conditions in the hyperbolic directions coincide for both
functions, but differ for the center directions. We shall show that the center compo-
nents of ∂aṼ

±(0; 0, 0) and ∂aW̃
±(0; 0, 0, 0) are equal to each other from which we can

infer that the two solutions coincide as claimed.
We begin by discussing Ṽ ±(x; 0, 0). Equation (4.15) implies that the Ψ∗

0(0; a)

components of Ṽ ±(0; 0, a) coincide for all a. Since Ψ±
j (0; a) is perpendicular to the

space on the right-hand side of (4.12), we also have

〈Ψ±
j (0; a), Ṽ +(0; 0, a) − Ṽ −(0; 0, a)〉X = 0
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for all j and all a, and we conclude that the center components of Ṽ ±(0; 0, a) coincide
for all a. Since V ±(0) ∈ E±(0, a) for all a, (4.9) gives

〈Ψ±
j (0; a), V ±(0)〉X = 0, 〈Ψ∗

0(0; a), V ±(0)〉X = 0

for all a, and a Taylor expansion gives

〈∂aΨ±
j (0; 0), V1(0)〉X + 〈Ψ±

j (0; 0), ∂aṼ
±(0; 0, 0)〉X = 0 for all j,

(4.17)
〈∂aΨ∗

0(0; 0), V1(0)〉X + 〈Ψ∗
0(0; 0), ∂aṼ

±(0; 0, 0)〉X = 0.

We now turn to ∂aW̃
±(0; 0, 0, 0). We set (ε,Ω) = 0 and consider the solution pieces

U±(x) = Q0(x) + a[V1(x) + W̃±(x; a, 0, 0)]

from section 3. By construction, we have U±(x) ∈ Wu
0,0, and the conserved quantity

E(U−(x)) does, therefore, not depend on a. Its derivative with respect to a is given
by

0 =
d

da
E(Q0(0) + a[V1(0) + W̃−(0; a, 0, 0)])

= 〈∇E(Q0(0) + a[V1(0) + W̃−(0; a, 0, 0)]), V1(0) + W̃ (0; a, 0, 0)〉X
= 〈∇E(Q0(0) + a[V1(0) + O(a)]), V1(0) + aW̃−

a (0; 0, 0, 0) + O(a2)〉X

= a

[〈
d

da
∇E(Q0(0) + aV1(0))|a=0, V1(0)

〉
X

+ 〈∇E(Q0(0)), W̃−
a (0; 0, 0, 0)〉X

]
+ O(a2).

Thus, we get

〈∂aΨ±
j (0; 0), V1(0)〉X + 〈Ψ±

j (0; 0), W̃−
a (0; 0, 0, 0)〉X = 0,

(4.18)
〈∂aΨ∗

0(0; 0), V1(0)〉X + 〈Ψ∗
0(0; 0), W̃−

a (0; 0, 0, 0)〉X = 0.

We can proceed as before to show continuity of W̃±
a (0; 0, 0, 0) in the center com-

ponents. This fact, together with the continuity of Ṽa(0; 0, 0) in the center direc-

tions and (4.17) and (4.18), shows that the center components of ∂aṼ
±(0; 0, 0) and

∂aW̃
±(0; 0, 0, 0) are indeed equal to each other as claimed.

5. Discussion. There are numerous possible generalizations and extensions of
our results. The crucial ingredient is the existence of the evolution operators Φs,u

±
for the spatial dynamical system, which requires some hyperbolicity in the spatial
dynamics. The results are clearly not dependent on the particular form of the viscosity
matrix: nonlinear viscosity B(u)uxx is allowed as long as the essential spectrum is
nonresonant with the Hopf eigenvalue (uniform positivity is typically sufficient). We
can also allow parameter-dependent fluxes: the parameter ε may appear explicitly in
the viscosity matrix and the flux f = f(u; ε).

Under- and overcompressive shocks can be treated similarly. All viscous shocks
can be viewed as heteroclinic orbits in the travelling-wave ODE (3.5)(

ux

vx

)
=

(
v

fu(u)v − cv

)
(5.1)
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which connect families of equilibria at x = ±∞. To set up the problem, we can, for
instance, prescribe the values of u on ingoing characteristics. Choose manifolds S± of
R

n so that Tu0
±
S± ⊕ I± = R

n, where I± is the eigenspace belonging to eigenvalues

ν± ≶ 0 of fu(u0
±) − c0. We then seek viscous shock waves in the intersection of

Wu(S−) and Ws(S+), where we regard S± as subsets of the manifold R
n × {0} ⊂ Y0

of equilibria of (5.1). Both manifolds are n-dimensional, and we will assume that their
intersection along the viscous shock is transverse in the parameter c; this is equivalent
to the assumption that λ = 0 is a simple root of the Evans function associated with the
PDE linearization at the shock [5, 8, 23]. One can now vary S± = Sε

± and continue the
transverse intersection provided the speed c = cε is adjusted appropriately. If a pair
of complex eigenvalues crosses the imaginary axis at ε = 0, the analysis in this paper
can be adapted easily to show that there is a unique family of oscillatory under-
or overcompressive shocks bifurcating from the primary viscous shock. As for Lax
shocks, the bifurcating oscillatory shocks converge exponentially to time-independent
rest states as |x| → ∞ due to the presence of the n conservation laws (3.36). We
remark that undercompressive shocks occur as weak denotations in combustion, which
makes them interesting from an applied viewpoint.

The analysis extends also to the case of degenerate shock waves, where we allow
for an additional center direction within the travelling-wave ODE in Fix Γ at either
u0
− or u0

+. Again, suitable transversality conditions on the intersections of Wu
− and

Ws
+ together with appropriate assumptions on the nonlinear behavior of the zero

characteristic speed near the shock are needed.
Problems posed in infinite cylinders,

ut = Δu +
∑
j

∂xj
fj(u), x ∈ R × Ω,

for bounded cross sections Ω ⊂ R
N and with Neumann boundary conditions on R×∂Ω,

say, can also be treated. The existence of exponential dichotomies for this problem
follows from [11, 14].

The major open problem that we did not address in this paper is nonlinear sta-
bility of the bifurcating oscillatory viscous shocks. It should be possible to establish
nonlinear stability using a combination of the approach via pointwise estimates de-
veloped by Howard and Zumbrun in [8, 23] and our spatial-dynamics technique which
can be used to obtain the necessary estimates for the Green’s function; this will be
pursued elsewhere.
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